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Abstract. Foreground background segmentation algorithms attempt to
separate interesting or changing regions from the background in video
sequences. Foreground detection is obviously more difficult when the
camera viewpoint changes dynamically, such as when the camera under-
goes a panning or tilting motion. In this paper, we propose an edge
based foreground background estimation method, which can automati-
cally detect and compensate for camera viewpoint changes. We will show
that this method significantly outperforms state-of-the-art algorithms for
the panning sequences in the ChangeDetection.NET 2014 dataset, while
still performing well in the other categories.
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1 Introduction

Foreground background segmentation is frequently used as a first step in many
computer vision algorithms [3] [4]. Usually, foreground objects coincide with
“moving” pixels, so the terms foreground background segmentation and motion
detection are often used interchangeably. However, for some applications, static
objects could also be of interest, for example if an object is added to the envi-
ronment (e.g. a backpack left at a crowded station could contain explosives).
On the other hand, the motion of some particular objects, such as waving trees,
should often not be analyzed in further steps.

State-of-the-art foreground background segmentation methods consider these
remarks, such that they can be employed in a wide variety of situations. The
method described in [17] e.g. explicitly models both the foreground and back-
ground seperately, while the authors of [14] suggest an automatic and dynamic
local parameter tuning mechanism. However, one issue which has not received
proper attention in foreground background segmentation literature, is that of
camera viewpoint changes. Most algorithms assume a fixed camera position.
One algorithm that does not make this assumption, by allowing multiple pixel-
wise background models, shows to outperform other methods when the camera
does move with respect to the static scene [13].
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Fig. 1. Overview of the algorithm in static camera environments. (a) Input image, (b)
LTP based edge descriptors, (c) foreground edges (d) filled foreground image.

In this paper, we present a novel mechanism to overcome issues caused by
camera viewpoint changes, for example panning, tilting or jitter. When com-
pared to our previous work [1], the main contribution is the detection of camera
viewpoint changes and the selection of appropriate image transformations. In the
following section, a brief overview of the original method and some extensions
in the detection step are treated. In Sec. 3 and 4 the main novelties, i.e. cam-
era viewpoint change detection and compensation mechanisms, are explained in
depth. Finally, the complete algorithm is tested on the comprehensive ChangeDe-
tection.NET 2014 dataset [18]. We will show that our method EFIC (Edge based
Foreground background segmentation with Interior Classification) achieves the
best F-measure on 4 out of the 11 video categories, with an especially notable
improvement on the Pan-Tilt-Zoom sequences.

2 Edge Based Foreground Background Segmentation

The proposed algorithm is an extension of previous work on foreground back-
ground segmentation [1]. This method was shown to be very stable in difficult
illumination conditions. In this section, the basic methodology to arrive at a
foreground image is explained. This section also covers two small extensions on
the original method, while the major contributions are covered in Sec. 3 and 4.

2.1 Previous Work

The original algorithm consists of 3 major steps. First, a stable edge descriptor
is calculated, using 8-bit Local Ternary Patters (LTPs) [16]. It was shown in [1]
that this descriptor can also be regarded as a two dimensional vector, of which
the direction represents the edge orientation. The vector length can be regarded
as a confidence measure of the angle. Both inter- and intra-pattern information
sources are combined to further increase the robustness of the descriptor.

Secondly, the edge descriptor vectors are compared with a multimodal tem-
poral model. Input vectors which significantly differ from the appropriate back-
ground vectors are classified as foreground. Since the LTP-features represent
image edges, the determined foreground in this step consists of foreground edges.
The temporal model is similar to both a Gaussian Mixture Model [15] and the
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model proposed by Heikkila et al. [11]. However, the learning rate, which deter-
mines how quickly the temporal model is adapted, is adjusted dynamically. More
specifically, the learning rate α is comprised of three parts:

1. a base rate αb

2. an exponential rate αe

3. an unreliability rate αu

The base rate, which remains fixed, is typically low, and makes sure that the
model is constantly updated slightly in background locations, in order to adapt to
slow changes. The exponential rate ensures that the temporal model is updated
faster at the beginning of a sequence, as the model generally becomes more
reliable over time. If the model does become globally or locally unreliable (e.g.
due to a sudden large change in the background or lasting dynamic background),
the unreliability rate makes sure that the model is still updated accordingly.

