
Spatio-Temporal Object Recognition

Roeland De Geest1,3(B), Francis Deboeverie2,3, Wilfried Philips2,3,
and Tinne Tuytelaars1,3

1 KU Leuven ESAT - PSI, Leuven, Belgium
Roeland.DeGeest@esat.kuleuven.be

2 UGent TELIN - IPI, Ghent, Belgium
3 iMinds, Ledeberg, Belgium

Abstract. Object recognition in video is in most cases solved by
extracting keyframes from the video and then applying still image recog-
nition methods on these keyframes only. This procedure largely ignores
the temporal dimension. Nevertheless, the way an object moves may
hold valuable information on its class. Therefore, in this work, we ana-
lyze the effectiveness of different motion descriptors, originally devel-
oped for action recognition, in the context of action-invariant object
recognition. We conclude that a higher classification accuracy can be
obtained when motion descriptors (specifically, HOG and MBH around
trajectories) are used in combination with standard static descriptors
extracted from keyframes. Since currently no suitable dataset for this
problem exists, we introduce two new datasets and make them publicly
available.

1 Introduction

Object recognition is one of the main topics of interest in computer vision. In
still images, it has been extensively covered (e.g., [4,11]) and various compe-
titions such as Pascal VOC [3] and ImageNet [16] have encouraged research
and provided datasets for evaluation and comparison of the developed meth-
ods. Far fewer object recognition methods have been published for video data,
however. In most cases (e.g., [17,18]) keyframes are extracted from the video.
These frames are chosen in such a way that they represent the whole video,
preserving the information (i.e., the object appearance) in the video as much as
possible. Afterwards, standard image object recognition methods are applied on
these keyframes only. As a consequence, the video object recognition problem is
reduced to static object recognition in the keyframes, and temporal information
is left unexploited.

In this work, we investigate whether the motion of dynamic objects (and
by extension, animals) can be used to improve their recognition. To this
end, we evaluate object recognition methods that build on spatio-temporal
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representations, as typically used for action recognition. We start from two obser-
vations. First, video is a different domain than still images: Kalogeiton et al. [6]
show that an object detector for video is best trained on video data as well. If
we train on video anyway, it makes sense to exploit as much motion information
as possible. Second, some object classes are dynamic: they change over time due
to non-rigid deformations (e.g., a tree in the wind), manipulation (e.g., a driving
car) or actions (e.g., a sleeping or walking lion). Because of this extra variability,
these kinds of objects are more difficult to recognize. By using spatio-temporal
features, we can capture these variations for a better recognition.

One issue that may have hampered the development of spatio-temporal
object recognition methods is the lack of good datasets. Therefore, we intro-
duce two new datasets for our experiments.

We start our discussion in the next section with a review of related work. In
Section 3, we introduce our new datasets. Section 4 describes our experiments
and the results are discussed in Section 5. Section 6 concludes the paper.

2 Related Work

Video Object Recognition. There is only a limited amount of work on learn-
ing object detectors directly from video and/or applying them to videos as such
(i.e., without falling back to the sampling of keyframes from the video and apply-
ing static detectors to these). While at first sight video seems a far richer format
than still images, video comes with its own challenges, such as (typically) lower
resolutions, interlacing effects, motion blur and compression artifacts. For these
reasons, it has been argued that video is actually a different domain than still
images [6,15]. Instead of just applying classifiers trained on static images to video
data, one should then compensate for the domain shift using domain adaptation
methods.

Obviously, directly training models from video data avoids this issue. At the
same time, as we argued earlier, this allows to exploit the richer information
contained in video, including typical motion patterns and temporal continuity.
Collecting ground truth annotations for video data is cumbersome, however, even
when using specialized annotation tools such as [23]. Therefore, not many good
datasets for learning object classifiers from video are available to date, except for
action recognition (where the motion component is judged critical), surveillance
(often with a static camera and hence limited background variation) or traffic
sequences (mostly with very specific scene constraints that provide strong cues
for detection). None of these seem suitable for evaluating object recognition
methods exploiting motion cues in an unconstrained setting, as is the goal in
this paper.

