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Preface

Standard diabetes insulin therapy for type 1 diabetes and late stages of type 2 is
based on the expected development of blood glucose (BG) both as a consequence
of the metabolic glucose consumption as well as of meals and exogenous insulin
intake. Traditionally, this is not done explicitly, but the insulin amount is chosen
using factors that account for this expectation.

The increasing availability of more accurate continuous blood glucose mea-
surement (CGM) systems is attracting much interest to the possibilities of explicit
prediction of future BG values. Against this background, in 2014 a two-day
workshop on the design, use and evaluation of prediction methods for blood glu-
cose concentration was held at the Johannes Kepler University Linz, Austria. One
intention of the workshop was to bring together experts working in various fields on
the same topic, in order to shed light from different angles on the underlying
problem of modeling the glucose insulin dynamics of type 1 diabetes patients.
Among the international participants were continuous glucose monitoring devel-
opers, diabetologists, mathematicians and control engineers, both, from academia
and industry. In total 18 talks were given followed by panel discussions which
allowed to receive direct feedback from the point of view of different disciplines.

This book is based on the contributions of that workshop and is intended to
convey an overview of the different aspects involved in the prediction. The indi-
vidual chapters are based on the presentations given by the authors at the workshop
but were written afterward which allowed to include the findings and conclusions
of the various discussions and of course updates.

The chapter “Alternative Frameworks for Personalized Insulin–Glucose Models”
by Harald Kirchsteiger et al. asks the question whether more and more detailed
physiological descriptions of the glucose metabolism with an ever-increasing
degree of sophistication and number of modeled phenomena are really what is
needed for pushing the boundaries in glucose prediction for control. As an alter-
native, the chapter introduces two data-based approaches that focus not on the
prediction of exact future blood glucose values, but rather on the prediction of
changes in the patients’ blood glucose range.
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The chapter “Accuracy of BG Meters and CGM Systems: Possible Influence
Factors for the Glucose Prediction Based on Tissue Glucose Concentrations” by
Guido Freckmann et al. discusses performance metrics used to characterize the
accuracy of continuous glucose measurement devices. This topic is highly relevant
for prediction models since many of them rely on the data given by the continuous
sensors which are previously calibrated with blood glucose meter measurements
which are also subject to measurement errors. Inaccurate measurements will
directly affect the performance of the corresponding predictions.

The chapter “CGM—How Good Is Good Enough?” by Michael Schoemaker
and Christopher G. Parkin also tackles the problem of continuous glucose monitor
performance evaluation. Several performance metrics used in different published
studies are compared and their individual characteristics analyzed. The chapter
reveals why the comparison of a sensor evaluated in two different clinical studies is
not always straightforward.

The chapter “Can We Use Measurements to Classify Patients Suffering from
Type 1 Diabetes into Subcategories and Does It Make Sense?” by Florian Reiterer
et al. makes use of continuous time prediction models to describe the interaction
between ingested carbohydrates, subcutaneously injected insulin, and continuously
measured glucose concentration. The identified model parameters of 12 subjects
were analyzed and statistically significant correlations between the parameters and
patient characteristics such as weight and age could be found.

The chapter “Prevention of Severe Hypoglycemia by Continuous EEG
Monitoring” by Claus Borg Juhl et al. shows how to use EEG signals to predict
upcoming hypoglycemic situations in real-time by employing artificial neural net-
works. The results of a 30-day long clinical study with the implanted device and the
developed algorithm are presented.

The chapter “Meta-Learning Based Blood Glucose Predictor for Diabetic
Smartphone App” by Valeriya Naumova et al. demonstrates how a highly
sophisticated glucose prediction model can be ported from a development language
running on a PC to a format such that it can be used conveniently by the patients.
A unique feature of the algorithm is its independence of any user input other than
historic CGM data which is automatically transmitted from a CGM device. No
parameter estimation nor prediction model individualization is required.

The chapter “Predicting Glycemia in Type 1 Diabetes Mellitus with Subspace-
Based Linear Multistep Predictors” by Marzia Cescon et al. uses data-based
methods to develop individualized prediction models. The model can be considered
as a combination of physiological models to precompute the rate of appearance of
injected insulin and ingested carbohydrates in the bloodstream and of data-based
models to combine this information and compute predictions up to 120 min in the
future. The results show the performance on data from 14 type 1 diabetes patients in
a clinical trial.

The chapter “Empirical Representation of Blood Glucose Variability in a
Compartmental Model” by Stephen D. Patek et al. shows a modeling technique
designed to extract the information on the net effect of meals on the blood glucose
concentration. By assuming that all major unexplained glycemic excursions can be
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attributed to oral glucose ingestion, a meal vector is estimated which significantly
improves the mathematical model. Results are shown on three patients during a
clinical trial and on virtual patients where it is shown how the method can be used
for adjustments of the basal insulin rate.

The chapter “Physiology-Based Interval Models: A Framework for Glucose
Prediction Under Intra-patient Variability” by Jorge Bondia and Josep Vehi tries to
cope with the large intrasubject variability by using the concept of interval pre-
dictions. Instead of predicting a single blood glucose value in the future, a whole
solution envelope is determined. With the presented theory it can be guaranteed that
the real value is always inside of the envelope and moreover the envelope is not
conservative. The method is evaluated on a physiological diabetes model.

The chapter “Modeling and Prediction Using Stochastic Differential Equations”
by Rune Juhl et al. considers uncertainty in the dynamics between different patients
as well as within a patient by making use of stochastic differential equations. It is
shown how the mixed effects modeling methodology can be applied such that the
underlying information of several datasets from different patients is extracted to
form the model.

The chapter “Uncertainties and Modeling Errors of Type 1 Diabetes Models” by
Levente Kovács and Péter Szalay analyzes the effect of prediction model uncer-
tainties on the control system during a design procedure involving the steps model
reduction by elimination of state variables, state estimation using extended Kalman
Filters and Sigma Point filters and linear parameter-varying control synthesis.

The chapter “Recent Results on Glucose–Insulin Predictions by Means of a State
Observer for Time-Delay Systems” by Pasquale Palumbo et al. introduces a pre-
diction model which in real time predicts the insulin concentration in blood which
in turn is used in a control system. The method is tested in simulation on a
time-delay system representing the glucose–insulin system.

The chapter “Performance Assessment of Model-Based Artificial Pancreas
Control Systems” by Jianyuan Feng et al. makes use of prediction models to
compute treatment advices. The novelty of the proposed algorithm consists in
explicitly considering (among others) the model prediction error and model error
elimination speed. A retuning of the advisory system is done in case the prediction
model does not perform well. Results on 30 virtual patients show the performance
of the control system.

We would like to thank all people involved in the process of writing this book:
All authors for their individual contributions, all reviewers of the book chapters,
Daniela Hummer for the entire organization of the workshop, Boris Tasevski for
helping with the typesetting, Florian Reiterer for his help editing the book, as well
as Oliver Jackson and Karin de Bie for the good cooperation with Springer.

Linz Harald Kirchsteiger
August 2015 John Bagterp Jørgensen

Eric Renard
Luigi del Re
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Alternative Frameworks for Personalized
Insulin–Glucose Models

Harald Kirchsteiger, Hajrudin Efendic, Florian Reiterer and Luigi del Re

Abstract The description of the insulin–glucose metabolism has attracted much
attention in the past decades, and several models based on physiology have been
proposed. While these models provide a precious insight in the involved processes,
they are seldomable to replicate andmuch less to predict the bloodglucose (BG)value
arising as a reaction of themetabolismof a specific patient to a given amount of insulin
or food at a given time. Data-based models have proven to work better for prediction,
but predicted andmeasured values tend to diverge stronglywith increasing prediction
horizon. Different approaches, for instance the use of vital signs, have been proposed
to reduce the uncertainty, albeit with limited success. The key assumption hidden
behind these methods is the existence of a single “correct” model disturbed by some
stochastic phenomena. In this chapter, instead, we suggest using a different paradigm
and to interpret uncertainty as an unknown part of the process. As a consequence,
we are interested in models which yield a similar prediction performance for all
measured data of a single patient, even if they do not yield a precise representation of
any of them. This chapter summarizes two possible approaches to this end: interval
models, which provide a suitable range; and probabilistic models, which provide the
probability that the BG lies in predetermined ranges. Both approaches can be used
in the framework of automated personalized insulin delivery, e.g., artificial pancreas
or adaptive bolus calculators.

1 Introduction

Glucose is the main energy source for the human body, but in excessive amounts it
can be detrimental as well. In healthy persons, the correct glucose level is regulated
by the insulin–glucose metabolism. In diabetes patients, this control system does not
work properly any more, due, roughly speaking, either to lack of endogenous insulin

H. Kirchsteiger · H. Efendic · F. Reiterer (B) · L. del Re
Institute for Design and Control of Mechatronical Systems,
Johannes Kepler University Linz, 4040 Linz, Austria
e-mail: florian.reiterer@jku.at
URL: http://desreg.jku.at/

© Springer International Publishing Switzerland 2016
H. Kirchsteiger et al. (eds.), Prediction Methods for Blood Glucose Concentration,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-319-25913-0_1

1



2 H. Kirchsteiger et al.

production or to a resistance to insulin action [23]. In such cases, the therapy of choice
consists in providing the necessary insulin externally. However, the delay times
associated with this procedure and the danger of removing too much glucose from
the blood circulation—with possibly lethal consequences—make the determination
of the correct insulin quantity quite difficult and delicate.

Against this background, there has been a sustained interest in describing the
glucose–insulin metabolism by physiological models of increasing complexity [2, 3,
25, 44] . A model resulting from the cooperation between the Universities of Padova
and Virginia [12] has been accepted in 2008 by the Food and Drug Administration
(FDA) as a substitute for preclinical trials for certain insulin treatments. The model
was recently extended with new features [11].

And, of course, there has been a large number of attempts to use the model
information to determine the right quantities of external insulin needed, so to say
to replace the missing control action, to “close the loop.” Positive results have been
reported for overnight operation [26], but also a reduction of variability for the daily
use have been reported [33]. New and improved sensors have been introduced, faster
insulin is entering the market, and all this nurtures the hope that more progress will
come. Unfortunately, in spite of over 40 years of research [1], the results of this
“artificial” or “virtual pancreas” are still not there where they should be and simple
safety rules—e.g., avoiding insulin infusion during or near to hypoglycemia—seem
to be able to offer the largest part of the benefits of closed-loop control in a much
simpler way as well.

Against this background, it is natural to lean back for a moment and wonder
whether we are asking the right questions. In this chapter, we are addressing this
very issue by presenting two promising alternatives to modeling, namely interval
models and probabilistic modeling techniques.

2 Alternatives for Modeling

The key assumption for modeling is the reproducibility of results. To some extent, of
course, this is always true, for instance insulin does reduce the blood glucose (BG)
concentration and carbohydrates (Carb) intake increases it. Many other effects are
known but hard to quantify—e.g., some hormones increase it as well, muscular work
reduces it—but there are many control loops in the human body which can lead to a
complex response, e.g., in the case of prolonged physical work [21]. Other effects,
like the circadian variation of sensitivities, are known as well [46].

Physiological models describe all these phenomena relying on deep under-
standing of physiology and frequently on very specific measurements, e.g., tracers
[24, 42]. It is usually impossible to determine all parameters of such models with
simple “external” measurements, e.g., taking only Carb and insulin administration
and BG values. Indeed, it has been shown that the “external” behavior—the rela-
tion between insulin and Carb intake and BG—of these complex models can be
approximated very well with very simple ones [17, 45] (see Fig. 1). This is the one
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reason why comparisons between the values predicted by physiological models and
measurements are very seldom, exceptions being for instance [8, 47].

Indeed, in general, physiological models are not able to provide a personalized
description.

As the comparisonmakes clear, themeasurements have a high degree of complex-
ity not reflected in the physiological model, the main reason being the many unmod-
eled effects, e.g., related to the emotional state, which may affect very strongly the
BGvalues, andwhich cannot be captured by themodel because the critical quantities,
in this case the concentration of some hormones, are not known.

There are several ways to cope with this problem. On one side, the attempt can
be made to find additional measurements to extend the model, e.g., vital signs—
acceleration, heart frequency, body temperature, and so on. Similar techniques have
proved very useful in the industrial framework, e.g., to detect changes in machines
[13], but have never really succeeded in the case of diabetes treatment.

Another approach, related to another chapter of this book (see “Empirical
Representation of Blood Glucose Variability in a Compartmental Model” by
S. Patek et al.) consists essentially in estimating a “corrective” Carb input to explain
the difference between measured and computed values. While this method cannot
be used in real time, it allows to study the effect of some changes in therapy, e.g.,
different amounts of insulin.
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If we are interested in obtaining models which are sufficiently simple to allow
their use and parameter estimation in real time, it might be better to look for other
approaches. A very efficient adaptive model was developed by [5] which relies on a
simple hypothesis, a so-called ARX model, and determines the parameters continu-
ously, concentrating on the most critical BG ranges. Figure2 shows the performance
of such a model as predictor.

In this chapter, however, we suggest two different approaches. The key idea is
not to get rid of uncertainty, assuming one particular value to be true, but to design
models valid for the whole region, implicitly assuming that a full range of values
are possible and in some sense true. One possible approach to this end are interval
models, i.e., models which compute an output range and not a single value. The
other alternative is using a probabilistic approach. Indeed, the exact BG value is not
really important in itself, the clinician is more interested in keeping it inside the usual
(“euglycemic”) range and preventing to reach a dangerous one, e.g., hypoglycemia.
Markov jump model can help in describing the physiology the way it really is—i.e.,
to some extent random.

Both models can be used for automated insulin delivery as well. In the case of
interval models, the problem can be stated in terms of a min/max problem such that
the carbohydrate amount optimizes the cost functions for all cases of uncertainty. In
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the probabilistic case, it becomes the minimization of the probability that, under the
action of insulin and meals, the BG leaves the good range to reach a dangerous one.

The further sections of this chapter are organized as follows: Before coming to
the topic of interval models itself, a review about empirical continuous time trans-
fer function models is given in Sect. 3 and the differences between possible model
structures are discussed. The models presented in that section are a special form
of control-oriented data-based models for describing the input–output relationship
of the glucose metabolism that have proven quite powerful in the recent past (see
e.g., [37, 38]). One of those presented model structures is then further used for the
interval modeling introduced in Sect. 4. After a quick overview about the topic of
interval modeling in general, some details about the methods used here for deriving
interval models from data are given in Sect. 4.1. In following Sect. 4.1, results for
the interval modeling are shown, both for simulated and for real patient data. The
subsequent Sect. 5 then describes a probabilistic framework that can be used for pre-
dicting changes from one BG range to another. It starts in Sect. 5.1 with an overview
about Gaussian mixture models that have been used in this context. Section5.2 gives
some details about the used model structure and the methodology of predicting tran-
sitions in the BG range, whereas actual prediction results for real patient data are
presented in the following Sect. 5.3. The chapter finishedwith some final conclusions
and discussion given in Sect. 6.

3 Model Structures

Amodel consists of a mathematical structure and of parameters. Thus the first step in
modeling consists of fixing the model structure, and thereafter the parameters have
to be tuned to get the best correspondence between measured and computed values.
Of course, every model represents a simplification of the real system, and not every
model structure is able to capture the behavior of the system under observation in a
sufficiently general way. This is especially true in the case of a simplified model we
are interested in.

Table1 summarizes previously proposed model structures to describe the blood
glucose dynamics where BG(s), Carb(s), and I (s) correspond to the blood glucose
concentration, ingested meal carbohydrates, and subcutaneously injected insulin bo-
lus, respectively, all transformed into the Laplace domain. The table also lists the
number of parameters which need to be estimated from data. All models thus use the
same amount of information. A typical dataset which could be used for parameter
estimation is shown in Fig. 3 (data from the DIAdvisor project [14]).

It is immediately visible that the model inputs are impulse-shaped quantities
which are zero most of the time. That is because subcutaneous insulin injections are
discrete events and meal ingestions, regardless of the quantity and time it takes to
actually consume the food, are commonly treated as discrete events also. Therefore,
formodel analysis, the impulse responses are of great interest whereas step responses,
commonly used in control engineering, do not provide sufficient information. A step
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Fig. 3 Illustration of the relevant measurement data for a specific patient, CHU0102 (data from
the DIAdvisor project [14])

Table 1 Selected model structures previously published

No. Model structure Parameters Reference

1 BG(s) = K1
(1+sT1)2s

Carb(s) + K2
(1+sT2)2s

I (s) 4 [29]

2 BG(s) = K1 exp (−τ1s)
(1+sT1)s

Carb(s) + K2 exp (−τ2s)
(1+sT2)s

I (s) 6 [36]

3 BG(s) = K1
(1+sT1)s

Carb(s) + K2
(1+sT2)s

I (s) 4 [9]

4 BG(s) = K1
(1+sT1)2

Carb(s) + K2
(1+sT2)2

I (s) 4 [4]a

5 BG(s) = K1 exp (−τ1s)
(1+sT1)(1+sT2)

Carb(s) + K2 exp (−τ2s)
(1+sT3)s

I (s) 7 [10]

aExtended with a dynamic model for carbohydrates

response would actually mean that food or insulin is added to the metabolism in a
continuous way over an extended period of time. While this might be true for the
case of insulin, it is definitely an unrealistic case for food. In all given references,
continuous insulin delivery is not considered for modeling.

Fromaphysiological point of view, the impulse response gives precise information
on the effect of one gram of carbohydrate and one unit of insulin, respectively, on
the blood glucose concentration.

The impulse responses for both inputs of model structure 1 in Table1 are shown in
Fig. 4 for various selections of the parameters T1 and T2. It is immediately clear that
the parameters K1 and K2 correspond to the steady-state change in BG. Furthermore,
the parameters T1 and T2 are time constants which determine the time it takes until
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Fig. 4 Impulse response of model structure 1 from Table1 using K1 = 10, K2 = −8
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Fig. 5 Impulse response of model structure 2 from Table1 using K1 = 10, τ1 = 10, K2 = −8,
τ2 = 5

this steady state is reached. From this perspective, the physiological interpretation
of the model parameters is straightforward.

The impulse responses for both inputs of model structure 2 in Table1 are shown
in Fig. 5 for various selections of the parameters T1 and T2. Compared to the im-
pulse responses in Fig. 4, model structure 2 involves a time delay determined by the
parameters τ1 and τ2. Furthermore, after this delay, the impulse response shows a
discontinuity (see themagnified plots in Fig. 5) which hardly appears in real subjects.
However, the overall responses of model structures 1 and 2 are similar.

The impulse responses for model structure 3 in Table1 are not shown explicitly
since they are very similar to those of model structure 2 shown in Fig. 5, except for
the time delay which is zero in this case (τ1 = 0, τ2 = 0).

Model structure 4 of Table1 gives a significantly different impulse response than
the models discussed above, see Fig. 6. Since there is no integrating behavior, the
impulse responses return to the steady state of zero. Physiologically, the assumption
is that even in the absence of insulin, glucose will be removed from the circulation
after meal ingestion. This is fundamentally different than the assumptions in the
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Fig. 7 Impulse response of
model structure 5 from
Table1 using K1 = 100,
T2 = 20, τ1 = 10
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previous structures, where glucose will not be removed until insulin is supplied. As
it can be seen in the experimental results in the corresponding papers, both model
assumptions can lead to a good approximation of real data. Note also that model
parameters are not directly visible from the impulse response.

Finally, the impulse response related to the carbohydrate input from model struc-
ture 5 in Table1 is shown in Fig. 7. The response related to the insulin input is the
same as for model structure 2 and can be seen in Fig. 5. The main difference in this
structure is the assumption of two different time constants T1, T2, both for the carbo-
hydrate dynamics. Therefore, there is more flexibility in the response compared to
the case of using only one value for both constants (T1 = T2). However, it is ques-
tionable whether distinctive values for T1 and T2 can really be identified from clinical
data [29].
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4 Interval Models

There are essentially two ways to characterize interval models: one viewpoint is
to design the model such that all possible realizations of the uncertainties will be
considered and the true system output will be within the computed model output all
the time, minimizing at the same time the conservativeness. The other viewpoint is to
allow a certain amount or points to lie outside of the computed interval and thereby
obtaining amuch smaller interval [35]. The first approach is treated in another chapter
of this book (see “Physiology-Based Interval Models: A Framework for Glucose
Prediction Under Intra-Patient Variability” by J. Bondia and J. Vehi) while we focus
on the latter here.

We will choose the model structure 1 from Table1

BG(s) = K1

(1 + sT1)2s
Carb(s) + K2

(1 + sT2)2s
I (s) (1)

because it contains only four parameters to be estimated and does not lead to a
discontinuity in the impulse response. The generalized description of this model
(assuming only one input for simplicity of notation) is a continuous time process
model of the form

G(s) = B(s)

A(s)
= b0 + b1s + · · · + bmsm

a0 + a1s + · · · + sn
. (2)

Modeling a specific patient means to assign values to the variables ai , bi in (2). This
is an identification problem [34, 43] and can be tackled in twoways. By transforming
(2) into an equivalent discrete-time formulation, all the available tools of discrete-
time system identification can be applied. However, such a transformation might
introduce additional parameters and the initial (physiological) interpretation of the
continuous time parameters gets lost [20]. On the opposite, there are continuous time
identificationmethodswhich directly estimate the parameters in (2) without any need
for transformation [19]. The benefits of such a direct estimation in the context of the
human glucose insulin system have been treated in [10, 30]. In this contribution, we
will thus also focus on a direct continuous time estimation method.

4.1 Continuous Time System Identification

Beginning first without taking into account the uncertainty, estimates of the model
parameters can be found by minimizing a quadratic criterion of the form

J1(θ) = 1

N

N∑

k=1

ε2(k, θ) (3)
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where ε denotes the difference between measurement and model output,

ε(t, θ) = y(t) − ŷ(t, θ) (4)

N is the total number of available measurements and the vector θ contains all para-
meters. Various optimization techniques exist for actually minimizing the criterion
(3) (see e.g., [43]).

Now, considering uncertainty in the system to bemodeledwe assume two separate
datasets of the same system with different underlying dynamics. The cost function
which is minimized now is the sum of two similar terms as above, again taking into
account the deviation between model output and measurement. Additionally, we will
introduce a third term which penalize the standard deviation of the estimated model
parameters for the first dataset compared to the second dataset (5). For example, if
this third term is not present, themodel parameters for both datasets will be estimated
independently and might deviate to a great extent from each other. By introducing
and weighting (using the weighting matrix Π which has the tuning parameters in
the main diagonal) the third term, a compromise between a good model fit of the
individual datasets and compact parameter sets can be obtained.

J2(θ1, θ2) = 1

N

N∑

k=1

ε21(k, θ1) + 1

N

N∑

k=1

ε22(k, θ2) + 1

N
‖σ̄ (θ1, θ2)‖2Π (5)

The function σ̄ denotes a vector standard deviation operator which determines
component-wise the standard deviation of the model parameters of the parameter
vector θ .

Minimization can be done with a Gauss–Newton algorithm [43]. Thanks to the
definition of the cost and the model structure, gradient vector and Hessian matrix
can be determined analytically [30]. Nevertheless, the optimization is nonlinear and
iterative and thus care has to be taken to avoid improper starting values for the para-
meters. A generalization of the cost function to Nexp datasets and the corresponding
gradient vectors and the Hessian was derived in [30].

As a result of the continuous time system identification, there is one parameter
vector per experiment. The next step is to extract parameter intervals which then de-
fine the model output interval. Considering again the model structure 1 from Table1,
there are four model parameters which means the parameter vector has the form

θ = [K1, K2, T1, T2]� (6)

Denoting with superscripts the corresponding dataset number, at the end of the iden-
tification Nexp estimates K 1

1 , K
2
1 , . . . K

Nexp

1 are available and their maximum value
is Kmax

1 and minimum value Kmin
1 . The computation of the interval model output is

then
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Ŷmax(s) = Kmax
1

(1 + Tmin
1 s)2s

U (1)(s) + Kmax
2

(1 + Tmax
2 s)2s

U (2)(s) (7a)

Ŷmin(s) = Kmin
1

(1 + Tmax
1 s)2s

U (1)(s) + Kmin
2

(1 + Tmin
2 s)2s

U (2)(s) (7b)

Note that K2 describes the effect of insulin and is thus negative. In the following
subsection, we will present results when applying the interval model estimation to
short data segments representing the breakfast period. The starting point of the data
is breakfast time (around 8:00 in the morning) and data end points just before lunch
were taken (around 12:30).

4.2 Interval Model Results

Figure8 shows a typical result obtained with the methodology described above for
three independent measurement sets of a single patient. The black stars are the mea-
sured glucose levels using aYellowSpring InstrumentYSI 2300STATPlus™Glucose
Analyzer (YSI) device.Whenmodeling each dataset independently (individual mod-
els), the green curves apply which show of course the best performance. Depending
on the choice of the tuning matrix Π , the identified parameters then depend stronger
or less strong on each other and an output interval according to (7) can be computed,
see the red dashed lines in Fig. 8. Finally, also the mean interval model response is
shown, which is computed when using as parameter the average values of all the
estimated parameters of the interval model.

Remark 1 Again note the dependency of the results on the tuning matrix Π . When
choosing Π = 0 a zero matrix, the corresponding term in the cost function (5) will
disappear and the result is an independent estimation of the parameters for each
experiment. This also results in the largest possible output interval. In the other
extreme, choosing very large values in Π results in very small standard deviations
of the model parameters, making them equivalent. This also results in an output
interval which degenerates to a single line and is the same result as for a standard
multiexperiment identification setup [34].

For an in-depth analysis of the method, it was applied to 10 simulated and 10
clinical datasets. The simulated data was obtained from a time-varying metabolic
simulation model [28]. In the following, we will use the term individual model for
a model estimated on a single dataset (experiment), the term interval model for a
model according to (7), and the term mean interval model when a simulation with
the mean value of the interval model parameters is done.
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Fig. 8 Output response of the interval model compared to measurements for three datasets

4.2.1 Performance Metrics

Results will be evaluated based on a fit value (8) and on the error in detecting the
peak BG. This is visualized in Fig. 9: ΔBG is the difference between the measured
and predicted peak BG and ΔT is the difference in time. Both quantities can be
positive or negative, where positive means the measured BG peak is higher and later
in time than the simulated. The motivation of using those metrics is their importance
in diabetes treatment.

fit = 100

(
1 −

∥∥ŷ − y
∥∥2
2

‖y − ȳ‖22

)
(8)

4.2.2 Results Using the Simulated Data

First, we will present results from a single simulated patient before presenting sta-
tistics of all 10 considered patients. The parameter values and performance metrics
reported in Table2 are from simulated patient number 2. For the interval model, Π
(5) was tuned in such a way, that the fit value of the interval model is not significantly
less than 90% of the fit of the individual model, and that the ratio between mean
value and standard deviation (1/CV ) of each of the four parameters is at least five.
In this way, it is ensured that the interval predictions are reasonably tight.
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Fig. 9 Performance metrics
(ΔBG, ΔT ) for evaluation
of the results. Blue stars
indicate BG measurements,
interpolated with
second-order polynomial.
Black dashed are the
min/max responses of the
interval model (color figure
online)
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For the presented results in Table2 and Fig. 10, the elements in the main diagonal
of Π are [15000, 125, 20, 0.3] result in 1/CV = [5.02,−5.90, 5.94, 6.62]. The pa-
rameter estimation was done on the first 3 days (up to t = 72h). For the individual
models, the validation is based onmean parameters of the first 3 days. For the interval
models, the performance metrics were calculated based on the exact estimations for
days 1–3 and validation was done with the mean interval model.

From Table2, we see that there is a rather small ratio between mean value and
standard deviation of the estimated parameters (especially for K2)—which would
mean that the insulin effect is very different—when the experiments are identified
independently of each other. This ratio is greatly increased when applying the pro-
posed interval model estimation, without decreasing the performance (on the three
training days). Considering validation, the interval model shows better performance
compared to the individual model. Note also that in this particular case, the individu-
ally estimated model for day 3 is not useful, because K2 < 0, i.e., an insulin injection
would result in a glucose increase.

The results for all 10 patients are summarized in Table3 where the mean values
of the performance metrics over all 5days are shown. The interval model shows
the highest fit values in every case, and the average error (for all 10 patients) of
correct estimation of the BG peak is only 3.79mg/dl compared to 10.80mg/dl of the
individual models. Note that this rather high error is to a large extent caused by the
specific glucose responses to meals by the simulator for some patients, where the
response does not have a single maximal value. In those cases there are two almost
equivalent high peaks, but separated in time. Such a shape cannot be reproduced with
the chosen model structure (1), and the approximation typically lies in the middle of
the two peaks. It is of interest to note that from the 30 individual models, there were
8 that showed to be incorrect from a physiological point of view (K1 < 0 and/or
K2 > 0). Considering the interval model, only for patient #6 no physiologically
correct models could be found, as this patient’s glucose dynamics have a high time
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Fig. 10 Simulated patient #2: simulated glucose profile (black solid) individual model outputs for
the breakfasts (green solid) and worst-case interval model outputs for breakfasts (red dashed). The
first 3days (up to t = 72 h) were used for estimation of the models, the remaining 2days show
validation results. Bottom panel shows the scaled impulse carbohydrate (black solid) and insulin
(red solid) inputs

Table 3 Statistics for all 10 virtual patients, mean values of the performance metrics

Individual model Interval model

Pat Fit ΔBG ΔT Fit ΔBG ΔT

P1 46.08 5.08 108.00 61.82 5.68 23.40

P2 55.16 5.33 100.00 58.56 3.44 93.20

P3 86.68 2.72 2.40 87.05 2.73 2.20

P4 32.15 16.36 76.00 74.01 4.64 49.60

P5 −8.26 33.73 18.80 89.69 2.67 18.20

P6 63.35 6.63 71.40 67.32 6.74 78.80

P7 65.20 6.76 8.00 71.41 3.68 6.00

P8 65.32 3.83 69.00 67.57 3.22 57.80

P9 70.78 3.08 6.40 71.57 2.48 5.40

P10 15.04 24.48 35.40 82.74 2.62 4.20

Avg. 49.15 10.80 49.54 73.18 3.79 33.88
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constant, and BG is only rising in the observational period. To correct this, a longer
simulation time would be necessary.

4.2.3 Results Using the Clinical Data

The data used here was collected in [14]. Similar to the previous section, let us
first analyze the estimated parameters for a specific patient in Table4. The ratio
between mean value and standard deviation was again greatly increased while the
mean performance decrease is only moderate.

A graphical representation of the results obtained for this patient (#0107) is given
in Fig. 11. In contrast to the previously simulated cases, there is a considerable dif-
ference between CGM and YSI measurements, available only at (infrequent) time
intervals. The sampling rate is however small enough such that interpolation with
second-order polynomials does not result in excessive overshoots. The figure does
not only show that individual and interval model are well suited to represent dy-
namics of T1DM patients, but also that the estimated parameter intervals are small
enough such that min/max simulations (7) result in reasonably small BG prediction
intervals. A detailed view of the three breakfast periods is given in Fig. 8 for patient
#0115.

Table5 complements Table3 and demonstrates the usefulness of the proposed
methodology for real measurements on a group of 28 patients (only 10 are listed for

Table 4 Estimated parameters and performance metrics for simulated patient #0107

Meal #1 Meal #2 Meal #3 Mean Mean/Std.

Individual model

Fit 91.59 93.51 91.39 92.16 78.85

ΔBG −5.75 4.04 −2.19 3.99 2.24

ΔT 5.00 4.00 −1.00 3.33 1.60

K1 5.18(±0.16) 4.34(±0.04) 5.68(±0.12) 5.07 7.50

K2 −65.64(±1.86) −49.01(±0.51) −76.76(±0.76) −63.80 −4.57

T1 20.15(±0.38) 18.14(±0.20) 20.67(±0.29) 19.65 14.70

T2 67.71(±3.63) 72.41(±1.68) 56.00(±1.74) 65.37 7.73

Interval model

Fit 91.27 89.52 86.11 88.97 33.89

ΔBG −6.87 7.76 −10.77 8.47 4.14

ΔT 5.00 6.00 −8.00 6.33 4.15

K1 4.94 4.69 4.55 4.72 24.03

K2 −61.59 −55.36 −66.39 −61.11 −11.05

T1 19.44 20.12 17.15 18.90 12.16

T2 71.32 73.74 67.86 70.97 24.01
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Fig. 11 Patient #0107: YSI measurements (stars), interpolated with second-order polynomial,
CGM readings (black dashed), individual model outputs for the breakfasts (green solid), and worst-
case interval model outputs for breakfasts (red dashed). All 3days were used for estimation of the
models. Bottom panel shows the scaled impulse carbohydrate (black solid) and insulin (red solid)
inputs

Table 5 Statistics for clinical data, mean values of the performance metrics

Individual model Interval model

Pat Fit ΔBG ΔT Fit ΔBG ΔT

P0102 84.84 5.70 12.33 83.07 7.83 11.00

P0103 71.35 1.13 18.00 56.99 5.34 20.00

P0104 82.10 4.55 11.33 75.51 11.92 16.00

P0106 81.81 7.93 6.00 70.56 12.93 5.67

P0107 92.16 3.99 3.33 88.97 8.47 6.33

P0108 66.21 9.49 5.67 55.82 15.89 6.67

P0109 90.67 3.82 6.67 84.52 11.57 10.67

P0110 58.81 8.36 21.67 49.63 12.79 45.67

P0111 71.14 10.10 19.00 64.53 10.86 13.00

P0112 68.27 7.58 33.67 58.43 15.17 45.33

Avg.∗ 77.62 5.78 17.76 68.21 10.91 20.64
∗average values calculated based on 26 patients.

the sake of brevity). Out of this group, only for 2 patients no suitable, i.e., sufficiently
small parameter intervals could be found because the variability was too high.

Remark 2 The estimation of the model parameters was done based on YSI mea-
surements, which are probably not available in practice. It should be noted that the
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proposedmodel identification procedure is independent of the source of themeasure-
ments, the YSI data can be replaced with data from glucose meters which are usually
calibrated to show plasma equivalent values. As pointed out in the literature, e.g.,
in [7], the difference between those two measures can be up to 11%, with plasma
being higher than whole blood values, which directly effects the models. Similarly,
a model estimated with YSI data could be used afterwards with a BG meter which
introduces an uncertainty in the offset, directly related to the accuracy of the glucose
meter.

Remark 3 The proposed model structure approximates BG dynamics based on car-
bohydrate and insulin inputs. There are several other factors which have an impact,
e.g., physical activity, stress, and variation in nutrients in different meals. Activity
did not play an important role in the analyzed data, because patients were hospital-
ized and stress could not be assessed with the available measurements. Complete
information of nutrients (carbohydrates, proteins, and lipids) was available, but not
utilized. Extended versions of the model structure making use of those data were
tested (results not shown), but did not result in improvements. Changing meal com-
positions cause variations in the individual BG responses and are therefore indirectly
captured by the interval model, resulting in enlarged intervals.

5 A Probabilistic Approach

Classical methods use various mathematical techniques to predict a single value in
the future (e.g., the expected value in 30min.). Contrary to that, in the preceding
section, interval models were proposed which estimate a predicted range of the
future BG. Probabilistic models, the topic of this section, go one step further and are
solely concerned with the probability that the future BG will be inside a given region
defined on the basis of physiological criteria. This corresponds more to the interest
of the clinician, who aims to keep BG in a good range and not to some specific value.
This allows also redefining the control task in terms of minimizing a given transition
probability.

To estimate the mentioned probabilities for certain BG regions, we propose
Gaussian models, in particular Gaussian mixture models (GMM), which are com-
monly used for modeling of biometric and biological systems with continuous mea-
surements (see for example [15, 16] for an in-depth discussion). According to [39],
a GMM is defined as a parametric probability density function represented as a
weighted sum of Gaussian component densities.
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5.1 Gaussian and Generalized Gaussian Mixture Models

Let us assume that a given (biological) system has n measured inputs. If we assume
that each input is continuously measured with a sampling frequency f , a data vector
recorded over given time t will have a total ofm = f · t samples.Combined together,
the individual measurement vectors of the system variables will form a measurement
matrix x of dimensions n × m. A Gaussian Mixture Model of the system is given as

p(x |λ) =
n∑

i=1

wi · q (x |μi ,Σi ) (9)

wherewi , i = 1, . . . n are the mixture weights and the component Gaussian densities
are determined as

q (x |μi ,Σi ) = 1

(2 · π)m/2 |Σi |1/2
· e− 1

2 ·(x−μi )
′ ·Σi

−1·(x−μi ) (10)

with mean vector μi and covariance matrix Σi , i = 1, . . . n. The mixture weights
satisfy the constraint that

n∑

i=1

wi = 1 (11)

The complete GMM is represented by the mean vectors, covariance matrices, and
mixture weight from all variable densities:

λ = {wi , μi ,Σi }, i = 1, . . . , n (12)

There are several well-established algorithms for estimation of the parameters
of GMM from measurement data. Two of them, namely the iterative expectation-
maximization (EM) algorithm and the maximum a-posteriori (MAP) from a well-
trained priormodel aremost frequently used.More details about these two algorithms
can be found, for example, in [39] or [40].

However, the statistical analysis of the BG data used in this study showed that, in
the general case, they cannot be represented by the Gaussian distribution. In princi-
ple, this problem can be solved by the approximation of a non-Gaussian distribution.
The near-normal distributions, i.e., the distributions which moderately deviate from
the Gaussian distribution, can be approximated using disjunction into Gaussian com-
ponents. The details about this well-known approach can be found, for example, in
[27]. Now, modeling of the data with non-Gaussian distributions would be possible
using its Gaussian components. Thismethod is known as the independent component
analysis (ICA). The fundamental restriction in ICA is that the independent compo-
nents must be non-Gaussian for ICA to be possible [27]. Under the assumption that
the data is distributed according to multivariate Gaussian distribution, i.e., where the
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components are also distributed according to Gaussian distribution, the ICA method
is equivalent to the principal component analysis (PCA). The generalized mixture
model using ICA is discussed in [32]. This model is an extension of the GMMwhere
the model components have non-Gaussian distributions. The deviation of Gaussian
distribution is modeled using the generalized Gaussian density. It is assumed that
function p(x |μ) is a differentiable function μ, so that the log-likelihood is given as:

L =
n∑

i=1

log p(x |μi ) (13)

Thus, the class probabilities for the data matrix x are given as

q (λk |xn,Σ) = p (xn|Σk, λk) · p(λk)∑
k p (xn|Σk, λk) · p(λk)

(14)

The detailed discussion about the GMM using ICA, especially about generation
of model parameters, can be found, e.g., in [31] or [32]. The cited references also
give examples of applications of these models.

5.2 Modeling Method and Model Structure

The main goal of this study was to generate probabilistic mixture models of the
blood glucose levels and to use the generated models for short-term predictions,
up to 30min in advance. Those predictions are being calculated on the basis of the
current and previous values of BG.

As alreadymentioned, themodelswere not designed to predict the exact futureBG
concentrations in patients. Instead, they predict in which of five predefined regions
(which could be easily changed and adapted) the BG would most probably lie after
the prediction interval:

<70 [mg/dl] (hypoglycemia)
70–120 [mg/dl] (normglycemia)
120–180 [mg/dl] (elevated normglycemia)
180–300 [mg/dl] (hyperglycemia)
>300 [mg/dl] (acute hyperglycemia)

Data from various patients are, in general case, not normally distributed. Under such
circumstances, the blood glucose levels of such patients must be modeled using
generalized GMM, as previously discussed in Sect. 5.1.

Several sources have already reported about periodic properties of the BG con-
centration in the human body. A reader can find in-depth analyses, e.g., in [41] or
[22]. Starting from the assumption that the BG exhibits periodic properties, the fast
Fourier transformation (FFT) analysis has been conducted in order to determine the
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dominant periodic components in the measured data. Figure12 shows the magnitude
spectrum of one representative patient (Patient #6 from clinical study [18]). The re-
sults are obtained by analyzing a 7-days blood glucose time series. Figure12 shows
the frequencies of the recurring patterns and the estimation of the importance of each
cycle in the glucose time series. As it can be seen in the figure, a 12-h pattern repe-
tition appears to be the most significant. Besides the 12-h pattern, the 24-h pattern
has also been identified as important due to the circadian nature of glucose control
[6]. The confirmation of these results can also be found in the extensive study of
frequency characterization of blood glucose dynamics [22].

Thus, based on the previous considerations, amodel structure shown in Fig. 13 has
been selected. It includes the previous levels of blood glucose as inputs, specifically
the onesmeasured 24h before (BGt−24h), 12h before (BGt−12h) and the last available
measurement (BGt−1). Themodel structure also includes the intake of insulin (I) and
carbohydrates (C). It is important to note that, differently from the continuous 24-
h blood glucose level measurements, the intake of insulin and carbohydrates were
discrete events typically occurring 3–6 times a day during the clinical stay of the
patients. It is also important to mention that the carbohydrate values used are not
measured but estimated on the basis of the actual content of patients meals.
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Fig. 14 10-min prediction of the BG concentration levels (Patient #6) (color figure online)

5.3 Modeling Results

The data used here were collected in the clinical trial [18] conducted at the Institute
for Diabetes-Technology GmbH in Ulm, Germany between October and December
2011. In this study, a total of 12 patientswith type-1 diabetes spent 7 days hospitalized
and were equipped with six CGM sensors in parallel. For the purpose of the present
study, the data from one of the sensors (aDexCom™Seven® Plus sensor byDexCom,
San Diego, CA) was used which provides continuous information on subcutaneous
glucose for 7 days with a sampling time of 5min. Additionally, we used recorded
information about meal intakes and bolus insulin injections.

The measurement data from clinical patients used in this study were divided into
two parts. The larger part of the data which corresponded to the first 6 clinical days,
was used to train the GMM. The smaller part of the data corresponded to the final
(seventh) clinical day and was used for prediction and testing of the trained models.
The models were used first to predict the blood glucose levels during the seventh
clinical day and then to compare the prediction with the actual measurements in
order to assess the correctness of the model.

Figure14 shows the results of prediction of the BG levels (concentrations) for a
clinical patient (designated for the purpose of this study asPatient #6), in particular the
predictions of thefinal clinical day (24h). Themeasured bloodglucose levels from the
previous 6 clinical days are used to generate the predictionmodel. Themeasurements
and predictions in Fig. 14 are shown in 10min equidistance (or time slices). To
prevent possible misunderstanding, it is important to underline that, although the
results are shown in 10min time slices, the figures show future trends 10min from
the observation point at any particular time.

Figure14 is divided into two parts. The upper part shows the actual (measured)
blood glucose levels (showed using black dots) and the predicted blood glucose inter-
vals (showed as vertical green lines limited at their ends by dots). The lower portion
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of figures indicates if the prediction above was correct or incorrect. A particular pre-
diction was considered as a correct one, in a strict sense, if the actual measurement
fell within its limits.

However, some of the predictions which are classified as incorrect can be found at
or very close to the limits of the prediction segments and they are actually predicting
the general trend of the blood glucose signal well. Examples of that can be seen
in Fig. 14 (e.g., samples #70 or #132). Therefore, some of those slightly incorrect
predictions can be considered to be borderline cases. This was one of the reasons
to define an evaluation algorithm which could cope with different kinds of border-
line behavior of the BG models. The evaluation algorithm, therefore, includes the
following rules:

• Segment overlapping: each two neighboring segments are overlapped for 5
[mg/dl]; therefore, at some prediction instances themodeling algorithm can extend
the width of the prediction segments.

• Persistence principle: in order to eliminate the prediction outliers, all single pre-
diction segments which are in opposition to their neighboring prediction segments
(from left and right) are changed to correspond to their neighboring predictions;
this rule is not applied in cases when there is a persistent transition from one to
another prediction segment.

The results shown in Fig. 14 are obtained by the application of so defined evaluation
algorithm. The model has 96.53% correct prediction rate, having only 3.47% incor-
rect predictions during the final 24-h period.
The evaluation algorithm was able to deliver usable predictions of blood glucose
trends up to 30min in the future. The future predictions are generated stepwise,
in 10-min steps, where the second (20-min prediction) and the third step (30-min
prediction) are using the predictions from their preceding steps in calculations. The
20-min predictions are, therefore, calculated on the basis of the preceding 10-min.
predictions, and the 30-min predictions are calculated on the basis of the preceding
20-min predictions. As a consequence, the evaluation algorithm was able to make
corrections of the results with 10min delay.
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Fig. 15 10-min prediction of the BG concentration (Patient #4)
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Fig. 16 20-min prediction of the BG concentration (Patient #4)

Figures15, 16 and 17 show blood glucose prediction results for a clinical patient
(Patient #4). The figures show the 10-, 20-, and 30-min predictions of the final
(seventh) clinical day of Patient #4. Similarly as in the case of Patient #6, themeasured
blood glucose levels from the previous six clinical days are used to generate the
prediction model. The model performance for the tests shown in Figs. 15, 16 and 17
are summarized in Table6.

For the purpose of comparison, the blood glucose levels of the same patient
(Patient #4) are modeled using linear second-order autoregressive models (AR) for
the same prediction horizons (10-, 20-, and 30-min). The linear AR models used the
same data as the GMMmodels. However, due to the fundamental difference between
these twomodel types (the linearARmodels predict single values,while the proposed
prediction method using GMMmodels predicts intervals with certain probabilities),
in order to make the comparison possible, the single value predictions of the linear
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Fig. 17 30-min prediction of the BG concentration (Patient #4)

Table 6 Correct and incorrect prediction rates for 10-, 20-, and 30-min predictions of the BG
concentrations for Patient #4 (GMM and linear AR model)

Patient #4 GMM model Linear AR model

Correct% Incorr.% Correct% Incorr.%

10-min prediction 93.06 6.94 96.56 3.45

20-min prediction 88.19 11.81 84.83 15.17

30-min prediction 76.39 23.61 67.59 32.41

AR models are used to predict the blood glucose intervals. Figure18 shows both the
single value predictions as well as the corresponding interval predictions of blood
glucose level; themodel performance for the tests shown inFig. 18 is also summarized
in Table6.

In general, based on the results summarized in Table6, it can be concluded that
the GMM models deliver mostly correct predictions. The correct prediction rate for
the 20- and 30-min predictions is expectedly lower than for the 10-min prediction
because, as explained earlier, the 20- and 30-min predictions use the outputs from
their preceding predictions which are already uncertain to the some extent.
The comparisonof theGMMmodelswith the linearARmodels showed that the linear
ARmodels exhibit slightly better 10-min predictions, while theGMMmodels exhibit
superior results for 20- and especially 30-min predictions. However, the performance
of the linear AR models in predicting intervals should be taken with caution. The
linear AR models predict single values of blood glucose concentration. Thus, a
probability could not be assigned to the BG intervals detected using those single
values predictions of the linear AR models, making them not entirely comparable
to the GMM models. Instead, if a fit value is used to assess the performance of the
linear AR models, they showed much worse results: 84.76%, 68.82%, and 54.01%
fit for 10-, 20-, and 30-min predictions, respectively. Thus it can be concluded that
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Fig. 18 10-, 20- and 30-min prediction of the BG concentration using linear second-order AR
models (Patient #4)

the proposed method using GMM models showed superior performance especially
as the prediction window increased. It is important to stress that in no case a wrong
prediction of the proposedmethod using GMMmodels could have led to a dangerous
patient decision (as in the case of a hyperglycemia predicted when the patient was
in fact in hypoglycemia).

6 Conclusion and Outlook

The increasing availability of new sensors, smart insulin pumps, and more in general
of computing power opens new chances for personalized diabetes care, in particular
for closed-loop control, as in the artificial pancreas. First results in this direction are
promising.

Nevertheless, variability, in particular intrapatient variability, remains a challenge.
It also means that some methods may work well for some patient in most cases, but
not for all patients and all cases. Of course, having a perfect model which can predict
the future BG value with a high precision would be the best. Clinical experience,
however, shows that some conditions, like anger, can affect enormously the BG
development without being predictable.
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This chapter intended to show that it might be wiser to accept this limitation from
the very beginning and to look for “range” models, either in the form of moving or
of prefixed ranges. While they will almost never provide an exact prediction of the
next BG values, their error can be limited in such a way to be clinically easier to
cope with than classical models.

Of course, the validity of the proposed approach needs testing in a clinical study
and there is still much work to be done to tailor the methods to the specific problem.
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Accuracy of BG Meters and CGM Systems:
Possible Influence Factors for the Glucose
Prediction Based on Tissue Glucose
Concentrations
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Abstract The goal of this paper is to describe the metrics used for the evalua-
tion of accuracy of blood glucose (BG) meters for self-monitoring of blood glucose
(SMBG) and continuous-glucose monitoring (CGM) system and their limitations
and to discuss the current status of SMBG and CGM accuracy. SMBG measure-
ment is used by patients for therapy control and for calculation of appropriate insulin
doses for approximately 30 years. The minimum accuracy criteria for SMBGmeters
are currently defined by ISO 15197:2003 (at least 95% of results within ±20% or
±15mg/dL of the comparison method measurement results for BG concentrations
above or below 75mg/dL, respectively). In 2013, these accuracy limits were revised
in the standard ISO 15197:2013: at least 95% of results within±15% or±15mg/dL
for BG above or below 100mg/dL, respectively. SMBG systems are also used by
patients for calibration of CGM systems. Therefore, precision and trueness of the
SMBG system are influencing the accuracy of the CGM results. The timing of the
BG measurement used for calibration has to be taken into account because, during
rapid glucose changes, a time lag exists between BG and the tissue glucose that is
measured by CGM systems. The accuracy of CGM devices is often reported by the
mean absolute relative deviation (MARD) between CGM results and BG compari-
son results. This parameter is influenced by different factors like study procedures,
glucose fluctuations during the study, and distribution of comparison BG measure-
ments. It is important to define standard study procedures and evaluations to be able
to compare MARD results from different studies. For the correct prediction of glu-
cose concentrations, the specific prediction method as well as the accuracy of the
CGM system, which may be affected by the accuracy of the SMBG system used for
calibration, and the timing of the calibration are important aspects.
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1 Introduction

Methods for prediction of future glucose concentration based on previous glucose
using continuous subcutaneous glucose monitoring (CGM) data are currently under
development. A prediction of future glucose could be beneficial to patients; early
detection of glucose concentration falling belowcertain lowglucose thresholds could,
for example, help to prevent hypoglycemia.Glucose prediction can be combinedwith
algorithms for closed-loop control to optimize glycemic control.

In current therapy, most patients treated with multiple daily insulin injections
(MDI) or continuous subcutaneous insulin infusion (CSII) use self-monitoring of
blood glucose (SMBG). SMBG measurement is used by patients for therapy control
and for calculation of appropriate insulin doses for more than 30 years. MDI and
CSII patients measure 3–8 single spot blood glucose values per day. For adequate
glucose prediction, a much higher frequency of glucose values is needed. This higher
frequency of glucose values can, for example, be achieved by using CGM systems.

In the last decade, different CGM systems became available that provide a glucose
value every 1–10min. The current CGM systems are measuring the glucose in the
subcutaneous tissue and are calibrated against SMBG values. Thus, SMBG accuracy
influences the accuracy of CGM systems and, consequently, the accuracy of glucose
predictions based on CGM results. Additionally, the timing of the calibration is
an important aspect, since time delays between BG and tissue glucose, which is
measured by CGM results, can be observed when glucose concentration is changing
rapidly.

The goal of this paper is to describe themetrics used for the evaluation of accuracy
of SMBG meters and CGM systems and their limitations and to discuss the current
status of SMBG and CGM accuracy.

2 SMBG Accuracy and CGM Calibration
with SMBG Results

All currently available CGMsystems are calibrated on blood glucose values provided
by SMBG. The accuracy of the BG value and the timing of the BG measurement
used for calibration are important for the accuracy of the CGM results.

2.1 SMBG Accuracy

SMBG measurement is currently used by patients for therapy control and for cal-
culation of appropriate insulin doses. Therefore, the measured blood glucose values
should be accurate to avoid miscalculation of insulin doses or failure to detect hypo-
and hyperglycemia. The American Diabetes Association stated in 1987, that a total
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accuracy of 10% should be achieved [6]. In 1994, this goal was revised to an ana-
lytical accuracy of 5% [1]. Today, more than 20 years later, these accuracy goals are
still not achieved by most SMBG meters.

The minimum acceptable accuracy for results produced by a SMBG system is
currently defined by ISO 15197:2003: at least 95% of results have to be within
±20% or±0.83mmol/L (15mg/dL) of the comparison method measurement results
(manufacturers measurement procedure) for BG concentrations above or below
<4.2mmol/L (<75 mg/dL), respectively [15]. In addition, ISO 15197 calls for
the display of the system accuracy results of SMBG systems for glucose concen-
trations <4.2mmol/L (75mg/dL), as the percentage of values falling within the
following intervals: ±0.28mmol/L (±5mg/dL), ±0.56mmol/L (±10mg/dL), and
±0.83mmol/L (±15mg/dL). For glucose concentrations >4.2mmol/L (75mg/dL),
results shall be expressed as the percentage of values falling within the following
intervals: ±5, ±10, ±15 and ±20%.

In 2013, this ISO standard was revised (ISO 15197:2013) with the following
accuracy criteria: 95% of results have to be within ±15% or ±15mg/dL for BG
concentrations above or below 100mg/dL, respectively [16]. The new ISO standard
also asks for the stricter limits in evaluations where the BG meter is used by layper-
sons. It also requires the assessment of clinical accuracy using the consensus error
grid [16, 25]. Only limited data is available showing the accuracy in the hands of
users, especially according to the revised ISO 15197. In Table1, an example of how
the system accuracy results can be displayed as recommended in ISO 15197:2013 is
shown.

Thedifference plot inFig. 1 is an example that shows the systemaccuracy results of
three reagents lots of an SMBG system that was evaluated following ISO 15197 with
all results within the limits of ISO 15197:2003 and 15197:2013 [29]. Unfortunately,
the performance of the SMBG devices often is lower than shown in the example.

Table 1 Example for presentation of system accuracy results as recommended in ISO 15197:2013

System accuracy results for glucose concentration <5.55mmol/L (<100mg/dL)

Within ±0.28mmol/L (Within
±5mg/dL)

Within ±0.56mmol/L (Within
±10mg/dL)

Within ±0.83mmol/L (Within
±15mg/dL)

68/150 (45.3%) 105/150 (70.0%) 143/150 (95.3%)

System accuracy results for glucose concentration ≥ 5.55mmol/L (≥ 100mg/dL)

Within ±5% Within ±10% Within ±15%

221/450 (49.1%) 383/450 (85.1%) 439/450 (97.6%)

System accuracy results for glucose concentrations between X.XX mmol/L (XXmg/dL)

and YY.Ymmol/L (YYYmg/dL)

Within ±0.83mmol/L or ±15% (Within ±15mg/dL or ±15%)

582/600 (97.0%)

NoteX.XXmmol/L (XXmg/dL) and YY.Ymmol/L (YYYmg/dL) stand for the lowest and highest
glucose concentration measured with the comparison method, respectively
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Fig. 1 Difference plot showing system accuracy results of an SMBG system with three reagent
system lots. System accuracy limits of ISO 15197:2003 (dashed black line) and ISO 15197:2013
(dashed red line) were applied

Multiple studies were published during the last few years, testing meters applying
the limits of the ISO 15197:2003 and ISO 15197:2013 standards. [3, 4, 9, 11, 12, 20,
26]. The quality of such studies differs, as only some studies are following the ISO
15197:2003 study protocol, while others have major deviations from the protocol
[31]. All of these studies were comparing the system accuracy when applying the
ISO 15197:2003 limits and they found that between 60 and 100% of the investigated
SMBG systems have at least 95% of results within the ISO 15197:2003 limits. In
some of these studies, the ISO 15197:2013 limits were applied as well, which were
fulfilled by less than half of the investigated test strip lots. The observed differences
in system accuracy can be attributed to or is influenced by a list of reasons including,
but not limited to, the production process, the type and quality of test strip coding,
user handling [30], and the manufacturers measurement method used for calibration.
Measurement methods are reported to have systematic differences of up to 8% [32].
Such factors can lead to systematic or random measurement errors.