Finally, the algorithm provides a robust contour filling mechanism, which
is able to deal with gaps in the object contours. This mechanism treats the
foreground edge image as a 4-connected graph, where the edge pixels represent
disconnected nodes. The classification of a pixel p as interior (foreground) or
exterior (background) is made with regards to the total “excessive” distance
dE,tot[p] of the shortest paths from the image corners. The distance dE,tot rep-
resents the deviation of the shortest paths in the graph, compared to the Man-
hattan distance dM between the pixel and the image corners. Formally, given a
constant threshold TE , the edge based foreground image F is defined as follows:

F [p] =

{
1 if dE,tot[p] > TE ,
0 otherwise .

(1)

One can show that the resulting foreground shapes are never larger than the
orthogonal hull of the objects, and never smaller than a silhouette obtained
by filling only the closed contours. One shortcoming of the previous method
is that the proposed filling mechanism is sometimes too strong, in particular
when objects contain concavities. Therefore, a novel shape correction method is
described below.

2.2 Foreground Shape Correction

In our new method we combine pure edge based features with grayscale informa-
tion. Besides the LTPs, also the grayscale value is fed into a similar multimodal
temporal model as described in the previous section. The grayscale based fore-
ground mask is denoted FG. The eventual foreground mask F ′ is now determined
through a combination of dE,tot (see Sec. 2.1) and FG as follows:

F ′[p] =

{
1 if dE,tot[p] > TE , h or (dE,tot[p] > TE , l and FG[p] > 0)
0 otherwise ,

(2)

where TE , h and TE , l are high and low thresholds respectively. The proposed
mechanism still ensures the same minimal and maximal size of the silhouettes,
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Fig. 2. Example of successive foreground shape correction steps. (a) Input image,
(b) Foreground mask using single filling threshold, (c) Foreground mask using dou-
ble threshold and intensity mask (d) Foreground mask after segmentation refinement
of (c).

and now uses FG as a tiebreaker in ambiguous situations. This partially avoids
the unwanted filling of concavities in the silhouette (e.g. between arms or legs).

The shapes of the foreground objects are polished further using a variant of
the watershed algorithm, described in [12]. The resulting segments are each inves-
tigated individually. If, for a certain segment S, at least half of its corresponding
pixels in F ′ represent foreground, then the entire segment S is considered to be
a foreground segment. Conversely, if less than half of the corresponding pixels in
F ′ are foreground pixels, S is regarded as a background segment. An example
of the shape correction method is shown in Fig. 2.

2.3 Ghost Removal

An object which is static when the temporal model is being built, but later
moves to another location, can leave behind a foreground blob in the foreground
image, since, at its original location, the image now appears different from the
modelled background. This remaining blob is often called a “ghost”. In the
proposed algorithm, an adaptation of the ghost removal methodology described
in [5] is added.

The ghost removal algorithm is executed only in static regions, i.e., regions
where the optical flow vectors are small (explained in detail in Sec. 3.1). First, an
edge image is constructed from the LTP features described in 2.1. For every static
foreground object, the Chamfer distance between the contour of the foreground
object and the edge image is calculated and normalized with respect to the
contour length. If the Chamfer distance exceeds a threshold TC , the contour of
the foreground object likely does not coincide with a real object in the image.
Such objects are removed from the foreground image. After ghost identification,
the temporal model has to be updated locally, which is done by setting a high
learning rate for all removed pixels. An example of the ghost removal mechanism
is shown in Fig. 3.
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Fig. 3. Example of ghost removal. (a) First image in the sequence, (b) input image
from further in the sequence, (c) foreground image, where the removed ghost is denoted
in red.