As one of a few exceptions that do train models directly from video data,
we should mention the work of Viola et al. [19], who designed a pedestrian
detector that uses both appearance and motion features. They calculate the
absolute difference of the intensities of two consecutive frames and use it for
their rectangle filters. This work is most closely related to our work. It starts
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with the same observation that motion is characteristic for the moving actor
or object. However, we use information over more frames and different, more
modern descriptors. Moreover, we show the validity of this assumption for other,
non-human, animals and objects.

Liu et al. [10] developed a method to recognize static, non-moving objects
in videos. The representation of an object changes when the camera moves.
They map these representations on a manifold and perform manifold-to-manifold
matching for recognition. By using a moving camera, they get multiple views
from the object and some insight in its depth structure. Their objects are static.
We, however, focus on what can be learned from the motion of the object itself.
Moreover, they only want to recognize specific objects, not object classes as we
do. Finally, they test on videos with a homogenous background. We use realistic
user-generated YouTube content.

A related problem is gait recognition (see [8] for a survey). In this topic,
the aim is to recognize human individuals based on the way they walk. We, on
the other hand, focus on category-level recognition.

Several methods have recently been proposed focusing on video segmenta-
tion, e.g., [1,5]. These methods exploit motion information in video, either in the
form of optical flow or through a set of points tracked over a small fragment of
the video (trajectories), to discover which pixels belong to the same object. Most
recently, Oneata et al. [14] proposed a ‘tube’ (bounding box of an object over
time) detection method starting from a graph of superpixels. However, instead of
recognizing particular object categories, these methods at best detect and locate
unknown objects (and with low precision).

Prest et al. [15] build on the approach of [1] to find objects in videos and
use these as additional data for training an object detector for images. We show
results on the dataset they compiled from YouTube videos, but the reader should
note its small scale, with only about ten example videos for some of the cate-
gories.

Action Recognition. has been intensively studied over the last years, and sev-
eral powerful motion descriptors have been proposed in this context. In practice,
the distinction between recognizing actions and recognizing objects can some-
times be diffuse: a pedestrian is often considered a different object category than
the more general person. Likewise, one could consider human playing tennis and
human walking as two different objects. However, this is a very constrained for-
mulation. Objects and animals not only show variation between instances, but
they can also perform multiple actions and therefore have multiple motion pat-
terns. Learning a separate classifier for each object/action combination is not
desirable as it further increases the amount of training data needed.

There are two main approaches for feature extraction in videos. In the first,
the video is considered as a 3D image, with time as a third dimension, and
2D interest point detectors are extended to 3D (e.g., [2,7,22]). In the second
approach, points are tracked over time and the resulting trajectories are used as
features (e.g., [12,13,20]). In our experiments, we use the dense trajectories of
Wang et al. [20].
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3 Savanna Datasets

Since currently no suitable video object recognition dataset is publicly avail-
able, we collected our own data and intend to share it with anyone interested.
We sampled 86 videos from YouTube with African animals, such as elephants,
giraffes and lions. We divided these videos in three-second fragments (75 frames
at a frame rate of 25 Hz). We select the fragments where only one species of ani-
mal is present (there can be multiple individuals of the same species, however),
the animal or a part of it is moving and the camera focal length is not changed
drastically (i.e., not heavily zooming in or out) to make tracking of (parts of)
the animals easier.

The fragments are labeled according to their species. More videos are avail-
able for some animals than for others, but evaluation on a balanced dataset is
easier to interpret. Therefore, we create two datasets. The first consists of approx-
imately 100 fragments from each of four animal classes; we call it Savanna4.
The second, Savanna7, has about 60 fragments from seven species. The species,
number of videos and number of fragments for both datasets can be found in
Table 1. For evaluation, we divide the fragments of a dataset in five groups with
a similar number of fragments per class and perform leave-one-group-out cross
validation. Fragments from the same YouTube video are kept in the same group
to avoid contamination between fragments for training and fragments for test-
ing. The final classification score is obtained by averaging the accuracies of all
classes.

