
Chapter 3
Distributed Localization

Abstract In this chapter we study the problem of distributed localization, which
consists of establishing a common frame and computing the robots’ localization
relative to this frame. Each robot is capable of measuring the relative pose of its
neighboring robots. However, it does not know the poses of far robots, and it can
only exchange data with neighbors using the range-limited communication network.
The analyzed algorithms have the interesting property that can be executed in a
distributed fashion. They allow each robot to recover localization using exclusively
local information and local interactions with its neighbors. Besides, they only require
each robot to maintain an estimate of its own pose. Thus, the memory load of the
algorithm is low compared to methods where each robot must also estimate the poses
of any other robot. We analyze two different scenarios and study distributed algo-
rithms for them. In the first scenario each robot measures the noisy planar position
and orientation of nearby robots to estimate its own full localization with respect
to an anchor node. In the second case, robots take noisy measurements of the rela-
tive three-dimensional positions of their neighbors, which is used to estimate their
three-dimensional positions with respect to the simultaneously computed centroid
reference. When the centroid of the team is selected as common frame, the estimates
are more precise than with any anchor selection.

Keywords Localization · Limited communication · Distributed systems · Parallel
computation

3.1 Introduction

Multi-robot tasks, such as pattern formation [7, 36] or inter-robot collision avoid-
ance [32], often require the knowledge of the robots’ positions in a common reference
frame. Typically, robots start at unknown locations, they do not share any common
frame, and they can only measure the relative positions of nearby robots. We address
the localization problem, which consists of combining these relative measurements
to build an estimate of the robots’ localization in a common frame.

Several localization algorithms rely on range-only [1, 10, 11], or bearing-only [31]
relative measurements of the robots’ poses. Other approaches assume that robots
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measure the full state of their nearby robots. The relative full-pose of a pair of robots
can be obtained, for instance, by comparing their local maps [14, 15, 33] and looking
for overlapping regions. This approach, known as map alignment, presents a high
computational cost and its results depend on the accumulated uncertainty in the local
maps. Alternatively, each robot can locally combine several observations to build an
estimate of the relative poses. The 2D relative pose can be retrieved from at least
five noisy distance measurements and four noisy displacements [38]. Bearing-only
measurements can be also used to recover the 2D relative pose in vision systems [20].
The 3D case has also been analyzed for distance and bearing, bearing-only, and
distance-only observations [35]. These methods present the benefit that the obtained
results do not depend on the uncertainties in the local maps. They also allow the
robots to compute their relative poses when there is no overlapping between their
maps, or even if they do not actually have a map.

Localization algorithms in networked systems properly combine the previous
relative measurements to produce an estimate of the robots’ poses. Some distributed
algorithms compute both, the positions and orientations but assume that the relative
measurements are noise free, e.g., [19] where each robot reaches an agreement on
the centroid of the network expressed in its local reference frame. Other methods
compute exclusively the robot positions but not their orientations, and consider noisy
relative measurements of the robot positions. This latter localization problem can be
solved by using linear optimization methods [4, 28]. Although these works do not
consider the robots’ orientations, they can also be applied to such cases provided
that the robots have previously executed an attitude synchronization [25, 30] or a
motion coordination [16] strategy to align their orientations. Cooperative localization
algorithms [22, 27, 34] do not just compute the network localization once, but also
track the robots positions. These algorithms, however, usually assume that an initial
guess on the robot poses exists.

Formation control [16, 18, 21, 24] and network localization are related problems.
While localization algorithms compute robot positions that satisfy the inter-robot
restrictions, in formation control problems the robots actually move to these positions.
The goal formation is defined by a set of inter-robot restrictions (range-only, bearing-
only, full-positions, or relative poses). Although some works discuss the effects of
measurement noises in the final result [16], formation algorithms usually assume
that both, the measurements and the inter-robot restrictions are noise free [18, 21,
24]. Thus, additional analysis is necessary in noisy localization scenarios.

Both, formation control and localization problems can be solved up to a rotation
and a translation. This ambiguity disappears when the positions of a subset of anchor
robots is given in some absolute reference frame. The range-only case [1] requires at
least three non-collinear anchors for planar scenarios. The density and placement of
anchors has an important effect on the accuracy of the solution for the bearing-only
case [31]. In the full-position case a single anchor is enough. Its placement influences
the accuracy of the final results and it is common to analyze the estimation errors at
the robots as a function of their distances to the anchor [6]. However, it is common to
assume that the first robot is the anchor placed at the origin of the common reference
frame and make the other robots compute their positions relative to the anchor.
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In this chapter we focus on network localization methods where robots measure
the relative pose of their neighbors. Since these methods do not require the robots
to have a map, they can be executed at any time. In particular, we execute it at
an initial stage, prior to any exploration taking place. The communication graph
during this initial stage must be connected. We consider scenarios with noisy relative
measurements. We assume that these measurements are independent, since they are
acquired individually by the robots. We do not further discuss cooperative localization
algorithms, since in a map merging scenario it is enough for the robots to compute
the global frame and their poses once. In addition, we discuss the selection of the
common reference frame. We consider the cases that the common frame is one of the
robots (anchor-based), and that the common frame is the centroid. Firstly we present
a distributed algorithm for planar scenarios. Each agent uses noisy measurements of
relative planar poses with respect to other robots to estimate its planar localization
relative to an anchor node. After that, we discuss the localization problem for higher
dimension scenarios. We present a distributed algorithm that allows each robot to
simultaneously compute the centroid of the team and its positions relative to the
centroid. We show that when the centroid of the team is selected as the common
frame, the estimates are more precise than with any anchor selection.

In order to make the reading easy, along the chapter we use the indices i, j to refer
to robots and indices e, e′ to refer to edges. An edge e starting at robot i and ending at
robot j is represented by e = (i, j). Given a matrix A, the notations Ar,s and [A]r,s
corresponds to the (r, s) entry of the matrix. We let ⊗ be the Kronecker product,
Ir be the identity matrix of size r × r , and 0r×s be a r × s matrix with all entries
equal to zero. A matrix A defined by blocks Ai j is denoted A = [Ai j ]. The operation
A = blkDiag(B1, . . . , Br ) returns a matrix A defined by blocks with Aii = Bi and
Ai j = 0 for i �= j .

3.2 Problem Description

The problem addressed in this chapter consists of computing the localization of a
network of n ∈ N robots from relative measurements. We consider two different
scenarios.

In the first scenario, the goal is to compute the planar poses of n ∈ N robots
{pG

1 , . . . , pG
n } expressed in the global frame G, where pG

i = [
xG

i , yG
i , θG

i

] ∈ SE(3)

for i ∈ {1, . . . , n}, given m ∈ N measurements of relative poses between robots. The
robots measure the planar pose (position and orientation) of nearby robots expressed
on their own reference frame. We let pi

j ∈ SE(3) be the pose of a robot j relative
to robot i . This information is represented by a directed graph G = (V ,E ), where
the nodes V = {1, . . . , n} are the robots, and E contains the m relative measure-
ments, |E | = m. There is an edge e = (i, j) ∈ E from i to j if robot i has a relative
measurement of the state of robot j . We assume that the measurement graph G is
directed and weakly connected, and that a robot i can exchange data with both, its
in and out neighbors Ni so that the associated communication graph is undirected,
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Ni = { j | (i, j) ∈ E or ( j, i) ∈ E }.

We let A ∈ {0, 1,−1}n×m be the negative incidence matrix of the measurement
graph,

Ai,e =
⎧
⎨

⎩

−1 if e = (i, j)
1 if e = ( j, i)
0 otherwise

, for i ∈ {1, . . . , n}, e ∈ {1, . . . , m}, (3.1)

and we let Wi, j be the Metropolis weights defined in Eq. (A.3) in Appendix A asso-
ciated to G . The localization problem consists of estimating the states of the n robots
from the relative measurements. Any solution can be determined only up to a rotation
and a translation, i.e., several equivalent solutions can be obtained depending on the
reference frame selected.