3 Camera Motion Detection

If the camera viewpoint is static, reasoning about foreground estimation is gen-
erally straightforward. However, as soon as the camera viewpoint changes, the
appearance of all pixels might change, even though the background itself does
not. In this section we describe how camera motion can be detected. We propose
a camera motion detection framework based on optical flow.

3.1 Optical Flow

Optical flow estimation is a widely studied problem in computer vision [10]. It
is an image feature which essentially represents the motion of individual pixels
between subsequent frames. By assuming a constant brightness, optical flow
calculation boils down to the estimation of the displacement (Δx,Δy) of a pixel
at p = (x, y) [8]. This vector can only be obtained by introducing additional
constraints, which is where optical flow methods described in literature differ
from one another. These methods can be divided into two main groups: sparse
and dense optical flow. Sparse optical flow methods first detect interesting points
in the image, and estimate only their motion between successive frames. Dense
optical flow methods estimate the motion vectors for all image points.

3.2 Flow Based Camera Motion Detection

If the camera viewpoint is static, it can be expected that the only pixels that
appear to move between successive frames come from either foreground objects,
or dynamic background otherwise. In most video sequences, the amount of
dynamically moving pixels is relatively small compared to the static ones. How-
ever, if the camera viewpoint does change, most pixels in the image will also.
So, camera motion can be detected by the occurrence of significant optical flow
vectors in a large part of the image. In the detection step, dense optical flow is
preferred. In sequences with generally smooth backgrounds, not many feature
points will be found by sparse flow methods, except on the foreground objects
themselves, which could lead to many false positive camera motion detections.



Edge Based Foreground Background Segmentation 135

In the proposed method, the dense optical flow vectors are calculated by
using the efficient algorithm described in [6]. Let V[p] be the flow vector image
at pixel p. Now, we define the optical flow mask Ff as follows:

Ff [p] =

{
1 if ||V[p]|| > Tf

0 otherwise ,
(3)

where Tf is a typically low threshold (e.g. 1 pixel). So, Ff represents a significance
classification of all flow vectors. If the ratio of significant flow vectors is larger
than a second threshold Tn, camera motion is detected.

4 Camera Motion Compensation

In order to compensate for the camera motion, the effect of this motion should be
mitigated at every pixel location, while moving foreground objects should still be
detected. The next section will explain how the necessary image transformations
are executed. Afterwards, we will distinguish two scenarios: one where the camera
is undergoing a fairly constant motion away from the original position (e.g pan-
tilt-zoom) and one where the camera keeps moving around the same position
(jitter).

4.1 Affine Image Transformation

In order to compare a new image with a background model, the image should
first be transformed such that coinciding pixels also represent the same objects
in the model. However, since the distances to the objects in the scene are not
known a priori in most applications, the effects of potential perspective changes
on the image formation are difficult to model. Luckily, when a scene’s relief
is small, relative to the average distance from the objects to the camera, the
weak-perspective image formation model can be used to describe the image for-
mation [9]. This model assumes that all objects are at a similar distance from
the camera. It is proven in [7] that, assuming a weak-perspective model, all arbi-
trary projection transformation matrices can be written in the form of an affine
matrix.

In this work, the affine transformation between two images is estimated
by making use of the Pyramidal implementation of the Lucas Kanade Feature
Tracker [2]. The algorithm first detects interest points and then calculates sparse
optical flow vectors to detect their individual motion. In the second phase of
the algorithm, the robust affine transformation matrix Mtf is selected through
a RANSAC framework. From this matrix, the expected flow Ve can now be
directly determined. For a certain pixel p = (x, y, 1)T in homogeneous coordi-
nates:

Ve[p] = Mtfp , (4)
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4.2 Distinction Between Panning/Tilting and Jitter

If the center pixel is also the origin of the camera’s coordinate system, the
expected flow at the center pixel Ve[0] can be represented by the third column of
Mtf , also known as a translation vector tr = (tr,x, tr,y). If the camera viewpoint
changes between successive frames, tr will be a nonzero vector whose orientation
(arctan tr,y

tr,x
) represents the direction of the camera shift. If this direction is more

or less constant for a longer period, the camera viewpoint obviously moves away
from its original position, and a panning (or tilting) camera motion can be
detected. Conversely, if the direction of tr changes a lot, it is more likely that
the camera is jittery, but not necessarily moving away from the original position.

