
123

S P R I N G E R B R I E F S I N CO M P U T E R S C I E N C E

Rosario Aragues
Carlos Sagues
Youcef Mezouar

Parallel and
Distributed Map
Merging and
Localization
Algorithms, Tools and
Strategies for Robotic
Networks

SpringerBriefs in Computer Science

Series editors

Stan Zdonik, Brown University, Providence, USA
Shashi Shekhar, University of Minnesota, Minneapolis, USA
Jonathan Katz, University of Maryland, College Park, USA
Xindong Wu, University of Vermont, Burlington, USA
Lakhmi C. Jain, University of South Australia, Adelaide, Australia
David Padua, University of Illinois Urbana-Champaign, Urbana, USA
Xuemin (Sherman) Shen, University of Waterloo, Waterloo, Canada
Borko Furht, Florida Atlantic University, Boca Raton, USA
V.S. Subrahmanian, University of Maryland, College Park, USA
Martial Hebert, Carnegie Mellon University, Pittsburgh, USA
Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan
Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy
Sushil Jajodia, George Mason University, Fairfax, USA
Newton Lee, Newton Lee Laboratories, LLC, Tujunga, USA

More information about this series at http://www.springer.com/series/10028

http://www.springer.com/series/10028

Rosario Aragues • Carlos Sagues
Youcef Mezouar

Parallel and Distributed Map
Merging and Localization
Algorithms, Tools and Strategies
for Robotic Networks

123

Rosario Aragues
Instituto de Investigación en Ingeniería de

Aragón
University of Zaragoza
Saragossa
Spain

Carlos Sagues
Instituto de Investigación en Ingeniería de

Aragón
University of Zaragoza
Saragossa
Spain

Youcef Mezouar
Institut Pascal, CNRS
Clermont Université, IFMA
Clermont-Ferrand
France

ISSN 2191-5768 ISSN 2191-5776 (electronic)
SpringerBriefs in Computer Science
ISBN 978-3-319-25884-3 ISBN 978-3-319-25886-7 (eBook)
DOI 10.1007/978-3-319-25886-7

Library of Congress Control Number: 2015952999

Springer Cham Heidelberg New York Dordrecht London
© The Author(s) 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The increasing interest in multi-robot systems is motivated by the wealth of pos-
sibilities offered by teams of robots cooperatively performing collective tasks. In
these scenarios, distributed strategies attract a high attention, especially in appli-
cations which are inherently distributed in space, time, or functionality. These
distributed schemes not only reduce the completion time of the task due to the
parallel operation, but also present a natural robustness to failures due to the
redundancy. In addition to the classical issues associated to the operation of indi-
vidual robots, these scenarios introduce novel challenges specific to communica-
tions and coordination of the members of the robot team.

In this book, we analyze a particular problem of high interest in these scenarios:
distributed map merging and localization. It allows the robots to acquire the
knowledge of their surrounding needed for carrying out other coordinated tasks. We
identify the main issues associated to this problem, and we present at each chapter
different distributed strategies for solving them.

The explanation of this problem serves us as a tool for discussing topics which
are classical in these scenarios and for introducing the reader to several multi-robot
concepts. Thus, this book has several purposes. First, to give a complete solution to
the distributed map merging and localization problem, which can be implemented
in a multi-robot platform. Second, to provide the reader with the necessary tools for
proposing new solutions to the multi-robot perception problem, or for addressing
other interesting topics related to multi-robot scenarios. And third, to attract the
attention to multi-robot systems and distributed strategies.

The authors have been working in different topics related to robotics perception
and control. In this book they analyze distributed algorithms for perception in
localization and map merging. The authors believe that this is an interesting topic,
and that there are still many challenges that remain to be addressed in order to
achieve the final aim of having a complete availability of these systems in the life of
human beings.

v

This book can be of interest to the robotics and control communities, to
post-graduate students and researchers, and, in general, to anyone interested in
multi-robot systems. We do not make any assumption about the background needed
to read the book. However, the basic understanding on mathematics of a graduate
student is necessary. It is very difficult to give a fully self-contained material and,
although we have introduced as many explanations and demonstrations as we
could, we give references which can be studied if needed.

Saragossa, Spain Rosario Aragues
Saragossa, Spain Carlos Sagues
Clermont-Ferrand, France Youcef Mezouar
October 2013

vi Preface

Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Classical Approaches . 5
1.3 Document Organization . 7
References . 8

2 Distributed Data Association . 11
2.1 Introduction . 11
2.2 Problem Description . 13

2.2.1 Matching Between Two Cameras 14
2.2.2 Centralized Matching Between n Cameras 14
2.2.3 Distributed Matching Between n Cameras 15

2.3 Propagation of Local Associations . 16
2.4 Algorithm Based on Trees . 19
2.5 Feature Labeling . 23
2.6 Algorithm Based on the Maximum Error Cut 26
2.7 Simulations. 32
2.8 Closure . 35
References . 35

3 Distributed Localization . 37
3.1 Introduction . 37
3.2 Problem Description . 39
3.3 Planar Localization from Noisy Measurements 41

3.3.1 Centralized Algorithm . 41
3.3.2 Distributed Algorithm . 43

3.4 Centroid-Based Position Estimation from Noisy
Measurements . 49
3.4.1 Position Estimation Relative to an Anchor 50
3.4.2 Centralized Centroid-Based Position Estimation 53
3.4.3 Distributed Centroid-Based Position Estimation 55

vii

http://dx.doi.org/10.1007/978-3-319-25886-7_1
http://dx.doi.org/10.1007/978-3-319-25886-7_1
http://dx.doi.org/10.1007/978-3-319-25886-7_1#Sec1
http://dx.doi.org/10.1007/978-3-319-25886-7_1#Sec1
http://dx.doi.org/10.1007/978-3-319-25886-7_1#Sec2
http://dx.doi.org/10.1007/978-3-319-25886-7_1#Sec2
http://dx.doi.org/10.1007/978-3-319-25886-7_1#Sec3
http://dx.doi.org/10.1007/978-3-319-25886-7_1#Sec3
http://dx.doi.org/10.1007/978-3-319-25886-7_1#Bib1
http://dx.doi.org/10.1007/978-3-319-25886-7_2
http://dx.doi.org/10.1007/978-3-319-25886-7_2
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec1
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec1
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec2
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec2
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec3
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec3
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec4
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec4
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec4
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec5
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec5
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec5
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec6
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec6
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec7
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec7
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec8
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec8
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec9
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec9
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec10
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec10
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec11
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Sec11
http://dx.doi.org/10.1007/978-3-319-25886-7_2#Bib1
http://dx.doi.org/10.1007/978-3-319-25886-7_3
http://dx.doi.org/10.1007/978-3-319-25886-7_3
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec1
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec1
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec2
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec2
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec3
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec3
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec4
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec4
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec5
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec5
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec6
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec6
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec6
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec8
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec8
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec9
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec9

3.5 Simulations. 58
3.6 Closure . 62
References . 62

4 Map Merging . 65
4.1 Introduction . 65
4.2 Problem Description . 69
4.3 Dynamic Map Merging Algorithm. 71
4.4 Properties of the Dynamic Map Merging Algorithm. 75
4.5 Simulations. 83
4.6 Closure . 85
References . 85

5 Real Experiments . 89
5.1 Data Association with Visual Data . 89
5.2 Map Merging with Visual Data . 92
5.3 Data Association, Localization, and Map Merging

with RGB-D . 97
5.4 Closure . 105
References . 105

6 Conclusions . 107

Appendix A: Averaging Algorithms and Metropolis Weights. 109

Appendix B: Auxiliary Results for Distributed Localization 111

Index . 115

viii Contents

http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec10
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec10
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec11
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Sec11
http://dx.doi.org/10.1007/978-3-319-25886-7_3#Bib1
http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec1
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec1
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec2
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec2
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec3
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec3
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec4
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec4
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec5
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec5
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec6
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Sec6
http://dx.doi.org/10.1007/978-3-319-25886-7_4#Bib1
http://dx.doi.org/10.1007/978-3-319-25886-7_5
http://dx.doi.org/10.1007/978-3-319-25886-7_5
http://dx.doi.org/10.1007/978-3-319-25886-7_5#Sec1
http://dx.doi.org/10.1007/978-3-319-25886-7_5#Sec1
http://dx.doi.org/10.1007/978-3-319-25886-7_5#Sec2
http://dx.doi.org/10.1007/978-3-319-25886-7_5#Sec2
http://dx.doi.org/10.1007/978-3-319-25886-7_5#Sec3
http://dx.doi.org/10.1007/978-3-319-25886-7_5#Sec3
http://dx.doi.org/10.1007/978-3-319-25886-7_5#Sec3
http://dx.doi.org/10.1007/978-3-319-25886-7_5#Sec4
http://dx.doi.org/10.1007/978-3-319-25886-7_5#Sec4
http://dx.doi.org/10.1007/978-3-319-25886-7_5#Bib1
http://dx.doi.org/10.1007/978-3-319-25886-7_6
http://dx.doi.org/10.1007/978-3-319-25886-7_6

Chapter 1
Introduction

Abstract The increasing interest in multi-robot systems is motivated by the wealth
of possibilities offered by teams of robots cooperatively performing collective tasks.
This chapter introduces the multi-robot map merging and localization problem, and
makes a revision of the state of the art in the topics involved. The last section in this
chapter contains the book organization and explains the way in which the authors
have focused the study.

Keywords Networked robots ·Distributed systems ·Parallel computation ·Limited
communication · Multi-robot perception · Localization · Data association · Map
merging

1.1 Motivation

The increasing interest in multi-robot applications is motivated by the wealth of
possibilities offered by teams of robots cooperatively performing collective tasks.
The efficiency and robustness of these teams go beyond what individual robots can
do. In these scenarios, distributed strategies attract a high attention, especially in
applications which are inherently distributed in space, time or functionality. These
distributed schemes do not only reduce the completion time of the task due to the par-
allel operation, but also present a natural robustness to failures due to the redundancy.
In addition to the classical issues associated to the operation of individual robots,
these scenarios introduce novel challenges specific to communications and coordi-
nation of the members of the robot team. Several distributed algorithms are based
on behaviors observed in nature. It has been observed that certain groups of animals
are capable of deploying over a given region, assuming a specified pattern, achieving
rendezvous at a common point, or jointly initiating motion or changing direction in
a synchronized way (Fig. 1.1).1 Species achieve synchronized behavior, with limited

1The images in Fig. 1.1 have been obtained from the following sources. Figure1.1 (left):
https://commons.wikimedia.org/wiki/File:Grus_grus_flocks.jpg; Andreas Trepte, http://www.
photo-natur.de. Figure1.1 (right): https://commons.wikimedia.org/wiki/File:IRobot_Create_team.
jpg; Jiuguang Wang; A team of iRobot Create robots at the Georgia Institute of Technology.

© The Author(s) 2015
R. Aragues et al., Parallel and Distributed Map Merging and Localization,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-25886-7_1

1

https://commons.wikimedia.org/wiki/File:Grus_grus_flocks.jpg
http://www.photo-natur.de
http://www.photo-natur.de
https://commons.wikimedia.org/wiki/File:IRobot_Create_team.jpg
https://commons.wikimedia.org/wiki/File:IRobot_Create_team.jpg

2 1 Introduction

Fig. 1.1 Examples of pattern formation observed in animals and of multi-robot teams

sensing or communication between individuals, and without apparently following
the instructions of a group leader. Robotic researchers have intensively investigated
on coordination strategies for multi-robot systems (Fig. 1.1) capable of imitating
these collective behaviors. In particular, it is worth mentioning the following strate-
gies: rendezvous, which consists of the robots getting together at a certain location;
deployment or coverage, which consists of deploying the robot team over the region
of interest, and agreement, which consists of reaching consensus upon the value of
some variable. Agreement has a special interest and recently it has been shown that
several multi-robot strategies, including pattern formation and rendezvous, can be
transformed into an agreement problem.

Our research is focused on distributed applications for perception tasks. Percep-
tion is of high importance in robotics, since almost all robotic applications require the
robot team to interact with the environment. Then, if a robot is not able to obtain an
environmental representation from others, or an a priori representation is not avail-
able, it must have perception capabilities to sense its surroundings. Perception has
been long studied for single robot systems and a lot of research has been carried out in
the fields of localization, map building, and exploration. Among the different sensors
that can be used to perceive the environment, visual perception using conventional or
omnidirectional cameras has been broadly used because of its interesting properties
(Fig. 1.2).

While the first kind of cameras (Fig. 1.3) are widely known and used in any area,
omnidirectional devices are very popular in robotic applications. These cameras are
able to capture visual information within 360◦ around the robot due to the use of an
hyperbolic mirror (Fig. 1.4). Cameras provide bearing-only information through the
projection of landmarks which are in the scene. In order to recover the position of
these landmarks in the world, multiple observations taken from different positions
must be combined. Themanipulation of bearing data is an important issue in robotics.
Compared with information extracted from other sensors, such as lasers, bearing
information is complicated to use. However, the multiple benefits of using cameras

1.1 Motivation 3

Fig. 1.2 Examples of conventional (left) and omnidirectional cameras (right)

Fig. 1.3 Examples of images taken by a team of six robots moving in formation equipped with
a conventional camera. Crosses are features extracted from the images and lines between images
represent features matches

Fig. 1.4 Examples of omnidirectional images. Crosses are features extracted form the images, and
lines between images represent features matches

4 1 Introduction

−1000 −500 0 500 1000 1500
0

1000

2000

−500

0

500

1000

x

z

y

−500 0 500 10000

1000

2000

0

500

1000

x

z

y

−500
0

500
0

500

1000

1500

2000
−1000

0

1000

x

z

y

−1000 0 10000

1000

2000

3000

−1000

0

1000

x

z

y

−1000 −500 0 500 1000
0
1000
2000

−1000

−500

0

500

1000

z

x

y

Fig. 1.5 An example of the images obtained with the RGB-D sensor

havemotivated the interest in the researchers. These benefits include the property that
cameras are able to sense quite distant features, so that the sensing is not restricted to
a limited range. An additional kind of cameras of high interest are RGB-D devices.
They provide both regular RGB (Fig. 1.5, first row) and depth image information
(Fig. 1.5, second row). Thus, it is possible to compute the landmark 3D position
from a single image (Fig. 1.5, third row).

Robots sense the environment and combine the bearing data to build represen-
tations of their surroundings in the form of stochastic maps. Each individual robot
perceives the portion of the environment where it is operating. In order to make
decisions in a coordinated way, the robots must merge their local observations into
a global map. We can distinguish between centralized and distributed approaches.
Centralized strategies, where a central node compiles all the information from other
robots, performs the computations, and propagates the processed information or
decisions to the other nodes, have several drawbacks. The whole system can fail if
the central node fails, leader selection algorithmsmay be needed, and communication
of all agents with the central system may be required. On the other hand, distrib-
uted systems are naturally more robust to individual failures since all robots play the
same role. They also consider more realistic situations where agents cannot com-
municate with all other robots at every time instant, but instead they exchange data
only with a limited number of other robots, e.g., agents within a specific distance.
These situations can be best modeled using communication graphs, where nodes
are the agents and edges represent communication capabilities between the robots.
Additionally, since agents are moving, the topology of the graph may vary along
the time, given rise to switching topologies. We analyze map merging and localiza-
tion solutions for robotic systems with range limited communication, and where the

1.1 Motivation 5

computations are distributed among the robots. We also study the problem of dis-
tributed data association. We consider that a strategy is distributed when

• it does not rely on any particular communication topology and it is robust to
changes in the topology;

• every robot in the team computes and obtains the global information;
• every robot plays the same role, making the system robust to individual failures;
• information is exchanged exclusively between neighbors.

1.2 Classical Approaches

Multi-robot systems have been deeply researched during the last years. A general
overviewof the achieved results, and the current and future research lines canbe found
in [28, 37]. We provide here the following references for the rendezvous [14], the
deployment and coverage [22], and the formation control problems [11, 38], as some
examples within the variety of different existing works. The consensus or averaging
problem has a special relevance in multi-robot systems and it is connected to diverse
applications, including sensor fusion, flocking, formation control, or rendezvous [27].
Several ideas presented along this document are built on consensus results in the
books [4, 31].

Many existent solutions for single robot perception have been extended to multi-
robot scenarios under centralized schemes, full communication between the robots,
or broadcastingmethods. Particle filters have been generalized tomulti-robot systems
assuming that the robots broadcast their controls and their observations [17]. In [32]
a single global map is updated by all the robots. Robots look for coincident features
in the global map that they have locally observed along the exploration. Robots
update the map establishing implicit measurements for the coincident features (the
difference between the Cartesian coordinates of equal features must be zero). These
implicit measurements can be used as well for merging two local maps that have been
previously aligned using robot-to-robot measurements [44]. Several methods [12,
30], represent maps with graphs, where nodes are local submaps [41] or laser scans
[12, 30] and edges describe relative positions between the nodes. Each robot builds
a new node and transmits it by broadcasts or to a central agent. After this, global
optimization techniques may be applied to obtain the global metric map. The same
solution could be applied to many existing submap approaches [29]. The previous
methods require that each robot has the capability to communicate with all other
robots at every time instant or with a central agent, i.e., they impose centralized
scenarios. We are instead interested in distributed scenarios due to their robustness
to robot or link failures, and due to their natural capability to operate under limited
communication.

Distributed estimation methods [1, 9, 16, 18, 24, 26] maintain a joint estimate
of a system that evolves with time by combining noisy observations taken by the
sensor network. Early approaches sum the measurements from the different agents

6 1 Introduction

in IF (Information Filter) form. If the network is complete [24], then the resulting
estimator is equivalent to the centralized one. In general networks the problems of
cyclic updates or double counting information appear when nodes sum the same
piece of data more than once. The use of the channel filter [16] avoids these prob-
lems in networks with a tree structure. The Covariance Intersection method [18]
produces consistent but highly conservative estimates in general networks. More
recent approaches [1, 9, 26] use distributed consensus filters to average the measure-
ments taken by the nodes. The interest of distributed averaging is that the problems of
double counting of information and cyclic updates are avoided. They, however, suf-
fer from the delayed data problem that takes place when the nodes execute the state
prediction without having incorporated all the measurements available at the current
step [7]. For general communication schemes, the delayed data problem leads to an
approximate KF (Kalman Filter) estimator. An interesting solution is given in [26]
but its convergence is proved in the absence of observation and system noises. In
the algorithm proposed in [9], authors prove that the nodes’ estimates are consistent,
although these estimates have disagreement. Other algorithms have been proposed
that require the previous offline computation of the gains and weights of the algo-
rithm [1]. The main limitation of all the previous works is that they consider linear
systems without inputs, and where the evolution of the system is known by all the
robots. The algorithms presented here can be applied to a wider class of systems,
without the previous restrictions.

A related scenario are sensor fusion systems [5, 6, 21, 42, 43], where measure-
ments acquired by several sensors are fused in a distributed fashion. Sensor fusion
systems differ from the distributed perception scenario that we consider in this book
in several aspects. First, sensor fusion approaches consider that the successive mea-
surements, in our case local maps, from the same robot must be independent. In
a map merging scenario this does not hold, since the local map of a robot is an
evolution of any of its previous maps. Second, sensors usually observe a set of vari-
ables which are a priori known by the sensor network, e.g., temperature, humidity,
etc. However, in distributed perception scenarios, robots discover elements in the
environment dynamically, as they operate. Thus, it is not possible to predict which
elements will be detected and inform the robot team of these elements before start-
ing the exploration. In addition, distributed perceptionmethodsmust address specific
challenges such as associating the elements observed by the robots in a globally con-
sistent way, or computing the relative poses of the robots and establishing a common
reference frame for the whole robot team.

The data association problem consists of establishing correspondences between
different measurements or estimates of a common element. Traditional data associ-
ation methods, like the Nearest Neighbor and Maximum Likelihood [15, 19, 44],
the Joint Compatibility Branch and Bound (JCBB) [25], or the Combined Constraint
Data Association [3] are designed for single robot systems. They operate on two sets
of elements, one containing the feature estimates and the other one containing the
current observations. Multi-robot approaches have not fully addressed the problem
of data association. Many methods rely on broadcasting controls and observations or
submaps, see, e.g., [12, 15, 17, 30], and solve the data association using a cycle-free

1.2 Classical Approaches 7

order, thus essentially reducing the problem to that of the single robot scenario. How-
ever, in a distributed map merging scenario like the one considered in this book, the
robots may fuse their maps with any other robot’s map in any order and at any time.
Therefore, it is not possible to force a specific order for solving the data association
and coordinated strategies are required.

The problem of localization estimation in multi-robot systems is related to the
establishment of a common reference frame for the team of robots. In general, the
robots start at unknown locations and do not know their relative poses. This infor-
mation can be recovered by comparing their local maps and looking for overlapping
regions [8, 39]. Alternatively, robots can explicitly measure their relative poses [44,
45] without the need of having overlapping regions, or even having maps. The pre-
vious methods give the relative position of a pair of robots. After that, a distributed
method is required to let the robots agree on a global reference frame and obtain their
positions in this frame. This problem is known as distributed network localization.
Several network localization algorithms rely on range-only [2], or bearing-only [36]
relative measurements of positions. Alternatively, each agent can locally combine its
observations and build an estimate of the relative full-position of its neighbors using
the approach described in [40] for 3D scenarios. When full-position measurements
are available, the localization problem becomes linear and can thus be solved using
linear optimizationmethods [34]. There exist works that compute not only the agents’
positions but also their orientations, [13], and that track the agents’ poses [20]. It
is also possible to use a position estimation algorithm combined with an attitude
synchronization [23, 35] or a motion coordination [10] strategy to previously align
the robot orientations. Cooperative localization methods [33] take into account the
noisy nature of the relative pose measurements. Here, a robotic team moves along
an environment while estimating their poses. Most of the time, each robot relies on
its proprioceptive measurements. When two robots meet, they obtain a noisy mea-
surement of their relative pose and update their estimates accordingly. During this
rendezvous, each robot must be able to communicate with all the other robots in the
team in order to update its estimate.

1.3 Document Organization

Along this section, we have briefly introduced and revised the state of the art of the
issues that appear in distributed perception scenarios for map merging and local-
ization. In the remaining of the book, we discuss each topic in detail and propose
solutions to all these issues, with a special interest in robots equipped with cameras.
For each topic we provide formal proofs of the performance of the algorithms in
the previous scenarios, as well as simulation results. In addition, we show validation
proofs of the algorithms under real data. This document is organized as follows:

This chapter introduces the problem addressed in this document. It comments the
state of the art and outlines the organization of the book.