As discussed in [4], one of the robots a ∈ V , e.g., the first one a = 1, can be
established as an anchor with state pa

a = 03×1, and the poses of the non-anchor
robots can be expressed relative to the anchor. We call such approaches anchor-
based and add the superscript a to their associated variables. We let V a = V \ {a}
be the set of non-anchor nodes and matrix A a ∈ {0, 1,−1}n−1×m be the result of
deleting the row associated to node a from A in Eq. (3.1). This is the case considered
in our first scenario, where we address the anchor-based planar localization problem
for the case that the relative measurements are noisy. Each edge e = (i, j) ∈ E in
the relative measurements graph G = (V ,E ) has associated noisy measurements of
the orientation zθ

e and the position zxy
e of robot j relative to robot i , with associated

covariance matrices Σzθ
e

and Σzxy
e

. We assume that the measurements are independent
since they were acquired individually by the robots. The goal is to estimate the
robot poses p̂a

i of the non-anchor robots i ∈ V a relative to the anchor a from the
noisy relative measurements. We assume that the orientations of the robots satisfy
−π/2 < θi < π/2 for all i ∈ V .

In the second scenario, instead of computing planar robot poses, we consider that
each robot i ∈ V has a p−dimensional state xi ∈ R

p, and that the measurement
ze ∈ R

p associated to an edge e = (i, j) ∈ E relates the states of robots i and j as
follows

ze = x j − xi + ve,

where ve ∼ N
(
0p×p,Σze

)
is a Gaussian additive noise. Thus, we solve a position

localization problem, although the proposed method can be alternatively applied
for estimating speeds, accelerations, or current times. In addition, this method can
be used in a pose localization scenario, provided that the robots have previously
executed an attitude synchronization [25, 30] or a motion coordination [16] strategy
to align their orientations. We estimate the states x̂cen

i of the robots i ∈ V relative
to the centroid of the states, and compare the solution with a classical anchor-based
one x̂a

i . In the following sections we explain in detail the two scenarios.
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3.3 Planar Localization from Noisy Measurements

The problem addressed in this section consists of computing the planar localization
of n ∈ N robots {pa

1, . . . , pa
n}, where pa

i = [
xa

i , ya
i , θa

i

]
for i ∈ {1, . . . , n}, relative

to an anchor robot a, given m ∈ N noisy measurements of relative poses between
robots. There is a single anchor node a ∈ V which is placed at the pose pa

a = 03×1.
By convention, we let the anchor be the first node, a = 1, and denote V a = V \ {a}
the set of non-anchor nodes. Each robot gets noisy measurements of the planar pose
(position and orientation) of nearby robots to estimate its localization with respect
to an anchor node.

Each edge e = (i, j) ∈ E in the relative measurements graph G = (V ,E ) has
associated noisy measurements of the orientation zθ

e and the position zxy
e of robot

j relative to robot i , with associated covariance matrices Σzθ
e

and Σzxy
e

. We let

zθ ∈ R
m , zxy ∈ R

2m , Σzθ ∈ R
m×m and Σzxy ∈ R

2m×2m contain information of the
m measurements,

zθ = (zθ
1, . . . , zθ

m)T , zxy = ((zxy
1 )T , . . . , (zxy

m )T )T ,

Σzθ = Diag(Σzθ
1
, . . . Σzθ

m
), Σzxy = blkDiag(Σzxy

1
, . . . Σzxy

m
).

We assume that the measurements are independent since they were acquired indi-
vidually by the robots. Thus, the goal is that each robot i ∈ V estimates its pose p̂a

i
relative to this anchor.

This problem is solved by using a three-phases strategy [2]

Phase 1: Compute a suboptimal estimate of the robot orientations θ̃a
V ∈ R

n relative
to the anchor a for all the robots in V ;

Phase 2: Express the position measurements zxy of the robots in terms of the previ-
ously computed orientations;

Phase 3: Compute the estimated poses of the robots p̂a
V = ((x̂a

V )T , (θ̂a
V )T )T.

During the rest of the section, we study the method and present a distributed imple-
mentation.

3.3.1 Centralized Algorithm

Phase 1

During this first phase, an initial estimate of the robot orientations θ̃V a ∈ R
n−1

relative to the anchor a is obtained. This estimate is computed based exclusively
on the orientation measurements zθ ∈ R

m with covariance Σzθ ∈ R
m×m . When the

orientation measurements are considered alone and they belong to ±π
2 , the estimation

problem becomes linear, and the estimated solutions are given by the Weighted Least
Squares,
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θ̃a
V a = Σθ̃a

V a
A aΣ−1

zθ
zθ , Σθ̃a

V a
=

(
A aΣ−1

zθ
(A a)T

)−1
, (3.2)

whereA a ∈ {0, 1,−1}n−1×m is the result of deleting the row associated to the anchor
a from the incidence matrix A of the measurement graph in Eq. (3.1). Recall that
the orientation of the anchor is set to zero, θ̃a

i = 0 for i = a. We let θ̃a
V ∈ R

n and
Σθ̃a

V
R

n×n contain the orientation of all the robots in V , including the anchor a,

θ̃a
V = (0, (θ̃a

V a )
T )T , Σθ̃a

V
= Diag(0,Σθ̃a

V a
). (3.3)

Phase 2

Each relative position measurement zxy
e associated to the edge e = (i, j), was orig-

inally expressed in the local coordinates of robot i . During the second phase, these
measurements are transformed into a common orientation using the previously com-
puted θ̃a

V .

For each edge e = (i, j) ∈ E we let R̃e ∈ R
2×2 and S̃e ∈ R

2×2 be the following
matrices associated to the orientation θ̃i of robot i ,

R̃e = R(θ̃a
i ) =

[
cos θ̃a

i − sin θ̃a
i

sin θ̃a
i cos θ̃a

i

]

, S̃e = S (θ̃a
i ) =

[− sin θ̃a
i cos θ̃a

i

− cos θ̃a
i − sin θ̃a

i

]

,

(3.4)

and let the block diagonal matrix R̃ ∈ R
2m×2m compile information from the m

edges,

R̃ = R(θ̃a
V ) = blkDiag(R̃1, . . . , R̃m). (3.5)

The updated pose measurements in the global coordinates w ∈ R
2m+(n−1) and

their associated covariance Σw are

w =
[

z̃xy

θ̃V a

]

=
[

R̃ 0

0 In−1

] [
zxy

θ̃V a

]

,

Σw =
[

K J

0 In−1

] [
Σzxy 0

0 Σθ̃V a

] [
K T 0

J T In−1

]

, (3.6)

where K ∈ R
2m×2m and J ∈ R

2m×(n−1) are the Jacobians of the transformation with
respect to respectively, zxy and θ̃V a ,

K = R̃, and Je,i = S̃e zxy
e if e = (i, j) for some j, and Je,i = 02×1 otherwise.