In the proposed method, the distinction between panning and jittery camera’s
is derived from the reasoning above. Let us define two accumulators: accp for
panning and accj for jitter, both initialized to 0 in the beginning of the sequence.
Every time a camera viewpoint change is detected, the current direction of tr
is compared to the previous one. If the angles differ by more than 90, accj is
incremented. Otherwise, accp is incremented. The camera motion compensation
is then executed with regard to the highest corresponding accumulator value.

4.3 Jitter Compensation

If the camera is moving around the same position, the original background model
can still be used. By transforming the current image with regard to the most
likely background image as described in Sec. 4.1, a pixelwise evaluation of the
difference between the current image and background model is feasible, as in the
standard case when no camera motion is detected.

There are however some subtle considerations which should be taken into
account. Note that the affine transformation estimation can be erroneous, for
example due to comparison with interest points coinciding with foreground
objects. Furthermore, depending on the camera settings, a moving camera view-
point might introduce motion blur, which distorts some image structures, espe-
cially around edges. In the proposed algorithm, the constant learning rate αc is
therefore raised when jitter is detected, and applied to the entire image, instead
of to the background regions.

4.4 Panning/Tilting Compensation

If a panning or tilting camera change is detected, the original background image
is no longer usable if the new camera viewpoint has deviated too far from the
original one, since pixel-wise comparisons to the original model have become
impossible.

However, if the camera motion is relatively slow, such that the spatial relation
between successive frames can be established, it becomes possible to build a
short-term edge background model Bs. A new frame is compared to this model
after using the affine transformation as discussed in the previous sections. Here,
Bs is also transformed after every frame as long as the panning motion continues.
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(a) (b) (c) (d)

Fig. 4. Creation of the foreground edges in a sequence with panning camera. (a) Input
image, (b) Short-term foreground mask, (c) compensated flow mask, (d) logical AND
of short-term foreground mask and compensated flow mask.

Note however, that Bs in the proposed algorithm is unimodal. Experiments
show that using a more complex multimodal background model, as described
in Sec. 2.1, does not improve the algorithms performance, likely due to the fact
that it is difficult to build a complex model quickly enough. Comparing the LTP
feature image ILTP determined from the input with Bs results in the short-term
foreground mask Fs:

Fs[p] =

{
1 if ||ILTP[p] − Bs[p]|| > Ts

0 otherwise .
(5)

Still, the requirement of rapid model construction makes it more likely that
parts of the model are unreliable. To overcome the potential decrease in accu-
racy, the flow vector image V is used as a secondary decision mechanism. The
compensated flow image Vc is now defined as follows:

Vc[p] = V[p] − Ve[p] . (6)

Thus, the original flow vectors are compensated with regard to the expected
affine image transformation, resulting from the camera viewpoint change. It
is expected that for static objects, the corresponding compensated flow vectors
should be close to 0. However, if an object is moving in the scene, the optical flow
vectors will differ from the globally calculated transformation and will locally
coincide with nonzero compensated flow vectors. Thus, utilizing a final flow
compensation threshold Tf,c, the compensated foreground flow mask Ff,c is now
defined as

Ff,c[p] =

{
1 if ||Vc[p]|| > Tf,c

0 otherwise .
(7)

The resulting foreground (edges) mask now consists of the pixelwise logical AND
operation between Ff,c and Fs. Fig. 4 shows a visual example of foreground
detection in a sequence with a panning camera. Note that the contour filling,
shape correction and ghost removal steps described in Sec. 2 are still executed
after the foreground edge detection step. Finally, once the panning motion has
stopped, the exponential learning rate (Sec. 2.1) is reset, such that the temporal
model is quickly rebuilt at the new position.
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Fig. 5. Performance of our proposed method on a few hand picked frames from the
ChangeDetection.NET 2014 dataset [18]. (a) Baseline, (b) Bad Weather, (c) Camera
Jitter, (d) Dynamic background, (e) Intermittent Object Motion, (f) Low Framerate,
(g) Night Videos, (h) Pan-Tilt-Zoom, (i) Shadows, (j) Thermal, (k) Turbulence.

