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Abstract. In this paper we propose a non-blind passive technique for
image forgery detection. Our technique is a variant of a method pre-
sented in [8] and it is based on the analysis of the Sensor Pattern Noise
(SPN). Its main features are the ability to detect small forged regions
and to run in an automatic way. Our technique works by extracting the
SPN from the image under scrutiny and, then, by correlating it with the
reference SPN of a target camera. The two noises are partitioned into
non-overlapping blocks before evaluating their correlation. Then, a set
of operators is applied on the resulting Correlations Map to highlight
forged regions and remove noise spikes. The result is processed using
a multi-level segmentation algorithm to determine which blocks should
be considered forged. We analyzed the performance of our technique by
using a dataset of 4, 000 images.

Keywords: Digital image forensics · Image integrity · Image forgery
detection · Forgery localization · Pixel non-uniformity noise

1 Introduction

Nowadays, there are plenty of tools that allows even an inexperienced user to
modify the content of a digital image without leaving a visible trace of alternation
(i.e., digital image forgery). This practice may be harmful if used, e.g., to alter
the digital evidences in a criminal trial or to support the spread of false news
for political propaganda.

Several techniques have been proposed in the past years for detecting forged
images. These typically work by searching for tracks released during the forgery
process. Most of these techniques can determine if an image has been forged or
not, but are not able to identify which parts of an image have been forged or
require some sort of human intervention for this purpose (e.g. select a possibly
forged area or its shape in advance).
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In this paper we present a technique that is able to determine whether an
image has been forged or not and, in case of forgery, it is able to automatically
locate areas of the image that are likely to have been forged, provided that the
camera originally used to take the image is available. It is a variant of the tech-
nique originally presented by Fridrich et al. in [8] and it is based on the analysis
of the Pixel Non-Uniformity (PNU) noise, i.e., a characteristic noise of every
camera. The ability of our technique for operating in an automatic and adap-
tive way has been obtained through a clever use of the multi-level segmentation
process proposed by Otsu [12] and exploiting an accurate experimental calibra-
tion phase. Our technique supports the identification of splicing, copy-move and
inpainting forgery operations.

Organization of the Paper. The rest of the paper is organized as follows. In
Section 2 we briefly review the state of the art in the field of image forgery
detection. In Section 3 we present and detail our technique. The assignment
of several parameters for our technique has been done with an experimental
calibration phase discussed in Section 4. In Section 5 we present the results of
an experimental analysis involving our technique. Finally, in Section 6 we give
some concluding remarks for our work.

2 State of the Art

The digital image forgery detection research field is concerned with the develop-
ment of automatic or semi-automatic techniques able to determine any forgery
of an image. These techniques can be active or passive. In the case of active
techniques, a watermark placed initially in the image is useful to determine the
authenticity of an image. Passive techniques cannot rely on the existence of any
explicit signature on the image under scrutiny and, for this reason, they are
often called blind techniques. In this paper we focus our attention on passive
techniques.

Following the description presented in [13], we distinguish three general types
of digital artifacts that can be used to detect the forgery of a digital image,
regardless from the type of alteration: compression artifacts, alterations in the
camera Sensor Pattern Noise (SPN) and re-sampling traces. Compression arti-
facts are caused by the encoding of a digital image through a lossy compression
format, like the JPEG format. In this last case, we can detect forgeries by check-
ing for the existence of the Double Quantization (DQ) effect in the histograms
of the Discrete Cosine Transform (DCT) coefficients. Many of the algorithms
using the DQ effect rely on the fact that the presence of this effect is caused
by the initial compression that an image has undergone when saved for the first
time, and by the second compression, performed when saving again the image
after having forged it. One popular algorithm based on this approach is the
one presented by Lin et al. in [11] and further discussed in [2,3]. This algorithm
determines the authenticity of an image and it locates any forged region through
a probability map; this is used to mark each 8 × 8 block of a target image with
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a probability of being forged. The algorithm then extracts from this map some
features needed to train a dichotomous Support Vector Machine (SVM) classifier
used to determine if the overall image is likely forged or not.