8 1 Introduction

Chapter2 discusses the data association problem in the context of distributed robot
teams with limited communication. We explain how the robots can establish corre-
spondences between their features and the ones observed by other team members.
Robots compute the associations with their neighbors using classical matchingmeth-
ods. We analyze distributed algorithms that allow each robot to propagate this local
data and obtain the global data association relating its features with the ones of all
the other robots in the network. In addition, robots identify and correct associations
which are inconsistent in the global system.

Chapter3 analyzes the localization problem for different scenarios, and presents
some methods for reaching a consensus on the global frame for the robot team, using
relative robot-to-robot measurements. This global frame will be used by the robot
team during their operation. Robots compute the relative position of their neighbors
using classical methods. From this information, they build the global frame and
compute their positions in this frame in a distributed fashion. We study the use of an
anchor node to define the global frame as well as methods based on the centroid.

Chapter4 explains how to merge the information acquired by each robot in the
network to build a global representation of the environment. Robots explore the
environment and, simultaneously, fuse their local maps and build the global map.
Therefore, robots have a representation of the environment beyond its local map
during all their operation. The fusion of the local observations of all the teammembers
leads to a merged map that contains more precise information and more features.
To explain the problem and the algorithms we will consider that the ground truth
data association is available. We further assume that all the robots share a common
reference frame and that they know their pose in this frame.

Chapter5 evaluates some of the presented algorithms in real scenarios. Within
each chapter,we include a brief discussion of the studied algorithmswith simulations.

Chapter6 presents the conclusions of this document. The document finishes with
two appendices which briefly revise theMetropolis weights and which provide some
auxiliary results for distributed localization.

References

1. P. Alriksson, A. Rantzer, Distributed Kalman filtering using weighted averaging, in Interna-
tional Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan (2006)

2. B.D.O. Anderson, I. Shames, G. Mao, B. Fidan, Formal theory of noisy sensor network local-
ization. SIAM J. Discrete Math. 24(2), 684–698 (2010)

3. T. Bailey, E.M. Nebot, J.K. Rosenblatt, H. Durrant-Whyte, Data association for mobile robot
navigation: a graph theoretic approach, in IEEE International Conference on Robotics and
Automation, San Francisco, USA (2000), pp. 2512–2517

4. F. Bullo, J. Cortes, S. Martinez. Distributed Control of Robotic Networks. Applied Mathe-
matics Series (Princeton University Press, Princeton, 2009). Electronically available at http://
coordinationbook.info

5. G. Calafiore, Distributed randomized algorithms for probabilistic performance analysis. Syst.
Control Lett. 58(3), 202–212 (2009)

http://dx.doi.org/10.1007/978-3-319-25886-7_2
http://dx.doi.org/10.1007/978-3-319-25886-7_3
http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_5
http://dx.doi.org/10.1007/978-3-319-25886-7_6
http://coordinationbook.info
http://coordinationbook.info

References 9

6. G. Calafiore, F. Abrate, Distributed linear estimation over sensor networks. Int. J. Control 82(5),
868–882 (2009)

7. R. Carli, A. Chiuso, L. Schenato, S. Zampieri, Distributed Kalman filtering based on consensus
strategies. IEEE J. Sel. Areas Commun. 26, 622–633 (2008)

8. S. Carpin, Fast and accurate map merging for multi-robot systems. Auton. Robots 25(3), 305–
316 (2008)

9. D.W. Casbeer. R.Beard. Distributed information filtering using consensus filters, in American
Control Conference, St. Louis, USA (2009), pp. 1882–1887

10. J. Cortes, Global and robust formation-shape stabilization of relative sensing networks. Auto-
matica 45(12), 2754–2762 (2009)

11. W.B. Dunbar, R.M. Murray, Distributed receding horizon control for multi-vehicle formation
stabilization. Automatica 42(4), 549–558 (2006)

12. D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, B. Stewart, Distributed multirobot explo-
ration and mapping. IEEE Proc. 94(7), 1325–1339 (2006)

13. M. Franceschelli, A. Gasparri, On agreement problems with gossip algorithms in absence of
common reference frames, in IEEE International Conference on Robotics and Automation
(Anchorage, USA, 2010), pp. 4481–4486

14. A. Ganguli, J. Cortés, F. Bullo, Multirobot rendezvous with visibility sensors in nonconvex
environments. IEEE Trans. Robot. 25(2), 340–352 (2009)

15. A. Gil, O. Reinoso, M. Ballesta, M. Julia, Multi-robot visual SLAM using a rao-blackwellized
particle filter. Robot. Auton. Syst. 58(1), 68–80 (2009)

16. S. Grime, H.F. Durrant-Whyte, Data fusion in decentralized sensor networks. Control Eng.
Pract. 2(5), 849–863 (1994)

17. A. Howard, Multi-robot simultaneous localization and mapping using particle filters. Int. J.
Robot. Res. 25(12), 1243–1256 (2006)

18. S. Julier, J.K. Uhlmann, General decentralised data fusion with covariance intersection (CI),
in Handbook of Multisensor Data Fusion, ed. by D.L. Hall, J. Llinas (CRC Press, Boca Raton,
2001)

19. M. Kaess, F. Dellaert, Covariance recovery from a square root information matrix for data
association. Robot. Auton. Syst. 57(12), 1198–1210 (2009)

20. J. Knuth, P. Barooah, Distributed collaborative localization of multiple vehicles from rela-
tive pose measurements, in Allerton Conference on Communications, Control and Computing
(Urbana-Champaign, USA, October 2009), pp. 314–321

21. K.M. Lynch, I.B. Schwartz, P. Yang, R.A. Freeman, Decentralized environmental modeling by
mobile sensor networks. IEEE Trans. Robot. 24(3), 710–724 (2008)

22. S. Martínez, F. Bullo, J. Cortés, E. Frazzoli, On synchronous robotic networks—part II: Time
complexity of rendezvous and deployment algorithms, in IEEE Conference on Decision and
Control (Seville, Spain, 2005), pp. 8313–8318

23. N. Mostagh, A. Jadbabaie, Distributed geodesic control laws for flocking of nonholonomic
agents. IEEE Trans. Autom. Control 52(4), 681–686 (2007)

24. E.M. Nebot, M. Bozorg, H.F. Durrant-Whyte, Decentralized architecture for asynchronous
sensors. Auton. Robots 6(2), 147–164 (1999)

25. J. Neira, J.D. Tardós, Data association in stochastic mapping using the joint compatibility test.
IEEE Trans. Robot. Autom. 17(6), 890–897 (2001)

26. R. Olfati-Saber, Distributed Kalman filtering for sensor networks, in IEEE Conference on
Decision and Control, New Orleans (2007), pp. 5492–5498

27. R. Olfati-Saber, R.M.Murray, Consensus problems in networks of agents with switching topol-
ogy and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

28. L. Parker, Distributed intelligence: overview of the field and its application in multi-robot
systems. J. Phys. Agents 2(1), 5–14 (2008)

29. L.M. Paz, J.D. Tardos, J. Neira, Divide and conquer: EKF SLAM in O(n). IEEE Trans. Robot.
24(5), 1107–1120 (2008)

30. M. Pfingsthorn, B. Slamet, A. Visser, in A Scalable Hybrid Multi-robot SLAM Method for
Highly Detailed Maps, vol. 5001, Lecture Notes in Artificial Intelligence, ed. by U. Visser,
F. Ribeiro, T. Ohashi, F. Dellaert (2008), pp. 457–464

10 1 Introduction

31. W. Ren, R.W. Beard, Distributed Consensus in Multi-vehicle Cooperative Control, Communi-
cations and Control Engineering (Springer, London, 2008)

32. D. Rodríguez-Losada, F. Matía, A. Jiménez, Local maps fusion for real time multirobot indoor
simultaneous localization and mapping, in IEEE International Conference on Robotics and
Automation, New Orleans, USA (2004) pp. 1308–1313

33. S.I. Roumeliotis, G.A. Bekey, Distributed multirobot localization. IEEE Trans. Robot. Autom.
18(5), 781–795 (2002)

34. W.J. Russell, D.Klein, J.P. Hespanha,Optimal estimation on the graph cycle space, inAmerican
Control Conference, Baltimore, USA (2010), pp. 1918–1924

35. A. Sarlette, R. Sepulchre, N.E. Leonard, Autonomous rigid body attitude synchronization.
Automatica 45(2), 572–577 (2008)

36. A. Savvides, W.L. Garber, R.L. Moses, M.B. Srivastava, An analysis of error inducing parame-
ters in multihop sensor node localization. IEEE Trans. Mobile Comput. 4(6), 567–577 (2005)

37. A.C. Schultz, L.E. Parker (eds.), Multi-Robot Systems: From Swarms to Intelligent Automata
(Kluwer Academic Publishers, Dordrecht, 2002)

38. H.G. Tanner, G.J. Pappas, V. Kumar, Leader-to-formation stability. IEEE Trans. Robot. Autom.
20(3), 443–455 (2004)

39. S. Thrun, Y. Liu, Multi-robot SLAM with sparse extended information filters, in International
Symposium of Robotics Research, Sienna, Italy (2003), pp. 254–266

40. N. Trawny, X.S. Zhou, K.X. Zhou, S.I. Roumeliotis, Inter-robot transformations in 3-d. IEEE
Trans. Robot. 26(2), 226–243 (2010)

41. S.B. Williams, H. Durrant-Whyte, Towards multi-vehicle simultaneous localisation and map-
ping, in IEEE International Conference on Robotics and Automation, Washington (2002), pp.
2743–2748

42. L. Xiao, S. Boyd, Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78
(2004)

43. L. Xiao, S. Boyd, S. Lall, A space-time diffusion scheme for peer-to-peer least-square esti-
mation, in Symposium on Information Processing of Sensor Networks (IPSN), Nashville, TN
(2006), pp. 168–176

44. X.S. Zhou, S.I. Roumeliotis. Multi-robot SLAM with unknown initial correspondence: The
robot rendezvous case, in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Beijing, China (2006), pp. 1785–1792

45. X.S. Zhou, S.I. Roumeliotis, Robot-to-robot relative pose estimation from rangemeasurements.
IEEE Trans. Robot. 24(6), 1379–1393 (2008)

Chapter 2
Distributed Data Association

Abstract In this chapter, we address the association of features observed by the
robots in a network with limited communications. At every time instant, each robot
can only exchange data with a subset of the robot team that we call its neighbors.
Initially, each robot solves a local data association with each of its neighbors. After
that, the robots execute the proposed algorithm to agree on a data association between
all their local observations. One inconsistency appears when chains of local asso-
ciations give rise to two features from one robot being associated among them. In
finite time, the algorithm finishes with a data association which is free of inconsistent
matches. We show the performance of the proposed algorithms through simulations.
Experiments with real data can be found in the last chapter.

Keywords Data association · Limited communication · Distributed systems · Par-
allel computation

2.1 Introduction

In multi-robot systems, a team of robots cooperatively perform some task in a more
efficient way than a single robot would do. In this chapter, we address the data
association problem. It consists of establishing correspondences between different
measurements or estimates of a common element. It is of high interest in localiza-
tion, mapping, exploration, and tracking applications [4]. There exists a wide variety
of matching functions. The Nearest Neighbor (NN), and the Maximum Likelihood
(ML), are widely used methods which associate each observation with its closest
feature in terms of the Euclidean or the Mahalanobis distance [13, 15, 24]. Other
popular method is the Joint Compatibility Branch and Bound (JCBB) [19], which
considers the compatibility ofmany associations simultaneously. The combined con-
straint data association [5] builds a graphwhere the nodes are individually compatible
associations and the edges relate binary compatible assignments. Over this graph, a
maximal common subgraph problem is solved for finding the maximum clique in the
graph. Scan matching and iterative closest point (ICP) [8] are popular methods for
comparing two laser scans. Other methods, like the multiple hypothesis tracking, and
the joint probabilistic data association, maintain many association hypothesis instead

© The Author(s) 2015
R. Aragues et al., Parallel and Distributed Map Merging and Localization,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-25886-7_2

11

12 2 Distributed Data Association

of selecting one of them. And there exists many variations of these techniques that
combine RANSAC [11] for higher robustness. All these matching functions operate
on elements from two sets. One set usually contains the current observations, and
the other one consists of the feature estimates. These sets may be two images, two
laser scans, or two probabilistic maps.

Lately, many localization, mapping, and exploration algorithms for multi-robot
systems have been presented. However, they have not fully addressed the problem of
multi-robot data association. Some solutions have been presented for merging two
maps [22, 24] that do not consider a higher number of robots. Many approaches rely
on broadcasting all controls and observations measured by the robots. Then, the data
association is solved like in a single robot scenario, using scan matching and ICP
for laser scans [12, 14, 16, 21], or NN, ML, and visual methods for feature-based
maps [13, 17]. Solutions based on submaps usually transform one of them into an
observation of another. The local submaps are merged with the global map following
a sequence [23], or in a hierarchical binary tree fashion [7].

In these methods, the problem of inconsistent data associations is avoided by
forcing a cycle-free merging order. This limitation has also been detected in the
computer vision literature. In [10] they approach an inconsistent association problem
for identifying equal regions in different views. They consider a centralized scenario,
where each two views are compared among them in a 2-by-2 way. Then, their results
are arranged on a graph where associations are propagated and conflicts are solved.
The work in [9], from the target tracking literature, simultaneously considers the
association of all local maps. It uses an expectation-maximization method for both,
computing the data association and the final global map. The main limitation of this
work is that the data from all sensors needs to be processed together, what implies a
centralized scheme, or a broadcast method.

All the previous methods rely on centralized schemes, full communication
between the robots, or broadcasting methods. However, in multi-robot systems,
distributed approaches are more interesting. They present a natural robustness to
individual failures since there are no central nodes. Besides, they do not rely on any
particular communication scheme, and they are robust to changes in the topology.
On the other hand, distributed algorithms introduce an additional level of complexity
in the algorithm design. Although, the robots make decisions based on their local
data, the system must exhibit a global behavior.

In this chapter, we address the data association problem for distributed robot
systems. Each of our robots posse a local observation of the environment. Instead
of forcing a specific order for associating their observations, we allow the robots
to compute its data association with each of its neighbors in the graph. Although
this scenario is more flexible, it may lead to inconsistent global data associations
in the presence of cycles in the communication graph. These inconsistencies are
detected when chains of local associations give rise to two features from one robot
being associated among them. These situations must be correctly identified and
solved before merging the data. Otherwise, the merging process would be wrong
and could not be undone. We approach this problem under limited communications.
So, instead of comparing any two local observations among them, only the local

2.1 Introduction 13

observations of neighboring robots can be compared. Besides, there is no central node
that has knowledge of all the local associations and each robot exclusively knows
the associations computed by itself. Then, each robot updates its local information
by communicating with its neighbors. We present an algorithm where, finally, each
robot is capable of detecting and solving any inconsistent association that involves
any of its features.

2.2 Problem Description

We consider, a robotic team composed of n ∈ N robots. The n robots have commu-
nication capabilities to exchange information with the other robots. However, these
communications are limited. Let Gcom = (Vcom,Ecom) be the undirected communi-
cation graph. The nodes are the robots, Vcom = {1, . . . , n}. If two robots i , j can
exchange information then there is an edge between them, (i, j) ∈ Ecom . Let Ni be
the set of neighbors of robot i ,

Ni = { j | (i, j) ∈ Ecom}.

Each robot i has observed a setSi of mi features,

Si = { f i
1 , . . . , f i

mi
}.

It can compute the local data association between its own set Si , and the sets of its
neighborsS j , with j ∈ Ni . However, these data associations are not perfect. There
may appear inconsistent data associations relating different features from the same
set Si (Fig. 2.1). If the robots merge their data as soon as they solve the local data
association, inconsistent associations cannot be managed since the merging cannot
be undone. The goal of the algorithm is to detect and resolve these inconsistent
associations before executing the merging.

In order to make the reading easy, along the chapter we use the indices i, j , and k
to refer to robots and indices r, r ′, s, s′, to refer to features. The r th feature observed
by the i th robot is denoted as f i

r . Given, a matrix A, the notations Ar,s and [A]r,s

Fig. 2.1 Robots A, B, C ,
and D associate their
features comparing their
maps in a two-by-two way.
As a result, there is a path
(dashed line) between f D

1
and f D

2 . This is an
inconsistent association

Robot A

Robot B

Robot C

Robot D

fA
1

fA
2

fB
1

fB
2

fC
1

fC
2

fD
1

fD
2

X

14 2 Distributed Data Association

correspond to the (r, s) entry of the matrix, whereas, Ai j denotes the (i, j) block
when the matrix is defined by blocks. We let Ik be the k × k identity matrix, and
0k1×k2 a k1 × k2 matrix with all entries equal to zero.

2.2.1 Matching Between Two Cameras

Let F be a function that computes the local data association between any two sets
of features, Si and S j , and returns an association matrix F(Si ,S j) = Ai j where
Ai j ∈ N

mi ×m j ,

[Ai j]r,s =
{
1 if f i

r and f j
s are associated,

0 otherwise,

for r = 1, . . . , mi and s = 1, . . . , m j . We assume that F satisfies the following
conditions.

Assumption 1 (Self Association) When F is applied to the same set Si , it returns
the identity, F(Si ,Si) = Ai i = I. �

Assumption 2 (Unique Association) The returned association Ai j has the property
that the features are associated in a one-to-one way,

mi∑
r=1

[Ai j]r,s ≤ 1 and

m j∑
s=1

[Ai j]r,s ≤ 1,

for all r = 1, . . . , mi and s = 1, . . . , m j . �

Assumption 3 (Symmetric Association) Robots i and j associate their features in
the same way. Given two sets Si and S j it holds that F(Si ,S j) = Ai j = AT

ji =
(F(S j ,Si))

T . �

Additionally, the local matching function may give information of the quality of
each associations. The management of this information is discussed in Sect. 2.6.

We do not make any assumptions about the sets of features used by the cameras.
However, we point out that the better the initial matching is, the better the global
matching will be.

2.2.2 Centralized Matching Between n Cameras

Let us consider now the situation in which there are n cameras and a central unit
with the n sets of features available. In this case, F can be applied to all the pairs of
sets of features,Si ,S j , for i, j ∈ {1, . . . , n}. The results of all the associations can

2.2 Problem Description 15

Camera A Camera B

Camera D Camera C

Camera A Camera B

Camera D Camera C

Camera A Camera B

Camera D Camera C

(a) (b) (c)

Fig. 2.2 Different association graphs. a Centralized matching with perfect association function.
The graph is formed by disjoint cliques. b Centralized matching with imperfect association. Some
links are missed, (f A

1 , f B
1) and (f A

2 , f B
2), and spurious links appear, (f A

2 , f B
1).As a consequence,

a subset of the features form a conflictive set. c Matching with limited communications. Now, the
links between A and C , and B and D cannot be computed because they are not neighbors in Gcom .

Moreover, the information available to each camera is just the one provided by its neighbors

be represented by an undirected graph Gcen = (Fcen,Ecen). Each node inFcen is a
feature f i

r , for i = 1, . . . , n, r = 1, . . . , mi . There is an edge between two features

f i
r , f j

s iff [Ai j]r,s = 1.
For a perfect matching function, the graph Gcen exclusively contains disjoint

cliques, identifying features observed by multiple cameras (Fig. 2.2a). However, in
real situations, the matching function will miss some matches and will consider as
good correspondences some spurious matches (Fig. 2.2b). As a consequence, incon-
sistent associations relating different features from the same set Si may appear.

Definition 1 An association set is a set of features such that they form a connected
component in Gcen . Such set is a conflictive set or an inconsistent association if there
exists a path in Gcen between two or more features observed by the same camera. A
feature is inconsistent or conflictive if it belongs to an inconsistent association. �

Centralized solutions to overcome this problem are found in [3]. The latter one
is also well suited for a distributed implementation but yet requires that any pair of
images can be matched. In camera networks this implies global communications,
which is not always possible.

2.2.3 Distributed Matching Between n Cameras

Let us consider now that there is no central unit with all the information and there are
n robots, each onewith a camera and a process unitwith limited communication capa-
bilities. The robots are scattered forming a network with communications described
with the undirected communication graph Gcom = (Vcom,Ecom) introduced at the
beginning of this section.

In this case, due to communication restrictions, local matches can only be found
within direct neighbors. As a consequence, the matching graph computed in this
situation will be a subgraph of the centralized one, Gdis = (Fdis,Edis) ⊆ Gcen,

16 2 Distributed Data Association

(Fig. 2.2c). It has the same set of nodes, Fdis = Fcen, but it has an edge between
two features f i

r , f j
s only if the edge exists inGcen and the robots i and j are neighbors

in the communication graph,

Edis = {(f i
r , f j

s) | (f i
r , f j

s) ∈ Ecen ∧ (i, j) ∈ Ecom}.

Along this chapter, we name msum the number of features, |Fdis | = ∑n
i=1 mi =

msum . We name d f the diameter of Gdis , the length of the longest path between
any two nodes in Gdis, and we name dv the diameter of the communication graph,
Gcom . The diameters satisfy d f ≤ msum and dv ≤ n. We name A ∈ N

msum×msum the
adjacency matrix of Gdis ,

A =
⎡
⎢⎣

A11 . . . A1n
...

. . .
...

An1 . . . Ann

⎤
⎥⎦, (2.1)

where

Ai j =
{

F(Si ,S j) if j ∈ {Ni ∪ i},
0 otherwise.

(2.2)

Let us note that in this case none of the robots has the information of the whole
matrix. Robot i has only available the submatrix corresponding to its own local
matches Ai j , j = 1, . . . , n. Under these circumstances the problem is formulated
as follows: Given a network with communications defined by a graph, Gcom, and
an association matrix A scattered over the network, find the global matches and
the possible inconsistencies in a distributed way. In case there are conflicts, find
alternative associations free of them.

2.3 Propagation of Local Associations

Considering Definition 1 (Sect. 2.2.2), we observe that in order to find the data asso-
ciation sets with the relationship between the features observed by the different
robots, it is required to compute the paths that exist among the elements in Gdis . We
show a process where robots start considering their local matches, and incrementally
they propagate these local matches and discover all the paths between the features
observed by the robot team. This information allows them as well to detect incon-
sistent associations (Definition 1). As the following lemma states [6], given a graph
Gdis , the powers of its adjacency matrix contains the information about the number
of paths existing between the nodes of Gdis :

Lemma 1 (Lemma 1.32 [6]) Let Gdis be a weighted graph of order |V | with un-
weighted adjacency matrix A ∈ {0, 1}|V |×|V |, and possibly with self loops. For all

2.3 Propagation of Local Associations 17

i, j ∈ {1, . . . , |V |} and t ∈ N the (i, j) entry of the tth power of A, At , equals the
number of paths of length t (including paths with self-loops) from node i to node j.