5 Experiments

The proposed method was tested on the rigorous ChangeDetection.NET 2014
dataset [18]. This dataset comprises of 11 categories of 4 to 6 videos each. The
categories are Bad Weather (BW), Low Framerate (LF), Night Videos (NV),
Pan-Tilt-Zoom (PTZ), Turbulence (TB), Baseline (BL), Camera Jitter (CJ),
Intermittent Object Motion (IOM), Shadows (SH) and Thermal (TH).

The creators of the website also provide ground truth for the majority
of the frames, such that 7 performance measures in total can be calculated:
Recall, specificity, false positive rate, false negative rate, precision, percentage of
wrong classifications and F-Measure. However, as explained in [14] and [13], the
F-measure is the most unbiased representation of the performance of a fore-
ground background segmentation algorithm. So, we will focus on this perfor-
mance measure to compare our proposed method to the state of the art (see
Table 1). Note that it is required to use the same parameters and thresholds for
all videos, such that optimizing for a particular video or category is discouraged,
and only truly versatile methods achieve high scores on this dataset. The values
of the thresholds discussed in this paper are given in Table 2.

Smoothing by a 3 by 3 Gaussian kernel was added as a preprocessing step,
while the foreground mask were postprocessed by a 5 by 5 median filter. The
algorithm runs at about 16 frames per second on a desktop pc with an Intel R©
Xeon R© E5 Quad Core processor for 320 by 240 pixel videos. The proposed
method currently achieves the highest F-measure in 4 of the 11 categories.
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Table 1. Comparison of the F-Scores of all methods applied to the ChangeDetec-
tion.NET 2014 database per category and overall. The highest score is denoted in bold
faced numbers. In the categories where the proposed method achieves the highest score,
the second highest score is denoted in blue. References to the other methods can be
found on the ChangeDetection.NET website [18].

Method BW LF NV PTZ TB BL DB CJ IOM SH TH Over.
EFIC (Proposed) 77.86 66.32 65.48 58.42 67.13 91.72 57.79 71.25 57.83 82.02 83.88 70.88
SuBSENSE 86.19 64.45 55.99 34.76 77.92 95.03 81.77 81.52 65.69 89.86 81.71 74.08
FTSG 82.28 62.59 51.30 32.41 71.27 93.30 87.92 75.13 78.91 88.32 77.68 72.83
SaliencySubsense 85.93 65.15 53.48 33.99 75.12 94.83 81.57 80.71 60.12 89.94 68.57 71.76
MBS V0 77.30 62.79 51.58 51.18 56.98 92.87 79.04 83.67 70.92 77.84 81.15 71.39
CwisarDH 68.37 64.06 37.35 32.18 72.27 91.45 82.74 78.86 57.53 85.81 78.66 68.12
Spectral-360 75.69 64.37 48.32 36.53 54.29 93.30 77.66 71.42 56.09 85.19 77.64 67.32
Bin Wang Apr
2014

76.73 46.89 38.02 13.48 75.45 88.13 84.36 71.07 72.11 81.28 75.97 65.77

AAPSA 77.42 49.42 41.61 33.02 46.43 91.83 67.06 72.07 50.98 79.53 70.30 61.79
SC SOBS 66.20 54.63 45.03 4.09 48.80 93.33 66.86 70.51 59.18 77.86 69.23 59.61
KNN 75.87 54.91 42.00 21.26 51.98 84.11 68.65 68.94 50.26 74.68 60.46 59.37
SOBS CF 63.70 51.48 44.82 21.26 47.02 92.99 65.19 71.50 58.10 77.21 71.40 58.83
CP3-online 74.85 47.42 39.19 26.60 37.43 88.56 61.11 52.07 61.77 70.37 79.17 58.05
RMoG 68.26 53.12 42.65 24.70 45.78 78.48 73.52 70.10 54.31 72.12 47.88 57.35
GMM - Stauffer
and Grimson