The sensor pattern noise (SPN) is the noise left by digital sensors on the
images they capture. This noise is mainly due to some imperfections derived from
the manufacturing process of the sensor and, thus, can be used to recognize the
images that have been captured using a particular digital camera. The analysis of
this noise has been extensively used for solving problems related to identification
of the digital camera used to take a picture (see, e.g., [1,4,9]). However, there
are also several forgery detection approaches based on the analysis of this noise.
These typically work by calculating the statistical correlation between the SPN
extracted from the image under scrutiny and the reference sensor pattern noise,
which is a sort of fingerprint of a digital camera. Forged areas can be localized as
those lacking the corresponding SPN. The most relevant contribution is the one
presented by Fridrich et al. in [8]. This method assumes that either the camera
that took the image is available to the analyst or at least some other non-forged
images taken by the camera are available. The method comes in two variants. The
first variant requires the investigator to manually select in advance the region
of the image that is suspected of having being forged, then it is calculated the
statistical evidence that the region was tampered. The second variant attempts
to automatically determine the forged region without assuming any a priori
knowledge about its location, shape, or size. This region is determined as the
area with the lowest pattern noise presence in the image. This is achieved by
sliding over the image a set of basic shapes with different orientations and size,
and accumulating the lowest correlation values. Once the region is localized, it
is inspected using the original algorithm. The computational cost of this variant
is proportional to the number of shapes and sizes used for locating the tampered
region. An improvement of this method has been presented by Fridrich et al. in
[5]. Here the authors introduced a correlation predictor working on small blocks
and trained by taking into account the intensity of the images taken with a given
camera, the textures existing in the images being analyzed and the flattened
areas existing in these images due to image processing operations. The predictor
is obtained from blocks coming from a few non-forged images from the same
camera. The same authors in [6] have presented another improved version of the
previous method, while Chierchia et al. in [7] have recently proposed a strategy
to improve the resolution of SPN-based forgery detection techniques. Namely,
they used a spatially adaptive filtering technique with weights computed over a
suitable pilot image to improve the resolution of the technique when evaluating
the correlation between the SPN of an input image with the reference SPN. In
particular, a guided filtering approach is adopted, obtaining performance much
superior to the reference technique when small forgery areas are involved.

3 Our Technique

Our technique is inspired from the method presented by Fridrich et al. in [8] and
it is based on the analysis of a particular type of Sensor Pattern Noise, the Pixel
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Non-Uniformity (PNU) noise. Let I be an image under investigation and C the
camera that has been used to take it, our technique works by first extracting
the PNU noise from I and by correlating it with an estimation of the reference
sensor pattern noise (Reference Pattern, RP ) of C. The correlation is evaluated
by first partitioning the two noise images into non-overlapping blocks. Then, a
Correlations Map is built by correlating the corresponding pair of blocks of the
two images. The out coming map may be very noisy and may incorrectly consider
as forged small boundary regions. To overcome these problems we first apply a
smoothing filter to remove noise spikes (i.e., isolated pixels with exceptionally
high or low intensity). Then, we use an opening operator to further highlight
large regions having homogeneous correlation values while leaving out smaller
boundary regions. Once the Correlations Map has been post-processed, we use
a multi-level segmentation algorithm to adaptively compute a set of thresholds
that will be used, in turns, to determine which blocks should be considered
forged. More details about this technique are provided in the rest of this section,
while a set of pictures showing the different steps of our technique on three
sample images is available in Figure 1.

Camera Sensor Pattern Noise Extraction (Setup). In this initial step we cal-
culate the reference pattern of the camera C using the technique presented in
[9]. Let DC be a set of authentic images taken with C, called enrollment set.
We extract the PNU noise estimation RNe existing in each image e ∈ DC and,
then, we apply a pixel-by-pixel average operation on these noises to obtain an
approximation of the reference pattern RPC . The PNU noise is extracted from
an image by first denoising it and, then, by subtracting from the input image
the denoised one.

In the rest of the paper, unless stated otherwise, we assume that all the
considered images have the same resolution. In addition, we only work on the
green channel of the RGB color space.

Correlations Map Extraction (Step 1). In this step we first partition RNI (i.e.
the PNU noise estimation of the image I under scrutiny) and RPC in blocks
of size s × s pixels. Thus, if the two images have initially size M × N , the
partitioning will return two matrices RN ′

I and RP ′
C , composed of M/s × N/s

blocks each. Then, we calculate the Bravais-Pearson Correlations Map between
RN ′

I and RP ′
C using the approach defined in [9]:

corr(RN ′
I(i, j), RP ′

C(i, j)) =
(RN ′

I(i, j) −RN ′
I(i, j))(RP ′

C(i, j) −RP ′
C(i, j))

∥
∥RN ′

I(i, j) −RN ′
I(i, j)

∥
∥
∥
∥RP ′

C(i, j) −RP ′
C(i, j)

∥
∥

(1)

In Equation 1, the numerator is the covariance of RN ′
I(i, j) and RP ′

C(i, j),
while the denominator is the product of their two standard deviations. The
resulting index is in the range [−1;+1], where values tending to +1 indicate
that the block at index (i, j) has been taken by using C, while values tending to
−1 indicate that it is not from C. This correlation is evaluated for each pair of
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blocks b(i, j) of RN ′
I and RP ′

C , where i ∈ {1, ...,M/s} and j ∈ {1, ..., N/s}. The
resulting values will be used to fill a Correlations Map matrix (CM).