2.2 CGM Calibration with SMBG Results

Tissue glucose is not readily available formeasurement, thus themore easily available
BG is measured by patients with SMBG systems in order to be used for calibration
of CGM devices. However, when calibrating against SMBG results, not only does
the accuracy of the SMBG system influence the quality of the calibration, but also
the timing of the BG measurement subsequently used for CGM calibration.
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The accuracy, i.e., precision and trueness, of theSMBGsystemused for calibration
are influencing the accuracy of the CGM results. In 2009, Kamath and colleagues
reported that theMARDof theCGMsystem they used could be nearly halved (16.0%
vs. 8.5%) when switching from calibration against SMBG results to calibration
against results from a laboratory method [17]. It is unclear whether the effect could
be reduced with top-of-the-line SMBG systems, thus reducing the initial MARD.

Additionally, a time delay between the glucose values provided by BGmeters and
CGMsystems is observed during rapid glucose changes. This time delay is composed
by a physiologic time delay, which is independent from a specific CGM system used,
and a technical time delay caused by the specific CGM system. The physiologic time
delay reflects the time required for the diffusion of glucose from the blood capillaries
into the subcutaneous tissue [18]. The technical time delay is caused by two main
factors. First, the glucose has to diffuse through the CGM sensor membrane and onto
the sensor; and second, the raw signal from the CGM sensors often is smoothened
by an algorithm, which further increases the time delay. This time delay occurs at all
times and is not limited to rapid glucose changes; however, it is most clearly visible
during rapid glucose changes and its contribution to a measurement error is more
pronounced during these rapid glucose changes than when glucose only changing
slowly. Rapid changes of glucose are observed frequently after the ingestion of
meals or during exercise. Subsequently, the timing of the calibration is important
and CGM systems should be calibrated at times of minimal BG change. Zueger and
colleagues found lower MARD when using preprandial calibration as compared to
using postprandial calibration [35].

SMBG accuracy andCGMcalibration are the twomost common influences on the
accuracy of CGM systems. However, there are other aspects as well. In one study, it
was suspected that the SMBG system showed a pronounced variability between vials
of test strips (see Fig. 2). In other cases, contaminated hands were found to heavily
affect the accuracy of an otherwise good SMBG system [13, 14]. However, these
influence factors are not common and they can be avoided by taking appropriate
steps.

In summary, calibration of CGM systems should only be performed with high-
accuracy SMBG systems, and phases of rapid glucose changes, i.e., within 1–2h
after carbohydrate intake, should be avoided for calibration of CGM systems.

In this context it should be noted that, recently, a factory-calibrated tissue glu-
cose monitoring system was introduced in the European market. The term factory-
calibrated is used for systems that do not have to be calibrated while wearing, as
they have an internal calibration implemented during the system’s production. It is
possible that in the near future, more and more systems will be factory-calibrated. As
such factory-calibrations can be performed in a controlled environment, it is highly
likely that the error introduced by inappropriate calibration will be markedly lower
than that introduced by online, prospective calibration with SMBG systems (Fig. 2).
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Fig. 2 Effect of SMBG accuracy on calibration of CGM systems. The increase in BG concentration
at approximately 9:00was presumably causedbyvial-to-vial differences of theSMBGsystem.CGM
system A was calibrated using test strips from one vial, CGM system B was calibrated using test
strips from another vial

3 Accuracy of CGM Systems

In the literature, the accuracy of CGM systems is assessed by a number of differ-
ent parameters. In the following section, two of these parameters are described in
more detail, namely the mean absolute relative difference (MARD) and the precision
absolute difference (PARD).

TheMARD indicates how closely CGM results and BG results match. The PARD
on the other hand indicates how closely two sensor traces of the same CGM system
worn by the same subject at the same time follow each other.

A third parameter, the continuous-glucose error grid analysis (CG-EGA), while
not described in detail, is worth mentioning. The CG-EGA provides a clinical assess-
ment of the CGM systems accuracy. However, BG results have to be obtained at least
every 15min in order to adequately perform CG-EGA, which places an additional
burden on both the study participants and the study personnel.

3.1 Mean Absolute Relative Difference

As stated above, the MARD indicates how closely CGM results and BG results
match. The MARD is commonly used to assess CGM accuracy, and it is calculated
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as the average of the absolute values of the individual relative differences between
CGM results and BG results (see Eq.1).

MARD = 1

N

N∑

i=1

∣∣∣∣
CGMi − BGi

BGi

∣∣∣∣ × 100% (1)

In Eq.1, BGi is the result of the ith BG measurement, CGMi is the corresponding
CGM result and N is the total number of pairs of BG results and CGM results.

Despite being commonly used, MARD results from different studies may not
necessarily be comparable, since the MARD is influenced by a number of factors
[24]: The MARD can be affected by the selection of the study participants, since
their specific glucose values can influence MARD, and the study protocol, namely
the rates of change (because of the time delay at rapid glucose chances, especially
if glucose excursions are induced) and the duration of hypo- and hyperglycemic
episodes. Nielsen and colleagues, for example, found that the MARD if the same
CGM system was lower in type-2 diabetes subjects than in type-1 diabetes subjects,
who are known to show higher glycemic variability [23].

Since these influence factors may make comparisons between different studies
difficult, it is worth mentioning that the Clinical and Laboratory Standards Institute
(CLSI) has issued a guideline, in which some specifications toward study protocols
and data analysis are made [5]. In 2013, data from two clinical trials were published,
in which the performance of, in total, five CGM systems was assessed [10, 28, 34].
Three CGM systems were used in the same study, whereas the other two systems
were used in another study with very similar study procedures, thus allowing for a
comprehensive comparison of all five CGM systems.

As stated above, an SMBG system used for calibration should provide adequate
analytical performance especially if SMBG is used for calculating the MARD val-
ues. In many studies, devices are calibrated using SMBG values, but the evaluation
of MARD is based on values obtained by a laboratory method. This seems to be
the superior method, but this may lead to additional error if there is a systematic
measurement error between the laboratory method and the SMBG system. In one
of the abovementioned comparison studies, a systematic measurement error of 14%
between the SMBG system used for calibration and the laboratory method was found
[10]. Since most evaluations in that study were made against SMBG data, this was
not a problem, but it may have lead to problems for evaluations in which CGM data
were compared to measurement data from the laboratory method.

While the MARD is a parameter that is easy to compute and to interpret, the
causes of low performance (i.e., high MARD) cannot be identified in detail. While
a low MARD indicates close approximation of the CGM results to the BG results,
higher MARD values give no indication about systematic measurement error or its
sign (positive or negative error) or random measurement error. Figure3 shows an
example of a CGM trace and the corresponding BG measurements.

CGM systems that are currently available or were available until recently, show
MARD results between approximately 10 and 20% [7, 10, 28, 34].
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Fig. 3 Example of a CGM trace (blue line) and BGmeasurements (red diamonds) used for MARD
calculation. Note that at approximately 07:00, the BG result is smaller than the CGM result and at
approximately 13:00 the BG result is higher than the CGM result. In the calculation, both incidents
contribute towards a higher MARD result, i.e., lower performance, independent from the direction
of the deviation

3.2 Precision Absolute Relative Difference

The PARD was introduced in 2009 as percentage ARD by Zisser and colleagues
[33]. While this parameter is not as widely used as the MARD, is has regularly been
used since its introduction to assess sensor-to-sensor difference of CGM systems.

In order to calculate the PARD, the same subject has to wear at least two sensors of
the same CGM system. It is then calculated as the average of the absolute difference
between the two sensor signals divided by their mean value (see Eq.2).

PARD = 1

N

N∑

i=1

∣∣∣∣
CGMi,1 − CGMi,2

(CGMi,1 + CGMi,2)/2

∣∣∣∣ × 100% (2)

In Eq.2, CGMi,1 is the ith result of the first CGM sensor, CGMi,2 is the ith result
of the second CGM sensor and N is the total number of CGM result pairs.

The major advantage of the PARD is that it ideally includes all CGM results
obtained during the study, whereas the MARD is limited to those CGM results that
have corresponding BG results. For CGM systems, which store one result per 1–
10min, this means that if there is no data loss, between 144 and 1440 results per day
can be used in the assessment.

As with the MARD, the PARD is easy to compute and to interpret, but again,
it lacks in detailed information. While low PARD results indicate that the sensor
signals follow each other closely, high PARD results give no indication about the
systematic or randommeasurement errors. Figure4 shows two CGM traces obtained
from sensors of the same CGM system worn by the same subject. CGM systems
that are currently available or that were available until recently show PARD results
between approximately 7 and 18% [2, 10, 28, 33, 34].
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Fig. 4 Traces from two sensors of the same CGM system in the same subject. Note that between
00:00 and approximately 03:00, the Sensor B results are lower than the SensorA results and between
approximately 09:00 and 13:00 the Sensor B result is higher than the Sensor A result. Independent of
the direction of this deviation, both incidents contribute to a higher PARD, i.e., lower performance

4 Glucose Prediction Based on Tissue Glucose
Concentrations

Glucose prediction requires adequate accuracy of CGM systems. This does not only
include the commonly used MARD, but also the PARD. Ideally, CGM systems
exhibit both low MARD numbers (i.e., CGM results and BG results match closely)
as well as low PARD numbers (i.e., the CGM results from different sensors of the
same CGM system follow each other closely). It is quite obvious that adequate
agreement between CGM results and BG results and minimal time lag between the
tissue and blood glucose concentrations are required for predicting the future BG
from CGM results. On the other hand, the differences between CGM results of one
sensor and another sensor of the same type should be sufficiently small, in order to
allow for reproducible glucose prediction.

Glucose prediction has to take into account not only the accuracy of the CGM
system itself, but also the accuracy of the measurement system that is used for
calibration and the timing of the calibration.

Current CGM systems seem sufficiently accurate to allow for adequate glucose
prediction with currently available prediction models [8, 19, 21, 22, 27].
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CGM—How Good Is Good Enough?

Michael Schoemaker and Christopher G. Parkin

Abstract Continuous glucose monitoring (CGM) systems are more informative
than the traditional self-monitoring of capillary blood glucose (BG). Although
advances in CGM technology have significantly improved the clinical utility of CGM
devices compared with earlier versions, it is often difficult to assess the accuracy and
precision of current devices due to differences in assessment protocols and report-
ing of results. Because CGM sensor accuracy can impact both the clinical utility
and patient acceptance of CGM use, it is important to consider the performance
characteristics seen in the current systems when assessing the clinical value of this
technology. Moreover, standardization of the metrics used to assess CGM accuracy
and precision are needed to help developers, clinicians, and patients make informed
decisions regarding theCGMsystems they are considering. In this chapter,wediscuss
the most commonly used methods for the assessment of CGM system performance,
the accuracy and reliability of current CGM systems, and the remaining unsolved
technological and physiological hurdles.

1 Background

Continuous glucose monitoring (CGM) technology provides significant advantages
to individuals treated with intensive insulin therapy compared with traditional self-
monitoring of blood glucose (SMBG). Unlike SMBG, which measures the current
glucose level at a single point in time, CGM presents a constant stream of data
(measured every 1–15min), indicating not only the current interstitial glucose level
but also trends in glucose direction and velocity of glucose change. Moreover, CGM
systems feature alarms that alert users when glucose is or predicted to be above or
below programmed glucose thresholds, whichmakes the technology clinically useful
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in identifying postprandial hyperglycemia, nocturnal hypoglycemia, and in assisting
individuals with hypoglycemia unawareness [43].

Numerous clinical trials have shown that use of CGM improves glycemic control
and reduces hypoglycemia in children and adults with type 1 diabetes [6, 15, 20,
27, 38, 41, 48]. However, the clinical benefit of CGM use is directly related to the
frequencyof use of the technology. Inmany studies, significant clinical improvements
were seen only in those patients who regularly wore their CGM devices 60–70% of
the time [2, 9, 20, 27, 41, 46–48].

As the technology continues to evolve, use of CGM is emerging as a standard
of care for diabetes patients managed with intensive insulin therapy [8, 30, 39, 44].
Additionally, CGM is an integral component of the “artificial pancreas” (AP) systems
under development, which utilize continuous subcutaneous insulin infusion (CSII)
linked with CGM and an automated control algorithm to communicate between the
two components to mimic physiologic insulin delivery.

Despite its demonstrated benefits, adoption and routine utilization of CGM has
been relatively slow. A large US registry of individuals with type 1 diabetes showed
that only 6% of individuals used CGMas a regular part of their diabetes management
[7]. It is also known that many patients who are started on CGMdiscontinue it shortly
thereafter [42].

Although cost is often identified as a hindrance to CGM use; [4, 26] inadequate
sensor accuracy may be a more influential obstacle to widespread adoption of CGM
for current use in clinical diabetesmanagement and future use inAP systems [13, 28].
In clinical trials, the number of patients who discontinued the studies due to accuracy
or sensor-related issues was significant [20, 26, 41]. Therefore, it is important that
both clinicians and patients are able to easily assess the performance of the CGM
systems they are considering.

2 CGM Performance Assessment

2.1 Sensor Signal

The effectiveness of CGMdevices inmeasuring current glucose and predicting future
glucose levels is dependent upon the accuracy and reliability of the CGM signal. The
raw (unfiltered) signal of a CGM sensor is the basis for meaningful data output. A
raw signal that exhibits strong noise and artifacts requires robust filter algorithms in
order to equalize the signal. The characteristics of noise and artifacts will dictate the
type of filter algorithm needed. Regardless of the filter algorithm selected, all filters
introduce a time lag in that the filtered signal lags behind the raw signal; the stronger
the filter algorithm, the longer the time lag. A raw signal of high quality requires
minimal filtering and data processing, resulting in a much cleaner sensor response
with little delay between the shown data and the raw signal.
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Fig. 1 Example of “time lag” between interstitial and blood glucose levels. There is virtually no
time lag when glucose is stable (A), whereas the lag is apparent when glucose levels are changing
rapidly (B).

2.2 Reference Methodology

Blood glucose measurement is most commonly used as reference data for the analy-
sis of CGM accuracy. However, the limitations of using this reference method must
be considered. It is important to consider that this method is comparing glucose con-
centrations in two body compartments: blood and interstitial fluid. As demonstrated
by Basu and colleagues, [5] who was the first to directly measure the transport of
glucose from the vascular compartment to subcutaneous tissue, demonstrated that
the mean time to appearance of tracer glucose in the abdominal subcutaneous tissue
after intravenous bolus is between 5 and 6min in the resting, overnight fasted state.
Moreover, the glucose transport lag time may vary when the patient is not in the
fasting state (e.g., glucose levels are rising or declining). An example of this lag
is presented in Fig. 1. As a consequence, CGM and blood glucose points that are
paired according to their measurement time stamp may be erroneously paired from
the physiological point of view. Additionally, the blood glucose readings are paired
with a very small fraction of CGM readings, most CGM data are neglected, and
deviations of CGM readings from the blood glucose occurring between the blood
glucose measurements are not detected at all.
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2.3 Accuracy and Precision

A common metric for assessment of CGM accuracy is the aggregate mean absolute
relative difference (MARD) between all temporally matched sensor data and refer-
ence measurements across all subjects of a study. Reported as a percentage, MARD
is the average of the absolute error between all CGM values and matched reference
values. A small percentage indicates that the CGM readings are close to the reference
glucose value, whereas a larger MARD percentage indicates greater discrepancies
between the CGM and reference glucose values.

Another metric is themedian absolute relative difference, which is also expressed
as a percentage. Both the MARD and median absolute relative difference are often
reported in CGM accuracy studies [29, 34, 50]; however, some studies [10, 22, 49]
report only the median difference, which is misleading because it diminishes the
impact of outliers. When there are significant numbers of outliers, accuracy appears
to be greater.

Although the MARD is a more stringent metric and is easy to compute and
interpret for succinct summarization of CGM properties, certain limitations should
be considered when comparing reported findings from different accuracy studies
[37]. Because the MARD uses blood glucose readings as a reference, the influence
of time lags is introduced and themajority ofCGMvalues are neglected.Additionally,
the MARD makes no distinction between positive and negative errors or between
systematic and random errors.

It is also important to consider the composition of the study cohort and study
setting.Are the study subjects prone to severe and/or frequent fluctuations in glucose?
How often and how long are they in the hyperglycemic and hypoglycemic range? All
of these factors can significantly influence the calculated MARD. For example, in
study subjects with relatively stable glucose, the MARD may show close agreement
with blood glucose readings. However, in subjects whose glucose is predominantly in
the hypoglycemic range or fluctuating between the hypoglycemic and hyperglycemic
states, the MARD would likely be less than desirable. Therefore, it is advisable to
conduct separate accuracy evaluations for different glucose concentration ranges
(e.g., 40–70mg/dL) and different rates of glucose change (e.g., stable glucose vs.
rapidly changing glucose). Additionally, when comparing the accuracy of two or
more different CGM systems, it is advisable to perform head-to-head assessments in
which the two systems are running simultaneously in each study patient. This will
neutralize the potential impact study cohort or study setting differences.

Although use of the MARD provides easily interpreted information about the
accuracy of CGM devices compared with reference blood glucose, its utility is
impacted by the limitations previously discussed.However,when used in conjunction
with calculation of sensor precision, the limitations are diminished (Table1).
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Table 1 MARD and PARD at various glucose ranges [21]

Metric Abbott Medtronic Dexcom

Navigator Guardian Seven Plus

OVERALL MARD
% (40–400mg/dl)

12.4 ± 3.6 16.4 ± 6.9 16.7 ± 3.8

MARD% (<70mg/dl) 22.6 ± 7.8 32.2 ± 18.1 38.3 ± 24.3

MARD %
(70–180mg/dl)

11.9 ± 3.5 15.4 ± 6.9 17.0 ± 4.0

MARD %
(>180mg/dl)

11.0 ± 4.9 15.1 ± 8.1 11.7 ± 4.2

OVERALL PARD %
(40–400mg/dl)

10.1 ± 4.1 18.1 ± 6.5 15.4 ± 4.2

PARD % (<70mg/dl) 10.8 ± 4.8 22.3 ± 17.5 24.3 ± 7.5

PARD %
(70–180mg/dl)

10.0 ± 4.2 17.7 ± 5.7 14.9 ± 4.4

PARD %
(>180mg/dl)

9.9 ± 4.1 18.5 ± 9.0 16.4 ± 5.1

Precision of the absolute relative difference (PARD) is a metric used to compare
glucose readings from two identical CGM sensors working simultaneously in the
same patient; a lower percentage indicates greater precision (less variance) [3, 37,
50, 51]. It is calculated according to Eq. (1):

PARD = 100 · Glucsens1 − Glucsens2
Mean(Glucsens1,Glucsens2)

(1)

Using thismetric, all CGMdata are considered for performance evaluation.However,
there is no correlation to blood glucose concentration. Nevertheless, the comparison
of two concurrent CGM sensors provides additional and complementary insights
into CGM sensor properties and performance.

CGM performance studies that present bothMARD and PARD at various glucose
ranges facilitate a more reliable assessment of a given CGM sensors true accuracy
and precision characteristics. Data from a study that assessed the accuracy of three
different CGM systems that were worn simultaneously (in duplicate) are provided
as an example of how use of MARD and PARD allows for more straightforward
comparisons of various CGM systems [21].

Although significant differences in accuracy and precision between the devices
are readily apparent, the data also highlight the differences when comparing over-
all accuracy/precision across the full glucose range studied (40–400 mg/dL) and
within the hypoglycemic range (40–70 mg/dL). This is important because accuracy
and precision in the hypoglycemic range is required for the technology to provide
timely warnings of immediate or impending hypoglycemia. Failure to provide reli-
ablewarnings can impact user acceptance; fear of hypoglycemia iswidely recognized
as a major barrier to achieving and sustaining optimal glycemic control [16].
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Fig. 2 Overall MARD from four head-to-head studies

3 State of the Art

Despite advances in technology, CGM devices remain less accurate than capillary
blood glucose measurements. Some of these deviations are physiological, such as
the time lags that occur when glucose levels are rapidly changing. At other times,
CGM sensor data may deviate frommeasured blood glucose values due to inaccurate
calibration of the CGM device, sensor dislodgment, and other artifacts such as local
decrease of blood flow [25]. If these unpredictable deviations are of sufficient length
ormagnitude, they could result in erroneous andpotentially harmful patient responses
(e.g., insulin under-dosing or over-dosing) [32].

It should be noted that the “accuracy gap” between currentCGMdevices and blood
glucose monitoring systems is shrinking. Whereas current blood glucose monitoring
systems that fulfill the ISO 1597:2003 criteria exhibit overall MARD values ranging
from 4.9 to 6.8% [45], a recent study of CGM devices showed MARD values as low
as 9.2% [51].

When assessing CGM performance, it is also important to consider differences
between the currently available CGM systems. Figure2 presents comparisons in
accuracy (MARD) from four recent studies [17, 18, 21, 33] between the first gener-
ation CGM system (FreeStyle NavigatorTM, Abbott Diabetes, Alameda, USA) and
more recent CGM systems from Medtronic (Northridge, USA) and Dexcom (San
Diego, USA).
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Fig. 3 Stratified MARD for different rates of glucose change

Advances in CGM development have also facilitated significant improvements in
accuracy at various rates of glucose change as assessed by MARD. Figure3 presents
data from a head-to-head comparison between a commercially available device (Dex-
comG4® PLATINUMDexcom) and a prototype system (Roche Diagnostics GmbH)
[40].

4 Unresolved Issues

In addition to their continuing efforts to improve the accuracy and precision of CGM
devices, developers are challenged to address factors that can impact sensor reliability
and performance. These factors include motion (including micromotion within the
subcutaneous tissue) and pressure, which can affect tissue physiology (interstitial
stresses) and local blood flow around the sensor, resulting in signal disruption and/or
erroneous glucose readings [25].

4.1 Transient Sensor Signal Disruption

Numerous experiments and clinical studies have revealed occasional, spurious sensor
signal dropouts. When this occurs, the glucose values reported by the CGM device
are usually lower than the actual values. An example of this is presented in Fig. 4.

Signal disruption most commonly occurs during sleep, due to individuals lying
on top of their sensor. These signal dropouts tend to last approximately 15–30min.
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Fig. 4 Example of nocturnal signal drop-out

Although nocturnal signal drops are not likely to prompt an erroneous response
in patients using standalone CGM devices, resulting “false alarms” may provoke
patients to turn off their CGM and/or discontinue use [19]. However, signal disrup-
tions are of great concern within the context of sensor augmented insulin pump use
in which insulin administration can be automatically suspended when CGMmeasure
values fall below the programmed low-glucose threshold and (eventually) in closed-
loop insulin delivery system (artificial pancreas) use. Signal disruption also poses a
significant challenge in artificial pancreas development efforts.

4.2 Transient Significant CGM Inaccuracies

Whereas signal disruptions are often the result of acute forces such as pressure which
can temporarily impact the sensor signal, chronic forces that trigger the foreign body
response, and inflammation around the sensor site can impact sensor performance
[25]. These forces can include the impact of motion (shear forces) that occur due to
normal physiologic activity (e.g., walking, running) [23] and foreign body response
[1, 36], which is influenced by the shape [35], size [31] and surface typography
[11] of the implanted sensor. Reporting of erroneous interstitial glucose values are
unpredictable and may continue over several hours.
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5 Next Steps in CGM Development

Increasing standardization of performance metrics will enable CGM technology
developers and patients to better assess the accuracy and precision of future CGM
devices. The better understanding of the sensor-to-tissue interface will help develop-
ers to improve accuracy.As a result, adoption and sustained use ofCGMas standalone
deviceswill likely increase. However, the challenges posed by intermittent signal dis-
ruptions and transient inaccuraciesmust be addressed in order for closed-loop insulin
delivery development to move forward.

Development of CGM sensors that incorporate intelligent failure detection algo-
rithms, which may include sensors for activity, pressure, temperature, and heart rate,
is a long-range goal in CGM development. The addition of glucose pattern recogni-
tion capability linked with global position data would enhance the utility of CGM
in the future. However, use of multiple sensors presents a potential short-term solu-
tion [12]. This approach requires that the two sensors are redundant in that they are
not housed in the same probe. Otherwise, tissue compression or other local effects
that can impact both sensors and signal disruptions would remain undetected. Use of
duplicate sensors can identify occurrence of signal disruptions and erroneous glucose
data.

Another proposed solution is to use sensors that are soft and small with micro-
textured surfaces in order to match tissue modulus [24]. This would both enhance
biomechanical biocompatibility and help minimize reduce interfacial stress concen-
trations [24].

6 Conclusion

Despite several years of expert discussions, neither industry developers nor inde-
pendent investigators have been able to standardize methodologies for evaluating
CGM performance [37]. The one guideline that does exist only covers performance
metrics, how studies should be designed and the data analyzed, but no acceptance
criteria are provided [14]. Consequently, studies continue to use differing designs
and metrics for assessing CGM accuracy, which makes comparisons of currently
available CGM devices difficult.

Although use of CGM has been shown to provide significant clinical benefits
compared to SMBG [6, 15, 20, 27, 38, 41, 48], sensor performance has slowed
widespread adoptionof this technology and still is a limiting factor in the development
of closed-loop insulin delivery systems.

Because CGM system performance is currently evaluated against blood glucose
measurements, these assessments do not reflect the true nature of CGM and may
lead to misleading results. Nevertheless, because BG values are still regarded as the
“gold standard,” accuracy must be assessed in comparison to BG values.
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As discussed, the MARD is the most relevant accuracy metric for CGM, not
only when computed for the overall glucose range but also separately for different
glucose concentration ranges and different rates of change. However, because the
MARD does not fully detect sensor performance due to the limited number of paired
data points and/or the inherent physiological differences between the two body com-
partments sampled (i.e., blood glucose vs. interstitial glucose), calculation of the
PARD becomes important as a measure for CGM precision and in supporting the
accuracy assessment by the MARD.

The question “how good is good enough?” can only be answered as it relates to the
intended use. When used as a standalone, adjunctive device for monitoring current
and trending glucose levels, with no control over insulin pump infusion, current CGM
devices are adequate for their intended use. However, when the CGM data are used
for therapy decisions or the CGM device directly controls insulin delivery, accuracy,
and precision become increasingly important depending upon the degree of control.
For example, when CGM is linked to a low-glucose suspend (LGS) insulin pump,
which automatically stops administering basal insulin when current or impending
low glucose is detected, the risk of patient harm due to CGM device malfunction is
relatively low.Conversely,whenCGMis functioning as a component of a closed-loop
insulin delivery system, patient risk is significantly increased because detection of
an erroneous high-glucose reading would automatically prompt the insulin pump to
administer unneeded insulin, resulting in hypoglycemia. This highlights the impor-
tance of effectively addressing the critical biomechanical factors (micromotion and
pressure) and sensor-to-tissue interface to ensure accuracy, precision, and reliability
in clinical use.

In summary, simple, straightforward and clinically significant standards and
guidelines are needed to establish common rules for the development of safe and
effective products using CGM technology. These rules should include standardized
metrics for accuracy and precision, guidance for study designs and data analyses
schemata, and acceptance criteria based on intended CGM use.
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Can We Use Measurements to Classify
Patients Suffering from Type 1 Diabetes
into Subcategories and Does It Make Sense?

Florian Reiterer, Harald Kirchsteiger, Guido Freckmann and Luigi del Re

Abstract We propose two ideas of how recorded signals from continuous glucose
monitoring systems could be used to derive information about the patient-specific
characteristics of the glucose dynamics for individuals suffering from type 1 diabetes
and how these characteristics of the glucose dynamics could be linked to basic patient
data (sex, age,…). Ultimately, these relationships could be used in the future in order
to classify patients based on these basic patient data. In the first approach a simple
transfer function model was used to fit recorded signals from continuous glucose
monitoring systems. Using this approach on data from a recent clinical study, a
statistically significant relationship between the model parameters and sex, body
mass index, weight and age of the corresponding patients could be identified. The
observed relationships could be verified with findings in the clinical studies that were
documented in the previous publications. In the second approach a moving average
filter with a varying filter width was applied on the data and the variance between
filtered and unfiltered signal as a function of the filter width was analysed. From
the analysed data a relationship between the low blood glucose index and the high
frequency content of signals from continuous glucose monitoring systems seems
likely.

1 Introduction

In the healthy human body, meal ingestion is followed by insulin secretion of the
β cells of the pancreas. The main source of energy directly available for energy
producing chemical processes inside cells is glucose. The carbohydrate portion of
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meals is almost entirely transformed to glucose, thereby raising the blood glucose
(BG) concentration. It is insulin that promotes cell uptake of blood glucose, and
hereby lowers the BG concentration. Once the concentration is close to a basal state,
insulin secretion is normalized and the remaining insulin is quickly cleared from the
circulation. As a consequence, BG stays within a narrow range of ≈80 to 140 mg/dl
throughout the day [9].

When there is no insulin available—as in type 1 diabetes subjects—much higher
BG than usual (called hyperglycemia) result and the associated adverse long-term
effects were studied thoroughly [19]. It was indeed shown in [19] that intensive
insulin therapy through several daily insulin injections helps to prevent and slowdown
the progress of diabetes-related complications. However, intensive insulin treatment
implies the risk of insulin overdose which results in dangerously low BG (called
hypoglycemia) and immediately impairs functionality of glucose-dependent tissues
such as the brain.

The safety issues connected with the BG fluctuations following meal intakes and
insulin injections and the difficult question for the proper dosing of insulin for patients
suffering from type 1 diabetesmellitus (T1DM) result in a high demand of an accurate
description of the dynamical behaviour of BG for subjects suffering from T1DM,
including the description of the rise in BG after meals and the pharmacokinetics of
insulin after injection in the human body. In recent years ongoing improvements in
the reliability and accuracy of continuous glucose monitoring systems (CGMS) have
led to a widespread effort in the development of models for the glucose dynamics
in patients suffering from T1DM. Models described in the relevant literature have
been derived from both, first principles (physiological models, see e.g. [4]) as well
as from measurements (data-based models, see e.g. [2] and [15]). For reproducing
and describing the patient-specific evolutions of the BG level, data-based models
and methods from system identification have proven especially powerful. However,
the large intra- and inter-patient variability as well as the complexity of the problem
pose serious limitations to finding a universal model in order to describe the BG
dynamics of all patients and at all times. Therefore, the effort is directed to finding
models derived from patient-specific CGMS recordings that are able to describe a
limited section of the BG dynamics (e.g. the variations in the BG level following
the breakfast intake, see e.g. [2] and [12]) in an accurate manner. These models,
however, only have a limited applicability and acquiring the necessary data for the
system identification is expensive. To account for the full range of inter- and intra-
patient variability, basically, a separate model would have to be derived for each
person and each time frame under consideration, with a large scattering of model
parameters. This complicates the effort of finding “the perfect strategy” to keep the
BG level of subjects with T1DM within the target range.

A kind of intermediary solution between the task of finding a single model that fits
all patient data at all times (which seems almost impossible seeming the complexity
of this task) and the limited applicability and high expense of derivation of specific
models based on the CGMS recordings of a single individual for a selected time
frame would be to derive a limited set of models for a selected class of patients. This
approach would not only lower the number of models down to amanageable size, but
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would also incentive to rethink the current effort of finding one perfect approach that
is suitable for managing the BG level of all T1DM patients. Instead, one could think
of using a dedicated strategy for each of the classes of patients. Ideally, it should
also be possible to assign patients to one of the classes not using extensive CGMS
recordings, but by easily available data like sex, age and body mass index (BMI)
which would again result in a considerable drop in the expenses of describing the
patient-specific BG variations by means of modelling.

A literature research regarding the classification of patients with T1DM into sub-
categories only yields a very limited amount of matches. Most of these publications
were written with the intent to classify the patients w.r.t. one single aspect of their
disease. In [18], for example the aim is to classify patients regarding their risk for
severe hypoglycemia (SH), whereas [3] focusses on the classification of patients
w.r.t. their awareness of autonomic and neuroglycopenic symptoms associated with
severe hypoglycemia. Other publications aim at classifying patients regarding the
effects of T1DM. In [17], for example patients are classified according to their stage
of maculopathy, whereas [16] aims at classifying patients regarding the presence
of diabetic retinopathy and diabetic nephropathy. All of the aforementioned pub-
lications investigate the presence or absence of statistically significant correlations
between basic patient data (sex, age,…) and the belonging of the patients to a cer-
tain class in the corresponding studies. Another approach was found in [6]. In this
publication physiological models are fitted to recorded CGMS data, using a separate
model for each patient and each time frame of 300min. The resultingmodels are then
classified in different categories according to the qualitative appearance of the BG
dynamics in each time frame of the study. To the best knowledge of the authors there
have not been any studies that aim at classifying patients according to their overall
BG dynamics with the purpose of building dedicated models of the BG dynamics
for each class of patients.

The purpose of this chapter is to perform a feasibility study for the modelling of
specific patient classes. Therefore, the following questions are investigated:

• Is it possible to classify patients according to certain characteristics of their BG
dynamics?

• If so, are there statistically significant correlations between basic patient data (sex,
BMI,…) and the observed classes of patients?

• Is it possible to assign a patient to a specific class based only on basic data?
• Knowing about a patient belonging to a certain class, is it possible to infer useful
information about the BG dynamics of this patient?

• Is the knowledge about a patient belonging to a specific classmay be even sufficient
to approximate the entire BG dynamics of this patient?

In the end these questions boil down to the basic question that is asked in the
title: Can we use measurements to classify patients suffering from type 1 diabetes
into subcategories and does it make sense? As a first step towards answering these
questions a preliminary investigation was performed using CGMS data from a recent
clinical study [8]. Two approaches have been chosen in order to evaluate the CGMS
data and to classify the patients according to these evaluations. In the first approach
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a simple transfer function model has been used in order to model the BG dynamics
of the patients suffering from T1DM and the observed model parameters have been
further analysed in order to classify the patients. It has been checked whether or
not there are statistically significant correlations between the different categories
and basic patient data and whether or not these findings correspond to what would
be expected from a physiological point of view. In the second approach the high
frequency content of the CGMS data has been used in order to classify patients. For
this purpose the CGMS data have been filtered using a moving average filter with
a varying filter width and the variance between filtered and unfiltered signal as a
function of filter width has been used to categorize the patients. Again, the different
classes of patients have been checked for statistically significant correlations with
basic patient data.

It should already be pointed out clearly at this point that the current paper does
not provide clear “yes” or “no” answers to any of the questions from the list. Instead,
the intention of this study is to check the feasibility and benefit of putting patients
in different categories and to investigate statistical relationships between classes of
patients and basic patient data in order to identify easily available categories of data
that could later on be used for an a priori classification of patients. Furthermore, it
was tried to verify these statistical findings with well-known physiological relation-
ships that have been reported in the literature.

2 Database of CGMS Recordings

For the current work CGMS recordings from a recent clinical study performed at
the Institute of Diabetes Technology, Germany, have been used [8]. During these
studies 12 subjects suffering from T1DM spent 7 days hospitalized. During this
time each of them wore six CMGS in parallel: two FreeStyle Navigator™by Abbott
Diabetes Care, Alameda, CA (Navigator), twoGuardian® REAL-Time byMedtronic
MiniMed, Northridge, CA (Guardian) and two DexCom™Seven® Plus by DexCom,
San Diego, CA (Dexcom). The recording with all CGMS started in the morning
of the first day of the clinical trial. Each individual wore all CGMS sensors until
the specified time of removal as recommended by the corresponding manufacturer.
The individuals therefore ended up wearing the Navigator for five clinical days, the
Guardian for six clinical days and the Dexcom for seven clinical days, respectively.
The core period of the study is defined as from 7:00 of the second day until 7:00 of the
sixth day.During this period all CGMS should already bewell calibrated and adjusted
to the correct measurement of the transient interstitial glucose (IG) values. During
the entire period of the study all CGMS signals have been recorded, together with
regular BG measurements by means of self-monitoring of blood glucose (SMBG)
and documentation aboutmeal intakes (togetherwith the corresponding carbohydrate
content of the meals), insulin bolus injections and basal insulin rates. All individuals
but one (who performed one daily injection of long-term insulin) used insulin pumps
for the supply of basal insulin.
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On days 2 and 5 of the trial glucose excursions have been induced by serving
fast-absorbing meals with a high carbohydrate content and by delaying the insulin
injections by 15min leading to considerable temporary peaks in the BG values.
Furthermore, the injected insulin quantities have been increased by 15% compared
to the recommended values.

All analyses described in this document focus on the core period of the study.
Furthermore, it is assumed for simplicity that the CGMS are perfectly calibrated
and read the transient values of the BG without any additional time delays. These,
however, are simplifications that have been made for the current work. Seen that the
character of this work is only preliminary in nature and seen that the error associated
with these simplifications is rather small, it seems justified. For future, more detailed
studies, a post-processing of the CGMS signals together with the BG measurements
as described in [5] could be performed in order to account for the loss of calibration
of the CGMS as well as for delay times between BG and IG. For consecutive studies
on the topic the use of such a post-processing of CGMS data is intended to be used.

3 Modelling Using a Simple Transfer Function Model

In the following section we use a rather simple transfer function model to fit the
recorded CGMS data and to classify the patients according to the resulting model
parameters. Furthermore, the relationship between basic patient data and the different
model parameters is investigated.

3.1 Description of the Model and System Identification

In the first approach a simple transfer function model was identified in order to fit
the CGMS data of the patients. The resulting parameters of the model are then used
to cluster the patients into different groups.

For each patient and each day the CGMS signal was chosen for the modelling
that best fitted the recorded BG values. This was done by choosing for each day the
CGMS with the minimal MARD as calculated with the well-known formula:

MARD = 100

N

N∑

i=1

|yCGMS,i − ySMBG,i|
ySMBG,i

(1)

For the modelling the entire core period of the study was splitted into time frames
from just before the start of the breakfast until 10:00 pm of the same day. This
means that the effect of all three major meals of the day (and of the corresponding
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insulin bolus injections) as well as intermediary snacks are captured by the CGMS
recordings. The fluctuations of the BG values during the night are not considered in
the modelling.

A third-order transfer function including an integrator term is chosen to model
the response of the BG to carbohydrate intakes as well as to bolus insulin injections:

BG(s) = K1

(1 + sT1)2s
Carbs(s) + K2

(1 + sT2)2s
Insulin(s) (2)

This model has already been used extensively (and successfully) in previous stud-
ies, see e.g. [12, 13]. The chosen model structure has the advantage that the model
parameters have a direct physiologicalmeaning. The constantsK1 andK2 can be inter-
preted as the sensitivity of the BG level to carbohydrate intakes and insulin injections,
whereas the time constants T1 and T2 determine the time for meal intakes/insulin
injections to manifest themselves in a changed BG value. For each patient and each
day the parameters K1, T1, K2 and T2 have been chosen to be constant and have been
adjusted in a way to achieve an optimal alignment between recorded CGMS data and
the BG values as predicted by the model. Choosing constant values for insulin and
glucose sensitivity for the entire day is basically incorrect because these sensitivities
are not constant factors, but change significantly depending on the time of the day
and on other influencing factors (physical activity, insulin injections site, etc.—see
e.g. [10]). For example, the measured insulin sensitivity in the morning is lower than
in the evening. Assuming constant values for the entire day period means that the
identified parameters correspond to averages over the entire day period.

For the identification of the model parameters it was taken advantage of the fact
that by approximating the insulin bolus injections and the carbohydrate intakes in
the model as impulses there exists an analytical solution for the system response in
the time domain. Assuming the system to be in steady-state at the time before the
breakfast, the solution is given by:

BG(t) = BG0 + K1

K∑

i=1

Ai

(
1 − exp

(
− t − ti

T1

)(
1 + t − ti

T1

))
H (t − ti)

+ K2

L∑

j=1

Bj

(
1 − exp

(
− t − tj

T2

) (
1 + t − tj

T2

))
H (t − tj) (3)

In this formula BG0 corresponds to the initial BG concentration (before the intake
of the breakfast), t is the time (in min, with t = 0min at the start of the time frame
of the identification for each day), Ai are the carbohydrate contents of each meal (in
g), ti corresponds to the time of the different meals, K is the total number of meal
intakes in the studied time frame, Bj correspond to the insulin amounts of each bolus
injection (in IU), tj corresponds to the time of the corresponding bolus injection, L
is the total number of insulin bolus injections in the studied time frame and H is
the Heaviside function.
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Using the analytical solution for the BG concentration as a function of time 3, the
constants K1, T1, K2 and T2 were identified using the standard optimization routines
LSQCURVEFIT and NLMEFIT in MATLAB. The algorithm LSQCURVEFIT per-
forms a direct minimization of the quadratic error, whereas NLMEFIT fits the model
by maximizing an approximation to the marginal likelihood. For each patient either
the results obtained using LSQCURVEFIT or NLMEFIT have been used, depending
onwhich routine resulted in theminimumvalue for the average error between CGMS
signal and fitted results. For the evaluation of the quality of the fitted curves the VAF
and FIT values have been used. These are defined according to the well-known
formulae:

VAF = 100

⎛

⎜⎜⎜⎝1 −

N∑
i=1

(ŷi − yi)2

N∑
i=1

(yi − ȳ)2

⎞

⎟⎟⎟⎠ (4)

FIT = 100

⎛

⎜⎜⎜⎜⎝
1 −

√√√√√√√√

N∑
i=1

(ŷi − yi)2

N∑
i=1

(yi − ȳ)2

⎞

⎟⎟⎟⎟⎠
(5)

In these formulae the measured values from the CGMS are denoted with yi, whereas
the model outputs are called ŷi. The average value of the CGMS signal over the
entire time frame is named ȳ. Both, the VAF and the FIT result in a value of 100%
for the case of a perfect fit (all estimated values are exactly the same as the measured
values) and a value of 0% if the error of the estimated signal is just the same as for
a horizontal line at the mean value of the measured signal.

Based on the VAF and FIT of the fitted models, it was distinguished between
successful and failed fits. For the subsequent analyses only fits with a sufficient
quality have been chosen. For this purpose a threshold of VAF = 80% (corresponds
to FIT= 55.28%)was defined as aminimumquality of successful fits. This approach
is consistent to [6]. An example for a successful fit can be seen in Fig. 1. Suitable fits
could be found in 67% of the cases (overall value for all patients and all days). The
detailed results for all patients and all days of the core period of the clinical study can
be found in Table1. This table contains all FIT values obtained using MATLAB’s
LSQCURVEFIT and NLMEFIT algorithms (except for patient B2_12 for whom
no results could be obtained using NLMEFIT). Identified curves with a FIT value
higher than the threshold of 55% aremarkedwith a checkmark. It can be seen that for
some patients the NLMEFIT algorithm leads to higher FIT values, whereas for others
better results could be obtained usingLSQCURVEFIT. For the further evaluations for
each patient the results from the algorithm that yielded higher FIT values have been
used. In case of very comparable FIT values the results obtained from NLMEFIT
were chosen. Therefore, the identified parameters with LSQCURVEFIT have been
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Fig. 1 Example: Measured CGMS signal and identified model for patient B2_06 at day 5

used for patients B1_01, B2_06 and B3_12, whereas for all other patients the results
obtained with NLMEFIT have been used for all other patients.

3.2 Trends and Correlations

The subsequent clustering of the identified parameters has not been performed
directly, but first a reduction of the dimensionality was performed from four parame-
ters down to two parameters. Instead of searching for clusters is the four-dimensional
space K1, T1, K2 and T2, the search was performed in the two-dimensional domain
K1/K2 and T2/T1. Due to the fact that carbohydrate intakes and insulin injections
almost always occur simultaneously, it is difficult to identify unique values for K1

or K2. However, what typically can be identified directly is the amount of insulin
that is needed to counterbalance the intake of 1g of carbohydrates. It is exactly this
number that is expressed by K1/K2. The number therefore corresponds to a sort of
inverse insulin sensitivity where big numbers of K1/K2 correspond to a low insulin
sensitivity which means that a lot of insulin is necessary to counteract the blood glu-
cose increase following a carbohydrate intake. The second number, T2/T1, expresses
the time that the insulin needs to cause an effect on the BG level, compared to the
time that the carbohydrates take. A large number of T2/T1 therefore corresponds to a
slow insulin reaction compared to the time for the BG rise following a carbohydrate
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Table 1 Results of the system identification: FIT values [%] for all patients and all days of the core
period of the clinical study obtained using MATLAB’s LSQCURVEFIT and NLMEFIT algorithms

Patient Algorithm Day2 Day3 Day4 Day5

B1_01 LSQCURVEFIT 63.39 � 64.23 � 76.17 � 66.89 �
NLMEFIT 61.26 � 58.53 � 76.06 � 60.37 �

B1_02 LSQCURVEFIT 40.55 x 0.73 x 7.96 x 79.65 �
NLMEFIT 40.88 x 19.36 x 14.32 x 79.65 �

B1_03 LSQCURVEFIT 73.88 � −28.70 x 69.81 � 62.09 �
NLMEFIT 76.89 � 55.89 � 75.69 � 62.09 �

B1_04 LSQCURVEFIT 23.58 x 18.71 x 46.87 x 81.58 �
NLMEFIT 23.58 x 18.70 x 46.94 x 81.58 �

B2_05 LSQCURVEFIT 71.24 � 46.10 x 67.21 � 42.45 x

NLMEFIT 71.23 � 46.09 x 67.20 � 45.04 x

B2_06 LSQCURVEFIT 83.80 � 66.58 � 51.29 x 90.77 �
NLMEFIT 83.30 � 66.58 � 50.32 x 90.77 �

B2_07 LSQCURVEFIT 38.51 x 48.25 x 61.18 � 67.13 �
NLMEFIT 38.51 x 62.47 � 61.18 � 74.89 �

B2_08 LSQCURVEFIT 57.86 � 52.49 x 36.58 x 43.78 x

NLMEFIT 57.85 � 64.20 � 40.16 x 43.78 x

B3_09 LSQCURVEFIT 65.28 � 76.51 � 42.47 x 56.93 �
NLMEFIT 65.27 � 76.50 � 51.99 x 67.18 �

B3_10 LSQCURVEFIT 66.51 � 30.97 x 68.59 � 56.86 �
NLMEFIT 66.51 � 59.11 � 72.70 � 78.02 �

B3_11 LSQCURVEFIT 63.02 � 51.86 x 68.16 � 74.66 �
NLMEFIT 63.02 � 52.84 x 68.16 � 74.66 �

B3_12 LSQCURVEFIT 66.98 � 4.82 x 4.45 x 65.81 �
NLMEFIT – − − –

intake. Typically, the time for the insulin reaction is longer than the time for the
carbohydrate reaction (T2 > T1) which means that for the case of a simultaneous
carbohydrate intake and insulin injection there will be some temporal peak in the
BG level (see e.g. Fig. 1). The magnitude of these peaks depends on both, the insulin
sensitivity and the times for insulin and carbohydrate effects. Maximum peaks will
therefore occur for big values of K1/K2 and T2/T1. So, the reduction of dimensional-
ity from four to two not only helps to overcome problems with the uniqueness of the
identified parameters and reduce the scattering of these parameters, but also ensures
a simple physiological meaning of the two new parameters. However, it should be
kept in mind that the two parametersK1/K2 and T2/T1 are not sufficient to reproduce
the BG profiles as a function of time.

The results for the identified values of K1/K2 and T2/T1 for all patients and all
days (only the successful fits) can be seen in Fig. 2. In this figure one symbol in a
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Fig. 2 Results of the system identification for all patients and all days projected into 2D and results
of the subsequent clustering using the k-means algorithm

specific colour corresponds to one specific patient. The 12 patients are named B1_01
through B3_12. Connected to the name of the patient by a minus there is also the
number of the day of core phase of the study (2 through 5). Not the entire data range is
shown, but the values are clipped at a lower limit of K1/K2 = 0.03 and T2/T1 = 1.2
and an upper limit of K1/K2 = 0.18 and T2/T1 = 5.7.

It becomes evident from Fig. 2 that the number of successful fits varies from
patient to patient. There are patients for whom only one suitable fit was found (e.g.
for the patient B1_04), whereas for others the fits for all four days have an acceptable
quality (e.g. for the patient B3_10). Furthermore, it can be seen that depending on the
patient there could be a larger or a smaller scattering of the identified parameter sets.
For example the values for all four days are very close together for patient B1_01,
whereas there are tremendous differences for patient B1_03.

Using the results of the system identification (after the projection of the parameters
into 2D) a clustering of data was performed in order to identify different classes of
patients. It should be kept in mind that the system identification was performed
in a way that the best fit is achieved for each patient and each specific day. Quite
possibly, a different identification approach (as it was, e.g. used in [12]) might lead
to fits with a quite similar quality and at the same time reduce part of the intra-patient
variability that is only caused by the chosen approach for the system identification.
Additionally, it should be mentioned that all the points from Fig. 2 were used for the
further analyses presented in this publication. Thismeans that depending on howwell
the identification worked, up to four points exist for the same patient. Therefore, the
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Fig. 3 Check for statistically significant trends between insulin sensitivity (K1/K2) andbasic patient
data. From top left to bottom right panel: sex, weight, height, BMI, age and HbA1C

data from patients with a higher number of successful fits get a stronger weight than
those from patients for whom a lower number of suitable fits was found. However,
a sensitivity study has been performed that confirmed that even for the case of only
using one data point per patient (by using an average point for each patient for the
case of multiple successful fits) would lead to very similar conclusions as presented
in the subsequent paragraphs.

Even though there are a lot of limitations and shortcomings in the work that is
presented here, the results could still be useful for further analyses on larger databases.
One could hope to answer the following questions:

• Are there statistically significant correlations between basic patient data and the
parameters of the identified model?

• Are these correlations consistent with what is known about the physiology, i.e. do
these correlations make sense from a physiological point of view?

• Are there clusters of patients visible in the parameter space?

In order to answer the first question statistical checks were performed to identify
correlations between both, the insulin sensitivity K1/K2 and the dimensionless time
constantT2/T1, and basic patient data that are easily available, i.e. sex,weight, height,
BMI, age and HbA1C of the patients. The results of these tests are shown in Figs. 3
and 4.

In order to check for trendsw.r.t. the sex of the patients (which are categorical data)
the one-way analysis of variance (ANOVA) was used (implemented in MATLAB’s
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Fig. 4 Check for statistically significant trends between dimensionless time constant (T2/T1) and
basic patient data. From top left to bottom right panel: sex, weight, height, BMI, age and HbA1C

ANOVA1 routine), whereas for the other categories (which are continuous data)
simple linear regressionwas employed.A trendwas defined as statistically significant
if p in the one-way ANOVA is smaller than 0.05 or if the 95% confidence interval of
regressionparameter k (in y = k ∗ x + d) does not include0.These values (the pvalue
of the ANOVA and the confidence interval of k) are also printed in Figs. 3 and 4. It
can be seen that statistically significant trends could be identified between the insulin
sensitivity K1/K2 and the patients’ sex, weight and BMI and the dimensionless time
constant T2/T1 and the patients’ age. For the relationship between insulin sensitivity
and the patients’ height, age and HbA1C, as well as for the relationship between
dimensionless time constant and sex,weight, height, BMI andHbA1Cno statistically
significant correlations were found.

Having found some statistically significant correlations, question number two is
whether or not these correlations match with what is known about the physiology
and with what was found in previous clinical studies. In [11] the effect of sex, age
and obesity on the insulin sensitivity was studied. According to the authors of [11] it
was found that obese patients have a significantly lower insulin sensitivity than lean
patients. Furthermore, it was found that insulin sensitivity is lower for men than for
women. Additionally, the authors state that no statistically significant relationship
between age and insulin sensitivity could be identified. These three findings match
with what was found in the current work (see Fig. 3). Regarding trends w.r.t. the time
constants it is stated in [1] that elderly subjectswere found to have higher postprandial
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glucose levels due to a higher rates of meal appearance (only for women) and a lower
rate of glucose disappearance (for both, men and women). This corresponds to the
finding from the current study that T2/T1 increases with age. Therefore, all principal
statistically significant correlations as identified in the current study could be verified
with the findings from clinical studies as described in the literature.

3.3 Clustering and Classification

In a further step it was tried to answer the question whether or not it is possible to
identify clusters of patients in the parameter space. Based on the scattering as visible
in Fig. 2 it becomes evident that assigning each patient to one specific group is a
difficult task. Therefore, it was tried to identify clusters of parameter sets indepen-
dent of the patient that the specific parameter set belongs to and to divide the area
in Fig. 2 based on the location of these clusters. The task of clustering points has
been performed in MATLAB using the k-means algorithm (routine KMEANS) and
Euclidian distances (after z-score-transformation of the data). The best division in
distinct groups (measured through the silhouette value) could be achieved using five
clusters in the k-means algorithm. Based on the location of the clusters the area in
the K1/K2 versus T2/T1 has been divided into five zones through straight lines using
MATLAB’s CLASSIFY routine.

The results of this division are shown in Fig. 2 with the five different zones plotted
in distinct colours. It can be seen in this figure that for some patients the points at
different days are not always assigned to the same zone. This is most probably
due to the fact that there exists a huge intra-patient variability in the parameters
which complicate the attempt to classify patients based on their model parameters.
Nevertheless, it was checked whether the five different zones can be distinguished
based on basic patient data. This check was performed using Fisher’s Exact Test [7]
for the sex of the patients and the one-way ANOVA (using MATLAB’s ANOVA1)
for the other patient data (weight, height, BMI, age, HbA1C). For these tests it has
to be kept in mind that they do not evaluate whether or not all the different zones can
be clearly distinguished. Instead they only test whether or not the null hypothesis
that the data from all zones were basically samples of one common data pool can be
rejected. The results of the statistical tests are shown in Fig. 5. It can be seen that the
one-wayANOVA showed statistically significant differences (at a 5% level) between
the different zones for the patients’ BMI and age. Furthermore, Fisher’s Exact Test
showed a statistically significant difference for the patients’ sex (p = 0.0013). These
results confirm that the parameters for which statistically significant trends could be
identified versus the insulin sensitivity K1/K2 and the dimensionless time constant
T2/T1 are also the most promising ones for a future classification of patients.
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3.4 Discussion of Results and Further Outlook

In this chapter the BG dynamics were modelled using a simple transfer function
model. The basic idea is to perform a classification of the patients based on the iden-
tified parameters of the model. The classification is performed using the parameters
K1/K2 that described the insulin sensitivity of the patient (high values correspond to
a low sensitivity) and the dimensionless time constant T2/T1 (high values correspond
to a slower insulin response of the BG level compared to the carbohydrate response).
In the current work test calculations using data from a recent clinical study have been
performed. Using these data it was found that there are statistically significant cor-
relations between the model parameters and the patients’ sex, weight, BMI and age.
The physiological interpretation of the findings could also be confirmed by findings
from dedicated clinical studies as documented in the literature.