73.80 53.73 40.97 15.22 46.63 82.45 63.30 59.69 52.07 73.70 66.21 57.07

KDE - ElGam-
mal

75.71 54.78 43.65 3.65 44.78 90.92 59.61 57.20 40.88 76.60 74.23 56.88

GraphCutDiff 87.87 51.27 46.88 37.23 51.43 71.47 53.91 54.89 40.19 72.28 57.86 56.84
GMM - Zivkovic 74.06 50.65 39.60 10.46 41.69 83.82 63.28 56.70 53.25 73.22 65.48 55.66
Euclidean dist. 67.01 50.15 38.59 3.95 41.35 87.20 50.81 48.74 48.92 67.86 63.13 51.61
Multiscale
Spatio-Temporal
BG

63.71 33.65 41.64 3.64 52.91 84.50 59.53 50.73 44.97 79.18 51.03 51.41

Mahalanobis
dist.

22.12 7.97 13.74 3.74 33.59 46.42 17.98 33.58 22.90 33.53 13.83 22.67

For Night Videos and Pan-Tilt-Zoom, the gaps with the second best scoring
methods are especially significant. This can be attributed to the fact that the
method is based on the illumination-invariant features described in [1] and that
the proposed method is able to cope with slow camera viewpoint changes. How-
ever, note that in our experiments the performance on 1 video with a zooming
camera was unacceptable. Here, the proposed algorithm failed to detect the
changing camera parameters and thus did not compensate for this. A refined
zoom detection mechanism could even further improve the performance in this
category.

EFIC is also able to provide top performance in the Low Framerate and
Thermal videos. For Low Framerate the updating mechanism can quickly learn
the correct background, and is not disturbed by rapidly changing foreground
objects. Since the Thermal images all consist of single color channel frames and
the proposed method does not rely on on chromacity information, the good
performance in this category can also be explained.

In the Dynamic Background and Intermittent Object Motion sequences, the
proposed method is not yet able to achieve the desired performance. In the other
categories, the performance is closer to the state-of-the-art, but not at the very
top. As opposed to the Thermal videos, the lack of chromacity information is a
limiting factor in videos where the intensity of the foreground objects is similar
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Table 2. Threshold values discussed in this paper. Unless stated otherwise, all values
are expressed in pixel widths

Threshold Value

TE : Single excessive distance 3
TE,l: Low excessive distance 1
TE,h: High excessive distance 13

Tf : Significant flow 1
Tn: Significant flow ratio 70 (% of total number of pixels)
Tf,c: Compensated flow 2

Ts: Short-term background model 40 (% of max. LTP vector length)

to that of the background. This effect is especially noticeable in the Dynamic
Background videos, where the intensities of the boats are similar to the water
intensity, even though the chromacity differs significantly. Utilizing chromacity
only when useful through a decision tree approach, could improve the overall
results while not harming the performance in categories where EFIC scores best.

It can also be noted that some of these categories present multiple kinds
of difficulties. E.g., Bad Weather videos incorporate both difficult illumination
conditions, but also dynamic background and thus address both the strengths
and weaknesses of the proposed method. We also note that the described
ghost removal method did improve the overall results, but still failed in cer-
tain sequences with textured background. Improvements could arise from the
extension of this method, e.g. through utilization of gradient directional infor-
mation.

6 Conclusions

In this paper, we propose an edge based foreground background segmentation
algorithm, which is able to handle non-static camera viewpoints, using a combi-
nation of optical flow and affine image transformations. It was shown that the
method achieves good overall performance on the ChangeDetection.NET 2014,
while even reaching the best F-measure in 4 out of 11 categories in total. Notably,
the addition of color information as an extra feature should help in improving
the performance of this method even further.
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