Smoothing (Step 2). Since the Correlations Map is noisy, in this step, we apply
a mean filter to reduce the noise in CM . This filter replaces each pixel value in
an image with the average value of its neighbors, including itself (for details, see
[15]). We call CMfilt the resulting Correlations Map.

Homogeneous Regions Highlighting (Step 3). In this step, we apply an opening
operation [10] to remove some of the foreground (bright) pixels from the edges
of regions of foreground pixels existing in CMfilt. This operation preserves fore-
ground regions that have a shape that is similar to the chosen structuring ele-
ment, or that can completely contain the structuring element, while eliminating
all other regions of foreground pixels. In our case, the opening operation uses
a disk structuring element. We define CMopen the Correlations Map resulting
from the application of the opening operation to CMfilt.

Multi-level Segmentation (Step 4). In this step, we mark the regions of I that are
considered to be forged by analyzing the content of CMopen. For this purpose,
we first determine the correlation threshold below which blocks have to be con-
sidered forged, using the multi-level segmentation process proposed by Otsu [12].
Let l the number of distinct levels, the multi-level segmentation returns a vector
T , sorted in ascending order, containing l different thresholds. We select among
these thresholds the smallest, lmin = min(T ). Then, for each block b(i, j), we
mark it as 0 (i.e., forged), if CMopen(i, j) ≤ lmin, and 1 (i.e., authentic), other-
wise. The binary map obtained in this way is called BinaryImage. The benefit of
using the multi-level segmentation algorithm is that a single fixed global thresh-
old classifying the whole image in a binary way, could label as forged even blocks
that are authentic, only because adjacent to forged blocks.

4 Experimental Calibration

The general technique presented in Section 3 required the calibration of several
parameters. In our case, the assignment for these parameters was estimated
through an empirical assessment conducted on a set of reference images.

4.1 Spatial Filter

The Correlations Map obtained during Step 1 may be very noisy. This may
either be due to random noise or to other factors such as an oversaturated image
or the presence of a strong texture in the portrayed scene. To overcome this
problem we tried different smoothing filters and kernels. In the first case, we
evaluated three different smoothing filters: gaussian filter (Figure 2b), median
filter (Figure 2c) and mean filter (Figure 2d). The gaussian filter modifies the
input signal by convolution with a gaussian function. The mean filter replaces
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

Fig. 1. (a, b, c) Authentic images. (d, e, f) Forged images with copy-move, splicing and
inpainting respectively. (g, h, i) Correlations Maps (CMs). (j, k, l) Filtered Correlations
Maps with mean filter (CMsfilt). (m, n, o) Filtered Correlations Maps after opening
(CMsopen). (p, q, r) Binary Maps (BinaryImages). (s, t, u) Marked forged images
(MarkedImages).
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each pixel in an image with the average value of its neighbors, including itself.
Finally, the median filter does the same, but by using the median value of the
neighboring pixels. A qualitative analysis revealed that the median filter was the
most effective in denoising the input image, but introduced artifacts near the
edges of the image. The best trade-off was reached by using the mean filter.

Concerning the choice of the kernel size in the mean filter, we tried several
different squared sizes for this parameter (i.e., 8 × 8, 16 × 16, 32 × 32 and 64 ×
64). The results, presented in Figures 2e, 2f, 2g and 2h, show that when using
values up to 16 × 16, the resulting map is still too noisy. If we use, instead, high
values like 64 × 64, the resulting map is too smoothed because of the excessive
approximation of the edges of the forged areas. Therefore we fixed 32 × 32 as
the size of kernel to use in mean filtering.