Table 1. Classes of the Savanna4 and Savanna7 datasets with their numbers of videos
and fragments.

Savanna4 Savanna7
Videos Fragm. Videos Fragm.

Giraffe 21 106 21 60
Lion 12 99 12 60
Rhinoceros 15 90 15 60
Elephant 16 106 14 60

Antelope 14 61
Baboon 13 55
Zebra 9 47

Total 55 401 82 403

Recognition of the species in these datasets is challenging for multiple reasons.
First, the animal is not always completely visible due to occlusion or bad image
composition; on the other hand, some fragments contain complete herds. Second,
the pose and activity of the animal can differ: some animals are standing or
walking, others eating or drinking. Third, the appearance of animals varies within
the species: a male lion is clearly different from the female or juvenile. Finally,
compression artefacts are clearly visible. The image quality is often significantly
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lower than what one finds in static image datasets. An extra challenge for video-
based methods lies in the moving camera: most videos were recorded by amateurs
on safari. While we avoid strong zooming effects, the camera may follow the
animal, or may be unstable since it is hand held. Figure 1 shows some snapshots
of fragments in our datasets.

Fig. 1. Frames from our Savanna datasets. The first four species are in both datasets,
the last three only in Savanna7.

4 Experimental Setup

4.1 Datasets

We conduct experiments on four datasets. Savanna4 and Savanna7 are already
described in Section 3. Our third dataset is based on the Wild8 dataset from
Liu et al. [9]. This dataset consists of 100 videos of African landscape and ani-
mals. It was collected for video object segmentation and has eight categories:
bird, lion, elephant, sky, tree, grass, sand and water. Each video comprises three
seconds at a sample rate of 10 Hz. Only the three animals move sufficiently to be
considered for our application. This way, we have 47 videos of birds, 15 videos
of lions and 11 videos of elephants. We split them in five groups to be able to
evaluate with leave-one-group-out cross validation and still have a decent (albeit
small) number of training examples. The final classification score is obtained by
averaging the accuracies of all classes. Figure 2 shows some frames of the dataset.

Our fourth dataset is an adaptation of the Youtube Objects dataset col-
lected by Prest et al. [15]. This dataset consists of videos (split in shots) of ten
object and animal categories (examples in Fig. 3). We only know the object is
present somewhere in each video. Therefore, we check for each shot whether the
object is visible while no other classes of the dataset are; otherwise, the shot is
removed. Next, we split the shots in 30-frame fragments. We divide the fragments
in four groups. Fragments coming from the same video are in the same group.
Here too, we evaluate with leave-one-group-out cross validation and average
accuracy. Table 2 shows the classes with their numbers of videos and fragments.
We should emphasize that some videos generate hundreds of fragments, while
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Fig. 2. Example frames of the classes in the Wild8 dataset.

others have only one valid fragment. Videos with many fragments have a high
influence on the trained model, even though it is plausible that they contain
very limited motion and appearance information. In that case, the model does
not generalize well and unseen object instances are classified wrongly.

Fig. 3. Example frames of the classes in the YouTube Objects dataset.

Table 2. Classes of the adapted YouTube Objects dataset with their numbers of videos
and fragments.