Algorithm 1 The computation of the powers of A requires, a priori, the information
about the whole matrix. We show now that this computation can also be done in
a distributed manner [1]. Let each robot i ∈ Vcom maintain the blocks within At

associated to its own features, Xi j (t) ∈ N
mi ×m j , j = 1, . . . , n, t ≥ 0, which are

initialized as

Xi j (0) =
{

I, j = i,
0, j 	= i,

(2.3)

and are updated, at each time step, with the following algorithm

Xi j (t + 1) =
∑

k∈{Ni ∪i}
Aik Xk j (t), (2.4)

with Aik as defined in (2.2). It is observed that the algorithm is fully distributed
because the robots only use information about its direct neighbors in the communi-
cation graph.

Theorem 1 Let [At]i j ∈ N
mi ×m j be the block within At related to the associations

between robot i and robot j . The matrices Xi j (t) computed by each robot i using
the distributed algorithm (2.4) are exactly the submatrices [At]i j ,

Xi j (t) = [At]i j , (2.5)

for all i, j ∈ {1, . . . , n} and all t ∈ N.

Proof The proof is done using induction. First, we show that Eq. (2.5) is satisfied
for t = 0. In this case, we have that A0 = I, thus for all i, j ∈ {1, . . . , n}, [A0]i i = I
and [A0]i j = 0, which is exactly the initial value of the variables Xi j (Eq. (2.3)).

Now we have that for any t > 0,

[At]i j =
n∑

k=1

Aik[At−1]k j =
∑

k∈{Ni ∪i}
Aik[At−1]k j ,

becauseAik = 0 for k /∈ {Ni ∪ i}. Assuming that for all i, j ∈ {1, . . . , n} and a given
t > 0, Xi j (t − 1) = [At−1]i j is true, then

Xi j (t) =
∑

k∈{Ni ∪i}
Aik Xk j (t − 1) =

∑
k∈{Ni ∪i}

Aik[At−1]k j = [At]i j .

Then, by induction, Xi j (t) = [At]i j is true for all t > 0. �

18 2 Distributed Data Association

Corollary 1 The variables Xi j (t) contain the information about all the paths of
length t between features observed by robots i and j.

Proof By direct application of Lemma 1. �

Analyzing the previous algorithm the first issue to deal with is how to simplify
the computation of the matrices in order to avoid high powers of A. In the case,
we are studying it is just required to know if there is a path between two elements
in Gdis and not how many paths are. This means that in this situation it is enough
that [Xi j (t)]r,s > 0 in order to know that features f i

r and f j
s are connected by a

path. Another issue is to decide when the algorithm in (2.4) must stop. Since the
maximum length of a path between any two nodes in a graph is its diameter, then
after d f iterations the algorithm should stop.However, in general situations the robots
will not know neither d f nor msum , which makes this decision hard to be made a
priori.

Definition 2 We will say that two matrices A and Ā of the same dimensions are
equivalent, A ∼ Ā, if for all r and s it holds

[A]r,s > 0 ⇔ [Ā]r,s > 0 and [A]r,s = 0 ⇔ [Ā]r,s = 0. �

In practice any equivalent matrix to the Xi j (t)will provide the required information,
which allows to simplify the computations simply by changing any positive value in
the matrices by 1. Moreover, the equivalency is also used to find a criterion to stop
the algorithm:

Proposition 1 For a robot i, let ti be the first time instant, t, such that Xi j (t) ∼
Xi j (t − 1) for all j = 1, . . . , n. Then robot i can stop to execute the algorithm at
time ti .

Proof Let X̄i j (t) be the components in Xi j (t), such that [Xi j (t − 1)]r,s = 0 and

[Xi j (t)]r,s > 0. The cardinal, |X̄i j (t)|, represents the number of features f j
s ∈ S j

such that the minimum path length in Gdis between them and one feature f i
r ∈ Si is

t . At time ti , Xi j (ti) ∼ Xi j (ti − 1) ∀ j for the first time, and then
∑n

j=1 |X̄i j (ti)| = 0
because no component has changed its value from zero to a positive. This means that
there is no path of minimum distance ti linking any feature f i

r with any other feature
in Gdis . By the physical properties of a path, it is obvious that if there are no features
at minimum distance ti , it will be impossible that a feature is at minimum distance
ti + 1 and all the paths that connect features of robot i with any other feature have
been found. �

Corollary 2 All the robots end the execution of the iteration rule (2.4) in at most in
d f + 1 iterations.

Proof Recalling that the maximum distance between two nodes in Gdis is the diame-
ter of the graph, denoted by d f , then

∑n
j=1 |X̄i j (d f + 1)| = 0 for all

i = 1, . . . , n. �

2.3 Propagation of Local Associations 19

If a robot j at time t does not receive the information Xi j (t) from robot i then it
will use the last matrix received, because robot i has already finished computing its
paths and Xi j (t) ∼ Xi j (t − 1).

When the algorithm finishes, each robot i has the information about all the asso-
ciation paths of its features and the features of the rest of the robots in the network
in the different variables Xi j (ti). It remains to analyze which features are conflictive
and which are not.

Algorithm 2 The robots detect all the conflictive features using two simple rules.
A feature f i

r is conflictive if and only if one of the following conditions are satisfied:

(i) There exists other feature f i
r ′ , with r 	= r ′, such that

[Xii (ti)]r,r ′ > 0; (2.6)

(ii) There exist features f j
s and f j

s′ , s 	= s′, such that

[Xi j (ti)]r,s > 0 and [Xi j (ti)]r,s′ > 0. (2.7)

In conclusion, the proposed algorithm will be able to find all the inconsistencies
in a finite number of iterations. The algorithm is distributed and it is based only
on local interactions between the robots. Each robot only needs to know its local
data associations. It updates its information based on the data exchanged with its
neighbors.When the algorithmfinishes, each robot i can extract from its ownmatrices
Xi j (ti) all the information of any conflict that involves any of its features. If the
robot has any conflictive feature, it also knows the rest of features that belong to the
conflictive set independently of the robot that observed such features. An algorithm
to carry out the same process, but exploiting local information through the use of
logical operations can also be used [18].

2.4 Algorithm Based on Trees

The resolution of inconsistent associations consists of deleting edges from Gdis so
that the resulting graph is conflict-free.

Definition 3 LetC denote the number of conflictive sets inGdis .We say a conflictive
set C is detectable by a robot i if there exists a r ∈ {1, . . . , mi } such that f i

r ∈ C.

The set of robots that detect a conflictive set C is R ⊆ Vcom . The number of features
from each robot i ∈ R involved in C is m̃i . We say Gdis is conflict-free if C = 0. �

All the edges whose deletion transforms Gdis into a conflict-free graph, belong
to any of the C conflictive sets of Gdis . Since the conflictive sets are disjoint, they
can be considered separately. From now on, we focus on the resolution of one of
the conflictive sets C . The other conflictive sets are managed in the same way.

20 2 Distributed Data Association

The resolution problem consists of partitioning C into a set of disjoint conflict-free
components Cq such that

∪
q
Cq = C , and Cq ∩Cq ′ = ∅,

for all q, q ′ = 1, 2, The number of such conflict-free components is a priori
unknown and it will be discussed later in this section.

Obtaining an optimal partition thatminimizes the number of deleted edges is com-
plicated. If there were only two inconsistent features f i

r , f i
r ′ , it could be approached

as a max-flow min-cut problem [20]. However, in general there will be more incon-
sistent features, m̃i ≥ 2, within C associated to a robot i ∈ R. Besides, there may
also be m̃ j ≥ 2 inconsistent features belonging to a different robot j ∈ R. The appli-
cation of [20] separately to any pair of inconsistent features does not necessarily
produce an optimal partition. It may happen that a single edge deletion simultane-
ously resolvesmore than one inconsistent association. Therefore, an optimal solution
should consider multiple combinations of edge deletions, what makes the problem
computationally intractable, and imposes a centralized scheme. The algorithm pre-
sented is not optimal but is efficient and is proven to be correct and can be applied
in distributed systems.

Proposition 2 Let R be the set of robots that detect C . Let i� be the root robot with
the most features involved in C ,

i� = argmax
i∈R

m̃i . (2.8)

The number of conflict-free components in which C can be decomposed is lower
bounded by m̃i� .

Proof Each conflict-free component can contain, at most, one feature from a robot
i ∈ R. Then, there must be at least, maxi∈R m̃i = m̃i� components. �

The resolution algorithm [1] constructs m̃i� conflict-free components using a strat-
egy close to a BFS tree construction. Initially, each robot i detects the conflictive sets
for which it is the root using its local information Xi1(ti), . . . , Xin(ti). The root robot
for a conflictive set is the onewith themost inconsistent features involved. In case two
robots have the same number of inconsistent features, the one with the lowest robot
id is selected. Then, each robot executes the resolution algorithm (Algorithm 2.4.1).

The root robot creates m̃i� components and initializes each component Cq with
one of its features f i� ∈ C . Then, it tries to add to each component Cq the features

directly associated to f i� ∈ Cq . Let us consider that f j
s has been assigned to Cq . For

all f i
r such that [Ai j]r,s = 1, robot j sends a component request message to robot i .

When robot i receives it, it may happen that

(a) f i
r is already assigned to Cq ;

(b) f i
r is assigned to a different component;

2.4 Algorithm Based on Trees 21

Algorithm 2.4.1 Spanning Trees - Robot i
1: – Initialization
2: for each conflictive set C for which i is root (i = i�) do
3: create m̃i� components
4: assign each inconsistent feature f i�

r ∈ C to a different component Cq
5: send component request to all its neighboring features
6: end for
7:
8: – Algorithm
9: for each component request from f j

s to f i
r do

10: if (b) or (c) then
11: [Ai j]r,s = 0
12: send reject message to j
13: else if (d) then
14: assign f i

r to the component
15: send component request to all its neighboring features
16: end if
17: end for
18: for each component reject from f j

s to f i
r do

19: [Ai j]r,s = 0
20: end for

(c) other feature f i
r ′ is already assigned to Cq ;

(d) f i
r is unassigned and no feature in i is assigned to Cq .

In case (a), f i
r already belongs to the componentCq and robot i does nothing. In cases

(b) and (c), f i
r cannot be added to Cq ; robot i deletes the edge [Ai j]r,s and replies

with a reject message to robot j ; when j receives the reject message, it deletes the
equivalent edge [A j i]s,r . In case (d), robot i assigns its feature f i

r to the component
Cq and the process is repeated.

Theorem 2 Let us consider that each robot i ∈ Vcom executes the distributed reso-
lution algorithm (Algorithm 2.4.1) on Gdis , obtaining G ′

dis ,

(i) after t = n iterations no new features are added to any component Cq and the
algorithm finishes;

(ii) each obtained Cq is a connected component in G ′
dis ;

(iii) Cq is conflict free;
(iv) Cq contains at least two features;

for all q ∈ {1, . . . , m̃i�} and all conflictive sets.

Proof (i) The maximal depth of a conflict-free component is n since, if there were
more features, at least two of them would belong to the same robot. Then, after at
most n iterations of this algorithm, no more features are added to any component Cq

and the algorithm finishes.

22 2 Distributed Data Association

(i i) There is a path in Gdis between any two features belonging to a conflictive
set C . Therefore, there is also a path in Gdis between any two features assigned to
the same component Cq . Since the algorithm does not delete edges from Gdis within
a component (case (a)), then Cq it is also connected in G ′

dis . Since none feature can
be assigned to more than one component (case (b)), the components are disjoint.
Therefore, Cq is a connected component in G ′

dis .
(i i i) By construction, two features from the same robot are never assigned to the

same component Cq (case (c)). Therefore, each component is conflict-free.
(iv) Each conflictive set has more than one feature. Because of Assumptions 1

and 2, each feature and its neighbors are conflict free. Therefore, each component
Cq contains, at least, its originating feature, and a neighboring feature. Thus, it has
at least two features. �

Corollary 3 After executing Algorithm 2.4.1, the size of each conflict set C is
reduced by at least 2 m̃i� , where m̃i� ≥ 2. �

When the algorithm finishes, each original conflictive set C has been partitioned
into m̃i� conflict-free components. It may happen that a subset of features remains
unassigned. These features may still be conflictive in G ′

dis . The detection algorithm
(Algorithm 2) can be executed on the subgraph defined by this smaller subset of
features.

Proposition 3 Consider each robot i iteratively executes the detection (Sect.2.3)
and the resolution (Sect.2.4) algorithms. Then, in a finite number of iterations, all
conflictive sets disappear.

Proof After each execution of the resolution algorithm, the size of each conflict setC
is reduced by, at least, 2 m̃i� ≥ 4 (Corollary 3). Then, in a finite number of iterations,
it happens that |C | < 4. A set with 3 features f i

r , f i
r ′ , f j

s cannot be conflictive; this

would require the existence of edges (f i
r , f j

s) and (f i
r ′ , f j

s), what is impossible
(Assumption 2). A set with 2 features cannot be conflictive (Assumptions 1 and 2),
and a set with a single feature cannot be inconsistent by definition. Therefore, there
will be no remaining inconsistencies or conflictive sets. �

Themain interest of the presented resolution algorithm is that it is fully distributed
and it works on local information. Each robot uses its own Xi j (ti) for detecting the
root robot of each conflictive set. During the resolution algorithm, the decisions,
and actions taken by each robot are based on its local associations Ai j , and the
components assigned to its local features. Moreover, each robot is responsible of
deleting the edges from its local association matrices Ai j , with j ∈ {1, . . . , n}. In
addition, the presented algorithm works in finite time. Let us note that although we
presented the algorithm for a single conflictive set, all conflictive sets are managed
in parallel.

2.5 Feature Labeling 23

2.5 Feature Labeling

Simultaneously to the data association process, the robots assign labels to their fea-
tures. After checking feature f i

r is consistent, robot i assigns it a label Li
r = (i�, r�) ∈

N
2 composed of a robot identifier i� and a feature index r� as follows [2]. Assume f i

r

and features f j
s , f j ′

s′ , . . . form a consistent association set in Gdis , and thus, they are
observations of a common landmark in the environment taken by robots i, j, j ′,
Among all the candidates (i, r), (j, s), (j ′, s′), . . . , a unique label (i�, r�) is selected
by the robots, e.g., the one with the lowest robot id. Then, robot i assigns this label to
f i
r , Li

r = (i�, r�); the other robots j, j ′, . . . , proceed in a similar way so that finally,

Li
r = L j

s = L j ′
s′ = · · · = (i�, r�) .

We say a feature f i
r is exclusive if it is isolated in Gdis , corresponding to a landmark

observedbya single robot i ; in this case, its label Li
r is simply (i, r).Otherwise,we say

f i
r is nonexclusive and it may either be consistent or conflictive. Consistent features

are labeled as explained above, whereas robots wait until conflicts are resolved for
labeling its conflictive features. The data association and labeling process finishes
with an association graph Gdis free of any inconsistent association and with all
the features labeled. When the algorithm finishes, two features f i

r , f j
s have the

same label, Li
r = L j

s , iff they are connected by a path in the resulting conflict-
free Gdis . The distributed data association and labeling algorithm is summarized
in Algorithm 2.5.1. This strategy makes use of two subroutines to detect features and
resolve inconsistencies that we explained in the previous sections.

Throughout this section, we use S̃i ⊆ Si for the set of unlabeled features at
robot i ∈ {1, . . . , n} and let |S̃i | be its cardinality, i.e., the number of unlabeled
features at robot i . The set of labels Li consists of the labels Li

r already assigned
to the features f i

r ∈ Si \ S̃i . Given a matrix Xi j of size |S̃i | × |S̃ j |, we define
the function r̄ = row

(
f i
r

)
that takes an unlabeled feature f i

r ∈ S̃i and returns its

associated row in Xi j , with r̄ ∈ {1, . . . , |S̃i |}. Equivalently, we define the function
s̄ = col(f j

s) for features in S̃ j . We let Ãi j ∈ N
|S̃i |×|S̃ j | be like the local association

matrixAi j , but containing exclusively the rows and columns of the unlabeled features
of robots i and j .

Initially, all the features of each robot i are unlabeled,

S̃i = { f i
1 , . . . , f i

mi
}, Li = ∅.

Each robot i solves a local data association with each of its neighbors j ∈ Ni and
obtains the association matrix Ai j ∈ N

mi ×m j . Then, the robot locally detects its
exclusive features f i

r which have not been associated to any other feature,

[Ai j]r,s = 0 for all j ∈ Ni , j 	= i, and all s ∈ {1, . . . , m j }. (2.9)

24 2 Distributed Data Association

Algorithm 2.5.1 Data association and labeling - Robot i

1: S̃i ← { f i
1 , . . . , f i

mi
}, Li ← ∅

2: Solve the local data association
3: Assign_label(Li

r = (i, r), f i
r) to each exclusive feature f i

r
4: while |S̃i | > 0 do
5: Run the detection algorithm 2
6: Find each consistent feature f i

r and its root f i�
r�

7: Assign_label(Li
r = (i�, r�), f i

r)
8: Run the resolution algorithm
9: Find each resolved feature f i

r and its component id [i�, r�]
10: Assign_label(Li

r = (i�, r�), f i
r)

11: Find each exclusive feature f i
r

12: Assign_label(Li
r = (i, r), f i

r)
13: end while
14: function Assign_label(Li

r , f i
r)

15: Li ← Li ∪ {Li
r }, S̃i ← S̃i \ { f i

r }
16: end function

Since an exclusive feature f i
r is always consistent, robot i assigns a label Li

r to
it, composed of its own robot id and feature index and removes it from the set of
unlabeled features,

Li
r = (i, r), Li = Li ∪ Li

r , S̃i = S̃i \ { f i
r }. (2.10)

Since its unlabeled features in S̃i may be conflictive, it executes the detection algo-
rithm (2.4) on this subset.

The detection algorithm (Algorithm 2) is executed on the subgraph ofGdis involv-
ing the features in S̃i , for i ∈ {1, . . . , n}. When it finishes, robot i has the power

matrices Xi j ∈ N
|S̃i |×|S̃ j |, for j = 1, . . . , n, which contain the entries in Adiam(Gdis)

associated to the features in S̃i and S̃ j . There is a path between f i
r and f j

s iff

[Xi j]r̄ ,s̄ > 0, (2.11)

being r̄ = row(f i
r) and s̄ = col(f j

s). These matrices give robot i the information
about all the association paths of its features and the features of the rest of the robots
in the network.

Then, each robot i detects its consistent features. After a feature f i
r has been

classified as consistent, its robot i proceeds to assign it a label. Here, we show how
robot i decides the feature label (i�, r�). Let us first give a general definition of the
root robot of an either consistent or conflictive association set.

Definition 4 The root robot i� for an association set is the one that has the most
features in it. In case there are multiple candidates, it is the one with the lowest
identifier. Equivalently, we define the root features f i�

r�
, f i�

r ′
�
, . . . as the features from

the root robot that belong to the association set. �

2.5 Feature Labeling 25

Using the power matrices Xi1, . . . , Xin , robot i can find the number of features
m̃ j from a second robot j that belong to the same association set than f i

r with
r̄ = row(f i

r) as follows,

m̃ j =
∣∣∣{ f j

s | [Xi j]r̄ ,s̄ > 0, with s̄ = col(f j
s)

}∣∣∣ . (2.12)

If we let m̃� be the maximum m̃ j for j ∈ {1, . . . , n}, then the root robot i� and root
features f i�

r�
, f i�

r ′
�
, . . . for the association set of f i

r with r̄ = row(f i
r) are

i� = min
{

j | m̃ j = m̃�

}
, {r�, r ′

�, . . . } =
{

s | [Xii�]r̄ ,s̄ > 0 with s̄ = col(f i�
s)

}
.

(2.13)

When f i
r belongs to a consistent set, the root i� corresponds to the robot with a single

feature f i�
r�

in the association set that has the lowest identifier,

i� = min
{

j | [Xi j]r̄ ,s̄ > 0 for some s̄ ∈ {1, . . . , |S̃ j |}
}

r� =
{

s | [Xii�]r̄ ,s̄ > 0 with s̄ = col(f i�
s)

}
,

(2.14)

where r̄ = row(f i
r). Robot i assigns to its feature f i

r the label Li
r = (i�, r�) and

removes it from the set of unlabeled features,

Li
r = (i�, r�), Li = Li ∪ Li

r , S̃i = S̃i \ { f i
r }. (2.15)

Thus, all features in the association set are assigned the same label. The robots
proceed with all its consistent features in a similar fashion. For the features classified
as conflictive, the resolution method (Algorithm 2.4.1) presented in the previous
section is executed to solve the inconsistencies.

Let each componentCq in Algorithm 2.4.1 have the identifier (i�, r�) composed of
the root robot i� and root feature r� responsible of creating the component. When the
resolution algorithm finishes, each feature f i

r that has been assigned to a component
(i�, r�) has become consistent due to the edge removals. We say that such features
are resolved. Thus, all the resolved features with the same component id form a
consistent association set. Each robot i uses the component id of f i

r as its label,

Li
r = (i�, r�), Li = Li ∪ Li

r , S̃i = S̃i \ { f i
r }. (2.16)

Additionally, due to edge removal, some unlabeled features f i
r ∈ S̃i may have

become exclusive. Robot i detects such features f i
r by checking that

[Ãi j]r̄ ,s̄ = 0, for all j ∈ Ni , j 	= i, all s̄ ∈ {1, . . . , |S̃ j |},

26 2 Distributed Data Association

being r̄ = row(f i
r), and it manages them as in (2.10). The remaining features may

still be conflictive. Each robot i executes a new detection-resolution iteration on these
still unlabeled features S̃i .

In a finite number of iterations, all features of all robots have been labeled, and the
algorithm finishes. The interest of the presented algorithm is that it is fully distributed
and works on local information. Each robot i uses its own Xi j to classify its features.

2.6 Algorithm Based on the Maximum Error Cut

The previous resolution algorithmhas the advantage of solving all the inconsistencies
in an easy way. However, the algorithm does not use information about the quality
of the matches. When this information is available, it can be used to select which
links should be broken to get rid of the inconsistent associations.

Most of the matching functions in the literature are based on errors between the
matched features. These errors can be used to find a better partition of C . Let E be
the weighted symmetric association matrix

[E]r,s =
{

ers if [A]r,s = 1,
−1 otherwise,

(2.17)

with ers the error of the match between fr and fs .