An important question to be asked is whether or not it is possible to classify
patients according to their overall BG dynamics based on easily available data like
age or BMI. This question cannot be answered conclusively based on the findings
of the current work. Instead, the study showed the challenges connected with the a
priori classification of patients. The biggest challenge for such a classification is for
sure the tremendous intra-patient variability. As can be seen in Fig. 2 the scattering
of identified parameters for one patient can be bigger than the differences between



Can We Use Measurements to Classify Patients … 71

two different patients. This tremendous intra-patient variability is a well-known fact
and has been documented extensively in the literature. A good overview of the topic
can be found in [10]. In that paper it is stated that the intra-patient variability of the
insulin action in clamp studies was found to be between 15 and 25% for fast acting
insulin. The inter-patient variability of the insulin action was stated to be around
10% higher than the intra-patient variability. The insulin action as described in [10]
seems to be closely connected with the insulin sensitivity K1/K2 from the current
work. The intra-patient variability of K1/K2 was found to be in the same order of
magnitude as the one for the insulin action stated in [10]. In our study, only two
patients had a bigger value of the intra-patient variability of the insulin sensitivity
(B2_06: 38%, B2_07: 28%). For the intra-patient variability of the dimensionless
time constant T2/T1 no direct analogous could be found in [10]. The most similar
parameter seems to be the time of the maximum insulin concentration in blood after
subcutaneous injection (tmax). For this parameter an intra-patient variability, as found
in two different studies, of 25 and 107% is stated. In the current work a huge intra-
patient variability of T2/T1 of up to 60% was found which also matches the huge
variability as stated in [10]. However, it should also be pointed out that the parameters
as identified in the current work are not instantaneous values but rather average values
over an entire day period. Therefore, one could expect that the effect of the intra-
patient variability can be reduced considerably by fitting the data of an entire day
instead of only for one specific meal. Maybe a smaller intra-patient variability could
be achieved by using different methods for the system identification. One could, for
example think of artificially restricting the intra-patient variability as described in
[12]. Using the methodology from that paper it might be possible to achieve a similar
quality of the fits with a significantly lower value for the intra-patient variability.

The next steps in the work would be to extend the study to a bigger database of
patients. The current workwas performed using only the data from 12 patients. It will
be interesting to see if the same kind of statistically significant correlations can also
be found for a larger database of CGMS recordings. Furthermore, it is planned to try
to reduce the intra-patient variability to a minimum using the method described in
[12]. Additionally, the way of evaluating fits should be reconsidered. For the current
work the CGMS signals were assumed to be a perfect representation of the BG
dynamics. This, of course, is not true. In the future a more physiological evaluation
should performed through the assessment of transient BG profiles as they can be
reconstructed from CGMS measurements and regular SMBG through the algorithm
described in [5]).

Furthermore, the evaluation of the quality of fits should be rethought. For the
current work the quality of a fit was assessed using the VAF/FIT value. Fits with a
VAF smaller than 80% were discarded as unsuccessful (as it was also done in [6]). It
might be better, however, to switch to another approach that also takes into account
the measurement errors of SMBG and CGMS. Furthermore, the comparison with a
horizontal line at the averagemeasurement value does not seemvery intuitive because
it might lead to the discard of reasonable fits for the case that the measured CGMS
signal does not show enough inclinations. However, to the best knowledge of the
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authors such an enhanced evaluationmethod as describedhere (and the corresponding
cost function for the optimization of the fits according to this evaluation method) still
remains to be developed.

4 Analysis of the High Frequency Content of CGMS Signals

In the following section a moving average filter with a varying filter width is applied
on CGMS recordings and the variance between filtered and unfiltered signal as a
function of the filter width is analysed. The variance as a function of filter width is
used to classify patients.

4.1 Filtering of CGMS Signals

Additionally to a classification based on the overall BG dynamics of the patients (as
described in the chapter “CGM—How Good Is Good Enough?”) a second method
is proposed in the current publication. The basic idea of this second method is to
classify patients based on the differences in the high frequency content of CGMS
signals. In order to do so the CGMS signal is filtered using a simple moving average
filter with a varying filter width and the variance between filtered and unfiltered
signals is analysed.

In order not to mix the effect of different sensors and different patients, this part
of the study has been performed using only the signals from one of the Navigator
systems. The Navigator was chosen because it is stated in [8] that in average (over
all patients and all days) the Navigator showed a significantly lower MARD than
the other two systems. As already mentioned before, the analysis focussed on the
core phase of the clinical study from 7:00 on day 2 until 7:00 of day 6. For the
filtering operation a simple, non-causal moving average filter with equal weights for
each element was used. The filtered signal was thus calculated using the following
formula:

yf ,i = 1

2q + 1

i+q∑

j=i−q

yj (6)

In this formula yf ,i is the filtered signal at time step i, yj corresponds to the recorded
CGMS signal at time j and q is the filter width. A filter width of 0 corresponds to
the unfiltered signal, whereas a filter width of, e.g. 5 would mean that the filtered
signal at time step i is calculated using the signals from i − 5 up to i + 5 by simple
averaging those signals. A larger filter width corresponds to a smoother signal and
by progressively extending the filter width the filtered signal will become flatter and
flatter. As a consequence the variance between filtered and unfiltered signal will
increase with increasing filter width. This only holds up to a certain filter width at
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Fig. 6 Variance between filtered and unfiltered CGMS signal as a function of filter width and
results of the subsequent clustering using the k-means algorithm

which a more or less flat filtered signal is generated. Starting from that point the
variance between filtered and unfiltered signal will stay (almost) constant for all
subsequent values of the filter width.

For the current study the focus is on the filtering behaviour in the high frequency
part of the signals. The Navigator CGMS provides one measurement value of the IG
every ten minutes. It was found that up to a filter width of around 10 (corresponding
to +/− 100min) the high frequency part of the signals is smoothed out, whereas
the general behaviour of the signals remains unchanged. For even larger filter width
parts of the general signal trends start to disappear. Therefore, the behaviour of the
variance between unfiltered and filtered signal has been studied only for filter widths
q up to 10.A plot of the variance between filtered and unfiltered signal as a function
of filter width can be seen in Fig. 6.

4.2 Trends and Classification

As a next step it was tried to identify clusters of patients for the functions of variance
versus filter width. A clustering attempt was performed using the k-means algorithm
(MATLAB’s KMEANS routine) and yielded best results (measured by the silhouette
value) using two clusters as is can be seen in Fig. 6 (called “Group 1” and “Group 2”).

As already done in Sect. 3.2 it was again tried to identify statistically signif-
icant relationships between the clusters found using the k-means algorithm and
basic patients data. To check for statistically significant differences between the
two clusters regarding the patients’ sex, Fisher’s Exact Test [7] was used again.
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Fig. 7 One-way ANOVA, variance between filtered and unfiltered signal: Check for statistically
significant differences in the basic patient data for the classes as found by the clustering. From top
left to bottom right panel: sex, weight, height, BMI, age and HbA1C

No statistically significant difference was found (p = 0.1136). A check for differ-
ences in weight, height, BMI, age and HbA1C was performed using the one-way
ANOVA (MATLAB’s ANOVA1 routine).

The results of the statistical tests are shown in Fig. 7. It was found that there are
no statistically significant differences between the two identified clusters regarding
basic patient data. This fact could easily lead to the conclusion that clustering patients
using the high frequency content of their CGMS signals does not seem a worthwhile
procedure. However, interesting results were found when checking for statistically
significant differences between the two identified clusters and low blood glucose
index (LBGI) as well as high blood glucose index (HBGI). LBGI and HBGI have
been introduced in [14] as a measure to evaluate a patient’s risk for hypoglycemia
and hyperglycemia based on the results of previous SMBG values. Both, LBGI and
HBGI, are calculated from the so-called Kovatchev risk function 7. This function
returns low values in the euglycemic range, but high values in both, the hypoglycemic
and the hyperglycemic region:

r(BG) = 22.77 ∗ (ln(BG)1.084 − 5.381)2 (7)

Using this definition of the risk function, the LBGI and the HBGI can be calculated
using the following formulae:
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Fig. 8 One-way ANOVA,
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with:

rl(BG) = r(BG) if ln(BG])1.084 − 5.381 < 0 and 0 otherwise and
rh(BG) = r(BG) if ln(BG)1.084 − 5.381 > 0 and 0 otherwise.

Calculating LBGI and HBGI for all of the 12 patients in the clinical study using
the CGMS data (from the Navigator) during the core phase of the clinical study,
values for the LBGI between 0.13 and 3.08 and values for the HBGI between 1.95
and 8.41 were found. Again, a test for statistically significant differences between
the two clusters using the one-way ANOVA was performed. The results of this test
are shown in Fig. 8.

It was found that the patients in cluster 1 (showing a higher variance as a function
of filter width) have a considerably higher value of LBGI (and therefore most likely
also a higher risk of severe hypogycemia, see [14]) than patients from cluster 2. For
the HBGI no significant differences were found between cluster 1 and cluster 2.

Even if the difference in LBGI between the two identified clusters is not statisti-
cally significant on a 5% level (p = 0.0597), it seemed worthwhile to have a closer
look at the relationship between the high frequency content of the CGMS signals and
the LBGI. In the first step the functions for variance between filtered and unfiltered
signals versus filter width were approximated using the following relationship:

σ = k ∗ q (10)

According to this formula the standard deviation between filtered and unfiltered
signal (σ ; with σ = √

variance) is proportional to the filter width (q). It was found
that this approximation is very good for almost all of the functions of variance versus
filter width. This way the functions could be condensed to one single regression
parameter k per patient.
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the filter width and the standard deviation between filtered and unfiltered signal) versus LBGI

In the next step the values of the LBGI for all patients have been plotted as a
function of the regression parameter k. This can be seen in Fig. 9. Even though there
is a considerable scattering of data, a tendency of higher values for the LBGI for the
case of higher values of the regression parameter k seems evident. To quantify this
tendency a simple linear regression was performed. It was found that the relationship
is not statistically significant on a 5% level, but still likely (p = 0.0642).

4.3 Discussion of Results and Further Outlook

In the analyses described in this chapter the feasibility of using the high frequency
content of CGMS signals to classify patients has been checked. For this purpose the
CGMS signals obtained in a recent clinical study have been filtered using a simple
moving average filter with a varying filter width and the variance between filtered
and unfiltered signal was studied as a function of the filter width. It was found that the
function “variance versus filter width” is different from patient to patient and could
be used to assign patients to different groups. For the preliminary tests performed for
thiswork twogroups of patients have been used.No statistically significant difference
between the two groups could be found w.r.t. any of the available categories of basic
patient data. However, it was found that a relationship between the high frequency
content of the CGMS signals and the LBGI is likely. It seems that the presence of
more high frequency fluctuations in the CGMS signals are linked to a higher risk of
hypoglycemia. Such a relationship, however, does not seem intuitively and requires
further investigation in order to verify or falsify it.
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In the near future it is intended to extend the analysis described in this chapter
to a larger group of patients in order to be able to make more conclusive statements
about the relationships found in the current study. If it is possible to verify a rela-
tionship between high frequency noise in the CGMS signals and a higher risk of
hypoglycemia, it is also important to find a plausible mechanism/explanation for this
relationship. Additionally, it would be interesting to see if similar/identical relation-
ships can be found using different kinds of non-causal filters.

Acknowledgments The authors gratefully acknowledge the sponsoring of this work by the
COMET K2 center “Austrian Center of Competence in Mechatronics (ACCM)”. The COMET
Program is funded by the Austrian federal government, the federal state Upper Austria and the
scientific partners of ACCM.

References

1. Basu, R., Dalla Man, C., Campioni, M., Basu, A., Klee, G., Toffolo, G., Cobelli, C., Rizza,
R.A.: Effects of age and sex on postprandial glucose metabolism. Diabetes 55, 2001–2014
(2006)

2. Cescon, M., Johansson, R., Renard, E., Maran, A.: Identification of individualised empirical
models of carbohydrate and insulin effects on T1DMblood glucose dynamics. Intern. J. Control
87(7), 1438–1453 (2014)

3. Clarke, W.L., Cox, D.J., Gonder-Frederick, L.A., Julian, D., Schlundt, D., Polonsky, W.:
Reduced awareness of hypoglycemia in adults with IDDM. Diabetes Care 18(4), 517–522
(1995)

4. Cobelli, C., DallaMan, C., Sparacino,G.,Magni, L., DeNicolao,G., Kovatchev, B.P.: Diabetes:
Models, signals, and control. IEEE Rev. Biomed. Eng. 2, 54–96 (2009)

5. Del Favero, S., Facchinetti, A., Sparacino, G., Cobelli, C.: Improving accuracy and precision
of glucose sensor profiles: Retrospective fitting by constrained deconvolution. IEEE Trans.
Biomed. Eng. 61(4), 1044–1053 (2014)

6. Fernandez, M., Villasana, M., Streja, D.: Glucose dynamics in type I diabetes: Insights from
the classical and linear minimal models. Comput. Biol. Med. 37, 611–627 (2007)

7. Fisher, R.A.: On the interpretation of χ2 from contingency tables, and the calculation of p. J.
R. Stat. Soc. 85(1), 87–94 (1922)

8. Freckmann, G., Pleus, S., Link, M., Zschornack, E., Klötzer, H.M., Haug, C.: Performance
evaluation of three continuous glucose monitoring systems: Comparison of six sensors per
subject in parallel. J. Diabetes Sci. Technol. 7(4), 842–853 (2013)

9. Guyton, A.C.: Textbook of Medical Physiology, 11th edn. Elsevier Inc., Philadelphia (2006)
10. Heinemann, L.: Variablility of insulin absorption and insulin action. Diabetes Technol. Ther.

4(5), 673–682 (2002)
11. Kerakelides, H., Irving, B.A., Short, K.R., O’Brian, P., Sreekumaran Nair, K.: Age, obesity,

and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes
59(89–97), 1207–1214 (2010)

12. Kirchsteiger, H., Johansson, R., Renard, E., del Re, L.: Continuous time interval model identi-
fication of blood glucose dynamics for type 1 diabetes. Intern. J. Control (2014). doi:10.1080/
00207179.2014.897004

13. Kirchsteiger, H., Pölzer, S., Johansson, R., Renard, E., del Re, L.:Direct continuous time system
identification of miso transfer function models applied to type 1 diabetes. In: Proceedings 49th
IEEE Conference on Decision and Control (CDC), pp. 5176–5181 (2011)

http://dx.doi.org/10.1080/00207179.2014.897004
http://dx.doi.org/10.1080/00207179.2014.897004


78 F. Reiterer et al.

14. Kovatchev, B.P., Straume, M., Cox, D.J., Farhy, L.S.: Risk analysis of blood glucose data: A
quantitative approach to optimizing the control of insulin dependent diabetes. J. Theor. Med.
3, 1–10 (2000)

15. Naumova, V., Pereverzyev, S.V., Sampath, S.: A meta-learning approach to the regulatrized
learning-case study: Blood glucose prediction. Neural Netw. 33, 181–193 (2012)

16. Rodrigues, T.C., Pecis, M., Canani, L.H., Schreiner, L., Kramer, C.K., Biavatti, K., Macedo,
B., Esteves, J.F., Azevedo, M.J.: Characterization of patients with type 1 diabetes mellitus in
southern brazil: Chronic complications and associated factors. Rev. Assoc. Med. Bras. 56(1),
67–73 (2010)

17. Tariq, A., Usman Akram, M., Shaukat, A., Khan, S.A.: Automated detection and grading of
diabetic maculopathy in digital retinal images. J. Digital Imaging 26(4), 803–812 (2013)

18. TerBraak, E.W.,Appelman,A.M.,VanDeLaak,M.F., Stolk, R.P., VanHaeften, T.W., Erkelens,
D.W.: Clinical characteristics of type 1 diabetic patients with andwithout severe hypoglycemia.
Diabetes Care 23(10), 1467–1471 (2000)

19. The Diabetes Control And Complications Trial Research Group: The effect of intensive treat-
ment of diabetes on the development and progression of long-term complications in insulin-
dependent diabetes mellitus. New England Journal of Medicine 329(14), 977–986 (1993).
http://www.nejm.org/doi/full/10.1056/NEJM199309303291401

http://www.nejm.org/doi/full/10.1056/NEJM199309303291401


Prevention of Severe Hypoglycemia
by Continuous EEG Monitoring

Claus Bogh Juhl, Jonas Duun-Henriksen, Jens Ahm Sørensen,
Anne Sophie Sejling and Rasmus Elsborg Madsen

Abstract Background: The brain is dependent on constant glucose supply and
hypoglycaemia results in reduced cognition, unconsciousness, seizures, and possible
death. Prevention of hypoglycaemia is accordingly a key point in diabetes treatment.
The effect of hypoglycemia on the electrical activity of the brain is well described.
We propose an alarm device for severe hypoglycaemia based on continuous elec-
troencephalography (EEG), real-time data analysis by an automated algorithm and
an auditory alarm. Methods and results: People with type 1 diabetes (T1D) were
exposed to hypoglycaemia by excess insulin administration. EEG was scored visu-
ally by neurophysiologists for deviations compatible with neuroglycopenia. From
these initial experiments, a multiparameter algorithm was developed by applying
an artificial neural network. Subsequently series of experiments were conducted in
T1D patients in order to improve the algorithm and to test its clinical applicabil-
ity. Thus people with T1D with normal, reduced, or absent awareness of hypogly-
caemia were exposed to hypoglycaemia both during daytime and during sleep. EEG
was analyzed by the automated algorithm. All patients developed hypoglycaemia-
associated EEG changes. During the sleep experiments, these changes occurred irre-
spective of sleep stage, and the majority of patients woke up when they received an
auditory alarm at the onset of hypoglycaemia-associated EEG changes. We found
that the EEG changes were independent of diabetes duration, awareness status,
and counter-regulatory hormone response. In subsequent studies, a miniaturized
partly implanted EEG recorder was tested. The device consists of a small implant
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recording the EEG and an external device which wirelessly receives EEG and gives
an alarm when hypoglycaemia-associated EEG changes are apparent. In prelimi-
nary studies of one month duration, we found that the device was well tolerated
and successfully warned the patients in time to take appropriate action before severe
hypoglycaemia was present. Conclusion: The results obtained so far hold promises
for the development of an EEG-based alarm for severe hypoglycaemia in people
with T1D. Hypoglycaemia-associated EEG changes seem to be a general feature
which makes a common algorithm applicable. Further studies are needed to define
the sensitivity and tolerability of the partly implanted EEG-based device for severe
hypoglycaemia during long-term use.

1 Background

Hypoglycaemia is defined as blood glucose lower than 3.9mmol/l. The patient may
or may not be aware of its occurrence, and if glucose continues to fall the patient
may need help from a third person to recover. This potentially dangerous condition
is termed severe hypoglycaemia. Hypoglycaemia remains a limiting factor in the
treatment of type 1 diabetes (T1D). The brain is dependent on constant glucose sup-
ply and hypoglycaemia results in reduced cognition, unconsciousness, seizures, and
possible death. People with diabetes fear the occurrence of hypoglycaemia equally
to diabetes complications such as end-stage renal disease and blindness [1]. Preven-
tion of hypoglycaemia is accordingly a key point in diabetes treatment. This goal
is sought by a panel of different approaches. Structured outpatient diabetes training
results in a significant reduction in the occurrence of severe hypoglycaemia [15].
Use of insulin analogs with superior pharmacokinetics as opposed to human insulin
reduces the frequency of nocturnal hypoglycaemia in particular [14]. Continuous
glucose monitoring (CGM) is increasingly used in the treatment of T1D. When
combined with continuous subcutaneous insulin infusion, this allows a temporary
cessation of insulin infusion in case of low-glucose measure. Recent studies have
shown that the use of CGM with low-glucose suspend is able to reduce the risk of
nocturnal hypoglycaemia in T1D [10, 11]. In clinical studies as well as from real-life
observations it is, however, clear that adherence to the use of CGM may often be
inadequate to achieve clinical benefits. Some people find the devices problematic or
uncomfortable to use, others are annoyed by the inaccuracy of the measurements,
and even after short-term use the coverage in subgroups of patients is down to 50%
of the time while others quit the use completely [17, 24].

Electroencephalography (EEG) is a state of the art procedure to obtain information
about the metabolic and electric status of the brain. The technique was described
in 1929 by Hans Berger [2] and has continuously been improved with respect to
sampling frequency and electrode density, and computer techniques allow advanced
mathematical evaluation of data beyond visual inspection of the EEG.

Hypoglycaemia-associated EEG changes were described in 1951 by two indepen-
dent research groups [3, 19]. Ross et al. recordedEEGduring induced hypoglycaemia
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and subsequent visual examination of the EEG and demonstrated a shift of the dom-
inant frequency toward a slower electrical activity of the brain [19]. Boudin on the
other hand, recorded EEG during spontaneous hypoglycaemia in patients diagnosed
with insulinoma with analogous finding of theta and delta activity in the EEG [3].
Since then a number of studies have assessed the effect of hypoglycaemia on EEG
both in healthy individuals and in diabetes patients. The cause of hypoglycaemia
included spontaneous events as well as pharmacologically induced hypoglycaemia,
and the shift toward a slower frequency is a general feature. Also the EEG changes
seem to be identical irrespective of diabetes duration and the patient’s ability to sense
hypoglycemia [18] and is unaffected by recent antecedent hypoglycaemia [21].

Pramming and co-workers studied peoplewithT1Dduring graded hypoglycaemia
induced by insulin infusion and suggested that the brain has an individual glucose
threshold for hypoglycaemia-associated changes [16]. This threshold has been shown
to be reproducible within each subject with type 1 diabetes [8]. Assuming that these
EEG changes are sufficiently specific and general, it has been suggested to con-
struct an alarm device based on continuous EEG recording and real-time mathe-
matical processing of the data. Thus if EEG changes occur before cognitive decline
in patients with insulin-treated diabetes or other conditions associated with risk of
hypoglycaemia, such a device may be a useful approach for warning against severe
hypoglycaemia [8, 23].

Based on this, we propose an alarm device for severe hypoglycaemia based on
continuous electroencephalography (EEG) and real-time data analysis by an auto-
mated algorithm and an auditory alarm.

2 Clinical Studies—Proof of Concept

In this section, we describe the experiments we have performed in order to test the
feasibility of an EEG-based alarm for severe hypoglycaemia. The results summa-
rized here are achieved with commercially available equipment. In a later paragraph,
we will describe experiments conducted with an implantable hypoglycaemia alarm
device.

In our initial experiments, we tested the spatial localization of the hypoglycaemia-
associated EEG changes, and these experiments have been described elsewhere [5].
In accordance with the literature, we found that EEG changes were most abundant
in the temporal region and on the cranial vertex. Since muscular activity may give
rise to signal artifacts, it is preferential to perform the EEG recording in the areas
withminimal muscular activity. Placing the superior electrode in the area between P3
and C3 and the inferior electrode at approximately T5 according to the international
10/20 system, it is possible to achieve an optimal signal to artifact ratio in the EEG.

To achieve knowledge about the timing and the nature of the EEG changes, we
induced graded hypoglycaemia in 15 patients with T1D, duration (mean (range))
26.5 (6–53) years, including both aware and unaware patients. Cognitive function
was evaluated by repeated cognitive tests (counting backward and subtraction of
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seven from a given number). Insulin infusion was replaced by glucose infusion
when patients showed obvious cognitive or physical signs of hypoglycaemia or when
plasma glucose reached 1.8mmol/l. Hypoglycaemia-associated EEG changes were
found by the automated algorithm in all 15 subjects at a plasma glucose ranging
from 2.0 to 3.4mmol/l and occurred 2928min (meanSD)(range 3–113min) before
termination of insulin infusion. Since a main purpose of this experiment was to
achieve data for further development of the algorithm, the patients did not receive a
real-time alarm, and therefore, it is not possible to state if they would have been able
to react following an alarm. In 12 of 15 patients, however, EEG changes occurred
before severe neuroglycopenia was apparent as evaluated by the cognitive tests. In
three cases, the patients were moderately cognitively impaired at the time of EEG
changes [8].

Nocturnal hypoglycaemia constitutes a special problem. Approximately 50% of
all hypoglycaemia episodes occur during sleep, and prolonged episodes of hypo-
glycaemia occur in both children and adults in 8.5% of all nights as measured by
continuous glucose monitoring [9]. Sleep EEG differs significantly from daytime
EEG. Stages of deep sleep is characterized and defined by the presence of slow wave
dominance, and accordingly it is a specific challenge to differentiate between deep
sleep and hypoglycaemia in the development of a robust algorithm for hypoglycaemia
detection.

To address this, we conducted a trial in which ten patients with T1D, duration
(mean (range)) 23.7 (10–37) years and impaired awareness of hypoglycaemia were
exposed to insulin-induced hypoglycemia during daytime and during sleep. EEGwas
recorded by a single electrode (Foramen Electrode AD-Tech Medical (WI, USA),
length 300mm, diameter 1.1mm with 3 contact points with a center-to-center dis-
tance of 30mm) positioned subcutaneously over the temporal region of the brain
behind the ear. The electrode was connected to an EEG recorder (g-USBamp, G-
TEC, Austria) and analyzed real time by an automated multiparameter algorithm.
This algorithm was based on the original daytime algorithm and optimized for hypo-
glycaemia detection during sleep by applying data from eight pilot-experiments
of insulin-induced hypoglycaemia during sleep in people with T1D. Participants
received an auditory alarm when EEG changes met a predefined threshold, and were
instructed to consume a sandwich and a juice.

During the night experiments, nine out of ten developed EEG changes compatible
with hypoglycaemia at a mean blood glucose of 2.0mmol/l. Eight were awakened
by the alarm. Four corrected hypoglycemia (mean BG 2.2mmol/l) themselves by
ingestion of carbohydrates, while five needed glucose infusion. There were two
events of false alarm. Figure1 shows a representative example of an experiment
where the patient woke up following the auditory alarm and avoided impending
severe hypoglycaemia.

ImportantlyEEGchanges occurred irrespective of sleep stage as evaluated accord-
ing to theAmericanAcademyofSleepMedicine score [6, 23]. From thedata achieved
during this trial, wewere able to improve the algorithm to achieve an earlier detection
of hypoglycaemia, and this will accordingly be tested in future trials.
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Fig. 1 Representative example of a night experiment. At progressing hypoglycaemia, the curve
of integrated hypoglycaemia events exceeds the predefined threshold of hypoglycaemia-associated
EEG changes. Although occurring at a rather low-blood glucose value, the patient was still able to
correct impending severe hypoglycaemia by carbohydrate ingestion. The panels at the bottom show
examples of one-channel EEG during different sleep-stages corresponding to the hypnogram in the
middle

3 The Device

The experiments described in the paragraphs above were conducted with standard
equipment for EEG recording. In this paragraph, we will briefly describe the device
developed for warning against severe hypoglycaemia.

The alarm for severe hypoglycaemia consists of two main parts: An implant
positioned subcutaneously behind the ear and an external part placed behind the ear.
The implant consists of a sealed coil and an electrode with three measurement points,
a length of 100mm and a diameter of 1.1mm pointing toward the top of the head.
The implant captures the EEG and transmits the signal through a near field inductive
communication link to the external part. The two parts have to be closely aligned for
the system to function. The external part of the device is designed as an ear hanger
(Fig. 2) which is easy to wear with aminimum of discomfort for the user. It contains a
sound generator a light indicator to inform the user of critical events, e.g., impending
severe hypoglycaemia and a battery which also powers the inner device through the
inductive communication link.



84 C.B. Juhl et al.

Fig. 2 The two parts of the
hypoglycaemia device. The
coil and the electrode are
placed subcutaneously, while
the ear hanger is placed as
shown on figure

4 Quantitative Evaluation of EEG Recorded
with the Partly Implanted EEG Recorder

To assess correlation between surface and subcutaneous EEG, we performed simul-
taneous EEG from the subcutaneous implant and from surface electrodes recorded
with standard EEG equipment. This was performed in five healthy individuals during
three periods of one minute duration with eyes closed. The normalized correlation
coefficient, R̄xy , was calculated as:

R̄xy(m) =
∑min(N+m−1,N−1)

n=max(0,m) xn+m · yn
√∑N−1

n=0 x2n ·
∑N−1

n=0 y2n

(1)

where x is the subcutaneous EEG, y is the surface EEG, N is the number of samples
in each calculation, andm is the lag in the range−N + 1 to N − 1. If R̄xy = 0, there
is no correlation between the signals while if R̄xy = 1 the signals are identical and
synchronous.

The resulting cross-correlogram is shown in Fig. 3. The mean normalized corre-
lation coefficient at lag = 0 was 0.73 which is highly significant. Also the correlation
coefficient at the first-order side lobes, found at±22 lags, was highly significant. This
verifies a continuous wave in each EEG with a frequency of 9.4Hz and substantiates
a high accordance between the two synchronously but independently recorded time
series of EEG data.
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Fig. 3 Normalized
cross-correlation between
surface and subcutaneous
EEG, while subjects have
closed eyes. The maximum
correlation at lag 0 is 0.73

5 Development of an Algorithm for Detection
and Warning of Severe Hypoglycaemia
in Type 1 Diabetes

In this paragraph, we describe the development approach and structure of the
algorithm that detects impending severe hypoglycemia.

It has been shown that EEG changes appear prior to severe hypoglycemia in most
cases [8]. A simple generalized model that describes the changes can be formulated
as increased theta and delta activity, and decreased alpha activity. Although this
simple model can be useful in controlled clinical trials to explain the changes, it is
not a robust model for detecting real-life hypoglycemic situations, where we have
to take intra- and inter-individual variations and environmental factors into account.
These variations include differences in EEG response to hypoglycemia (frequency
and amplitude), spatial differences of the EEG, day-to-day EEG response variations,
EEG artifacts, and background EEG differences.

Our intention is to build a robust algorithm that can detect and warn the user
about the situation prior to loss of cognitive function (neuroglycopenia), giving the
user time to intervene and prevent severe hypoglycemia. Due to the design of the
device and the fact that the device must be implanted, we are constrained to use only
a single-bipolar EEG channel that is located in the area between P3, C3, and T5 in
the 10–20 system.

Given the constraints for an algorithm, we have developed the algorithm structure
that is shown in Fig. 4.

The structure of the algorithm is closely tied to our understanding of what is hap-
pening in the EEG prior to severe hypoglycopenia, namely that short (few seconds)
episodes of hypoglycemia-related EEG changes (HREC) emerge in the EEG, see
Fig. 5. A single HREC does not in itself provide enough evidence that severe hypo-
glycaemia is impending since the brain occasionally generate phenomena that are
similar to HREC. The last part of the algorithm integrates the detected HREC, and
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Fig. 4 Algorithm structure. For further information about the development of the algorithm see
[5]. HREC: Hypoglycaemia-related EEG changes

Fig. 5 Example of EEG recorded during euglycaemia (upper panel) and hypoglycemia (lower
panel) where two events of hypoglycaemia-related EEG changes is seen from seconds 1 to 2 and
from seconds 4 to 5

when enough evidencewithin a certain timeframe (3min) is collected, the integration
function releases an alarm.

Taking a step back in the algorithm structure, we have created a noise and artifact
detector that removes falsely detected HREC events. Given the location of the single
EEG channel, few artifact and noise situations occur. Artifacts originating from, e.g.,
jar movement (when chewing) are, however, strong enough to provide difficulties
for most feature extractors. The artifact and noise detector is similar to the HREC
detector that is described below and is trained in a similar manner with a lot of noise
and artifact examples.

In parallel with the artifact detector, the HREC detector receives normalized EEG
features anddetermines if they are positives.The classifier structure used is an approx-
imation of an artificial neural network, allowing ultralow power processors to do the
calculations in real time [5]. The performance of this classifier is similar to those
of neural networks [22] or support vector machines [7] and is highly dependent on
the training approach, and the data and labels that are available. A neurophysiologist
reviewed the EEG time series together with the blood glucose values and labeled the
presence of HREC phenomena. These labels have been used together with a learn-
ing scheme that rewards or punishes the classifier when it finds nonlabeled HREC,
depending on both the glucose level and the time to hypoglycemia. The learning
scheme is shown in Fig. 6.
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Fig. 6 Classifier learning scheme for hypoglycaemia-associated EEG changes. Data from section
A and E are used as negative hypoglycemia data for the algorithm. Data from the transition section
D are discarded. The algorithm is rewarded when finding nonlabeled positives in section B and C

The learning scheme has a positive effect on the whole algorithm performance,
since it allows the classifier tofindEEGparts that appear prior to severe hypoglycemia
but goes undetected by the human eye. The approach also allows nonlabeled data to
be used in the classifier training. The whole classifier-training framework is based
on the leave-one-out principle, i.e., when testing on a subject that subjects data were
not used for training.

The features that are fed to the classifiers are normalized to reduce the effects of
differences in scull thickness, spatial location, and other parameters that shape the
EEG signal distribution. The normalization is made on the individual features, since
we assume that the shaping of the EEG signal is different for different frequencies.
The features are normalized by subtraction of the median followed by a division of
the 80 percentile. The median and percentile measures give robust measures of the
underlying distribution as opposed to themean and standard deviationmeasures. The
normalization parameters are obtained from the first 30min of each individual trial,
thus only normal data.

The actual feature extraction is based on the raw input measure from the brain.
The most essential features for the HREC classifier are frequency power estimates,
where especially the delta, theta, and alpha bands are of interest. The frequency
bands are of varying size and are most narrow in the range from 2–12Hz where the
most significant changes take place prior to severe hypoglycemia. The band powers
are averaged and sampled at 1Hz. From band power averages, we also calculate the
relatives, i.e., alpha power divided by theta power and feed all the features to the
HREC and artifact classifiers.

The 5 steps described above complete our algorithm, and the performances in the
clinical studies are presented in the following.
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6 Clinical Studies—Preliminary Results
with Implanted Device

In this section, we will describe our experience with the implanted alarm for severe
hypoglycaemia. Since only few experiments have been conducted up to now, we will
show representative examples of preliminary results.

Patients with type 1 diabetes and impaired awareness of hypoglycaemia were
equippedwith the alarm device andwere encouraged towear the device continuously
during everyday activities and during sleep for 30 days. Via a logging device, it was
possible to store all EEG recorded. The patients were encouraged to measure blood
glucose at least four times daily and wore a continuous glucose monitor (Guardian,
Medtronic, MiniMed, CA) to be able to retrieve information about glucose values
and trends aside from SMBG.

Figure7 shows one example of 72h of continuous EEG recording. In addition,
blood glucose values and values from the continuous glucose monitoring are shown.
The lower panel shows the curve of integrated EEG derived events compatible
with neuroglucopenia. During the three days with documented normoglycaemia (red
dots), the curve of integrated events of EEGcompatiblewith hypoglycaemia (bottom)
was continuously below the predefined threshold value of hypoglycaemia alarm.

Figure8 gives an example of continuous EEG recording with real-time alarms at
the time of impending severe hypoglycaemia. At lunch-time (13:00), the continu-
ous glucose curve shows a fast drop in glucose. The patient receives an alarm and
reacts appropriately by ingesting his lunch followed by an immediate rise in glucose.
Also before supper time, both interstitial glucose and blood glucose as measured by
CGM and repeated subcutaneous measurements, respectively, shows a fall. Again
the patient receives a timely alarm and corrects the impending severe hypoglycaemia
by ingesting his supper. No events of false alarmwere seen in the present experiment.

Fig. 7 72h of normoglycaemia documented by SMBG and CGM and continuous EEG recording.
Lower panel shows outcome of automated real-time analysis without false hypoglycaemia alarms.
Red circles blood glucose, red dotted line interstitial glucose as measured by CGM, black line
hypoglycaemia-associated EEG changes, blue dotted line threshold for hypoglycaemia alarm
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Fig. 8 Example of hypoglycaemia alarm at impending low glucose both at lunch and at supper
time in a patient with T1D

7 Discussion and Perspectives

Despite the use of insulin analogs, continuous insulin delivery by insulin pumps, and
continuous glucose monitoring, hypoglycaemia remains an important issue in the
treatment of diabetes. Only a minority of the diabetic patients achieves the intended
glycaemic target. To get closer to this target, an effective hypoglycaemia protection
is essential.

Although continuous glucosemonitoring is used both as a stand-alone system, as a
part of sensor augmented pump therapy and integrated with continuous insulin deliv-
ery with low-glucose suspend, only a minority of patients are currently using these
devices. Since the brain and the heart are the organs most vulnerable to restricted
glucose supply, leading to neuroglycopenia and risk of cardiac arrhythmias, respec-
tively, it is tempting to apply continuous monitoring of these organs as a part of a
hypoglycaemia warning system. Electrocardiography as a basis of a biosensor alarm
has been tested in smaller clinical trials and the prolongation of QT interval during
hypoglycaemia is well described [12]. It has, however, not yet been possible to use
this as a reliable hypoglycaemia warning system.

Hypoglycaemia-associated EEG changes are well described and seem to be inde-
pendent of diabetes awareness status [18], the course of hypoglycaemia and of recent
antecedent episodes of hypoglycaemia [20].

Some pitfalls should be taken into consideration in the development of a hypogly-
caemia alarm based on EEG rather than direct measures of glucose concentration.
First, a number of conditions aside from hypoglycaemia are associated with changes
in the EEG and may accordingly induce either false-positive or false-negative read-
ings. These conditions include e.g., epilepsy and other cerebral pathologies and
certain drugs. The impact of these conditions should be tested in future trials. Sec-
ond, the timing of EEG changes in relation to hypoglycaemia-associated cognitive
impairment is crucial as the patients must be able to take appropriate action at the
time of alarm. We found that most, but not all, studied subjects were cognitively
intact at the time of significant EEG changes. The term hypoglycaemia-associated
autonomic failure describes the situation where lack of hypoglycaemia sensation and
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insufficient counter-regulatory hormone response render the patient in an increased
risk of severe hypoglycaemia [4]. Themechanisms are not fully clarified. A theory of
post-hypoglycemic brain glycogen super-compensation, causing a delayed cerebral
response in case of progressing hypoglycaemia has been suggested but not substanti-
ated [13]. In accordance with this, Sejling et al. found a preserved glucose threshold
of EEG changes during repeated hypoglycaemia events [21]. Still we cannot rule
out that EEG changes in some occasions may occur later in patients with recurrent
events of hypoglycaemia. The present concept involves an operation. Although this
is a minor procedure and we have not experienced any per-operative complications
so far, this might be a hurdle for some patients. Finally the adherence to therapy over
a prolonged period of time is to be tested in future trials.

On the other hand, there will also be advantages of the concept described. As
opposed to continuous glucose monitoring the invasive procedure is a once-only
event. The mounting of the external device is straight forward, and the size is iden-
tical to a modern hearing aid, and thus likely to be acceptable for most patients.
Since the alarm threshold reflects the brain’s reaction to hypoglycaemia, this can
be individualized in order to achieve the highest possible sensitivity. The sensitivity
and positive predictive value of alarms are yet to be determined in larger clinical
studies. However, from the data available from our experiments, we have calculated
a sensitivity of approximately 80% with the expense of two false daytime alarms
and one false nighttime alarm per week.

8 Conclusion

Although preliminary, our data support that an EEG-based alarm prediction of
impending severe hypoglycaemia might be an option for diabetes patients with
hypoglycaemia unawareness. Longer duration studies are needed to give informa-
tion about the sensitivity and positive predictive value of the device and to achieve
knowledge about patient satisfaction and usability issues of using the device.
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Abstract The obvious and highly accepted convenience of smartphone apps will,
already in the nearest future, bring new opportunities for diabetes therapy manage-
ment. In particular, it is expected that smartphones will be able to read, store, and
display the blood glucose concentration from the continuous glucose monitoring
systems. Using our knowledge and experience gained in the framework of the large-
scale European Union FP7 funded project “DIAdvisor: personal glucose predictive
diabetes advisor” (2008–2012), we explore a possibility to develop a novel smart-
phone app for diabetes patients that provides estimations of the future blood glucose
concentration from current and past blood glucose readings. In addition to reliable
clinical accuracy, a prediction algorithm implemented in such an app should sat-
isfy multiple requirements, such as easily and quickly implementable on any mobile
operating system, portability from individual to individual without readjustment or
retraining procedure, and a low battery usage feature. In this study, we present a
description of the prediction algorithm, developed in the course of the DIAdvisor
project, and its version on Android OS that meets the above-mentioned requirements.
Additionally, we compare the clinical accuracy of the algorithm with the state of the
art in terms of the “gold standard” metric, Clarke error grid analysis, and the recently
introduced metric, prediction error grid analysis.
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1 Introduction

In recent years, mobile applications have become a key driver of mobile Health
(mHealth) deployment, esp. as a complementary way for self-monitoring. It is fore-
seen that the market of mHealth app users will reach 2 billion by 2017 [7].

Rapid advances in glucose monitoring devices, wearable devices like smart-
watches with dedicated data-gathering apps, and predictive modeling algorithms,
combined with the ongoing explosive development and availability of modern in
nutritional and lifestyle data analysis tools, make it possible to provide people with
diabetes with a dizzying array of information on which to base their decisions. Since
blood glucose fluctuations can be very rapid and drastic, the strict glycemic control
requires much effort, round-the-clock monitoring and self-motivation. At the same
time, the increased usage of mobile apps and patient portals to engage people with
diabetes provide researchers with access to a plethora of useful data for analysis.
For all these reasons, diabetes management is well placed for taking advantage of
recent technological innovations in data collection and analysis towards better self-
management.

Currently more than 1,100 diabetes-related mobile applications (apps) are avail-
able for iOS and Android devices. However, only 1.2 % of the diabetic smartphone
owners use an app to manage their condition. The reasons for such a low participa-
tion rate are the high dependence on manual entries, lack of integrity and predictive
value, lack of personalization and feedback, and low user engagement [14].

Despite the criticism and low patient involvement, recent studies have shown that
diabetes-related mobile applications possibly combined with telemedicine support
could lead to significant improvement in HbA1c levels of type-1 diabetes patients
[4]. In addition, it is expected that quite soon smartphones will be able to receive,
read, and store measurements from continuous glucose monitoring (CGM) systems,
which is of paramount importance for a better diabetes therapy management. In short,
the CGM systems provide ongoing monitoring of glucose level on an automated
basis throughout the day and night, blood glucose estimation every 5 or 10 (min),
depending on a system manufacturer.

In view of this, the partners of the large-scale EU FP7-funded project “DIAdvi-
sor: personal glucose predictive diabetes advisor” (2008–2012) [6] explore an idea
of producing a new smartphone app that predicts the future blood glucose (BG) con-
centration of a diabetic patient from current and past BG measurements provided
by CGM.

As briefly mentioned above, in order to ensure long-term usability of a diabetes
app, several features have to be fulfilled. In the following, we discuss some of more
technical features, which are necessary for the viability of a smartphone app with a
prediction algorithm. First, its workload should not lock the smartphone from han-
dling other tasks. Second, a prediction algorithm should be portable from individual
to individual without being readjusted or retrained, such that no manual input is
required after the app has been downloaded. Such feature is important for attracting
potential users and customers. Hanna Mählen, Global Digital Marketing Consult at
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Roche Diagnostic, US, for instance, indicated that the usability of the diabetes apps
can be improved by eradicating needs for manual entries.

Finally, the third and the most important requirement is that a clinical accuracy
provided by the BG-prediction app should be at least at the level of the state-of-
the-art algorithms for the blood glucose prediction or even at the level of a CGM
system. Note that in the majority of the literature on the blood glucose prediction,
the clinical accuracy is measured in terms of the Clarke error grid analysis (EGA)
[5], which is accepted as one of the “gold standards” for determining the accuracy
of blood glucose meters. Another assessment metric, we consider in the paper, is the
prediction error grid analysis (PRED-EGA) [15] that has been designed specifically
for the assessment of blood glucose predictors.

Thus, the third requirement can mean that in terms of the above-mentioned metrics
a prediction algorithm implemented in the app should perform at the level of the
best blood glucose predictors reported in the literature and at the level of accuracy
guaranteed by a CGM device, which means more than 95 % of accurate and benign
predictions (zones A+B in terms of EGA) [16]. Our thorough investigations over
the last years [13] have shown that the fully adaptive regularized learning (FARL)
algorithm [9] is the only one among a variety of the known algorithms that potentially
can meet all the above-mentioned requirements.

In [9], it has been demonstrated that the FARL algorithm can also be trained to
predict the BG concentration from the extended inputs that include not only current
and past BG measurements, but also information about meals and insulin adminis-
tration. However, in order to lighten the burden of tedious manual input, this feature
of the algorithm (i.e., extension to the additional input) could be neglected at the
current stage of the development.

The study [12] demonstrates the ability and the functionality of the FARL algo-
rithm to predict simultaneously the BG concentration for a variety of the prediction
horizons (PH). It is also shown in [12] and in Fig. 2 below, the algorithm outperforms
the existing state-of-the-art algorithms. On the other hand, keeping in mind the onset
time of insulin and meal responses on the BG level, it is sufficient to know the BG
concentration at least 20 min ahead of time to take preventive measures against out-
of-range glucose excursions. This hints that PH = 20 (min) is of the main importance
for the discussed application.

The scope of the next sections is to show that the FARL predictor, presented in
more details in Sect. 2, could be effectively built and run well on Android devices. In
Sect. 4 we report the results of the predictors performance assessment and compare
them with the ones known from the literature. The results presented in the paper
support the idea of the FARL predictor implementation as a diabetes app.
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2 Fully Adaptive Regularized Learning Algorithm
for the Blood Glucose Prediction

At first, we introduce some notations to be frequently used throughout this section.
In the sequel, we denote a generic function by g that may approximate the evolution
of the BG concentration in time; g(ti) denotes a value of the function g at time
t = ti; gλ,ω(t) denotes a function of time t that also depends on parameters λ ∈ R
and ω = (ω1, ω2, ω3) ∈ R3; gi denotes a value of the patient’s BG concentration
measured at time t = ti. Moreover, letters in boldface are used to denote vectors or
matrices with the corresponding components.

The FARL algorithm extrapolates m preceding values g0, g−1, g−2, . . . , g−m+1

of the patient’s BG concentration sampled correspondingly at the time moments
t0 > t−1 > t−2 > · · · > t−m+1 within a given sampling horizon SH = t0 − t−m+1 to
forecast the evolution of the BG concentration for the future time period [t0, t0 + PH],
where PH is a given prediction horizon. The forecast is produced as a function of
time gλ,ω(t) at which the following penalized least squares functional

m−1
0∑

i=−m+1

(gi − g(ti))
2 + λ‖g − g(0)‖2

HK
, λ ∈ (0, 1), (1)

attains its minimum over all functions g from a reproducing kernel Hilbert space
(RKHS) HK , generated by the kernel

K(t, τ ) = Kω(t, τ ) = (tτ)ω1 + ω2e
−ω3(t−τ)2

. (2)

Here g(0) = g(0)(t) is an initial approximation that can be chosen in a similar manner
as the minimizer of the functional

m−1
0∑

i=−m+1

(gi − g(ti))
2 + λ‖g‖2

HK
. (3)

Note that due to the representer theorem [17] for a given λ and ω the function
gλ,ω(t) has the form

gλ,ω(t) =
0∑

i=−m+1

cλ
i Kω(t, ti), (4)

where a real vector cλ = (cλ
0, c

λ−1, . . . , c
λ−m+1) of coefficients is defined as follows

cλ = (λmI + K)−1(g − g(0)). (5)

Here I is the unit matrix of the size m × m, K = {K(ti, tj), i, j = 0,−1, . . . ,

−m + 1} is the so-called Gram matrix, and g = (g0, g−1, . . . , g−m+1),
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g(0) = (g(0)(t0), g(0)(t−1), . . . , g(0)(t−m+1)), and

g(0)
i =

0∑

j=−m+1

cλ
j,0Kω(ti, tj), (6)

with (cλ
0,0, c

λ−1,0, . . . , c
λ−m+1,0) = (λmI + K)−1g.

Of course, the penalized least squares method (1), (3) has been used for decades
for reconstructing functions from given (possibly noisy) data. The main novelty
of the FARL algorithm compared to what was previously known (the state-of-the-
art) is that the space HK is not a priori fixed but chosen adaptively depending
on the input data (ti, gi)0

i=−m+1. More precisely, in the FARL algorithm the kernel
parameters ω1, ω2, ω3, as well as the regularization parameter λ, are the functions
ωk = ωk(u), k = 1, 2, 3, λ = λ(u) of the vector u = (u1, u2) of coefficients of the
linear least squares fit glin(t) = u1t + u2, t ∈ [t−m+1, t0], to the data (ti, gi)0

i=−m+1.

These coefficients determined as follows

u1 =
∑0

i=−m+1(ti − t̄)(gi − ḡ)
∑0

i=−m+1(ti − t̄)2
, u2 = ḡ − u1 t̄, (7)

where ā denotes the average of components of a vector (a0, a−1, . . . , a−m+1).
To find the functions ωk(u), k = 1, 2, 3, λ(u) that return the values of the ker-

nel and the regularization parameters, we use the concept of meta-learning, which
presupposes that parameters of an algorithm are selected on the base of the previous
experience with similar input data.

At this point, it is worthwhile mentioning that CGM systems provide estimations
of the BG concentration every 5 or 10 min, depending on a system manufacturer,
which allows us to form a training set (xμ, yμ), μ = 1, 2, . . . ,M, of data segments

xμ = {(tμ−m+1, g
μ
−m+1), . . . , (t

μ
0 , gμ

0 )}, (8)

yμ = {(tμ1 , gμ
1 ), . . . , (tμn , gμ

n )}, (9)

where tμ−m+1 < tμ−m+2 < · · · < tμ0 < tμ1 < · · · < tμn are the moments of time at which
the patient’s BG concentration were estimated by the CGM system as gμ

−m+1, g
μ
−m+2,

. . . , gμ
0 , gμ

1 , . . . , gμ
n . Moreover, the moments {tμi }ni=−m+1 can be chosen such that

the data segments xμ and yμ are, respectively, similar to the prediction input x =
{(t−m+1, g−m+1), . . . , (t0, g0)} and the desired prediction output y = {(t1, g1), . . . ,

(tn, gn)} in the sense that for each μ = 1, 2, . . . ,M, tμ0 − tμ−m+1 = SH and tμn − tμ0 =
PH. Then using formulas (1), (3) with gi = gμ

i , i = −m + 1, . . . , 0, we obtain the
function gλ,ω(t) and can tune the parameters λ, ω1, ω2, ω3 according to the procedure
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that has been described, theoretically justified and exemplified in [8, Section 4.4],
[10, 11]. Eventually, the function gλ,ω(t) with tuned parameters λ, ω has values
gλ,ω(tμi ) that are close to gμ

i , i = 1, 2, . . . , n.
As the result, each input data segment xμ is associated with the values of the kernel

ωμ = (ω
μ
1 , ω

μ
2 , ω

μ
3 ) and the regularization λμ parameters, which allow an accurate

extrapolation of data yμ from xμ by means of gλμ,ωμ(t). On the other hand, each input
data segment xμ is also associated with the vector uμ = (uμ

1 , uμ
2 ) of coefficients of

the linear least squares fit calculated according to (7) for ti = tμi , gi = gμ

i .

Then the functions ωk(u), k = 1, 2, 3, λ(u), which provide the kernel and the
regularization parameters are defined by the values ω

μ

k , k = 1, 2, 3, λμ at the point
u = uμ. In particular, the functions we are looking for can be reconstructed from
these values by means of a penalized regularization performed in RKHS. A procedure
on the kernels choice for such regularization is provided in detail in [8, Chap. 5],
[9, 12].

Figuratively speaking, the FARL algorithm chooses a suitable kernel for perform-
ing a prediction from the given input data in a similar fashion as a physician analyzes
symptoms to make a diagnosis (see Fig. 1). In this analogy, the role of the symp-
toms is played by the feature vector u = (u1, u2), while ω is seen as the diagnosis.
Moreover, like a physician, the algorithm has been trained on the cases where the
diagnoses ωμ for the symptoms uμ were known.

It is important to note that in the version of the FARL algorithm, which was tested
in the extended clinical trials, the functions calculating the values of the kernel and
the regularization parameters were found using the data segments (xμ, yμ) from just
one patient. Then the obtained fully trained BG predictors were tested without any
readjustment on data that were collected during a 3-day inpatient stay and 5 days
outside the hospitals from 90 other patients.

Fig. 1 A cartoon analog of the FARL algorithm for performing the blood glucose predictions
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3 Android Version of the FARL Algorithm

3.1 Translation of the Algorithm from Matlab to Android
System

In this section, we provide a short description of the translation process of the FARL
algorithm presented in the previous section from Matlab environment to Android.
Android mobile operating system was a system of choice due to several important and
attractive features. According to the recent surveys, Android has the largest installed
base of any mobile OS and as of 2013, its devices also sell more than Windows, iOS,
and Mac OS devices all together. As of July 2013, the Google Play store has had over
1 million Android apps published, and over 50 billion apps downloaded [2]. Last but
not least, Android’s source code is released by Google under open source licenses.

Even though the Matlab version of the algorithm does not require any specific tool-
boxes, the operations as matrix inversion with high precision, which is, for instance,
needed to find the vector of coefficients cλ for the minimizer (4) cannot be performed
using the standard Java libraries. However, the mathematical libraries such as Apache
Commons Math [3] allow to achieve the same precision by mathematical operations
as in Matlab. Therefore, the FARL algorithm was effectively and easily translated
into Java compatible with the Android operating system.

The Android version of the predictor was built on a new Android development
environment, Android Studio [1], and includes a set of classes which implement the
algorithm and the data structures with some imported libraries for special operations:
matrix calculus, time stamps, etc.

In the next section, we provide an assessment of the performance of the blood
glucose predictors based on the FARL algorithm of the Matlab and Android versions
using the clinically accepted metrics. However, as a short but important remark, we
would like to mention that the results of the simple pointwise comparison between
Matlab and Android versions are quite promising.

In particular, we consider the data of ten patients randomly chosen from the
database, established in the course of the DIAdvisor project, with more than 300
data entries for more than 90 patients. The assessment period is up to 10 days for
each patient and for all ten patients the predictor ran for more than 20,000 times. The
values obtained at these points then were used to compare both versions of the FARL
algorithm. Only 38 entries among all these collected points were different and the
biggest difference was 9 mg/dl. This difference can be explained by the usage of the
third-party libraries [3] for performing mathematical calculations. At the same time,
the observed differences are below the minimum error of 15 mg/dL required by the
international standard ISO 15197 for blood glucose monitoring systems performance.
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3.2 Microprocessor and Power Consumption Analysis

Another important issue which has to be extensively tested is the consumption of
memory access and, definitely, power consumption in a smartphone. In order to test
the predictor’s implementation on a real smartphone, we performed several tests
to identify these parameters. Even in the worst case when the predictor is running
nonstop (for each 4 s), the power consumption made by the application is accept-
able (approx. 4 %). But in the real life, the predictor has to run once at 5 or even
10 min depending on the CGM system and, thus, the power consumption decreases
accordingly.

The processor time is mainly used for performing prediction and their graphical
representation. Other operations as CGM data receiving are rare in time and do not
consume much processor time.

From these findings, we conclude that the predictor can run on Android systems
with no big impact on the smartphone battery or performance.

4 Performance Assessment

The present section contains the summary results of the performance assessment of
the Android version of the FARL predictor as well as provides the comparison with
the state of the art. Since the aim of this paper is to illustrate a possibility to use
the predictor as a smartphone app, we do not provide here an extensive comparison
of the performance assessment but rather refer the reader to the recent papers [9,
11, 12], where such results are reported in detail. However, following the constant
developments, we still compare the FARL algorithm with the predictors recently
appeared in the literature as in [18], for instance.

4.1 Clinical Accuracy Metrics

The analysis of the algorithms for diabetes therapy management raises the natural
problem of their assessment. The use of the proper assessment metrics helps to
understand advantages of the considered algorithms. Of course, the key point is the
choice of the assessment metrics that are suitable for diabetes technology.

