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Abstract. In this work, we address the problem of recovering the 3D
full-body human pose from depth images. A graph-based representation
of the 3D point cloud data is determined which allows for the measure-
ment of pose-independent geodesic distances on the surface of the human
body. We extend previous approaches based on geodesic distances by
extracting geodesic paths to multiple surface points which are obtained
by adapting a 3D torso model to the point cloud data. This enables us
to distinguish between the different body parts - without having to make
prior assumptions about their locations. Subsequently, a kinematic skele-
ton model is adapted. Our method does not need any pre-trained pose
classifiers and can therefore estimate arbitrary poses.

1 Introduction

The robust estimation of human poses has a wide range of applications like
human-computer interaction, gaming, and action recognition, but is still a chal-
lenging task, since the human body is capable of an enormous range of poses.
Existing techniques can be classified into several categories. Learning based
approaches [1], [2], [3] and [4] are often restricted to previously trained poses
and require a large set of training data. The authors of [3], for example, have
used almost one million training images. Further, the localization of the var-
ious body parts is often not very accurate. In contrast, methods without any
prior knowledge [5] can estimate arbitrary human poses but rely on an exact
feature point extraction. Image based methods use feature like silhouettes [6],
skin color [7] or contours [8], but often lack the ability to resolve ambiguities,
e.g. self-occlusion. The recent development of 3d-sensors like Kinect offered the
opportunity to overcome the limits of the image-based approaches. In this work,
we propose an approach that estimates the full-body human pose from depth
images based on geodesic distances. Geodesic distances are independent of the
human pose and therefore suitable for a robust body part segmentation. Geodesic
distances for pose estimation were used before [9]. In this work, we extent prior
works by extracting geodesic paths to multiple surface points which are obtained
by registering a rigid torso model to the depth data. This allows for a labeling
of geodesic paths and is used to robustly segment the body parts.
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2 Pose Recognition Method

An overview of the suggested method is provided in Fig. 1. At each time stamp
t we are given a depth image Dt that contains the depth data of a user in an
articulated pose. Depending on the experimental setup, Dt is either captured by
a Kinect or contains simulated data which is generated by rendering an animated
3D-character. It is assumed that the user is within the foreground region. User
segmentation is therefore limited to applying a depth threshold to Dt. Using
a pinhole camera model, we also compute in each frame the corresponding 3D
point cloud Wt. Our goal is to estimate the full-body pose qt ∈ H

K , with qt =

 

   

Fig. 1. Suggested method for full-body pose estimation.

{qto, qne, . . . } representing the joint rotations of a hierarchical skeleton model. In
each frame, the following steps are performed: a) Fit a 3D-torso model to the torso
region (Section 2.1); b)Compute for each3D-point its geodesic distance to the torso
center and extract geodesic paths with maximum length. Determine for each path
which limb it represents using a Hidden-Markov-Model (HMM) based approach
(2.2); c) Segment individual body parts and fit a kinematic skeleton (2.3).

2.1 3D Torso Model Fitting

In order to determine the position of the limb start point (shoulders, hips, neck),
a rigid 3D-torso model is translated and rotated to match with the corresponding
points of the point cloud Wt. We detect corresponding points by determining
for each model point the closest point in Wt and vice versa. This requires an
appropriate initialization of the torso model position and orientation. The torso
center is detected based on a distance transformation (Fig. 2a). A point is labeled
as being located within the torso region T , if its distance is below the half of
the maximum distance: T = {[x, y]T | IDT (x, y) < 0.5max(IDT )}. The initial
position is set to T̄ and the orientation is given by the largest eigenvector U0

of the covariance matrix of T (Fig. 2b). Subsequently, the corresponding 3D-
point sets X,Y between the model and Wt are determined. The model is then
translated by Δpto = X̄ − Ȳ . For the rotation, the matrix
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N =

⎡
⎣

Sxx + Syy + Szz Syz − Szy Szx − Sxz
Syz − Szy Sxx − Syy − Szz Sxy + Syx
Szx − Sxz Sxy + Syx Syy − Sxx − Szz
Sxy − Syx Szx + Sxz Syz + Szy

⎤
⎦

is created with S = Cov(X,Y ) the covariance matrix. The rotation q̇ is given
by the largest eigenvector of N and the torso is rotated by qto = q̇ · qto. The
fitting is repeated until the residual error r =

∑
i ||X(i)− Y (i)||2 converges. In

each frame the transformation of the previous frame is used. If r is too large, the
torso fitting is re-initialized using the aforementioned distance transform based
method. For a more detailed description of this approach, see [10].

a) b)

T̄
��

2U0 ·
√
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Fig. 2. Torso detection: a) Distance transformation IDT . b) Torso center T̄ and initial
orientation (red lines).