(3.7)
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Phase 3

During the last phase, the positions of the robots x̂a
V a ∈ R

2(n−1) relative to the anchor

node a are computed, and an improved version θ̂a
V a ∈ R

n−1 of the previous orienta-

tions θ̃a
V a is obtained. Let p̂a

V a ∈ R
3(n−1) contain both, the positions and orientations

of the non-anchor robots,

p̂a
V a =

[
x̂a
V a

θ̂a
V a

]

= Σp̂a
V a

BΣ−1
w w, Σp̂a

V a
=

(
BΣ−1

w BT
)−1

, (3.8)

where B = blkDiag ((A a ⊗ I2), In−1), and Σw and w are given by (3.6). The esti-
mated poses p̂a

V ∈ R
3n of all the robots in V , including the anchor a, are given by

p̂a
V = (0T

3×1, (p̂
a
V a )

T )T , Σp̂a
V

= blkDiag(03×3,Σp̂a
V

). (3.9)

Algorithm

Considering the three phases together, the estimated positions x̂a
V a and orientations

θ̂a
V a of the non-anchor robots are

x̂a
V a = L−1(A a ⊗ I2)Υz̃xy

(
I2m + JΣ

θ̂a
V a

J T Υz̃xy E
)

R̃ zxy,

θ̂a
V a = (A aΣ−1

zθ
(A a)T )−1A aΣ−1

zθ
zθ + Σ

θ̂a
V a

J T Υz̃xy E R̃ zxy, where (3.10)

Υz̃xy = (R̃Σzxy R̃T )−1, E = (A a ⊗ I2)
T L−1(A a ⊗ I2)Υz̃xy − I2m,

Σ
θ̂a
V a

= ((Σθ̃a
V a

)−1 − J T Υz̃xy E J )−1, L = (A a ⊗ I2)Υz̃xy (A
a ⊗ I2)

T , (3.11)

and p̂a
V is obtained from the previous expressions as in Eq. (3.9). A full development

of these expressions can be found in Appendix B. This localization algorithm can
also been used for solving the Simultaneously Localization and Mapping problem
of single-robot systems building graph maps [12, 13].

3.3.2 Distributed Algorithm

From (3.10), it can be seen that the computation of x̂a
V and θ̂a

V involves matrix
inversions and other operations that require the knowledge of the whole system.
Although, a priori the proposed localization strategy would require a centralized
implementation, in the next sections we show a proposal to carry out the computations
in a distributed way.
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Phase 1

The initial orientation θ̃a
V in the first phase of the algorithm can be computed in a

distributed fashion using the following Jacobi algorithm [4]. Let each robot i ∈ V
maintain a variable θ̃a

i (t) ∈ R. The anchor i = a keeps its variable equal to zero for
all time steps t ∈ N,

θ̃a
i (0) = 0, θ̃a

i (t + 1) = θ̃a
i (t), for i = a. (3.12)

Each non-anchor robot i ∈ V a initializes its variable at t = 0 with any value θ̃a
i (0),

and updates it at each time step t ∈ N by

θ̃a
i (t + 1) = C−1

i ci + C−1
i

∑

e=(i, j)∈E
(Σzθ

e
)−1θ̃a

j (t) + C−1
i

∑

e=( j,i)∈E
(Σzθ

e
)−1θ̃a

j (t),

(3.13)

where

ci = −
∑

e=(i, j)∈E
(Σzθ

e
)−1zθ

e +
∑

e=( j,i)∈E
(Σzθ

e
)−1zθ

e ,

Ci =
∑

e=(i, j)∈E
(Σzθ

e
)−1 +

∑

e=( j,i)∈E
(Σzθ

e
)−1. (3.14)

The previous expressions are the Jacobi iterations associated to (3.2). Let Υθ̃a
V a

and ηθ̃a
V a

be respectively the information matrix and vector of θ̃a
V a ,

Υθ̃a
V a

= (Σθ̃a
V a

)−1 = A aΣ−1
zθ

(A a)T , ηθ̃a
V a

= A aΣ−1
zθ

zθ . (3.15)

Let C contain the elements in the diagonal of Υθ̃a
V a

,

C = Diag([Υθ̃a
V a

]2,2, . . . , [Υθ̃a
V a

]n,n),

and D be D = C − Υθ̃a
V a

. The first equation in (3.2) can be rewritten as

Υθ̃a
V a

θ̃a
V a = ηθ̃a

V a
, θ̃a

V a = C−1 Dθ̃a
V a + C−1ηθ̃a

V a
. (3.16)

From here, we can write

θ̃a
V a (t + 1) = C−1 Dθ̃a

V a (t) + C−1ηθ̃a
V a

, (3.17)

initialized at t = 0 with θ̃a
V a (0). By operating with A aΣ−1

zθ
zθ and A aΣ−1

zθ
(A a)T ,

it can be seen that (3.13) is the i th row of (3.17). The system (3.17) converges to
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θ̃a
V a in Eq. (3.2), and equivalently each θ̃a

i (t) in (3.13) converges to θ̃a
i for i ∈ V a ,

if the spectral radius of C−1 D is less than 1,

ρ(C−1 D) < 1, (3.18)

and the anchor variable, θ̃a
i (t) with i = a, remains equal to 0 for all the iterations t .

The value ρ(C−1 D) gives the convergence speed of the system, converging faster
for ρ(C−1 D) closer to 0. Recalling that Σzθ is a diagonal matrix, then each variable
θ̃a

i (t) asymptotically converges to the i th entry θ̃a
i of the vector θ̃a

V a in (3.2) [4] that
would be computed by a centralized system.

Observe that the computations are fully distributed and they exclusively rely on
local information. The constants Ci and ci are computed by each robot i ∈ V a using
exclusively the measurements zθ

e and covariances Σzθ
e

of its incoming e = ( j, i) or

outgoing edges e = (i, j). Also the variables θ̃a
j (t) used to update its own θ̃a

i (t + 1)

belong to neighboring robots j ∈ Ni .

Phase 2

Let us assume that the robots have executed tmax iterations of the previous algorithm,
and let θ̄a

i be their orientation at iteration tmax, θ̄a
i = θ̃a

i (tmax). Then, the second phase
of the algorithm is executed to transform the locally expressed measurements zxy

into the measurements expressed in the reference frame of the anchor node z̃xy . As
previously stated, the estimated orientations θ̄a

i do not change during this phase (3.6).
Let R̄ = R(θ̄a

V a ) be defined by using the orientations θ̄a
i instead of θ̃a

i in (3.5). Since
the matrix R̄ is block diagonal, each robot i ∈ V can locally transform its own local
measurements,

z̄xy
e = R̄ezxy

e , for all e = (i, j) ∈ E . (3.19)

Since the robots use θ̄ instead of θ̃ , also the updated measurements obtained during
the second phase are z̄xy instead of z̃xy . This second phase is local and it is executed
in a single iteration.

Phase 3

In order to obtain the final estimate p̂a
V a , the third step of the algorithm (3.8) appar-

ently requires the knowledge of the covariance matrix Σw, which at the same time,
requires the knowledge of Σθ̃a

V a
. However, a distributed computation of these matri-

ces cannot be carried out in an efficient way. Here we present a distributed algorithm
for computing p̂a

V a .
Let each robot i ∈ V maintain a variable p̂a

i (t) ∈ R
3, composed of its estimated

position x̂a
i (t) ∈ R

2 and orientation θ̂a
i (t) ∈ R, and let p̂a

V (t) be the result of putting
together the pa

i (t) variables for all i ∈ V . The anchor robot keeps its variable equal
to zero for all the iterations,
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p̂a
i (0) = 03×1, p̂a

i (t + 1) = p̂a
i (t), for i = a. (3.20)

Each non-anchor robot i ∈ V a initializes its variable at t = 0 with any value p̂a
i (0)

and updates p̂a
i (t) at each time step t ∈ N by

p̂a
i (t + 1) =

[
x̂a

i (t + 1)

θ̂a
i (t + 1)

]

= M−1
i

(
fi (p̂a

V (t)) + mi
)
, (3.21)

where

Mi =
[

M1 M2
M3 M4

]
, fi (pa

V (t)) =
[

f1
f2

]
, mi =

[
m1
m2

]
. (3.22)

Let Υz̃xy
e

be the block within the matrix Υz̃xy in (3.11) associated to an edge e =
(i, j) ∈ E ,

Υz̃xy
e

= R̃e(Σzxy
e

)−1(R̃e)
T . (3.23)

The elements within Mi are

M1 =
∑

e=(i, j)∈E
Υz̃xy

e
+

∑

e=( j,i)∈E
Υz̃xy

e
,

M2 =
∑

e=(i, j)∈E
Υz̃xy

e
S̃e zxy

e ,

M3 =
∑

e=(i, j)∈E
(zxy

e )T (S̃e)
T Υz̃xy

e
,

M4 =
∑

e=(i, j)∈E
(zxy

e )T (S̃e)
T Υz̃xy

e
S̃e zxy

e +
∑

e=(i, j)∈E
(Σzxy

e
)−1 +

∑

e=( j,i)∈E
(Σzxy

e
)−1.