Assumption 4 The error between matches satisfies:

• err = 0,∀r ;
• Errors are nonnegative, ers ≥ 0,∀r, s;
• Errors are symmetric, ers = esr ,∀r, s;
• Errors of different matches are different, ers = er ′s′ ⇔ [r = r ′ ∧ s = s′] ∨ [r =

s′ ∧ s = r ′];
�

Since the inconsistency is already known there is no need to use the whole matrix but
just the submatrix related with the inconsistency, EC . Although all the errors in EC
are small enough to pass the matching between pairs of images, we can assume that
the largest error in the path between two conflictive features is, with most probability,
related to the spurious match.

Definition 5 Given two conflictive features,we define a bridge as a single link whose
deletion makes the conflict between those two features disappear. �
Note that not all the links in one inconsistency are bridges. There are links that, if
deleted, would not break the inconsistency because:

• They do not belong to the path between the features to separate;
• They belong to the path, but they also belong to a cycle in the association graph,
and therefore, they are not bridges.

2.6 Algorithm Based on the Maximum Error Cut 27

Our goal is, for each pair of conflictive features, find and delete the bridge that links
them with the maximum error.

Algorithm 2.6.1 shows a solution to find the bridges using local interactions.
Along the section we explain in detail how it works. As we did in the detec-
tion algorithm (2.4), let each robot initialize its own rows of elements as zr (0) =
{[EC]r,1, . . . , [EC]r,c}, r ∈ {1, . . . , m̃i }. Each robot manages the m̃i rows corre-
sponding to the conflictive features it has observed. The update rule executed by
every robot and every feature is

zr (t + 1) = max
s∈C , [EC]r,s≥0

(zr (t), zs(t)Prs), (2.18)

where the maximum is done element to element and Prs is the permutation matrix
of the columns r and s. We have dropped the super indices corresponding to robots
because the limited communications are implicit in the error caused by direct asso-
ciations, Eq. (2.17).

Algorithm 2.6.1 Maximum Error Cut - Robot i
Require: Set of C different conflictive sets
Ensure: Gdis is conflict free
1: for all C do
2: – Error transmission
3: zr (0) = {[EC]r,1, . . . , [EC]r,c}, r = 1, . . . , m̃i
4: repeat
5: zr (t + 1) = maxs∈C , [EC]r,s≥0(zr (t), zs(t)Prs)

6: until zr (t + 1) = zr (t), ∀r ∈ m̃i
7: – Link Deletion
8: while robot i has conflictive features r and r ′ do
9: Find the bridges (s, s′) :
10: (a) [zr]s = [zr ′]s′ , s 	= s′,
11: (b) For all s′′ 	= s, [zr]s 	= [zr]s′′ ,
12: (c) For all s′′ 	= s′, [zr ′]s′ 	= [zr ′]s′′
13: Select the bridge with largest error
14: Send message to break it
15: end while
16: end for

Proposition 4 The dynamic system defined in (2.18) converges in a finite number
of iterations and for any r, s ∈ C such that [EC]r,s ≥ 0 the final value of zr is the
same than zsPrs .

Proof The features involved in the inconsistency form a strongly connected graph.
For a given graph, the max consensus update is proved to converge in a finite num-
ber of iterations [6]. For any r, s ∈ C such that [EC]r,s ≥ 0, by Eq. (2.18) and the
symmetry of EC , the final consensus values of zr and zs satisfy, element to element
that

28 2 Distributed Data Association

zr ≥ zsPrs and zs ≥ zr Psr (2.19)

Using the properties of the permutation matrices, Prs = Psr = P−1
sr , we see that

zsPrs ≥ zr , which combined with Eq. (2.19) yields to zr = zsPrs . �

Let us see the convergence values of the different elements. Considering again
Eq. (2.18) for a given feature fr , we can express it as a function of its elements and
the uth component, [zr (t + 1)]u, is updated as follows:

[zr (t + 1)]u

=
⎧⎨
⎩
max([zr (t)]u, [zs(t)]s) if [EC]r,s ≥ 0 ∧ u = r
max([zr (t)]u, [zs(t)]r) if [EC]r,s ≥ 0 ∧ u = s
max([zr (t)]u, [zs(t)]u) if [EC]r,s ≥ 0 ∧ r 	= u 	= s

,
(2.20)

where the two first rows are due to the permutations. Let us first analyze the case in
which the inconsistency does not contain any cycle.

Theorem 3 If C is cycle free, then:

(i) For any r ∈ C , [zr (t)]r = 0,∀t ≥ 0.
(ii) [zr (t)]s′ → [EC]r ′,s′ = er ′s′ , where

r ′ = argmin
[A]r ′′,s′=1

d(r, r ′′),

and d(r, r ′′) is the distance in links to reach node r ′′ starting from node r. In
other words, fr ′ is the closest feature to fr directly associated to fs′ .

Proof For any feature, fr , taking into account Eq. (2.20), the update of the r th ele-
ment of zr , [zr (t + 1)]r , is

[zr (t + 1)]r = max
s∈C , [EC]r,s≥0

([zr (t)]r , [zs(t)]s).

Recalling the first point in Assumption 4, the initial value of [zr (0)]r = err = 0, for
all r, then [zr (t)]r = 0,∀t ≥ 0.

The inconsistency does not have any cycles and there is a path between any two
features, the conflict is a spanning tree. Let us consider one link, (fr ′ , fs′). The link
creates a partition of C in two strongly connected, disjoint subsets

Cr ′ = {r | d(r, r ′) < d(r, s′)},

Cs′ = {s | d(s, s′) < d(s, r ′)}.

In the above equations it is clear that r ′ ∈ Cr ′ and s′ ∈ Cs′ .
We will focus now on the values of the s′th element of the state vector for the

nodes in Cr ′ and the r ′th element for the nodes in Cs′ ,

2.6 Algorithm Based on the Maximum Error Cut 29

[zr (t)]s′, r ∈ Cr ′ , and [zs(t)]r ′, s ∈ Cs′ .

In the first case, for any r ∈ Cr\r ′, update rule (2.20) is equal to

[zr (t + 1)]s′ = max
r ′′∈Cr ′ , [EC]r,r ′′≥0

([zr (t)]s′, [zr ′′(t)]s′),

because r 	= s′ 	= r.′′ The nodes in Cs′ are not taken into account because that would
mean that C has a cycle. The special case of feature fr ′ has an update rule equal to

[zr ′(t + 1)]s′ = max
r∈Cr ′ ,[EC]r ′,r ≥0

([zr ′(t)]s′ , [zr (t)]s′, [zs′(t)]r ′).

In a similar way the updates for features in Cs are

[zs(t + 1)]r ′ = max
s′′∈Cs′ , [EC]s,s′′≥0

([zs(t)]r ′, [zs′′(t)]r ′),

[zs′(t + 1)]r ′ = max
s∈Cs′ ,[EC]s′,s≥0

([zs′(t)]r ′ , [zs(t)]r ′, [zr ′(t)]s′).

Considering together all the equations and the connectedness of Cr ′ and Cs′ , all
these elements form a connected component and they will converge to

max
r∈Cr ′ , s∈Cs′

([zr (0)]s′ , [zs(0)]r ′).

Since all the features r ∈ Cr ′ \r ′ are not associated with fs′ , [zr (0)]s′ = −1. Anal-
ogously, for all the features s ∈ Cs′ \s′, [zs(0)]r ′ = −1. Finally, for the features r ′
and s′, by the second and third point of Assumption4, [zr ′(0)]s′ = er ′s′ = es′r ′ =
[zs′(0)]r ′ ≥ 0 > −1. Therefore, this subset of c elements of the state vectors con-
verge to the error of the link (fr ′ , fs′), er ′s′ . From Proposition 4 we can also see that
for any r ∈ Cr ′ , [zr]s, s ∈ Cs′ \s′, will converge to the final value of [zs′]s .

The same argument applies for the rest of the links and the proof is complete. �

Let us see what happens now in the presence of cycles in the inconsistency.

Theorem 4 Let us suppose the inconsistency has a cycle involving � features. Let
C� be the subset of features that belong to the cycle. After the execution of (2.18) it
holds that:

(i) ∀r ′, s′ ∈ C�, s′ 	= r ′
[zr ′]s′ → max

r,s∈C�

ers .

(ii) ∀r ′ /∈ C�, s′ ∈ C�, s′ 	= argmins∈C�
d(r ′, s),

[zr ′]s′ → max
r,s∈C�

ers .

30 2 Distributed Data Association

Proof In the proof, we will denote r1, . . . , r�, the set of features in C�. Without
loss of generality we will assume that the links that form the cycle are (fr1 , fr2),
(fr2 , fr3), . . ., (fr�

, fr1). For an easy reading of the proof of this result we will omit
the time indices in the update equations. Let us consider the update rule (2.20) for
element r2 of feature fr1 ,

[zr1]r2 = max([zr1]r2 , [zr2]r1 , [zr�
]r2),

where we have also omitted other possible features that are directly linked to fr1
because if they are also linked to fr2 they belong to C� and if not they do not affect
to the final result.

From the above equation we observe that [zr1]r2 depends on the value of [zr2]r1 .
At the same time this value is updated with

[zr2]r1 = max([zr2]r1 , [zr1]r2 , [zr3]r1),

which depends on the value of [zr3]r1 . If we keep with the chain of associations we
reach the point in which [zr�−1]r1 depends on [zr�

]r1 , which has update rule equal to

[zr�
]r1 = max([zr�

]r1 , [zr�−1]r1 , [zr1]r�
).

As we have proved in Proposition 4, in the end [zr1]r2 = [zr2]r1 , [zr2]r1 =
[zr3]r1 , . . . , [zr�−1]r1 = [zr�

]r1 and [zr�
]r1 = [zr1]r�

because they are direct neigh-
bors. This means that after the execution of enough iterations of (2.18), [zr1]r2 =
[zr1]r�

= [zr]r1,∀r ∈ C�\r1. By applying the same argument for any other fea-
ture in C� we conclude that after the execution of the update, for any r ∈ C�,

[zr]r ′ = [zr]r ′′ ,∀r ′, r ′′ ∈ C�\r. Thus, each feature inside the cycle will end with
� − 1 elements in its state vector with the same value (the maximum of all the con-
sidered links) and (i) is true. If there are any additional links inside the cycle the
result is the same including in the max consensus the weights of these links.

Now let us consider the rest of the features in the inconsistency, C̄� = C \C�.

Given a feature s ∈ C̄� two things can happen:

• ∃ unique r ∈ C� such that fr and fs are directly associated;
• s is not directly associated with any feature in C� but there exists at least one path
of features ∈ C̄� that ends in a unique feature r ∈ C�.

The uniqueness of r comes from the fact that if there were another feature r ′ ∈ C�,

reachable from s without passing through r, that would mean that s is also part of the
cycle. Note that this does not discard the possibility that r and s belong to another
cycle different than C�.

As we have seen in the proof of Theorem3, due to the fact that r is the only
connection with C�, for any r ′ ∈ C�\r, [zs]r ′ will have final value equal to [zr]r ′
which proves (ii). On the other hand, [zs]r will have the value of the link that connects
it to feature r or, if fr and fs belong to another cycle different thanC�, the maximum

2.6 Algorithm Based on the Maximum Error Cut 31

error of all the links that form the second cycle. In both cases, doing a change in the
names of the indices, we can see that (ii) is also true. �

At this point we are ready to define the bridges in terms of the variables zr and to
propose a criterion to select the bridge to break. The bridges, (fs, fs′), for any pair
of conflictive features fr and fr ′ satisfy

(a) [zr]s = [zr ′]s′ , s 	= s′,
(b) for all s′′ 	= s, [zr]s 	= [zr]s′′ ,
(c) for all s′′ 	= s′, [zr ′]s′ 	= [zr ′]s′′ .

The first condition comes from Theorem3 and the other two come from Theorem4.
Note that for any bridge, the error of the bridge is the same as the value of [zr]s,

[zr]s = [zr ′]s′ = ess′ . Therefore, each node can look in a local way at its own rows
and choose the best bridge that breaks the conflict, the one with the largest error. In
case one robot has more than two features in the same conflict, finding the optimal
cut becomes NP-hard. In this chapter, we use a greedy approach that returns good
results. Our solution chooses two of the m̃i inconsistent features and selects the best
bridge for them. The bridge separates all the m̃i features in two disconnected subsets.
The process is repeated with each of the subsets until the inconsistencies are solved.

Note that we are considering only single-link deletions. Cycles in the association
graph are sets of features strongly associated, and therefore, it is better not to break
links there. If two conflictive features belong to the same cycle, then there are no
bridges. However, the algorithm is also able to detect this situation and the Spanning
Trees can be used to solve the conflict.

In conclusion, this algorithm is able to detect in a local way the best bridge to break
each inconsistency. This provides a more solid criterion to solve the inconsistencies
than just cutting arbitrary edges. Each robot is able to detect which set of links is best
to cut in order to solve the conflicts regarding its own features. The algorithm also
finishes in finite time and does not require much additional bandwidth because, as
in the detection algorithm, the amount of transmitted information can be optimized.
An example of execution of the algorithm is given in Fig. 2.3 and more details can
be found in [18].

(a) (b) (c)
Camera A Camera F

Camera C Camera D

Camera B Camera E

8

2

3

Errors

4

6

91

7

Camera A Camera F

Camera C Camera D

Camera B Camera E

Camera A Camera F

Camera C Camera D

Camera B Camera E

8

2

3

4

6

91

7

f1
A

f1
B f2

B

f1
c f1

D
f1
C

f2
B

f1
B

f1
E

f2
A f1

F f1
A f2

A
f1
F

f1
F

f1
D

f1
A

f2
A f1

F

f1
E

f2
B

f1
B

f1
C f1

D

Fig. 2.3 Example of execution of the resolution of one inconsistency using the two approaches.
a Inconsistency. b Solution obtained using the Spanning Trees algorithm. c Solution obtained using
the Maximum Error Cut approach

32 2 Distributed Data Association

2.7 Simulations

We have carried out several simulations with a team composed by 7 robots exploring
an environment of 20 × 20m with 300 features (Fig. 2.4). Each robot executes 70
motion steps along a path of approximately 30m. The robots estimate their motion
based on odometry information that is corrupted with a noise of standard deviation
σx , σy = 0.4cm for the translations and σθ = 1 degree for the orientations. They
sense the environment using an omnidirectional camera that gives bearing measure-
ment to features within 360 degrees around the robot and within a distance of 6m.
Themeasurements are corrupted with a noise of 0.5 degrees standard deviation. Each
robot explores the environment and builds its local map (Fig. 2.4b). Due to the pres-
ence of obstacles (gray areas), each robot may have not observed some landmarks.

When they finish the exploration, they execute the distributed data association
algorithm explained in this chapter under the communication graph in Fig. 2.5a. The
local data associations F(Si ,S j) are obtained by applying the JCBB method [19]
to the local maps of any pair of neighboring robots (i, j) ∈ Ecom . Since all the trajec-
tories followed by the robots traverse the main corridor (Fig. 2.4) there is a high over-
lapping between their local maps (Table2.1). Given any 2 local maps with approx.
122 features, there are approximately 89 true matches (ground truth). Although, the
local data association method has found a high amount of the ground truth links
(good links or true positives), it has also missed a few of them (missing links or false
negatives). In addition, some additional links have been detected that link together
different features (spurious links or false positives). From the 858 features within all
the local maps, there are 300 different features in the ground truth sense (association
sets). From them, 184 were observed by a single robot (ground truth exclusive fea-
tures), and the remaining where observed by around 6 robots (ground truth size of the

−10 −8 −6 −4 −2 0 2 4 6 8
−10
−8
−6
−4
−2
0
2
4
6
8

10

−10 −8 −6 −4 −2 0 2 4 6 8
−10
−8
−6
−4
−2
0
2
4
6
8

10
(a) (b)

Fig. 2.4 A team of 7 robots explore an environment of 20 × 20m. a Gray areas are walls and
red dots are the ground truth location of landmarks. The robots (triangles) start in the left (black
box region) and finish in the right. b Local map estimated by robot 2. The landmarks close to its
trajectory (red line) have been estimated (blue crosses and ellipses) with a high precision. Due to
the presence of obstacles (gray areas) some of the landmarks have not been observed, or have been
estimated with high uncertainty

2.7 Simulations 33

5 5.5 6 6.5 7 7.5 8 8.5 9

−2

−1.5

−1

−0.5

0

0.5

1

1.5
R1

R2

R3

R4

R5

R6

R7

−10 −8 −6 −4 −2 0 2 4 6 8
−10
−8
−6
−4
−2
0
2
4
6
8

10
(a) (b)

Fig. 2.5 a Communication graph associated to the final robot poses in Fig. 2.4. There is a link (blue
solid line) between any pair of robot poses (red triangles) that are within a distance of 3m. b Global
map obtained after merging the local maps. Red dots and triangles are the ground truth position
of the features and robot poses. The estimated feature positions are shown with blue crosses and
ellipses. The map merging process is explained in detail in Chap. 4; here we display the global map
estimated by robot 2 after t = 5 iterations of the map merging algorithm

Table 2.1 Local data associations

Features Per local map Total

Features observed 122 858

Data associations Per pair of local maps Total

Links (ground truth) 89 2860

Links 88 2820

Good links 85 2750

Missing links 3 110

Spurious links 2 70

Association sets Obtained Ground truth

Association sets 296 300

Exclusive features 187 184

Nonexclusive assoc. 109 116

Size of nonexclusive 6.1 5.8

nonexclusive). In the data association graph Gdis however, only 296 association sets
have been obtained, whichmeans that different features have beenmixed up together.
There are 184 exclusive features (ground truth exclusive features), although the local
data association algorithm has found 187 exclusive features. These additional three
exclusive features appear due to the presence of the three outliers, the features with
high covariance ellipses in Fig. 2.5b. Since their positions have been wrongly esti-
mated, the local data association method has failed to correctly associate them.

The robots execute Algorithm 2.5.1 on the nonexclusive features to propagate
the local matches and discover the associations between their features and the ones

http://dx.doi.org/10.1007/978-3-319-25886-7_4

34 2 Distributed Data Association

Table 2.2 Detection and resolution of inconsistent associations

Detection Conflictive Consistent nonexclusive Consistent exclusive

Association sets 7 102 187

Features 80 591 187

Resolution Conflictive Consistent nonexclusive Consistent exclusive

Association sets 0 116 (+14) 187

Features 0 671 (+80) 187

observed by the other team members. In addition, they establish the labels for their
features, and they detect and solve any inconsistent associations. From the 109 nonex-
clusive association sets, 102 of them are consistent, and its associated 591 features
are classified as consistent (Table2.2). The remaining seven sets are conflictive, and
they have associated 80 conflictive features. After executing the resolution algorithm
on the 80 conflictive features, all of them are resolved and the process finishes. The
original seven conflictive sets are partitioned into 14 consistent nonexclusive sets.
Due to these additional sets, the number of consistent nonexclusive association sets
(Table 2.2, third row), which initially was 102 (Table 2.2, first row), is increased into
116 (102 + 14) after executing the algorithm. Equivalently, the number of consistent
nonexclusive features (Table2.2, fourth row) which was 591 (Table2.2, second row)
becomes 671 (591 + 80) since the 80 inconsistent features are resolved.

Table2.3 compares the final data association graph and the ground truth informa-
tion. Since the resolution algorithm is based on link deletion, the number of links
here is lower than in Table2.1. However, the number of association sets is closer
to the ground truth results. From the 303 obtained association sets, three of them

Table 2.3 Results after detecting and solving the inconsistencies

Features Per local map Total

Features observed 122 858

Data associations Per pair of local maps Total

Links (ground truth) 89 2860

Links 87 2794 (−26)

Good links 85 2746 (−4)

Missing links 3 114 (+4)

Spurious links 2 48 (−22)

Association sets Obtained Ground truth

Association sets 303 300

Exclusive features 187 184

Nonexclusive assoc. 116 116

Size of nonexclusive 5.7 5.8

2.7 Simulations 35

are due to the three outliers in Fig. 2.5b. Thus, there are 300 remaining association
sets, which is exactly the same number of association sets in the ground truth data.
The same behavior is observed regarding their sizes. This means that the resulting
associations are similar to the ground truth ones in spite of the fact that they have
less links. From the 26 links erased from Gdis , 22 were spurious links, and only 4
where good links that now are missing. Robots use the obtained data association for
computing the global map (Fig. 2.5b) as described in Chap.4.

2.8 Closure

In this chapter, we have presented a distributed technique to match sets of features
observed by a team of robots in a consistent way under limited communications.
Local associations are found only within robots that are neighbors in the communi-
cation graph. After that, a fully distributed method to compute all the paths between
local associations is carried out, allowing the robots to detect all the inconsistencies
related with their observations. For every conflictive set detected, in a second step the
method is able to delete local associations to break the conflict using only local com-
munications. The whole method is proved to finish in a finite amount of time finding
and solving all the inconsistent associations. We have studied the performance of the
method for robots equipped with omnidirectional cameras in a simulated environ-
ment. Additional experiments with real data acquired with RGB-D and conventional
cameras are presented in Chap.5.