2.2 Extraction and Labeling of Geodesic Pathes

We proceed by computing the geodesic distances between all 3D-points Wt and
the torso center. For this, a graph G = (N , E) is constructed. The nodes of the
graph are the points of the point cloud N = Wt and are connected by an edge
Ei,j , if either an edge criterion C1 or C2 is fulfilled. The former connects two
nodes if their euclidean distance is below a threshold εc1 and if they correspond
to adjacent depth pixels (Eq. 1). The second one (Eq. 2) connects two nodes, if
all depth image pixels between them have a lower depth value, i.e. are closer to
the camera (Fig. 3b).

C1(i, j) =||wi − wj ||2 ≤ εc1 ∧ d(ẇi, ẇj) ≤ 1, (1)

C2(i, j) =Dt(ẇk) < min(Dt(ẇi),Dt(ẇj))

∀ẇk ∈ ẇiẇj ∧ d(ẇi, ẇj) > 1,
(2)

where d(·) is the spatial 2D distance. Each edge has a weight w(Ei,j) which is the
Euclidean distance between the connected nodes. The shortest connection (path)
between two arbitrary graph nodes a,b ∈ N is determined using the Dijkstra’s
algorithm [11]. The cumulative weight of all edges that form a geodesic path is
denoted as the geodesic distance g(a,b) =

∑
E∈P(a,b) w(E).
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Fig. 3. Geodesic distances: a) Graph with only C1 applied. b) Graph, if also C2 is
applied, former separated graph region are connected (red lines). c) Detected geodesic
maxima, labeled as A-E. Black lines represent the zero-weight edges.

Limb end points have high geodesic distances from the torso center (red
and orange regions in Fig. 3c) and are extracted as follows: In each pass, the
node with the highest distance is detected. In order to prevent a re-detection,
we connect the node and the node with half the geodesic distance to the torso
center with a zero weight edge w(E) = 0 and re-compute the geodesic distances.
This is repeated until all maxima are detected (Fig. 3c).

Once the geodesic maxima M = {mi} and their paths to the torso center
P(mi,pt) are detected, we need to label them as the respective limbs {Lj}5:
the left and right arm, the head, and both legs; with their start points {�j}5 =
{pls,prs,plh,prh,pne}, the positions of the shoulders, hips, and the neck, which
are obtained from the torso fitting. Labeling is based on the fact that the paths
from the torso center to the ends of the limbs pass the limb start points. For
example, the path to the left hand passes the left shoulder.

One could assume that is sufficient for a path labeling to determine for each
geodesic path the closest limb start point. This, however, does not work for
two reasons. Firstly, there are poses in which the path of a limb is very close
or even occludes the start point of another limb. For example, when the right
arm occludes the left shoulder. In this case, an incorrect closest limb start point
would be detected and the path labeling would fail. Another reason is that, when
only single points are used for the path labeling, there is no possibility to reject
incorrect geodesic paths.

We therefore propose another approach which is based on the comparisons
of complete paths. For each geodesic maximum, five hypotheses are generated
(Fig. 4) that it represents limb Lj (Eq. 3)

Hi,j : P(pt,mi) =̂ P(pt, �j ,mi), (3)
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where P(pt, �j ,mi) is the concatenation of two paths starting at the torso center
pt to the geodesic maximum position mi via the limb start point �j .

a) b)

Fig. 4. Detected geodesic path (a) and the hypotheses paths (b).