(3.24)

The elements within fi (p̂a
V (t)), which is the term depending on the previous estimates

p̂a
V (t) = (x̂a

V (t)T , ˆθ(t)
a
V )T , are

f1 =
∑

e=(i, j)∈E
Υz̃xy

e
x̂a

j (t) +
∑

e=( j,i)∈E
Υz̃xy

e
x̂a

j (t) +
∑

e=( j,i)∈E
Υz̃xy

e
S̃e zxy

e θ̂a
j (t),

f2 =
∑

e=(i, j)∈E
(zxy

e )T (S̃e)
T Υz̃xy

e
x̂a

j (t) −
∑

e=(i, j)∈E
(Σzxy

e
)−1θ̂a

j (t) −
∑

e=( j,i)∈E
(Σzxy

e
)−1θ̂a

j (t).

(3.25)
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Finally, the terms within mi are

m1 = −
∑

e=(i, j)∈E
Υz̃xy

e
z̃xy

e +
∑

e=( j,i)∈E
Υz̃xy

e
z̃xy

e

+
∑

e=(i, j)∈E
Υz̃xy

e
S̃ezxy

e θ̃a
i −

∑

e=( j,i)∈E
Υz̃xy

e
S̃ezxy

e θ̃a
j ,

m2 = −
∑

e=(i, j)∈E
(zxy

e )T (S̃e)
T Υz̃xy

e
z̃xy

e +
∑

e=(i, j)∈E
(zxy

e )T (S̃e)
T Υz̃xy

e
S̃ezxy

e θ̃a
i

−
∑

e=(i, j)∈E
(Σzθ

e
)−1θ̃a

j −
∑

e=( j,i)∈E
(Σzθ

e
)−1θ̃a

j

+
∑

e=(i, j)∈E
(Σzθ

e
)−1θ̃a

i +
∑

e=( j,i)∈E
(Σzθ

e
)−1θ̃a

i . (3.26)

Theorem 5 The estimates p̂a
i (t) computed by each robot i ∈ V by the distributed

algorithm (3.20)–(3.21) converge to p̂a
i = [(x̂a

i )T θ̂a
i ]T for connected measurement

graphs G with ring or string structure.

Proof For the anchor i = a, it is true since p̂a
i (t) = 0 for all the time steps. Now we

focus on the non-anchor nodes in V a . First of all, we show that p̂a
i is an equilibrium

point of the algorithm (3.21) for all i ∈ V a . Let Υp̂a
V a

be the information matrix

associated to p̂a
V a , i.e., Υp̂a

V a
= (Σp̂a

V a
)−1,

Υp̂a
V a

=
[

L −A aΥz̃xy J

−J T Υz̃xy (A
a ⊗ I2)

T A aΣ−1
zθ

(A a)T + J T Υz̃xy J

]

, (3.27)

where L and Υz̃xy are given by (3.11). Analyzing the term BΣ−1
w in (3.8), it can be

seen that

BΣ−1
w =

[
(A a ⊗ I2)Υz̃xy −(A a ⊗ I2)Υz̃xy J

−J T Υz̃xy A aΥ −1
zθ

(A a ⊗ I2)
T + J T Υz̃xy J

]

. (3.28)

If we express the third phase in the following way

Υp̂a
V a

p̂a
V a = B Σ−1

w w, (3.29)

and then we consider the rows associated to robot i , we get

p̂a
i =

[
x̂a

i

θ̂a
i

]

= M−1
i

(
fi (p̂a

V ) + mi
)
, (3.30)

with Mi , fi (pa
V (t)) and mi as in (3.22)–(3.26).
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Now we prove that the system is convergent. Let M = blkDiag(M2, . . . , Mn)

and q̂a
V a be a permutation of p̂a

V a so that the estimates of each robot appear

together, q̂a
V a =

[
(x̂a

2)T θ̂a
2 , . . . , (x̂a

n)T θ̂a
n

]T
. Equivalently, the permuted version of

the information matrix Υp̂a
V a

is Υq̂a
V a

. The estimates p̂a
i (t) computed by each

robot i ∈ V a with the distributed algorithm (3.21) converge to p̂a
i = [(x̂a

i )T θ̂a
i ]T

if ρ(M−1(M − Υq̂a
V a

)) < 1, or equivalently if

ρ(I − M−1Υq̂a
V a

) < 1. (3.31)

Since λ(I − M−1Υq̂a
V a

) = 1 − λ(M−1Υq̂a
V a

), then (3.21) converges if 0 <

λ(M−1Υq̂a
V a

) < 2. The first part 0 < λ(M−1Υq̂a
V a

) can be easily checked taking

into account that both M−1 and Υq̂a
V a

are nonsingular, symmetric, positive definite,

and that λ(M−1Υq̂a
V a

) ≥ λmin(M−1)
λmax(Υq̂a

V a
)

[23, Lemma 1]. Since 0 <
λmin(M−1)

λmax(Υq̂a
V a

)
, then

0 < λ(M−1Υq̂a
V a

).

In order to prove the second part, λ(M−1Υq̂a
V a

) < 2, let us first focus on the
structure of the information matrix Υq̂a

V a
. This matrix has zeros for the elements

associated to non neighboring robots, and thus it is compatible with adj(G ) ⊗ I3,
where adj(G ) is the adjacency matrix of the graph, and I3 is the 3 × 3 identity
matrix. For ring or string graphs, the adjacency matrix can be reordered grouping
the elements around the main diagonal resulting in a matrix that has semi bandwidth
s = 1, i.e.,

adj(G )i j = 0 for |i − j | > s.

As a consequence, the information matrix Υq̂a
V a

has block semi bandwidth s′ = 1,
and as stated by [23, Theorem 1],

λmax(M−1Υq̂a
V a

) < 2s′ = 2.

�
Due to the structure of the information matrices, the third phase of the algorithm

can be expressed in terms of local information (3.21)–(3.26) and interactions with
neighbors, and thus it can be implemented in a distributed fashion. It is observed
that the robots actually use θ̄a

V instead of θ̃a
V and as a result, the solution obtained

is slightly different from the one in the centralized case. We experimentally analyze
the effects of these differences later in this chapter.
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3.4 Centroid-Based Position Estimation from Noisy
Measurements

This section discusses a higher dimensional scenario. We addresses the problem of
estimation of position from noisy measurements of the relative positions of neighbors.
The method simultaneously estimates the centroid of the network. Each robot in the
network obtains its three dimensional position relative to the estimated centroid.
The usual approaches to multi-robot localization assume instead that one anchor
robot exists in the network, and the other robots positions are estimated with respect
to the anchor. We show that the studied centroid-based algorithm converges to the
optimal solution, and that such a centroid-based representation produces results that
are more accurate than anchor-based ones, irrespective of the selected anchor [3].
In previous sections we denoted pi the pose of a robot i . Since in this section we
exclusively consider robot positions, for clarity we use a different symbol xi for the
robots variables.