There are several assessment metrics adopted in the literature specifically for the
problem of the blood glucose readings and predictions; however, the vast majority of
the prediction performance assessment is still performed using the general measures
such as root mean square error, mean squared error, for example. We find the latter
once, however, unillustrative and even irrelevant for a proper clinical assessment of
the algorithm. We refer the reader to [15] for more details.
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We consider two metrics for the assessment of the predictor’s performance, which
were validated and accepted by clinicians: the Clarke error grid analysis (EGA) [5]
and the prediction error grid analysis (PRED-EGA) [15].

The Clarke error grid analysis [5] was developed in 1987 to quantify clinical
accuracy of patient estimates of their current blood glucose as compared to the blood
glucose value obtained in their meter. It was then used to quantify the clinical accuracy
of blood glucose estimates generated by meters as compared to a reference value.
Eventually, EGA became accepted as one of the “gold standards” for determining
the accuracy of BG meters. Zone A of EGA corresponds to the clinically accurate
BG-estimations. A schematic illustration of an EGA is given in Fig. 2.

The prediction error grid analysis [15] has been designed especially for the BG-
prediction assessment. It calculates combined accuracy in three clinically relevant
regions hypoglycaemia (low blood glucose concentration), euglycemia, and hyper-
glycaemia (high blood glucose concentration), and provides three estimates of the
predictor’s performance in each of the three regions: Accurate, Benign, and Erro-
neous (Error).
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Fig. 2 The Clarke error grid analysis uses a Cartesian diagram, in which the estimated/predicted
values are displayed on the y-axis, whereas the reference values are presented on the x-axis. This
diagram is subdivided into 5 zones: A,B,C,D, and E. The points that fall within zones A and
B represent, respectively, sufficiently accurate and acceptable glucose results, points in zone C
may prompt unnecessary corrections, points in zones D and E represent erroneous and incorrect
treatment
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4.2 Performance Assessment

In Fig. 3, we present the comparison of the average percentage values of the clinically
accurate predictions (zone A of EGA) withPH = 15, 20, 25, 30, 35, 40, 45 (min) for
10 patients, where the Android version of the FARL algorithm is compared against
the predicted reported in the literature [18]. The assessment period for the predictors
reported in the literature is 30 h; whereas for the FARL predictor it is 33 h on average.

4.3 Comparison of the Matlab and Android Versions

As mentioned above, we also compare the Matlab and Android versions of the
predictor against the CGM measurements for different prediction horizons, i.e.,
PH = 20, 30, 40, 60, 75, 120 (min). In this case, we use the EGA and the PRED-
EGA as assessment metrics. The results displayed in Tables 1, 2, and 3 clearly illus-
trate that both versions perform similarly and only very slight differences in terms
of the assessment metrics might be observed. For the sake of brevity, we report
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Fig. 3 The comparison of the average percentage values of the clinically accurate predictions (zone
A of EGA) for different prediction horizons of the five different predictors
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Table 1 Percentage of points in EGA zones for the FARL predictor, Android and Matlab versions,
PH = 20 (min)

ID Matlab Version Android Version

A % B % C % D % E % A % B % C % D % E %

101 97.69 1.96 0.00 0.20 0.00 97.69 1.96 0.00 0.20 0.00

102 97.43 2.47 0.00 0.10 0.00 97.49 2.41 0.00 0.10 0.00

103 95.25 4.58 0.00 0.17 0.00 95.22 4.61 0.00 0.17 0.00

108 96.09 3.88 0.00 0.03 0.00 96.09 3.88 0.00 0.03 0.00

120 99.27 0.70 0.03 0.00 0.00 99.27 0.70 0.03 0.00 0.00

121 96.79 3.04 0.00 0.17 0.00 96.89 2.94 0.00 0.17 0.00

128 98.52 1.48 0.00 0.00 0.00 98.56 1.44 0.00 0.00 0.00

206 99.00 0.85 0.00 0.15 0.00 99.04 0.81 0.00 0.15 0.00

212 98.20 1.80 0.00 0.00 0.00 98.27 1.73 0.00 0.00 0.00

213 99.26 0.59 0.15 0.00 0.00 99.26 0.59 0.15 0.00 0.00

Average 97.75 2.14 0.02 0.08 0.00 97.78 2.11 0.02 0.08 0.00

Table 2 PRED-EGA for 20-min predictions by the Matlab version of the FARL Algorithm

Subject ID Hypoglycaemia Euglycemia Hyperglycaemia

Accurate
%

Benign
%

Error
%

Accurate
%

Benign
%

Error
%

Accurate
%

Benign
%

Error
%

101 94.05 1.08 4.86 96.96 2.98 0.06 98.18 1.09 0.73

102 90.62 0.00 9.38 98.75 1.25 0.00 96.63 2.45 0.92

103 88.06 4.48 7.46 96.11 3.78 0.11 96.95 1.53 1.53

108 98.96 0.52 0.52 98.49 1.51 0.00 100.00 0.00 0.00

120 100.00 0.00 0.00 99.16 0.78 0.06 98.50 0.83 0.67

121 87.27 3.64 9.09 97.58 2.42 0.00 97.47 1.54 0.99

128 100.00 0.00 0.00 98.82 1.18 0.00 97.03 0.56 2.41

206 78.95 0.00 21.05 98.16 1.79 0.00 97.68 0.64 1.67

212 100.00 0.00 0.00 98.20 1.80 0.00 99.16 0.28 0.56

213 – – – 97.14 1.43 1.43 99.00 0.50 0.50

Average 93.10 1.08 5.82 97.94 1.89 0.17 98.06 0.94 1.00

here only the results of the performance assessment (EGA and PRED-EGA) for
PH = 20 (min) for both versions of the predictor. We also mention that these results
are representative for other PH as well.
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Table 3 PRED-EGA for 20-min predictions by the Android version of the FARL Algorithm

Subject ID Hypoglycaemia Euglycemia Hyperglycaemia

Accurate
%

Benign
%

Error
%

Accurate
%

Benign
%

Error
%

Accurate
%

Benign
%

Error
%

101 94.05 1.08 4.86 97.09 2.85 0.06 98.18 0.97 0.85

102 90.62 0.00 9.38 98.75 1.25 0.00 96.93 2.15 0.92

103 88.06 4.48 7.46 96.22 3.67 0.11 96.95 1.53 1.53

108 98.96 0.52 0.52 98.53 1.47 0.00 100.00 0.00 0.00

120 100.00 0.00 0.00 99.11 0.84 0.06 98.50 0.83 0.67

121 87.27 3.64 9.09 97.58 2.37 0.05 97.36 1.76 0.88

128 100.00 0.00 0.00 98.82 1.18 0.00 97.03 0.37 2.60

206 78.95 0.00 21.05 98.10 1.84 0.06 97.81 0.51 1.67

212 100.00 0.00 0.00 98.29 1.71 0.00 98.88 0.56 0.56

213 – – – 97.14 1.43 1.43 99.00 0.50 0.50

Average 93.10 1.08 5.82 7.96 1.86 0.18 98.06 0.92 1.02

5 Conclusions and Discussion

In this paper, we presented a technical and algorithmical framework of the dia-
betes app for short-term predictions of the BG evolution of a diabetes patient. The
developed solution demonstrates several attractive features, such as robustness, high
clinical accuracy, patient and sensor independence, no need of manual input, which
are of great importance for future potential users.

Despite these promising results, we definitely interested in continuing improve-
ment and development of the solution for the integrated diabetes self-management. In
particular, our future ambitions include identification and formalization of user pref-
erences and needs for mHealth solutions capable of delivering efficient and realistic
long-term diabetes management; establishing connectivity with external sensors and
valuable external applications (e.g., for diet tracking); and extension of the algorithm
to a longer prediction horizons. The latter one will require change of paradigms, e.g.,
we are interested in producing BG estimates with lowest possible uncertainty over
the prediction horizon, and incorporation of additional inputs such as meal intake and
insulin injection due to the intrapatient variability. As already mentioned, a short-
term predictor is less concerned by this problem and it becomes essential once we
want to increase the PH (e.g., from 1 to 3 h), because small variations of insulin
action result in larger glucose deviations with time. Therefore, various possibilities
and tools, which allow a reduction of the burden of tedious manual input, will have
to be thoroughly studied.
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Predicting Glycemia in Type 1 Diabetes
Mellitus with Subspace-Based Linear
Multistep Predictors

Marzia Cescon, Rolf Johansson and Eric Renard

Abstract A major challenge for a person with diabetes is to adapt insulin dosage
regimens and food intake to keep blood glucose within tolerable limits during daily
life activities. The accurate prediction of blood glucose levels in response to inputs
would support the patients with invaluable information for appropriate on-the-spot
decision making concerning the management of the disease. Against this background,
in this paper we propose multistep data-driven predictors to the purpose of predicting
blood glucose multiple steps ahead in the future. We formulate the predictors based
on the state-space construction step in subspace identification methods for linear
systems. The clinical data of 14 type 1 diabetic patients collected during a 3-days
long hospital visit were used. We exploited physiological models from the literature
to filter the raw information on carbohydrate and insulin intakes in order to retrieve
the inputs signals to the predictors. Predictions were based on the collected CGMS
measurements, recalibrated against finger stick samples and smoothed through a
regularization step. Performances were assessed with respect to YSI blood glucose
samples and compared to those achieved with a Kalman filter identified from data.
Results proved the competitiveness of the proposed approach.

1 Introduction

Diabetes mellitus is a chronic disease of disordered glucose metabolism due to a
constant defect in insulin secretion by the pancreatic β-cells that can be combined
with a defect in insulin action [36]. Type 1 diabetes (T1DM), previously called
insulin-dependent diabetes mellitus (IDDM) is characterized by almost complete
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failing production of insulin, whereas type 2 diabetes is caused by reduced insulin
production and decreased sensitivity of the tissues to the metabolic effect of insulin.
The basic consequence of lack of insulin or insulin resistance is the prevention of
the efficient uptake and utilization of glucose by insulin-dependent cells of the body,
mainly the skeletal muscles, resulting in abnormally high blood sugar levels (hyper-
glycemia). Sustained hyperglycemia is associated with microvascular complications
(nephropathy, retinopathy), neuropathy, and damages to the cardiovascular system,
which are irreversible once they develop and can mean serious disability for the per-
son who experiences them [36]. In order to avoid the long-term health complications,
the patients need to regulate their blood glucose maintaining its levels as close to
normal as possible. This is achieved by exogenous insulin replacement. Focusing
on tight blood glucose targets, i.e., 70–140 (mg/dL) [32], the philosophy of insulin
replacement is to mimic the physiological endogenous insulin secretion pattern of
the nondiabetic person. In the nondiabetic subjects, insulin is secreted into the portal
circulation at two rates: a slow basal secretion throughout the 24 h and an augmented
rate at meal times. This pattern can be achieved to some extent with the so-called
basal-bolus regime: a basal dose of long-acting insulin is sufficient to keep a constant
glucose concentration during fasting conditions and a prandial bolus of rapid-acting
insulin enhances an increased glucose uptake during and after meals. In current med-
ical practice, the rough calculation of insulin doses and eventually extra carbohydrate
intakes is based on empirical rules-of-thumbs. Many factors have to be considered
in this decision process: health status, current blood glucose level, blood glucose tar-
get, foreseen activities, insulin sensitivity, expected future glycemia evolution, and
approximation of the estimated meal carbohydrate content effects as well as insulin
impact on the subject own blood glucose, taking into account medical advice and
patients previous experience of his/her own metabolism. One common measure used
in this regard is the carbohydrate-to-insulin ratio, which is an estimate of how many
insulin units to administer to match the amount of digested carbohydrates. The task
is nontrivial and demanding, although the standard tools in diabetes care improved
significantly during the last decades.

Against this background, a personalized blood glucose predicting system to be
used on the spot by the users in different daily situations, predicting glycemic excur-
sions following meals, insulin intakes and exercise, would support the patients in opti-
mizing their therapy. Actually, this was the focus of the European FP7-IST research
project DIAdvisorTM [12] during the quadrennium 2008–2012. The predictor system
needs user inputs concerning patient condition (e.g., fasting, meal time, rest, or phys-
ical activity), time, and size of meals and insulin doses, minimally invasive glucose
sensors and produces short term, i.e., up to 120 min, blood glucose predictions to be
graphically shown to the patients.

Although seemingly simple in concept, the problem of glucose prediction in an
active individual has to date proved difficult. Currently, continuous glucose moni-
toring (CGM) devices are the available technology able to provide high/low glucose
alarms when certain user specified preset threshold levels have been crossed and to
deliver warnings of events that are likely to occur if the current trend continues. How-
ever, patients will benefit more from an early alarm that predicts the episodes before
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they occur. To date many studies have investigated the possibility of predicting blood
glucose concentration for the purpose of regulating glucose intervention, in order to
enable individuals to take corrective actions and avoid low or high glucose values
(see e.g., [2, 3] for a comprehensive review on T1DM modeling). Bremer and Gough
in [5] originally developed the idea of T1DM CGM time series analysis using 10-min
sampled data from ambulatory T1DM patients to identify autoregressive (AR) mod-
els. They explored 10, 20, and 30 min prediction horizons, and report that the 10-min
predictions are accurate and the 20-min or 30-min predictions may also be accept-
able for a limited set of data only. Sparacino et al. collected 48 h of continuously
sampled (3-min) glucose data from 28 T1DM subjects in ambulatory conditions. In
their retrospective analysis, presented in [30] they recursively identified simple poly-
nomial and AR models from the CGM time series data, prefiltered to remove noise
spikes. They investigated prediction horizons of 10 and 15 steps (i.e., 30 and 45 min)
and concluded that hypoglycemia can be detected 25 min before the hypoglycemic
threshold is passed. A tutorial overview of algorithms for CGM time series analysis
to the purpose of alarm generation was provided in [31]. Eren-Oruklu et al. proposed
in [13] a recursive second-order AR and ARMA model identification strategy with
an adjustable forgetting factor for healthy and type II diabetics. Their models utilized
only recent glucose history from a CGM device, achieving 3–5 % error for 30-min
ahead prediction. In [28] a kernel-based regularization learning algorithm, in which
the kernel and the regularization parameter are adaptively chosen on the basis of
previous similar learning tasks, using past glucose concentration information, was
presented. A short-coming of the methods listed above is the lack of exploitation of
the dynamic interplay between previously injected insulin, meal intake, and eventu-
ally exercise to the purpose of improving glucose prediction. Patient-specific ARX
models both batch-wise and recursively identified from nine patients data records by
Finan et al. showed in [16] a mean 30-min prediction error RMSE of 26 mg/dL. An
ARX model with a nonlinear forgetting factor scaled according to the glucose range
was considered in [6, 7], and a 45-min prediction horizon showed good results. A
feedforward neural network (NN) was exploited in [29] and tested on 10 real datasets,
incorporating, in addition to CGM data, other inputs such as SMBG readings, infor-
mation on insulin, meal, hypo- and hyperglycemia symptoms, lifestyle, activity and
emotions and predict glucose values up to 75 min. In [37–39], 30-min ahead predic-
tion was performed with a feedforward NN in cascade with the first-order polynomial
model in [30]. The inputs to the linear predictor were the past CGM values weighted
using a forgetting factor, while the inputs to the NN were current CGM and its trend,
information on the past error committed by the polynomial model and information on
meal, supplied as plasma glucose rate of appearance obtained from the physiological
model of [11]. In [27] a recurrent NN (RNN) was shown to outperform a feedforward
NN in predicting glycemia in 12 children on a short-term prediction horizon. Zhao
et al. in [40] used a latent variable-based approach to predict future CGM values
from past CGM and known carbohydrate and insulin boluses, transformed into time-
smoothed inputs using second-order transfer functions. The method was applied to
collected clinical data and simulated data generated by the model described in [24,
25]. They concluded that their LV-based method resulted in models whose prediction
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accuracy was as least as good as the accuracies of standard AR/ARX models. In [14]
a multisensor body monitor providing seven signals related to activity and emotional
conditions was used in addition to a CGM monitor to improve glucose prediction.
A multivariate ARMAX model with weighted recursive least-squares estimation of
the unknown parameters using a variable forgetting factor was proposed. Results
showed that the prediction error can be significantly reduced with the addition of
the vital signs measurements, as compared to an ARMA model based only on CGM
signals. Balakrishnan et al. developed personalized glucose prediction models in [4]
taking into account physical exercise, meal, and insulin interventions as input and
CGM sensor measurements as output and validated them using the clinical data of
34 children and adolescent. The input-output relationship was described by means
of transfer functions with different number of poles (varying between 1 and 3) and
with or without zeros for each input.

This contribution is concerned with subspace-based multistep linear predictors,
previously introduced in [8, 9], to the purpose of short-term T1DM glycemia predic-
tion. The approach is data-driven to overcome the limitations arising from the lack of
the underlying physiological system model and takes into account meal and insulin
informations as well as subcutaneously measured blood glucose concentration. To
the best knowledge of the authors this is the first time such multistep predictors are
applied to diabetes management.

The paper is organized as follows. Section 2 deals with the subspace-based pre-
dictors, Sect. 3 introduces the clinical data acquisition, while in Sect. 4 the proposed
subspace predictors are used to forecast blood glucose concentrations multiple steps
ahead. Results of such a procedure are given in Sect. 5, followed by some discussion
and conclusions on the achievements in Sect. 6.

2 Subspace-Based Linear Multistep Predictors

Consider, a discrete-time linear time-invariant system Sn(A,B,C,K) in innovation
form

xk+1 = Axk + Buk + Kek
yk = Cxk + ek

(1)

where uk ∈ R
m is the input, yk ∈ R

l the output, xk ∈ R
n the state, ek ∈ R

l the zero-
mean white noise innovation process uncorrelated with uk and A ∈ R

n×n, B ∈ R
n×m,

C ∈ R
l×n, K ∈ R

l×n are constant matrices. In the following, assume that (A,B) is
reachable and (C,A) is observable. Further, assume that no linear feedback from the
states to the input is present, i.e., input–output data are obtained from an open-loop
experiment and the sampling is uniform.
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2.1 Notation

The available data sequences {uk}, {yk}, the state {xk} and the innovation process {ek}
will be organized in Hankel matrices denoted by uppercase letters. Subscript indices
[α, β] of a Hankel matrix will be used to indicate the argument of the upper-left and
the lower-left element, respectively, e.g., U[t1,t2] will contain in the first column the
input history between instants t1 and t2. Accordingly, data records of finite length N
will be represented by the block rows of the Hankel data matrices and will be denoted
by uppercase letters, the subscript indicating the first time instants of the time series:

U[t1,t2] =

⎡
⎢⎢⎢⎣

Ut1
Ut1+1

...

Ut2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ut1 ut1+1 · · · ut1+N−1

ut1+1 ut1+2 · · · ut1+N
...

... · · · ...

ut2 ut2+1 · · · ut2+N−1

⎤
⎥⎥⎥⎦

The orthogonal projection of the rows of a given matrixAonto the row space of a given
matrix B will be denoted by Ê{A | B}, whereas the symbol Ê‖C{A | B} will denote the
oblique projection of the row space of A onto the row space of B along the row space
of C, the projection operator being Ê{·}. Throughout the paper k will be the discrete-
time index, t shall denote the current time instance in the identification problem, t0
shall be the initial time from which the data are collected, so that t − t0 = p is the past
horizon in the identification problem, T shall be such that T − t + 1 = f represents
the future horizon. The two integers p and f are such that p ≥ max(f , n), n model
order. Last, the number of steps in the look ahead that one wishes to investigate will
be denoted by τ , where τ ≤ f .

2.2 Predictors Construction

Suppose ideally that we have observations of the processes {uk}, {yk}, {xk}, {ek},
k ∈ [t − p, t + f − 1]. In addition, assume the finite length N of the interval to be
large. Since the finite length observed data sequences are a realizations of the under-
lying stochastic processes in Eq. (1), the following holds:

Xk+1 = AXk + BUk + KEk

Yk = CXk + Ek
(2)

Furthermore, from the observed samples construct the following block Hankel
matrices:

Up = U[t−p,t−1] ∈ R
p·m×N (3)

Uf = U[t,t+f−1] ∈ R
f ·m×N (4)
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called the past and future input data matrices, respectively, and

Yp = Y[t−p,t−1] ∈ R
p·l×N (5)

Yf = Y[t,t+f−1] ∈ R
f ·l×N (6)

called the past and future output data matrices, respectively.
Define the extended observability matrix

Of =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...

CAf−1

⎤
⎥⎥⎥⎥⎥⎦

(7)

and the Toeplitz matrices containing the impulse responses of the system due to the
input uk and the innovation process ek , respectively

Hf =

⎡
⎢⎢⎣

0 0 · · · 0
CB 0 · · · 0
.
.
.

.

.

.
. . .

.

.

.

CAf−2B CAf−3B · · · 0

⎤
⎥⎥⎦,Wf =

⎡
⎢⎢⎣

I 0 · · · 0
CK I · · · 0
.
.
.

.

.

.
. . .

.

.

.

CAf−2K CAf−3K · · · 0

⎤
⎥⎥⎦ (8)

Then, by iteration of the system equations in Eq. (1), the following matrix input–
output relations may be written to express the future output matrix:

Yf = Of Xf + Hf U
f + Wf E

f (9)

In the practical scenario the state sequence Xf is not known, so future outputs cannot
be computed. An estimator of future output can be found, however, from the available
data as a linear combination of the joint input–output past and the future input (see
Appendix A.6 in [34] for a proof), provided that uk and ek are uncorrelated:

Ŷ f = Γ̂ Zp + Λ̂Uf (10)

where we have introduced the short-hand notation

Zp =
[
Up

Yp

]
= Z[t−p,t−1] ∈ R

p·(m+l)×N (11)
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to denote the past joint input–output data matrix. Now, the problem of finding
an optimal output predictor can mathematically be formulated as a least-squares
problem:

Γ̂ , Λ̂ = arg min
Γ ∈ R

lf×(l+m)p

Λ ∈ R
lf×mf

∣∣∣∣
∣∣∣∣Yf − [

Γ Λ
] [

Zp

Uf

]∣∣∣∣
∣∣∣∣
2

F

(12)

where || · ||F stands for the Frobenius norm of a matrix. Note that in this way f
prediction problems are solved simultaneously row-wise. Each problem consists in
estimating Ŷt+τ , τ ∈ [0, f − 1]:

Ŷ f =

⎡
⎢⎢⎢⎣

Ŷt
Ŷt+1

...

Ŷt+f−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ŷt ŷt+1 · · · ŷt+N−1

ŷt+1 ŷt+2 · · · ŷt+N
...

...
...

...

ŷt+f−1 ŷt+f · · · ŷt+f+N−2

⎤
⎥⎥⎥⎦ (13)

A geometric interpretation can be given to the least-squares problem as the orthogonal
projection of Yf onto

[
Zp Uf

]T
, i.e.,

Ŷ f = Ê

{
Yf |

[
Zp

Uf

]}
(14)

Actually, the orthogonal projection (14) corresponds to the sum of two oblique
projections ([21, Lemma 1]) under the assumption span(Zp) ∩ span(Uf ) = {0}, with
span(·) standing for the space spanned by the row vectors of a matrix:

Ŷ f = Ê‖Uf {Yf | Zp} + Ê‖Zp{Yf | Uf } (15)

= Γ̂ Zp + Λ̂Uf (16)

Once the operator Γ̂ and Λ̂ have been estimated, they can be applied to new data
generated by the same underlying mechanisms, to forecast the output τ steps ahead.

Numerically, the efficient implementation of such projection operations relies
upon LQ decompositions (i.e., transpose of the QR decomposition) [18]. The fol-
lowing algorithm is outlined:

Algorithm 1 ([34, 35])

1. Consider the following

⎡
⎣
Uf

Zp

Y f

⎤
⎦ =

⎡
⎣
L11 0 0
L21 L22 0
L31 L32 L33

⎤
⎦

⎡
⎣
Q1

T

Q2
T

Q3
T

⎤
⎦ (17)
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where L11 ∈R
fm×fm, L22 ∈R

p(m+l)×p(m+l), L33 ∈R
fl×fl and Qi, i = 1, . . . , 3 are

orthogonal.
2. Define

Γ̂ = L32L22
† (18)

Λ̂ = (L31 − L32L22
†L21)L11

−1 (19)

3. Use Eq. (10) to calculate the future outputs as Yf = Γ̂ Zp + Λ̂Uf .

3 Experimental Conditions and Clinical Data Acquisition

In the framework of the DIAdvisorTM project [12], clinical data acquisition from
insulin-treated diabetic subjects was accomplished during a 3 days in-hospital trial.
The investigations focused on a population of basal-bolus regimen treated subjects,
either as combination of multiple daily insulin injections or as continuous insulin
infusion from a pump. Prior to any study procedure the subjects participating in the
study signed an informed and witnessed consent form. Standard meals for break-
fast (8.00 am), lunch (1.00 pm), and dinner (7.00 pm) were served, the amount of
administered carbohydrates being 42, 70, and 70 g, respectively. During the whole 3-
days-long visit, the participants were permanently equipped with the Abbott Freestyle
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Fig. 1 Population statistics. On each box, the central mark is the median, the edges of the box are
the 25th and 75th percentiles. Top left Age (years); Top right Disease duration (years); Bottom left
Body Mass Index (BMI) (kg/m2); Bottom right Total Daily Insulin [IU]
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NavigatorTM continuous glucose monitoring sensor (CGMS) [1] which provided esti-
mates of glycemia levels from interstitial glucose measurements every 10 min. No
specific intervention on usual diabetes treatment was scheduled during the period.
The patients decided their insulin needs according to the glucose measurements from
the HemoCue® 201+ Glucose Analyzer [19] as usually in activities of daily life.
As needed, particularly when hypo- or hyperglycemia occurred, support was pro-
vided by nurses and physicians. We present results for a population of 14 patients
(9 males and 5 females, age 45.8±12.7 (years), disease duration 18±11.6 (years),
BMI 23.4±2.7 (kg/m2), 10 MDI and 4 CSII, HbA1c 7.6±1 (%), total daily insulin
41.9±18.9 [IU]). The selection criteria were the quantity of data collected (>80 % of
the expected), no sensor failures and patient diary correctly filled in. Figure 1 presents
population statistics of patients clinically relevant parameters, whereas Fig. 2 gives
the empirical distribution of the output signal for all the patients in the population.
We compared the empirical distribution with a normal distribution having mean
μ = 155.32 (mg/dL) and standard deviation σ = 61.20 (mg/dL) and a lognormal

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

3500
Empirical distribution of the output vs. normal distribution

mg/dL

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

3500
Empirical distribution of the output vs. lognormal distribution

mg/dL

Fig. 2 Empirical distribution of the output for all the patients in the population. Top Histogram
versus normal distribution; Bottom Histogram versus lognormal distribution
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Fig. 3 Patient 102. DAQ trial, Visit 2. Top Glucose concentration (mg/dL): NavigatorTM (blue),
HemoCue® (red); Upper Center Meal intake (g): carbohydrates (blue), lipids (red), proteins
(yellow); Lower Center Insulin doses [IU]: basal (blue), bolus (red), correction (green) versus
time (min)

distribution having geometric mean μ∗ = 144.51 (mg/dL) and geometric standard
deviation σ ∗ = 1.46 (see Fig. 2). Last, Fig. 3 shows the data for a representative
patient.
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4 Predicting Diabetes Glycemia with the Multistep
Predictors

The physiology of glucose metabolism in diabetes was considered having one output,
i.e., glucose level in the bloodstream yBG, and two main inputs, i.e., carbohydrate
intake ucarb and administered insulin Iir (Fig. 4). Physiological models from the lit-
erature were used to filter the raw informations on carbohydrate and insulin intakes
collected by the study participants in their diaries. In particular, the glucose intesti-
nal absorption model first presented in [10] was used to retrieve the glucose rate of
appearance in plasma after a meal, i.e., ûg, while the insulin pharmacokinetics model
in [25] allowed us to compute the insulin appearing in plasma after subcutaneous
injection, i.e., ûi. Both models exploited mean population values for the parameters
appearing therein which were provided us by Dalla Man and co-workers. Figure 5

ucarb
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ûg

ûi

yBG

Glucose model

Insulin model

Glucose-insulin

interaction

Fig. 4 Diagram of the physiological model describing diabetes glucose metabolism
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Fig. 5 Left Glucose rate of appearance ûg after ingestion of 40 (g) carbohydrate by a patient with
mb = 65 (kg) at time t = 0, simulated with the glucose intestinal absorption model in [10]; Right
Plasma insulin concentration: total ûi (µU/mL) (red), slow-acting (blue) and fast-acting (green)
resulting from a basal dose of 20 [IU] at t = 0 and a bolus of 5 [IU] at t = 240 (min), taken by a
patient with mb = 65 (kg), simulated with the insulin pharmacokinetics model in [25]
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reproduces ûg and ûi simulated for a representative patient parameter set. The Abbott
FreeStyle NavigatorTM [1] records were taken as assessment of glycemia. The time
series were interpolated and uniformly resampled at 1 min rate, under the assump-
tion of zero-order hold intersample behavior. A retrospective recalibration against
the collected HemoCue [19] samples was performed offline. The algorithm proposed
by King et al. in [22], later evaluated by Facchinetti et al. in [15], was used. For each
patient a recalibration parameter αr was found by least-squares estimation:

αr = arg min
α

||yBG − αyIG||2 (20)

with yBG and yIG denoting the HemoCue and the CGM samples, respectively. The
recalibrated traces yrIG = αryIG were provided by Facchinetti and co-workers within
the DIAdvisorTM project and were used as output signals. Further, in order to
improve numerical precision when computing projections by means of LQ decompo-
sitions (see Sect. 2) smoothing of the recalibrated traces was performed. We used the
Tikhonov regularization approach [33], following the reasoning presented in [17].
We minimized the functional f (ẏrIG) given by:

f (ẏrIG) = || yrIG − IẏrIG ||2 + λ2 || DẏrIG ||2 (21)

where ẏrIG denotes the glucose rate of change, I is a matrix denoting the integral
operator, λ is the regularization parameter and D is a second derivative operator
chosen to impose smoothness constraints on the derivative of the glucose signal. As
a result of such minimization an estimate of the recalibrated traces first derivative is
obtained, i.e., ˆ̇yrIG. Finally, the smoothed signals ȳrIG can be computed as:

ȳrIG = I ˆ̇yrIG (22)

We were interested in predictions up to 120 (min) ahead, i.e., denoting by τmax (min)
the maximum prediction horizon we take into consideration, τmax = 120. The scheme
used for calculation of multistep predictions is reported in Algorithm 2.

Algorithm 2 (Multistep prediction)

1. Choose the maximum prediction horizon τmax.
2. Set p = f = τmax.
3. Estimate Γ̂ and Λ̂ from Eqs. (18) and (19) applying Algorithm 1 to the first half

of the data.
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4. Let t denote the current time step. Form the predictions ŷ of the second half of
the data (validation) using the relation

⎡
⎢⎢⎢⎢⎢⎣

ŷt
ŷt+1

ŷt+2
...

ŷt+f−1

⎤
⎥⎥⎥⎥⎥⎦

= Γ̂

⎡
⎢⎢⎢⎢⎢⎣

zt−p

zt−p+1

zt−p+2
...

zt−1

⎤
⎥⎥⎥⎥⎥⎦

+ Λ̂

⎡
⎢⎢⎢⎢⎢⎣

ût
ût+1

ût+2
...

ût+f−1

⎤
⎥⎥⎥⎥⎥⎦

(23)

where
[
zt−p zt−p+1 · · · zt−1

]ᵀ
are the joint input–output data up to time t − 1 and[

ût ût+1 · · · ût+f−1
]ᵀ

are the future inputs. Notation: û = [
ûi ûg

]
and y = ȳrIG.

5 Results

Given the importance of ultimately predicting glucose levels in blood, the proposed
multistep predictors were evaluated with respect to prediction performances on YSI
validation data. Denoting with yBG the YSI blood sample measurements and with ˆ̄yrIG
the predicted glycemia levels, accuracy was assessed on the basis of the following
metrics:

• prediction error standard deviation (mg/dL):

√
E [(yBG − ˆ̄yrIG)(yBG − ˆ̄yrIG)ᵀ] (24)

• absolute difference (AD) (mg/dL):

AD(k) =| yBG(k) − ˆ̄yrIG(k) | (25)

• relative difference (RD):

RD(k) = (yBG(k) − ˆ̄yrIG(k))

yBG(k)
(26)

• International Organization for Standardization (ISO) [20] criteria.

Clinical accuracy was evaluated with Clarke error grid analysis [23]. Performances
were assessed for the prediction horizons

• τ = 30, 60, 90, 120 (min)

Table 1 presents assessment of prediction per se with respect to blood glucose for the
entire population, while Tables 2, 3, 4, 5, 6, 7 and 8 numerical and clinical accuracy
of prediction with respect to blood glucose. Figures 6, 7 and 8 show predictions for
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Table 1 Multistep short-term predictors performance evaluation

Patient ID 30 (min) 60 (min) 90 (min) 120 (min)

102 13.18 14.75 25.19 45.10

103 10.04 14.74 29.72 44.00

104 14.55 20.00 57.10 113.91

105 9.75 17.76 43.03 62.80

106 19.99 19.98 50.89 80.43

107 30.80 33.80 52.28 77.79

108 10.81 16.97 48.17 62.16

115 17.81 21.97 33.00 39.24

118 16.20 16.49 27.59 60.40

119 16.82 29.60 95.19 132.49

120 27.14 31.38 57.90 97.94

121 15.81 20.79 43.02 74.37

128 17.66 21.95 41.61 55.62

130 14.68 20.75 51.51 78.14

Prediction Error Standard Deviation (mg/dL) versus Prediction Horizon (min) on validation data

Table 2 Numerical and clinical accuracy of predictions

Patient AD†(mg/dL) RD‡ ISO (%) CG-pEGA (%) CG-rEGA (%)

Mean Median Mean Median ∗ A B A B

102 9.65 7.54 −0.01 0.00 95.45 95.65 4.34 91.11 8.88

103 8.00 7.07 −0.01 −0.02 94.87 93.47 6.52 91.11 8.88

104 11.57 9.89 −0.01 0.00 95.45 93.61 4.25 86.95 13.04

105 7.59 6.05 −0.01 −0.01 100 97.77 0.00 95.45 2.27

106 15.23 11.24 −0.03 −0.03 81.39 76.08 17.39 82.22 15.55

107 22.95 17.71 −0.04 0.00 73.91 72.34 27.65 71.73 17.39

108 7.94 6.38 0.00 0.00 100 97.82 0 88.89 11.11

115 12.51 9.07 −0.01 0.00 93.47 93.47 6.52 82.22 6.67

118 11.97 8.92 −0.02 0.00 95.12 91.48 4.25 89.13 8.69

119 13.18 9.62 0.00 0.01 93.61 93.61 6.38 80.43 17.39

120 19.57 13.47 −0.02 0.01 86.95 86.95 13.04 86.66 11.11

121 11.86 8.33 −0.02 0.00 90.47 89.36 8.51 86.95 13.04

128 11.99 6.78 −0.02 0.00 90.62 90.62 9.37 90.32 9.67

130 11.84 11.37 −0.02 −0.03 100 100 0 93.54 6.45

30 (min) prediction
∗Prediction within (20 %) from reference yBG when yBG ≥ 75(mg/dL); †Eq. (25); ‡Eq. (26)
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Table 3 Numerical and clinical accuracy of model-based predictions (Kalman predictor) 30 (min)
prediction

Patient AD†(mg/dL) RD‡ ISO (%) CG-pEGA (%) CG-rEGA (%)

Mean Median Mean Median ∗ A B A B

102 12.30 9.30 0.00 0.00 92.05 88.82 7.07 66.59 20.06

103 12.94 9.80 −0.01 −0.02 85.53 83.17 13.23 63.67 22.67

104 13.50 8.03 0.00 0.00 89.89 85.58 9.84 69.42 18.57

105 12.82 8.33 −0.01 −0.03 90.37 90.30 9.33 72.49 19.18

106 13.25 9.37 0.01 0.01 88.00 87.33 11.89 52.84 25.91

107 7.31 5.08 0.02 0.023 97.89 97.89 2.10 78.14 15.90

108 13.12 9.80 0.01 0.02 82.92 81.74 17.53 74.60 15.59

115 9.07 7.34 0.00 0.00 98.28 97.94 1.79 80.75 15.39

118 13.64 10.56 0.03 0.03 91.33 90.76 8.56 50.74 27.39

119 14.04 9.81 0.00 0.00 88.76 88.76 11.23 56.54 25.55

120 12.76 8.69 0.01 0.01 93.60 93.84 6.15 70.60 22.57

121 12.33 7.30 0.01 0.01 85.92 85.53 14.20 61.87 21.08

128 13.11 8.00 0.00 0.00 90.46 90.46 9.43 68.54 18.52

130 12.94 7.66 0.01 0.00 92.64 92.76 6.61 62.23 24.57

∗Prediction within (20 %) from reference yBG when yBG ≥ 75(mg/dL); †Eq. (25); ‡Eq. (26)

Table 4 Numerical and clinical accuracy of predictions

Patient AD†(mg/dL) RD‡ ISO (%) CG-pEGA (%) CG-rEGA (%)

Mean Median Mean Median ∗ A B A B

102 10.89 10.02 −0.01 0.00 93.02 93.33 6.66 84.09 15.90

103 12.75 12.14 −0.04 −0.05 84.21 84.44 15.55 84.09 15.90

104 16.35 12.93 −0.01 0.00 90.69 89.13 8.69 71.11 20.00

105 14.31 13.26 −0.01 −0.01 95 93.18 4.54 79.06 11.62

106 17.16 16.61 −0.06 −0.05 83.33 77.77 15.55 75.00 20.45

107 25.30 19.53 −0.04 0.00 66.67 65.21 34.78 66.67 15.55

108 12.75 11.25 0.00 0.00 88.63 88.89 11.11 70.45 25.00

115 15.42 10.10 0.00 0.01 91.11 91.11 8.89 75.00 9.09

118 12.81 10.22 −0.02 0.00 95 89.13 4.34 84.44 13.33

119 23.24 20.07 −0.01 0.01 82.60 82.60 17.39 71.11 15.55

120 23.38 17.44 −0.04 0.00 73.33 73.33 26.66 79.54 18.18

121 15.68 13.47 0.00 0.01 82.92 82.60 15.21 71.11 26.66

128 16.10 11.08 −0.01 0.00 81.25 81.25 18.75 83.87 12.90

130 15.77 13.41 −0.03 −0.02 96.67 96.87 3.12 80.64 12.90

60 (min) prediction
∗Prediction within (20 %) from reference yBG when yBG ≥ 75(mg/dL) ; †Eq. (25); ‡Eq. (26)
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Table 5 Numerical and clinical accuracy of model-based predictions (Kalman predictor) 60 (min)
prediction

Patient AD†(mg/dL) RD‡ ISO (%) CG-pEGA (%) CG-rEGA (%)

Mean Median Mean Median ∗ A B A B

102 23.95 19.83 −0.01 0.00 70.10 62.82 26.71 60.54 21.70

103 22.75 19.46 −0.04 −0.03 62.24 60.30 32.71 55.1052 31.40

104 28.49 19.29 0.00 0.01 69.07 64.25 26.05 57.61 23.55

105 23.62 17.60 −0.02 −0.06 71.65 69.69 26.61 64.80 21.90

106 26.82 21.84 −0.01 0.02 68.98 67.53 30.56 40.94 24.26

107 14.41 10.67 0.05 0.05 90.20 90.20 9.79 72.65 20.47

108 25.18 17.45 0.03 0.04 54.28 53.17 46.05 79.88 13.34

115 17.20 12.38 0.00 0.00 83.20 82.05 17.69 74.80 18.88

118 28.26 19.86 0.08 0.09 63.67 64.51 33.58 44.99 30.11

119 25.70 16.13 0.01 0.00 76.05 76.05 22.10 49.97 27.03

120 29.50 21.94 0.03 0.06 66.27 67.02 31.38 58.69 25.03

121 23.91 14.70 0.01 0.03 70.38 68.20 28.10 58.33 22.37

128 27.25 19.29 0.00 −0.01 64.00 64.00 33.38 62.13 20.06

130 29.30 17.25 0.03 0.02 73.25 73.53 21.58 49.51 29.09

∗Prediction within (20 %) from reference yBG when yBG ≥ 75(mg/dL); †Eq. (25); ‡Eq. (26)

Table 6 Numerical and clinical accuracy of predictions

Patient AD†(mg/dL) RD‡ ISO (%) CG-pEGA (%) CG-rEGA (%)

Mean Median Mean Median ∗ A B A B

102 20.32 18.67 0.00 0.02 76.74 77.77 22.22 72.72 18.18

103 27.37 24.15 −0.13 −0.17 48.64 45.45 47.72 62.79 25.58

104 45.79 38.69 −0.03 0.01 46.51 45.65 47.82 48.89 31.11

105 34.36 26.66 −0.07 −0.09 52.50 50.00 40.90 46.51 25.58

106 42.45 37.17 −0.11 −0.12 39.02 38.63 56.81 48.83 30.23

107 39.24 30.19 −0.06 −0.04 45.45 44.44 53.33 47.72 25.00

108 36.45 26.40 0.01 0.06 40.90 40.00 55.55 56.81 18.18

115 24.34 18.34 0.00 0.04 79.54 79.54 20.45 60.46 20.93

118 21.84 18.94 0.01 0.00 75 73.91 23.91 71.11 24.44

119 64.51 42.41 0.01 0.09 42.22 42.22 42.44 43.18 29.54

120 45.43 33.89 −0.14 −0.06 44.44 44.44 55.55 61.36 25.00

121 33.52 23.71 0.00 0.07 57.50 57.77 40.00 52.27 15.90

128 30.70 24.09 0.01 0.02 58.06 58.06 38.70 50.00 26.66

130 38.04 26.20 −0.04 −0.05 60 61.29 35.48 56.66 16.66

90 (min) prediction
∗Prediction within (20 %) from reference yBG when yBG ≥ 75(mg/dL); †Eq. (25); ‡Eq. (26)
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Table 7 Numerical and clinical accuracy of model-based predictions (Kalman predictor) 90 (min)
prediction

Patient AD†(mg/dL) RD‡ ISO (%) CG-pEGA (%) CG-rEGA (%)

Mean Median Mean Median ∗ A B A B

102 32.70 27.92 −0.02 0.01 56.04 50.05 36.71 63.98 21.80

103 28.49 27.23 −0.07 −0.02 46.93 47.79 45.38 60.54 26.57

104 40.43 28.13 0.01 0.03 54.80 50.87 35.02 55.20 23.70

105 30.56 24.32 −0.04 −0.10 53.95 52.10 42.82 65.67 20.88

106 36.22 31.41 −0.01 0.06 55.10 53.94 42.56 43.61 22.06

107 20.85 15.95 0.09 0.09 76.61 76.61 23.33 70.54 20.67

108 27.64 21.43 0.04 0.05 50.45 49.53 49.58 83.53 12.51

115 23.73 17.89 −0.01 0.00 65.00 64.15 35.58 74.44 17.90

118 40.13 30.09 0.13 0.15 43.25 44.25 49.69 45.86 29.29

119 35.05 26.03 0.01 0.01 65.38 65.38 29.48 48.17 29.29

120 44.47 33.15 0.06 0.09 48.16 48.20 44.41 54.74 26.73

121 32.31 19.83 0.02 0.04 58.31 55.89 38.51 60.54 19.24

128 40.19 29.95 −0.02 −0.02 46.97 46.97 48.46 61.57 19.90

130 45.23 26.60 0.05 0.03 56.01 55.89 33.23 45.30 28.73

∗Prediction within (20 %) from reference yBG when yBG ≥ 75(mg/dL); †Eq. (25); ‡Eq. (26)

Table 8 Numerical and clinical accuracy of predictions

Patient AD†(mg/dL) RD‡ ISO (%) CG-pEGA (%) CG-rEGA (%)

Mean Median Mean Median ∗ A B A B

102 37.24 34.30 −0.01 0.00 43.90 44.18 51.16 47.61 28.57

103 40.59 37.24 −0.25 −0.21 33.33 30.23 60.46 61.90 23.80

104 85.97 62.63 −0.02 0.08 26.82 29.54 36.36 27.90 30.23

105 51.41 37.67 −0.17 −0.16 39.47 35.71 52.38 41.46 31.70

106 61.32 47.07 −0.16 −0.05 37.50 34.88 51.16 38.09 30.95

107 61.87 61.74 −0.18 −0.09 32.55 31.81 52.27 34.88 23.25

108 44.27 28.38 0.01 0.06 42.85 41.86 48.83 52.38 26.19

115 31.25 23.10 0.00 0.03 53.48 53.48 46.51 52.38 21.42

118 50.36 41.08 0.04 0.08 34.21 34.09 52.27 48.83 30.23

119 85.83 49.56 0.06 0.07 43.18 43.18 34.09 46.51 18.60

120 79.88 68.11 −0.27 −0.02 32.55 32.55 48.83 54.76 19.04

121 54.22 40.31 −0.08 0.10 43.58 45.45 45.45 34.88 27.90

128 42.71 33.94 0.06 0.09 46.66 46.66 46.66 48.27 37.93

130 56.82 34.51 0.00 0.06 46.66 46.66 50.00 51.72 13.79

120 (min) prediction
∗Prediction within [20 %] from reference yBG when yBG ≥ 75(mg/dL); †Eq. (25); ‡Eq. (26)
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Fig. 6 Patient 102. Multistep predictions. p = f = 120. Evaluation on validation data. Predictor
ˆ̄yrIG (thin), recalibrated, and smoothed interstitial glucose ȳrIG (red dashed) and YSI measurements
(green squares) (mg/dL) versus time (min). Top 30-min ahead; Top Center 60-min ahead; Bottom
Center 90-min ahead; Bottom 120-min ahead prediction. Meals and injections are indicated with
triangles and plus signs, respectively
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Fig. 7 Patient 105. Multistep predictions. p = f = 120. Evaluation on validation data. Predictor
ˆ̄yrIG (thin), recalibrated, and smoothed interstitial glucose ȳrIG (red dashed) and YSI measurements
(green squares) (mg/dL) versus time (min). Top 30-min ahead; Top Center 60-min ahead; Bottom
Center 90-min ahead; Bottom 120-min ahead prediction. Meals and injections are indicated with
triangles and plus signs, respectively
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Fig. 8 Patient 115. Multistep predictions. p = f = 120. Evaluation on validation data. Predictor
without logarithmic transformation of the data (thin), predictor with logarithmic transformation of
the data (dashed) and recalibrated interstitial glucose ŷrIG (thick) (mg/dL) versus time (min). Top
30-min ahead; Top Center 60-min ahead; Bottom Center 90-min ahead; Bottom 120-min ahead
prediction. Meals and injections are indicated with triangles and plus signs, respectively
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Fig. 9 Patient 102. Predictor performance evaluation. Clarke error grid analysis: Left pEGA; Right
rEGA. Top 30 min ahead; Bottom 60 min ahead prediction

three representative subjects. Last, Figs. 9 and 10 display Clarke error grid analysis
for the first representative subject relative to the various prediction horizons.

The performances achieved by the multistep predictors were compared to those
obtained with a Kalman predictor based on individualized third-order ARMAX mod-
els identified from each patient data. The model parameters were estimated in a
black-box fashion by means of the Matlab System Identification Toolbox function
armax.m [26]. Results of such investigation are provided in Tables 3, 5, 7, 9 and 10.
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Fig. 10 Patient 102. Predictor performance evaluation. Clarke error grid analysis: Left pEGA;
Right rEGA. Top 90 min ahead; Bottom 120 min ahead prediction

Table 9 Numerical and clinical accuracy of model-based predictions (Kalman predictor) 120 (min)
prediction
Patient AD†(mg/dL) RD‡ ISO (%) CG-pEGA (%) CG-rEGA (%)

Mean Median Mean Median ∗ A B A B

102 39.99 36.41 −0.03 0.02 44.41 39.69 44.61 61.36 24.32

103 33.04 32.14 −0.11 0.00 42.91 40.76 49.53 62.03 25.19

104 49.79 33.59 0.03 0.04 47.03 44.41 37.79 55.56 24.32

105 34.11 29.32 −0.05 −0.11 43.58 41.84 53.02 67.93 22.31

106 41.79 37.16 −0.01 0.08 47.35 46.35 49.79 45.51 25.08

107 26.83 22.67 0.12 0.15 62.92 62.92 36.15 72.65 19.08

108 25.54 19.02 0.03 0.04 56.32 55.12 44.10 81.11 14.52

115 28.59 21.49 −0.02 −0.01 56.57 56.00 43.84 73.57 20.67

118 49.31 37.72 0.17 0.20 37.79 38.92 47.12 46.84 28.88

119 42.80 30.57 0.02 0.00 53.74 53.74 38.30 47.92 30.57

120 55.88 36.73 0.09 0.14 39.31 40.46 46.97 50.69 30.68

121 37.44 23.83 0.02 0.10 51.57 49.84 40.66 58.59 21.03

128 51.10 41.69 −0.03 −0.05 35.89 35.89 57.74 58.33 22.21

130 59.82 39.08 0.06 0.06 44.89 44.61 36.00 47.10 25.19

∗Prediction within (20 %) from reference yBG when yBG ≥ 75(mg/dL); †Eq. (25); ‡Eq. (26)
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Table 10 Kalman short-term predictors performance evaluation

Patient ID 30 (min) 60 (min) 90 (min) 120 (min)

102 21.96 26.71 38.64 45.15

103 15.09 16.47 26.71 37.52

104 16.90 21.99 41.86 71.39

105 11.88 18.82 25.79 37.54

106 12.00 23.92 48.85 67.51

107 20.24 25.48 40.11 49.53

108 19.66 26.41 37.24 43.26

115 16.46 21.96 29.56 39.82

118 14.27 18.18 29.15 48.03

119 14.24 15.02 38.33 53.78

120 13.02 28.68 45.59 53.66

121 10.99 17.43 33.09 45.14

128 19.88 31.20 46.37 61.83

130 26.73 36.58 53.30 75.82

Prediction Error Standard Deviation (mg/dL) versus Prediction Horizon (min) on validation data

6 Discussion and Conclusions

In this contribution, subspace-based data-driven linear multistep predictors have been
applied to the problem of short-term prediction of blood glucose concentration in
T1DM. Resorting to geometric operations on appropriate subspaces spanned by the
measured input–output data sequences, predictor coefficients were estimated directly
from the collected data. No model structure selection nor model order determination
were, therefore, required.

Some conditions need to be fulfilled in order to have unbiased predictors. Specif-
ically:

• input data should be “rich” enough, that is, the persistency of excitation of the data
should be of sufficiently high order

• the space spanned by the row vectors of matrix Zp and the space spanned by the row
vectors of matrix Uf should have zero intersection: span(Zp) ∩ span(Uf ) = {0}.
This corresponds to no feedback interconnection

The first condition is related to the LQ decompositions required to solve the problem
in Eq. (12). Matrix inversions in Eq. (18) is possible if and only if L11 is a full rank
matrix. This is guaranteed when the input signal u is PE of order at least f · m.

The second condition is necessary for the orthogonal projection to split uniquely
into the sum of two oblique projections (Eq. (15)). When data are generated in closed
loop this condition is no longer satisfied.
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Throughout the paper, p was chosen so to meet the following condition:

p ≥ max{n, τ }

in order for the system (1) to be observable (condition p ≥ n) and to guarantee
predictions up to the largest future horizon we wished to investigate (condition
p ≥ τ ). The parameter has strong connections with model order, and to optimize
results it should be given by the user from knowledge or intuitions on the system
dynamics. Indeed, requesting to predict with a look-ahead τ � n implies to choose
also p � n, which leads to overparametrization of the model and suboptimal perfor-
mances.

Figure 2 demonstrates the lognormality of the blood glucose data at hand. Moti-
vated by this, a logarithmic transformation of the data was performed and a new
set of predictors was obtained by applying Algorithm 2. Performances of such an
approach were compared to those achieved without data transformation and lead
to the conclusion that the log-transformed predictor does not perform significantly
better.

A third-order ARMAX model was identified for each of the patients and a model-
based Kalman predictor was constructed in order to allow comparison with the pro-
posed algorithm. The competitiveness of our approach for the shorter prediction
horizons is proven by Tables 3, 5, 7 and 9. However, for longer prediction horizons
the Kalman filter outperforms our proposed method in all but four cases. Finally,
we remind the reader in passing that the performances were assessed with respect
to YSI samples pointwise. In this way, the error in prediction is made up by two
components: the sensor error and the proper prediction error.
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Abstract Eating and exercise behaviors have an important effect on glycemic
outcomes in type 1 diabetes, yet these influences are difficult to assess in real-life
settings. While existing mathematical models faithfully represent the dynamic rela-
tionships of (i) oral carbohydrate ingestion and (ii) glucose and insulin transport/
action in various compartments of the body, accurate models of meal and exercise
behaviors are needed to realistically capture the wide excursions of blood glucose
observed in the field, and this has been a bottleneck in preclinical in silico evaluation
of advanced systems including the artificial pancreas. This work presents a method
of using continuous glucose monitoring and insulin pump data to extract a BG vari-
ability signature represented by oral carbohydrate net effect, which can be “fed” back
into the mathematical model to (i) reproduce the original BG time series from the
original record of insulin delivery and (ii) be used to approximate the effect of a
modified schedule of insulin delivery. We provide details of the basic method and
illustrate the approach using both the Virginia/Padova Type 1 Simulator and human-
subject data collected in a field study.
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1 Introduction

In maximizing the effectiveness of insulin therapy in Type 1 Diabetes (T1D) it is
critical to adapt to the characteristics of the individual patient [4, 8]. Endocrinologists
have long recognized in the importance of inter- and intra-patient variability with
regard to insulin sensitivity and other physiological traits, and this is reflected in
the methods used to titrate insulin therapy parameters including carbohydrate ratios,
correction factors, correction thresholds and targets, and basal insulin doses [6, 15].
Behavioral characteristics (eating, exercise, and self-treatment behaviors) are equally
important, particularly in separating the treatment of meals from the need to provide
a basal insulin “baseline” that is adapted to circadian variability of insulin sensitivity
throughout the day [7, 19].

Variability of physiological characteristics is well represented in existing mathe-
maticalmodels of T1D,which are increasingly important in the design and evaluation
of advanced technologies and treatments [16, 18]. For example, inter-patient vari-
ability in endogenous glucose production is captured in the distinct in silico subjects
of the Virginia/Padova Type 1 simulator [16, 18], as well as in other simulation
platforms [9, 20]. Intra-patient variability is represented now in more recent works,
cf. the updated Virginia/Padova Simulator [5] where physiological parameters that
relate to insulin sensitivity are drawn from probability distributions that are specific
to the time of day, capturing enhanced resistance overnight and exhibiting increasing
insulin sensitivity throughout the day.
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Fig. 1 An attempt to capture five days of BG variability in an in silico Type 1 patient
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Fig. 2 Five-day snapshot of a real patient with Type 1 diabetes

While someattempts havebeenmade to accurately represent behavioral influences
in computer simulation models [11–14], eating and exercise behaviors are difficult
to assess and represent. Figures1 and 2 attempt to illustrate this point informally.
Figure1 was generated using the 2012 version of the FDA-accepted Virginia/Padova
Type 1 simulator, showing BG traces for one of the in silico subjects for a five-day
scenario in which meal times (three meals a day) and meal amounts (grams CHO)
are randomized, with meal-related boluses computed using the patient’s individual-
ized carbohydrate ratio, and where the patient’s “optimal” basal rate is intentionally
reduced by 25% to roughly capture a dawn effect. While the simulated traces do
exhibit the morning hyperglycemia that one would expect, along with some vari-
ability in the timing and depth of postprandial glycemic excursions, the simulated
traces look nothing like the five-day snapshot shown in Fig. 2 of CGM data from a
real patient with Type 1 diabetes, exhibiting much greater BG variability (due in part
to the fact that the patient, like most people, eats throughout the day, and often eats
more than three meals a day).