In order to evaluate the hypotheses, a distance measure is introduced mea-
suring the similarity between two geodesic paths Pa and Pb. Let A = {ai}N and
B = {bk}K denote the 2D-positions of the elements of Pa and Pb, respectively.
The distance measure is given by Eq. 4.

d(Pa,Pb) =
1
N

N∑
i=0

e− 1
σ |ai−bj |2 , j = h(A,B, i). (4)

The function h() determines for each element ai the index of the correspond-
ing path element in Pb. In a first approach, a nearest-neighbor search was used,
but this neglects the sequential order of the path points (Fig. 6a, left). In a
second approach (Fig. 6a,right) the sequence of corresponding points is deter-
mined using the viterbi algorithm [12]. We define a HMM λb = (φ,θ,η,π), with
φ = {φk} the states, θ = {θki} the transition probability matrix, π the initial
state probability matrix and η = {ηk}, a set of emission probability functions.
The HMM represents path Pb, so there is one state for each path element B.
The elements in A are considered as an observation sequence. The indices of
corresponding path points are then given by the most likely sequence of hidden
states qφ (viterbi), so that

h(A,B, i) = qφ(i), with qφ = viterbi (λb,A) (5)

The HMM is in a left-right form, where each state of λb is connected to itself
and to the next Nλ states. The transition probability (Eq. 6) decreases for more
distant states. This topology considers the sequential order of the path points:

θki =

{
exp(−(k−i)2/Nλ)

σk
, i ≥ k ∧ i < k + Nλ

0, otherwise
, (6)
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where σk is a normalization term that ensures that the outgoing transition prob-
abilities add up to one.

The emission probability function η determines the probability to observe
the path element ai in state φk, i.e. at path element bk and is defined by the
Euclidian distance between two path points:

ηk(ai) = exp(− 1
σ

|ai − bk|2). (7)

We want to emphasize that the HMM is not trained but constructed out of path
Pb, where the transition and emission probabilities are set according to Eq. 6
and Eq. 7, respectively.

Using the distance function (Eq. 4), the hypotheses (Eq. 3) that a path
P(mi,pt) represents the limb Lj are evaluated. This results in a distance matrix
Ω∗ (Eq. 8). We further assume that limb paths only slightly change between two
consecutive frames and compute the path distances ω−1

ij to previously assigned
limb paths Pt−1

Lj
(Eq. 9).

Ω∗(i, j) = ω∗
ij = d(P(pt,mi),P(pt, �j ,mi)) (8)

Ω−1(i, j) = ω−1
ij = d(P(�j ,mi),Pt−1

Lj
) (9)

Both distances are combined (Eq. 10) as follows: If ω−1
ij is above a gating

threshold ωG=1.0, the path P(�j ,mi) is too far away from a previously assigned
limb path and ωij is set to ωmax = 2.0, which prevents in a subsequent step the
path from being labeled as limb Lj . If ω−1

ij is below the gating threshold, ω∗
ij

is weighted with ω−1
ij . This ensures that if multiple paths are within the gate

interval of the previous assigned limb path Pt−1
Lj

, it becomes more likely for a
path that is closer to the previous one to be labeled as Lj .

Ω(i, j) = ωij =

⎧
⎨
⎩

ω∗
ij , Pt−1

Lj
not seen

ω∗
ijω

−1
ij /ωG, ω−1

ij < ωG

ωmax, ω−1
ij ≥ ωG

(10)

From all possible assignments αk between the detected geodesic paths and
the limbs Lj , the one α̂ that minimizes the total assignment distance is selected
(Eq. 11). In Fig. 5, the path distances and assignments for a given set of geodesic
paths and their hypotheses are shown.

α̂ = argmin
αk∈{α0...αK}

4∑
j=0

Ω(αk(j), j) (11)

2.3 Body Part Segmentation and Skeleton Fitting

The subsequent steps are behind the scope of this work but briefly mentioned.
Having labeled the geodesic paths, it would we possible to adapt the bones of
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Fig. 5. Detected paths (very left column) towards geodesic maximum positions mi

(red circles) are compared (ω∗) to hypotheses-paths (right columns) defined by the
torso center, the geodesic maximum and the limb start point �j (blue dots). They are
also compared (ω−1) to previously labeled limb-paths (not shown). Both distances are
combined (ω) and the paths are assigned to the limbs so that the cumulative distance
is a minimum (red boxes).

a hierarchical skeleton model to the 3D-points that are located along the paths.
This is, however, for two reasons inaccurate. The first reason is that paths only
reflect the surface of the human body, whereas the bones should be located
inside. The second reason is that the paths describe the shortest connection
between the points of the body surface. When a limb is bent, the path thus does
not run through the center but close to the border of the limb. This can be seen
in Fig. 8. So, instead of fitting a skeleton model to the paths, we utilize them
to initialize a watershed based body part segmentation (Fig. 6b). Within each
body part, the 3D points are shifted inwards the body using the surface normal,
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which is obtained from the graph (Fig. 6c). Using the Cyclic coordinate descent
method [13], a hierarchical skeleton model is adapted to the shifted points (Fig.
6c) by minimizing the point-to-line distances between the bones and the shifted
points.

a)
b) c)

Fig. 6. a) Corresponding path points using nearest neighbor search (left) and viterbi
(right) b) Limb paths (white lines) and segmented body parts. c) 3D-points shifted
inwards the body.