Consider that each robot i ∈ {1, . . . , n} has a p−dimensional state xi ∈ R
p and

it observes the states of a subset of the robots relative to its own state, x j − xi . These
states can be positions in cartesian coordinates or, in other situations, orientations,
speeds, accelerations, or current times. Each edge e = (i, j) ∈ E in the relative mea-
surements graphG = (V ,E ) represents that robot i has a noisy relative measurement
ze ∈ R

p of the state of robot j ,

ze = x j − xi + ve, (3.32)

where ve ∼ N
(
0p×p,Σze

)
is a Gaussian additive noise. We let z ∈ R

mp and Σz ∈
R

mp×mp contain the information of the m measurements,

z = (zT
1 , . . . , zT

m)T , Σz = blkDiag(Σz1 , . . . , Σzm ). (3.33)

We assume that the measurement graph G is directed and weakly connected, and
that an robot i can exchange data with both its in and out neighbors Ni so that the
associated communication graph is undirected. The estimation from relative mea-
surements problem consists of estimating the states of the n robots from the relative
measurements z. Any solution can be determined only up to an additive constant.
Conventionally [4] one of the robots a ∈ V , e.g., the first one a = 1, is established
as an anchor with state x̂a

a = 0p. We call such approaches anchor-based and add
the superscript a to their associated variables. The Best Linear Unbiased Estimator
of the states x̂a

V a ∈ R
(n−1)p, x̂a

V a = ((x̂a
2)T , . . . , (x̂a

n)T )T, of the non-anchor robots
V a = V \ {a} relative to a are obtained as follows [4],

x̂a
V a = Σx̂a

V a

(
A a ⊗ Ip

)
Σ−1

z z, Σx̂a
V a

=
(
(A a ⊗ Ip)Σ

−1
z (A a ⊗ Ip)

T
)−1

,

(3.34)
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where A a ∈ R
(n−1)×m is the incidence matrix of G as in Eq. (3.1), but without

the row associated to the anchor a. From now on, both x̂a
V = (0T

p , (x̂a
V a )

T )T and

Σx̂a
V

= blkDiag
(

0p×p,Σx̂a
V a

)
, include the estimated state of the anchor a as well.

3.4.1 Position Estimation Relative to an Anchor

We present first distributed strategies where each robot i iteratively estimates its
own position relative to an anchor through local interactions with its neighbors Ni .
Among the different existing methods for estimating the states x̂a

V relative to an
anchor, we present the Jacobi algorithm [4], although other distributed methods such
as the Jacobi Overrelaxation [8], or the Overlapping Subgraph Estimator [5] could
alternatively be applied. The approach in [28], based on the cycle structure of the
graph, could be used as well, although it requires multi-hop communication.

Considering Eq. (3.34), it can be seen that computing x̂a
V a is equivalent to finding

a solution to the system Υ x̂a
V a = η, being η and Υ the information vector and matrix

associated to x̂a
V a and Σx̂a

V a
,

η = (
A a ⊗ Ip

)
Σ−1

z z, Υ = (
A a ⊗ Ip

)
Σ−1

z
(
A a ⊗ Ip

)T
. (3.35)

This can be iteratively solved with the Jacobi method [8], where the variable x̂a
V a (t) ∈

R
(n−1)p is initialized with an arbitrary value x̂a

V a (0) and it is updated at each step t
with the following rule,

x̂a
V a (t + 1) = D−1 N x̂a

V a (t) + D−1η, (3.36)

being D, N the following decomposition of Υ = [Υi j ]:

D = blkDiag(Υ22, . . . , Υnn), N = D − Υ. (3.37)

The previous variable x̂a
V a (t) converges to x̂a

V a if the Jacobi matrix J = D−1 N has
spectral radius less than or equal to one, ρ(J ) = ρ(D−1 N ) < 1. The interest of the
Jacobi method is that it can be executed in a distributed fashion when the information
matrix Υ is compatible with the graph (if j /∈ Ni then Υi j = Υ j i = 0p×p), and when
in addition the rows of Υ and of η associated to each robot i ∈ V a only depend on
data which is local to robot i . Next, the general anchor-based estimation algorithm [4]
based on the Jacobi method is presented. It allows each robot i ∈ V to iteratively
estimate its own x̂a

i within x̂a
V a = ((x̂a

2)T , . . . , (x̂a
n)T )T in a distributed fashion.

Algorithm 3 Let each robot i ∈ V have a variable x̂a
i (t) ∈ R

p initialized at t = 0
with x̂a

i (0) = 0p. At each time step t , each robot i ∈ V updates x̂a
i (t) with
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x̂a
i (t + 1) =

∑

j∈Ni

MiBi j x̂a
j (t) +

∑

e=( j,i)∈E
MiΣ

−1
ze

ze −
∑

e=(i, j)∈E
MiΣ

−1
ze

ze,

(3.38)

where Mi andBi j are p × p matrices with Mi = 0 for i = a, Mi = (
∑

j∈Ni
Bi j )

−1

for i �= a, and

Bi j =
⎧
⎨

⎩

Σ−1
ze

+ Σ−1
ze′ if e = (i, j), e′ = ( j, i) ∈ E

Σ−1
ze

if e = (i, j) ∈ E , ( j, i) /∈ E
Σ−1

ze
if e = ( j, i) ∈ E , (i, j) /∈ E

. (3.39)

The convergence of this estimation algorithm has been proved [4, Theorem 1] for
connected measurement graphs with independent relative measurements, under the
assumption that either

(i) The covariance matrices of the measurements are exactly diagonal; or
(ii) All measurements have exactly the same covariance matrix.

However, we would like the algorithm presented here to be applicable to a wider case
of relative noises, in particular to independent noises, with not necessarily diagonal or
equal covariance matrices. Next we use results on block matrices [17], see Appendix
B, to prove the convergence of the Jacobi algorithm for this more general case.

Theorem 6 Let the measurement graph G be weakly connected, Σz1 , . . . , Σzm be
the covariance matrices, not necessarily equal or diagonal, associated to m inde-
pendent p−dimensional measurements, and Σz be their associated block-diagonal
covariance matrix as in Eq. (3.33). Then, the spectral radius of D−1 N, with D and
N computed as in Eqs. (3.35)–(3.37), is less than 1,

ρ(D−1 N ) < 1. (3.40)

Proof In order to prove (3.40) we use the definitions and results in Appendix B.
We first analyze the contents of Υ and show that Υ is of class Z p

n−1 according to
Definition 6 in Appendix B. Then, we use Lemma 4 and Theorem 9 to show that Υ

is of class M p
n−1 as in Definition 6. Finally, we show that Υ + Υ T ∈ M p

n−1 and use
Theorem 10 to prove (3.40). Note that the subscript n − 1 used in this proof instead
of n comes from the fact that Υ = [Υi j ], with i, j ∈ V a and |V a | = n − 1.

We first analyze the contents of the information matrix Υ given by Eq. (3.35).
Each block Υi j of the information matrix Υ is given by

Υi j =
{−Bi j if j ∈ Ni , j �= i

0 if j /∈ Ni , j �= i
, and Υi i =

∑

j∈Ni

Bi j , (3.41)

http://dx.doi.org/10.1007/978-3-319-25886-7_6
http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_6
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for i, j ∈ V a , where Bi j is given by Eq. (3.39). Note that Bi j is symmetric and that
Bi j � 01 and thus −Bi j ≺ 0 and symmetric. Therefore, matrix Υ is of class Z p

n−1
according to Definition 6.

Now we focus on Lemma 4. We are interested in showing that, given any subset
of robots J ⊂ V a , there exists i ∈ J such that

∑
j∈J Υi j � 0. First we analyze

the case J = V a . Observe that Υ does not have any rows or columns associated to
the anchor robot a, i.e., Υ = [Υi j ] with i, j ∈ V a . On the other hand, for each robot
i that has the anchor a as a neighbor, a ∈ Ni , the block Υi i includes Bia . Therefore,∑

j∈V a Υi j � 0 for all i ∈ V a , specifically

∑

j∈V a

Υi j = 0 if a /∈ Ni , and
∑

j∈V a

Υi j = Bia � 0, when a ∈ Ni . (3.42)

Since G is connected, a ∈ Ni for at least one robot i ∈ V a . Now consider a proper
subset J � V a . Note that for each i ∈ J � V a ,

∑

j∈J
Υi j = 0 if Ni ⊆ J , and

∑

j∈J
Υi j =

∑

j∈Ni \J
Bi j � 0, otherwise.