In this chapter, we present our preliminary experience with the use of deconvo-
lution methods [3, 10] in reconciling continuous glucose monitoring (CGM) data
and insulin pump records leading to the estimation of an oral carbohydrate “net
effect” signal. Here, given a linear time-invariant (LTI) model of the patient, the
recovered net effect signal is such that if the modeled patient were (i) to absorb
carbohydrates exactly as specified by the net effect function and (ii) to insulinize
exactly as recorded, then the output of the model would accurately recover the CGM
signal that was originally recorded. In a sense, the net effect signal itself is designed
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to allow for a “simulation” of the patient data, and the advantage of this is that we can
replay the patient’s treatment day experimenting with different amounts of insulin
at different times to see under what circumstances it is possible to achieve better
glycemic outcomes [17]. Our goal here is to provide a snapshot of the method, pro-
viding details of the basic method, the compartmental model currently being used,
the CGM preprocessing steps taken, and other implementation issues. We illustrate
the approach with (i) data collected in a month-long field study of patients with Type
1 diabetes and (ii) simulated data using the Virginia/Padova Type 1 Simulator.

2 Oral Carbohydrate “Net Effect”: Reconciling CGM
and Pump Data via Regularized Deconvolution

Many sources of uncertainty confound the estimation of metabolic parameters of
patients with Type 1 diabetes, including (i) unknown and time-variable insulin sen-
sitivity (affected by physical activity, menstrual cycle, circadian rhythm, illness,
stress), (ii) variations in insulin transport related to physical activity, (iii) the content
of meals and the profile of meal ingestion, and (iv) variable gastric emptying, among
many others. In analyzing historical data, meals, and physical activity pose signif-
icant challenges. Even with conscientious logging of meals and physical activity,
errors stemming from inaccurate carb counting, meal content, and meal timing can
significantly disrupt attempts to estimate insulin sensitivity from CGM and pump
data. Failure to acknowledge meals or physical activity can lead to nonsensical esti-
mates of physiological parameters. Ultimately, it is not always possible to attribute
fluctuations in BG specifically to meals, physical activity, changes insulin sensitivity
and/or counter regulation.

In this work, we take the view that, out of all of the factors that contribute to
trends in BG over time, meals (the existence of meals, the content of meals, the
absorption of meals) represent the main confounding factors in the retrospective
analysis of CGM and insulin data. With this in mind we introduce the notion of
oral carbohydrate “net effect” corresponding to the meal arrival process that best
explains, through a mathematical model of the patient’s physiology, the correlated
time series of CGM and insulin delivery data. As illustrated in Fig. 3, we define a
process for estimating the unknown meal signal via regularized deconvolution from
records of CGM (subcutaneous glucose concentration) and insulin delivery data.

For computational efficiency (leading to a closed-form solution), our net effect
signal is derived from a discrete-time, linear time-invariant model:

x(k + 1) = Ax(k) + Bu(k) + Gω(k) (1)

y(k) = Cx(k), (2)

where each discrete-time step corresponds to a fixed sampling period and where
(i) x(k) is a vector of state variables that represent glucose and insulin trans-
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Fig. 3 Net effect: a model-based signature of patient behavior

port/interaction in various parts of the body, (ii) u(k) is insulin delivery (mU/min)
in the kth sampling interval relative to the patient’s basal rate at that time, (iii) ω(k)
is meal carbohydrates (mg-CHO/min) consumed in the kth sampling interval, and
(iv) y(k) is the kth sample of interstitial glucose concentration (mg/dl) relative to a
reference BG value Gref .

For the numerical results presented in the sequel the specific model that we use
is derived from the minimal model of glucose-insulin kinetics [1] and is referred to
as the subcutaneous oral glucose minimal model (SOGMM), which we have used in
our prior work [11–13]. The structure and parameters of the SOGMM, along with
the steps taken to linearize and discretize the model, are described in detail in the
Appendix.

Before proceeding, it is useful to introduce notation for both the actual insulin
delivered in any given stage, along with the preprogrammed basal profile. To this
end, let Jdel(k) (U) denote the total insulin delivered in stage k. Similarly, let basal(k)
(U/hr) represent the patient’s preprogrammed basal profile specification of basal
insulin in stage k. Then, we have that

u(k) = 1000 · Jdel(k)/TS − 1000 · basal(k)/60, (3)

representing the effect of insulin boluses, extended boluses, and temporary basal
rates, where TS (min) is the length of the sampling interval. (TS = 5 for most CGM
devices.)

Given the initial state x(0), a vector of differential control inputs ũ = (u(0),
u(1), . . . , u(T − 1))′, and a vector of meal inputs ω̃ = (ω(0), ω(1), . . . , ω(T − 1))′,
the LTI model predicts future differential glucose values

ỹ = (y(0), y(1), . . . , y(T))′ = A x(0) + Bũ + G ω̃, (4)

where A ,B, and G are appropriately defined matrices:
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2.1 Net Effect Core Algorithm

The goal of the net effect core algorithm is to compute estimates x̂(0) and ˆ̃ω of the
initial state x(0) and the vector of meal inputs ω̃ from knowledge of insulin delivery
ũ and (differential) CGM measurements:

ỹcgm = (CGM(0) − Gref , CGM(1) − Gref , . . . , CGM(T) − Gref )
′, (5)

where CGM(0), CGM(1), . . . , CGM(T) are a vector of CGM values that may be
the result of CGM preprocessing (cf. Sect. 2.2). The basic idea is to compute x̂(0)
and ˆ̃ω to satisfy Eq. (4) as closely as possible with given CGMdata (ỹcgm instead of ỹ)

and known insulin inputs ũ. We refer to the estimate ˆ̃ω of the meal input signal as net
effect because it, along with the estimate of the initial state x̂(0), are the only means
of “explaining” variability in measured BG, variability that is due in fact to many
factors beyond meals, including dramatic variability of insulin sensitivity owing to
physical activity, illness, circadian effectors, or, on a longer time-scale, menstrual
cycle effects.

The approach taken here is essentially a regularized deconvolution method, with
the additional feature of wrapping the estimation of the initial state into the quadratic
optimization model for the deconvolution. We express the net effect estimate as a
linear combination of basis vectors ei ∈ �T , i = 1, . . . , n:

ˆ̃ω =
n∑

i=1

νiei = Eν, (6)

where the columns of E are the basis vectors ei and ν = (ν1, . . . , νn)
′. Defining

ξ = ỹcgm − Bũ (7)

we compute the net effect and initial state estimates to solve the optimization problem

minx(0),ν
[
(ξ − A x(0) − GEν)′Λfit(ξ − A x(0) − GEν)

+ x(0)′Λreg,1x(0) + ν ′E′Λreg,2Eν
]
,

(8)
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where in the first term of the objective function Λfit ≥ 0 is a positive semindef-
inite weighting matrix that defines the penalty for failing to satisfy Eq. (4) and
Λreg,1 ≥ 0 and Λreg,2 ≥ 0 define regularization terms that penalize large initial state
and net effect estimates, respectively. The solution to this optimization model can be
expressed in closed form, and for this it is convenient to rewrite Eq. (8) as

min
θ

[(ξ − Mfitθ)′Λfit
(
ξ − θMfit

) + θ ′Λregθ ] (9)

where

θ =
(
x(0)
ν

)
, Mfit = [A GE], Λreg =

[
Λreg,1 0
0 E′Λreg,2E

]
. (10)

The closed-form solution of Eq. (9) is then

θ∗ = (
M ′

fitΛfitMfit + Λreg
)−1

M ′
fitΛfitξ =

(
x̂(0)
ν∗

)
(11)

where the inverse is guaranteed to exist under certain circumstance, such as when
Λreg > 0. We take Eν∗ to be the estimate of net effect based on the CGM and insulin
delivery data.

2.2 CGM Preprocessing

The net effect core algorithm above is essentially a nonstatistical procedure that
ignores sensor noise and treats the meal arrival process as the only unknown input
to the system. For this reason, it is necessary to filter the CGMmeasurements and/or
apply smoothing. (Otherwise, the net effect core algorithm is prone to attempting to
explain erratic signal artifacts as abrupt changes in the meal arrival process.) While
filtering and smoothing of the CGM data can be achieved in different ways, we have
found it convenient, as in Sect. 4 to make use of a “retrofitting” procedure in which
(i) the CGM trace is smoothed via cubic spline interpolation, (ii) the smoothed CGM
trace is warped via scaling and shifting, forcing the modified signal to pass through
the SMBG samples, and (iii) gaps in the CGM data are interpolated.

Another critical preprocessing step is to ensure that the net effect estimate is free of
“edge effects.”While the core net effect algorithm is designed to produce an estimate
of the initial condition of the dynamic system x̂(0), the interaction between x̂(0) and
the estimate of net effect itself ˆ̃ω is complicated. For this reason, it is generally helpful
to prepend the CGM and insulin data streams with relevant data before the timeframe
of interest. (We find that these “begin-game” effects usually last 30 min to one hour.)
Thus, if it is desired to have an accurate assessment for the 24 h period frommidnight
to the following midnight, it is beneficial to associate the discrete stage k = 0 with
a time at least 30 min before midnight, chosen to allow for a suitable “warm-up”
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period. Similarly, there is an “end-game” effect that must be addressed. Intuitively, in
order to estimate the meal arrival process through a particular time (e.g., midnight),
then it is necessary to observe CGM data beyond that time (e.g., several hours past
midnight) in order to perceived the impact of oral carbohydrates that arrive just prior
to the end of the interval. Thus, it is beneficial to associate the end stage T with a time
after the 24-h day, chosen to allow for the transient effect of any last-minute carbs
to die out. (In the numerical results of the sequel, k = 0 corresponds to eight hours
before midnight and k = T corresponds to four hours after the following midnight.)

2.3 Discussion: “Net Effect” Versus “Meal Estimation”

We refer to the estimate ˆ̃ω of as carbohydrate “net effect” since, in reality, there
are many sources of BG variability beyond meals, e.g., dramatic variability of in
insulin sensitivity owing to physical activity, illness, circadian effectors, or, on a
longer time-scale, menstrual cycle effects. Glucose-insulin interactions in vivo are
more complicated than natively expressed in the compartmental model described in
the Appendix. Thus, other effects besides meals are “wrapped up” in the net effect
computation. First, since the mathematical model assumes a fixed (patient-specific)
insulin sensitivity, actual changes in insulin sensitivity appear as artifacts in the net
effect trace. Enhanced insulin sensitivity shows up as a tendency toward negative
values of net effect. Exercise can show up as negative “meals.” Since the model
assumes that there is a steady-state plasma insulin concentration associated with the
patient’s basal profile, large fluctuations in basal rate throughout the day (especially
basal rates that are not matched to circadian variability in insulin sensitivity) can
show up as artifacts in the net effect trace. Since the gut model is not adapted to the
content of the meal, discrepancies in meal rate of appearance show up as transient
artifacts in the net effect trace. Similarly, since the insulin transport model is homoge-
nous, discrepancies in insulin pharmacokinetics show up as transient artifacts in the
net effect trace. Finally, since endogenous hypoglycemic counter-regulation is not
reflected in the model, counter-regulation shows up as an unacknowledged meal.

3 Net Effect Simulation

As discussed above, net effects are computed to an allow for an accurate “simulation”
of the patient data, providing the opportunity (i) to replay the patient’s treatment day
and (ii) to experiment with alternative insulin strategies to see under what circum-
stances it is possible to achieve better glycemic outcomes.
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3.1 “Replay” Simulation

Having computed the net effect estimates

x̂(0) and ˆ̃ω = (ω̂(0), . . . , ω̂(T − 1))

from differential CGM data and insulin delivery relative to the basal profile,

ỹhist = (yhist(0), . . . , yhist(T)) and ũhist = (uhist(0), . . . , uhist(T − 1)), (12)

it is possible to simulate a “replay” of that data as follows:

xreplay(0) = x̂(0) (13)

xreplay(k + 1) = Axreplay(k) + Buhist(k) + Gω̂(k), k = 0, . . . ,T − 1 (14)

with
yreplay(k) = Cxreplay(k) (15)

3.2 Simulating Modified Insulin Delivery

With the net effect estimates x̂(0) and ˆ̃ω in hand, it is straightforward to simulate a
modified schedule of insulin delivery

ũmod = (umod(0), . . . , umod(T − 1)) (16)

as follows:

xmod(0) = x̂(0) (17)

xmod(k + 1) = Axmod(k) + Bumod(k) + Gω̂(k), k = 0, . . . ,T − 1 (18)

with
ymod(k) = Cxmod(k). (19)

In simulating a modified insulin regimen care must be taken to ensure that ũmod
accurately reflects the desired change. For example, if the goal is to simulate the
effect of multiplying the patient’s preprogrammed basal profile basal(k) (U/hr) by a
constant factor α, then (as a rough cut) one could use ũmod =

max{ [−basal(k) · 1000/60], [uhist(k) + (α − 1) · basal(k) · 1000/60] }. (20)
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Note this assumes that the patient would actually continue to deviate from his/her
preprogrammed profile according to uhist(k). That is, if uhist(k) �= 0 represents a bolus
in stage k, then the assumption is that the patient would issue the same bolus in the
modified insulin regime. If the bolus actually includes a correction component, then it
is necessary to separate the carb- and correction-related components of uhist , retaining
the meal-related component and modifying the correction component according the
prevailing (simulated) BG at the time of the bolus. (The meal-related and correction
components could be inferred, for example, from the patient’s insulin pump record
based on the carb-value provided by the patient to the bolus wizard.) Similarly, if
uhist(k) �= 0 represents a temporary basal rate, then it may be necessary to adjust
uhist(k) in simulating the modified insulin regime to reflect the fact that a temporary
basal rate may, or may not, be warranted in stage k.

4 Results

In this section, we present results that (i) illustrate the ability to use net effect replay
simulation to reproduceBGvariability and (ii) give a preliminary view to the accuracy
of net effect simulation in predicting the impact of changes to the patient’s basal rate
profile. For the former, we present net effects and net effect replays of data collected
in a human-subject field study (phase 1 of NIH/NIDDK RO1 DK 085623), and we
demonstrate that the net effect replay accurately captures the kinds of BG variability
observed in practice. For the latter, we present results from an in silico preclinical trial
using the FDA-accepted Virginia/Padova Type 1 simulator, showing that net effect
simulation can capture, at least to first order, the impact of basal rate changes. Both
studies involved the CGM preprocessing steps and the net effect parameterization
described below.

CGM Preprocessing Step 1—Valid Extended Days: Gaps in CGM records from
the field are common. While the occasional “missed” sample can easily be accom-
modated via interpolation, extended intervals of missing CGM data can obscure the
picture. With a view to understanding daily BG variability, we introduce the notion
of an extendedCGMday, where the goal is to estimate net effect frommidnight to the
following midnight, and the last T− hours of the preceding day are prepended to the
record (to deal with initial condition errors) and the first T+ hours of the following
day are appended to the record (to deal with “end-game” effects), as discussed in
Sect. 2.2. For the two studies below, we used T− = 8 and T+ = 4, and, for the field
study, we considered an extended day to be valid, and included it in the study, if
there are no gaps longer than three hours and no more than 60 of the normal 5-min
samples are missing from the record.

CGM Preprocessing Step 2—Retrofitting: The data from each patient’s CGMwas
retrofitted [2] to smooth the data and force agreement with the available fingerstick
values in the historical record. In the retrofit cubic splines were used to smooth the
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data and interpolate between gaps in the CGM record. A smoothing parameter of
1 − 10−6 was used to force the retrofit to give preference to matching second and
third derivatives at anchor points (over minimizing the squared difference between
the smoothed curve and anchor points). Next, the available fingerstick values were
used as reference points, and a linear warping function was applied between samples
to force agreement between the smoothed CGM trace and the fingerstick record. (If
multiple fingerstick values were recordedwithin 10minutes of each other, the sample
that is numerically closest to the prevailing CGM value is the one that was used.)
Note that the retrofitting procedure used here did not attempt to correct for transients
in the CGM record due to calibration events. (Correcting for calibration transients
would make the replay simulation more accurate, and this would be important for
applications that focus on replaying specific glycemic events. Here, however, our
interest is in characterizing BG variability over time timeframe of several weeks,
where the effect of calibrations would “average out.”)

Net Effect Parameterization: For both studies belowweparameterized the net effect
calculation as follows. First, given the T− = 8 h of data prepended to the record
for each extended day we directly imposed the initial condition estimate x̂(0) = 0,
relying on the observation that initial condition errors are “forgotten” within the first
three to four hours of the extended day. Thus, the calculation deviated slightly from
the methodology of Sect. 2.1 (cf. Eq. (6)) in that we took

θ = ν, Mfit = GE, Λreg = E′Λreg,2E. (21)

With each extended day consisting in 24 + 8 + 4 h, corresponding to 2160 min, or
432 five-minute intervals, we used the following orthogonal basis:

e1 = (1, 1, 0, 0, . . . 0, 0)′
e2 = (0, 0, 1, 1, . . . 0, 0)′

...

e216 = (0, 0, 0, 0, . . . 1, 1)′

(22)

so that each one of the n = 216 basis functions corresponds to a 10-min interval
of the extended day. The weighting matrices used in the calculations are Λfit = I432
and Λreg,2 = λI216, where λ = 5 × 10−5 was chosen (empirically) to reflect a good
tradeoff between replay accuracy and net effect smoothing.

4.1 Net Effects and Net Effect Simulation Replay from Field
Data

Using de-identified field data collected during Phase 1 of the NIH/NIDDK project
RO1 DK 085623, we illustrate (i) net effects derived from the data and (ii) the ability
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Fig. 4 “Density profile”
plots of a retrofitted CGM
data, b associated net effect,
c replayed CGM data for the
valid extended days from
subject 5001
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Fig. 5 Example 24-h period from subject 5001: a retrofitted CGM, actual basal, profile basal,
boluses, acknowledged meals, net effect replay b net effect

to reproduce BG variability observed in the field via net effect simulation. The study
involved insulin pump users with Type 1 diabetes. Study subjects were asked to wear
CGM for amonth, simultaneously recording SMBG, CGMand insulin pump data, as
well as information about meals and physical activity. Using “valid” extended days
from representative Subjects 5001, 5009, and 5041, respectively, Figs. 4, 6 and 8
show “density profile” plots of retrofitted CGM data (left panel), net effect (middle
panel), and net effect replay simulation of the data (right panel).1 Figs. 5, 7, and 9,
respectively, show representative 24 h traces for each of the subjects.

4.1.1 Subject 5001

From the top panel of Fig. 4 we observe that Subject 5001 consistently experiences
BG values in the range of 125–175 (mg/dl) between 3 and 6AM, with a consistent
trend toward BG above 200 (mg/dl) around 8AM, and with tight control of BG
around 100 (mg/dl) in the afternoon and early evening. The middle panel of Fig. 4
shows the corresponding oral carbohydrate net effect “density profile” plot with a
fairly consistent trend to have sharply increasing net effect between 1AM and 2AM,
corresponding to regular eating late at night (as confirmed by meal-tagging in the
patient’s insulin pump). Also, from the middle panel, it appears that net effect is
generally positively biased between 3 and 7AM (perhaps due to an insufficient
basal rate during the early hours of the night), contributing to the observed elevated

1To explain the “density profile,” for each five-minute interval of the day (x-axis), we plot a col-
orized strip representing a kernel density estimate of the empirical distribution function for the
corresponding metric (y-axis) in that interval. The spectrum from white/blue to red corresponds to
the range of density values from low to high likelihood, respectively.
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BG between 3 and 6AM. The “dispersion” of net effect kernel density at around
corresponds to taking breakfast at that time (again confirmed in the meal record),
leading to a fairly consistent post prandial peak between 200 and 250 (mg/dl). The
“dispersed” nature of the density profile plot of net effect for the remainder of the
day suggested that the patient has a flexible eating routine during waking hours. The
bottom panel of Fig. 4 shows the BG density profile plot from the net effect replay
simulation of the patient’s data. The fact that the top and bottom panels of the Fig. 4
closely agree demonstrates that the net effect replay accurate recreates the patient’s
daily variability of blood glucose.

Figure5 shows BG, insulin, meal, and net effect traces (lower panel) for a repre-
sentative day of Subject 5001. The net effect traces has an oscillatory nature, perhaps
due to a mismatch of time constants in the meal and insulin transport models relative
to the patient’s actual dynamics. Note that the net effect trace is generally posi-
tive between 01:00 and 08:00, “explaining” the strong trend toward hyperglycemia
overnight, a combination of late night snacking (often acknowledged by the patient)
and “dawn effect.” Note that large positive swings in net effect appear in conjunc-
tion with acknowledged meals, though sometimes the net effect swing comes late,
perhaps due to slower meal absorption than represented in the SOGMM. This may
be the case with with the large negative-then-positive swings in net effect at 12:00
and 13:30. The carbohydrates acknowledged just prior to noon seem to have had
little immediate effect on BG, and indeed BG subsequently drops below 80mg/dl.
Here, the rapid drop in BG has to be “explained” by the profoundly negative net
effect signal at 12:00, and the subsequent large positive swing may be accounting
for delayed absorption of the meal. Alternatively, the large positive swing at 1300
may be the result of counter-regulation (or unannounced hypoglycemia treatment)
in response to the precipitous drop in BG.

4.1.2 Subject 5009

From the density profile plot of retrofitted CGM of Fig. 6 (top panel) we see that
Subject 5009 consistently experiences hyperglycemia in excess of 200mg/dl around
7AM and then consistently experiences a rapid drop in BG to below 100mg/dl by
10:30AM. From the middle panel of Fig. 6, this patient has a generally positively
biased net effect overnight, contributing to high blood sugar in the morning. In
addition, from the shift in net effect density at around 6AM in the middle panel of
Fig. 6, it appears that patient takes breakfast consistently at that time. (Interestingly,
the patient’s insulin pump shows insulin boluses with meal tags somewhat later in
the morning, contributing possibly to post prandial BGs above 200 mg/dl.) With the
net effect not showing an obvious trend to negative values in the morning, it seems
that the patient may be compensating for high BG in the morning with exaggerated
breakfast time boluses and temporary basal settings above normal. Again, the strong
agreement between the top and bottom panels of the Fig. 6 demonstrates that the net
effect replay accurately recreates the patient’s daily variability of blood glucose.
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Fig. 6 “Density profile”
plots of a retrofitted CGM
data, b associated net effect,
c replayed CGM data for the
valid extended days from
subject 5009
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Fig. 7 Example 24-h period from subject 5009: a retrofitted CGM, actual basal, profile basal,
boluses, acknowledged meals, net effect replay b net effect. (Note: only one acknowledged meal
for the entire day.)

Figure7 shows BG, insulin, meal, and net effect traces (lower panel) for a repre-
sentative day of Subject 5009. As with Subject 5001, the net effect plot is oscillatory
in nature, with a large positive swing corresponding to the only acknowledged meal
of the day. The positive swings at around 14:00 and 18:30 probably correspond either
to counter-regulation or unannounced meals/hypo treatments.

4.1.3 Subject 5041

The retrofitted CGM density profile plot of Fig. 8 shows that Subject 5041 is aggres-
sively maintaining BG between 50 and 100mg/dl throughout the day. Compared
to Subjects 5001 and 5009, the density profile of net effect throughout the day is
relatively “tight,” indicating that the patient is engaging in consistent eating and
physical activity behaviors, with meals showing up regularly at around 8AM and
7PM, and exercise (trend toward negative net effect) at around 3PM. Figure9 shows
BG, insulin, meal, and net effect traces (lower panel) for a representative day of
Subject 5041, where it is clear that (i) the patient is aggressively treating with insulin
overall and (ii) is eating sparingly throughout the day according to the observed shifts
in the net effect density profile of Fig. 8.
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Fig. 8 “Density profile”
plots of a retrofitted CGM
data, b associated net effect,
c replayed CGM data for the
valid extended days from
subject 5041



150 S.D. Patek et al.

Fig. 9 Example 24-h period from subject 5041: a retrofitted CGM, actual basal, profile basal,
boluses, acknowledged meals, net effect replay b net effect

4.2 In Silico Experiments: Using Net Effect to Design Basal
Rate Adjustments

In the preceding section, we demonstrated the ability to accurately reproduce the
CGM data of a patient using via net effect replay simulation, cf. Sect. 3.1. To gain a
sense of the accuracy of net effect simulation in predicting changes to insulin therapy,
we have a set of in silico preclinical trials using the adult population of patients in
the Virginia/Padova Type 1 Simulator.

Simulated Collection of Field Data and Computation of Net Effect: Each in
silico patient was simulated for 5 days with three meals a day (with varying meal
times and amounts) using a self-treatment strategy that includes (i) detuned basal
therapy (resulting in fasting BG between 140 and 180 mg/dl) and (ii) mealtime
boluses based on accurate carb counts and patient-specific carbohydrate ratios (no
corrections). Here, even though the simulator was set up with zero sensor noise, the
same CGP preprocessing steps described above (retrofitting and segmentation into
“extended days”). Net effects were calculated using (i) a reference BG computed
from the time-average BG value from the 5-day simulation and (ii) patient-specific
BW and insulin sensitivity (using TDI and total daily basal).

Computing Modified Basal Rates from the Net Effect Simulation: Based on the
techniques of Sect. 3.2, we used the net effect traces above to numerically adjust each
patient’s basal rate to achieve targeted changes to time-average BG. (The targeted
changes were−20%,−10%,+10%,+20%, respectively.) To be specific, we com-
puted the constant value of umod(k) (modulo the carb-related meals boluses that were
originally given) needed to achieve the desired change to average BG. This constant
offset corresponds to a specific change to the patient’s actual basal profile.
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Table 1 Accuracy of BG predictions (MARD) for basal rate adjustments designed to achieve given
changes in average BG

–20% Δ

Avg. BG
–10% Δ

Avg. BG
+10% Δ

Avg. BG
+20% Δ

Avg. BG

Regression SI 8.51 (3.93) 4.79 (1.62) 4.87 (2.22) 7.50 (4.82)

Population SI 13.51 (19.88) 5.54 (2.50) 6.13 (3.36) 10.06 (6.73)

Verifying the Basal Change in the Virginia/Padova Type 1 Simulator: Hav-
ing designed a modified basal profile for each in silico subject, we used the Vir-
ginia/Padova Simulator to verify that the new basal setting actually achieves the
desired effect. Table1 presentsMean Average Relative Difference (MARD) between
the net effect predictedfive-day effect of the basal change to the actual effect produced
in the Virginia/Padova simulator. The first row of the table shows that we achieve
MARD values between 4.79 and 8.51 using the patient-specific insulin sensitivity
parameters, with the largest MARD value associated with the attempt to achieve a
–20% change in average blood glucose. To see the importance of using an individu-
alized model for the net effect calculation, we repeated the process using a common
insulin sensitivity value (equal to the average individualized insulin sensitivity) for
all of the in silico subjects. The second row of the table shows that the MARD values
increase and become more variable with a population average model.

5 Conclusions

Adjustment of CSII therapy is complicated by variability in daily BG, including
variability in eating and exercise behaviors and intra-patient, day-to-day variability in
physiological responses. Separating behavioral and physiological factors is difficult.
In addition, BG variability observed in field data is far more significant than what is
often seen in simulation models. In this work, we have shown that field data can be
used to extract BG variability signatures in the form of oral carbohydrate net effect
as a data-driven extension to the underlying compartmental model. This approach
creates the ability to replay real-life scenarios and approximate answers to “what
if” questions regarding modified insulin delivery. In Sect. 4 we present numerical
results that (i) illustrate the ability to use net effect replay simulation to reproduce
BG variability and (ii) give a preliminary view to the accuracy net effect simulation
in predicting the impact of changes to the patient’s basal rate profile. The fact that we
achieve MARD values less than 10% comparing predicted effect of therapy changes
to actual changes in the Virginia/Padova simulator suggests that net effect simulation
can be a viable tool for characterizing and addressing BG variability in patients with
Type 1 diabetes.

In ongoing work we are continuing to develop themethod, including (i) bypassing
the gut model and estimating plasma glucose rate of appearance as a net effect, (ii)
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meal-informed net effect, where the computation is informed by the patient’s esti-
mate of carbohydrates in meals, (iii) using other norms for regularized deconvolu-
tion, includingmixed-normmethods, (iv) usingBG-dependentweights (emphasizing
close fit at peaks and valleys), and (v) using nonlinear model inversion. In addition,
we are exploring a number of different applications of the approach, including retro-
spective detection ofmeals,multiple-hypothesismodel predictive control (e.g., [17]),
and individualized patient simulation. From our preliminaryworkwe have found that
it is sometimes necessary to adapt parameters of SOGMM model (including SI) in
an application-specific way, e.g., estimating SOGMM parameters from clinical BG
data with precise meal knowledge in order to obtain net effect traces that look more
like the impulse train that one would expect from discrete meal events. Generally, we
have found that the quality of the net effect replay is dependent upon the accuracy
of the underlying compartmental model, and that the “net effect” approach should
be seen as complimentary to the estimation and use of high fidelity compartmental
models.
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APPENDIX A: Mathematical Model

A.1 Subcutaneous Oral Glucose Minimal Model (SOGMM)

For the net effect calculations presented here, we use an extended version of themini-
mal model [1] known as the Subcutaneous Oral GlucoseMinimalModel (SOGMM).
As outlined below, the SOGMM includes compartments for oral consumption of
carbohydrates, subcutaneous insulin infusion, and subcutaneous measurement of
glucose concentration.

Core (Minimal) Submodel—As in the minimal model, glucose-insulin interactions
are captured in a two-state compartmental model:

Ġ(t) = −(Sg + X(t)) · G(t) + Sg · Gb + (Ra(t)/Vg) (23)

Ẋ(t) = −p2 · X(t) + p2 · SI(I(t) − Ib) (24)

where

1. G(t) (mg/dl) represents the plasma glucose concentration and Ra(t) (mg/kg/min)
represents the glucose rate of appearance. Gb (mg/dl) represents “basal” glu-
cose concentration associated with the patient’s basal rate of insulin delivery. Sg
(1/min) represents the fractional glucose effectiveness measuring glucose abil-
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ity to promote glucose disposal and inhibit glucose production, and Vg (kg/dl)
represents the distribution volume of glucose.

2. X(t) (1/min) is the proportion of insulin in the remote compartment, I(t) (mU/L)
is the plasma insulin concentration, while Ib (mU/L) represents the reference
value for I(t) associated with the fasting plasma glucose concentration of the
patient. p2 (1/min) is the rate constant of the remote insulin compartment from
which insulin action is emanated, and SI , (1/min per mU/L), often referred to as
insulin sensitivity, represents the ability of insulin to control glucose production
and utilization.

3. Glucose rate of appearance Ra(t) can be further related to the second state of the
gastrointestinal submodel (see below) by:

Ra(t) = (Q2(t) · kabs · f )/BW , (25)

where Q2(t) is defined below, kabs (1/min) represents a rate constant associated
with oral glucose absorption, f (dimensionless) is the fraction of intestinal absorp-
tionwhich actually appears in the plasma, andBW (kg) represents the bodyweight
of the subject.

4. Insulin concentration I(t) can be expressed as a function of Ip(t) (mU), the plasma
insulin, as below:

I(t) = (Ip(t))/(VI · BW), (26)

where VI (L/kg) represents the distribution volume of insulin.

Subcutaneous Glucose Measurement Submodel—Interstitial glucose concentration
Gcgm(t) is modeled as a first order delay from the plasma glucose concentrationG(t):

Ġcgm(t) = −ksc(Gcgm(t) − G(t)), (27)

where ksc (1/min) is the time constant that encompasses both the physiological lag
and the sensor lag.

Gastrointestinal Submodel—Transport of oral carbohydrates are expressed with a
two-compartment “gut” model:

Q̇1(t) = −kτ · Q1(t) + ω(t) (28)

Q̇2(t) = −kabsQ2(t) + kτ · Q1(t), (29)

whereQ1(t) (mg) andQ2(t) (mg) are the two compartments represent the oral glucose
transport, kτ (1/min) is a rate constant associated with oral glucose absorption, and
ω(t) (mg/min) is the rate of mixed-meal carbohydrate absorption at time t.

Subcutaneous Insulin Kinetic Submodel—Transport of insulin from subcutaneous
infusion (via CSII) to plasma is expressed with three compartments:
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İsc1(t) = −kd · Isc1(t) + Jctrl(t) (30)

İsc2(t) = −kd · Isc2(t) + kdIsc1(t) (31)

İp(t) = −kcl · Ip(t) + kdIsc2(t), (32)

where Isc1(t) (mU) and Isc2 (t) (mU) represent compartments related to the interstitial
insulin transport, kd (1/min) and kcl (1/min) represent rate constants of subcutaneous
insulin transport, Jctrl (t) (mU/min) represents the insulin input signal, and Ip(t) (mU)
represents the plasma insulin.

Linearization and Discretization

For computational efficiency, our computation of net effect is computed using a
discrete-time linearized approximation of the SOGMM, which ultimately allows net
effect to be computed in closed form in a relatively computationally tractablemanner.

First the model is linearized about basal plasma insulin Ib and glucose concentra-
tion Gb to get the continuous-time LTI model:

ẋc(t) = Acxc(t) + Bcuc(t) + Gcω(t) (33)

yc(t) = Ccxc(t) (34)

where xc(t) represents the patient’s metabolic state vector:

xc(t) = (
∂G(t), ∂X(t), ∂Isc1(t), ∂Isc2(t), ∂Ip(t), ∂Gsc(t), ∂Q1(t), ∂Q2(t)

)′

(35)

whose elements are all relative to the operating point described by Gb and Ib, and
where

1. differential insulin input: uc(t) (mU/min) is the rate of subcutaneous insulin
delivery relative to the patient’s preprogrammed basal rate profile, i.e., uc(t) =
Jctrl(t) − Jbasal. (That is, Jctrl(t) (mU/min) is the rate of insulin infusion at time t,
and Jbasal is the rate of insulin delivery (mU/min) needed to achieve basal plasma
insulin Ib.)

2. differential subcutaneous glucose: yc(t) is derived from xc(t) as the subcutaneous
glucose concentration relative to Gb.

The elements of the state vector xc(t) are:

1. differential blood glucose concentration: ∂G(t) = G(t) − Gb (mg/dl), where
basal plasma glucose concentration Gb serves as the reference value Gref for
glucose concentration,

2. differential remote compartment insulin action: ∂X(t) = X(t) − Xref (1/min),
whereXref = 0 (we have “insulin action” ultimately when plasma insulin deviates
from Ib, i.e., X(t) = 0 is the basal condition of no insulin action),
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3. differential interstitial insulin, first compartment: ∂Isc1(t) = Isc1(t) − Isc1,ref
(mU), where Isc1,ref is the steady-state interstitial insulin associated with Ib,

4. differential interstitial insulin, second compartment: ∂Isc2(t) = Isc2(t) − Isc2,ref
(mU), where Isc2,ref is the steady-state interstitial insulin associated with Ib,

5. differential plasma insulin: ∂Ip(t) = Ip(t) − Ib (mU), where basal plasma insulin
Ib serves as the reference value for plasma insulin,

6. differential interstitial glucose concentration: ∂Gsc(t) = Gsc(t) − Gsc,ref (mg/dl),
where Gsc,ref = Gb is the reference value of interstitial glucose concentration,

7. differential gut, first compartment: ∂Q1(t) = Q1(t) − Q1,ref (mg), whereQ1,ref =
0 is the reference value of glucose stored in the first of the two gut compartments,

8. gut, second compartment: ∂Q2(t) = Q2(t) − Q2,ref (mg), where Q2,ref = 0 is the
reference value of glucose stored in the second of the two gut compartments.

The coefficient matrices of the linearized model are given as

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−SG −Gb 0 0 0 0 0 kabs·f
BW ·VG

0 −p2 0 0 p2·SI
VI ·BW 0 0 0

0 0 −kd 0 0 0 0 0
0 0 kd −kd 0 0 0 0
0 0 0 kd −kcl 0 0 0
ksc 0 0 0 0 −ksc 0 0
0 0 0 0 0 0 −kτ 0
0 0 0 0 0 0 kτ −kabs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

Bc = [0 0 1 0 0 0 0 0]′, Gc = [0 0 0 0 0 0 1 0]′, Cc = [0 0 0 0 0 1 0 0], (37)

where it is important to note that plasma basal insulin Ib does not appear.
As a practical matter, we assume that the patient’s basal rate profile Jbasal(t)

is perfectly adapted to the patient’s need for insulin throughout the day, so that
uc(t) = Jctrl(t) − Jbasal(t) = 0 leads to Gb as a steady-state value. The numerical
value of Gb is taken to be the approximate glucose concentration associated with the
patient’s most recent HbA1c (glycated hemoglobin) reading:

Gb = HbA1c · 28.7 − 46.7. (38)

Thus, given the discussion of Sect. 2, if the patient’s insulin sensitivity is such that
basal insulin alone leads to a steady-state glucose concentration not equal toGb, then
this would be explained by a net effect estimate with an offset away from zero.

The LTI model is discretized using the standard zero-order hold method to obtain
the discrete-time model of Eqs. (1) and (2).
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Table 2 Fixed parameters of the SOGMM

SG = 0.01000 (1/min) VG = 1.6000 (kg/dl) p2 = 0.02000 (1/min)

kabs = 0.01193 (1/min) f = 0.90000 (dimensionless) VI = 0.06005 (L/kg)

ksc = 0.09088 (1/min) kτ = 0.08930 (1/min) kd = 0.02000 (1/min)

kcl = 0.16000 (1/min)

Parameters

All but two of the parameters of the SOGMM are fixed at population values, as listed
in Table2. Body weight (BW ) and insulin sensitivity SI (1/min per mU/L) are the
only individualized parameters.

Here SI is computed according to the regression formula below using (i) the
patient’s average Total Daily Insulin (TDIwhole) computed from overall insulin uti-
lization over the timeframe of one week of open-loop data collection and (ii) the
patient’s average Total Daily Basal Insulin (TDIbasal):

SI = exp(−6.4417 − 0.063546 ∗ TDIwhole + 0.057944 ∗ TDIbasal) (39)

The regression formula above was derived from a set of experiments with the adult
in silico population in the FDA-accepted Virginia/Padova Type 1 Simulator. Using
the parameters of each individual in silico patient, we first computed the two steady-
state BG values associated with (i) a nominal basal profile and then (ii) a modified
basal profile. Next, we computed the value of the SI parameter of the linearized
and discretized SOGMM model so that the effect of the change in basal would be
reproduced as a constant insulin input relative to the baseline operating point. After
computing individual SI values in this way, we performed a stepwise log-linear
regression using TDIwhole, TDIbasal and other statistics from one simulated week of
nominal therapy, ultimately resulting in Eq. (39).
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Physiology-Based Interval Models:
A Framework for Glucose Prediction
Under Intra-patient Variability

Jorge Bondia and Josep Vehi

Abstract In recent years interval models, i.e., models with interval parameters, have
been proposed in literature introducing new methodological approaches for glucose
prediction. In this paper, a review of physiological interval models applied to the pre-
diction of blood glucose in type 1 diabetes glycemic control is presented. Predicting
blood glucose for diabetic patients is a difficult challenge mainly due to intra-patient
variability and uncertainty which may jeopardize model individualization, both for
data-based and physiological models. Interval models provide a theoretical frame-
work to express the imprecision and the uncertainty related to complex systems. In
the context of physiological systems, interval models can represent intra-patient vari-
ability by means of interval parameters. In this paper, interval models are introduced
as well as methods for simulation. The result of an interval simulation is an envelope,
which can be computed efficiently and accurately with modal interval analysis and
monotone systems theories. Finally, as model predictions are as good as the individ-
ual model itself, interval model identification methods are also introduced for model
individualization.

1 Introduction

Type 1 diabetes is a metabolic disease characterized by an absolute deficiency of
insulin. This leads to high blood glucose levels (hyperglycemia) and has deleterious
effects such as ketoacidosis and chronic complications like microangiopathy leading
to blindness and renal failure. Currently, patients follow a substitutive insulin therapy,
either with multiple daily injections (MDI) or continuous subcutaneous infusion
with an insulin pump (CSII). However, insulin dosing is still an empirical process
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based on the patient’s auto-control from 3 to 4 capillary glucose measurements per
day from a glucometer (SMBG). This frequently results in under- or overdosing of
insulin, causing, respectively, hyper- and hypoglycemia. Hypoglycemia may lead to
confusion, falls, seizures, coma, or evendeath.Nowadays glycemic control objectives
are still unmetwith an average exposure to hypoglycemia (<70mg/dL) above 1h/day
and to hyperglycemia (>180mg/dL) above 9h/day, besides the prevalence of large
glycemic variability [29].

Continuous glucose monitors (CGM) provide glucose readings every 1–5min.
Recent technological advances in CGM have fostered new approaches in type 1
diabetes management [24]. Examples are the recent launch of the first combo CGM–
insulin pump with a hypoglycemia prediction system driving automatic pump shut-
down [39] and the very active research field of closed-loop glucose control, coined
as “the artificial pancreas” (AP) [11], with widespread use of models for glucose
prediction both for controllers design and validation and as a controller component
itself (e.g., Model Predictive Control-based systems).

However, effectiveness of any model-based approach depends on the accuracy
of the model predictions for a given individual. Model individualization has been
proved difficult for both data-based [12, 44, 52] and physiology-based models [43].
Proposed strategies for optimal experiment design [13, 33] yield to complexprotocols
of difficult practical application in an ambulatory context where patient’s compliance
is at stake. Two main barriers have been identified to model individualization:

1. CGM devices still have suboptimal accuracy, especially in hypoglycemia [38],
with significant measurement error/noise that may jeopardize ambulatory model
identification.

2. High variability in the patient’s behavior is observed in the clinical practice
[48] due to circadian rhythms, altered metabolic states, stress, illness, and other
unknown sources.

CGM accuracy is a technological barrier that will be overcome with new genera-
tions of devices. Indeed, significant advances are being done in this sense with new
increased accuracy devices [9, 14, 53]. However, patient’s variability is a physio-
logical barrier that cannot be eliminated. Significant variability has been reported in
subcutaneous insulin absorption of insulin aspart, with an intra-subject coefficient of
variation for the time-to-peak plasma insulin concentration of 27% in subjects with
type 1 diabetes [20]. Nearly 40% of this variance was attributed to inter-occasion
variability (variations in depth of cannula, infusion site age, local tissue perfusion). In
[48], unexpected responses are reported as higher postprandial glucose area under the
curve for significantly higher insulin prandial dosing in a same patient, which appar-
ently would be classified as ‘non-physiological.” This illustrates the big challenge
of model individualization.

Intra-subject variability can be mathematically represented with model paramet-
ric uncertainty. However, it has not generally been integrated into the identification
process, leading to average models with poor predictive capabilities. In recent years
interval models (i.e., models with interval parameters) have been proposed in liter-
ature introducing new methodological approaches for glucose prediction, both for
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physiological models [34, 35] and data-driven models [28]. In this case predictions
are given in terms of a glucose envelope describing the family of possible glycemic
responses according to the patient’s observed variability from training data. Clinical
validations of such methods, although limited, are promising with robust predic-
tions 4–5h after a meal, as compared to the 30–90min used in current approaches.
The area of interval models in control is not new (see for instance [26]). However,
demonstration of its feasibility in the diabetes field opens an exciting research on
robust glycemic control, hypoglycemia risk prediction and fault tolerance to name a
few applications, which are important components for a safe and efficient artificial
pancreas.

In this work a review of the fundamentals of interval models is presented. General
concepts will be presented in Sect. 2. At the core of interval methods is interval simu-
lation, i.e., how to generate efficiently and accurately, with mathematical guarantee,
the output envelope for a given interval model. Different approaches will be intro-
duced for this purpose from the areas of interval analysis and monotone systems in
Sect. 3 and illustrated with the Bergman glucose–insulin model [4] in Sect. 4. Finally,
methods for interval model identification will be introduced in Sect. 5.

2 Interval Models

Complex systems are often subjected to uncertainties thatmake such amodel difficult
if not impossible to obtain. These uncertainties can be unstructured (the equations
of the model are not entirely known) or structured (the equations are known but not
the values of their parameters) and they arise from the following reasons:

• the knowledge of the system is not complete, e.g., because the real system cannot
be observed as it frequently happens in biological systems;

• the model of the system is known but it is too complex and a simplified one is
more appropriate for the task to be undertaken;

• the parameters of themodel can change across time due to unknown, unpredictable,
or difficult to model phenomena.

When the uncertainties are structured, i.e., the model structure is known and only
the parameters undergo imprecisions, they can be handled with interval models in
which model parameter values are allowed to vary within numeric intervals. Thus,
interval models represent a family of quantitative (standard) models. Henceforth the
following notation will be used: X = [x, x]′ is a real interval with x and x as left and
right endpoints respectively; X = (X1, . . . ,Xn) is an n-dimensional interval vector
(or box); I(Rn) denotes the set of all n-dimensional interval vectors and I(R) the set
of all real intervals.
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Such an interval model could be given by a transfer function with interval coef-
ficients which represents a linear differential relation between an input u(t) and an
output y(t):

G (s) = Y (s)

U (s)
= Bmsm + · · · + B1s + B0

Ansn + · · · + A1s + A0
(1)

in which s is the Laplace variable, U(s) and Y(s) are the input and output Laplace
transforms, respectively, andAi,Bj ∈ I(R), i = 0, . . . , n, j = 0, . . . ,m. In its general
form transfer function coefficients may be a function of physical interval parameters
P ∈ I(Rnp), with np the number of parameters

G (s) = Y (s)

U (s)
= bm(P)sm + · · · + b1(P)s + b0(P)

an(P)sn + · · · + a1(P)s + a0(P)
. (2)

This will be the case when the transfer function originates from a description of
the system in differential equations with uncertain physical parameters. However,
methods become more involved. Coefficient functions ai(·), bj(·), i = 1, . . . , n, j =
1, . . . ,m, may depend linearly, multi-linearly or nonlinearly on P. This distinction
will be important when evaluating for instance the complex plane image of the
interval model (value set) or in stability analysis [5].

Uncertain state space models can be represented in the same way

dx(t)
dt

= f(x(t),u(t);P), x(0) = X0 (3)

y(t) = h(x(t),u(t);P)

where P ∈ I(Rnp) is a vector of np interval parameters and X0 ∈ I(Rn) the vector
of interval initial states, x ∈ R

n is the state vector, u ∈ R
nu is the input vector and

y ∈ R
ny is the output vector. As compared to interval transfer functions, interval state

space models will generally retain the physical meaning of the uncertain parameters.
They will be preferred in this work, leading to interval physiological models for
glucose prediction.

In some cases an overbounding of the family may be carried out to reduce com-
plexity, for instance in linear state space models with interval matrices computed
from the interval evaluation of each of the entries

dx(t)
dt

= Ax(t) + Bu(t) x(0) = X0 (4)

y(t) = Cx(t) + Du (5)

whereA := (Aij(P)),Aij : I(Rnp) → I(R) and equivalently forB,C andD. However,
this will lead to conservativeness.
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3 Simulating Interval Models

An intervalmodel represents awhole set or family ofmodels. The behavior of interval
models are represented by an envelope trajectory (envelope for short) that contains
the set of temporal trajectories for each element in the family. These element-wise
temporal trajectories are indiscernible, so that the qualitative features may not be
captured, particularly if more than one element contributes to the envelope bounding
curves as in Fig. 1.

The ultimate goal is to generate a complete and sound envelope, i.e., the exact
envelope. However, more realistic goals are to produce either a minimally over-
bounding envelope or a minimally underbounding envelope, depending on the use
that onewants tomake of it. In the case of glucose predictionminimally overbounding
envelopes (or exact when possible) are generally preferred for the sake of robustness
and patient’s safety in therapeutical actions derived from the prediction.

Another desirable property of an envelope is stability. If the envelope width grows
with time, as the input signal remains the same, it is unstable. This means that the
imprecision accumulates along the propagation through time. This is obviously an
undesirable property, because an unstable envelope becomes useless at some time
point.

Methods for the generation of envelopes include the superposition of a threshold
(fixed or adaptive) to a nominal system simulation [27, 46], the simulation of a
discrete subset of elements in the family (taken randomly as in Monte Carlo or from
a parameter space grid) [31] or the solution of a global optimization problem in
the parameter space [21]. However they generally lead to underbounding due to the

Fig. 1 The envelope is bounded by two curves
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lack of guarantee of completeness. The reader is referred to [2, 47] for a review of
simulators.

Methods with mathematical guarantee of completeness leading to exact or mini-
mally overbounding envelopes are interval analysis and monotone systems theories.
These methods are reviewed next. They will be applied in Sect. 4 to build guaranteed
glucose predictors of a literature glucose–insulin model as illustration.

3.1 Interval Analysis

3.1.1 Classic Interval Analysis

Interval analysis [40, 41] allows to consider the whole continuous range of possible
instances represented by an interval model; it hence guarantees that the envelopes
are not underbounded. Interval analysis identifies the intervals with the set of real
numbers they contain:

X = [
x, x

]′ = {
x ∈ R | x ≤ x ≤ x

}
(6)

Then, the set of closed intervals of R is:

I(R) = {[a, b]′ | a, b ∈ R, a≤ b} (7)

In the classic set theory interval analysis, given a R
n to R continuous function

z = f (x1, . . . , xn), the interval united extension Rf of f corresponds to the range of
f -values on its interval argument X = (X1, . . . ,Xn) in I(Rn):

Rf (X1, . . . ,Xn) = {f (x1, . . . , xn) | x1 ∈ X1, . . . , xn ∈ Xn}
= [min{f (x1, . . . , xn) | xi ∈ Xi},max{f (x1, . . . , xn) | xi ∈ Xi}] i = 1, . . . , n,

(8)

which can be considered as a semantic extension of f , since it admits the logical
interpretation:

(∀x1 ∈ X1) · · · (∀xn ∈ Xn)(∃z ∈ Rf (X1, . . . ,Xn)) z = f (x1, . . . , xn). (9)

This logical interpretation represents the set of all trajectories that verify the model
equation.

Since the interval united extension of a general rational function is generally not
computable, set theory interval rational extensions fR(X1, . . . ,Xn), also denoted as
natural extensions, are defined in a similarmanner to their corresponding real rational
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functions f (x1, . . . , xn) replacing their numerical arguments x1, . . . , xn by the interval
arguments X1, . . . ,Xn and their “real” arithmetic operators by their corresponding
interval operations, so that

Rf (X1, . . . ,Xn) ⊆ fR(X1, . . . ,Xn), (10)

where fR(X1, . . . ,Xn) is computable from the bounds of the intervals X1, . . . ,Xn,
and usually represents an overestimation of Rf (X1, . . . ,Xn).

As a consequence, rational extension is very useful for computing the range of a
function because it guarantees the result. None of the functions in the class can take
values outside the range computed.

Unfortunately, interval arithmetic does not provide the exact result (complete and
sound) in the general case. This comes essentially from the two following prob-
lems [41]:

• Themulti-incidence problem. Interval arithmetic considers that each incidence of a
variable in a function is independent of each other. Therefore, when there aremulti-
incident variables, i.e., variables that appear in several leaves of the syntactical tree
of the function, the compiled range is overbounded. Similarly, interval arithmetic
is unable to take into account dependencies or relations between variables and
obtains overbounded results when they exist. This problemmakes for instance that
in classical interval arithmetic X − X 	= [0, 0]′ and X/X 	= [1, 1]′ (for instance,
[1, 2]′ − [1, 2]′ = [−1, 1]′ and [1, 2]′/[1, 2]′ = [1/2, 2]′).

• The wrapping problem. This is a problem that appears when interval arithmetic is
used for simulation in the state space. The state, at some time point, of amodel with
interval parameters may be represented by a hypercube. However, it is possible
that this state of the system does not evolve into another hypercube at the next time
point. In Fig. 2 an example with two state variables is shown: the hypercube is a
rectangle. It transforms into a rhombus at the following time step (it could actually
evolve into any two dimensional shape). The projection of this rhombus on the

Fig. 2 The wrapping
problem
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variable axis imposed by the interval representation leads to a new rectangle which
obviously includes spurious states, as shown shadowed in the figure. Therefore,
the obtained envelopes are overbounded.

Some simulators use classical one-step-ahead numeric integration algorithms
revised for intervals [47]. The Moore’s interval simulator [41] obtains very over-
bounded envelopes because it simply ignores multi-incidences. Though, the result
can be tightened by splitting the parameter space into smaller subspaces [41] to the
detriment of computational burden. Several methods have been proposed to avoid the
wrapping effect, or at least to reduce it, since it was first observed in the early 1960s
[40]. These methods include a change of coordinates [40], the use of Taylor models
[37], or a QR factorization [36] to rotate the state space of the interval system, as well
as the use of new computer set representations like ellipsoids [42] or zonotopes [30].

3.1.2 Modal Interval Analysis

Modal interval analysis (MIA) [19, 49] allows the computation of a tight (sometimes
exact) enclosure of the envelope that includes all possible behaviors of the system
when given in a discretized form [3]. MIA is an algebraic and logical completion of
classic intervals. A modal interval X is defined as a couple X = (X ′,Q), where X ′ is
its classic interval domain, X ′ ∈ I(R), and Q is one of the classical quantifiers ∀ or
∃. The set of the modal intervals is represented by I∗(R). Modal intervals of the type
X = (X ′, ∃) are called proper intervals and modal intervals of the type X = (X ′,∀)

are called improper intervals. A modal interval can be represented using canonical
coordinates in the form:

X = [a, b] =
{

([a, b]′, ∃) if a ≤ b
([b, a]′,∀) if a ≥ b.

(11)

For example, the interval [1, 3] is equal to ([1, 3]′, ∃) and the interval [3, 1] to
([1, 3]′,∀).

A convenient symmetry between proper and improper intervals is established
by the duality operator, which changes the modality of a modal interval. Thus,
Dual([a, b]) = [b, a].

The lattice operations “meet” and “join” on I∗(R) for a bounded family of modal
intervals A(I) := {A(i) = [a1(i), a2(i)] ∈ I∗(R) | i ∈ I} (I is the index domain) are
defined as a function of the interval bounds:

(meet) ∧i∈I A(i) =
[
max
i∈I a1(i),min

i∈I a2(i)

]
(12)

(join) ∨i∈I A(i) =
[
min
i∈I a1(i),max

i∈I a2(i)

]
. (13)
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In the context of modal intervals, the optimal modal interval extensions of a
function f are the semantic ∗ and ∗∗-functions, denoted by f ∗ and f ∗∗, and defined as:

f ∗(X) :=
∨

xp∈X ′
p

∧

xi∈X ′
i

[f (xp, xi), f (xp, xi)]

=
[
min
xp∈X ′

p

max
xi∈X ′

i

f (xp, xi),max
xp∈X ′

p

min
xi∈X ′

i

f (xp, xi)

]
(14)

and

f ∗∗(X) :=
∧

xi∈X ′
i

∨

xp∈X ′
p

[f (xp, xi), f (xp, xi)]

=
[
max
xi∈X ′

i

min
xp∈X ′

p

f (xp, xi),min
xi∈X ′

i

max
xp∈X ′

p

f (xp, xi)

]
, (15)

where x = (xp, xi) is component splitting corresponding to the proper and improper
components of X = (Xp,Xi).