3 Experimental Results and Discussion

In order to evaluate our pose estimation approach, sequences of synthetic depth
images have been generated by rendering an animated 3D-character into an
OpenGL depth buffer. The approach has the advantage that the exact ground
truth joint positions are known and can therefore be compared to the deter-
mined ones. In total, 16 different sequences containing various poses have been
created which corresponds to a total number of approx. N=25000 frames. In
each sequence, the character is the only rendered object and not more than 45
degrees turned away from the camera. Our skeleton model consists of 16 joints
(three for each arm and leg, two for the torso, the neck and the head). Let zi(t)
denote the absolute positions of each joint at frame t. Given the ground truth
joint positions yi(t), we compute in each frame the mean Euclidean distance
error (Eq. 12) and the maximum error (Eq. 13).

em(t) =
1
16

16∑
i=1

|zi(t) − yi(t)|2 (12)

eh(t) = max|zi(t) − yi(t)|2 ∀i = 1 . . . 16 (13)

ez(i) =
1
N

N∑
t=1

|zi(t) − yi(t)|,∀t = 1 . . . N (14)

In Fig. 7, the courses of both errors are shown for a single sequence. It can
be seen that the mean distance is about 2cm . The maximum error rises up
to 10cm. For other sequences the maximum error raised up to 28cm, which is
mainly due to an inaccurate fitted elbow joint position or occurs, when the user’s
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arm points directly to the camera. In this case, there are too few target points
for the skeleton fitting and the kinematic chain remains unchanged. For some
selected time stamps in 7 the animated 3D-characters are also shown. One can
see that the estimated pose (depicted by the blue skeleton) matches the ground
truth pose (black skeleton) even in cases of self occlusion.
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Fig. 7. Top: Mean (blue graph) and maximum (black) joint error for a single sequence.
Bottom: Selected poses with ground truth skeleton (black) and the estimated one
(blue).

In Fig. 8 more qualitative results of our approach are shown. For several
poses, the rendered 3D character together with the estimated and ground truth
pose, the geodesic distances and the 3D points of the segmented body parts
to which the skeleton is fitted are shown. There are, however, some poses that
cannot estimated by our approach. When the user is rotated too far away from
the camera, the torso model registration fails. Another case occurs, when the
limbs are too close to the torso. In this case, the geodesic paths are not detected.
A possible solution would be to perform a local model based search in order to
update the skeleton model.

In Fig. 9, we have further computed the per-joint errors (Eq. 14) averaged
over all frames. It is between 0.6cm for the head and 3.8cm for the feet and
elbows. For comparison, the authors of [9], who have also used geodesic distances,
reported averaged per-joint errors between 7cm (shoulders) and 20cm (feets) and
an averaged joint distance of ēKin = 10.84cm. However, these errors are for real
depth data. Another graph-based approach was provided by the authors of [14]
with reported per-joint distances between 3cm (neck) and 6.8cm (elbow).
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Fig. 8. Qualitative results of the pose estimation. The first column for each pose depicts
the 3D-character, the ground truth (black) and the estimated pose (blue skeleton). The
extracted geodesic paths and distances are shown in the second column. The results of
the body part segmentation are shown in the third column.

Our method is suitable for an online processing (20fps). The HMM based
path labeling is by far the most computationally expensive step, but can be
parallelized for each detected path. Since our approach is a generative approach
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Fig. 9. Per-joint errors averaged over all frames.

that does not need any pre-trained classifiers, the pose estimation is not limited
to previously trained poses. A major benefit is that it does not rely on temporal
data and as a result cannot get stucked in local minima. Our approach extends
prior pose estimation methods based on geodesic distances by extracting the
geodesic paths not only to a single but multiple points which are obtained by
a torso model registration. As a result, we do not need a specific pose (often
T-pose) in which the initial positions of the limbs are determined. Currently, we
have extended our method for generating synthetic depth data in order to further
examine the influences of parameters like camera position, noise or different
character meshes. In a future work, the geodesic distances computed to multiple
points will directly be used to segment the individual body parts.
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