(3.43)

Since G is connected, given any proper subset J � V a of robots, there is always
a robot i ∈ J that has at least one neighbor outside J or that has the anchor a as
a neighbor, for which

∑
j∈J Υi j � 0. Therefore Lemma 4 holds, and by applying

Theorem 9 taking u2, . . . , un = 1 we conclude that matrix Υ ∈ M p
n−1. Since Υ

is symmetric, then Υ + Υ T ∈ M p
n−1, and by [17, Theorem 4.7] we conclude that

ρ(D−1 N ) < 1. �

Corollary 4 Let G be connected, Σz1, . . . , Σzm be the covariance matrices asso-
ciated to m independent p−dimensional measurements, and Σz be their associated
block-diagonal covariance matrix as in Eq. (3.33). Consider that each robot i ∈ V
executes the Algorithm 3 to update its variable x̂a

i (t). Then, for all i ∈ V ,

lim
t→∞ x̂a

i (t) = x̂a
i , (3.44)

converges to the anchor-based centralized solution x̂a
i given by Eq. (3.34). �

1 A � B (A � B) represent that matrix A − B is positive-definite (positive-semidefinite). Equiva-
lently, ≺, � are used for negative-definite and negative-semidefinite matrices.

http://dx.doi.org/10.1007/978-3-319-25886-7_6
http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4
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3.4.2 Centralized Centroid-Based Position Estimation

The accuracy of the estimated states x̂a
V , Σx̂a

V
in anchor-based approaches depend

on the selected anchor a. Instead of that it is more interesting to compute the states
of the robots x̂cen

V , Σx̂cen
V

relative to the centroid given by the average of the states,

x̂cen
V = (I − Hcen) x̂a

V , Σx̂cen
V

= (I − Hcen)Σx̂a
V

(I − Hcen)
T , (3.45)

where Hcen = (
1n ⊗ Ip

) (
1n ⊗ Ip

)T
/n.

The value of this representation is that the states of the robots x̂cen
V , Σx̂cen

V
with respect

to the centroid are the same regardless of the anchor robot, i.e., the centroid solution
is unique. Additionally, as the following result shows, it produces more accurate
estimates than the ones provided by any anchor selection. We compare the block-
traces2 blkTr of their covariance matrices [6].

Proposition 5 The covariance matrices of the centroid-based Σx̂cen
V

and anchor-
based Σx̂a

V
estimates satisfy, for all anchors a ∈ V ,

blkTr
(
Σx̂cen

V

)
� blkTr

(
Σx̂a

V

)
, Tr

(
Σx̂cen

V

)
≤ Tr

(
Σx̂a

V

)
. (3.46)

Proof Let Pi j and Qi j be the p × p blocks of, respectively, the anchor and the
centroid-based covariances, Σx̂a

V
= [Pi j ], Σx̂cen

V
= [Qi j ] with i, j ∈ V . The block-

trace of the anchor-based covariance matrix is

blkTr
(
Σx̂a

V

)
=

n∑

i=1

Pii . (3.47)

Considering Eq. (3.45), each block in the main diagonal of the centroid-based Σx̂cen
V

covariance matrix is given by

Qii = Pii − 1

n

n∑

j=1

(
Pi j + Pji

) + 1

n2

n∑

j=1

n∑

j ′=1

Pj j ′ , (3.48)

for i ∈ V , and thus its block-trace is

blkTr
(
Σx̂cen

V

)
=

n∑

i=1

Qii =
n∑

i=1

Pii − 1

n

n∑

i=1

n∑

j=1

Pi j

= blkTr
(
Σx̂a

V

)
− (1n ⊗ Ip)

T Σx̂a
V

(1n ⊗ Ip)/n. (3.49)

2The block-trace of a matrix defined by blocks P = [Pi j ] with i, j ∈ {1, . . . , n} is the sum of its
diagonal blocks, blkTr(P) = ∑n

i=1 Pii .
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SinceΣx̂a
V

is symmetric and positive-semidefinite, then (1n ⊗ Ip)
T Σx̂a

V
(1n ⊗ Ip) �

0, and thus blkTr
(
Σx̂cen

V

)
− blkTr

(
Σx̂a

V

)
� 0, as in Eq. (3.46). Observe that the

trace of the block-trace of a matrix A is equal to its trace, Tr(blkTr(A)) = Tr(A).

Since blkTr
(
Σx̂cen

V

)
− blkTr

(
Σx̂a

V

)
� 0, the elements in the main diagonal of

blkTr
(
Σx̂cen

V

)
are smaller than or equal to the ones in the main diagonal of

blkTr
(
Σx̂a

V

)
so that

Tr(Σx̂cen
V

) = Tr(blkTr(Σx̂cen
V

)) ≤ Tr(blkTr(Σx̂a
V

)) = Tr(Σx̂a
V

).

�
In particular, from Eq. (3.49), Tr(Σx̂a

V
) − Tr(Σx̂cen

V
) = 1

n

∑n
i=1

∑n
j=1 Tr(Pi j ). Note

that the previous result holds when the anchor state x̂a
a is set to a general value,

not necessarily 0. It also holds when there is more than one anchor. Consider
that the first k robots are anchors. In this case, matrix Σx̂a

V
= [Pi j ] has its blocks

Pi j = 0 for i, j ∈ {1, . . . , k}, and Eq. (3.49) gives blkTr(Σx̂cen
V

) = blkTr(Σx̂a
V

) −
∑n

i=k+1
∑n

j=k+1 Pi j/n, where
∑n

i=k+1
∑n

j=k+1 Pi j/n � 0.

We propose an algorithm that allows each robot i ∈ V to compute its state x̂cen
i

with respect to the centroid in a distributed fashion, where x̂cen
V is given in Eq. (3.45),

x̂cen
V = ((x̂cen

1 )T , . . . , (x̂cen
n )T )T . These states sum up to zero, x̂cen

1 + · · · + x̂cen
n = 0,

since (1n ⊗ Ip)(I − Hcen) = 0, and for neighboring robots i and j satisfy x̂cen
i =

x̂cen
j − x̂a

j + x̂a
i . Thus, a straightforward solution would consist of firstly computing

the anchor-based states of the robots x̂a
V = ((x̂a

1)T , . . . , (x̂a
n)T )T , and in a second

phase initializing the robots’ variables so that they sum up to zero, x̂cen
i (0) = 0, for

i ∈ V , and updating them at each step t with an averaging algorithm that conserves
the sum:

x̂cen
i (t + 1) =

∑

j∈Ni ∪{i}
Wi, j (x̂cen

j (t) − x̂a
j + x̂a

i ), (3.50)

for i ∈ V , whereW = [Wi, j ] is a doubly stochastic weight matrix such thatWi, j > 0
if (i, j) ∈ E and Wi, j = 0 when j /∈ Ni . Besides, Wi,i ∈ [α, 1], Wi, j ∈ {0} ∪ [α, 1]
for all i, j ∈ V , for some α ∈ (0, 1]. More information about averaging algorithms
can be found in Appendix A and at [9, 26, 37]. The term −x̂a

j + x̂a
i is the rel-

ative measurement ze with e = ( j, i) for noise free scenarios, and the optimal
or corrected measurement [28] ẑe for the noisy case, ẑ = (A ⊗ Ip)

T x̂a
V , with

ẑ = ((ẑ1)
T , . . . , (ẑm)T )T . In what follows we propose an algorithm where, at each

iteration t , (3.50) is executed not on the exact x̂a
i , x̂a

j , but on the most recent estimates
x̂a

i (t), x̂a
j (t) obtained with Algorithm 3.
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3.4.3 Distributed Centroid-Based Position Estimation

Now we study a distributed localization algorithm for estimating the position the
robots relative to the centroid.