Videos Fragments Videos Fragments

Airplane 13 1854 Bird 16 784
Boat 17 2114 Cat 21 1303
Car 9 374 Cow 22 1679
Motorbike 14 1081 Dog 36 2696
Train 30 5873 Horse 29 4300

4.2 Features and Classifier

The motion features we use are the HOG, HOF and MBH descriptors around a
trajectory as well as the motion of the trajectory itself, as in [20]. We use their
setup with one exception: to reduce the calculation time, we set the sampling step
size to W = 10. Only on the Wild8 dataset, where the amount of data is limited,
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we take W = 5. We also experimented with improved trajectories [21] that
try to compensate for the camera motion of the video. Our object recognition
results were slightly better, but with a similar improvement (about 2%) in all
possible settings. We kept using the basic dense trajectories for the rest of our
experiments, because their effect has been more extensively researched in all
kinds of video processing applications.

As a baseline, we implement a keyframe-based approach. For this, we cal-
culate dense 128-bin SIFT descriptors [11] with the same spatial density W
as the trajectories over the same eight scales. We take a frame every L = 15
frames. This way, we ensure that the number of SIFT descriptors is roughly
equal to the maximum number of trajectories. In practice, however, on average
many more SIFT descriptors than trajectories are extracted, since trajectories
are not started in homogeneous regions and can still be discarded after they
finish. Note that a SIFT detector instead of dense SIFT would not improve
recognition results, since the background of the videos has enough texture to let
the detector fire.

Next, we train a codebook for each descriptor type and collect the quantized
descriptors in a bag-of-words representation. Finally, we train a multi-channel
one-against-all support vector machine with χ2-kernel as in [20]. The recognized
object category is the one with the highest probability. We take the average of
the accuracies of all classes as final performance criterion.

This is a very basic setup: higher accuracies can easily be obtained with
more sophisticated methods. The advantage of this scheme is that features and
descriptors have a high influence on the classification accuracy, therefore making
it well-suited to examine the effectiveness of descriptors.

5 Results and Discussion

Table 3 shows the average classification accuracy for all datasets for multiple
descriptor combinations. On Savanna4, Savanna7 and Wild8, we conduct the
experiments five times and report the average performance and the standard
deviation. We experiment only once on YouTube Objects, because calculations
on this dataset are more time-consuming.

When we use only one descriptor, SIFT is a good choice. It has top perfor-
mance on the Savanna4 and Wild8 datasets and decent scores on the others;
moreover, it is fast to calculate. Of the motion-containing descriptors, HOG and
MBH are the best. These two descriptors preserve some appearance information:
HOG directly, MBH by focusing on the boundaries of a moving object. The tra-
jectory descriptor, the uncoded motion of the trajectory, is the least effective
descriptor, probably because it is most affected by the camera ego-motion.

The classification accuracy increases with well-chosen descriptor combina-
tions. Recognition with SIFT and either HOG or MBH is already better than
SIFT alone. The best results are obtained by combining HOG, MBH and
SIFT, with an improvement of 7% over the keyframe approach on the Savanna
datasets and 14% on YouTube Objects. Configurations with the pure trajectory
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Table 3. Average accuracy on Savanna4, Savanna7, Wild8 and YouTube Objects
datasets for different descriptor combinations. ‘All trajectory’ is short for ‘Trajec-
tory+HOG+HOF+MBH’.

Savanna4 Savanna7 Wild8 YouTube Obj.

SIFT 61.9% ± 0.6% 41.6% ± 1.0% 62.3% ± 4.5% 44.3%

Trajectory 33.1% ± 2.0% 16.9% ± 1.2% 41.3% ± 1.6% 23.9%
HOG 61.9% ± 1.3% 48.4% ± 1.1% 53.5% ± 1.7% 36.0%
HOF 39.6% ± 1.3% 19.0% ± 0.8% 39.7% ± 2.6% 27.9%
MBH 52.2% ± 0.8% 36.1% ± 0.7% 47.8% ± 1.7% 45.3%

HOG+MBH 65.7% ± 1.3% 47.2% ± 2.7% 49.2% ± 4.8% 47.7%
All trajectory 60.1% ± 2.3% 40.8% ± 1.1% 50.4% ± 3.3% 51.4%