The following two key results, named semantic theorems, give logical interpreta-
tion to these semantic extensions [49].

Theorem 1 (∗-semantic theorem)Let beX ∈ I∗ (Rn)andZ ∈ I∗ (R). Then, f ∗(X) ⊆
Z ⇔ (∀xp ∈ X ′

p)(Qz ∈ Z ′)(∃xi ∈ X ′
i ) z = f (xp, xi).

Theorem 2 (∗∗-semantic theorem) Let be X ∈ I∗ (Rn) and Z ∈ I∗ (R). Then,
f ∗∗(X) ⊇ Z ⇔ (∀xi ∈ X ′

i )(Qz ∈ Dual(Z))(∃xp ∈ X ′
p) z = f (xp, xi).

Both semantic theorems equate a logical formula, with intervals and functional
predicates for which the universal quantifiers precede the existing ones, to an interval
inclusion.

Semantic extensions f ∗ and f ∗∗ can be equal or not, but they are out of reach for any
direct computation except for simple real functions. When the continuous function
f is a rational function, there exist modal rational extensions that are obtained using
a computing program defined by the syntax tree of the expression of the function
in which the real arguments are transformed into interval arguments and the real
operators are transformed into their *-semantic extensions. If f is a Rn to R rational
function, its rational extension to the modal intervals X1, . . . ,Xn, represented by
fR(X1, . . . ,Xn), is the function fR from I∗(Rn) to I∗(R) defined by the computational
program indicated by the syntax tree of f when the real operators are transformed
to their semantic extensions. Modal rational interval functions are not generally
interpretable.

Thus, the problem is that semantic extensions f ∗ and f ∗∗ are interpretable but
not generally computable and rational extensions are computable but not generally
interpretable. The interpretation problem for modal rational functions, which are
the core of numerical computing, consists of relating them by means of inclusion
relations to the corresponding semantic * and **-semantic extensions, which have
a standard meaning (defined by the semantic theorems) referring to their original
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real continuous functions. Computations with fR(X) must be carried out with exter-
nal truncation of each operator to obtain inclusions f ∗(X) ⊆ fR(X), and with inner
truncation to obtain inclusions fR(X) ⊆ f ∗∗(X). In many cases the rational extension
fR(X) is optimal, i.e.,

f ∗(X) = fR(X) = f ∗∗(X),

and, except for rounding, both semantic theorems are applicable to the computed
interval fR(X), providing a logical meaning for it.

MIA provides a group of results about these inclusions or equalities, which
solves part of the double problem of interpretability of modal rational extensions
and computability of semantic extensions. The following coercion theorem pro-
vides the conditions and a method to obtain optimal extensions in the case of total
monotonicity [49].

Definition 1 (Totalmonotonicity)Acontinuous real function f is x-totallymonotonic
for a multi-incident variable x ∈ R if it is uniformly monotonic for this variable
and for each one of its incidences (considering each leaf of the syntactic tree as
an independent variable). Any uni-incident uniformly monotonic variable is totally
monotonic too.

Theorem 3 (Coercion to optimality) Let X be an interval vector, fR(X) defined and
tree optimal on the domain X ′ and f totally monotonic for all its multi-incident
components. Let XD be defined as an enlarged vector of X, such that each incidence
of every multi-incident component is included in XD as an independent component,
but transformed into its dual if the corresponding incidence point has a monotony-
sense contrary to the global one of the corresponding X component. Then, f ∗(X) =
fR(XD) = f ∗∗(X).

If the function is not totally monotonic for each multi-incident component, the-
orems can be partially applied to reduce the complexity of the problem. All these
computations are carried out by controlling the rounding of the operations and taking
into account the multi-incident variables in the functions [49].

Usingmodal intervals, each interval function to be evaluated is automatically ana-
lyzed and put, if possible, in its optimal form. Then the exact range is computed. The
C++ modal interval library IvalDB can be used for this purpose. If optimality cannot
be reached, the f ∗ algorithm is available [49]. This algorithm uses many optimality
and coercion theorems from modal interval theory to compute tight approximations
of the range by using branch-and-bound techniques. However, the f ∗ algorithm has
exponential complexity.

3.2 Monotone Input–Output Systems

The computation of envelopes for continuous-time systems like (3) can also be
addressed by building upper and lower bounding deterministic models whose solu-
tions are the envelope bounds (exact or minimally overbounding). Then, these ones
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can be simulated with interval numerical methods with infinitesimal interval width
describing rounding errors due to the finite computer number system, if rigorous
solutions are needed. In this case, phenomena like the wrapping effect will have a
minimal impact.

Uncertain parameters will be treated as stationary extended states. Thus, the sys-
tem (3) will be rewritten as

dx̃(t)
dt

= f̃(x̃(t),u(t)), x̃(0) = X̃0 (16)

y(t) = h̃(x̃(t),u(t)) (17)

where x̃(t) := (x1(t), . . . , xn(t), p1(t), . . . , pnp(t))
T is the extended state vector

including the original state vector x and the uncertain interval parameters pi ∈ Pi,
i = 1, . . . , np, so that dpi(t)

dt = 0, i = 1, . . . , np. The uncertain initial conditions are

then given by the interval vector X̃0 := (X1, . . . ,Xn,P1, . . . ,Pnp).
Exact envelopes can be obtained for the class ofmonotone systems [50]. Although

autonomous systems have traditionally been studied in the field ofmonotone systems,
the notion of monotonicity was extended to input–output systems like (16)–(17) in
[1]. Denoting by x̃(t; x̃0,u) and y(t; x̃0,u) the solutions of (16) and (17), respectively,
for the real initial condition x̃0 ∈ R

n+np and input u(t), the input–output system (16)–
(17) is monotone for all initial states x̃10, x̃

2
0 and inputs u

1(t), u2(t) if and only if x̃10 �
x̃20, u1(t) � u2(t) ⇒ (x̃(t; x̃10,u1) � x̃(t; x̃20,u2)) ∧ (y(t; x̃10,u1) � y(t; x̃20,u2)) for
all t ≥ 0, where � is the relation order induced by a cone K (a � b if b − a ∈ K),
whichmay be different for the state, input and output (in this case theywill be denoted
by Kx, Ku and Ky respectively). A special class of monotone input–output systems
are cooperative input–output systems in which for all t ≥ 0:

∂ f̃i
∂ x̃j

(x̃,u) ≥ 0, ∀ i 	= j,
∂ h̃s
∂ x̃j

(x̃,u) ≥ 0, ∀ s, j, (18)

∂ f̃i
∂ur

(x̃,u) ≥ 0, ∀ i, r,
∂ h̃s
∂ur

(x̃,u) ≥ 0, ∀ s, r, (19)

i.e., the Jacobian ∂ f̃/∂ x̃ is a Metzler matrix (nonnegative off-diagonal elements) and
∂ f̃/∂u, ∂h̃/∂ x̃ and ∂h̃/∂u are nonnegative. For cooperative input–output systems the
cones Kx, Ku and Ky are the positive orthants R

n+np
≥0 , Rnu

≥0 and R
ny
≥0, respectively, and

the relation order a � b means that each coordinate of a is less than or equal than
the corresponding coordinate in b. In this case the exact envelope can be computed
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as the solutions x̃L(t), x̃U(t) : R → R
n and yL(t), yU(t) : R → R

ny of the following
lower and upper bounding systems, respectively:

(lower)
dx̃L(t)

dt
= f̃(x̃L(t),u(t)), x̃L(0) = X̃0 (20)

yL(t) = h̃(x̃L(t),u(t))

(upper)
dx̃U(t)

dt
= f̃(x̃U(t),u(t)), x̃U(0) = X̃0 (21)

yU(t) = h̃(x̃U(t),u(t))

where X̃0 and X̃0 denote the vector of left and right endpoints, respectively, of the

interval initial extended state and equivalently u(t) and u(t) for the input vector at
time t.

Exact envelopes can also be obtained for cooperative systems with respect to gen-
eral orthants Kε

x , K
δ
u , K

ν
y , ε = (ε1, . . . , εn+np), δ = (δ1, . . . , δnu), ν = (ν1, . . . , νny),

εi, δr, νs ∈ {0, 1} so that (−1)εi x̃i ≥ 0, i = 1, . . . , n + np, (−1)δr ur ≥ 0,
r = 1, . . . , nu and (−1)νs ys ≥ 0, s = 1, . . . , ny. In this case, for all t ≥ 0

(−1)εi+εj
∂ f̃i
∂ x̃j

(x̃,u) ≥ 0, ∀ i 	= j, (−1)νs+εj
∂ h̃s
∂ x̃j

(x̃,u) ≥ 0, ∀ s, j, (22)

(−1)εi+δr
∂ f̃i
∂ur

(x̃,u) ≥ 0, ∀ i, r, (−1)νs+δr
∂ h̃s
∂ur

(x̃,u) ≥ 0, ∀ s, r (23)

holds [1]. The state, after a proper permutation, can be expressed as x̃(t) =
(x̃+T

x̃−T
)T so that x̃+ contains the “positive states” (εi = 0) and x̃− contains the

“negative states” (εi = 1) according to the orthantKε
x . This leads to aMorishima-type

Jacobian block matrix ∂ f̃/∂ x̃ with Metzler diagonal submatrices and non-positive
off-diagonal submatrices. The same applies for the input and output vectors, which
can be decomposed as u(t) = (u+T

u−T
)T and y(t) = (y+T

y−T
)T according to the

orthants Kδ
u and K

ν
y , respectively. This yields block matrices with nonnegative diag-

onal submatrices and non-positive off-diagonal submatrices for ∂ f̃/∂u, ∂h̃/∂ x̃ and
∂h̃/∂u. In this case the exact envelope can be computed as the solutions of the
following lower and upper bounding systems, respectively:

(lower/upper)

d

dt

(
x̃+
L (t)
x̃−
U(t)

)
= f̃

((
x̃+
L (t)
x̃−
U(t)

)
,

(
u+(t)
u−(t)

))
,

(
x̃+
L (t)
x̃−
U(t)

)
(0) =

(
X̃0

+

X̃0

−

)

(
ỹ+
L (t)
ỹ−
U(t)

)
= h̃

((
x̃+
L (t)
x̃−
U(t)

)
,

(
u+(t)
u−(t)

))
, (24)



Physiology-Based Interval Models: A Framework for Glucose Prediction … 171

(upper/lower)

d

dt

(
x̃+
U(t)
x̃−
L (t)

)
= f̃

((
x̃+
U(t)
x̃−
L (t)

)
,

(
u+(t)
u−(t)

))
,

(
x̃+
U(t)
x̃−
L (t)

)
(0) =

(
X̃0

+

X̃0
−

)

(
ỹ+
U(t)
ỹ−
L (t)

)
= h̃

((
x̃+
U(t)
x̃−
L (t)

)
,

(
u+(t)
u−(t)

))
, (25)

Besides by inspection of the Jacobian matrix structure, cooperativeness with
respect to orthants Kε

x , K
δ
u and Kν

y can be easily characterized by using a species
graph [51], in which a node is assigned to each state, input and output. An activa-
tion (→) or inhibition (�) arrow is drawn from node x̃i to node x̃j if ∂ f̃j/∂ x̃i > 0 or
∂ f̃j/∂ x̃i < 0, respectively. In case of no definite sign both arrows are drawn. The same
rule applies for connecting input and state nodes, state and output nodes and input
and output nodes (according to the sign definiteness of the corresponding partial
derivative). A spin assignment is then carried out in which each node is assigned
a sign or spin (↑, ↓), such that nodes connected by an activation arrow → have
the same spin, while nodes connected by an inhibition arrow � have opposed spins.
If at least one consistent assignment exists, the dynamical input–output system is
monotone and the type of spin will classify the state, input and output into the groups
x̃+, x̃−, u+, u−, y+ and y− respectively. Figure3 shows an example of a monotone
and a non-monotone input–output system.

In case of non-monotonicity overbounding will appear. The application of change
of variables to overcome or reduce the non-monotonicity can help in some cases, for
instance by reducing multi-incidences. Also useful is the bounding of f̃(x̃(t),u(t))
by two new vector fields f̃L(x̃(t),u(t)) and f̃U(x̃(t),u(t)) leading to cooperative

Fig. 3 Characterization of monotone and non-monotone input–output systems using species
graphs: a monotone system; b non-monotone system
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lower and upper bounding systems [50]. This is applied in [45] to build a minimally
overbounding interval predictor for the Hovorka model.

4 Interval Glucose Predictors

Modal interval analysis [7, 8, 18] andmonotone systems [45] have been successfully
applied to the most common physiological glucose–insulin models (Bergman [4],
Hovorka [25], Dalla Man [10]) yielding to computationally efficient and exact or
minimally overbounding interval glucose predictors. These ones have been used in
a variety of applications such as model-based open-loop insulin therapy [6, 17],
hypoglycemia risk prediction [16] and fault detection [22].

In this section, the application of the techniques developed in Sect. 3 to build such
predictors is presented. Bergman model will be used as illustration for the sake of
simplicity:

ẋ(t) = −p2x(t) + p3(i(t) − ib), x(0) = x0 (26)

ġ(t) = −(p1 + x(t))g(t) + p1gb + ra(t)

vg
, g(0) = g0 (27)

where x(t) (1/min) represents remote insulin, i(t) (mU/mL) is the plasma insulin
concentration, with basal value ib, p2 (1/min) is the rate of appearance of insulin in
the remote insulin compartment, p3 (mL/mU min2) is the disappearance of insulin
from this compartment, g(t) (mg/dL) is the plasma glucose concentration, gb (mg/dL)
is the basal plasma glucose concentration, p1 (1/min) is the rate at which glucose is
removed from the plasma space independent of the influence of insulin, ra(t) is the
glucose rate of appearance from the gut from a preceding meal ingestion model (or
intravenous glucose), and vg (dL) is the glucose distribution volume.

The reader is referred to [15, 45] for a complete description of different interval
glucose predictors.

4.1 Bergman Model Predictor Based on Modal Interval
Analysis

The Euler discrete form of Bergman model is given by:

X(t + 1) = X(t) (1 − Δt p2) + Δtp3(I(t) − Ib) (28)

G(t + 1) = Δtp1(Gb − G(t)) + G(t)(1 − ΔtX(t)) + Δt
Ra(t)

Vg
(29)

where X (1/min) represents remote insulin, I (mU/mL) is the plasma insulin con-
centration, with basal value Ib, p2 (1/min) is the rate of appearance of insulin in the
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remote insulin compartment, p3 (mL/mU min2) is the disappearance of insulin from
this compartment, G (mg/dL) is the plasma glucose concentration, Gb (mg/dL) is
the basal plasma glucose concentration, p1 (1/min) is the rate at which glucose is
removed from the plasma space independent of the influence of insulin and Vg (dL)
is the glucose distribution space.

Equation (28) does not have multi-incident variables, i.e., multiple occurrences of
a variable, and therefore the rational computation can directly be applied to getX(t +
1). In Eq. (29), G(t) is multi-incident with ∂G(t + 1)/∂G(t) = 1 − Δt(p1 + X(t)).
Global positivemonotonicity with respect toG(t) holds for a time stepΔt < 1/(p1 +
X(t)). Denoting as G1(t) and G2(t) the first and second instances of G(t) in (29),
then ∂G(t + 1)/∂G1(t) = −Δtp1 < 0 and ∂G(t + 1)/∂G2(t) = (1 − ΔtX(t)) > 0
for the chosen time step. Thus, applying the coercion to optimality theorem (see
Theorem 3) to plasma glucose concentration the rational computation is:

G(t + 1) = Δtp1(Gb − Dual(G(t))) + G(t)(1 − ΔtX(t)) + Δt
Ra(t)

Vg
(30)

Equations (28) and (30) can now be computed using themodal interval library IvalDb
[49] or the MATLAB class for modal interval arithmetic (without rounding) incor-
porated in VSIVIA software [23] (downloadable from http://www3.imperial.ac.uk/
people/p.herrero-vinias/research).

4.2 Bergman Model Predictor Based on Monotone Systems
Theory

Figure4 shows the species graph associated to the model (26)–(27). A consistent
spin assignment can be done, although the resulting monotonicity cone will depend

Fig. 4 Species graph for the Bergman model

http://www3.imperial.ac.uk/people/p.herrero-vinias/research
http://www3.imperial.ac.uk/people/p.herrero-vinias/research
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on the sign of x(t), i(t) − ib and g(t) − gb. In particular:

x̃+ := {g}
∪ {p1} (if g(t) ≤ gb)

∪ {p2} (if x(t) ≤ 0)

∪ {p3} (if i(t) ≤ ib)

x̃− := {x, vg} (31)

∪ {p1} (if g(t) > gb)

∪ {p2} (if x(t) > 0)

∪ {p3} (if i(t) > ib)

u+ := {ra}
u− := {i}

In this case the output corresponds to the state g(t). The following time-varying
bounding systems are obtained:

(lower/upper)

ẋU(t) = −p∗
2xU(t) + p∗

3(i(t) − ib), xU(0) = x0 (32)

ġL(t) = −(p∗
1 + xU(t))gL(t) + p∗

1gb + ra(t)

vg
, gL(0) = g0 (33)

p∗
1 =

{
p1 if gL(t) ≤ gb
p1 if gL(t) > gb

p∗
2 =

{
p2 if xU(t) ≤ 0
p2 if xU(t) > 0

p∗
3 =

{
p3 if i(t) ≤ ib
p3 if i(t) > ib

(upper/lower)

ẋL(t) = −p∗
2xL(t) + p∗

3(i(t) − ib), xL(0) = x0 (34)

ġU(t) = −(p∗
1 + xL(t))gU(t) + p∗

1gb + ra(t)

vg
, gU(0) = g0 (35)

p∗
1 =

{
p1 if gU(t) ≤ gb
p1 if gU(t) > gb

p∗
2 =

{
p2 if xL(t) ≤ 0
p2 if xL(t) > 0

p∗
3 =

{
p3 if i(t) ≤ ib
p3 if i(t) > ib
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Fig. 5 Example of postprandial response for three interval models. Model 1 Bergman; Model 2
Hovorka; Model 3 Dalla Man

4.3 Postprandial Glucose Prediction Using Interval Models

In the case of the postprandial response, in addition to intra-patient variability, there
are other sources of uncertainty such as the estimation of ingested carbohydrates
or preprandial glycemia. In [18] the postprandial response of three different models
(Bergman [4], Hovorka [25], Dalla Man [10]) is compared for a given uncertainty
variations in the estimation of carbohydrates, preprandial glycemia and insulin sensi-
tivity. One of the main conclusions of this work is that, under variability, structurally
simple glucose–insulin models (models with few interval parameters) may be suffi-
cient to describe patient dynamics in most situations. These simple interval models
are much more easily identifiable. Figure5 shows the postprandial response of the
three models for a representative virtual patient.

5 Interval Model Identification

Once the mathematical formulation of an interval glucose predictor is available,
the problem of model identification can be posed. Robust predictions for therapeutic
decisions can be achieved if the interval model is able to bound the patient’s response,
i.e., the experimental measurements should be included in the output envelope pre-
dicted by the model at each available time instant ti, i ∈ I := {0, . . . ,N} (see Fig. 6).
In practice, a relaxation of the above problem may be needed, allowing for small
errors with respect to the inclusion envelope due to noise in the measurements (espe-
cially in a domiciliary context with the use of continuous glucose monitors) and
compensation for non-modeled dynamics.
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Fig. 6 Concept of interval identification versus classic identification for three-day 5h postprandial
periods in an in silico patient with time-varying dynamics (day 1: 0–300min; day 2: 300–600min;
day 3: 600–900min). Adapted from [35]

In [34] this is carried out as a standard global optimization problemwith the inter-
val model parameters/inputs/initial conditions endpoints P := {p1, p1, . . . , pnp , pnp}
as decision variables. Denoting as G(t;P) = [g(t;P), g(t;P)] the interval model
glucose prediction for the parameters P and g∗(ti) the measurement at time ti, the
following composite cost index is defined:

Jwe(P) := Jw(P) + γ · Je(P) (36)

Jw(P) := max
i∈I

(
g(ti;P) − g(ti;P)

)
(37)

Je(P) :=
N∑

i=1

d2H
(
g∗(ti),G(ti;P)

)
(38)

where dH is the Hausdorff distance from the measurement to the glucose envelope
(distance from a point to an interval)

dH
(
g∗(ti),G(ti;P)

) :=
⎧
⎨

⎩

0 if g∗(ti) ∈ G(ti;P)

min(|g∗(ti) − G(ti;P)|,
|g∗(ti) − G(ti;P)|) if g∗(ti) /∈ G(ti;P)

(39)

Jw represents the envelope width computed as the maximum width along time. Je
represents the fitting error extended to set computations. Parameter γ is a weighting
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factor among them which has to be tuned a priori, depending on the available data
characteristics. It defines the degree of relaxation given to the optimization problem.

The above method was successfully applied to the Hovorka model identification
in [32, 34] from 5h postprandial clinical data for a cohort of 12 patients. Patients
were monitored in their postprandial state on four occasions. On two occasions the
patients received a mixed meal containing 40g of CHO. On the other two occasions
they ate a meal with the same relative macronutrients composition but with 100g of
CHO. Preprandial plasma glucose was set around 100mg/dL by means of a manual
feedback intravenous insulin infusion.

In [34], plasma insulin and glucose reference measurements were considered
(in-clinic setting). Interval uncertainty was included in insulin sensitivity, plasma-
to-tissues glucose transport rate and meal rate of appearance. A value of γ = 100
was considered for the error term weight in the cost index. The first conclusion
drawn from this study was a trivial one: identification data must be representative of
patient’s variability when aiming at its characterization. Four postprandial periods
may fall short for this purpose since a highly variable patient behavior was observed
among the different days. Following a leave-one-day-out validation strategy, a spe-
cific combination of identification–validation days was always found out to achieve
good prediction ability, corresponding to the one with more representative identi-
fication days. Despite the limitation that this implied for this study, it is expected
that data representativeness will hold in a real-time setting with long enough time
series. A median glucose envelope width of 94mg/dL enclosing 97.3% of glucose
reference data in the validation day (YSI 2300 STAT Plus Glucose analyzer, Yellow
Springs Instruments, Ohio, USA) was achieved for the best identification–validation
days combination. Median MARD (Mean Absolute Relative Deviation) of data out-
side the predicted envelope was 1.5% and overall a MARD of 0.03% was achieved
considering zero error for data inside the envelope. Despite the large width iden-
tified, median envelope overbounding was estimated in 15.55mg/dL, i.e., at each
time instant at least a measurement as close as 15.55mg/dL to the upper or lower
envelope bound for some of the identification days existed (in median). This value is
comparable to current continuous glucose monitoring accuracy and reveals that the
large envelope width was due to actual patient variability.

Results under conditions closer to domiciliary data are presented in [32], where
insulin pump and continuous glucose monitoring data were considered. Interval
uncertainty in subcutaneous insulin absorption was additionally considered in this
case. For the same tuning of γ = 100, continuous glucose monitoring induced larger
envelope widths, as expected, with a median value of 115.4mg/dL and an envelope
overbounding estimation of 22.1mg/dL due to the noisy measurements. An overall
median MARD of 0.14% was achieved with a median of 97.8% of data enclosed by
the predicted glucose envelope. Noise compensation was addressed by decreasing
the weight γ , giving more importance to envelope width minimization. For a value
of γ = 25, a median envelope width of 67.6mg/dL was obtained, with an envelope
overbounding estimationof 16mg/dL, comparable to the in-clinic setting. In this case,
a median value of 96.2% of data were enclosed yielding an overall median MARD
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of 0.27%. These studies, although with limitations, demonstrate the feasibility of
interval model identification in a practical setting.

6 Conclusions

Prediction of blood glucose in patients with diabetes is a very difficult challenge,
mostly due to the intra-patient variability. Interval models have been proven to be
a very useful tool to represent uncertainty and variability. In this paper we have
presented the basics of the interval models as well as methods to simulate them.

Modal interval analysis and monotone systems principles have been introduced
for the prediction of glucose excursions in type 1 diabetes under uncertainty and intra-
patient variability. Thesemethods allow to efficiently tackle important problems such
as the study of the effect of a given insulin therapy on glycemia and its optimization
given uncertain parameters such as hepatic and peripheral insulin sensitivities and
food intake. As result, an envelope containing all possible glucose excursions suf-
fered by the patient for the given uncertainty is obtained. In contrast to probabilistic
methods such as Monte Carlo simulation, sharp envelopes containing all possible
patient responses can be computed using the methods introduced in Sect. 3 (guar-
anteed simulation). Thus, worst-case analysis can be performed efficiently, which
is extremely important in the context of diabetes. Prediction of possible hyper- and
hypoglycemic episodes considering patient’s variability may yield to safer and more
robust insulin infusion algorithms.

Glucose prediction is a complex process owing to that simple models cannot
represent all glucose dynamics and complex models are difficult or impossible to
identify with simple experiments. Additionally, the presence of intra-patient vari-
ability (insulin sensitivity, s.c. insulin absorption, etc.) should be taken into account.
However, as illustrated in Fig. 5, in the presence of intra-patient variability and dif-
ferent sources of uncertainty a reduction of model complexity may be feasible: a
simple model can be easily identified for a single patient and represent all possible
behaviors included in the simulation.

To this end, classic identification procedures may be jeopardized by high intra-
patient variability, resulting in poor predictive capabilities of average models. The
use interval models for identification, as introduced in Sect. 5, allow for the charac-
terization of individual variability from experimental data. Interval models offer thus
a powerful framework for the design ofmore robust therapies, control algorithms and
fault detection, which are necessary components of an artificial pancreas for home
use.
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Modeling and Prediction Using Stochastic
Differential Equations

Rune Juhl, Jan Kloppenborg Møller, John Bagterp Jørgensen
and Henrik Madsen

Abstract Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single
subject is most often performed using nonlinear models based on deterministic ordi-
nary differential equations (ODEs), and the variation between subjects in a population
of subjects is described using a population (mixed effects) setup that describes the
variation between subjects. The ODE setup implies that the variation for a single sub-
ject is described by a single parameter (or vector), namely the variance (covariance)
of the residuals. Furthermore the prediction of the states is given as the solution to the
ODEs and hence assumed deterministic and can predict the future perfectly. A more
realistic approach would be to allow for randomness in the model due to e.g., the
model be too simple or errors in input. We describe a modeling and prediction setup
which better reflects reality and suggests stochastic differential equations (SDEs) for
modeling and forecasting. It is argued that this gives models and predictions which
better reflect reality. The SDE approach also offers a more adequate framework for
modeling and a number of efficient tools for model building. A software package
(CTSM-R) for SDE-based modeling is briefly described.

1 Introduction

Pharmacokinetic/pharmakodynamic (PK/PD) modeling is often performed using
nonlinear mixed effects models based on deterministic ordinary differential equa-
tions (ODEs), [24]. The ODE models the dynamics of the system as

dX

dt
= f (X (t) , t)

yk = X (tk) + ek,
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where X(t) is the state of the system, f (·) the model, yk the discrete observations, and
ek themeasurement errorswhich are assumed independent and identically distributed
(iid) Gaussian. Given an initial value, the solution to the ODE X(t) is a perfect
prediction of all future values. The ODE model is an input–output model, where the
residuals are the difference between the solution to the ODE and the observations.
In the population setup, this implies that the total variation in data for a population
of individuals is split into inter- and intraindividual variation. However, due to the
ODE framework, the interindividual variation can only come from the covariance of
the iid residuals, i.e., there must be no autocorrelation in the residuals.

The ODE framework is built on the assumption that future values of the states
X(t) can be predicted exactly and that the residual error is independent of the pre-
diction horizon. This is often too simplistic and implies that the uncertainty about
future values of the states and observations is not adequately described. This again
has consequences for the design of model-based controllers and proper planning of
medical treatments in general.

The ODE-based model class has a restricted residual error structure, as it assumes
serially uncorrelated prediction residuals. There are several reasonswhy this assump-
tion is violated: (1) misspecification or approximations of the structural model due
to the complexity of the biological system, (2) unrecognized inputs, and (3) unpre-
dictable random behavior of the process due to measurement errors for the input
variables (e.g., specification of meals or physical exercise; both factors are known to
influence future values of the blood glucose). In addition to these issues, the intrain-
dividual (residual) variability also accounts for various environmental errors such as
those associated with assay, dosing, and sampling. Since most of these errors can-
not be considered as uncorrelated measurement errors, the description of the total
individual error should preferably be separated (see also [7, 13]). Furthermore, [8]
describe three types of residual error models to population PK/PD data analysis to
account for more complicated residual error structures.

Neglecting the correlated residuals in the model description not only leads to
serious issues when the model is used for forecasting and control as mentioned
above, but it also disables a possibility for using proper methods for statistical model
validation, parameter testing, and model identification (see e.g., [16], pp. 46–47).

In this chapter, stochastic differential equations (SDEs) are introduced to address
these issues. SDEs facilitate the ability to split the intraindividual error into two
fundamentally different types: (1) serially uncorrelated measurement error typically
caused by assay error and (2) system error caused by model and input misspecifica-
tions. The concept will first be studied for a single subject and later on in a mixed
effects setup with a population of individuals.

The use of SDEs opens up for new tools for model development, as it quantifies
the amount of system and measurement noise. Specifically the approach allows for
tracking of unknown inputs and parameters overtime by modeling them as random
walk processes. These principles lead to efficientmethods for pinpointingmodel defi-
ciencies, and subsequently for identifying model improvements. The SDE approach
also provides methods for model validation. This modeling framework is often called
gray box modeling [25].
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In this study, we will use maximum likelihood techniques both for parameter
estimation and for model identification, and both for a single subject and in the
population setting. It is known that parameter estimation in nonlinear mixed effects
models with SDEs is most effectively carried out by considering an approximation
to the population likelihood function. The population likelihood function is then
approximated using the first-order conditional estimation (FOCE) method, which is
based on a second-order Taylor expansion of each individual likelihood function at
its optimum—see [17]. Like in [12], the extended Kalman filter is used for evaluating
the single subject likelihood function.

This algorithm introduces a two-level numerical optimization, since not only the
population likelihood function has to be maximized, but also for each value of the
population likelihood all the individual likelihood functions must be maximized.
This makes estimation computationally demanding, but the algorithm facilitates par-
allelization at several places to reduce the estimation time. The method is imple-
mented in the R-package CTSM-R (continuous time stochastic modeling in R) [2],
which is used in the DIACON project [3] focusing on technologies for semi- and
fully-automatic insulin administration for treatment of type 1 diabetes. This project
takes advantage of the fact that the SDE approach provides probabilistic forecasts
for future values of the system states, which is crucial for reliable semi- and fully-
automatic (closed-loop) insulin administration using model predictive control.

Section2 describes various scenarios for data (single subject, repeated experi-
ments, and populations of subjects), and how the likelihood function is formulated
for each of these scenarios. Section3 describes the approach used for population
data from an experiment conducted in DIACON. Some practical issues related to
SDE-based modeling are discussed in Sect. 4, and finally Sect. 5 summarizes. Both
simulated and real-life experimental data are used throughout the chapter for illus-
trating the modeling and prediction framework.

2 Data and Modeling

Experiments can be conducted in various ways and the appropriate modeling
approach depends on this. The basics start with a single experiment (solid ellipse in
Fig. 1) which results in a series of data points Y sampled, possibly irregularly, at
times t1 < t2 < · · · < tN . This single time series and how it is modeled are described
in Sect. 2.1. Repeating the same experiment multiple times (dashed ellipse in Fig. 1)
may be modeled as independent data series assuming no random effects between
the runs. This is described in Sect. 2.2. When an experiment is done using several
subjects (dotted ellipse in Fig. 1), then it is normal to include random effects between
them. This is the so called population extension which is described in Sect. 2.3. In
addition to the structure of data prior information may be available or used as a
modeling technique. This is described in Sect. 2.4.
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Fig. 1 A scenario of experiments in a study. The solid ellipse is a single time series trial. The
dashed ellipse is a collection of three possibly independent repeated trials of subject 1. The dotted
ellipse is a collection of subjects with random variation from a population

2.1 Single Data Series

This section begins by introducing a fundamental framework describing how to
model physical phenomena. The aim is to provide a probabilistic model for a dis-
crete time series YN = Y1,Y2, . . . ,YN . The formulation in this section is a general
framework which is useful for all types of correlated time series data and not just
physiological data.

The natural extension to the ODE framework is SDE’s. We begin by introducing
the stochastic process xt which satisfies an Itô SDE

dxt = f (xt,ut, t, θ) dt + σ (xt,ut, t, θ) dωt , (1)

where xt is the state, ut is an exogenous input, and θ the parameters of the model. f()
and σ () are possibly nonlinear functions called the drift and diffusion terms. ω is the
Wiener process driving the stochastic part of the process. (1) describes the dynamics
and is called the system equation. Note that the ODE model is contained within the
SDE when removing the diffusion term σ (xt,ut, t, θ) dωt .

The solution to the SDE (1) is not in general known except for linear and a few
other SDE’s. Many methods for solving SDE’s have been proposed, e.g., Hermite
expansions, simulation-based methods and Kalman filtering, see [4]. This chapter
focuses on the Kalman filter using CTSM-R. The Kalman filter restricts the diffusion
to being independent of the states because the approximations required to integrate an
SDE with state-dependent diffusion give undesirable results or performance. How-
ever, some SDEs with state-dependent diffusion can be transformed to an SDE with
unit diffusion by the Lamperti transform (see Sect. 4.1).

The stochastic process is observed discretely and possibly partially with indepen-
dent noise via the measurement equation

yk = h (xk,uk, tk, θ , ek) , (2)

whereh() is a possibly nonlinear function of the states and inputs. ek is an independent
noise term attributed by the imperfect measurements. Due to the Kalman filter, the
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measurement model is restricted to additive noise in CTSM-R

yk = h (xk,uk, tk, θ) + ek, (3)

where ek is Gaussian withN (0,S(uk, tk)).
The combination (1) and (3) is the state space model formulation used in this

paper to understand data. This is a gray box model as it bridges the gap between data
driven black box models and pure physical white box models.

Example 1 Asan example to illustrate themethods,wewill use a simulation example
(see Fig. 2). A linear 3 compartment transport model [15] similar to the real-data
modeling example presented in Sect. 3 is used. We can think of the response (y) as
venous glucose concentration in the blood of a patient, and the input (u) as exogenous
glucagon.

The data are simulated according to the model

dxt =
⎛
⎝

⎡
⎣
ut
0
0

⎤
⎦ +

⎡
⎣

−ka 0 0
ka −ka 0
0 ka −ke

⎤
⎦ xt

⎞
⎠ dt +

⎡
⎣

σ1 0 0
0 σ2 0
0 0 σ3

⎤
⎦ dωt (4)

yk = [
0 0 1

]
xtk + ek, (5)

where x ∈ R
3, ek ∼ N (0, s2), tk = {1, 11, 21, . . .}, and the specific parameters (θ )

used for simulation are given in Table1 (first column).
The structure of the model (4) will of course usually be hidden, and we will have

to identify the structure based on the measurements as given in Fig. 2. As a general
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Fig. 2 Simulated data for the example (Eqs. (4), (5), and Table1)
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principle simple models are preferred over more complex models, and therefore a
first hypothesis could be (Model 1)

dxt = (ut − kext) dt + σ3dωt (6)

yk = xtk + ek . (7)

In this approach, the estimation is based on the likelihood function as defined in
the following section.

2.1.1 Likelihood

Given a sequence of measurements

YN = [y0, y1, . . . , yk, . . . , yN ] (8)

the likelihood of the unknown parameters θ given the model formulated as (1)–(3)
is the joint probability density function (pdf)

L(θ ,YN ) = p(YN |θ), (9)

where the likelihood L is the probability density function given θ . The joint prob-
ability density function is partitioned as the product of the one-step conditional
probability functions

L(θ,YN ) =
(

N∏
k=1

p (yk|Yk−1, θ)

)
p(y0|θ). (10)

The solution to a linear SDE driven by a Brownian motion is a Gaussian process.
Nonlinear SDEs do not result in a Gaussian process and thus themarginal probability
is not Gaussian. By sampling, the nonlinearities fast enough in some sense then it is
reasonable to assume that the conditional density is Gaussian.

The Gaussian density is fully described by the first and second-order moments

ŷk|k−1 = E
[
yk|Yk−1, θ

]
(11)

�k|k−1 = V
[
yk|Yk−1, θ

]
. (12)

Introducing the innovation error

εk = yk − ŷk|k−1, (13)
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the likelihood (10) becomes

L(θ ,YN ) =
⎛
⎝

N∏
k=1

exp
(
− 1

2ε
T
k �−1

k|k−1εk

)

√|�k|k−1|
√
2π

l

⎞
⎠ p(y0|θ). (14)

The probability density of the initial observation p(y0|θ) is parameterized through
the probability density of the initial state p(x0|θ). The mean ŷk|k−1 and covariance
�k|k−1 are computed recursively using the extended Kalman filter, see Appendix A
for a brief description, or [10] for a detailed description.

The unknown parameters are estimated by maximizing the likelihood function
using an optimization algorithm. The likelihood (14) is a product of probability
densities all less than 1, which causing numerical problems. Taking the logarithm of
the likelihood (14) turns the product into a summation and cancels the exponentials
thus stabilizing the calculation. The parameters are now found by maximizing the
log-likelihood or by convention minimize the negative log-likelihood

θ̂ = argmin
θ∈Θ

(−ln (L(θ,YN )) . (15)

The uncertainty of the maximum likelihood parameter estimate θ̂ is related to the
curvature of the likelihood function. An estimate of the asymptotic covariance of θ̂

is the inverse of the observed Fisher information matrix

V
[
θ̂
]

=
[
I
(
θ̂
)]−1

, (16)

where I
(
θ̂
)
is the observed Fisher information matrix, that is the negative Hessian

matrix (curvature) of the likelihood function evaluated at the maximum likelihood
estimate [17, 21].

Example 2 We continue with the simulated data from Example 1. As noted above, a
first approach to model the data could be a first-state model (Eqs. (6)–(7)). The result
of the estimation (θ̂1) is given in Table1, the initial value of the state (x30) and the
time constant (1/ke) are both captured quite well, while the uncertainty parameters
are way off, the diffusion is too large and the observation variance is too small (with
extremely large uncertainty).

The parameters in the model are all assumed to be greater than zero, and it is
therefore advisable to estimate parameters in the log-domain, and then transformback
to the original domain before presenting the estimates. The log-domain estimation
is also the explanation for the nonsymmetric confidence intervals in Table1, the
confidence intervals are all based on the Hessian of the likelihood at the optimal
parameter values, and confidence intervals are based on theWald confidence interval
in the transformed (log) domain [21]. Such intervals could be refined using profile
likelihood-based confidence intervals [21] (see also Sect. 4.4).
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Table 1 Parameter estimates from simulation example and confidence intervals for the individual
parameters are given in parenthesis below the estimates

θ θ̂1 θ̂2 θ̂3

x10 40.000 – 38.819

(29.172, 48.466)

x20 35.000 – 107.960 33.421

(75.211, 140.710) (29.778, 37.064)

x30 11.000 10.657 10.641 10.604

(6.606, 14.708) (10.392, 10.889) (10.281, 10.927)

ka 0.025 – 0.006 0.026

(0.0038, 00778) (0.025, 0.027)

ke 0.080 0.081 0.056 0.080

(0.071, 0.094) (0.0418, 0.0743) (0.078, 0.083)

σ1 1.000 – – 0.5500

(0.224, 1.353)

σ2 0.200 – 3.616 0.282

(2.670, 4.898) (0.113, 0.704)

σ3 0.050 2.206 0.001 0.001

(1.848, 2.634) (2 · 10−55, 3 · 1048) (9 · 10−56, 1 · 1049)

s 0.025 0.0002 0.016 0.031

(2 · 10−33, 2.6 · 1025) (0.0065, 0.0388) (0.020, 0.049)

l(θ̂ , y) – –343.68 –67.85 –19.70

df – 4 7 9

θ is the true values, θ̂1, θ̂2, and θ̂3 are the estimated for the first-, second-, and third-state models,
respectively. Last two rows present the log-likelihood and the number of degrees of freedom

In order to validate the model and suggest further development, we should inspect
the innovation error. When the model is not time homogeneous, the standard error of
the prediction will not be constant and the innovation error should be standardized

rk = εk√
�k|k−1

, (17)

where the innovation error (εk) is given in (13). All numbers needed to calculate
the standardized residuals can be obtained directly from CTSM-R using the function
predict. Both the autocorrelation andpartial autocorrelation (Fig. 3) are significant
in lag 1 and 2. This suggests a second-statemodel for the innovation error, and hence a
third-statemodel should be used. Consequently we can go directly from the first-state
model to the true structure (a third-state model).

Now we have assumed that a number of the parameters are actually zero, in a
real-life situation, we might test these parameters using likelihood ratio tests, or
indeed identify them through engineering principles. The parameter estimates are
given in Table1 (θ̂3); in this case, the diffusion parameter (σ3) has an extremely
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Fig. 3 Autocorrelation and partial autocorrelation from a simple (1 state) model

wide confidence interval, and it could be checked if these parameters should indeed
be zero (again using likelihood ratio test), but for now we will proceed with the
residual analysis which is an important part of model validation (see e.g., [16]). The
autocorrelation and partial autocorrelation for the third-state model are shown in
Fig. 4. We see that there are no values outside the 95% confidence interval, and we
can conclude that there is no evidence against the hypothesis of white noise residuals,
i.e., the model sufficiently describes the data.

Autocorrelation and partial autocorrelations are based on short-term predictions
(in this case 10 min) and hence we check the local behavior of the model. Depending
on the application of the model, we might be interested in longer-term behavior of
the model. Prediction can be made on any horizon using CTSM-R. In particular, we
can compare deterministic simulation in CTSM-R (meaning conditioning only on
the initial value of the states). Such a simulation plot is shown in Fig. 5, here we
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Fig. 4 Autocorrelation and partial autocorrelation from the third-state model (i.e., the correct
model)
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Fig. 5 Simulation with model 2 and 3, dashed gray line expectation of model 2, black line expecta-
tion of model 3, light gray area 95% prediction interval for model 2, dark gray area 95% prediction
interval for model 3, and black dots are the observations

compare a second-state model (see Table1) with the true third-state model. It is quite
evident that model 2 is not suited for simulation, with the global structure being
completely off, while “simulation” with a third-state model (with the true structure,
but estimated parameters), gives narrow and reasonable simulation intervals. In the
case of linear SDE-models with linear observation, this “simulation” is exact, but
for nonlinear models it is recommended to use real simulations, e.g., using a Euler
scheme.

The step from a second-state model (had we initialized our model development
with a second-statemodel) to the third-statemodel is not at all trivial. However, Fig. 5
shows that simulation of model 2 does not contain the observations and thus model
2 will not be well suited for simulations. Also the likelihood ratio test (or AIC/BIC)
supports that model 3 is far better than model 2, further it would be reasonable to fix
σ3 at zero (in practice a very small number).

2.2 Independent Data Series

An experiment may be repeated several times without expecting variation in the
underlying parameters. Given S sequences of possibly varying length

Y = [
Y 1

N1
,Y 2

N2
, . . . ,Y i

Ni
, . . . ,Y S

NS

]
, (18)
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the likelihood is the product of the likelihood (10) for each sequence

L(θ ,Y) =
S∏

i=1

⎛
⎝

⎛
⎝

N∏
k=1

exp
(
− 1

2ε
T
k �−1

k|k−1εk

)

√|�k|k−1|
√
2π

l

⎞
⎠ p(y0,i|θ)

⎞
⎠. (19)

The unknown parameters are again estimated by minimizing the negative log-
likelihood

θ̂ = argmin
θ∈Θ

(−ln (L(θ ,Y)) . (20)

If the independence assumption is violated and the parameters vary between the time
series, then the model performance would be lowered as the parameter estimates will
be a compromise. The natural extension is to include a population effect.

2.3 Population Extension

The gray box model can be extended to include a hierarchical structure to model
variation occurring between data series where each series has its own parameter
set. This is useful for describing data from a number of individuals belonging to a
population of individuals. The hierarchical modeling is also called mixed effects and
population extension in pharmaceutical science. Nonlinear mixed effects modeling
has long been used in pharmacokinetic/pharmacodynamic studies to account for
variation from the natural grouping: multiple centers, multiple days, age and BMI of
subjects, etc. Mixed effects modeling combines fixed and random effects [17]. The
fixed effect is the average of that effect over the entire population while the random
effect allows for variation around that average.

Consider N subjects in a clinical study. This is a single level grouping. The model
for the ith subject is

dxi,t = f
(
xi,t,ui,t, t, θ i

)
dt + σ

(
ui,t, t, θ i

)
dωt (21)

yi,k = h
(
xi,k,ui,k, ti,k, θ i

) + ei,k, (22)

which is the general model extended with subscript i. The individual parameters θ i

are
θ i = z(θ f ,Zi, ηi), (23)

where z maps from subject covariates such (i.e., BMI and age) Zi, fixed effects
parameters θf , and the random effects ηi ∈ Rk ∼ N (0,Ω) to subject parameters.
The subject parameters are typically modeled as either normally or log-normally
distributed by combining the fixed effect parameters and the random effects in either
an additive θi = θf + ηi or an exponential transform θi = θf eηi .
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The likelihood of the fixed effects is the product of the marginal probability
densities for each subject

L(θ f ,Ω) =
N∏
i=1

p(Yi|θ i,Ω), (24)

where the marginal density is found by integrating over the random effects ηi

p(Yi|θ i,Ω) =
∫

p1(Yi|θ i, ηi)p2(ηi|Ω)dηi. (25)

p1(Yi|θ, η) is the probability of the individual subject which given by (10). p2(ηi|Ω)

is the probability of the second-stage model where the random effects describe the
interindividual variation.

2.3.1 Approximation of the Marginal Density

The integral in (25) rarely has a closed-form solution and thus must be approximated
in a computationally feasible way. This can be done in two ways: approximating (a)
the integrand by Laplacian or (b) the entire integral by Gaussian quadrature.

Gaussian quadrature can approximate the integral by a weighted sum of the inte-
grand evaluated at specific nodes. The accuracy of Gaussian quadrature increases
as the order (number of nodes) increases. With adaptive Gaussian quadrature, the
accuracy can be improved even further at higher cost. The computational complex-
ity of Gaussian quadrature suffers from the curse of dimensionality and becomes
infeasible even for few dimensions.

Now consider the Laplacian approximation which is widely used approximation
to integrals [17]. Observe that the integrand in (25) is nonnegative such that

p1(Yi|θ i, ηi)p2(ηi|Ω) = elog(p1(Yi|θ i,ηi)p2(ηi|Ω))

= egi(ηi), (26)

where gi (ηi) is the log-posterior distribution for the ith subject. Now consider the
second-order Taylor expansion of gi (ηi) around its mode η̂i

gi (ηi) ≈ gi
(
η̂i

) + 1

2

(
ηi − η̂i

)T
Δgi

(
η̂i

) (
ηi − η̂i

)
, (27)
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since ∇gi
(
η̂i

) = 0 at the mode. By inserting (27) and (26) in (25), the Laplacian
approximation of the marginal probability density is defined as

p(Yi|θ f ,Ω) ≈
∫

egi(η̂i)+ 1
2 (ηi−η̂i)

T
Δgi(η̂i)(ηi−η̂i)dηi

= egi(η̂i)
∫

e
1
2 (ηi−η̂i)

T
Δgi(η̂i)(ηi−η̂i)dηi, (28)

where the integral is recognized as the scaled integral over a multivariate Gaussian1

distribution with covariance � = (−Δg(ηi))−1. The marginal density becomes

p(Yi|θ i,Ω) ≈ egi(η̂i)

√
(2π)k

|−Δg
(
η̂i

) | . (29)

Inserting (29) in (24) the likelihood becomes

L(θf ,Ω) ≈
N∏
i=1

egi(η̂i)

√
(2π)k

|−Δg
(
η̂i

) | . (30)

The Hessian Δg(η̂i) is found by analytically differentiating the expression for the
log-posterior g(η). After some derivation, the Hessian is

Δg(ηi) =
N∑

k=1

⎡
⎣ ∂2yT

∂ηi∂ηi
�−1

k|k−1

(
yk − ŷk|k−1

) + 2
∂ ŷk|k−1

∂ηi

∂
[
�−1

k|k−1

]

∂ηi

(
y − ŷk|k−1

)

− ∂ ŷk|k−1

∂ηi
�−1

k|k−1

∂ ŷk|k−1

∂ηi
− 1

2

(
y − ŷk|k−1

) ∂2
[
�−1

k|k−1

]

∂ηi∂ηi

(
y − ŷk|k−1

)

+ tr

⎛
⎝∂

[
�−1

k|k−1

]

∂ηi

∂�k|k−1

∂ηi
+ �−1

k|k−1

∂�k|k−1

∂ηi∂ηi

⎞
⎠

⎤
⎦ − Ω−1, (31)

where tr is the trace of a matrix. The second-derivative terms are generally compli-
cated or inconvenient to compute. At the mode η̂i, the contribution of the second-
derivative terms is usually negligible and thus an approximation for the Hessian
is

Δg(η̂i) ≈ −
N∑

k=1

(
∂ ŷk|k−1

∂ηi

∣∣∣∣
ηi=η̂i

�−1
k|k−1

∂ ŷk|k−1

∂ηi

∣∣∣∣
ηi=η̂i

)
− Ω−1. (32)

1The integral over the multivariate Gaussian density is 1√
(2π)k |�|

∫
e

(
− 1

2 (x−μ)T�−1(x−μ)
)
dx = 1.
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This approximation is similar to the Gauss–Newton and NONMEM’s first-order
conditional estimation (FOCE) approximations of theHessianwhere only first partial
derivatives are included [9, 17].

The parameters are found by iteratively minimizing the first- and second-stage
model. For a trial set of fixed effect parameters, an optimization of gmust be done for
all subjects. When all ηi have been found, the Laplacian and FOCE approximations
can be computed to obtain the population likelihood. The population likelihood can
then be optimized.

2.4 Prior Information

Bayesian analysis combines the likelihood of the data and already known information
which is called a prior. When the prior probability density function is updated, it
becomes the posterior probability density function. In true, Bayesian analysis the
prior may be any distribution, although conjugated priors are used in practice to
simplify the computations.

In the view of CTSM-R, priors are mainly used as (a) empirical prior or for (b)
regularizing the estimation.

An empirical prior is a result from a previous estimation. Imagine an experiment
has been analyzed and followed by rerunning the experiment. These two data series
are stochastically independent sets and should be analyzed as in Sect. 2.2. However,
using the results from the first analysis as a prior, only the new data series has to be
analyzed. If the quadratic Wald approximation holds this prior is Gaussian.

Regularizing one or more parameters is sometimes required to achieve a feasible
estimation of the parameters. State equations describe a physical phenomenon and
as such the modeler often has knowledge (possibly partly subjective) about the para-
meters from, e.g., another study. The reported values are often a mean and a standard
deviance. Thus a Gaussian prior is reasonable.

Updating the prior probability density function p(θ) forms the posterior proba-
bility density function through Bayes’ rule

p(θ |YN ) = p(YN |θ)p(θ)

p(YN )
∝ p(YN |θ)p(θ), (33)

where the probability density p(YN |θ) is proportional to the likelihood of a single
data series given in (10). No information is called a diffuse prior which is uniform
over the entire domain. The posterior then reduces to the likelihood of the data.

Let the prior be described by a Gaussian distribution N (μθ , �θ ) where

μθ = E [θ ] (34)

�θ = V [θ] , (35)
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and let
εθ = θ − μθ , (36)

then the posterior probability density function is

p(θ |YN ) ∝
⎛
⎝

⎛
⎝

N∏
k=1

exp
(
− 1

2ε
T
k �−1

k|k−1εk

)

√|�k|k−1|
√
2π

l

⎞
⎠ p(y0|θ)

⎞
⎠ × exp

(− 1
2ε

T
θ �−1

θ εT
θ

)
√

|�θ |
√
2π

p
. (37)

The parameters are estimated by maximizing the posterior density function (37), i.e.,
maximum a posteriori (MAP) estimation. The MAP parameter estimate is found by
minimizing the negative logarithm of (37)

θ̂ = argmin
θ∈Θ

(−ln (p(θ |YN , y0))) . (38)

When there is no prior the MAP estimate reduces to the ML estimate.

3 Example: Modeling the Effect of Exercise on Insulin
Pharmacokinetics in “Continuous Subcutaneous Insulin
Infusion” Treated Type 1 Diabetes Patients

The artificial pancreas is believed to ease substantially the burden of constant man-
agement of type 1 diabetes for patients. An important aspect of the artificial pancreas
development is themathematical models used for control, prediction, and simulation.
A major challenge to the realization of the artificial pancreas is the effect of exercise
on the insulin and plasma glucose dynamics. This is the first step towards a popu-
lation model of exercise effects in type 1 diabetes. The focus is on the effect on the
insulin pharmacokinetics in continuous subcutaneous insulin infusion (CSII)-treated
patients by modeling the absorption rate as a function of exercise. This example is
described in detail in [5].

3.1 Data

The insulin data for this study originates from a clinical study on 12 subjects with
type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII). Each
subject did two study days separated by at least threeweeks. The insulinwas observed
by drawing blood nonequidistantly over the course of the trial. A detailed description
of the data is found in [23].

Natural considerations toward the subjects limits how frequent the insulin can
be sampled. This limits the amount of observations per time series and often care-
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ful nonequidistant sampling becomes necessary. Both issues makes estimation of
parameters more difficult. However, using all the subjects collectively increases the
amount of data and improves estimation. The repeated trials per subject are consid-
ered independent trials, i.e., no random variation on the parameters. The subjects are
assumed to have interindividual variation for several of the parameters.

3.2 The Gray Box Insulin Model

A linear three-compartment ODEmodel is used as basis to describe the pharmacoki-
netics of subcutaneous infused insulin in a single subject as suggested by [26]. The
model is illustrated in Fig. 6.

The absorption is characterized by the rate parameter ka between all three com-
partments. The two compartments Isc2 and Ip are modeled with diffusion. Only the
third-state Ip is being observed.

The compartment model is formulated as the following SDE

d

⎡
⎣
Isc1
Isc2
Ip

⎤
⎦ =

⎛
⎝

⎡
⎣

−ka 0 0
ka −ka 0
0 ka

VI
−ke

⎤
⎦

⎡
⎣
Isc1
Isc2
Ip

⎤
⎦ +

⎡
⎣
1
0
0

⎤
⎦ Ipump

⎞
⎠ dt +

⎡
⎣
0 0 0
0 σIsc 0
0 0 σIp

⎤
⎦ dωt,

(39)
where Isc1 [mU] and Isc2 [mU] represent the subcutaneous layer and deeper tissues,
respectively, and Ip [mU/L] represents plasma. Ipump is the input from the pump
[mU/min]. ka [min−1] is the absorption rate and ke [min−1] is the clearance rate of
insulin from plasma. VI is the volume of distribution [L]. σIsc and σIp are the standard
deviation of the diffusion processes.

The observation equation is formulated through a transformation of the third-state
Ip. The log transformation used here is a natural choice since Ip is a concentration
which is a nonnegative number. Transformations are discussed in Sect. 4.1. The
observation equation is

Fig. 6 Illustration of a three-compartment model describing the pharmacokinetics of insulin deliv-
ered continuously from an insulin pump. Lightning bolts indicate diffusion terms
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log(yk) = log(Ipk) + ek, (40)

where yk is the observed plasma insulin concentration and ek ∼ N(0, ξ) is the mea-
surement noise. The variance is further modeled such that ξ = Smin + S, where Smin

is a known hardware specific measurement error variance of the equipment [5]. Note
that the measurement error multiplicative in the natural domain of yk . This works as
an approximation of a proportional error model.