Algorithm 4 Let each robot i ∈ V have an estimate of its own state relative to the
centroid, x̂cen

i (t) ∈ R
p, initialized at t = 0 with x̂cen

i (0) = 0. At each time step t ,
each robot i ∈ V updates x̂cen

i (t) with

x̂cen
i (t + 1) =

∑

j∈Ni ∪{i}
Wi, j (x̂cen

j (t) + x̂a
i (t) − x̂a

j (t)), (3.51)

where x̂a
i (t), x̂a

j (t) are the most recent estimates that robots i and j have at iteration
t of the variables in Algorithm 3 and Wi, j are the Metropolis weights as defined in
Eq. (A.3) in Appendix A.

Theorem 7 Let all the robots i ∈ V execute the Algorithm 4 and letG be connected.
Then, the estimated states x̂cen

i (t) at each robot i ∈ V asymptotically converge to
the state of i relative to the centroid x̂cen

i given by Eq. (3.45),

lim
t→∞ x̂cen

i (t) = x̂cen
i . (3.52)

Let ecen(t) = [
(x̂cen

1 (t) − x̂cen
1 )T , . . . , (x̂cen

n (t) − x̂cen
n )T

]T
be the error vector con-

taining the estimation errors of the n robots at iteration t. For fixed communication
graphs G , the norm of the error vector after t iterations of Algorithm 4 satisfies

||ecen(t)||2 ≤ λt
eff(W )||ecen(0)||2 + 2p(n − 1)σJ λt

eff(W )

t∑

k=1

(
ρ(J )

λeff(W )

)k

,

(3.53)

where J is the Jacobi matrix J = D−1 N, with D and N computed as in Eqs. (3.35)–
(3.37), σJ is a constant that depends on the initial Jacobi error and on J . W is the
Metropolis weight matrix as defined in Eq. (A.3) in Appendix A, and ecen(0) is the
initial error at t = 0.

Proof First of all, we derive the expression for the convergence rate in Eq. (3.53). We
express Algorithm 4 in terms of the error vectors associated to the centroid ecen(t)
and the anchor-based ea(t) ∈ R

(n−1)p estimation methods (Algorithms 3 and 4),

ecen(t) =
[
(x̂cen

1 (t))T , . . . , (x̂cen
n (t))T

]T − x̂cen
V ,
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with x̂cen
V = [

(x̂cen
1 )T , . . . , (x̂cen

n )T
]T

given by Eq. (3.45), and

ẽa(t) =
[
(x̂a

2(t)T , . . . , x̂a
n(t)T

]T − x̂a
V a ,

with x̂a
V a = [

(x̂a
2)T , . . . , (x̂a

n)T
]T

given by Eq. (3.34), where for simplicity we
let the robot i = 1 be the anchor a. We let ea(t) be (0T

p , ẽa(t)T )T . Recall that∑
j∈Ni ∪{i} x̂a

i (t) = x̂a
i (t) and that the estimated states relative to the centroid x̂cen

V

are x̂cen
V = (I − Hcen)x̂a

V as in Eq. (3.45). Algorithm 4 becomes

ecen(t) = (W ⊗ Ip)ecen(t − 1) + ((In − W ) ⊗ Ip)ea(t − 1) + P x̂a
V , (3.54)

where the term P that is multiplying x̂a
V is

P = I − (W ⊗ Ip) − (I − (W ⊗ Ip))(I − Hcen) = (I − (W ⊗ Ip))Hcen . (3.55)

We use the fact that (W ⊗ Ip)Hcen = Hcen , and the previous expression gives P = 0
and Eq. (3.54) becomes

ecen(t) = (W ⊗ Ip)ecen(t − 1) + ((In − W ) ⊗ Ip)ea(t − 1)

= (W ⊗ Ip)
t ecen(0) +

t−1∑

k=0

(W ⊗ Ip)
t−k−1 (

(I − W ) ⊗ Ip
)

ea(k). (3.56)

Then, the norm of the error ecen(t) satisfies

‖ecen(t)‖2 ≤ λt
eff(W )‖ecen(0)‖2 + 2

t−1∑

k=0

λt−k−1
eff (W )‖ea(k)‖2, (3.57)

where we have used the fact that ‖ (
(W − I) ⊗ Ip

) ‖2 ≤ 2 since W is the Metropolis
weight matrix given by Eq. (A.3) in Appendix A.

We analyze now the norm of error ‖ea(t)‖2, which is related to the error vector
of the Jacobi algorithm ẽa(t) ∈ R

(n−1)p by ea(t) = (0, ẽT
a (t))T . Let J be the Jacobi

matrix, and VJ = [
vp+1(J ), . . . , vnp(J )

]
and λJ = Diag

(
λp+1(J ), . . . , λnp(J )

)
be

its associated eigenvectors and eigenvalues so that J = VJ λJ V −1
J , and ||vi (J )||2 =

1. The error vector ẽa(t) evolves according to

ẽa(t) = J ẽa(t − 1) = J t ẽa(0). (3.58)



3.4 Centroid-Based Position Estimation from Noisy Measurements 57

For each initial error vector ẽa(0) there exist σp+1, . . . , σnp such that

ẽa(0) =
np∑

i=p+1

σi vi (J ),

and then the error vector ẽa(t) after t iterations of the Jacobi algorithm given by
Eq. (3.58) can be expressed as

ẽa(t) = VJ λt
J V −1

J VJ
[
σp+1, . . . , σnp

]T =
np∑

i=p+1

σi vi (J )λt
i (J ).

Let σJ = maxnp
i=p+1 |σi |, and ρ(J ) = maxnp

i=p+1 |λi (J )|. For all t ≥ 0, the norm of
the error vector ||ẽa(t)||2 satisfies

||ea(t)||2 = ||ẽa(t)||2 ≤ p(n − 1)σJ ρt (J ). (3.59)

Linking this with Eq. (3.57) gives that the convergence rate is

‖ecen(t)‖2 ≤ λt
eff(W )‖ecen(0)‖2 + 2p(n − 1)σJ

t−1∑

k=0

λt−k−1
eff (W )ρk(J ), (3.60)

as in Eq. (3.53).
Now we prove the asymptotical convergence to the centroid (3.52). If both the

Jacobi and the general algorithm have the same convergence rate, ρ(J ) = λeff(W ),
then Eq. (3.60) gives

||ecen(t)||2 ≤ λt
eff(W )||ecen(0)||2 + 2p(n − 1)σJ λt−1

eff (W )t, (3.61)

whereas for ρ(J ) �= λeff(W ), it gives

||ecen(t)||2 ≤ λt
eff(W )||ecen(0)||2 + 2p(n − 1)σJ

ρ(J ) − λeff(W )
(ρt (J ) − λt

eff(W )). (3.62)

Note that λeff(W ) < 1 for connected graphs G . Then, the term λt
eff(W )||ecen(0)||2

in Eqs. (3.61) and (3.62) exponentially tends to zero as t → ∞ regardless of the
initial error ecen(0). For the case ρ(J ) = λeff(W ), the term λt

eff(W )t in Eq. (3.61)

is decreasing for t ≥ λeff (W )
1−λeff (W )

and thus it tends to zero as t → ∞. For ρ(J ) �=
λeff(W ), the term (ρt (J ) − λt

eff(W )) in Eq. (3.62) asymptotically tends to zero
since λeff(W ) is less than 1, and as stated by Theorem 6, ρ(J ) < 1. Therefore,
limt→∞ ||ecen(t)||2 = 0, where ||ecen(t)||2 = 0 iff ecen(t) = 0, what concludes the
proof. �
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3.5 Simulations

Planar Localization from Noisy Measurements

A set of simulations have been carried out to show the performance of the method
for planar localization from noisy measurements, and to compare the results of the
centralized (Sect. 3.3.1) and the distributed (Sect. 3.3.2) approaches.