4.2 Block Size

We recall that in our technique the pixels of RP and RN are partitioned into
square blocks of size s × s, before being analyzed. This introduces the problem
about the block size to choose for this purpose. We investigated this problem
through a qualitative analysis. We tried different assignments for s as reported
in Figures 2i, 2j, 2k and 2l. Here we show the Correlations Maps obtained in Step
2 using various sizes of blocks (s = 4, 8, 16, 32). In these figures, each resulting
Correlations Map has been denoised using a mean filter with kernel size 32×32.
As it can be seen, if s is very small, the resulting Correlations Map is very
noisy, even after the application of the mean filter. Instead, if s is very large,
the Correlations Map loses too much detail because of the smoothing effect
introduced by the mean filter. We found that the size giving the best results is
s = 8.

4.3 Mathematical Morphology Operation

We decided to use the opening operation in our technique for separating objects
that are poorly connected in the Correlations Maps while removing small regions.
In our case, we determined that the best morphology operator to use is a disk
kernel because it allows a more precise definition of the boundaries and of large
forged regions than the other kernels. Then, we experimented with different sizes
for this kernel, roughly equivalent to the radius of the disk kernel. According to
our experimental results, shown in Figures 3a, 3b, 3c, 3d, 3e and 3f, the best
performance are achieved when using a disk with radius 32. Using larger values
would let the structuring element consider as part of the forged even adjoining
regions that are not. Conversely, using values smaller than 32 would raise the
probability of excluding some forged regions from the detection.

4.4 Segmentation Process

The multi-level segmentation algorithm used by our technique requires the indi-
cation of the number of levels to be used for partitioning the CMopen. We found
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. (a) Forged image. (b, c, d) Gaussian, Median and Mean filter on Correlations
Map. (e, f, g, h) Mean filters with kernel size k × k, k = 8, 16, 32, 64. (i, j, k, l) Block
size s× s of mean filtered Correlations Map with s = 4, 8, 16, 32.

in our experiments that a small number of levels (e.g., l = 3) is enough to obtain
better performance that when using a single global threshold, but tends to give
rise to false positives. We then tried using an increasing number of levels and
found that, in our tests, the good partitioning is obtained with l = 10. Figure 4a
shows an authentic image, while its forged counterpart is presented in 4b.
Figures 4c, 4d, 4e and 4f show how the output, i.e. BinaryImage, changes
according to the number of levels used to partition the input image.

5 Experimental Study

In this section we present the results of an experimental study we conducted to
evaluate the effectiveness of our technique1. The study has been organized in
two stages. In the first stage, we analyzed the localization performance of the
technique by per se. In the second stage, we compared the performance of our
technique to detect authentic and forged images with the one of the Lin et al.
algorithm [11], a popular method used to detect the image forgery exploiting
DQ effect.

The PNU filter used during the experiments is based on the one presented in
[9] and it uses the Daubechies wavelet 16 with 8 vanishing moments. The dataset
1 A reference implementation of our technique is available upon request.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) Authentic image. (b) Forged image with splicing. (c, d, e, f) Binary images
resulting from the application of the opening operation using a disk with increasing
radius (r = 8, 16, 24, 32).

used for our experiments is the UniSa TIDE dataset. It has been first presented
in [2] and consists of 2, 000 authentic JPEG images and 2, 000 forged JPEG
images. It was assembled from a set of 200 authentic raw images taken by using
two digital cameras, Nikon D5100 and Nikon D600, and compressed in JPEG
employing the following quality factors: QF = {100, 98, 95, 90, 85, 80, 75, 70, 65,
60} (obtaining 2, 000 authentic JPEG images). At this point, 200 of these images
were chosen uniformly at random and were forged using splicing operations. The
objects were pasted either from the same picture, from another image from the
same digital camera, or from an image from a completely different camera. The
resulting images were compressed again in JPEG employing the previous quality
factors, obtaining 2, 000 forged JPEG images. In our tests, for each of the two
considered digital cameras, we used a first batch of 50 authentic images with low
compression rate to calculate the reference pattern. We then used a second batch
of 1, 000 authentic images and 1, 000 forged images for evaluating our technique
in the experiments presented in this section.

5.1 Test 1: Forged Blocks Detection

In this test we investigate the ability of the proposed technique to correctly detect
the forged blocks belonging to a set of reference images coming from the UniSa
TIDE dataset. We report in Table 1 the outcome of the test. The overall perfor-
mance of the technique seems to be very good as over the 74% of total forged
blocks (True Positive Rate, TPR) and over the 87% of the total authentic blocks
(True Negative Rate, TNR) were correctly classified. Conversely, the amount of
authentic blocks erroneously classified as forged (False Positive Rate, FPR) and
the amount of forged blocks erroneously classified as authentic (False Negative
Rate, FNR) is relatively small. In sums, the accuracy (ACC) of the technique,
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Authentic image. (b) Forged image using splicing. (c, d, e, f) BinaryImages
resulting from partitioning using an increasing number of levels (l = 5, 10, 15, 20).