SIFT+HOG 65.2% ± 0.9% 44.9% ± 0.6% 59.0% ± 6.7% 52.8%
SIFT+MBH 67.0% ± 0.5% 46.0% ± 0.7% 54.9% ± 4.9% 55.9%
SIFT+HOG+MBH 68.6% ± 0.9% 49.6% ± 0.4% 56.7% ± 3.4% 58.1%
SIFT+All trajectory 66.6%, ± 0.7% 43.3%, ± 0.9% 49.8%, ± 2.0% 57.1%

descriptors and HOF, however, yield lower results than the ones without them.
On Wild8, the single SIFT descriptor works best. This dataset is too small to
draw conclusions: the instability of the results is indicated by the large values of
the standard deviation in Table 3.

Some objects are not suited for recognition by motion. Figure 4 shows the
confusion matrix of the Savanna7 dataset with only SIFT and only MBH. Zebras
are often confused with antelopes with MBH, but not with SIFT: the appearance
is very discriminative here. On the other hand, antelopes have a score three times
higher with MBH. The dataset includes seven species of antelope, making the
appearance more variable, while the motion is still similar. The different types
of cats, dogs and birds in YouTube Objects give rise to a similar effect.

Fig. 4. Confusion matrices for Savanna7 dataset with SIFT (left) and MBH (right)
descriptor.
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To find out whether appearance or motion is more easily learned, we train
models on the Savanna4 dataset with a varying number of training samples. The
classification accuracies can be found in Fig. 5. All descriptors start levelling out
around the same time, so we conclude there is no significant difference in learning
difficulty.

Fig. 5. Average classification accuracy as a function of the number of training samples
per class for the Savanna4 dataset.

Another interesting observation is that HOG and SIFT combined are better
than either of them separately, though they are both based on appearance. The
difference lies in two aspects. First, the HOG descriptor is only centered on the
moving points, not on a static background. Second, the descriptor is constructed
differently. A HOG descriptor has some time information, not only because it is
calculated over the 15 frames of a trajectory, but also because it is subdivided
in spatio-temporal cells. These cells manage to preserve more structure in the
HOG. The SIFT descriptor, however, has 32 more dimensions, so it can store
its information at a finer scale. To investigate the effect of these two differences,
we calculate a SIFT descriptor around the middle point of each trajectory and
train a model on Savanna4 with these descriptors. The first difference is now
neutralized. With this configuration, we obtain a score of 43.0%. This is signifi-
cantly lower than the 61.9% of HOG and the 61.9% of standard SIFT. We can
conclude that the main advantage of HOG is its structure-preserving descriptor,
while SIFT makes efficiently use of a larger number of features.

Savanna4, Savanna7 and Wild8 contain only animal classes. YouTube Objects
has some objects (means of transportation) as well, and for these too adding
motion information benefits the recognition accuracy (as can be seen in the
confusion matrices of Fig. 6). With SIFT descriptors, the average accuracy of
the objects only is equal to 48.4%. When we add HOG and MBH, it increases to
65.9%. We observe four quadrants in the confusion matrix of the comined HOG,
MBH and SIFT descriptors. Animals and means of transportation are less easily
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Fig. 6. Confusion matrix for the YouTube Objects dataset with SIFT (left) and com-
bined descriptors HOG, MBH and SIFT (right).

confused with each other than the different types of animal (or transportation)
are with each other.

As a disadvantage, use of motion descriptors increases calculation time,
mainly because the optical flow has to be calculated in order to track points
and obtain MBH and HOF.

6 Conclusion

Motion is often discarded in video object recognition. We have shown that a
higher accuracy can be obtained when it is taken into account. In particular,
combining HOG and MBH descriptors around a trajectory with a standard dense
SIFT method results in significantly higher performance than using only SIFT.
We have introduced two new datasets and adapted two existing datasets to the
problem. These datasets will be made publicly available to stimulate and help
further research on this topic.
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