The full gray box model is the SDE system equation (39) and the observation
equation (40).

Population Parameters

The individual parameters are modeled as a combination of fixed population effects
and random individual effects

θi = h(θpop,Zi) · eηi , (41)

where θi is the parameter value for individual i, h(·) is a possibly nonlinear function,
θpop is the overall population parameter (fixed effect), Zi are covariates (age, weight,
gender etc.), and ηi ∼ N(0,Ω) is the individual random effect.

For this model, four parameters were modeled with a random effect. The initial
values of the two subcutaneous layer states are assumed to be affected by the same
variation from the population mean

Isc10,i = Isc10 · eηi,1 Isc20,i = Isc20 · eηi,1 .

The absorption rate ka and the clearance rate ke have separate random effects

ka,i = ka · eηi,2 ke,i = ke · eηi,3 .

The volume of distribution VI is scaled by the weight (kg) of the subject. The weight
is a covariate

VIi = VI · weighti.

The random effects are assumed Gaussian with

ηi = [ηi1, ηi2, ηi3] ∼ N
(
0, diag

(
ωIsc, ωka , ωke

))
.

3.3 Exercise Effects

The model is further extended by making the absorption rate ka dependent on exer-
cising. Two extensions are investigated.
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Model A

The first extension specifies ka as

ka = k̄a + α · Ex, (42)

where k̄a is the basal rate and α is the effect of exercise. Ex is a binary input which
is 1 when the subject is exercising and otherwise 0.

Model B

The subjects were exercising at two intensities and this extends (42) to

ka = k̄a + αmild · Exmild + αmoderate · Exmoderate, (43)

where k̄a is the basal rate, αmild and αmoderate are the effects of mild and moderate
exercise. Exmild and Exmoderate are binary inputs which is 1 during either mild or
moderate exercising.

3.4 Model Comparison

The best model is selected by comparing the ML estimates with the likelihood ratio
test, AIC, and BIC in Table2. The base model is nested in both model A and B and
model A is nested in B. The nested models can be compared with the likelihood ratio
test. Both models A and B explain significantly more of the variability in the data
than the base model. Model A is the prefered model based on the likelihood ratio
test. The additional improvement in the likelihood with model B is not enough to
justify the extra parameter. The difference in AIC and BIC between model A and B
relatively small but indicate that model B is to be prefered. The relative likelihood
betweenmodel A andB is exp (0.5 · (1815 − 1817)) = 0.37 and suggests that model
A is 37% as probable as model B [1].

The parameter estimates for all three models are seen in Table3. For model B, the
moderate intensity exercise results in a larger absorption rate than mild exercise.

Table 2 Model comparison using likelihood ratio test, AIC and BIC

Model df − log(L) LRT (p) AIC BIC

Base 10 927 – 1878 1799

Model A
versus Base

11 897 <10−7 1817 1729

Model B
versus A

12 895 0.16 1815 1720



Modeling and Prediction Using Stochastic Differential Equations 201

Table 3 Parameter estimates from the three models: base, A and C

Base Model A Model B

Isc10 87.4 58.3 61.8

Isc20 35.9 56.3 52.2

ka 0.023 0.026 0.024

ke 0.079 0.077 0.076

σIsc 2.94 2.61 2.48

σIp 0.030 0.027 0.026

S 0.00028 0.00034 0.00075

ωIsc 0.379 0.226 0.299

ωka 0.122 0.112 0.112

ωke 0.142 0.150 0.146

α 0.00762

αmild 0.00961

αmoderate 0.00515

Fig. 7 Top One-step predictions from model A (Blue line). The observations are represented by
dots. The gray area indicates 95% prediction interval. Middle and bottom Insulin and exercise
inputs
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3.5 Predictions

From the three models tried here, model A with a single absorption rate is the best to
explain the data.One-step predictions usingmodelAusing a single trial of one subject
are shown in Fig. 7. In general, the predictions are acceptable and the model does
seem to capture the increase related to exercise. Especially, in Fig. 7, the compliance
between the predictions and the observations is good. The width of the prediction
interval is, however, large in this case. k-step predictions can also easily be calculated
using CTSM-R and the predict function. A more detailed account of the exercise
dependence analysis using population modeling is found in [5].

4 Other Topics

4.1 Transformations

In general, transformations should be applied whenever appropriate, and as all infer-
ence with CTSM-R assumes Gaussian random output, this should be ensured by
transformations. Transformations can be applied in three different levels (1) state
transformations, (2) transformation of observations, and (3) transformation of the
parameters. We will briefly discuss each of these types of transformations and refer
the interested reader to appropriate literature.

If there are natural restrictions of the state space, e.g., the natural state space is
the positive real axis, or some interval, then these restrictions should be included in
the SDE description. This implies a formulation of the form

dxt = f (xt, ut)dt + σ(xt)dwt . (44)

However, the Kalman filter requires the diffusion term to be independent of the state
and therefore we should apply the Lamperti transform;

zt =
∫

dξ

σ (ξ)

∣∣∣∣
ξ=xt

(45)

and use Itô’s Lemma to obtain a descriptionwhere the SDEdescription is independent
of the state (see [18], Paper D for a tutorial on the Lamperti transform, and [19] for
a nontrivial application).

The usual comments on transformation of the observations also apply to the SDE
models, i.e., the standardized residuals should have constant variance, this should be
checked and if the residuals do not have constant variance the observations should
be transformed (e.g., using log transformation).

As already discussed in the examples in this chapter, the parameters should be
estimated on the real axis (implying e.g., log transformation of positive parameters).
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4.2 Identification

We have already seen that the autocorrelation function and the partial autocorrelation
functions can be used for identification. If data are not equivalently sampled, one
might use linear SDE models on the residuals to identify model order (number of
states).

For nonlinearmodels the usual autocorrelation function is also relevant. Nonlinear
dependence in the residuals will almost always include a linear dependence which
will appear in the autocorrelation function. It can be shown that some nonlinear
functions does not have linear dependence and the autocorrelation functions will
fail. Generalizations in the formof lag-dependent and partial lag-dependent functions
might then be used instead [20].

Finally identification can be based on random walk identification, where one
parameter is formulated as a randomwalk process and the reconstruction or smoothed
parameter is compared with state estimates and/or input to identify possible model
extensions (see also [18, 19], paper F, and [11]).

4.3 Simulation/Prediction Models

As we have already seen in the simulation example, misspecification of a model
can lead to very poor performance in simulation (long-term prediction) performance
of models. A way to ensure reasonable performance in long-term predictions is
by forcing the diffusion parameters to be small. This is done by fixing diffusion
parameters, see [14] for a discussion about simulation and multistep predictions in
SDE-models.

4.4 Testing and Confidence Intervals

Often, in particular for data-rich situations, the standardWald confidence intervals, as
presented directly from CTSM-R, are good approximations of the “true” confidence
intervals. These are, however, approximations, and conclusions regarding individual
parameters should be based on likelihood ratio tests rather than confidence intervals.
In cases where models are not nested, it is recommended to use likelihood-based
information criteria (AIC or BIC) for model selection.

Still, confidence intervals provide useful information that should always be
reported, also when parameters are significant. But as we saw in the simulation
examples, the Wald confidence interval might fail completely (e.g., σ3 in Models 2
and 3). The problem is that the Wald standard error uses the local curvature of the
likelihood (the Hessian), to approximate the uncertainty, and e.g., if the curvature
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Fig. 8 Profile likelihood for σ3 in the third-state simulation model of Examples 1–2

is close to zero (see Fig. 8), then the variance of the parameter estimates becomes
infinite (as we saw in the examples).

As an alternative, we can calculate profile likelihood confidence intervals (see
Fig. 8), we will not go into detail with the calculation of such intervals, but note that
the profile likelihood confidence interval is based on the same statistical properties of
the likelihood ratio as the likelihood ratio test. In the case ofModel 3 of the simulation
example, the profile likelihood confidence interval for σ3 is [0, 0.12], which seems
much more reasonable than the values obtained by the Wald approximation. For
further reading see [17, 21].

5 Summary

A general framework for modeling physical dynamical systems using stochastic dif-
ferential equations has been demonstrated. CTSM-R is an efficient and parallelized
implementation in the statistical language R. R facilitates easy data handling, visual-
ization, and statistical tests essential for any modeling task. CTSM-R uses maximum
likelihood and thus known techniques for model identification and selection can also
be used for this framework as demonstrated.

This chapter has demonstrated the principles using linear models with trans-
formations. CTSM-R has been used for a number of nonlinear problems see
e.g., [18, 22].

CTSM-R has been extended to include hierarchical modeling. A study of exercise
dependence in insulin absorption was modeled with a random effect between the
subjects. This is an example of commonly used population modeling in PK/PD.

A detailed user guide and additional examples are available from http://ctsm.info.

http://ctsm.info
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Appendix A: Extended Kalman Filtering

For nonlinear models the innovation vectors εk (or εi
k) and their covariance matrices

�
yy
k|k−1 (or �

yy,i
k|k−1) can be computed recursively by means of the extended Kalman

filter (EKF) as outlined in the following.
Consider first the linear time-varying model

dXt = (A(ut, t, θ)Xt + B(ut, t, θ)) dt + σ (ut, t, θ)dωt (46)

Yk = C(uk, tk, θ)Xk + ek (47)

in the followingwewill useA(t),B(t), andσ (t) as short-hand notation forA(ut, t, θ),
B(ut, t, θ), and σ (ut, t, θ).

We will restrict ourselves to the initial value problem; solve (46) for t ∈ [tk, tk+1]
given that the initial condition Xtk ∼ N(x̂k|k, �xx

k|k). This is the kind of solution we
would get from the ordinary Kalman filter in the update step.

Now if we consider, the transformation

Zt = e− ∫ t
tk
A(s)dsXt, (48)

then by Itô’s Lemma, it can be shown that the process Zt is governed by the Itô
stochastic differential equation

dZt = e− ∫ t
tk
A(s)dsB(t)dt + e− ∫ t

tk
A(s)ds

σ (t)dωt (49)

with initial conditionsZtk ∼ N(x̂k|k, �xx
k|k). The solution to (49) is givenby the integral

equation

Zt = Ztk +
∫ t

tk

e− ∫ u
tk
A(u)duB(s)ds +

∫ t

tk

e− ∫ s
tk
A(u)du

σ (s)dωs (50)

Now inserting the inverse of the transformation (48) gives

Xt = e
∫ t
tk
A(s)dsX0 + e

∫ t
tk
A(s)ds

∫ t

tk

e− ∫ u
tk
A(u)duB(s)ds

+ e
∫ t
tk
A(s)ds

∫ t

tk

e− ∫ s
tk
A(u)du

σ (s)dωs (51)
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Taking the exception and variance on both sides of (51) gives

E[Xt] = e
∫ t
tk
A(s)ds

E[Xtk ] + e
− ∫ t

tk
A(s)ds

∫ t

tk
e
− ∫ u

tk
A(u)du

B(s)ds (52)

V [Xt] = e
∫ t
tk
A(s)ds

V [Xtk ]e
∫ t
tk
A(s)T ds + e

∫ t
tk
A(s)ds

V

[∫ t

tk
e
− ∫ s

tk
A(u)du

σ (s)dωs

]
e
∫ t
tk
A(s)T ds

= e
∫ t
tk
A(s)ds

V [X0]e
∫ t
tk
A(s)T ds

+ e
∫ t
tk
A(s)ds

∫ t

tk
e
− ∫ s

tk
A(u)du

σ (s)σ (s)T e
− ∫ s

tk
A(u)T du

dse
∫ t
tk
AT (s)ds

, (53)

where we have used Itô isometry in the second equation for the variance. Now
differentiation the above expression w.r.t. time gives

dE[Xt]
dt

= A(t)E[Xt] + B(t) (54)

dV [Xt]
dt

= A(t)V [Xt] + V [Xt]A(t)T + σ (t)σ (t)T , (55)

with initial conditions given by E[Xtk ] = x̂k|k and V [Xtk ] = �xx
k|k .

For the nonlinear case

dXt = f(Xt,ut, t, θ)dt + σ (ut, t, θ)dωt (56)

Yk = h(Xk,uk, tk, θ) + ek, (57)

we introduce the Jacobian of f around the expectation of Xt (x̂t = E[Xt]), we will
use the following short hand notation

A(t) = ∂f(x,ut, t, θ)

∂x

∣∣∣∣
x=x̂t|k

, f(t) = f(x̂t|k,ut, t, θ) (58)

where x̂t is the expectation ofXt at time t, this implies that we canwrite the first-order
Taylor expansion of (56) as

dXt ≈ [
f(t) + A(t)(Xt − x̂t|k)

]
dt + σ (t)dωt . (59)

Using the results from the linear time-varying system above, we get the following
approximate solution to the (59)

dE[Xt]
dt

≈ f(t) (60)

dV [Xt]
dt

≈ A(t)V [Xt] + V [Xt]AT (t) + σ (t)σ T (t), (61)
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with initial conditionsE[Xtk ] = x̂k|k andV [Xtk ] = �xx
k|k . Equations (60) and (61) con-

stitute the basis of the prediction step in the Extended Kalman Filter, which for
completeness is given below

Theorem 1 (Continuous-discrete time extended Kalman filter) With given initial
conditions for the x̂1|0 = x0 and �xx

1|0 = �xx
0 the extended Kalman filter approxima-

tions are given by; the output prediction equations:

ŷk|k−1 = h(x̂k|k−1,uk, tk, θ); �
yy
k|k−1 = Ck�

xx
k|k−1C

T
k + Sk (62)

the innovation and Kalman gain equation:

εk = yk − ŷk|k−1; Kk = �xx
k|k−1C

T
(
�

yy
k|k−1

)−1
(63)

the updating equations:

x̂k|k = x̂k|k−1 + Kkεk; �xx
k|k = �xx

k|k−1 − Kk�
yy
k|k−1K

T
k (64)

and the state prediction equations:

dx̂t|k
dt

= f(x̂t|k,ut, t, θ) , t ∈ [tk, tk+1[ (65)

d�xx
t|tk

dt
= A(t)�xx

t|tk + �xx
t|tkA(t)T + σ (t)σ (t)T , t ∈ [tk, tk+1[ (66)

where the following short-hand notation has been applied:

A(t) = ∂f(x,ut, t, θ)

∂x

∣∣∣∣
x=x̂t|k−1

, Ck = ∂h(x,utk , tk, θ)

∂x

∣∣∣∣
x=x̂k|k−1

(67)

σ (t) = σ (ut, t, θ) , Sk = S(uk, tk, θ) (68)

The prediction step was covered above and the updating step can be derived
from linearization of the observation equation and the projection theorem [6]. From
the construction above, it is clear that the approximation is only likely to hold if
the nonlinearities are not too strong. This implies that the sampling frequency is
fast enough for the prediction equations to be a good approximation and that the
accuracy in the observation equation is good enough for the Gaussian approximation
to hold approximately. Even though “simulation” through the prediction equations
is available in CTSM-R, it is recommended that simulation results are verified (or
indeed performed), by real-stochastic simulations (e.g., by simple Euler simulations).
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Uncertainties and Modeling Errors
of Type 1 Diabetes Models

Levente Kovács and Péter Szalay

Abstract Modeling and control are tightly connected if we want to guarantee safety
and reliability. These are minimum requirements in the medical field. The more
sophisticated methods usually require information beyond the available measure-
ments, and one way or another incorporate all a priori knowledge. This can manifest
in state estimation,model-based prediction, or robust design assuming theworst case,
among others. The better the model the better the achievable control; however, all
aspects of modeling are more difficult in the case of physiological systems compared
to regular engineering applications. In the following, we will investigate how various
errors resulting from modeling inaccuracies affect the prediction of the behavior in
case of blood glucose prediction. Sigma-point filters are used to efficiently support
Kalman filtering, while the error sources are introduced in a single uncertainty block.

1 Introduction

Diabetes mellitus is the dysfunction of the human glucose regulation that is currently
incurable, but treatable. Normally, the concentration of plasma glucose is kept in a
narrow range (3.9–7.8 mmol/L or 70–110 mg/dL) by a complex endocrine system,
where insulin plays a key role in this process. Type 1 (insulin dependent), Type 2 (non-
insulin dependent), gestational, and special types like genetic deflections are the types
of diabetes. Classical therapy of type 1 diabetes mellitus (T1DM) consists of insulin
injections administered by the patient. However, even the most cooperative patient
can be subjected to the chronic complications, such as neuropathy, nephropathy,
or retinopathy, among others [14]. Existing therapies could greatly benefit from an
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accurate prediction of the plasma glucose concentration, as well as optimized dosage
of insulin based on these predictions.

Complete automation of the treatment is researched in the literature (for T1DM)
under the artificial pancreas (AP) problem. AP consists on three components: a
continuous glucose monitoring (CGM) sensor for the subcutaneous measurement of
glucose concentrations, an insulin pump for the subcutaneous delivery of insulin,
and a control algorithm that based on CGM measurements is able to determine the
necessary insulin dosage to be injected by the insulin pumps [7, 8].

There are various control methods already developed: classical PID [25]; run-
to-run control [39]; exact linearization-based nonlinear control [26]; H∞ control
[10, 13, 27, 29]; model predictive control (MPC) [16, 22, 24]; linear parameter
varying (LPV)-based robust control [9, 21]. Soft computing-based methods, such
as fuzzy logic control [28] and model-free soft computing-based control [36] are
gaining popularity as well. Most of these techniques require signals beyond what is
physically measurable; hence, accurate estimation of the state variables and precise
modeling is needed.

In this chapter, various error sources related tomodelingwill be investigated using
the widely used T1DMmodel of the literature [16]. Section2 focuses on the general
aspects of modeling the human metabolism, briefly presenting the used model for
our investigations. Model reduction is examined in Sect. 3. State estimation in terms
of novel versions of Kalman filtering is detailed in Sect. 4, while the modeling errors
resulting from estimation is investigated in Sect. 5. Section6 concludes the paper.
Simulations have been performed using the in silico simulator of the University of
Cambridge version 2.2 (SimEdu) [35].

2 Modeling Diabetes

Various models appeared in the literature to describe the normal or impaired human
metabolism. One of the earliest and simplest can capture the dynamics using merely
three state variables [4]. On the other hand, one of the most sophisticated models
[31]—despite being potentially highly accurate—contains way too many states and
parameters to be useful in the clinical practice. Furthermore, the representation of
subcutaneous compartments is usually neglected in the early models. However, the
ones presented in [24, 35] corrected these shortcomings by balancing complexity and
manageable size and including the subcutaneous route for both sensor and actuator.
Even if we consider ordinary differential equations only, the available models which
are successfully used for various purposes are beyond count; but, they do share
certain similarities: they contain some form of nonlinearity, most frequently the
multiplication of two state variables, Michaelis–Menten functions, and saturation. In
general, transfer rate between two states (representing compartments) are a function
of other state variables. Most of the state variables cannot have negative value. There
are inputs which cannot be measured and only vaguely represented, such as stress or
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physical activity. Finally, the model parameters are assumed to be changing in time.
In the followings, these models will be referred to as T1DM models.

The model investigated in this paper is described by the following differential
equations [35]:

Ċ(t) = −ka,intC(t) + ka,int
VG

Q1(t)

Q̇1(t) = −
(

F01
Q1(t)+VG

+ x1(t)
)
Q1(t) + k12Q2(t)

−Rclmax{0,Q1(t) − RthrVG} − Phy(t)

+EGP0max{0, 1 − x3(t)} + min
{
UG,ceil,

G2(t)
tmax

}

Q̇2(t) = x1(t)Q1(t) −
(
k12 + x2(t)

)
Q2(t)

ẋ1(t) = −kb1x1(t) + SIT kb1I(t)

ẋ2(t) = −kb2x2(t) + SIDkb2I(t)

ẋ3(t) = −kb3x3(t) + SIEkb3I(t)

İ(t) = ka
VI
S2(t) − keI(t)

Ṡ2(t) = −kaS2(t) + kaS1(t)

Ṡ1(t) = −kaS1(t) + u(t)

Ġ2(t) = G1(t)−G2(t)

max
{
tmax,

G2(t)
UG,ceil

}

Ġ1(t) = − G1(t)

max
{
tmax,

G2(t)
UG,ceil

} + D(t)

(1)

where the state variables are: C(t) glucose concentration in the subcutaneous tissue
[mmol/L], Q1(t) and Q2(t) the masses of glucose in accessible and nonaccessible
compartments [mmol], x1(t), x2(t) and x3(t) remote effect of insulin on glucose
distribution, disposal, and endogenous glucose production, respectively, [1/min],
I(t) insulin concentration in plasma [mU/L], S1(t), and S2(t) insulin masses in
the accessible and nonaccessible compartments [mU], G1(t), and G2(t) glucose
masses in the accessible and nonaccessible compartments [mmol]. u(t)-injected
insulin flow of rapid-acting insulin [mU/min] is the input of the system, while D(t)
amount of ingested carbohydrates [mmol/min], and Phy(t) effect of physical activity
[mmol/min] are considered as disturbances.

The parameters of the model are ka,int transfer rate constant between the plasma
and the subcutaneous compartment [1/min], VG distribution volume of glucose in
the accessible compartment [L], F01 parameter of the total non-insulin dependent
glucose flux [mmol/min], k12 transfer rate constant from the nonaccessible to the
accessible compartment [1/min], Rcl renal clearance constant [1/min], Rthr glucose
threshold [mmol/L], EGP0 endogenous glucose production extrapolated to the zero
insulin concentration [mmol/min], tmax time-to-maximum appearance rate of glu-
cose in the accessible compartment [min], UG,ceil maximum glucose flux from the
gut [mmol/kg/min], kb1 and kb2 deactivation rate constants [min

−2

mU/L ], kb3 deactivation

rate constant for the insulin effect on endogenous glucose production [min
−1

mU/L ], SIT ,
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SID and SIE insulin sensitivities for transport, distribution, and endogenous glucose
production [min

−1

mU/L ] and [ 1
mU/L ], ka insulin absorption rate constant [1/min], VI vol-

ume of distribution of rapid-acting insulin [L], ke fractional elimination rate from
plasma [1/min]. The following parameters are assumed to be time-varyingwith±5%
deviation: ka,int , F01, k12, EGP0, kb1, kb2, kb3, SIT , SID, SIE , ka, and ke.

This can be extended with a continuous glucose monitor (CGM) model, with
C(t) as input and measured glucose concentration as output. There are various CGM
models to choose from [5, 6, 12]. The sampling time associatedwith sensor is usually
around 5min.

2.1 Linear Parameter Varying Model

There are several ways to handle the nonlinearity of the model. The classical non-
linear methodology focuses on the differential geometric approach [17], while a
more recent methodology is represented by linear parameter varying (LPV) systems
[3, 23]. LPV is an acceptable compromise between the model’s complexity and the
developed control algorithm, as LPV systems can be seen as an extension of linear
time invariant (LTI) systems, where the relations are considered to be linear, but
model parameters are assumed to be functions of a time-varying signal.

Most T1DM models can be represented with a linear parameter varying (LPV)
model [21, 32]. These models are essentially an extension of linear models, and have
the following form:

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) + D(ρ(t))u(t)

A(ρ(t)) = A0 +
m∏
i=1

ρi(t)AiB(ρ(t)) = B0 +
m∏
i=1

ρi(t)Bi

C(ρ(t)) = C0 +
m∏
i=1

ρi(t)CiD(ρ(t)) = D0 +
m∏
i=1

ρi(t)Di

(2)

where the scheduling variables (ρ(t)) are assumed to be bounded, as well as their first
time derivatives. Although different configurations are possible [32], the following
scheduling parameters have been chosen for model (1):

ρ(t) =
⎛
⎝

ρ1(t)
ρ2(t)
ρ3(t)

⎞
⎠ =

⎛
⎝

Q1(t)
F01(Q1(t) + VG)−1

Q2(t)

⎞
⎠ (3)
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3 Model Reduction

As model (1) is an 11th order model, it is rather difficult to handle for anything
beyond simulations. A decreased number of state variables would be more practical
for tasks with memory and computation power requirements rising exponentially
with the model order. Based on the parameter bounds presented in [16, 35] the speed
of transfer between certain compartments is comparable to the sampling time of
the CGM. Hence, the states associated with them can be eliminated. The resulting
reduced model is as follows:

Q̇1(t) = −
(

F01
Q1(t)+VG

+ x1(t)
)
Q1(t) + k12Q2(t)

−Rclmax{0,Q1(t) − RthrVG} − Phy(t)

+EGP0max
{
0, 1 − kaSIE

VI ke
S2(t)

}
+ min

{
UG,ceil,

G2(t)
tmax

}

Q̇2(t) = x1(t)Q1(t) −
(
k12 + kaSID

VI ke
S2(t)

)
Q2(t)

ẋ1(t) = kb1
(
kaSIT
VI ke

S2(t) − x1(t)
)

Ṡ2(t) = −kaS2(t) + kaS1(t)

Ṡ1(t) = −kaS1(t) + u(t)

Ġ2(t) = G1(t)−G2(t)

max
{
tmax,

G2(t)
UG,ceil

}

Ġ1(t) = − G1(t)

max
{
tmax,

G2(t)
UG,ceil

} + D(t)

(4)

where the output is C(t) ≈ Q1(t)/VG.
The equations for state variables S1(t), S2(t) and x1(t) can be regarded as a third-

order linear system with injected insulin u(t) as the only input and three outputs:
x1(t), x2(t) ≈ (kaSIDS2(t))/(VIke) and x3(t) ≈ (kaSIES2(t))/(VIke). Graphical rep-
resentation of state elimination is presented in Fig. 1.

Fig. 1 Eliminating state
variables. Circle nodes
represent linear, square
nodes represent nonlinear
equations. Disturbance input
Phy(t) is not displayed

u(t)

D(t)

C(t)

S1(t)

S2(t)

I(t)

x1(t)

x2(t)

x3(t)

Q2(t)

Q1(t)

G2(t)

G1(t)

C(t)
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Fig. 2 Output of the original (solid line) and reduced system (dashed line)
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Fig. 3 Bode diagram for different types of reduction. Reduced 1 represents the effect of state
elimination only (4). Reduced 2 displays the Bode diagram in case the subsystem is reduced to a
2nd-order one, but no weighting is used, unlike in case of reduced 3 where weighting has been also
applied
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Further reduction of this third-order system is possible using frequency-weighted
balanced reduction presented in [11] or [37]. Ifweighting is needed, onemight use the
nonlinear subsystem of the model—described by the equations belonging to states
Q1(t) andQ2(t)—linearized at a chosen working point. However, when the system is
used in other working points, this may not be the most effective choice. In Fig. 2, the
outputs of the original 11th-order model (1) is compared with the reduced 7th-order
model (4), where four state variables were neglected. The insulin, meal, and physical
activity inputs are randomly generated [32], assuming time-invariant parameters.

Figure3 presents the Bode diagrams of the above-mentioned third-order subsys-
tem for all three outputs in the case of different types of reduction.

The parameters changing in time can alter the dynamics of themodel quite signifi-
cantly, which can lead to errors in prediction as well as instability in closed-loop con-
trol. The ±5% deviation can be considered a rather optimistic assumption. Figure4
shows the comparison of the output of the time-invariant model with an example in
the case of time-varying parameters, as well as the envelope for the maximum devi-
ation from the nominal behavior during simulation. Note, that not even these figures
represent the theoretically possible highest deviation, for randomized simulations
cannot guarantee a deterministic worst case scenario [33].
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Fig. 4 Time-varying parameters. The solid line is the output of the nominal model, the dashed line
is an example output in case of changing parameters, while the bounds marked with dotted lines
are the results of numerous simulations with randomized settings
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4 State Estimation

Prediction usually needs information about all state variables of the system, as well
as some of the more advanced control techniques. Hence, since they are not available
for measurement, reliable estimation is needed. Kalman filter is a popular choice for
such tasks. They are especially useful in the case of prediction, since Kalman filters
provide not only the estimated values of the states, but the variance of the estimation
error as well. When the CGM has significant drift, this information can be used for
recalibration. Let us approximate the combination of T1DM and sensor models with
the following discrete-time nonlinear system:

xk+1 = f(xk, uk,wk)

yk = h(xk) + nk
(5)

where xk ∈ R
nx is the vector of state variables, yk ∈ R denotes the measured output

disturbed with nk ∼ N (0,Rk) additive white noise. uk ∈ R
nu is the vector of known

deterministic inputs, while wk ∼ N (0,Qk) is the vector of disturbances affecting
the states, with assumingly zeromeanGaussian distribution and nw × nw real positive
semidefinite covariancematrixQk . f : Rnx × R

nu × R
nw → R

nx and h : Rnx → R are
piecewise continuous nonlinear mappings. The errors resulting from the assumptions
made about the disturbances andmeasurement noise are not investigated in this paper.

Once the new model (5) is available, it is possible to use Kalman filter for state
estimation or prediction. Extended Kalman filter is the usual choice in the case of
nonlinear systems. However, the precision of this filter is only satisfactory in case of
mild nonlinearity and disturbances, since it is based on first-order linearization [15].

Amore effective alternative are the use of sigma-point filters. They use a number of
deterministic samples, called sigma points, to represent the probability distribution of
the system state needed in theKalman filter algorithm [19]. There are several versions
which differ mainly on how these sigma points are selected. Cubature Kalman filter
(CKF) is based on the cubature rule [1] and is one of the most straightforward
approaches. Unscented Kalman Filter (UKF) relies on the unscented transformation
with parameters that can be tuned for each filtering problem in order to achieve better
performance [19]. Gauss–Hermite quadrature filter (GHQF) can be used if Gaussian
distribution is guaranteed offering the highest accuracy [2]. However, it also requires
a large amount of sigma points and hence increased computational power which
can be undesirable in certain practical applications. As a result, our choice went on
sparse-grid quadrature filtering method (SGQF) developed in order to overcome the
dimensionality problem of GHQF [18]. Moreover, CKF and UKF can be considered
as a special form of SGQF.
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4.1 Sigma-Point Selection

Let us introduce the notation χ for a set of sigma points. This set contains N sigma
points denoted as ξi, i = 1, . . . ,N . The sigma points represent the stochastic variable
μ with μ̂ mean and Σ covariance matrix, and can be written in the following form:

ξi = Σ
1
2 ϕi + μ̂ (6)

Σ
1
2 is the factor of Σ so that Σ = Σ

1
2 (Σ

1
2 )T , and since Σ is positive definite,

Cholesky decomposition is commonly used. In case Σ is close to being singular, or
nondefinite due to sigma-point collapse [34], singular value decomposition can be
used as well [18]. μ is not limited to state variables only, it contains the disturbances
and measurement noises as well [30], so that:

μ̂ =
⎛
⎝
x̂
0
0

⎞
⎠ Σ =

⎡
⎣

Σ 0 0
0 Q 0
0 0 R

⎤
⎦ (7)

where Q and R denote covariance matrices of the disturbances and measurement
noise, just like earlier. Using these sigma points, one can estimate the mean and
covariance of the distribution of f (χ) as a weighted sum, where f (.) is a nonlinear
function:

E {f (μ)} = f̄μ ≈ ∑N
i=1 ω

(m)
i f (ξi)

cov {f (μ)} ≈ ∑N
i=1 ω

(c)
i

(
(f (ξi) − f̄μ)(f (ξi) − f̄μ)T

) (8)

There are various strategies to choose ϕi and the weights ω
(m)
i and ω

(c)
i . In case

of CKF, there are 2L sigma points, where L is the dimension of μ. The weights and
basis functions ω(m), ω(c), and ϕ in the case of a CKF are:

ϕi =
{
ei

√
L i = 1, . . . ,L

−ei
√
L i = L + 1, . . . , 2L

ω
(m)
i = ω

(c)
i = 1√

L

(9)

where ei denotes the unit vector in RL with the (i − 1)th element being 1. Note that
CKF does not have any adjustable parameter, opposed to UKF which has three: κ ,
α, and β. The weights and basis functions ω and φ in the case of a CKF are:
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ϕi =
⎧
⎨
⎩

0 i = 1
ei

√
L + λ i = 2, . . . ,L + 1

−ei
√
L + λ i = L + 2, . . . , 2L + 1

ω
(m)
i =

{
λ

n+λ
i = 1

ω
(m)
i = 1

2(n+λ)
i = 2, . . . , 2L + 1

ω
(c)
1 =

{
λ

n+λ
+ 1 − α2 + β i = 1

ω
(c)
i = 1

2(n+λ)
i = 2, . . . , 2L + 1

(10)

where λ = α2(L + κ) − L is a scaling parameter [15]. The constant α determines
the spread of sigma points around μ, and is usually set to a small positive value (e.g.,
1 ≥ α ≥ 10−4). The constant κ is a second scaling parameter usually set to 3 − L
so that the kurtosis of the sigma points agrees with that of the Gaussian distribution
[20]. β is used to incorporate prior knowledge of the distribution of μ and usually
set to 2 for Gaussian distribution. In case α = 1 and β = 0, both CKF and UKF can
be seen as a special case of level-2 SGQF.

ϕi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i = 1
eip1 i = 2, . . . ,L + 1
−eip1 i = L + 2, . . . , 2L + 1
eip2 i = 2L + 2, . . . , 3L + 1
−eip2 i = 3L + 2, . . . , 4L + 1
eip3 i = 4L + 2, . . . , 5L + 1
−eip3 i = 5L + 2, . . . , 6L + 1
eip1 + ejp1, i = 6L + 2, . . . , 6L + 1 + C j 	= i
−eip1 + ejp1, i = 6L + 2 + C, . . . , 6L + 1 + 2C j 	= i
eip1 − ejp1, i = 6L + 2 + 2C, . . . , 6L + 1 + 3C j 	= i
−eip1 − ejp1, i = 6L + 2 + 3C, . . . , 6L + 1 + 4C j 	= i

ωi =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
(L−2+Lω̂2

1)

2 − Lω̂1

)
(L − 1) + Lω̂3 i = 1

(L − 1)ω̂2(ω̂1 − 1) i = 2, . . . , 2L + 1
ω̂4 i = 2L + 2, . . . , 4L + 1
ω̂5 i = 4L + 2, . . . , 6L + 1
ω̂2
2 i = 6L + 2, . . . , 6L + 1 + 4C

(11)

The level-3 SGQF requires 2L2 + 4L + 1 or less sigma points. The exact number
depends on how the three free parameters—p1, p2, and p3—are chosen. Similarly
to the GHKF, these parameters are selected from the perspective of an univariate
estimation,where the pointsμ + {−p1, 0, p1} andμ + {−p3,−p2, 0, p2, p3} are used
to estimate certain moments of an univariate Gaussian distribution transformed by
a nonlinear function. If all parameters are different, the sigma points used in the
level-3 SGQF are shown in Eq. (11), where C = L(L − 1)/2, while ω̂1, . . . , ω̂5 are
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defined from the parameters p1, p2, p3 usingmomentmatchingmethod. Furthermore,
ω

(c)
i = ω

(m)
i and j 	= i.

5 Model Uncertainty

Control methods using state feedback, like the popular MPC [24, 35] or exact
linearization-based control [26], require all state variables. LPV modeling (and con-
trol) is less strict requiring only that the scheduling parameters should be available
for measurement. However, since these signals cannot be measured directly, the esti-
mation error must be taken into consideration. Consequently, it can be regarded as
additional parameter inaccuracy or a virtual disturbance. For model (1), a combi-
nation of the two approaches have been chosen. For the scheduling variable ρi(t),
we can assume that the estimated ρ̂i(t) is the correct value, but additive Δρi,0 and
multiplicative Δρi,1 error is present, as well as a disturbance dρ,i(t) with Gaussian
distribution and zero mean. Hence:

ρi(t) ≈ ρ̂i(t)(1 + Δρi,1) + Δρi,0 + dρ,i(t) (12)

The values of Δρi,0 and Δρi,1 can be defined using least squares (LS) or weighted
least squares (WLS) method based on a series of simulations with carefully cho-
sen randomized inputs, initial conditions, and measurement noises. Once these two
parameters are set, the worst case value of the variance of dρ,i(t) can be defined
(Fig. 5). Figure6 displays how the additive and multiplicative error of the scheduling
parameters can change the behavior of the nominal model in worst case scenario.

5.1 Error Weighting Function

Due to the high number of error sources and inaccuracies, estimating the worst case
behavior of the system can be demanding for computations. However, it is possible
to capture them in a single weighting function W(s) [38] in an offline way (Fig. 7).
Once this function is available, the online tasks of prediction and control can consider
worst case deviation from the nominalmodel easier. An example is displayed in Fig. 8
obtained by simulations on the in silico simulator of the University of Cambridge
version 2.2 (SimEdu) [35].W(s) incorporates parameters changing in time, reduction
using state elimination and scheduling variable estimation error.
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Fig. 5 Defining parameter uncertainty parameters for ρ1(t). In the upper subplot, the absolute
difference between the estimated (ρ̂1) and the real (ρ1) value of a scheduling variable is displayed
as a function of the estimated value. Thedashed line represents the chosen additive andmultiplicative
uncertainty. Everything that is not covered by the uncertainty is considered disturbance. The lower
subplot shows the time function of a scheduling variable (dotted line), the estimation (solid line),
and the uncertainty bounds (dashed line)
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Fig. 6 Effects of scheduling variable estimation error. The solid line is the output of the nominal
model; the dashed lines are the bounds for how much the response of the actual system can deviate
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Fig. 7 Output multiplicative uncertainty. Δ represents an unstructured uncertainty block, which is
an unknown linear system assumed to have H∞ norm smaller than 1, stable and minimal phase
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Fig. 8 Uncertainties and errors represented with a single weighting function. The solid line is the
output of the nominal model, the dashed lines are the bounds for how much the response of the
actual system can deviate

6 Conclusion

In this chapter, the effects of changing parameters, model reduction, and state esti-
mation errors were examined on the widely used T1DM model of [16] to show the
challenges they impose on model-based prediction and control. Sigma-point filters
have been used as an extension of the nonlinear Extended Kalman Filtering tech-
nique, offering higher accuracy in this particular problem.

Further work will focus on parameter sensitivity of each sigma-point method,
but a more sophisticated sensor model could be used as well. Filters requiring less
sigma points should be included also in the comparison. The question of robustness
has to be investigated as well, since it is safe to assume that the used T1DM model
is inaccurate. Finally, additional safety measures must be taken in case the patient
would be less cooperative, and occasionally neglect the requested sensor calibration
or be simply late with the measurement.
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Recent Results on Glucose–Insulin
Predictions by Means of a State Observer
for Time Delay Systems

Pasquale Palumbo, Pierdomenico Pepe, Simona Panunzi
and Andrea De Gaetano

Abstract To achieve accurate and affordable predictions of glucose and insulin
plasma concentrations is of paramount importance, especially in the field of the
artificial pancreas, where real-time measurements could be properly exploited in
model-based glucose control algorithms. This note focuses on a recently developed
research line that makes use of a state observer to estimate insulin in real-time from
glucose measurements, since it is known that insulin measurements are slower and
more cumbersome to obtain, more expensive and also less accurate. Based on these
predictions, glucose control algorithms can be designed and can be exploited for both
intravenous and subcutaneous insulin infusions. The safety, robustness, and efficacy
of the observer-based control algorithms have been validated on a population of rather
heterogenous virtual patients, modeled by a different, comprehensive model of the
glucose–insulin system, recently accepted by the Food and Drug Administration as
a substitute of animal trials.

1 Introduction

Diabetes mellitus (DM) is a worldwide disease with an alarming increase, especially
in the developing countries; the diabetic population, estimated to be around 171 mil-
lion people in 2000, has been predicted to double within 2030, [38]. To diagnose and
contain the spread of DM disease, glucose and insulin predictions are of great impor-
tance, especially when required in closed-loop, real-time algorithms for the artificial
pancreas. Differently from plasma glycemia, which can be straightforwardly mea-
sured with relative low-cost devices and affordable algorithms, plasma insulinemia
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is slower and more cumbersome to obtain, more expensive and also less accurate.
This fact stimulates the study of algorithms capable of providing the plasma insulin
concentration by processing a stream of glycemia measurements. When these algo-
rithms exploit the available measurements as coming from a known deterministic
dynamical model generating them, we deal with state observers. The importance
of these powerful tools is due to the great variety of observer-based control laws
applicable, at least in theory, to the glucose control problem, with exogenous insulin
administration playing the role of the control input. Observer-based closed-loop con-
trol laws belong to the field of model-based strategies, that means the regulator is
synthesized by explicitly exploiting the structure of the model equations [4].

Differently from the great majority of model-based approaches, which use non-
linear ordinary differential equation (ODE) models, a nonlinear discrete-delay dif-
ferential equation (DDE) model of the glucose/insulin system is considered [20, 32].
Motivation to use DDE models is that they provide a better representation of the
pancreatic insulin delivery rate (IDR) (e.g., [12, 17] and references therein), there-
fore allowing to treat in a unified fashion both Type 1 and Type 2 diabetic patients,
these latter with a not negligible IDR. More in detail, the adopted glucose/insulin
DDE model has been shown to exhibit a number of desirable characteristics, such as
to conform to established physiological concepts (e.g., pancreatic insulin secretion
rate is limited), to exhibit satisfactory properties of the solutions (e.g., positivity and
boundedness of solutions, local attractivity of a single positive equilibrium, [20]),
and to be statistically robust, in that its parameters are identifiablewith very good pre-
cision, fitting the model onto observations from standard perturbation experiments,
such as the intravenous glucose tolerance test (IVGTT), [31, 32].

Different results are here reported, dealing with theoretical design (feedback lin-
earization with delay cancelation, state observers, asymptotic convergence, local
input-to-state stability) and practical issues (discretization of the control algorithm,
measurement uncertainties, insulin pump malfunctioning, intrapatient variability)
according to both intravenous [22, 23, 25, 26] and subcutaneous [21, 24, 28] insulin
delivery.Although the proposed control laws require the knowledge of thewhole state
of the system (i.e., both glycemia and insulinemia, possibly also at retarded instants)
only glucosemeasurements have been exploited, leaving the task to provide real-time
insulin estimates to an observer for nonlinear time delay systems. Safety, efficacy,
and robustness have been recently validated [30] on a population of Virtual Patients
(VP) generated by a different, comprehensive model of the glucose–insulin system,
recently accepted by the Food and Drug Administration as a substitute of animal
trials, [15].

The chapter continues as follows. Next Section is devoted to introduce the DDE
model of the glucose–insulin system adopted for the state prediction task and, con-
sequently, for the synthesis of the closed-loop control. Sections3 and 4 deal with
the intravenous and subcutaneous insulin delivery modes, detailing with the most
important results achieved. Conclusions follow.
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2 The DDE Model of the Glucose–Insulin System

The model-based algorithms here reported for the artificial pancreas have been
synthesized according to the following DDE model of the glucose–insulin system
[20, 32]. Symbols ‘mmol’ and ‘pmol’ stand formillimoles and picomoles, with ‘mM’
and ‘pM’ denotingmmoles/liter and pmol/liter, respectively. The equations are writ-
ten with respect to plasma glycemia, G(t), [mM], and insulinemia, I(t), [pM]:

dG(t)

dt
= −KxgiG(t)I(t) + Tgh

VG
+ d(t)

VG
,

dI(t)

dt
= −KxiI(t) + TiGmax

VI
f
(
G(t − τg)

) + u(t)

VI
, (1)

with Kxgi, [min−1 pM−1], the rate of (insulin-dependent) glucose uptake by tissues
per pM of plasma insulin concentration; Tgh, [(mmol/kgBW)/min], the net balance
between hepatic glucose output and insulin-independent zero-order glucose tissue
uptake; VG, VI , [L/kgBW], the apparent distribution volumes for glucose and insulin,
respectively; Kxi, [min−1], the apparent first-order disappearance rate constant for
insulin; TiGmax , [(pmol/kgBW)/min], the maximum rate of second-phase insulin
release; τg, [min], the apparent delay with which the pancreas varies secondary
insulin release in response to varying plasma glucose concentrations.

The following Hill function is chosen for the nonlinear map f (·), modeling the
endogenous pancreatic insulin delivery rate:

f (G) = (G/G∗)γ

1 + (G/G∗)γ
, (2)

with γ the Hill coefficient and G∗, [mM], the glycemia at which the insulin release
is half of its maximum rate.

The exogenous signals u(t), [(pmol/kgBW)/min], and d(t), [(mmol/kgBW)/min],
are the control input (i.e., the external insulin delivery rate) and a disturbance in the
glucose dynamics (e.g., the glucose intake from a meal). As a matter of fact, model
(1) does not consider the subcutaneous depot assuming that insulin is straightfor-
wardly delivered intravenously. On the other hand, in case of subcutaneous insulin
administration, Eq. (1) are modified as follows:

dG

dt
= −KxgiG(t)I(t) + Tgh

VG
+ d(t)

VG
,

dI

dt
= −KxiI(t) + TiGmax

VI
f
(
G(t − τg)

) + S2(t)

VI tmax,I
,

dS2
dt

= 1

tmax,I
S1(t) − 1

tmax,I
S2(t),

dS1
dt

= − 1

tmax,I
S1(t) + u(t), (3)
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with S1, S2 [pmol/kgBW] the insulin mass in the accessible and not accessible
subcutaneous depot, respectively, and tmax,I , [min], the time-to-maximum insulin
absorption. In this framework, the control input u(t), [pmol/kgBW/min], is the exoge-
nous insulin infusion rate, delivered subcutaneously. Themodel of insulin absorption
here adopted (third and fourth equations in (3)) refers to [35] with no insulin degrada-
tion at the injection site. It has been recently analyzed in [39], and it has been exploited
with the aim of glucose control in [11], according to which, here we assume the same
notation.

As far as the initial conditions, the subject is supposed to be at rest before the
insulin therapy starts, so that plasma glycemia and insulinemia are equal to the
constant (hyperglycemic for uncontrolled diabetic patients) basal levels (Gb, Ib):

G(τ ) = Gb, I(τ ) = Ib, τ ∈ [−τg, 0]. (4)

In case of model (3), besides (4) we have that the subcutaneous depots are empty;
therefore,

S1(τ ) = 0, S2(τ ) = 0, τ ∈ [−τg, 0]. (5)

It has to be stressed that models (1–3) may represent equally well healthy subjects
and insulin-resistant or severely insulin-deficient diabetic patients, by appropriately
changing the parameter values. Moreover, it does belong to the class of “minimal
models,” in the sense that according to a “minimal” set of independent parameters,
it allows to very well resemble the physiology of the glucose/insulin kinetics, and
it is identifiable from data with very good precision, according to IVGTT standard
perturbation experiments (see [31, 32]).

3 Observer-Based Control by Means of Intravenous Insulin
Infusion

Exogenous insulin administration is the basic procedure to cope with diabetes; for
Type 1 patients only exogenous insulin is available, while for Type 2 exogenous
insulin complements pancreatic production. The use of intravenous insulin adminis-
tration, delivered by automatic, variable speed pumps under the direct supervision of
a physician, provides a wide range of possible strategies and ensures a rapid delivery
with negligible delays. As a matter of fact, control algorithms based on intravenous
infusions (we can cite, among the others, [5, 7, 13, 14, 25, 33, 36]) are directly
applicable so far only to problems of glycemia stabilization in critically ill subjects,
such as in surgical intensive care units after major procedures, [37].

The aim of the proposed control law therapies is to reduce a high basal plasma
glucose concentration to a lower level, according to a smooth reference glucose
trajectoryGref(t). The equations of model (1) will be taken into account. The control
law is synthesized disregarding any disturbances in the glucose dynamics, likemeals.
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The ability of the controller to reject these disturbances will play a crucial role in the
evaluation of the artificial pancreas.

3.1 Synthesis of the Glucose Control Law

Define the tracking error as follows:

e(t) =
[
e1(t)
e2(t)

]
= Z(t) − Zref(t) (6)

with:

Z(t) =
[
z1(t)
z2(t)

]
=

[
G(t)

−KxgiG(t)I(t) + Tgh
VG

]

, Zref(t) =
[
Gref(t)
Ġref(t)

]
, (7)

where Gref(t) is the glucose reference signal to be tracked. It is supposed to be
bounded (with lower bound strictly positive), twice continuously differentiable, with
bounded first and second derivatives. Since Gref(t) provides the desired plasma glu-
cose concentration, it clearly comes that these constraints readily match with a phys-
iologically meaningful choice. Examples of suitable Gref(t) can be found in [22, 25,
30], where a function exponentially decreasing from the hyperglycemic basal state
down to a safe euglycemic level is chosen.

In [22], according to the theory of input–output feedback linearization with delay
cancelation (see [8, 10, 19]), with respect to the output y(t) = G(t) and the input
u(t), it is shown that, by applying the control input

u(t)

VI
= S

(
G(t), I(t),G(t − τg)

) − v(t)

KxgiG(t)
, t ≥ 0, (8)

with

S
(
G(t), I(t),G(t − τg)

) = −KxgiI(t)

(
−KxgiI(t)G(t) + Tgh

VG

)

− KxgiG(t)

(
−KxiI(t) + TiGmax

VI
f
(
G(t − τg)

)
)

(9)

and
v(t) = G̈ref(t) + Re(t), (10)
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the tracking error dynamics can be written as:

ė(t) = He(t), H =
[
0 1
0 0

]
+

[
0
1

]
R. (11)

Because of the structure ofH, the control matrix R ∈ IR1×2 can be designed such that
matrixH has prescribed eigenvalues in the left half complex plane, thus ensuring the
exponential convergence to zero of the tracking error, that implies G(t) �→ Gref(t).

Such a control law (8–10) requires both glucose and insulin measurements; on
the other hand, insulin measurements are slower and more cumbersome to obtain,
more expensive, and also less accurate than glucose measurements: a need exists,
therefore, to construct a control law avoiding the measurements of insulin serum. For
these reasons, a state observer for system (1) has been considered in [25], in order to
estimate the plasma insulin concentration and design a feedback control law based
on only glucose measurements. To this end, denote with Ĝ(t), Î(t) the glucose and
insulin estimates and consider the following equations for the observer:

[
dĜ/dt
d̂I/dt

]
=

[ −KxgiĜ(t)̂I(t) + Tgh
VG

−KxîI(t) + TiGmax
VI

f
(
Ĝ(t − τg)

) + u(t)
VI

]

+Q−1
(
Ĝ(t), Î(t)

)
W(G(t) − Ĝ(t)), (12)

where Q−1 is the inverse matrix of the matrix function Q(x1, x2) ∈ IR2×2 defined as

Q(x1, x2) =
[

1 0
−Kxgix2 −Kxgix1

]
, (13)

and the observer gain matrixW ∈ IR2×1 is designed to ensure that

Ĥ =
[
0 1
0 0

]
− W

[
1 0

]
(14)

is Hurwitz with prescribed eigenvalues in the left half complex plane. The initial
conditions for (12) are formally given by

Ĝ(τ ) = Ĝ0(τ ), Î(τ ) = Î0(τ ), τ ∈ [−τg, 0]. (15)

According to [25] and references therein, it comes that the observer can be designed
such that, if the estimation error at zero is sufficiently small and the input signal is
suitably bounded, the estimation error converges exponentially to zero, with arbitrary
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decay rate fixed by means of a suitable choice of W . Moreover, substitute the real
glucose and insulin values in (8–9) with the estimates coming from the observer:

u(t)

VI
= S

(
Ĝ(t), Î(t), Ĝ(t − τg)

) − v(t)

KxgiĜ(t)
, t ≥ 0, (16)

and consider
v(t) = G̈ref(t) + Rê(t) (17)

with the target error ê(t) defined by ê(t) = Ẑ(t) − Zref(t), with:

Ẑ(t) =
[
ẑ1(t)
ẑ2(t)

]
=

[
Ĝ(t)

−KxgiĜ(t)̂I(t) + Tgh
VG

]

. (18)

It is proven in [25] that there exist gain matrices R, W such that the closed-loop
system given by (1) with d(t) = 0, (12), (16–17) ensures that the plasma glycemia
is controlled to track the reference trajectory, with the error tracking asymptoti-
cally converging to zero, provided that the initial tracking and observer errors are
suitably small. It worths noticing that such a result is ensured by exploiting both
the estimated glucose and insulin concentrations in the control law. To use the real
(and available) glucose measurements, instead of the estimated glycemia, would
not ensure improvements nor (and more important) would it ensure to maintain the
aforementioned theoretical results.

Remark 1 Since the theory does not explicitly take into account the impossibility
to release negative insulin, in this cases, the regulator would temporarily switch
off, leaving the patient without control for an unpredictable period. This is clearly an
undesirable situation, to be avoided. Another important requirement is to prevent glu-
cose oscillations, possibly determining dangerous hypoglycemia. Both these issues
need to be addressed in the setting of the control parameters (i.e., matrices R and
W ), as well as in the setting of the reference glucose trajectory, realizing a tradeoff
between closed-loop fast asymptotic stability (suitably negative real part eigenvalues)
and transient behavior (possibly smooth trajectories without oscillations). Simula-
tions reported in [30] (see Figs. 2 and 3) show that the issue to prevent the switching
off of the regulator cannot be ensured, at least when implementing the control law on
a virtual environment, accounting for uncertainties affecting sensors and actuators
devices aswell asmodel parameter uncertainties; nevertheless, undesired oscillations
can successfully be avoided.

3.2 Evaluation Criteria and Validation

Numerical simulations run by closing the control loop on (1) allowed to set the control
parameters in order to track safely the desired glycemia within a couple of hour of
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insulin administration (see [25] for the details). Of course, a realistic validation
requires to build up an environmental framework which comprises measurement
uncertainties, insulin pump malfunctioning, intrapatient variability as well as the
discretization of the algorithm, because of real-time devices involving digital glucose
sensors and insulin pumps: the former provide quite reliablemeasurements of plasma
glycemia at given sample times, whose frequency is limited by the time needed to
analyze plasma glucose on a bed-side analyzer, [3]; the latter are used to administer
insulin by means of piecewise-constant infusions. To this end, simulations have been
carried out by discretizing the proposed control law at suitable sampling period Δ,
according to the following scheme (k = 0, 1, . . . ):

1. at time kΔ the measurement of G(kΔ) is delivered by the sensor;
2. at time kΔ the control input is computed by means of the available state estimates

Ĝ(kΔ), Ĝ(kΔ − τg), Î(kΔ), see (16):

u(kΔ)

VI
= S

(
Ĝ(kΔ), Î(kΔ), Ĝ(kΔ − τg)

) − v(kΔ)

KxgiĜ(kΔ)
; (19)

if u(kΔ) < 0, then u(kΔ) is forced to be 0;
3. the constant infusion u(kΔ) is administered to the patient in the time interval

[kΔ, (k + 1)Δ);
4. simultaneously with item [3], the controller device integrates numerically the fol-

lowing equation, see (12), in the time interval [kΔ, (k + 1)Δ), using the available
measurement G(kΔ) and past estimations:

[
dĜ/dt

d̂I/dt

]

=
[ −KxgiĜ(t)̂I(t) + Tgh

VG

−KxîI(t) + TiGmax
VI

f
(
Ĝ(t − τg)

) + u(kΔ)

VI

]

+Q−1
(
Ĝ(t), Î(t)

)
W

(
G(kΔ) − Ĝ(kΔ)

);
(20)

5. the value of k is incremented by 1.