References

1. R. Aragues, E. Montijano, C. Sagues, Consistent data association in multi-robot systems with
limited communications, in Robotics: Science and Systems, Zaragoza, Spain, June 2010

2. R. Aragues, J. Cortes, C. Sagues, Distributed consensus algorithms for merging feature-based
maps with limited communication. Robot. Auton. Syst. 59(3–4), 163–180 (2011)

3. S. Avidan, Y. Moses, Y. Moses, Centralized and distributed multi-view correspondence. Int. J.
Comput. Vis. 71(1), 49–69 (2007)

4. T. Bailey, H. Durrant-Whyte, Simultaneous localization and mapping: part II. IEEE Robot.
Autom. Mag. 13(3), 108–117 (2006)

5. T. Bailey, E.M. Nebot, J.K. Rosenblatt, H. Durrant-Whyte, Data association for mobile robot
navigation: a graph theoretic approach, in IEEE International Conference on Robotics and
Automation, San Francisco, USA, April 2000, pp. 2512–2517

6. F. Bullo, J. Cortes, S.Martinez,Distributed Control of Robotic Networks. AppliedMathematics
Series (Princeton University Press, Princeton, 2009), http://coordinationbook.info

7. C. Cadena, F. Ramos, J. Neira, Efficient large scale SLAM including data association using
the Combined Filter, in European Conference on Mobile Robotics, Mlini/Dubrovnik, Croatia,
September 2009, pp. 217–222

8. A. Censi, An accurate closed-form estimate of ICP’s covariance, in IEEE International Con-
ference on Robotics and Automation, Roma, Italy, April 2007, pp. 3167–3172

9. R.W. Deming, L.I. Perlovsky, Concurrent multi-target localization, data association, and nav-
igation for a swarm of flying sensors. Inf. Fusion 8(3), 316–330 (2007)

http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_5
http://coordinationbook.info

36 2 Distributed Data Association

10. V. Ferrari, T. Tuytelaars, L. Van Gool, Wide-baseline multiple-view correspondences, in IEEE
International Conference on Computer Vision and Pattern Recognition, Madison, USA, June
2003, pp. 718–725

11. M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395
(1981)

12. D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, B. Stewart, Distributed multirobot explo-
ration and mapping. IEEE Proc. 94(7), 1325–1339 (2006)

13. A. Gil, O. Reinoso, M. Ballesta, M. Julia, Multi-robot visual SLAM using a rao-blackwellized
particle filter. Robot. Auton. Syst. 58(1), 68–80 (2009)

14. A. Howard, Multi-robot simultaneous localization and mapping using particle filters. Int. J.
Robot. Res. 25(12), 1243–1256 (2006)

15. M. Kaess, F. Dellaert, Covariance recovery from a square root information matrix for data
association. Robot. Auton. Syst. 57(12), 1198–1210 (2009)

16. K. Konolige, J. Gutmann, B. Limketkai, Distributed map-making, in Workshop on Reason-
ing with Uncertainty in Robotics, International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, August 2003

17. H.S. Lee, K.M. Lee, Multi-robot SLAM using ceiling vision, in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, St. Louis, USA, October 2009, pp. 912–917

18. E. Montijano, R. Aragues, C. Sagues, Distributed data association in robotic networks with
cameras and limited communications. IEEE Trans. Robot. 29(6), 1408–1423 (2013)

19. J. Neira, J.D. Tardós, Data association in stochastic mapping using the joint compatibility test.
IEEE Trans. Robot. Autom. 17(6), 890–897 (2001)

20. C.H. Papadimitriou, K. Steiglitz, The max-flow, min-cut theorem (chapter 6.1), Combinatorial
Optimization: Algorithms and Complexity (Dover Publications, NewYork, 1998), pp. 120–128

21. M. Pfingsthorn, B. Slamet, A. Visser, A scalable hybrid multi-robot SLAM method for highly
detailed maps, in RoboCup 2007: Robot Soccer World Cup XI, Lecture Notes in Artificial
Intelligence, vol. 5001, ed. by U. Visser, F. Ribeiro, T. Ohashi, F. Dellaert (Springer, Berlin,
2008), pp. 457–464

22. S. Thrun, Y. Liu, Multi-robot SLAM with sparse extended information filters, in International
Symposium of Robotics Research, Italy, Sienna, October 2003, pp. 254–266

23. S.B. Williams, H. Durrant-Whyte, Towards multi-vehicle simultaneous localisation and map-
ping, in IEEE International Conference on Robotics and Automation, Washington, DC, USA,
May 2002, pp. 2743–2748

24. X.S. Zhou, S.I. Roumeliotis, Multi-robot SLAM with unknown initial correspondence: the
robot rendezvous case, in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Beijing, China, October 2006, pp. 1785–1792

Chapter 3
Distributed Localization

Abstract In this chapter we study the problem of distributed localization, which
consists of establishing a common frame and computing the robots’ localization
relative to this frame. Each robot is capable of measuring the relative pose of its
neighboring robots. However, it does not know the poses of far robots, and it can
only exchange data with neighbors using the range-limited communication network.
The analyzed algorithms have the interesting property that can be executed in a
distributed fashion. They allow each robot to recover localization using exclusively
local information and local interactions with its neighbors. Besides, they only require
each robot to maintain an estimate of its own pose. Thus, the memory load of the
algorithm is low compared to methods where each robot must also estimate the poses
of any other robot. We analyze two different scenarios and study distributed algo-
rithms for them. In the first scenario each robot measures the noisy planar position
and orientation of nearby robots to estimate its own full localization with respect
to an anchor node. In the second case, robots take noisy measurements of the rela-
tive three-dimensional positions of their neighbors, which is used to estimate their
three-dimensional positions with respect to the simultaneously computed centroid
reference. When the centroid of the team is selected as common frame, the estimates
are more precise than with any anchor selection.

Keywords Localization · Limited communication · Distributed systems · Parallel
computation

3.1 Introduction

Multi-robot tasks, such as pattern formation [7, 36] or inter-robot collision avoid-
ance [32], often require the knowledge of the robots’ positions in a common reference
frame. Typically, robots start at unknown locations, they do not share any common
frame, and they can only measure the relative positions of nearby robots. We address
the localization problem, which consists of combining these relative measurements
to build an estimate of the robots’ localization in a common frame.

Several localization algorithms rely on range-only [1, 10, 11], or bearing-only [31]
relative measurements of the robots’ poses. Other approaches assume that robots

© The Author(s) 2015
R. Aragues et al., Parallel and Distributed Map Merging and Localization,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-25886-7_3

37

38 3 Distributed Localization

measure the full state of their nearby robots. The relative full-pose of a pair of robots
can be obtained, for instance, by comparing their local maps [14, 15, 33] and looking
for overlapping regions. This approach, known as map alignment, presents a high
computational cost and its results depend on the accumulated uncertainty in the local
maps. Alternatively, each robot can locally combine several observations to build an
estimate of the relative poses. The 2D relative pose can be retrieved from at least
five noisy distance measurements and four noisy displacements [38]. Bearing-only
measurements can be also used to recover the 2D relative pose in vision systems [20].
The 3D case has also been analyzed for distance and bearing, bearing-only, and
distance-only observations [35]. These methods present the benefit that the obtained
results do not depend on the uncertainties in the local maps. They also allow the
robots to compute their relative poses when there is no overlapping between their
maps, or even if they do not actually have a map.

Localization algorithms in networked systems properly combine the previous
relative measurements to produce an estimate of the robots’ poses. Some distributed
algorithms compute both, the positions and orientations but assume that the relative
measurements are noise free, e.g., [19] where each robot reaches an agreement on
the centroid of the network expressed in its local reference frame. Other methods
compute exclusively the robot positions but not their orientations, and consider noisy
relative measurements of the robot positions. This latter localization problem can be
solved by using linear optimization methods [4, 28]. Although these works do not
consider the robots’ orientations, they can also be applied to such cases provided
that the robots have previously executed an attitude synchronization [25, 30] or a
motion coordination [16] strategy to align their orientations. Cooperative localization
algorithms [22, 27, 34] do not just compute the network localization once, but also
track the robots positions. These algorithms, however, usually assume that an initial
guess on the robot poses exists.

Formation control [16, 18, 21, 24] and network localization are related problems.
While localization algorithms compute robot positions that satisfy the inter-robot
restrictions, in formation control problems the robots actually move to these positions.
The goal formation is defined by a set of inter-robot restrictions (range-only, bearing-
only, full-positions, or relative poses). Although some works discuss the effects of
measurement noises in the final result [16], formation algorithms usually assume
that both, the measurements and the inter-robot restrictions are noise free [18, 21,
24]. Thus, additional analysis is necessary in noisy localization scenarios.

Both, formation control and localization problems can be solved up to a rotation
and a translation. This ambiguity disappears when the positions of a subset of anchor
robots is given in some absolute reference frame. The range-only case [1] requires at
least three non-collinear anchors for planar scenarios. The density and placement of
anchors has an important effect on the accuracy of the solution for the bearing-only
case [31]. In the full-position case a single anchor is enough. Its placement influences
the accuracy of the final results and it is common to analyze the estimation errors at
the robots as a function of their distances to the anchor [6]. However, it is common to
assume that the first robot is the anchor placed at the origin of the common reference
frame and make the other robots compute their positions relative to the anchor.

3.1 Introduction 39

In this chapter we focus on network localization methods where robots measure
the relative pose of their neighbors. Since these methods do not require the robots
to have a map, they can be executed at any time. In particular, we execute it at
an initial stage, prior to any exploration taking place. The communication graph
during this initial stage must be connected. We consider scenarios with noisy relative
measurements. We assume that these measurements are independent, since they are
acquired individually by the robots. We do not further discuss cooperative localization
algorithms, since in a map merging scenario it is enough for the robots to compute
the global frame and their poses once. In addition, we discuss the selection of the
common reference frame. We consider the cases that the common frame is one of the
robots (anchor-based), and that the common frame is the centroid. Firstly we present
a distributed algorithm for planar scenarios. Each agent uses noisy measurements of
relative planar poses with respect to other robots to estimate its planar localization
relative to an anchor node. After that, we discuss the localization problem for higher
dimension scenarios. We present a distributed algorithm that allows each robot to
simultaneously compute the centroid of the team and its positions relative to the
centroid. We show that when the centroid of the team is selected as the common
frame, the estimates are more precise than with any anchor selection.

In order to make the reading easy, along the chapter we use the indices i, j to refer
to robots and indices e, e′ to refer to edges. An edge e starting at robot i and ending at
robot j is represented by e = (i, j). Given a matrix A, the notations Ar,s and [A]r,s
corresponds to the (r, s) entry of the matrix. We let ⊗ be the Kronecker product,
Ir be the identity matrix of size r × r , and 0r×s be a r × s matrix with all entries
equal to zero. A matrix A defined by blocks Ai j is denoted A = [Ai j]. The operation
A = blkDiag(B1, . . . , Br) returns a matrix A defined by blocks with Aii = Bi and
Ai j = 0 for i �= j .

3.2 Problem Description

The problem addressed in this chapter consists of computing the localization of a
network of n ∈ N robots from relative measurements. We consider two different
scenarios.

In the first scenario, the goal is to compute the planar poses of n ∈ N robots
{pG

1 , . . . , pG
n } expressed in the global frame G, where pG

i = [
xG

i , yG
i , θG

i

] ∈ SE(3)

for i ∈ {1, . . . , n}, given m ∈ N measurements of relative poses between robots. The
robots measure the planar pose (position and orientation) of nearby robots expressed
on their own reference frame. We let pi

j ∈ SE(3) be the pose of a robot j relative
to robot i . This information is represented by a directed graph G = (V ,E), where
the nodes V = {1, . . . , n} are the robots, and E contains the m relative measure-
ments, |E | = m. There is an edge e = (i, j) ∈ E from i to j if robot i has a relative
measurement of the state of robot j . We assume that the measurement graph G is
directed and weakly connected, and that a robot i can exchange data with both, its
in and out neighbors Ni so that the associated communication graph is undirected,

40 3 Distributed Localization

Ni = { j | (i, j) ∈ E or (j, i) ∈ E }.

We let A ∈ {0, 1,−1}n×m be the negative incidence matrix of the measurement
graph,

Ai,e =
⎧
⎨

⎩

−1 if e = (i, j)
1 if e = (j, i)
0 otherwise

, for i ∈ {1, . . . , n}, e ∈ {1, . . . , m}, (3.1)

and we let Wi, j be the Metropolis weights defined in Eq. (A.3) in Appendix A asso-
ciated to G . The localization problem consists of estimating the states of the n robots
from the relative measurements. Any solution can be determined only up to a rotation
and a translation, i.e., several equivalent solutions can be obtained depending on the
reference frame selected.

As discussed in [4], one of the robots a ∈ V , e.g., the first one a = 1, can be
established as an anchor with state pa

a = 03×1, and the poses of the non-anchor
robots can be expressed relative to the anchor. We call such approaches anchor-
based and add the superscript a to their associated variables. We let V a = V \ {a}
be the set of non-anchor nodes and matrix A a ∈ {0, 1,−1}n−1×m be the result of
deleting the row associated to node a from A in Eq. (3.1). This is the case considered
in our first scenario, where we address the anchor-based planar localization problem
for the case that the relative measurements are noisy. Each edge e = (i, j) ∈ E in
the relative measurements graph G = (V ,E) has associated noisy measurements of
the orientation zθ

e and the position zxy
e of robot j relative to robot i , with associated

covariance matrices Σzθ
e

and Σzxy
e

. We assume that the measurements are independent
since they were acquired individually by the robots. The goal is to estimate the
robot poses p̂a

i of the non-anchor robots i ∈ V a relative to the anchor a from the
noisy relative measurements. We assume that the orientations of the robots satisfy
−π/2 < θi < π/2 for all i ∈ V .

In the second scenario, instead of computing planar robot poses, we consider that
each robot i ∈ V has a p−dimensional state xi ∈ R

p, and that the measurement
ze ∈ R

p associated to an edge e = (i, j) ∈ E relates the states of robots i and j as
follows

ze = x j − xi + ve,

where ve ∼ N
(
0p×p,Σze

)
is a Gaussian additive noise. Thus, we solve a position

localization problem, although the proposed method can be alternatively applied
for estimating speeds, accelerations, or current times. In addition, this method can
be used in a pose localization scenario, provided that the robots have previously
executed an attitude synchronization [25, 30] or a motion coordination [16] strategy
to align their orientations. We estimate the states x̂cen

i of the robots i ∈ V relative
to the centroid of the states, and compare the solution with a classical anchor-based
one x̂a

i . In the following sections we explain in detail the two scenarios.

3.3 Planar Localization from Noisy Measurements 41

3.3 Planar Localization from Noisy Measurements

The problem addressed in this section consists of computing the planar localization
of n ∈ N robots {pa

1, . . . , pa
n}, where pa

i = [
xa

i , ya
i , θa

i

]
for i ∈ {1, . . . , n}, relative

to an anchor robot a, given m ∈ N noisy measurements of relative poses between
robots. There is a single anchor node a ∈ V which is placed at the pose pa

a = 03×1.
By convention, we let the anchor be the first node, a = 1, and denote V a = V \ {a}
the set of non-anchor nodes. Each robot gets noisy measurements of the planar pose
(position and orientation) of nearby robots to estimate its localization with respect
to an anchor node.

Each edge e = (i, j) ∈ E in the relative measurements graph G = (V ,E) has
associated noisy measurements of the orientation zθ

e and the position zxy
e of robot

j relative to robot i , with associated covariance matrices Σzθ
e

and Σzxy
e

. We let

zθ ∈ R
m , zxy ∈ R

2m , Σzθ ∈ R
m×m and Σzxy ∈ R

2m×2m contain information of the
m measurements,

zθ = (zθ
1, . . . , zθ

m)T , zxy = ((zxy
1)T , . . . , (zxy

m)T)T ,

Σzθ = Diag(Σzθ
1
, . . . Σzθ

m
), Σzxy = blkDiag(Σzxy

1
, . . . Σzxy

m
).

We assume that the measurements are independent since they were acquired indi-
vidually by the robots. Thus, the goal is that each robot i ∈ V estimates its pose p̂a

i
relative to this anchor.

This problem is solved by using a three-phases strategy [2]

Phase 1: Compute a suboptimal estimate of the robot orientations θ̃a
V ∈ R

n relative
to the anchor a for all the robots in V ;

Phase 2: Express the position measurements zxy of the robots in terms of the previ-
ously computed orientations;

Phase 3: Compute the estimated poses of the robots p̂a
V = ((x̂a

V)T , (θ̂a
V)T)T.

During the rest of the section, we study the method and present a distributed imple-
mentation.

3.3.1 Centralized Algorithm

Phase 1

During this first phase, an initial estimate of the robot orientations θ̃V a ∈ R
n−1

relative to the anchor a is obtained. This estimate is computed based exclusively
on the orientation measurements zθ ∈ R

m with covariance Σzθ ∈ R
m×m . When the

orientation measurements are considered alone and they belong to ±π
2 , the estimation

problem becomes linear, and the estimated solutions are given by the Weighted Least
Squares,

42 3 Distributed Localization

θ̃a
V a = Σθ̃a

V a
A aΣ−1

zθ
zθ , Σθ̃a

V a
=

(
A aΣ−1

zθ
(A a)T

)−1
, (3.2)

whereA a ∈ {0, 1,−1}n−1×m is the result of deleting the row associated to the anchor
a from the incidence matrix A of the measurement graph in Eq. (3.1). Recall that
the orientation of the anchor is set to zero, θ̃a

i = 0 for i = a. We let θ̃a
V ∈ R

n and
Σθ̃a

V
R

n×n contain the orientation of all the robots in V , including the anchor a,

θ̃a
V = (0, (θ̃a

V a)
T)T , Σθ̃a

V
= Diag(0,Σθ̃a

V a
). (3.3)

Phase 2

Each relative position measurement zxy
e associated to the edge e = (i, j), was orig-

inally expressed in the local coordinates of robot i . During the second phase, these
measurements are transformed into a common orientation using the previously com-
puted θ̃a

V .

For each edge e = (i, j) ∈ E we let R̃e ∈ R
2×2 and S̃e ∈ R

2×2 be the following
matrices associated to the orientation θ̃i of robot i ,

R̃e = R(θ̃a
i) =

[
cos θ̃a

i − sin θ̃a
i

sin θ̃a
i cos θ̃a

i

]

, S̃e = S (θ̃a
i) =

[− sin θ̃a
i cos θ̃a

i

− cos θ̃a
i − sin θ̃a

i

]

,

(3.4)

and let the block diagonal matrix R̃ ∈ R
2m×2m compile information from the m

edges,

R̃ = R(θ̃a
V) = blkDiag(R̃1, . . . , R̃m). (3.5)

The updated pose measurements in the global coordinates w ∈ R
2m+(n−1) and

their associated covariance Σw are

w =
[

z̃xy

θ̃V a

]

=
[

R̃ 0

0 In−1

] [
zxy

θ̃V a

]

,

Σw =
[

K J

0 In−1

] [
Σzxy 0

0 Σθ̃V a

] [
K T 0

J T In−1

]

, (3.6)

where K ∈ R
2m×2m and J ∈ R

2m×(n−1) are the Jacobians of the transformation with
respect to respectively, zxy and θ̃V a ,

K = R̃, and Je,i = S̃e zxy
e if e = (i, j) for some j, and Je,i = 02×1 otherwise.

(3.7)

3.3 Planar Localization from Noisy Measurements 43

Phase 3

During the last phase, the positions of the robots x̂a
V a ∈ R

2(n−1) relative to the anchor

node a are computed, and an improved version θ̂a
V a ∈ R

n−1 of the previous orienta-

tions θ̃a
V a is obtained. Let p̂a

V a ∈ R
3(n−1) contain both, the positions and orientations

of the non-anchor robots,

p̂a
V a =

[
x̂a
V a

θ̂a
V a

]

= Σp̂a
V a

BΣ−1
w w, Σp̂a

V a
=

(
BΣ−1

w BT
)−1

, (3.8)

where B = blkDiag ((A a ⊗ I2), In−1), and Σw and w are given by (3.6). The esti-
mated poses p̂a

V ∈ R
3n of all the robots in V , including the anchor a, are given by

p̂a
V = (0T

3×1, (p̂
a
V a)

T)T , Σp̂a
V

= blkDiag(03×3,Σp̂a
V

). (3.9)

Algorithm

Considering the three phases together, the estimated positions x̂a
V a and orientations

θ̂a
V a of the non-anchor robots are

x̂a
V a = L−1(A a ⊗ I2)Υz̃xy

(
I2m + JΣ

θ̂a
V a

J T Υz̃xy E
)

R̃ zxy,

θ̂a
V a = (A aΣ−1

zθ
(A a)T)−1A aΣ−1

zθ
zθ + Σ

θ̂a
V a

J T Υz̃xy E R̃ zxy, where (3.10)

Υz̃xy = (R̃Σzxy R̃T)−1, E = (A a ⊗ I2)
T L−1(A a ⊗ I2)Υz̃xy − I2m,

Σ
θ̂a
V a

= ((Σθ̃a
V a

)−1 − J T Υz̃xy E J)−1, L = (A a ⊗ I2)Υz̃xy (A
a ⊗ I2)

T , (3.11)

and p̂a
V is obtained from the previous expressions as in Eq. (3.9). A full development

of these expressions can be found in Appendix B. This localization algorithm can
also been used for solving the Simultaneously Localization and Mapping problem
of single-robot systems building graph maps [12, 13].

3.3.2 Distributed Algorithm

From (3.10), it can be seen that the computation of x̂a
V and θ̂a

V involves matrix
inversions and other operations that require the knowledge of the whole system.
Although, a priori the proposed localization strategy would require a centralized
implementation, in the next sections we show a proposal to carry out the computations
in a distributed way.

44 3 Distributed Localization

Phase 1

The initial orientation θ̃a
V in the first phase of the algorithm can be computed in a

distributed fashion using the following Jacobi algorithm [4]. Let each robot i ∈ V
maintain a variable θ̃a

i (t) ∈ R. The anchor i = a keeps its variable equal to zero for
all time steps t ∈ N,

θ̃a
i (0) = 0, θ̃a

i (t + 1) = θ̃a
i (t), for i = a. (3.12)

Each non-anchor robot i ∈ V a initializes its variable at t = 0 with any value θ̃a
i (0),

and updates it at each time step t ∈ N by

θ̃a
i (t + 1) = C−1

i ci + C−1
i

∑

e=(i, j)∈E
(Σzθ

e
)−1θ̃a

j (t) + C−1
i

∑

e=(j,i)∈E
(Σzθ

e
)−1θ̃a

j (t),

(3.13)

where

ci = −
∑

e=(i, j)∈E
(Σzθ

e
)−1zθ

e +
∑

e=(j,i)∈E
(Σzθ

e
)−1zθ

e ,

Ci =
∑

e=(i, j)∈E
(Σzθ

e
)−1 +

∑

e=(j,i)∈E
(Σzθ

e
)−1. (3.14)

The previous expressions are the Jacobi iterations associated to (3.2). Let Υθ̃a
V a

and ηθ̃a
V a

be respectively the information matrix and vector of θ̃a
V a ,

Υθ̃a
V a

= (Σθ̃a
V a

)−1 = A aΣ−1
zθ

(A a)T , ηθ̃a
V a

= A aΣ−1
zθ

zθ . (3.15)

Let C contain the elements in the diagonal of Υθ̃a
V a

,

C = Diag([Υθ̃a
V a

]2,2, . . . , [Υθ̃a
V a

]n,n),

and D be D = C − Υθ̃a
V a

. The first equation in (3.2) can be rewritten as

Υθ̃a
V a

θ̃a
V a = ηθ̃a

V a
, θ̃a

V a = C−1 Dθ̃a
V a + C−1ηθ̃a

V a
. (3.16)

From here, we can write

θ̃a
V a (t + 1) = C−1 Dθ̃a

V a (t) + C−1ηθ̃a
V a

, (3.17)

initialized at t = 0 with θ̃a
V a (0). By operating with A aΣ−1

zθ
zθ and A aΣ−1

zθ
(A a)T ,

it can be seen that (3.13) is the i th row of (3.17). The system (3.17) converges to

3.3 Planar Localization from Noisy Measurements 45

θ̃a
V a in Eq. (3.2), and equivalently each θ̃a

i (t) in (3.13) converges to θ̃a
i for i ∈ V a ,

if the spectral radius of C−1 D is less than 1,

ρ(C−1 D) < 1, (3.18)

and the anchor variable, θ̃a
i (t) with i = a, remains equal to 0 for all the iterations t .