Table 1. Performance evaluation of our technique on a dataset made of 1, 000 authentic
images and 1, 000 forged images. Performance is measured by considering the rate of
blocks successfully classified as forged or not, grouped according to their quality factors.
Concerning forged images, the quality factor (QF ) indication refers to the one used to
recompress them after the digital forgery.

Test ACC BAC TPR FPR TNR FNR

Images QF≤75 0.79 0.76 0.72 0.20 0.80 0.28
Images 75<QF≤90 0.89 0.82 0.72 0.08 0.92 0.28
Images 90<QF≤100 0.90 0.85 0.79 0.08 0.92 0.21

Images All 0.85 0.80 0.74 0.13 0.87 0.26

measured as the ratio between the number of correctly classified blocks and
the total number of blocks, is good as it reaches the 85%. Since the number
of authentic blocks in our dataset is, in the average, larger than the number of
forged blocks, we also estimated the balanced accuracy (BAC) of our technique,
as defined in [14]. Even in this case, the performance is good, as the balanced
accuracy is approximately the 80%.

We further investigated the performance of our technique by examining how
it changed according to the quality factors of the images being analyzed. The
results, reported in the same table, suggest a strong correlation between the
quality of the images and the ability to correctly classify authentic and forged
blocks. Conversely, we analyzed the blocks that were not correctly recognized
and found that some errors were due to oversaturated images or to pictures
portraying outdoor environments with very complex subjects, like the foliage of
trees. Many of these errors were due to blocks covering boundary regions between
forged areas and authentic areas.
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5.2 Test 2: Forged Images Detection

In this second test, we faced the more general problem of determining whether
an input image is authentic or not. Since our technique operates at block-level
and given the results presented in Section 5.1, we introduced a decision thresh-
old so that we consider an image to be forged if more than the 10% of them
blocks are classified as forged by our technique. The outcoming results have
been compared with those of the Lin et al. algorithm [11], a popular technique
for determining if an image is forged by exploiting the DQ effect (see Section 2).
The two approaches have been evaluated on 2, 000 testing images of the UniSa
TIDE dataset (1, 000 authentic and 1, 000 forged) plus 2, 000 other images used
for training the SVM classifier used by the Lin et al. algorithm. The results show
that our technique is able to correctly classify the 74% of the considered images,
against the 55% achieved by the Lin et al. algorithm. If we leave out from the
dataset all the images with a QF ≤ 75, the recognition rate of our technique
reaches the 83% of the images against the 59% of the Lin et al. algorithm.

6 Conclusion and Future Work

In this paper we proposed a non-blind passive image forgery detection technique
based on the analysis of the Pixel Non-Uniformity noise, under the assumption
that the camera used to take the image under investigation is available. Our
proposal is based on the technique first proposed by Fridrich et al. in [8]. Differ-
ently other methods, such as [5,6], our technique does not require a preliminary
training phase. In addition, our technique is able to operate on forged areas that
are smaller than the ones used by other methods like [5–8].

We conducted a thorough experimental analysis of our technique using a
reference dataset of 4, 000 forged and authentic JPEG images. In the general
case, our technique exhibits a very high accuracy, and easily outperforms the
popular detection algorithm by Lin et al.. However, its performance deteriorates
when working with images that are oversaturated, that have been saved using
a low quality factor or that portray outdoor environments with very complex
subjects. In fact, the SPN is absent in completely saturated regions and largely
suppressed in dark areas. In addition, the denoising filter is less effective in
removing the SPN in highly textured areas with many fine edges. Therefore,
in these areas, the correlation will be naturally lower and care must be taken
not to misinterpret such regions as forged. Moreover, our technique is only able
to identify splicing, copy-move and inpainting forgery operations, while it does
not support alterations of digital images like compensations (e.g., changing the
color of an image), affine transforms (e.g., rotating and translating an image)
and recompressions.

There are several directions worth to be investigated from here on. It could
be explored the possibility to further improve the performance of our technique
when locating the forged regions of an image by adopting graph-cut methods in
order to better detect the boundaries of the forged regions. Similarly, it should
be investigated the possibility to evaluate the results at a single-pixel level rather
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than at block-level. Moreover, it would be interesting to consider in our exper-
imentation other approaches based on SPN, and to develop a very large scale
data set of images featuring forgeries of different shapes and sizes.
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