Notice that (20) provides the state estimation in the prediction interval
[kΔ, (k + 1)Δ). A crucial point in validating the synthesized control law has been to
exploit two distinct models of the glucose–insulin system [30]. The minimal model
(1), easy-to-handle from the control perspective, though physiologically meaningful
and mathematically coherent, is exploited to synthesize the control law. A different
model, more comprehensive, multicompartmental, is exploited to simulate a Virtual
Patient onto close the artificial pancreas. To this end, the model published in [6],
recently accepted by the Food and Drug Administration as a substitute of animal
trials [15], has been considered. The idea is sketched in Fig. 1. The Virtual Patient
stands for the chosen model for validation (and, in a hopefully not too far future,
could be replaced by a real patient). The model identification dashed arrow point-
ing to the DDE model-based controller from the Virtual Patient block refers to a
methodology to identify the DDE model parameters on the basis of a chosen vir-
tual procedure (for instance, in [30] we considered a virtual IVGTT). The control
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Fig. 1 Sketch of the virtual
environment built up to
validate the model-based
control law

parameter setting dashed arrow working on the DDE model-based controller block
stands for the setting of the control parameters (i.e., matrices R andW ), a procedure
achieved by means of trial and error simulations run on the DDE model without
assuming failures or malfunctioning. The solid arrows refer to the closed-loop sys-
tem, which is implemented once the aforementioned preliminary two tasks have been
properly fulfilled: the Virtual Patient provides sampled glucose measurements to the
controller, and the DDE model-based controller provides the proper insulin infusion
rate to be applied in the time interval [kΔ, (k + 1)Δ).

In [30] the control parameters have been set once and for all the subjects of a
population generated by sampling the many parameters of the virtual patient pro-
vided by [6], each with a 5% of coefficient of variation (CV). Moreover, glucose
measurements are supposed to be affected by a 5% of CV as well as the insulin
infusion is supposed to be affected by a 15% of CV.

Safety and efficacy criteria have been set according to the ones reported in [3]. The
application of these criteria to a population of VPs, with an average basal glycemia
of 9mM, provides very interesting results. In case of absence of meals, no distur-
bance signal d(t) in (1), on a population of 10,000 VPs, no hypoglycemia cases
are reported (glycemia never reduces below 3.3mM), in favor of very good efficacy
results: more than 99.8% of diabetic VPs definitely reduce glycemia below 7mM
within the first 3h of simulated experiments. These results are shown to be robust
with respect to a discretization period Δ ∈ [5, 15]min. Analogous very good results
are obtained by applying the same control law on a 24h temporal period, account-
ing for the administration of three meals (treated as unknown disturbances). Indeed,
besides the complete absence of hypoglycemia cases, glycemia is constrained below
11mM within the 2h from the meal administration and during the period before the
successive meal, for a set of diabetic VPs which exceeds 95% of the population (see
[30] for the details).

Remark 2 It is well known that disturbances like meals are hard to anticipate in
timing, in amount and in the rate of effective absorption of the nutrient. By treating
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the meal d(t) in (1) as a completely unknown disturbance, it is shown in [26] that the
aforementioned closed-loop system (1), (12), (16–18) enjoys the local input-to-state
stability property with respect to the unknown disturbance d(t).

Remark 3 Copying with the need of an implementable discrete-time control law, a
different philosophy would be to work on a discretized glucose–insulin system and
then synthesize the control law according to the discrete framework. In [23], the
DDE model in (1) has been discretized according to [1] and the digital control law is
designed according to [34] where the dummy output proposed in [1] is used, in order
to preserve under sampling the full relative degree of the continuous time model,
up to an approximation of order 3 in the sampling period. The digital control law
proposed in [23] guarantees the asymptotic stability of the suitably approximated
sampled glucose–insulin system.

4 Observer-Based Control by Means of Subcutaneous
Insulin Infusion

Glucose control strategies actuated by means of subcutaneous insulin administration
(see [2] and references therein) are easier to realize and, indeed, they can bemanaged
nowadays by the patients themselves.However, in order to design closed-loop control
algorithms, the insulin absorption from the subcutaneous depot needs also to be
considered (see, among the others [11, 16, 21]).

In order to synthesize a subcutaneously delivered insulin therapy, themodel-based
approach requires to endow the glucose–insulin DDE model (1) with the subcuta-
neous insulin absorption compartment, see the complete model (3). The goal is to
achieve a desired euglycemic glucose level for patients with a basal hyperglycemic
state. No exogenous glucose disturbances are here considered (i.e., d(t) = 0 in (3)).

According to [24, 28], by applying the theory of exact input–output feedback
linearization with delay cancellation (see [8, 10, 18, 19]), with respect to the input
u(t) and the output G(t) − Gd (Gd is the desired level of glycemia), the following
control law is found:

u(t) = VI t
2
max,I

α(·) − v(t)

KxgiG(t)
, (21)

where α(·) is a function of the system variables at the present time G(t), I(t),
S1(t), S2(t), and of some of them at delayed times (namely of G(t − τg), I(t − τg),
S2(t − τg) and G(t − 2τg)), see [24] for the explicit formulation. By applying (21)
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to (3), it comes that the closed-loop system may be written using new variables
z(t) = [G(t) G(1)(t) G(2)(t) G(3)(t)]T as:

ż(t) = Abz(t) + Bbv(t), t ≥ 0, (22)

with Ab, Bb the fourth-order Brunowski pair and the brackets (i) denoting the ith time
derivative. By setting the outer input v(t) = Γ e(t), with

e(t) = z(t) − zd, zd = [Gd 0 0 0]T , (23)

the error dynamics becomes:

ė(t) = He(t), H = Ab + BbΓ. (24)

Since the Brunowski pair is controllable, we design the gain matrix Γ ∈ IR1×4 in
order to make HurwitzH and, therefore, the tracking error between plasma glycemia
and its reference signal (the first component of e(t)) converges exponentially to zero.

Besides the drawbackof real-time insulinmeasurements involved in the aforemen-
tioned glucose control law (shared also by the intravenous insulin delivery therapies
dealts with in Sect. 3), here also subcutaneous insulin measurements are required,
which are quite impossible to obtain, especially in a real-time closed-loop frame-
work. In order to overcome such problems, in [21] a state observer for system (3)
is considered, with the aim of estimating the insulin on the basis of continuous time
glucose measurements.

In order to design the state observer for (3), define X(t) = [G(t) I(t) S2(t)
S1(t)]T ∈ IR4 such that the DDE system (3) with d(t) = 0 can be formally written in
the more compact form:

Ẋ(t) = F
(
X(t),X(t − τg)

) + Bbu(t), (25)

whereF : IR4 × IR4 �→ IR4 is defined forX = [X1 X2 X3 X4]T , Y = [Y1 Y2 Y3 Y4]T ∈
IR4 as:

F (X,Y)=

⎛

⎜⎜⎜⎜⎜
⎝

−KxgiX1X2 + Tgh
VG

−KxiX2 + TiGmax
VI

f (Y1) + 1
tmax,I

X3,

1
tmax,I

X4 − 1
tmax,I

X3

− 1
tmax,I

X4

⎞

⎟⎟⎟⎟⎟
⎠

(26)

The measured output is, then, given by y(t) = G(t) = CbX(t), where Cb =
[1 0 0 0].

The observer for system (25–26) adopted in [21] is the one developed in [9], given
by the following neutral system, with X̂(t),w(t) ∈ IR4:

˙̂X(t) = F
(
X̂(t), X̂(t − τg)

) + Bbu(t) + w(t), t ≥ 0, (27)
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with

w(t)=Q−1
(
X̂(t), X̂(t − τg)

)(
W

(
y(t) − CbX̂(t)

) − Q1
(
X̂(t), X̂(t − τg)

)
w(t − τg)

)
.

(28)

Matrices

Q
(
X̂(t), X̂(t − τg)

) = ∂Θ

(
X̂(t),X̂(t−τg)

)

∂X̂(t)

Q1
(
X̂(t), X̂(t − τg)

) = ∂Θ

(
X̂(t),X̂(t−τg)

)

∂X̂(t−τg)

(29)

are obtained from the partial derivatives of the function Θ(·, ·) (see [9]), which is
formally defined as the aggregate of the output G(t) and its first three time deriva-
tives, obtained according to (3). Θ(·, ·) is a function of the system variables at the
present time (i.e., G(t), I(t), S1(t), S2(t)) and of some of them at the delayed time
(namely G(t − τg) and I(t − τg)) (see [21] for the explicit expression of Θ(·, ·)).
When the function Θ is used for computations in (29), X̂(t) takes the place of
[G(t) I(t) S2(t) S1(t)]T , for any required time t. The gain matrixW ∈ IR4×1 is chosen
such that the matrix Ĥ = Ab − WCb is Hurwitz.

It has been shown in [9] that the gain matrix W can be properly designed to
ensure the global asymptotic convergence to zero of the observation error, provided
that proper conditions are satisfied. Such conditions are not completely satisfied
by the system at hand (for instance, the functions involved in (3) are not globally
Lipschitz). However, we are not interested in the convergence of the observation
error to zero for any initial state and input signal in bounded sets, as in [9], but only
in the convergence, at least locally, of the state variables of the closed-loop system
to the desired equilibrium. To this end, we exploit the observer equations to close
the loop from the observed state X̂(t), so that the state variables in (21) are replaced
by their estimates. Then, the control law becomes:

u(t) = VI t
2
max,I

α(·̂) − v(t)

KxgiCbX̂(t)
, v(t) = Γ

(
ẑ(t) − zd

)
, (30)

with ẑ(t) = Θ(X̂(t), X̂(t − τg) and α(·̂) denoting the function α(·) computed in the
observed state variables X̂(t), X̂(t − τg), X̂(t − 2τg), instead of the real ones X(t),
X(t − τg), X(t − 2τg).

The main result provided by [21] is that there exist matrices W and Γ such that,
as long as the initial estimation error and the initial tracking error are sufficiently
small, the evolution of the closed-loop system (25)–(30) asymptotically converges
to XE = [XT

E XT
E ] ∈ IR8, where XE = [Gd Id S2,d S1,d]T is the equilibrium point

of (3) when the control input u(t) = ud = S1,d/tmax,I (see next remark) is provided.

Remark 4 The constant termsGd , Id , S2,d , S1,d are such that, if at a given time instant
t̄ ≥ 0, it is G(τ ) = Gd , I(τ ) = Id , S2(τ ) = S2,d , S1(τ ) = S1,d , for τ ∈ [t̄ − 2τg, t̄],
and the control law u(t) designed as in (21) is applied, then the solution of (3) with
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d(t) = 0 isG(t) = Gd , I(t) = Id , S2(t) = S2,d , S1(t) = S1,d , for t ≥ t̄, and the control
law becomes u(t) = ud , t ≥ t̄. In other words, once Gd has been chosen, we may
compute Id , S2,d , S1,d and ud as the reference levels of the system variables and of
the control input that asymptotically correspond to a perfect tracking of Gd . As a
matter of fact, the state XE = [Gd Id S2,d S1,d]T ∈ IR4 is the equilibrium point of
the closed loop system (3)–(21).

5 Conclusions

The common denominator of the proposed insulin administration therapies are given
by (i) the model-based approach, (ii) the use of a state observer to predict real-time
insulin measurements. Indeed, only glucose measurements have been considered,
with insulin administered both intravenously and subcutaneously. The resulting con-
trol laws are theoretically appealing and, at least for the intravenous case, robust
with respect to many sources of uncertainties, measurement errors and actuator
malfunctioning, according to a virtual environment making use of a different and
more comprehensive model of the glucose–insulin system. The same philosophy
has been recently applied also to a different clinical framework such as the one of
the Euglycemic Hyperinsulinemic Clamp (EHC) [27, 29], a nontrivial perturbation
experiment during which large amounts of insulin are administered intravenously to
the subject, and exogenous glucose is administered, according to given protocols, in
order to keep glycemia constant. In this chapter, we have briefly surveyed the recent
results about estimation methods for the glucose–insulin system by means of state
observers for time delay systems, in perspective with the control problem.
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Performance Assessment of Model-Based
Artificial Pancreas Control Systems

Jianyuan Feng, Kamuran Turksoy and Ali Cinar

Abstract Many artificial pancreas control systems are based on models that predict
glucose concentrations. The performance of these control systems depends on the
accuracy of the models and may be affected when large dynamic changes in the
human body or changes in equipment performance occur and move the operating
conditions away from those used in developing the models and designing the control
system. A controller performance assessment (CPA)module is developed to evaluate
the performance of model-based controllers and initiate controller retuning if there
is significant performance deterioration. The generalized predictive control (GPC)
approach that utilizes models for glucose concentration predictions is used for illus-
trating the performance of the CPA. Themodule has six indexes that capture different
aspects of model and controller performance, which can be analyzed to determine
the specific component of the controller that caused performance deterioration. Four
different kinds of controller errors were diagnosed by indexes and used for controller
retuning. Thirty subjects in the UVa/Padova metabolic simulator are used in simu-
lations to evaluate the performance of the CPA module. The results indicate that
a GPC with the proposed CPA module has a safer range of glucose concentration
variation and more reasonable insulin suggestions than a GPC without controller
retuning guided by the CPA module.

1 Introduction

Diabetes affects 25.8 million people in United States and about 5% of diabetes cases
are type 1 diabetes (T1D) in adults [34]. Patients with T1D rely on insulin adminis-
tration from external sources to regulate their blood glucose concentration (BGC).
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The amount and timing of insulin administration must to be carefully selected to pre-
vent hypoglycemia and hyperglycemia. Multiple (3–5) daily insulin injections and
continuous subcutaneous insulin infusion (CSII) with an insulin pump are the most
commonly usedmethods for administering insulin. CSII with pump hasmany advan-
tages such as better insulin delivery, convenience and flexibility, greater precision,
more reliable insulin action, less hypoglycemia with a lower A1C [36].

Artificial pancreas (AP) systems have been introduced to automate and improve
CSII. An AP control system can automate insulin pump operation by using glucose
concentration (GC) information from a continuous glucose monitor (CGM) to sug-
gest appropriate insulin infusion rates. Significant progress has been made in AP
systems [2, 4, 7, 17, 25, 30]. Various control strategies, ranging from proportional-
integral-derivative (PID) control [25, 27, 29, 30] to model-based techniques, such as
model predictive control [11, 17, 20] and generalized predictive control [8, 9, 33–35]
and knowledge-based systems with fuzzy logic [1, 21] have been used in developing
the control algorithms for the AP. All strategies except the fuzzy logic approach use
mathematical models that describe the dynamics of GC and insulin in formulating
the control algorithms. These models are developed by using data collected from
subjects. However, many disturbances to the body or faults in the components of the
AP system may reduce the accuracy of the models as the operating conditions of the
bodymove to a different state. The effects of disturbances such as meals and physical
activity and faults such as failures and drifts in sensors, and pump malfunctions have
been mentioned in various studies [3, 18].

Deterioration of the AP performance due to poor representation of the dynamics
of the body by the model used in the controller has not received much attention.
The control system may also generate faults such as coding errors that may become
active under specific conditions. Hence, controller performance assessment (CPA)
modules for the AP have the potential to improve its performance by detecting the
deterioration of performance and diagnosing the cause of poor performance and
initiating controller retuning.

Desborough and Harris [6], Stanfelj et al. [28] initiated work on controller perfor-
mance monitoring system by using autocorrelation analysis, in which the univariate
control system was compared with minimum variance control standard. Huang and
Shah [13] and Kendra et al. [16] extended the CPA methods to multivariable control
systems. Various CPA systems have been developed based on different techniques
such as frequency domain robust control techniques [15], principal component analy-
sis (PCA) [32], Bayesian method [12] and artificial neural networks [19]. 60% of
controllers in industry have performance problems [26]. CPA systems like Loop
ScoutTM are put in use in process industries [22]. A large-scale CPA system has
been reported spanning over 14,000 PID controllers in 40 plants at 9 sites worldwide
[23]. Many other techniques and applications can be found in review papers and
books written by Qin [24], Jelali [14], Thornhill [31] and Cinar [5].

We have already developed an AP control system based on adaptive constrained
weighted recursive identification methods and GPC [34, 35]. This paper focuses on
CPA, detection of controller performance deterioration, diagnosis of its cause(s) and
retuningof aGPC to improve its performance.Various indexes are developed to detect
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and diagnose significant deterioration of controller performance and develop a CPA
system. The parameters of the controller are adjusted to improve its performance.
The performance of the CPA system and the effects of control parameters adjustment
are illustrated with simulations by using the UVa/Padova simulator [17].

In Sect. 2, GPC and five indexes and four different controller errors are defined. In
Sect. 3, retuning of the controller in response to controller faults is described. Sim-
ulations and discussion of results are presented in Sect. 4. Conclusions are provided
in Sect. 5.

2 GPC and Controller Error Detection

2.1 GPC in AP System

GPC integrates model-based control and adaptive control. We have enhanced recur-
sive time series modeling to assure the stability of every multi-input single-output
model developed, used these models in a powerful GPC, and introduced rules that
improve its performance in presence of physical activity [34, 35]. The controller
algorithm is described in Fig. 1.

A single-variable version of this controller is used to conduct simulations with
theUVa/Padova simulator. An autoregressivemoving averagemodel with exogenous
inputs (ARMAX) is used for predictionofGCmeasuredwith aCGM[34]. The insulin
infusion rates computed in previous steps and past and current CGM readings are the
inputs to the model. Model parameters are updated recursively at each sampling time
and the updated model provides GC prediction to the controller. Then, the controller
computes the insulin dose to be infused.

In this chapter, we outline the components of the controller that are relevant to
the CPA and focus on the objective function for model estimation and the objective
function of the GPC.

Fig. 1 AP system with GPC algorithm
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The optimum coefficients of the recursive ARMAX model are obtained by mini-
mizing the objective function:

V (Θ̂) =
N∑

k=1

λN−ke(k)2 (1)

where Θ̂ is the vector of estimated model coefficients, N is the number of samples,
λ is the forgetting factor, and e denotes the modeling error (residual). The recursive
model is updated by giving different weights to previous data based on the section
of the data that is more important to adjust the model. λ is the critical parameter
that adjusts the relative importance of GC data collected and the effective size of the
moving window for the input data.

Another important component for the controller is its objective function. The
constrained controller signal I(k) is calculated by minimizing the objective function
J(N1,N2,Nu,w):

J(N1,N2,Nu,w) = min
I(k),...,I(k+Nu)

N2∑

j=N1

[
GCpred(k + j|k) − GCref (k + j)

]2

+
Nu∑

j=1

wjΔI(k + j − 1)2 (2)

where N1 and N2 are the first and last time instants of the modeling horizon and Nu

is the control horizon. I denotes the insulin infusion rate. Only I(k), the first element
of the optimized future I sequence is implemented. GCpred((k + j|k)) denotes the
predicted CGM values at steps k + j for j = N1,N2 in the future, based on the data
collected at and before step k,GCref is the reference vector (GCref is set as a reference
trajectory instead of a constant value to provide smoother insulin suggestions that
reduce the potential for hypoglycemia) [34], ΔI represents the change in insulin
infusion rate, and wj is the weight vector for ΔI . Insulin delivery is constrained
by both the maximum delivery rate of the insulin pump and the maximum value
calculated by the model to prevent hypoglycemia, and insulin infusion rate cannot
be negative. The first term of the controller objective function forces future GC to
be closer to reference values, and the second term seeks to minimize the amount of
insulin infused to improve the efficiency of insulin use.

2.2 Indexes Used for CPA

Six indexes are used in the controller assessment module: model prediction error
index (IMPE), model error elimination speed index (IEES), dangerous change poten-
tial index (IDCP), dangerous change index (IDC), insulin constraints limitation index
(IICL), and weight ratio index (IWR).
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2.2.1 Model Prediction Error Index

IMPE indicates the absolute difference between the predicted CGM value GCpred

(k|k − 1) and the measured CGM value GC(k).

IMPE(k) = |GCpred(k|k − 1) − GC(k)| (3)

where GCpred(k|k − 1) indicates predicted GC at time k based on previous data at
time k − 1. If there is a large prediction error, the time for AP system to reduce it
back to an acceptable range becomes critical.

2.2.2 Error Elimination Speed Index

IEES is defined to track the time to reduce IMPE to an acceptable range. If the prediction
error is larger thanMEmax we start counting the time until IMPE is smaller thanMEmax.

IEES(k) =
{
IEES(k − 1) + st if IMPE(k) ≥ MEmax

0 if IMPE(k) < MEmax
(4)

where st is the sampling time that is set as 10min in our simulator.MEmax (Table3)
is the maximum tolerance threshold for the difference between the predicted and
measured GC.

2.2.3 Dangerous Change Potential Index and Dangerous Change Index

The main goal for AP system is to keep a patient’s BGC within an acceptable range.
A disturbance (meals, exercise, stress) or a fault in the AP system can force BGC
to move outside this range and cause hypoglycemia or hyperglycemia. In order to
signal the potential for hypoor hyperglycemiawhile glucose concentrationGC(CGM
readings) is within an acceptable range (70–180mg/dl), dangerous change potential
index (IDCP) is developed:

IDCP(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

180−GC(k)
GC(k)−GC(k−1) if

{
ΔGC(k) > 0

70 < GC(k) < 180

GC(k)−70
GC(k−1)−GC(k) if

{
ΔGC(k) < 0

70 < GC(k) < 180

(5)

where ΔGC(k) = GC(k) − GC(k − 1). To distinguish between hypoglycemia and
hyperglycemia, IDC is defined as
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IDC(k) =

⎧
⎪⎨

⎪⎩

1 if (IDCP(k) < ImaxDCP &ΔGC(k) > 0) or (GC(k) ≥ 180)

−1 if (IDCP(k) < ImaxDCP &ΔGC(k) < 0) or (GC(k) ≤ 70)

0 otherwise

(6)

IDCP signals how many time steps later GC will indicate hypoglycemia or hyper-
glycemia if the change in GC is maintained at the current rate, we set ImaxDCP (Table3)
as the tolerance threshold for IDCP. Note that there is no value for IDCP if GC > 180
or GC < 70 because IDCP only shows the potential of GC to get outside the desired
range.

2.2.4 Insulin Constraints Limitation Index

The controller computes an insulin dose based on the insulin on board and trends in
CGM readings, constrained to calculate a safe insulin dose. But since the model may
not be accurate enough at any given time, the constraintsmay become too strict for the
controller to suggest a large enough insulin dose to lower BGC. IICL is developed to
indicate whether the insulin suggestion is limited by unreasonable insulin constraints
or amaximum that ismedically imposed. Larger values of IICL indicate that the insulin
dose computed is remaining at the maximum insulin constraints.

IICL(k) =
{
IICL(k − 1) + st if I(k) = IMax

0 if I(k) < IMax
(7)

2.2.5 Weight Ratio Index

The objective function of GPC is one of the key factors affecting controller perfor-
mance. The weight w in the objective function (2) indicates the relative importance
of its two terms in determining insulin infusion rates. If a patient is drifting to hypo-
glycemia or hyperglycemia, the differences between CGM predictions and reference
values are much more important than reducing the amount of insulin used. IWR is
developed to monitor the weight ratio of the objective function between deviations
from reference trajectories or ranges and insulin dose to be administrated.

IWR =
∑N2

j=N1

[
GCpred(k + j|k) − GCref (k + j)

]2
∑Nu

j=1 wjΔI(k + j − 1)2
(8)

IWR will become infinity if the change in insulin infusion rate or wj become close to
0, in these case, a large enough value (e.g., 1000) is set as the maximum value.

There are many sources of error such as model inaccuracy, improper insulin
constraints, and improper objective function. Binary indicators are defined to flag
some of these faults or deteriorated performance in the next section.
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2.3 Detection and Diagnosis of Controller Errors

Many errors can develop in the control system thatwould necessitate controller retun-
ing. The CPA module currently focuses on four different kinds of errors in GPC for
AP systems: model prediction error, insulin constraints error, GC deviation-insulin
weight ratio error, and sensor noise-driven miscalculation error. Binary numbers 1
and 0 are used to indicate the presence or absence of such errors.

2.3.1 Model Prediction Error

CGM readings and insulin information at each new sampling time are used to recur-
sively update the parameters in the model. Since both model and data are varying all
the time, model prediction error is also changing with time. The recursive time series
model can gradually eliminate model prediction errors caused by dynamic changes
of the system by updating model parameters whenever new data are available. But if
there are large dynamic changes and the weights for recent data that correspond to
model update speed are not adequate, the model will not be accurate enough to give
good predictions. If themodel prediction error is too large (IMPE > ImaxMPE) or cannot be
eliminated in time (IEES ≥ ImaxEES ), the controller can suggest an unreasonable insulin
infusion rate by using erroneous GC predictions, and threaten the safety of patients.
Thresholds ImaxMPE and ImaxEES are described in Table3. A prediction error indicator (IPE)
that is a function of IMPE and IEES indicates the presence of prediction errors

IPE =
{
1 if IMPE > ImaxMPE or IEES ≥ ImaxEES

0 otherwise
(9)

2.3.2 Maximum Insulin Constraint Error

When the insulin dose suggested is at the maximum insulin constraint value for
a long time (IICL ≥ ImaxICL ) and the CGM readings still keep on increasing rapidly,
the insulin dose constraint may be too conservative. Threshold ImaxICL is described in
Table3. Insulin constraints error indicator (IICE) is used to flag a problemwith insulin
constraints based on IDC and IICL values.

IICE =

⎧
⎪⎨

⎪⎩
1 if

{
IDC = 1

IICL ≥ ImaxICL

0 otherwise

(10)
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2.3.3 Weight Ratio Error

When patients are drifting toward or already have hypoglycemia or hyperglycemia,
the controller should give a high priority to bring GC within range and deemphasize
other concerns. In the GPC, the weight ratio in the objective function implements this
focus adjustment. If the weights in the optimization function necessitate a heavier
weight on GC safety (large GC deviation), an objective function weight ratio error
indicator (IWRE) that is a function of IWR and IDC is defined to indicate inappropriate
weights:

IWRE =

⎧
⎪⎨

⎪⎩
1 if

{
IWR < 1

IDC �= 1

0 otherwise

(11)

2.3.4 Sensor Noise-Driven Miscalculation Error

Sensor noise is inevitable in CGM readings, and large sensor noise can temporarily
change the trends in CGM readings (Fig. 2). In realistic situations, GC values should
be smoother than these cases. Since the trend of GC and effects of insulin parameters
in model are estimated based on the GC and insulin infusion values, erroneous GC
values caused by sensor noise can cause the controller to suggest erroneous insulin
infusion doses by miscalculating these model parameters (Table1).

Consider the sampling time is 10min and dynamic changes of BGC related to
disturbances such as meal or exercise are observed for a 30-min period. There should
not be two inflection points within 4–5 samples (three different signs of CGM slope)
in CGM trajectory. Figure2 illustrates four typical patterns of noisy CGM readings.

Fig. 2 Patterns of abnormal readings in CGM caused by sensor noise
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Table 1 Summary of all indexes and indicators in CPA

Indexes and indicators Definition Equation number for definition

IMPE Model prediction error index 3

IEES Error elimination speed index 4

IDCP Dangerous change potential index 5

IDC Dangerous change index 6

IICL Insulin constraints limitation index 7

IWR Weight ratio index 8

IPE Prediction error indicator 9

IICE Insulin constraints error indicator 10

IWRE Weight ratio error indicator 11

ISME Sensor-noise-driven
miscalculation error indicator

12

ISMEA Auxiliary SME indicator 13

On the left side of Fig. 2, the two points (green square) where sensor noise and
miscalculation error (SME) is detected are at the next sampling time to the abnor-
mal CGM reading (red circle). On the right side, there is one additional sampling
time between abnormal CGM reading and the detection time. All these four types
of abnormal data patterns have two inflection points. Consequently, SME can be
detected by SME indicator (ISME) with the following expressions:

ISME =

⎧
⎪⎨

⎪⎩
1 if

{
ΔGC(k)ΔGC(k − 1) < 0

ΔGC(k − 1)ΔGC(k − 2) < 0

0 otherwise

(12)

For the controller retuning, it is important to knowwhichCGMvalue is erroneous.
An auxiliary binary indicator ISMEA is defined to distinguish between the two cases
(fault detected in the first or second sampling time after SME) as:

ISMEA =
{
1 if (ΔGC(k) − ΔGC(k − 2))ΔGC(k) > 0

0 if (ΔGC(k) − ΔGC(k − 2))ΔGC(k) < 0
(13)

when ISMEA = 1, it indicates fault is detected in the first sampling time after SME,
and ISMEA = 0 if fault is detected in the second sampling time after SME.

CGM accuracy and reliability are among the important limiting factors for insulin
delivery automation [18], mainly due to the fact that glucose is measured in the
interstitial region rather than directly from the blood. Different sensor errors like
outliers, drifts, and missing values affect the reliability of the AP system as well.
CGM sensor fault detection and analysis is still an active research area. The method
proposed in here is focused on detecting single discontinuous noise to illustrate
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incorporation of sensor errors in data on controller performance. Since this chapter
is mainly focused on the errors from controller itself. More sophisticated sensor fault
detection strategies are beyond the scope of this paper.

3 Controller Retuning

In order to retune the controller, the specific reasons that cause poor performance, and
the consequences of various errors that cause poor performance should be considered.
This interaction of detection, diagnosis, and adjustment is illustrated with a number
of frequent errors. Guidance for retuning the controller in response to four kinds of
error is described in this section.

3.1 Controller Retuning for Model Prediction Error

Since there are large dynamic changes in GC caused by various disturbances such as
meals, a fixed model is not appropriate for computing the insulin infusion rates. The
need for an adaptive model becomes more evident when no manual announcements
are made. The parameters of a recursive ARMAXmodel in GPC are updated at every
sampling time. The accuracy of model prediction depends on the selected weights
for the inputs used in updating the model parameters. New data after large dynamic
changes in GC cannot cause appropriate changes in the model if the weight for recent
data is not large enough. Otherwise, most of the data representing the previous state
of the body would continue to influence the model parameter values computed. A
forgetting factor λ is used to adjust the weights for the inputs. The range of λ is from
1 to 0. When λ = 1, same weight is given to all of the data (infinite window size),
when λ < 1, most of the weight is given to recent data. The window size N can be
estimated by [10]:

N ≈ 1

1 − λ
(14)

Obviously, when large dynamic changes occur, smaller value of λ are used to
give more weight to recent data so that the model parameters can be adjusted faster
toward the new state of the body.

Larger values of MPE are caused by the model not recognizing the changes in the
dynamics and adjusting the parameters fast enough to represent the new changes in
GC dynamics. In this case, λ is modified to λ′ if the prediction error is large or the
error reduction speed is too slow:
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λ′(k|k − 1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
1 − IMPE

den

)
λ(k|k − 1) if

⎧
⎪⎨

⎪⎩

IPE = 1

IMPE < ISEMPE
λ′(k|k − 1) > 0.5

0.5 if

{
IPE = 1

IMPE > ISEMPE or λ′(k|k − 1) < 0.5
(15)

λ′ is the modified forgetting factor, den is a fixed parameter (60 for adults or
adolescents and 90 for children), and ISEMPE is the threshold to determine extreme
prediction error (Table3). According to (1), when λ < 0.5, put most of the weight
only on latest datawillmake themodel become too sensitive to data changes. Errors in
predictionmayhappen if the value ofλ is too small.When prediction error is detected,
the minimum value for λ is set as 0.5 to reduce the possibility of overturning.

Model prediction error can be reduced further by using a filter such as a Kalman
filter. A simpler approach is to use an adjustment with a proportional feedback con-
stant β (Table3), so that MPE can be eliminated faster:

GCpred′
(k + 1|k) = GCpred(k + 1|k)

− (
GCpred(k|k − 1) − GC(k)

)
β if IPE = 1 (16)

If the predicted CGM reading GCpred(k|k − 1) is higher than the actual value
GC(k), the controller will recommend a higher insulin to balance the miscalculated
future GC. If the prediction is lower than actual value, controller will recommend
less insulin than necessary. As a solution, Insulin infusion rate is adjusted based on
the difference between predicted and measured glucose concentration:

I ′(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(k)
(
1 + log10(GC(k)−GCpred (k|k−1))BW

α

)
ISF

if

⎧
⎪⎨

⎪⎩

GC(k) − GCpred(k|k − 1) > 0

IPE = 1

IDC �= −1

I(k)
(
1 − log10(GC

pred (k|k−1)−GC(k))BW
α

)
ISF

if

⎧
⎪⎨

⎪⎩

GC(k) − GCpred(k|k − 1) < 0

IPE = 1

IDC �= 1

(17)

where log function is used since it is more sensitive when prediction error is consid-
erably small and prohibit overtuning when prediction error is too large. α is a fixed
parameter (Table3), BW is the body weight of the patient and ISF is the insulin sen-
sitivity factor which is related to a patient’s insulin sensitivity level (ISL) (Table2).
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Table 2 Value for parameter ISF

Adult Adolescent Child

Sensitive 0.8 0.8 0.4

Normal 1 1 0.5

Resistant 1.2 1.2 0.6

Table 3 Summary of parameters and their values in CPA

Parameters Definition Equation
number

Value

MEmax Threshold of IMPE to determine IEES 4 10

Imax
DCP Threshold of IDCP to determine IDC 6 4

Imax
MPE Threshold of IMPE to determine IPE 9 20

Imax
EES Threshold of IEES to determine IPE 9 30

Imax
ICL Threshold of IICL to determine IICE 10 40

ISEMPE Threshold of IMPE to tuning λ′ 15 30

α Parameter indicating the sensitivity of insulin in
responding to MPE and SME

17, 21 270

β Proportional feedback constant for GCpred′
16 0.35

γ Filter constant determines how fast the insulin
constraint is increasing

18 1.1

3.2 Controller Retuning for Insulin Dose Constraint Error

For insulin constraints error (ICE), maximum constraint of insulin suggestion is
relaxed so that controller can give adequate insulin. However, the maximum con-
straint is also limited by the capacity of the insulin pump. For example, the maximum
insulin delivery capacity for Medtronic pump is 35 U/h. Considering such physical
limitations, the insulin constraint is modified as:

I ′Max =
{

γ IMax if I ′Max < 35(U/h) & IICE = 1

35(U/h) if I ′Max ≥ 35(U/h) & IICE = 1
(18)

where γ (Table3) is a filter constant that determines how fast the insulin constraint
is increasing when ICE occurs.

3.3 Controller Retuning for Objective Function
Weight Ratio Error

When a patient’s GC has a critical trend of rapid change (IDC = 1 or IDC = −1),
the controller should calculate the insulin suggestion mainly to guarantee the safety
of the patient, focusing on the difference between the GC predictions and reference
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trajectory. In processing of controller retuning for WRE, the weight vector wj should
be reduced and in the limit only the difference between predicted CGM values and
reference value is considered in the objective function, which reduces the optimiza-
tion function to:

J(N1,N2) = min
I(k)

N2∑

j=N1

[
GCpred(k + j|k) − GCref (k + j)

]2
if IWRE = 1 (19)

3.4 Controller Retuning for Sensor-Noise-Driven
Miscalculation Error

Similar to MPE, excessive CGM noise can make the controller suggest erroneous
insulin doses to the pump. The insulin dose suggested by the controller can be further
modified based on SCF values:

SCF(k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

GC(k − 1) − GC(k) +GC(k−2)
2 if

{
ISME = 1

ISMEA = 1

GC(k − 2) − GC(k−3) +GC(k−1)
2 if

{
ISME = 1

ISMEA = 0

0 otherwise

(20)

I ′(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(k)
(
1 + log10(GC(k) −GCpred (k|k−1) + SCF(k))BW

α

)
ISF

if

⎧
⎪⎨

⎪⎩

GC(k) − GCpred(k|k − 1) + SCF > 1

IDC �= −1

ISME = 1 or IPE = 1

I(k)
(
1 − log10(GC

pred (k|k−1) −GC(k) − SCF)BW
α

)
ISF

if

⎧
⎪⎨

⎪⎩

GC(k) − GCpred(k|k − 1) + SCF < −1

IDC �= −1

ISME = 1 or IPE = 1

(21)

SCF is the correcting factor of SME, which uses the average value of two nearest
sets of data to estimate the real value and SCF is the difference between the estimated
value and the abnormal value caused by sensor noise. The parameter α indicates the
sensitivity of insulin in responding to MPE and SME. In (12), SME is detected if
there are continuously two inflection points. If excessive sensor noise is detected at
time k, (20) and (21) can be used to distinguish and retune the controller depending
on the specific noise pattern matching the cases in Fig. 2. Note in (15), the retuning
is triggered only when IPE = 1 to guarantee an appropriate value in the argument of
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the log function. However, if we consider both MPE and SCF, the effects of these
two errors may interfere with each other. In this case, a new if condition is added to
(21) to make sure the argument of log function is satisfied.

The thresholds for fault detection were selected experimentally by trying different
values and selecting values that minimize false alarms (there is no extreme cases like
hypoglycemia and hyperglycemia after fault is detected) and missed alarms (there
exist extreme cases but no fault is detected). The parameters for fault detection
were selected by trying different values and taking the best values that minimize
the extreme cases (hypoglycemia and hyperglycemia). For example, γ values tried
include [1.05, 1.1, 1.15, 1.2], and the best outcome was obtained when γ = 1.1. If
γ is larger or smaller than 1.1, either insulin infusion rate becomes too aggressive
and may cause cause hypoglycemia (γ > 1.1), or not enough increase of maximum
insulin constraint is made which will cause hyperglycemia (γ < 1.1).

The predesigned parameters and thresholds are critical for the CPA performance.
Thresholds for indexes decide how sensitive CPA responds to controller errors. The
goal for CPA is not to make the controller perfectly regulate GC but to keep the
controller at its optimal condition. If the threshold is too aggressive, the controller
may always have a weak performance since the high standard is seldom reached,
on the other hand if the threshold is too conservative, the weak performance of
controllers cannot be captured. The tuning parameter in CPA module decide how
can the controller compensates for these errors. Retuning process is just like another
feedback controller, if controller errors are determined, the CPA makes changes in
the opposite direction that the errors would drive the system in order to compensate
for the effects of the diagnosed error. Most of the parameters and thresholds are often
decided by trial and error and experience. It is important to adjust these parameters
and thresholds for different AP controllers.

4 Results

Thirty patients (10 adults, 10 adolescents, and 10 children) in UVa/Padova simulator
were tested by using both AP control systems with and without the CPA module.
Each patient tested though 10 times of simulations with 3 days’ scenario each time.
The results are summarized in Tables4 and 5. All CGM readings are clustered into
five different ranges. AP control system with CPAmodule in most cases has a higher
percentage of GC inside the desired GC range (70–180mg/dl). The controller with
the CPA module successfully modified its parameters to reduce serious hypo- and
hyperglycemia (CGM> 300 or CGM< 50) (Table5). To keep GC in target range,
GPC with CPA module had better insulin efficiency. For simulations lasting 3 days,
the total insulin use is reduced by about 8% on average.

The effects of CPA module on GC are illustrated in Figs. 3 and 4. Figure3 dis-
plays the average GC trajectories and standard deviations for adults, adolescents and



Performance Assessment of Model-Based … 257

Ta
bl
e
4

C
om

pa
ri
so
n
of

pe
rf
or
m
an
ce

be
tw

ee
n
co
nt
ro
lle

r
w
ith

an
d
w
ith

ou
tC

PA
m
od

ul
e
(p
er
ce
nt

tim
e
in

ea
ch

co
nc
en
tr
at
io
n
ra
ng

e)

Pa
tie
nt

ty
pe

IS
L

B
W

(k
g)

G
C
w
ith

C
PA

m
od
ul
e
(m

g/
dl
)

G
C
w
ith

ou
tC

PA
m
od
ul
e
(m

g/
dl
)

<
50

50
–7
0

70
–1
80

18
0–
30
0

>
30
0

<
50

50
–7
0

70
–1
80

18
0–
30
0

>
30
0

A
do

1
N

68
.7

0.
00

0.
00

10
0.
00

0.
00

0.
00

0.
00

0.
00

10
0.
00

0.
00

0.
00

A
do

2
R

51
.0

0.
00

0.
83

82
.5
6

16
.6
0

0.
00

0.
00

0.
32

82
.1
0

17
.4
7

0.
11

A
do

3
S

44
.8

0.
00

0.
21

90
.6
0

9.
19

0.
00

0.
00

0.
08

87
.6
5

12
.2
7

0.
00

A
do

4
N

49
.6

0.
40

1.
13

90
.3
3

8.
15

0.
00

0.
43

0.
63

89
.0
0

9.
93

0.
00

A
do

5
S

47
.1

0.
00

1.
00

76
.9
1

19
.5
9

2.
50

0.
00

0.
00

75
.5
0

20
.3
1

4.
20

A
do

6
N

45
.4

0.
00

0.
09

87
.4
4

12
.4
1

0.
06

0.
00

0.
00

86
.3
9

13
.4
1

0.
19

A
do

7
N

37
.9

0.
44

2.
06

74
.4
2

19
.0
3

4.
05

1.
18

2.
11

72
.5
9

17
.8
1

6.
31

A
do

8
R

41
.2

0.
00

0.
17

78
.6
0

19
.8
2

1.
40

0.
00

0.
00

78
.3
6

19
.9
1

1.
72

A
do

9
S

43
.9

0.
00

0.
11

88
.8
0

11
.1
0

0.
00

0.
00

0.
06

87
.8
5

12
.0
9

0.
00

A
do

10
N

47
.4

0.
00

1.
24

92
.2
0

6.
55

0.
00

0.
00

0.
66

91
.6
2

7.
71

0.
00

M
ea
n

47
.7

0.
08

0.
68

86
.1
9

12
.2
4

0.
80

0.
16

0.
39

85
.1
1

13
.0
9

1.
25

A
du

1
N

10
2.
3

0.
00

0.
74

98
.9
1

0.
35

0.
00

0.
00

0.
01

99
.2
3

0.
75

0.
00

A
du

2
N

11
1.
1

0.
00

0.
00

10
0.
00

0.
00

0.
00

0.
00

0.
00

99
.8
8

0.
12

0.
00

A
du

3
N

81
.6

0.
00

0.
68

98
.6
5

0.
67

0.
00

0.
00

0.
00

99
.1
6

0.
84

0.
00

A
du

4
S

63
.0

0.
47

2.
07

85
.2
3

12
.2
0

0.
03

0.
81

3.
64

82
.8
0

12
.5
7

0.
19

A
du

5
R

94
.1

0.
00

0.
03

96
.4
8

3.
49

0.
00

0.
00

0.
00

96
.3
4

3.
66

0.
00

A
du

6
N

66
.1

0.
00

1.
01

91
.2
8

7.
71

0.
00

0.
00

0.
00

90
.2
5

9.
75

0.
00

A
du

7
S

91
.2

0.
26

0.
88

94
.2
0

4.
66

0.
00

0.
00

0.
00

82
.2
8

17
.7
2

0.
00

A
du

8
N

10
2.
8

0.
00

0.
00

10
0.
00

0.
00

0.
00

0.
00

0.
16

99
.8
4

0.
00

0.
00

A
du

9
R

74
.6

1.
53

3.
88

93
.0
7

1.
52

0.
00

3.
03

11
.1
1

84
.2
1

1.
65

0.
00

A
du

10
R

73
.9

0.
00

0.
06

98
.3
4

1.
60

0.
00

0.
10

2.
03

92
.4
6

5.
41

0.
00

M
ea
n

86
.1

0.
23

0.
93

95
.6
2

3.
22

0.
00

0.
39

1.
69

92
.6
5

5.
25

0.
02

(c
on
tin

ue
d)



258 J. Feng et al.

Ta
bl
e
4

(c
on
tin

ue
d)

Pa
tie
nt

ty
pe

IS
L

B
W

(k
g)

G
C
w
ith

C
PA

m
od
ul
e
(m

g/
dl
)

G
C
w
ith

ou
tC

PA
m
od
ul
e
(m

g/
dl
)

<
50

50
–7
0

70
–1
80

18
0–
30
0

>
30
0

<
50

50
–7
0

70
–1
80

18
0–
30
0

>
30
0

C
hi

1
S

34
.6

12
.7
1

12
.9
0

73
.1
8

1.
15

0.
06

18
.8
9

13
.1
3

62
.0
8

5.
64

0.
27

C
hi

2
R

28
.5

0.
00

0.
23

99
.5
3

0.
24

0.
00

0.
00

0.
00

99
.3
3

0.
67

0.
00

C
hi

3
S

41
.2

0.
00

1.
46

88
.3
0

10
.2
4

0.
00

0.
00

0.
56

87
.0
4

12
.2
7

0.
13

C
hi

4
S

35
.5

5.
23

10
.5
5

83
.1
1

2.
11

0.
00

8.
73

15
.0
9

71
.7
8

4.
40

0.
00

C
hi

5
R

37
.8

0.
00

1.
56

97
.2
2

1.
22

0.
00

0.
00

0.
20

97
.7
5

2.
05

0.
00

C
hi

6
N

41
.0

0.
00

1.
11

91
.1
9

7.
70

0.
00

0.
15

0.
67

88
.1
2

11
.0
2

0.
03

C
hi

7
R

45
.5

0.
00

0.
75

98
.9
3

0.
32

0.
00

0.
00

0.
19

99
.3
5

0.
46

0.
00

C
hi

8
R

23
.7

10
.7
8

2.
55

86
.9
6

8.
72

1.
00

19
.3
5

2.
23

62
.3
8

14
.0
6

1.
98

C
hi

9
N

35
.5

0.
00

1.
32

95
.4
7

4.
53

0.
00

0.
00

0.
13

94
.5
7

5.
31

0.
00

C
hi

10
N

35
.2

0.
00

0.
98

84
.4
2

14
.4
1

0.
19

0.
00

0.
00

81
.4
0

17
.9
6

0.
64

M
ea
n

35
.9

2.
87

3.
34

89
.8
3

5.
06

0.
12

4.
71

3.
22

84
.3
8

7.
38

0.
31

To
ta
l

56
.6

1.
06

1.
65

90
.5
4

6.
84

0.
31

1.
76

1.
77

87
.3
8

8.
57

0.
53



Performance Assessment of Model-Based … 259

Ta
bl
e
5

C
om

pa
ri
so
n
of

pe
rf
or
m
an
ce

be
tw
ee
n
co
nt
ro
lle
r
w
ith

an
d
w
ith

ou
tC

PA
m
od
ul
e

Pa
tie
nt

ty
pe

G
C
w
ith

C
PA

m
od
ul
e

G
C
w
ith

ou
tC

PA
m
od
ul
e

N
um

be
r
of

se
ve
re

hy
pe
rg
ly
ce
m
ia

ep
is
od
es

(>
30
0
m
g/
dl
)

N
um

be
r
of

se
ve
re

hy
pe
rg
ly
ce
m
ia

ep
is
od
es

(<
50

m
g/
dl
)

M
ax

G
C

(m
g/
dl
)

M
in

G
C

(m
g/
dl
)

To
ta
li
ns
ul
in

us
e
(U

/3
da
ys
)

N
um

be
r
of

se
ve
re

hy
pe
rg
ly
ce
m
ia

ep
is
od
es

(>
30
0
m
g/
dl
)

N
um

be
r
of

se
ve
re

hy
pe
rg
ly
ce
m
ia

ep
is
od
es

(<
50

m
g/
dl
)

M
ax

G
C

(m
g/
dl
)

M
in

G
C

(m
g/
dl
)

To
ta
li
ns
ul
in

us
e
(U

/3
da
ys
)

A
do

1
0

0
17
9.
77

70
.9
9

10
4.
00

0
0

17
9.
63

93
.4
5

10
1.
52

A
do

2
0

0
28
6.
86

66
.3
7

21
0.
42

1
0

32
3.
96

64
.2
7

22
1.
16

A
do

3
0

0
25
8.
26

62
.0
6

65
.9
3

0
0

25
8.
10

66
.6
9

70
.3
2

A
do

4
0

1
24
8.
94

46
.9
4

10
6.
07

0
2

24
9.
27

42
.9
8

11
0.
08

A
do

5
27

0
35
0.
71

62
.6
7

94
.8
0

42
0

36
0.
60

85
.1
6

10
0.
37

A
do

6
1

0
31
0.
39

65
.0
5

12
2.
83

3
0

33
8.
82

71
.1
9

13
3.
25

A
do

7
51

2
89
.9
1

41
.8
9

13
8.
49

56
5

45
8.
78

25
.3
7

14
9.
18

A
do

8
16

0
33
7.
76

68
.1
0

19
4.
15

16
0

35
1.
12

71
.9
2

20
2.
06

A
do

9
0

0
24
2.
73

69
.2
9

67
.9
3

0
0

25
1.
76

67
.9
7

68
.4
2

A
do

10
1

0
25
4.
66

64
.5
0

96
.0
7

0
0

26
7.
32

59
.1
2

10
0.
82

M
ea
n

9.
60

0.
30

28
6.
00

61
.7
9

12
0.
07

11
.8
0

0.
70

30
3.
94

64
.8
1

12
5.
72

A
du

1
0

0
23
6.
73

62
.4
1

15
4.
90

0
0

24
0.
34

69
.7
4

15
5.
26

A
du

2
0

0
17
8.
41

76
.2
5

16
3.
55

0
0

20
8.
32

72
.0
4

16
4.
03

A
du

3
0

0
21
0.
81

62
.6
6

16
8.
65

0
0

21
4.
08

70
.3
5

16
9.
21

A
du

4
0

3
30
4.
46

46
.4
2

10
0.
71

5
5

31
0.
28

37
.4
1

11
5.
24

A
du

5
0

0
25
5.
71

68
.8
6

19
7.
93

0
0

26
0.
08

74
.6
4

20
1.
66

A
du

6
0

0
23
1.
24

52
.7
7

18
2.
11

0
0

23
9.
14

73
.8
5

17
6.
93

A
du

7
0

1
26
6.
39

49
.3
2

12
1.
41

0
0

26
1.
47

74
.3
4

16
8.
12

A
du

8
0

0
17
4.
76

70
.0
7

12
6.
78

0
0

18
7.
63

60
.9
2

12
7.
28

A
du

9
0

4
22
0.
11

47
.2
1

14
1.
88

0
23

24
0.
87

29
.7
2

14
8.
91

A
du

10
0

0
22
5.
19

69
.0
4

19
9.
39

0
1

27
1.
69

42
.5
4

19
9.
63

M
ea
n

0.
00

0.
80

23
0.
38

60
.5
0

15
5.
73

0.
50

2.
90

24
3.
39

60
.5
5

16
2.
63

(c
on
tin

ue
d)



260 J. Feng et al.

Ta
bl
e
5

(c
on
tin

ue
d)

Pa
tie
nt

ty
pe

G
C
w
ith

C
PA

m
od
ul
e

G
C
w
ith

ou
tC

PA
m
od
ul
e

N
um

be
r
of

se
ve
re

hy
pe
rg
ly
ce
m
ia

ep
is
od
es

(>
30
0
m
g/
dl
)

N
um

be
r
of

se
ve
re

hy
pe
rg
ly
ce
m
ia

ep
is
od
es

(<
50

m
g/
dl
)

M
ax

G
C

(m
g/
dl
)

M
in

G
C

(m
g/
dl
)

To
ta
li
ns
ul
in

us
e
(U

/3
da
ys
)

N
um

be
r
of

se
ve
re

hy
pe
rg
ly
ce
m
ia

ep
is
od
es

(>
30
0
m
g/
dl
)

N
um

be
r
of

se
ve
re

hy
pe
rg
ly
ce
m
ia

ep
is
od
es

(<
50

m
g/
dl
)

M
ax

G
C

(m
g/
dl
)

M
in

G
C

(m
g/
dl
)

To
ta
li
ns
ul
in

us
e
(U

/3
da
ys
)

C
hi

1
1

22
31
7.
85

41
.6
4

12
.1
8

7
63

31
9.
87

1.
13

59
.2
4

C
hi

2
0

0
20
8.
14

68
.0
4

37
.9
5

0
0

21
3.
59

77
.8
0

40
.5
0

C
hi

3
0

0
28
7.
52

55
.4
7

32
.4
6

3
0

31
8.
18

54
.1
7

43
.1
5

C
hi

4
0

31
24
6.
67

31
.4
5

23
.9
7

0
49

25
4.
70

15
.0
7

54
.5
3

C
hi

5
0

0
22
9.
58

60
.1
5

52
.0
6

0
0

23
9.
16

62
.0
6

58
.2
2

C
hi

6
0

0
28
0.
83

63
.1
3

42
.4
5

1
2

30
4.
93

46
.9
7

51
.9
5

C
hi

7
0

0
21
3.
41

59
.8
4

53
.8
0

0
0

21
6.
01

53
.6
1

53
.8
4

C
hi

8
9

8
37
2.
44

31
.4
6

32
.2
9

25
12

37
3.
33

5.
40

58
.5
5

C
hi

9
0

0
22
8.
23

64
.1
5

32
.5
2

0
0

24
3.
08

61
.8
0

35
.9
0

C
hi

10
4

0
30
8.
39

66
.0
2

39
.4
3

10
0

32
2.
62

83
.7
1

49
.0
9

M
ea
n

1.
40

6.
10

26
9.
30

54
.1
3

35
.9
1

4.
60

12
.6
0

28
0.
55

46
.1
7

50
.5
0

To
ta
l

3.
67

2.
40

26
1.
89

58
.8
1

10
3.
90

5.
63

5.
40

27
5.
96

57
.1
8

11
2.
95



Performance Assessment of Model-Based … 261

A

B

C

Fig. 3 Average GC trajectories and standard deviations for all patients (A Adolescents, B Adults,
C Children)

Fig. 4 Average GC trajectories and standard deviations for adult #10
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Fig. 5 CPA performance and effects of controller adjustment during part of the simulation of adult
#10

children in the UVa/Padova simulator. Figure4 illustrates the GC values for one adult
subject. The variations in GC are reduced and the maximum values at hyperglycemia
are reduced significantly. Hypoglycemia and the drops in GC are reduced as well.
The effects are less pronounced since the original GPC algorithm was designed to be
aggressive in minimizing hypoglycemia. Figure5 illustrates the performance of CPA
during part of a simulation of adult #10. CGMdata, GC prediction, insulin rate before
and after retuning are displayed on the top frame of Fig. 5. Four different kinds of
controller errors are displayed by their indicators in the lower frame. Figures3 and 4
illustrate how the presence of the CPA module improves the control of GC with a
GPC system. The mean GC trajectories are lower and within a narrower range when
CPA is used (dashed line) and the standard deviation of the trajectories are smaller
(dark gray band).

If no controller error is detected in Fig. 5, the insulin infusion rate remain the
same, with or without CPA. Otherwise, different detections of CPA and retuning
are displayed. For example, at samples 361 and 362 the ICE were detected and by
increasing the insulin constraints, more insulin can be given earlier. For samples
363–365, MPE shows the prediction is higher than real CGM, insulin rate then
decreased after returning to prevent future hypoglycemia. For samples 382–385,
WRE and MPE are detected so that the controller is retuned to lower the insulin
infusion rates to prevent future hypoglycemia. In sample 342 the SME is detected so
that insulin rate is changed accordingly to make the CGM more stable. For samples
like 365 and 393, although controller errors are detected, the insulin infusion rate
cannot be reduced because it is already at 0, so the insulin rate is kept the same before
and after retuning.
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5 Conclusions

Anewmodule for controller performance assessment inmodel-basedAP control sys-
tems is developed and tested. Six indexes are developed for controller error detection.
Four kinds of controller errors have been defined, detected, and used for controller
retuning. The CPA module was tested with simulation studies. The results indicate
that a controller performance assessment module with controller fault detection and
controller retuning can improve the performance of the AP. Controller faults analysis
and controller retuning are part of the fault detection and diagnosis in AP systems to
assure that the controller itself is maintained at peak performance.
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