The value ρ(C−1 D) gives the convergence speed of the system, converging faster
for ρ(C−1 D) closer to 0. Recalling that Σzθ is a diagonal matrix, then each variable
θ̃a

i (t) asymptotically converges to the i th entry θ̃a
i of the vector θ̃a

V a in (3.2) [4] that
would be computed by a centralized system.

Observe that the computations are fully distributed and they exclusively rely on
local information. The constants Ci and ci are computed by each robot i ∈ V a using
exclusively the measurements zθ

e and covariances Σzθ
e

of its incoming e = (j, i) or

outgoing edges e = (i, j). Also the variables θ̃a
j (t) used to update its own θ̃a

i (t + 1)

belong to neighboring robots j ∈ Ni .

Phase 2

Let us assume that the robots have executed tmax iterations of the previous algorithm,
and let θ̄a

i be their orientation at iteration tmax, θ̄a
i = θ̃a

i (tmax). Then, the second phase
of the algorithm is executed to transform the locally expressed measurements zxy

into the measurements expressed in the reference frame of the anchor node z̃xy . As
previously stated, the estimated orientations θ̄a

i do not change during this phase (3.6).
Let R̄ = R(θ̄a

V a) be defined by using the orientations θ̄a
i instead of θ̃a

i in (3.5). Since
the matrix R̄ is block diagonal, each robot i ∈ V can locally transform its own local
measurements,

z̄xy
e = R̄ezxy

e , for all e = (i, j) ∈ E . (3.19)

Since the robots use θ̄ instead of θ̃ , also the updated measurements obtained during
the second phase are z̄xy instead of z̃xy . This second phase is local and it is executed
in a single iteration.

Phase 3

In order to obtain the final estimate p̂a
V a , the third step of the algorithm (3.8) appar-

ently requires the knowledge of the covariance matrix Σw, which at the same time,
requires the knowledge of Σθ̃a

V a
. However, a distributed computation of these matri-

ces cannot be carried out in an efficient way. Here we present a distributed algorithm
for computing p̂a

V a .
Let each robot i ∈ V maintain a variable p̂a

i (t) ∈ R
3, composed of its estimated

position x̂a
i (t) ∈ R

2 and orientation θ̂a
i (t) ∈ R, and let p̂a

V (t) be the result of putting
together the pa

i (t) variables for all i ∈ V . The anchor robot keeps its variable equal
to zero for all the iterations,

46 3 Distributed Localization

p̂a
i (0) = 03×1, p̂a

i (t + 1) = p̂a
i (t), for i = a. (3.20)

Each non-anchor robot i ∈ V a initializes its variable at t = 0 with any value p̂a
i (0)

and updates p̂a
i (t) at each time step t ∈ N by

p̂a
i (t + 1) =

[
x̂a

i (t + 1)

θ̂a
i (t + 1)

]

= M−1
i

(
fi (p̂a

V (t)) + mi
)
, (3.21)

where

Mi =
[

M1 M2
M3 M4

]
, fi (pa

V (t)) =
[

f1
f2

]
, mi =

[
m1
m2

]
. (3.22)

Let Υz̃xy
e

be the block within the matrix Υz̃xy in (3.11) associated to an edge e =
(i, j) ∈ E ,

Υz̃xy
e

= R̃e(Σzxy
e

)−1(R̃e)
T . (3.23)

The elements within Mi are

M1 =
∑

e=(i, j)∈E
Υz̃xy

e
+

∑

e=(j,i)∈E
Υz̃xy

e
,

M2 =
∑

e=(i, j)∈E
Υz̃xy

e
S̃e zxy

e ,

M3 =
∑

e=(i, j)∈E
(zxy

e)T (S̃e)
T Υz̃xy

e
,

M4 =
∑

e=(i, j)∈E
(zxy

e)T (S̃e)
T Υz̃xy

e
S̃e zxy

e +
∑

e=(i, j)∈E
(Σzxy

e
)−1 +

∑

e=(j,i)∈E
(Σzxy

e
)−1.

(3.24)

The elements within fi (p̂a
V (t)), which is the term depending on the previous estimates

p̂a
V (t) = (x̂a

V (t)T , ˆθ(t)
a
V)T , are

f1 =
∑

e=(i, j)∈E
Υz̃xy

e
x̂a

j (t) +
∑

e=(j,i)∈E
Υz̃xy

e
x̂a

j (t) +
∑

e=(j,i)∈E
Υz̃xy

e
S̃e zxy

e θ̂a
j (t),

f2 =
∑

e=(i, j)∈E
(zxy

e)T (S̃e)
T Υz̃xy

e
x̂a

j (t) −
∑

e=(i, j)∈E
(Σzxy

e
)−1θ̂a

j (t) −
∑

e=(j,i)∈E
(Σzxy

e
)−1θ̂a

j (t).

(3.25)

3.3 Planar Localization from Noisy Measurements 47

Finally, the terms within mi are

m1 = −
∑

e=(i, j)∈E
Υz̃xy

e
z̃xy

e +
∑

e=(j,i)∈E
Υz̃xy

e
z̃xy

e

+
∑

e=(i, j)∈E
Υz̃xy

e
S̃ezxy

e θ̃a
i −

∑

e=(j,i)∈E
Υz̃xy

e
S̃ezxy

e θ̃a
j ,

m2 = −
∑

e=(i, j)∈E
(zxy

e)T (S̃e)
T Υz̃xy

e
z̃xy

e +
∑

e=(i, j)∈E
(zxy

e)T (S̃e)
T Υz̃xy

e
S̃ezxy

e θ̃a
i

−
∑

e=(i, j)∈E
(Σzθ

e
)−1θ̃a

j −
∑

e=(j,i)∈E
(Σzθ

e
)−1θ̃a

j

+
∑

e=(i, j)∈E
(Σzθ

e
)−1θ̃a

i +
∑

e=(j,i)∈E
(Σzθ

e
)−1θ̃a

i . (3.26)

Theorem 5 The estimates p̂a
i (t) computed by each robot i ∈ V by the distributed

algorithm (3.20)–(3.21) converge to p̂a
i = [(x̂a

i)T θ̂a
i]T for connected measurement

graphs G with ring or string structure.

Proof For the anchor i = a, it is true since p̂a
i (t) = 0 for all the time steps. Now we

focus on the non-anchor nodes in V a . First of all, we show that p̂a
i is an equilibrium

point of the algorithm (3.21) for all i ∈ V a . Let Υp̂a
V a

be the information matrix

associated to p̂a
V a , i.e., Υp̂a

V a
= (Σp̂a

V a
)−1,

Υp̂a
V a

=
[

L −A aΥz̃xy J

−J T Υz̃xy (A
a ⊗ I2)

T A aΣ−1
zθ

(A a)T + J T Υz̃xy J

]

, (3.27)

where L and Υz̃xy are given by (3.11). Analyzing the term BΣ−1
w in (3.8), it can be

seen that

BΣ−1
w =

[
(A a ⊗ I2)Υz̃xy −(A a ⊗ I2)Υz̃xy J

−J T Υz̃xy A aΥ −1
zθ

(A a ⊗ I2)
T + J T Υz̃xy J

]

. (3.28)

If we express the third phase in the following way

Υp̂a
V a

p̂a
V a = B Σ−1

w w, (3.29)

and then we consider the rows associated to robot i , we get

p̂a
i =

[
x̂a

i

θ̂a
i

]

= M−1
i

(
fi (p̂a

V) + mi
)
, (3.30)

with Mi , fi (pa
V (t)) and mi as in (3.22)–(3.26).

48 3 Distributed Localization

Now we prove that the system is convergent. Let M = blkDiag(M2, . . . , Mn)

and q̂a
V a be a permutation of p̂a

V a so that the estimates of each robot appear

together, q̂a
V a =

[
(x̂a

2)T θ̂a
2 , . . . , (x̂a

n)T θ̂a
n

]T
. Equivalently, the permuted version of

the information matrix Υp̂a
V a

is Υq̂a
V a

. The estimates p̂a
i (t) computed by each

robot i ∈ V a with the distributed algorithm (3.21) converge to p̂a
i = [(x̂a

i)T θ̂a
i]T

if ρ(M−1(M − Υq̂a
V a

)) < 1, or equivalently if

ρ(I − M−1Υq̂a
V a

) < 1. (3.31)

Since λ(I − M−1Υq̂a
V a

) = 1 − λ(M−1Υq̂a
V a

), then (3.21) converges if 0 <

λ(M−1Υq̂a
V a

) < 2. The first part 0 < λ(M−1Υq̂a
V a

) can be easily checked taking

into account that both M−1 and Υq̂a
V a

are nonsingular, symmetric, positive definite,

and that λ(M−1Υq̂a
V a

) ≥ λmin(M−1)
λmax(Υq̂a

V a
)

[23, Lemma 1]. Since 0 <
λmin(M−1)

λmax(Υq̂a
V a

)
, then

0 < λ(M−1Υq̂a
V a

).

In order to prove the second part, λ(M−1Υq̂a
V a

) < 2, let us first focus on the
structure of the information matrix Υq̂a

V a
. This matrix has zeros for the elements

associated to non neighboring robots, and thus it is compatible with adj(G) ⊗ I3,
where adj(G) is the adjacency matrix of the graph, and I3 is the 3 × 3 identity
matrix. For ring or string graphs, the adjacency matrix can be reordered grouping
the elements around the main diagonal resulting in a matrix that has semi bandwidth
s = 1, i.e.,

adj(G)i j = 0 for |i − j | > s.

As a consequence, the information matrix Υq̂a
V a

has block semi bandwidth s′ = 1,
and as stated by [23, Theorem 1],

λmax(M−1Υq̂a
V a

) < 2s′ = 2.

�
Due to the structure of the information matrices, the third phase of the algorithm

can be expressed in terms of local information (3.21)–(3.26) and interactions with
neighbors, and thus it can be implemented in a distributed fashion. It is observed
that the robots actually use θ̄a

V instead of θ̃a
V and as a result, the solution obtained

is slightly different from the one in the centralized case. We experimentally analyze
the effects of these differences later in this chapter.

3.4 Centroid-Based Position Estimation from Noisy Measurements 49

3.4 Centroid-Based Position Estimation from Noisy
Measurements

This section discusses a higher dimensional scenario. We addresses the problem of
estimation of position from noisy measurements of the relative positions of neighbors.
The method simultaneously estimates the centroid of the network. Each robot in the
network obtains its three dimensional position relative to the estimated centroid.
The usual approaches to multi-robot localization assume instead that one anchor
robot exists in the network, and the other robots positions are estimated with respect
to the anchor. We show that the studied centroid-based algorithm converges to the
optimal solution, and that such a centroid-based representation produces results that
are more accurate than anchor-based ones, irrespective of the selected anchor [3].
In previous sections we denoted pi the pose of a robot i . Since in this section we
exclusively consider robot positions, for clarity we use a different symbol xi for the
robots variables.

Consider that each robot i ∈ {1, . . . , n} has a p−dimensional state xi ∈ R
p and

it observes the states of a subset of the robots relative to its own state, x j − xi . These
states can be positions in cartesian coordinates or, in other situations, orientations,
speeds, accelerations, or current times. Each edge e = (i, j) ∈ E in the relative mea-
surements graphG = (V ,E) represents that robot i has a noisy relative measurement
ze ∈ R

p of the state of robot j ,

ze = x j − xi + ve, (3.32)

where ve ∼ N
(
0p×p,Σze

)
is a Gaussian additive noise. We let z ∈ R

mp and Σz ∈
R

mp×mp contain the information of the m measurements,

z = (zT
1 , . . . , zT

m)T , Σz = blkDiag(Σz1 , . . . , Σzm). (3.33)

We assume that the measurement graph G is directed and weakly connected, and
that an robot i can exchange data with both its in and out neighbors Ni so that the
associated communication graph is undirected. The estimation from relative mea-
surements problem consists of estimating the states of the n robots from the relative
measurements z. Any solution can be determined only up to an additive constant.
Conventionally [4] one of the robots a ∈ V , e.g., the first one a = 1, is established
as an anchor with state x̂a

a = 0p. We call such approaches anchor-based and add
the superscript a to their associated variables. The Best Linear Unbiased Estimator
of the states x̂a

V a ∈ R
(n−1)p, x̂a

V a = ((x̂a
2)T , . . . , (x̂a

n)T)T, of the non-anchor robots
V a = V \ {a} relative to a are obtained as follows [4],

x̂a
V a = Σx̂a

V a

(
A a ⊗ Ip

)
Σ−1

z z, Σx̂a
V a

=
(
(A a ⊗ Ip)Σ

−1
z (A a ⊗ Ip)

T
)−1

,

(3.34)

50 3 Distributed Localization

where A a ∈ R
(n−1)×m is the incidence matrix of G as in Eq. (3.1), but without

the row associated to the anchor a. From now on, both x̂a
V = (0T

p , (x̂a
V a)

T)T and

Σx̂a
V

= blkDiag
(

0p×p,Σx̂a
V a

)
, include the estimated state of the anchor a as well.

3.4.1 Position Estimation Relative to an Anchor

We present first distributed strategies where each robot i iteratively estimates its
own position relative to an anchor through local interactions with its neighbors Ni .
Among the different existing methods for estimating the states x̂a

V relative to an
anchor, we present the Jacobi algorithm [4], although other distributed methods such
as the Jacobi Overrelaxation [8], or the Overlapping Subgraph Estimator [5] could
alternatively be applied. The approach in [28], based on the cycle structure of the
graph, could be used as well, although it requires multi-hop communication.

Considering Eq. (3.34), it can be seen that computing x̂a
V a is equivalent to finding

a solution to the system Υ x̂a
V a = η, being η and Υ the information vector and matrix

associated to x̂a
V a and Σx̂a

V a
,

η = (
A a ⊗ Ip

)
Σ−1

z z, Υ = (
A a ⊗ Ip

)
Σ−1

z
(
A a ⊗ Ip

)T
. (3.35)

This can be iteratively solved with the Jacobi method [8], where the variable x̂a
V a (t) ∈

R
(n−1)p is initialized with an arbitrary value x̂a

V a (0) and it is updated at each step t
with the following rule,

x̂a
V a (t + 1) = D−1 N x̂a

V a (t) + D−1η, (3.36)

being D, N the following decomposition of Υ = [Υi j]:

D = blkDiag(Υ22, . . . , Υnn), N = D − Υ. (3.37)

The previous variable x̂a
V a (t) converges to x̂a

V a if the Jacobi matrix J = D−1 N has
spectral radius less than or equal to one, ρ(J) = ρ(D−1 N) < 1. The interest of the
Jacobi method is that it can be executed in a distributed fashion when the information
matrix Υ is compatible with the graph (if j /∈ Ni then Υi j = Υ j i = 0p×p), and when
in addition the rows of Υ and of η associated to each robot i ∈ V a only depend on
data which is local to robot i . Next, the general anchor-based estimation algorithm [4]
based on the Jacobi method is presented. It allows each robot i ∈ V to iteratively
estimate its own x̂a

i within x̂a
V a = ((x̂a

2)T , . . . , (x̂a
n)T)T in a distributed fashion.

Algorithm 3 Let each robot i ∈ V have a variable x̂a
i (t) ∈ R

p initialized at t = 0
with x̂a

i (0) = 0p. At each time step t , each robot i ∈ V updates x̂a
i (t) with

3.4 Centroid-Based Position Estimation from Noisy Measurements 51

x̂a
i (t + 1) =

∑

j∈Ni

MiBi j x̂a
j (t) +

∑

e=(j,i)∈E
MiΣ

−1
ze

ze −
∑

e=(i, j)∈E
MiΣ

−1
ze

ze,

(3.38)

where Mi andBi j are p × p matrices with Mi = 0 for i = a, Mi = (
∑

j∈Ni
Bi j)

−1

for i �= a, and

Bi j =
⎧
⎨

⎩

Σ−1
ze

+ Σ−1
ze′ if e = (i, j), e′ = (j, i) ∈ E

Σ−1
ze

if e = (i, j) ∈ E , (j, i) /∈ E
Σ−1

ze
if e = (j, i) ∈ E , (i, j) /∈ E

. (3.39)

The convergence of this estimation algorithm has been proved [4, Theorem 1] for
connected measurement graphs with independent relative measurements, under the
assumption that either

(i) The covariance matrices of the measurements are exactly diagonal; or
(ii) All measurements have exactly the same covariance matrix.

However, we would like the algorithm presented here to be applicable to a wider case
of relative noises, in particular to independent noises, with not necessarily diagonal or
equal covariance matrices. Next we use results on block matrices [17], see Appendix
B, to prove the convergence of the Jacobi algorithm for this more general case.

Theorem 6 Let the measurement graph G be weakly connected, Σz1 , . . . , Σzm be
the covariance matrices, not necessarily equal or diagonal, associated to m inde-
pendent p−dimensional measurements, and Σz be their associated block-diagonal
covariance matrix as in Eq. (3.33). Then, the spectral radius of D−1 N, with D and
N computed as in Eqs. (3.35)–(3.37), is less than 1,

ρ(D−1 N) < 1. (3.40)

Proof In order to prove (3.40) we use the definitions and results in Appendix B.
We first analyze the contents of Υ and show that Υ is of class Z p

n−1 according to
Definition 6 in Appendix B. Then, we use Lemma 4 and Theorem 9 to show that Υ

is of class M p
n−1 as in Definition 6. Finally, we show that Υ + Υ T ∈ M p

n−1 and use
Theorem 10 to prove (3.40). Note that the subscript n − 1 used in this proof instead
of n comes from the fact that Υ = [Υi j], with i, j ∈ V a and |V a | = n − 1.

We first analyze the contents of the information matrix Υ given by Eq. (3.35).
Each block Υi j of the information matrix Υ is given by

Υi j =
{−Bi j if j ∈ Ni , j �= i

0 if j /∈ Ni , j �= i
, and Υi i =

∑

j∈Ni

Bi j , (3.41)

http://dx.doi.org/10.1007/978-3-319-25886-7_6
http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_9
http://dx.doi.org/10.1007/978-3-319-25886-7_6
http://dx.doi.org/10.1007/978-3-319-25886-7_10

52 3 Distributed Localization

for i, j ∈ V a , where Bi j is given by Eq. (3.39). Note that Bi j is symmetric and that
Bi j � 01 and thus −Bi j ≺ 0 and symmetric. Therefore, matrix Υ is of class Z p

n−1
according to Definition 6.

Now we focus on Lemma 4. We are interested in showing that, given any subset
of robots J ⊂ V a , there exists i ∈ J such that

∑
j∈J Υi j � 0. First we analyze

the case J = V a . Observe that Υ does not have any rows or columns associated to
the anchor robot a, i.e., Υ = [Υi j] with i, j ∈ V a . On the other hand, for each robot
i that has the anchor a as a neighbor, a ∈ Ni , the block Υi i includes Bia . Therefore,∑

j∈V a Υi j � 0 for all i ∈ V a , specifically

∑

j∈V a

Υi j = 0 if a /∈ Ni , and
∑

j∈V a

Υi j = Bia � 0, when a ∈ Ni . (3.42)

Since G is connected, a ∈ Ni for at least one robot i ∈ V a . Now consider a proper
subset J � V a . Note that for each i ∈ J � V a ,

∑

j∈J
Υi j = 0 if Ni ⊆ J , and

∑

j∈J
Υi j =

∑

j∈Ni \J
Bi j � 0, otherwise.

(3.43)

Since G is connected, given any proper subset J � V a of robots, there is always
a robot i ∈ J that has at least one neighbor outside J or that has the anchor a as
a neighbor, for which

∑
j∈J Υi j � 0. Therefore Lemma 4 holds, and by applying

Theorem 9 taking u2, . . . , un = 1 we conclude that matrix Υ ∈ M p
n−1. Since Υ

is symmetric, then Υ + Υ T ∈ M p
n−1, and by [17, Theorem 4.7] we conclude that

ρ(D−1 N) < 1. �

Corollary 4 Let G be connected, Σz1, . . . , Σzm be the covariance matrices asso-
ciated to m independent p−dimensional measurements, and Σz be their associated
block-diagonal covariance matrix as in Eq. (3.33). Consider that each robot i ∈ V
executes the Algorithm 3 to update its variable x̂a

i (t). Then, for all i ∈ V ,

lim
t→∞ x̂a

i (t) = x̂a
i , (3.44)

converges to the anchor-based centralized solution x̂a
i given by Eq. (3.34). �

1 A � B (A � B) represent that matrix A − B is positive-definite (positive-semidefinite). Equiva-
lently, ≺, � are used for negative-definite and negative-semidefinite matrices.

http://dx.doi.org/10.1007/978-3-319-25886-7_6
http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_9

3.4 Centroid-Based Position Estimation from Noisy Measurements 53

3.4.2 Centralized Centroid-Based Position Estimation

The accuracy of the estimated states x̂a
V , Σx̂a

V
in anchor-based approaches depend

on the selected anchor a. Instead of that it is more interesting to compute the states
of the robots x̂cen

V , Σx̂cen
V

relative to the centroid given by the average of the states,

x̂cen
V = (I − Hcen) x̂a

V , Σx̂cen
V

= (I − Hcen)Σx̂a
V

(I − Hcen)
T , (3.45)

where Hcen = (
1n ⊗ Ip

) (
1n ⊗ Ip

)T
/n.

The value of this representation is that the states of the robots x̂cen
V , Σx̂cen

V
with respect

to the centroid are the same regardless of the anchor robot, i.e., the centroid solution
is unique. Additionally, as the following result shows, it produces more accurate
estimates than the ones provided by any anchor selection. We compare the block-
traces2 blkTr of their covariance matrices [6].

Proposition 5 The covariance matrices of the centroid-based Σx̂cen
V

and anchor-
based Σx̂a

V
estimates satisfy, for all anchors a ∈ V ,

blkTr
(
Σx̂cen

V

)
� blkTr

(
Σx̂a

V

)
, Tr

(
Σx̂cen

V

)
≤ Tr

(
Σx̂a

V

)
. (3.46)

Proof Let Pi j and Qi j be the p × p blocks of, respectively, the anchor and the
centroid-based covariances, Σx̂a

V
= [Pi j], Σx̂cen

V
= [Qi j] with i, j ∈ V . The block-

trace of the anchor-based covariance matrix is

blkTr
(
Σx̂a

V

)
=

n∑

i=1

Pii . (3.47)

Considering Eq. (3.45), each block in the main diagonal of the centroid-based Σx̂cen
V

covariance matrix is given by

Qii = Pii − 1

n

n∑

j=1

(
Pi j + Pji

) + 1

n2

n∑

j=1

n∑

j ′=1

Pj j ′ , (3.48)

for i ∈ V , and thus its block-trace is

blkTr
(
Σx̂cen

V

)
=

n∑

i=1

Qii =
n∑

i=1

Pii − 1

n

n∑

i=1

n∑

j=1

Pi j

= blkTr
(
Σx̂a

V

)
− (1n ⊗ Ip)

T Σx̂a
V

(1n ⊗ Ip)/n. (3.49)

2The block-trace of a matrix defined by blocks P = [Pi j] with i, j ∈ {1, . . . , n} is the sum of its
diagonal blocks, blkTr(P) = ∑n

i=1 Pii .