First, a team of n = 20 robots are placed in a ring of radius 4 m with their orien-
tations randomly generated within ±π

2 (Fig. 3.1a). Each robot measures the relative
pose of the next robot, with noises in the x- and y- coordinates of 6 cm standard devi-
ation, and of 1 degree for the orientation. The robots execute the proposed method to
compute their pose with respect to the anchor node R1. The experiment is repeated
100 times and the average results can be seen in Table 3.1. The first rows show the
solution computed by the localization algorithm in Sect. 3.3.1, and the next rows
compare the distributed implementation of the algorithm (Sect. 3.3.2) against the
results obtained by the centralized algorithm in Sect. 3.3.1. We use the flagged ini-
tialization [4] that is known to produce fast convergence results. The convergence
speeds during the first and the third phases depend on the values of respectively
ρ(C−1 D) in (3.18) and ρ(I − M−1Υq̂a

V a
) in (3.31), which here are close to one

(slow convergence). The second phase is always executed in a single iteration (it
does not have any convergence speed associated). After executing the first phase for
t = 50 iterations, the obtained θ̄a

V still differs from the centralized solution θ̃a
V by

around 0.16◦. If we increase the number of iterations we obtain better approximations
that differ only by 0.01 (t = 100) and 8.5e − 05 (t = 200) degrees. The next three
rows show the results after executing the second phase followed by 200 iterations
of the third phase. Since the second and third phases have been executed using θ̄a

V
instead of θ̃a

V , the final results also differ. For the case t = 200 (third column), the
difference between the pose estimated by the distributed and centralized approaches
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Fig. 3.1 Scenarios tested. Each robot (triangles) measures the relative pose of other team members
(outgoing arrows). Robots connected by an arrow can exchange data
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Table 3.1 Results for the scenario in Fig. 3.1a

Localization results versus ground truth

Max error Average standard deviation

Orientation phase 1 3.38◦ 1.87◦

x-coordinate phase 3 27.85 cm 13.45 cm

y-coordinate phase 3 24.33 cm 12.31 cm

Orientation phase 3 4.03◦ 1.66◦

Distributed implementation (flagged-initialization)

ρ(C−1 D) 0.99

ρ(I − M−1Υq̂a
V a

) 0.99

Max error t = 50 t = 100 t = 200

Orientation phase 1 0.16◦ 0.01◦ 8.5e − 05◦

x-coordinate phase 3 1.74 cm 1.64 cm 1.64 cm

y-coordinate phase 3 0.84 cm 0.49 cm 0.48 cm

Orientation phase 3 0.29◦ 0.12◦ 0.11◦

is small (1.64 and 0.48 cm for the x- and y- coordinates, and 0.11 degrees for the
orientation), and similar results are obtained for t = 100.

Other simulation with 10 robots placed as in Fig. 3.1b has been carried out. If
there is an arrow from robot i into j , then robot i measures the relative pose of robot
j , with additive noises of 2.5 degrees of standard deviation for the orientation, and of
5 % d and 0.7 % d standard deviation for respectively the x and y-coordinates, where
d is the distance between the robots. The robots execute the distributed algorithm
during the phase 1 to compute their orientations with respect to the anchor node
R1 (Fig. 3.2a), obtaining estimates (blue) very close to the ground truth data (red).
They execute phase 2 to express the relative position measurements in the reference
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Fig. 3.2 The robots estimate their poses (blue dashed) relative to the anchor R1 for the experiment
in Fig. 3.1b. The ground truth data (red solid) and the covariances computed by the centralized
approach (blue solid) are also displayed
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Fig. 3.3 Detail of phases 1 and 3 of the proposed strategy. The estimates of robot R10 (gray)
successively approach the centralized solution (blue)

frame of the anchor node. Finally, they execute the phase 3 to obtain both, their
positions and orientations relative to the anchor node (Fig. 3.2b). Figure 3.3 shows
a detail of the iterations during phases 1 and 3. Although the convergence was pre-
viously proved only for graphs with low connectivity (ring or string graphs), in the
experiments with general communication graphs the algorithm has been found to
converge as well.

Centroid-Based Noisy Position Localization

We study the performance of the algorithm presented in Sect. 3.4 in a multi-robot
localization scenario (Fig. 3.4) with n = 20 robots (black circles) that get noisy mea-
surements (gray crosses and ellipses) of the position of robots which are closer than
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Fig. 3.4 a 20 robots (black circles) are placed randomly in a region of 10 × 10 m. There is an edge
e = (i, j) ∈ E (red arrows) between pairs of robots that are closer than 4 m. b Each robot i has
a noisy measurement ze (gray crosses and ellipses) of the relative position of its out-neighbors j ,
with e = (i, j). The noises are proportional to the distance between the robots
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Fig. 3.5 The experiment in Fig. 3.4 is generated 100 times with the same noise levels but different
noise values. We display the average norm of the error with the difference between the estimates
and the ground truth for the 100 different experiments. a Results of Algorithm 3 when each robot
i ∈ V is used as the anchor (gray lines). The special cases that the anchor is R1, R3 and R12 are
shown in blue. The black line is the asymptotic error reached with the centroid-based estimation.
b Detail of iterations 900–1000 in (a). c Results of Algorithm 4 using all the possible anchors.
d Detail of iterations 900–1000 in (c)

4 m. We analyze the states estimated by the n robots along 1000 iterations of the
proposed algorithm (Fig. 3.5). Robots initialize their states x̂a

i (t), x̂cen
i (t) with zeros

and execute Algorithms 3 and 4. We generate specific noises as the ones in Fig. 3.4
for 100 different samples. For each of them, we record the norm of the error vector
containing the difference between the estimates at the n robots and the ground-truth
positions at each iteration t . In Fig. 3.5a we show the results of Algorithm 3 when
each robot i ∈ V is used as the anchor (gray lines). The most and least precise
anchor-based results, which are obtained for respectively R3 and R12, are shown
in blue. The results for robot R1, which is conventionally used as the anchor, are
displayed in blue as well. The black line is the asymptotic error reached with the
centroid-based estimation method. As it can be seen, the errors reached with the
anchor-based solutions are greater than the ones associated to the centroid. This is
even more evident in Fig. 3.5b, which shows the last 100 iterations in Fig. 3.5a. In
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Fig. 3.5c we show the equivalent errors for the centroid-based estimation algorithm
(Algorithm 4), using all the possible anchors for Algorithm 3. Here, in all cases the
error estimates (gray lines) converge to the asymptotic error of the centroid-based
estimation method (black line).

3.6 Closure

Along this chapter, the problem of network localization has been studied for different
scenarios: the estimation of the planar localization with respect to an anchor from
noisy relative measurements, and the estimation of higher dimension positions with
respect to the, simultaneously computed, centroid of the network using also noisy
measurements. We have analyzed distributed strategies that allow the robots to agree
on a common global frame, and to compute their poses relative to the global frame.
The presented algorithms exclusively rely on local computations and data exchange
with direct neighbors. Besides, they only require the robots to maintain their own
estimated poses relative to the common frame. Thus, the memory load of the algo-
rithm is low compared to methods where each robot must also estimate the positions
or poses of any other robot. We have discussed the performance of the planar pose
localization algorithm relative to an anchor node, for ring or string topologies. The
centroid-based position localization method has been studied to produce more accu-
rate results than any anchor-based solution. Besides, in the experiments we have
shown that it converges faster than the anchor-based solutions.
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