54 3 Distributed Localization

SinceΣx̂a
V

is symmetric and positive-semidefinite, then (1n ⊗ Ip)
T Σx̂a

V
(1n ⊗ Ip) �

0, and thus blkTr
(
Σx̂cen

V

)
− blkTr

(
Σx̂a

V

)
� 0, as in Eq. (3.46). Observe that the

trace of the block-trace of a matrix A is equal to its trace, Tr(blkTr(A)) = Tr(A).

Since blkTr
(
Σx̂cen

V

)
− blkTr

(
Σx̂a

V

)
� 0, the elements in the main diagonal of

blkTr
(
Σx̂cen

V

)
are smaller than or equal to the ones in the main diagonal of

blkTr
(
Σx̂a

V

)
so that

Tr(Σx̂cen
V

) = Tr(blkTr(Σx̂cen
V

)) ≤ Tr(blkTr(Σx̂a
V

)) = Tr(Σx̂a
V

).

�
In particular, from Eq. (3.49), Tr(Σx̂a

V
) − Tr(Σx̂cen

V
) = 1

n

∑n
i=1

∑n
j=1 Tr(Pi j). Note

that the previous result holds when the anchor state x̂a
a is set to a general value,

not necessarily 0. It also holds when there is more than one anchor. Consider
that the first k robots are anchors. In this case, matrix Σx̂a

V
= [Pi j] has its blocks

Pi j = 0 for i, j ∈ {1, . . . , k}, and Eq. (3.49) gives blkTr(Σx̂cen
V

) = blkTr(Σx̂a
V

) −
∑n

i=k+1
∑n

j=k+1 Pi j/n, where
∑n

i=k+1
∑n

j=k+1 Pi j/n � 0.

We propose an algorithm that allows each robot i ∈ V to compute its state x̂cen
i

with respect to the centroid in a distributed fashion, where x̂cen
V is given in Eq. (3.45),

x̂cen
V = ((x̂cen

1)T , . . . , (x̂cen
n)T)T . These states sum up to zero, x̂cen

1 + · · · + x̂cen
n = 0,

since (1n ⊗ Ip)(I − Hcen) = 0, and for neighboring robots i and j satisfy x̂cen
i =

x̂cen
j − x̂a

j + x̂a
i . Thus, a straightforward solution would consist of firstly computing

the anchor-based states of the robots x̂a
V = ((x̂a

1)T , . . . , (x̂a
n)T)T , and in a second

phase initializing the robots’ variables so that they sum up to zero, x̂cen
i (0) = 0, for

i ∈ V , and updating them at each step t with an averaging algorithm that conserves
the sum:

x̂cen
i (t + 1) =

∑

j∈Ni ∪{i}
Wi, j (x̂cen

j (t) − x̂a
j + x̂a

i), (3.50)

for i ∈ V , whereW = [Wi, j] is a doubly stochastic weight matrix such thatWi, j > 0
if (i, j) ∈ E and Wi, j = 0 when j /∈ Ni . Besides, Wi,i ∈ [α, 1], Wi, j ∈ {0} ∪ [α, 1]
for all i, j ∈ V , for some α ∈ (0, 1]. More information about averaging algorithms
can be found in Appendix A and at [9, 26, 37]. The term −x̂a

j + x̂a
i is the rel-

ative measurement ze with e = (j, i) for noise free scenarios, and the optimal
or corrected measurement [28] ẑe for the noisy case, ẑ = (A ⊗ Ip)

T x̂a
V , with

ẑ = ((ẑ1)
T , . . . , (ẑm)T)T . In what follows we propose an algorithm where, at each

iteration t , (3.50) is executed not on the exact x̂a
i , x̂a

j , but on the most recent estimates
x̂a

i (t), x̂a
j (t) obtained with Algorithm 3.

3.4 Centroid-Based Position Estimation from Noisy Measurements 55

3.4.3 Distributed Centroid-Based Position Estimation

Now we study a distributed localization algorithm for estimating the position the
robots relative to the centroid.

Algorithm 4 Let each robot i ∈ V have an estimate of its own state relative to the
centroid, x̂cen

i (t) ∈ R
p, initialized at t = 0 with x̂cen

i (0) = 0. At each time step t ,
each robot i ∈ V updates x̂cen

i (t) with

x̂cen
i (t + 1) =

∑

j∈Ni ∪{i}
Wi, j (x̂cen

j (t) + x̂a
i (t) − x̂a

j (t)), (3.51)

where x̂a
i (t), x̂a

j (t) are the most recent estimates that robots i and j have at iteration
t of the variables in Algorithm 3 and Wi, j are the Metropolis weights as defined in
Eq. (A.3) in Appendix A.

Theorem 7 Let all the robots i ∈ V execute the Algorithm 4 and letG be connected.
Then, the estimated states x̂cen

i (t) at each robot i ∈ V asymptotically converge to
the state of i relative to the centroid x̂cen

i given by Eq. (3.45),

lim
t→∞ x̂cen

i (t) = x̂cen
i . (3.52)

Let ecen(t) = [
(x̂cen

1 (t) − x̂cen
1)T , . . . , (x̂cen

n (t) − x̂cen
n)T

]T
be the error vector con-

taining the estimation errors of the n robots at iteration t. For fixed communication
graphs G , the norm of the error vector after t iterations of Algorithm 4 satisfies

||ecen(t)||2 ≤ λt
eff(W)||ecen(0)||2 + 2p(n − 1)σJ λt

eff(W)

t∑

k=1

(
ρ(J)

λeff(W)

)k

,

(3.53)

where J is the Jacobi matrix J = D−1 N, with D and N computed as in Eqs. (3.35)–
(3.37), σJ is a constant that depends on the initial Jacobi error and on J . W is the
Metropolis weight matrix as defined in Eq. (A.3) in Appendix A, and ecen(0) is the
initial error at t = 0.

Proof First of all, we derive the expression for the convergence rate in Eq. (3.53). We
express Algorithm 4 in terms of the error vectors associated to the centroid ecen(t)
and the anchor-based ea(t) ∈ R

(n−1)p estimation methods (Algorithms 3 and 4),

ecen(t) =
[
(x̂cen

1 (t))T , . . . , (x̂cen
n (t))T

]T − x̂cen
V ,

56 3 Distributed Localization

with x̂cen
V = [

(x̂cen
1)T , . . . , (x̂cen

n)T
]T

given by Eq. (3.45), and

ẽa(t) =
[
(x̂a

2(t)T , . . . , x̂a
n(t)T

]T − x̂a
V a ,

with x̂a
V a = [

(x̂a
2)T , . . . , (x̂a

n)T
]T

given by Eq. (3.34), where for simplicity we
let the robot i = 1 be the anchor a. We let ea(t) be (0T

p , ẽa(t)T)T . Recall that∑
j∈Ni ∪{i} x̂a

i (t) = x̂a
i (t) and that the estimated states relative to the centroid x̂cen

V

are x̂cen
V = (I − Hcen)x̂a

V as in Eq. (3.45). Algorithm 4 becomes

ecen(t) = (W ⊗ Ip)ecen(t − 1) + ((In − W) ⊗ Ip)ea(t − 1) + P x̂a
V , (3.54)

where the term P that is multiplying x̂a
V is

P = I − (W ⊗ Ip) − (I − (W ⊗ Ip))(I − Hcen) = (I − (W ⊗ Ip))Hcen . (3.55)

We use the fact that (W ⊗ Ip)Hcen = Hcen , and the previous expression gives P = 0
and Eq. (3.54) becomes

ecen(t) = (W ⊗ Ip)ecen(t − 1) + ((In − W) ⊗ Ip)ea(t − 1)

= (W ⊗ Ip)
t ecen(0) +

t−1∑

k=0

(W ⊗ Ip)
t−k−1 (

(I − W) ⊗ Ip
)

ea(k). (3.56)

Then, the norm of the error ecen(t) satisfies

‖ecen(t)‖2 ≤ λt
eff(W)‖ecen(0)‖2 + 2

t−1∑

k=0

λt−k−1
eff (W)‖ea(k)‖2, (3.57)

where we have used the fact that ‖ (
(W − I) ⊗ Ip

) ‖2 ≤ 2 since W is the Metropolis
weight matrix given by Eq. (A.3) in Appendix A.

We analyze now the norm of error ‖ea(t)‖2, which is related to the error vector
of the Jacobi algorithm ẽa(t) ∈ R

(n−1)p by ea(t) = (0, ẽT
a (t))T . Let J be the Jacobi

matrix, and VJ = [
vp+1(J), . . . , vnp(J)

]
and λJ = Diag

(
λp+1(J), . . . , λnp(J)

)
be

its associated eigenvectors and eigenvalues so that J = VJ λJ V −1
J , and ||vi (J)||2 =

1. The error vector ẽa(t) evolves according to

ẽa(t) = J ẽa(t − 1) = J t ẽa(0). (3.58)

3.4 Centroid-Based Position Estimation from Noisy Measurements 57

For each initial error vector ẽa(0) there exist σp+1, . . . , σnp such that

ẽa(0) =
np∑

i=p+1

σi vi (J),

and then the error vector ẽa(t) after t iterations of the Jacobi algorithm given by
Eq. (3.58) can be expressed as

ẽa(t) = VJ λt
J V −1

J VJ
[
σp+1, . . . , σnp

]T =
np∑

i=p+1

σi vi (J)λt
i (J).

Let σJ = maxnp
i=p+1 |σi |, and ρ(J) = maxnp

i=p+1 |λi (J)|. For all t ≥ 0, the norm of
the error vector ||ẽa(t)||2 satisfies

||ea(t)||2 = ||ẽa(t)||2 ≤ p(n − 1)σJ ρt (J). (3.59)

Linking this with Eq. (3.57) gives that the convergence rate is

‖ecen(t)‖2 ≤ λt
eff(W)‖ecen(0)‖2 + 2p(n − 1)σJ

t−1∑

k=0

λt−k−1
eff (W)ρk(J), (3.60)

as in Eq. (3.53).
Now we prove the asymptotical convergence to the centroid (3.52). If both the

Jacobi and the general algorithm have the same convergence rate, ρ(J) = λeff(W),
then Eq. (3.60) gives

||ecen(t)||2 ≤ λt
eff(W)||ecen(0)||2 + 2p(n − 1)σJ λt−1

eff (W)t, (3.61)

whereas for ρ(J) �= λeff(W), it gives

||ecen(t)||2 ≤ λt
eff(W)||ecen(0)||2 + 2p(n − 1)σJ

ρ(J) − λeff(W)
(ρt (J) − λt

eff(W)). (3.62)

Note that λeff(W) < 1 for connected graphs G . Then, the term λt
eff(W)||ecen(0)||2

in Eqs. (3.61) and (3.62) exponentially tends to zero as t → ∞ regardless of the
initial error ecen(0). For the case ρ(J) = λeff(W), the term λt

eff(W)t in Eq. (3.61)

is decreasing for t ≥ λeff (W)
1−λeff (W)

and thus it tends to zero as t → ∞. For ρ(J) �=
λeff(W), the term (ρt (J) − λt

eff(W)) in Eq. (3.62) asymptotically tends to zero
since λeff(W) is less than 1, and as stated by Theorem 6, ρ(J) < 1. Therefore,
limt→∞ ||ecen(t)||2 = 0, where ||ecen(t)||2 = 0 iff ecen(t) = 0, what concludes the
proof. �

58 3 Distributed Localization

3.5 Simulations

Planar Localization from Noisy Measurements

A set of simulations have been carried out to show the performance of the method
for planar localization from noisy measurements, and to compare the results of the
centralized (Sect. 3.3.1) and the distributed (Sect. 3.3.2) approaches.

First, a team of n = 20 robots are placed in a ring of radius 4 m with their orien-
tations randomly generated within ±π

2 (Fig. 3.1a). Each robot measures the relative
pose of the next robot, with noises in the x- and y- coordinates of 6 cm standard devi-
ation, and of 1 degree for the orientation. The robots execute the proposed method to
compute their pose with respect to the anchor node R1. The experiment is repeated
100 times and the average results can be seen in Table 3.1. The first rows show the
solution computed by the localization algorithm in Sect. 3.3.1, and the next rows
compare the distributed implementation of the algorithm (Sect. 3.3.2) against the
results obtained by the centralized algorithm in Sect. 3.3.1. We use the flagged ini-
tialization [4] that is known to produce fast convergence results. The convergence
speeds during the first and the third phases depend on the values of respectively
ρ(C−1 D) in (3.18) and ρ(I − M−1Υq̂a

V a
) in (3.31), which here are close to one

(slow convergence). The second phase is always executed in a single iteration (it
does not have any convergence speed associated). After executing the first phase for
t = 50 iterations, the obtained θ̄a

V still differs from the centralized solution θ̃a
V by

around 0.16◦. If we increase the number of iterations we obtain better approximations
that differ only by 0.01 (t = 100) and 8.5e − 05 (t = 200) degrees. The next three
rows show the results after executing the second phase followed by 200 iterations
of the third phase. Since the second and third phases have been executed using θ̄a

V
instead of θ̃a

V , the final results also differ. For the case t = 200 (third column), the
difference between the pose estimated by the distributed and centralized approaches

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

R 1

R 5

R 10

R 15

R 20

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

5

R 1

R 2

R 3

R 4
R 5

R 6

R 7
R 8

R 9

R 10

20 robots in a ring of 4m radius 10 robots in general positions

(a) (b)

Fig. 3.1 Scenarios tested. Each robot (triangles) measures the relative pose of other team members
(outgoing arrows). Robots connected by an arrow can exchange data

3.5 Simulations 59

Table 3.1 Results for the scenario in Fig. 3.1a

Localization results versus ground truth

Max error Average standard deviation

Orientation phase 1 3.38◦ 1.87◦

x-coordinate phase 3 27.85 cm 13.45 cm

y-coordinate phase 3 24.33 cm 12.31 cm

Orientation phase 3 4.03◦ 1.66◦

Distributed implementation (flagged-initialization)

ρ(C−1 D) 0.99

ρ(I − M−1Υq̂a
V a

) 0.99

Max error t = 50 t = 100 t = 200

Orientation phase 1 0.16◦ 0.01◦ 8.5e − 05◦

x-coordinate phase 3 1.74 cm 1.64 cm 1.64 cm

y-coordinate phase 3 0.84 cm 0.49 cm 0.48 cm

Orientation phase 3 0.29◦ 0.12◦ 0.11◦

is small (1.64 and 0.48 cm for the x- and y- coordinates, and 0.11 degrees for the
orientation), and similar results are obtained for t = 100.

Other simulation with 10 robots placed as in Fig. 3.1b has been carried out. If
there is an arrow from robot i into j , then robot i measures the relative pose of robot
j , with additive noises of 2.5 degrees of standard deviation for the orientation, and of
5 % d and 0.7 % d standard deviation for respectively the x and y-coordinates, where
d is the distance between the robots. The robots execute the distributed algorithm
during the phase 1 to compute their orientations with respect to the anchor node
R1 (Fig. 3.2a), obtaining estimates (blue) very close to the ground truth data (red).
They execute phase 2 to express the relative position measurements in the reference

−2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

R 1

R 2

R 3

R 4
R 5

R 6

R 7
R 8

R 9

R 10

−2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

R 1

R 2

R 3

R 4
R 5

R 6

R 7
R 8

R 9

R 10

Phase3Phase1

(a) (b)

Fig. 3.2 The robots estimate their poses (blue dashed) relative to the anchor R1 for the experiment
in Fig. 3.1b. The ground truth data (red solid) and the covariances computed by the centralized
approach (blue solid) are also displayed

60 3 Distributed Localization

8 8.5 9 9.5 10 10.5 11 11.5
−4.5

−4

−3.5

−3

−2.5

−2
Centr.
t=0
t=1
t=3
t=7
t=15
t=31
t=63
t=100

−2 0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

Centr.
t=0
t=200
t=400
t=600
t=800
t=1000
t=1200
t=1400

Phase 3Phase 1

(a) (b)

Fig. 3.3 Detail of phases 1 and 3 of the proposed strategy. The estimates of robot R10 (gray)
successively approach the centralized solution (blue)

frame of the anchor node. Finally, they execute the phase 3 to obtain both, their
positions and orientations relative to the anchor node (Fig. 3.2b). Figure 3.3 shows
a detail of the iterations during phases 1 and 3. Although the convergence was pre-
viously proved only for graphs with low connectivity (ring or string graphs), in the
experiments with general communication graphs the algorithm has been found to
converge as well.

Centroid-Based Noisy Position Localization

We study the performance of the algorithm presented in Sect. 3.4 in a multi-robot
localization scenario (Fig. 3.4) with n = 20 robots (black circles) that get noisy mea-
surements (gray crosses and ellipses) of the position of robots which are closer than

0 2 4 6 8 10

0

2

4

6

8

10

R 1
R 2

R 3

R 4

R 5

R 6

R 7

R 8

R 9

R 10

R 11

R 12

R 13

R 14

R 15

R 16

R 17

R 18

R 19

R 20

1 2 3 4 5 6
5

6

7

8

9

10

11

R 19

R 3R 8

R 13R 14 R 18

Ground truth scenario Measurements of 19’s positionR

(a) (b)

Fig. 3.4 a 20 robots (black circles) are placed randomly in a region of 10 × 10 m. There is an edge
e = (i, j) ∈ E (red arrows) between pairs of robots that are closer than 4 m. b Each robot i has
a noisy measurement ze (gray crosses and ellipses) of the relative position of its out-neighbors j ,
with e = (i, j). The noises are proportional to the distance between the robots

3.5 Simulations 61

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

900 920 940 960 980 1000
0.8
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 200 400 600 800 1000
0
2

4

6

8

10

12

14

16

18

900 920 940 960 980 1000
0.94
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Anchor-based errors Last 100 iterations of (a)

Centroid-based errors Last 100 iterations of (c)

(a) (b)

(c) (d)

Fig. 3.5 The experiment in Fig. 3.4 is generated 100 times with the same noise levels but different
noise values. We display the average norm of the error with the difference between the estimates
and the ground truth for the 100 different experiments. a Results of Algorithm 3 when each robot
i ∈ V is used as the anchor (gray lines). The special cases that the anchor is R1, R3 and R12 are
shown in blue. The black line is the asymptotic error reached with the centroid-based estimation.
b Detail of iterations 900–1000 in (a). c Results of Algorithm 4 using all the possible anchors.
d Detail of iterations 900–1000 in (c)

4 m. We analyze the states estimated by the n robots along 1000 iterations of the
proposed algorithm (Fig. 3.5). Robots initialize their states x̂a

i (t), x̂cen
i (t) with zeros

and execute Algorithms 3 and 4. We generate specific noises as the ones in Fig. 3.4
for 100 different samples. For each of them, we record the norm of the error vector
containing the difference between the estimates at the n robots and the ground-truth
positions at each iteration t . In Fig. 3.5a we show the results of Algorithm 3 when
each robot i ∈ V is used as the anchor (gray lines). The most and least precise
anchor-based results, which are obtained for respectively R3 and R12, are shown
in blue. The results for robot R1, which is conventionally used as the anchor, are
displayed in blue as well. The black line is the asymptotic error reached with the
centroid-based estimation method. As it can be seen, the errors reached with the
anchor-based solutions are greater than the ones associated to the centroid. This is
even more evident in Fig. 3.5b, which shows the last 100 iterations in Fig. 3.5a. In

62 3 Distributed Localization

Fig. 3.5c we show the equivalent errors for the centroid-based estimation algorithm
(Algorithm 4), using all the possible anchors for Algorithm 3. Here, in all cases the
error estimates (gray lines) converge to the asymptotic error of the centroid-based
estimation method (black line).

3.6 Closure

Along this chapter, the problem of network localization has been studied for different
scenarios: the estimation of the planar localization with respect to an anchor from
noisy relative measurements, and the estimation of higher dimension positions with
respect to the, simultaneously computed, centroid of the network using also noisy
measurements. We have analyzed distributed strategies that allow the robots to agree
on a common global frame, and to compute their poses relative to the global frame.
The presented algorithms exclusively rely on local computations and data exchange
with direct neighbors. Besides, they only require the robots to maintain their own
estimated poses relative to the common frame. Thus, the memory load of the algo-
rithm is low compared to methods where each robot must also estimate the positions
or poses of any other robot. We have discussed the performance of the planar pose
localization algorithm relative to an anchor node, for ring or string topologies. The
centroid-based position localization method has been studied to produce more accu-
rate results than any anchor-based solution. Besides, in the experiments we have
shown that it converges faster than the anchor-based solutions.

References

1. B.D.O. Anderson, I. Shames, G. Mao, B. Fidan, Formal theory of noisy sensor network local-
ization. SIAM J. Discret. Math. 24(2), 684–698 (2010)

2. R. Aragues, L. Carlone, G. Calafiore, C. Sagues, Multi agent localization from noisy relative
pose measurements, in IEEE International Conference on Robotics and Automation , Shanghai,
China, May 2011, pp. 364–369

3. R. Aragues, L. Carlone, C. Sagues, G. Calafiore, Distributed centroid estimation from noisy
relative measurements. Syst. Control Lett. 61(1), 773–779 (2012)

4. P. Barooah, J. Hespanha, Distributed estimation from relative measurements in sensor networks,
in International Conference on Intelligent Sensing and Information Processing, Chennai, India,
January 2005, pp. 88–93

5. P. Barooah, J. Hespanha, Estimation on graphs from relative measurements. IEEE Control Syst.
Mag. 27(4), 57–74 (2007)

6. P. Barooah, J. Hespanha, Error scaling laws for linear optimal estimation from relative mea-
surements. IEEE Trans. Inf. Theory 55(12), 5661–5673 (2009)

7. D.J. Bennet, C.R. McInnes, Distributed control of multi-robot systems using bifurcating poten-
tial fields. Robot. Auton. Syst. 58(3), 256–264 (2010)

8. D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods
(Athena Scientific, 1997)

References 63

9. F. Bullo, J. Cortes, S. Martinez, Distributed Control of Robotic Networks. Applied Mathematics
Series (Princeton University Press, 2009). Electronically available at http://coordinationbook.
info

10. G. Calafiore, L. Carlone, M. Wei, A distributed gauss-newton approach for range-based local-
ization of multi agent formations, in IEEE Multi-Conference on Systems and Control, Yoko-
hama, Japan, September 2010, pp. 1152–1157

11. G. Calafiore, L. Carlone, M. Wei, A distributed gradient method for localization of forma-
tions using relative range measurements, in IEEE Multi-Conference on Systems and Control,
Yokohama, Japan, September 2010, pp. 1146–1151

12. L. Carlone, R. Aragues, J.A. Castellanos, B. Bona, A first-order solution to simultaneous
localization and mapping with graphical models, in IEEE International Conference on Robotics
and Automation, Shanghai, China, May 2011, pp. 1764–1771

13. L. Carlone, R. Aragues, J.A. Castellanos, B. Bona, A linear approximation for graphbased
simultaneous localization and mapping, in Robotics: Science and Systems, Los Angeles, CA,
USA, June 2011

14. S. Carpin, Fast and accurate map merging for multi-robot systems. Auton. Robot. 25(3), 305–
316 (2008)

15. S. Carpin, A. Birk, V. Jucikas, On map merging. Robot. Auton. Syst. 53(1), 1–14 (2005)
16. J. Cortes, Global and robust formation-shape stabilization of relative sensing networks. Auto-

matica 45(12), 2754–2762 (2009)
17. L. Elsner, V. Mehrmann, Convergence of block iterative methods for linear systems arising in

the numerical solution of Euler equations. Numerische Mathematik 59(1), 541–559 (1991)
18. J.A. Fax, R.M. Murray, Information flow and cooperative control of vehicle formations. IEEE

Trans. Autom. Control 49(9), 1465–1476 (2004)
19. M. Franceschelli, A. Gasparri, On agreement problems with gossip algorithms in absence of

common reference frames, in IEEE International Conference on Robotics and Automation,
Anchorage, USA, May 2010, pp. 4481–4486

20. J.J. Guerrero, A.C. Murillo, C. Sagues, Localization and matching using the planar trifocal
tensor with bearing-only data. IEEE Trans. Robot. 24(2), 494–501 (2008)

21. M. Ji, M. Egerstedt, Distributed coordination control of multiagent systems while preserving
connectedness. IEEE Trans. Robot. 23(4), 693–703 (2007)

22. J. Knuth, P. Barooah, Distributed collaborative localization of multiple vehicles from relative
pose measurements, in Allerton Conference on Communications, Control and Computing,
Urbana-Champaign, USA, October 2009, pp. 314–321

23. L. Kolotilina, Bounds for eigenvalues of symmetric block Jacobi scaled matrices. J. Math. Sci.
79(3), 1043–1047 (1996)

24. G. Lafferriere, A. Williams, J. Caughman, J.J.P. Veerman, Decentralized control of vehicle
formations. Syst. Control Lett. 54(9), 899–910 (2005)

25. N. Mostagh, A. Jadbabaie, Distributed geodesic control laws for flocking of nonholonomic
agents. IEEE Trans. Autom. Control 52(4), 681–686 (2007)

26. W. Ren, R.W. Beard, Distributed Consensus in Multi-vehicle Cooperative Control Communi-
cations and Control Engineering (Springer, London, 2008)

27. S.I. Roumeliotis, G.A. Bekey, Distributed multirobot localization. IEEE Trans. Robot. Autom.
18(5), 781–795 (2002)

28. W.J. Russell, D. Klein, J.P. Hespanha, Optimal estimation on the graph cycle space, in American
Control Conference, Baltimore, June 2010, pp. 1918–1924

29. C. Sagues, A.C. Murillo, J.J. Guerrero, T. Goedemé, T. Tuytelaars, L. Van Gool, Localiza-
tion with omnidirectional images using the 1D radial trifocal tensor, in IEEE International
Conference on Robotics and Automation, Orlando, May 2006, pp. 551–556

30. A. Sarlette, R. Sepulchre, N.E. Leonard, Autonomous rigid body attitude synchronization.
Automatica 45(2), 572–577 (2008)

31. A. Savvides, W.L. Garber, R.L. Moses, M.B. Srivastava, An analysis of error inducing para-
meters in multihop sensor node localization. IEEE Trans. Mob. Comput. 4(6), 567–577 (2005)

http://coordinationbook.info
http://coordinationbook.info

64 3 Distributed Localization

32. I. Skrjanc, G. Klancar, Optimal cooperative collision avoidance between multiple robots based
on Bernstein-Bzier curves. Robot. Auton. Syst. 58(1), 1–9 (2010)

33. S. Thrun, Y. Liu, Multi-robot SLAM with sparse extended information filters, in International
Symposium of Robotics Research, Sienna, Italy, October 2003, pp. 254–266

34. N. Trawny, S.I. Roumeliotis, G.B. Giannakis, Cooperative multi-robot localization under com-
munication constraints, in IEEE International Conference on Robotics and Automation, Kobe,
Japan, May 2009, pp. 4394–4400

35. N. Trawny, X.S. Zhou, K.X. Zhou, S.I. Roumeliotis, Inter-robot transformations in 3-d. IEEE
Trans. Robot. 26(2), 226–243 (2010)

36. B. Varghese, G. McKee, A mathematical model, implementation and study of a swarm system.
Robot. Auton. Syst. 58(3), 287–294 (2010)

37. L. Xiao, S. Boyd, S. Lall, A scheme for robust distributed sensor fusion based on average
consensus, in Symposium on Information Processing of Sensor Networks (IPSN), Los Angeles,
CA, April 2005, pp. 63–70

38. X.S. Zhou, S.I. Roumeliotis, Robot-to-robot relative pose estimation from range measurements.
IEEE Trans. Robot. 24(6), 1379–1393 (2008)

Chapter 4
Map Merging

Abstract This chapter presents a solution for merging feature-based maps in a
robotic networkwith limited communication.We consider a team of robots exploring
an unknown environment. Along its operation, each robot observes the environment
and builds and maintains its local stochastic map of the visited region. Simulta-
neously, the robots communicate and build a global map of the environment. The
communication between the robots is limited and, at every time instant, each robot
can only exchange data with its neighboring robots. This problem has been tradition-
ally addressed using centralized schemes or broadcasting methods. Instead, in this
chapter we study a fully distributed approach which is implementable in scenarios
with limited communication. This solution does not rely on a particular communi-
cation topology and does not require any central node, making the system robust to
individual failures. Each robot computes and tracks the global map based on local
interactions with its neighbors. Under mild connectivity conditions on the communi-
cation graph, the algorithm asymptotically converges to the global map. In addition,
we analyze the convergence speed according to the information increase in the local
maps. The results are validated through simulations.

Keywords Map merging ·Map fusion · Limited communication · Distributed sys-
tems · Parallel computation

4.1 Introduction

As stated through the book, there is a great interest in multi-robot perception in an
unknown environment where the team operates and individual robots only observe a
portion of it. In such situations, it is of interest for each robot to have a representation
of the environment beyond its local map. The fusion of the local observations of all
the teammembers leads to a merged map that contains more precise information and
more features. In a static map merging scenario, the information fusion is carried
out after the exploration. Dynamic solutions, where the information is merged while
the robots operate, are more interesting. They enable other multi-robot tasks such as
cooperative exploration, navigation, or obstacle avoidance. In this chapter, we study
the problem of dynamic map merging, where each robot’s communication radius is
limited, and hence the communication topology is not complete.

© The Author(s) 2015
R. Aragues et al., Parallel and Distributed Map Merging and Localization,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-25886-7_4

65

66 4 Map Merging

While multi-robot localization under communication constraints has received
some attention [29, 42], most of the existing multi-robot map merging solutions
are extensions of the single robot case under centralized schemes, all-to-all com-
munication among the robots, or broadcasting methods. In [41] a single global map
is updated by all the robots. Robots search for features in the global map that have
been observed by themselves along the exploration. Then, they use these coincident
features to compute implicit measurements (the difference between the Cartesian
coordinates of equal features must be zero) and use these constrains to update the
map. In [18] maps are represented as constraint graphs, where nodes are scans mea-
sured from a robot pose and edges represent the difference between pairs of robot
poses. Robot-to-robot measurements are used to merge two local maps into a single
map. An optimization phase must be carried out in order to transform the con-
straint graph into a Cartesian map. Reference [14] also represents the global map
using a graph. Nodes are local metric maps and edges describe relative positions
between adjacent local maps. The map merging process consists of adding an edge
between the maps. Global optimization techniques are applied to obtain the global
metric map. Reference [52] merges two maps into a single one using robot-to-robot
measurements to align the two maps and then detecting duplicated landmarks and
imposing the implicit measurement constraints. Particle filters have been generalized
to multi-robot systems assuming that the robots broadcast their controls and their
observations [22]. The Constrained Local Submap Filter has been extended to the
multi-robot case assuming that each robot builds a local submap and broadcasts it,
or transmits it to a central node [49]. Methods based on graph maps of laser scans
[18, 27, 39, 48] make each robot build a new node and broadcast it. The same solu-
tion could be applied for many existing submap approaches [38]. However, in robot
network scenarios, distributed approaches are often necessary because of limited
communication, switching topologies, link failures, and limited bandwidth.

The previous methods require that each robot has the capability to communicate
with all other robots at every time instant or with a central node. Centralized strate-
gies, where a central node compiles all the information from other robots, performs
the computations, and propagates the processed information or decisions to all the
robots, have several drawbacks. The whole system can fail if the central node fails,
leader selection algorithms may be needed, and a (direct or indirect) communica-
tion of all robots with the central system may be required. On the other hand, in
distributed systems, all robots play the same role, and therefore the computations
can be distributed among all the robots. In addition, distributed systems are naturally
more robust to individual failures. In distributed scenarios we cannot assume that the
robots can communicate with all other robots at every time instant. A more realistic
situation is when, at any time instant, robots can communicate only with a limited
number of other robots called their neighbors, e.g., robots within a specific distance.
These situations can be best modeled using communication graphs, where nodes
correspond to the robots and edges represent communication capabilities between
them. Additionally, since robots are moving, the topology of the graph may vary
along time, given rise to switching topologies, see for instance [9]. We are interested

4.1 Introduction 67

in map merging solutions for robotic systems with range-limited communication,
and where the computations are distributed among the robots.

Distributed estimation methods [1, 13, 20, 26, 33, 35, 36, 46] maintain a joint
estimate of a system that evolves with time by combining noisy observations taken
by the sensor network. Early approaches sum the measurements from the different
robots in IF (Information Filter) form. Measurement updates in IF are additive and
therefore information coming from different sensors can be fused in any order and at
any time. If the network is complete [33], then the resulting estimator is equivalent
to the centralized one. In general networks the problems of cyclic updates or double
counting information appear when robots sum the same piece of datamore than once.
The use of the channel filter [20, 46] avoids these problems in networks with a tree
structure. The Covariance Intersection method [26] produces consistent but highly
conservative estimates in general networks. More recent approaches [1, 13, 35, 36]
use distributed consensus filters to average the measurements taken by the robots.
The interest of distributed averaging is that the problems of double counting the
information and cyclic updates are avoided. They, however, suffer from the delayed
data problem that takes place when the robots execute the state prediction without
having incorporated all the measurements taken at the current step [12]. For general
communication schemes [35], the delayed data problem leads to an approximate KF
(Kalman Filter) estimator. An interesting solution is given in [36] but its conver-
gence is proved in the absence of observation and system noises. In the algorithm
proposed in [13], authors prove that the robots’ estimates are consistent, although
these estimates have disagreement. Other algorithms have been proposed that require
the previous offline computation of the gains and weights of the algorithm [1]. The
main limitation of all the previous works is that they consider linear systems without
inputs, and where the evolution of the system is known by all the robots. Here instead
we are interested in more general scenarios, without the previous restrictions. We
allow each robot to build its map by using system models not necessarily linear or
known by the other robots, or where the robot odometry is modeled as an input,
among others. A recent work that does not suffer from the previous limitations is
given in [30]. Here each robot records its own measurements and odometry, as well
as the observations and odometry from any other robot it encounters. Despite being
very interesting and going beyond the state of art, that work has the drawback that
robots must maintain an unbounded amount of memory, which depends on the time
between meetings. Moreover, if a single robot fails or leaves the network, the whole
system fails. Other interesting approach that allows the robots to measure both the
landmarks positions as well as their own odometry is given by [15]. Each robot has
a single representation of the environment that combines its own data and the mea-
surements of its neighbors, being this representation consistent. The main limitation
of this work is that the measured information does not go beyond the neighborhood
level. Thus, each robot has a better map than as if it was acting on its own. However,
it does not have knowledge about the features observed by robots in farther places
of the network.

Most of the previousmethods have in common that they combine the data acquired
by the different robots in the form of raw measurements, and that the local estimate

68 4 Map Merging

of each robot contains information from the other robots, i.e., local estimates are not
independent. Alternatively, information can be processed in the form of local maps,
and these local maps can be kept independent by avoiding the introduction of global
information into them; this is what we propose here, and it is also the approach fol-
lowed in [16]. This strategy has the benefit that each robot can produce meaningful
representations of the environment, which allows for several high-level data associ-
ation methods, as the ones discussed in Chap.2. Not introducing global data in the
local maps has the effect of keeping the local maps of different robots independent.
Thus, consensus filters can be used without suffering from the previously mentioned
problems of delayed data, and double counting information. An advantage of our
approach is the natural robustness that results from its distributed implementation.

The consensus filters literature is greatly wide. A review of the most relevant
results can be found in [40] and the references therein. Many recent works consider
specific variations of the consensus problem to cope with communication delays [44]
or stochastic communication noises [31]. Most of the works in distributed consensus
address the static case, i.e., consensus is achieved on a value that depends on the
initial conditions of the system. Fewer works [11, 19, 37, 43, 51, 53] consider
the dynamic case, where nodes measure a variable along time, and the goal is to
track the average of this variable. In map merging scenarios, dynamic consensus
strategies are more appealing, since the local maps of the robots will change, and
it would be desirable to track the global merged map. Several dynamic consensus
methods [19, 37, 43] consider continuous-time systems, and thus they are better
suited for systems based on the observation of the states of the neighbors, instead of
on communicating the states (in our case, the maps). Reference [53] uses discrete-
time communication, but it considers that nodes measure a local continuous physical
process. On the other hand, [11, 51] track the average of inputs that change in a
discrete-time way, using discrete-time communications. Thus, they are better suited
to the problem of map merging, where the local maps are modified at discrete time
instances. In our previous approach to the dynamic map merging problem [3], we
used consensus algorithms [19, 32] that allowed the latest global map to be weighted
with a forgetting factor, as the current global map was computed by the robots. This
approach has two limitations: first, robots have to be synchronized, i.e., they must
initiate every new map merging phase in a coordinated way; and in second place,
the method was designed for graphs which remained fixed during a specific merging
phase.

In this chapter, we discuss distributed sensor fusion methods which are intended
for independent observations acquired by several sensors along time. Instead of
observations,weuse the information increments of the localmaps, i.e., the differences
between the local maps at steps k and k + 1, expressed in Information Filter form, as
inputs to the algorithm.Aswe discuss, the convergence and unbiasedmean properties
of the original algorithm remain valid regardless of this modification. An important
property that any estimation method should have is consistency [15, 23–25], i.e., if
the estimates at the robots are not overconfident. In this chapter, we perform a novel
and thorough study of the global map estimated by each robot and each step and
prove that they are consistent.

http://dx.doi.org/10.1007/978-3-319-25886-7_2

4.2 Problem Description 69

4.2 Problem Description

Throughout the chapter we let n be the number of robots. Indices i, j refer to robots,
G to the global map, and A to averaged information matrices and vectors. We use
k, k′ ∈ N for time steps. Constants szr and szf represent the size of respectively
a robot pose and a feature position.1 We let I be the identity matrix, and 0 be a
n × n matrix with all its elements equal to zero (if a subindex n1 × n2 appears, this
specifies their dimensions). Given a matrix W , [W]i j denotes its (i, j) entry. W � V
(�) indicates that matrix W − V is positive- (negative-) semidefinite.

We consider a teamof n ∈ N robots exploring an unknown environment. There are
m ∈ N different static features in the environment and we let x ∈ R

M be the vector
with their true positions, with M = mszf. Up to the time step k, the latest map of
each robot i contains estimates x̂k

i ∈ R
M k

i of the positions of the mk
i ≤ m features

observed by robot i , whereM k
i = mk

i szf, with associated covariance matrix Σk
i ∈

R
M k

i ×M k
i . Let Hk

i ∈ {0, 1}M k
i ×M be the observationmatrix that relates the elements

in x and x̂k
i ; then, the local map of each robot i contains a partial observation of x,

x̂k
i = Hk

i x + vk
i , E

[
vk

i

]
= 0, E

[
vk

i (v
k
i)

T
]

= Σk
i , (4.1)

where vk
i is a zero mean noise with covariance matrix Σk

i . Up to the time step k, the

latest map of each robot i contains as well estimates r̂k
i ∈ R

Rk
i of rk

i of the poses

of robot i , where Rk
i = rk

i szr, with associated covariance matrix Rk
i ∈ R

Rk
i ×Rk

i .2

Let rk
i ∈ R

Rk
i be the true values for these rk

i poses of robot i up to step k, then

r̂k
i = rk

i + wk
i , E

[
wk

i

(
wk

i

)T
]

= Rk
i ,

E
[
wk

i

]
= 0, E

[
wk

i

(
vk

i

)T
]

= Sk
i , (4.2)

where wk
i is a zero mean noise with covariance matrix Rk

i , and Sk
i ∈ R

Rk
i ×M k

i is the
cross-covariance between the estimates of the features’ positions x̂k

i and the robot
poses r̂k

i in Eqs. (4.1), (4.2). Note that the linear model in Eq. (4.1) refers to the fact
that the local maps are an estimate of the features positions; the observation model
associated to the sensor used to build the local maps does not need to be linear.

If at step k the information from the n robots was available, e.g., at a central agent,
then the global map containing the estimate r̂k

G,1, . . . , r̂k
G,n of the set of poses of each

1E.g., szr = 3 for planar robot poses (position (x, y) and orientation θ); szf = 2 or szf = 3 for
respectively 2D or 3D environments.
2E.g., only the last pose (rk

i = 1), the full robot trajectory, or a subset of the trajectory.

70 4 Map Merging

robot rk
1, . . . , rk

n up to step k, as well as the estimate x̂k
G of the positions of the static

features x could be obtained. The local map of each robot i at step k is a partial
observation of these elements (Eqs. (4.1), (4.2)),

[
r̂k

i

x̂k
i

]
=

[
Lk

i 0

0 Hk
i

] ⎡
⎢⎢⎢⎣

rk
1
...

rk
n
x

⎤
⎥⎥⎥⎦ +

[
ŵk

i

v̂k
i

]
,

where Lk
i = [0 . . . 0, IRk

i
, 0 . . . 0]. (4.3)

We assume that the noises are independent for different robots i �= j and all k, k′ ∈
N, since every robot has constructed the map based on its own observations, i.e.,
E[wk

i (w
k′
j)T] = 0, E[vk

i (v
k′
j)T] = 0, and E[wk

i (v
k′
j)T] = 0. Note that since the local

map of a robot i at step k is an evolution of its map at any previous step k′ < k, then
the noises wk

i , vk
i , and the noises wk′

i , vk′
i are not independent.

Let Y k
i ∈ R

M k
G×M k

G , yk
i ∈ R

M k
G be the information matrix and vector of the local

map at robot i and step k in IF form, for i ∈ {1, . . . , n}, where M k
G = Rk

1 + · · · +
Rk

n + M ,

Y k
i =

[
Lk

i 0

0 Hk
i

]T [
Rk

i Sk
i

(Sk
i)T Σk

i

]−1 [
Lk

i 0

0 Hk
i

]
,

yk
i =

[
Lk

i 0

0 Hk
i

]T [
Rk

i Sk
i

(Sk
i)T Σk

i

]−1 [
r̂k

i

x̂k
i

]
. (4.4)

The mean vector of the global map containing the estimate r̂k
G,1, . . . , r̂k

G,n of the

set of poses of each robot rk
1, . . . , rk

n up to step k, as well as the estimate x̂k
G of the

positions of the static features x is given by,

((
r̂k

G,1

)T
, . . . ,

(
r̂k

G,n

)T
,

(
x̂k

G

)T
)T

=
(

n∑
i=1

Y k
i

)−1 n∑
i=1

yk
i , (4.5)

where term (
∑n

i=1 Y k
i)−1 is its associated covariance matrix. Merging the maps in

IF form is a common practice [45] since the operation is additive, commutative, and
associative.

The global map in Eq. (4.5) is different from the one that would be obtained
by a centralized multi-robot SLAM, since the local maps in Eq. (4.4) do not include
measurements from the other robots. Equation (4.5) computes theminimum-variance
unbiased estimate of rk

1, . . . , rk
n, x given the local maps (the maximum-likelihood

estimate if the local maps are Gaussian), whereas centralized multi-robot SLAM
methods estimate rk

1, . . . , rk
n, x given themeasurements and control inputs. Thus, the

4.2 Problem Description 71

accuracy of the globalmap inEq. (4.5) depends on the precision of the localmaps. The
unbiasedmean and consistency properties of the globalmap depend on the localmaps
having unbiased mean and being consistent. Since we do not include measurements
from the other robots, the local maps of different robots remain independent and can
be fused by the addition of the information matrices and vectors as in Eq. (4.5).

Now consider the next time step k + 1. Robots have kept on exploring and some
of the robot maps have changed. We denote Ti the time steps at which robot i
propagates its latest map to the network, i.e., if robot i decides it wants to initiate
the propagation of its latest map, then k + 1 ∈ Ti ; otherwise, k + 1 /∈ Ti and robot
i keeps on merging the previous map. We let di be the degree of a robot i , containing
the total number of times its local map changes (the cardinality of Ti), and d be the
degree of the team,

di = |Ti |, d = d1 + · · · + dn . (4.6)

In this paper we consider that the number of times robots propagate the changes
of their local maps d is finite. These changes give rise to a different global map
(Eq. (4.5)) and robots must update their estimates to react to this change.

Problem 1 We consider n ∈ N robots exploring and acquiring local maps at some
time steps k as in Eqs. (4.1), (4.2). The communication is range-limited and two
robots can exchange data only if they are close enough. We let Gk = (V ,Ek) be the
undirected communication graph at step k. The nodes are the robots,V = {1, . . . , n}.
If robots i , j can communicate then there is an edge between them, (i, j) ∈ Ek . The
set of neighbors N k

i of robot i at step k is

N k
i = { j | (i, j) ∈ Ek, j �= i}.

The goal is the design of distributed algorithms so that each robot i ∈ V computes
and tracks the global map in Eq. (4.5), and the blocks in the main diagonal of its
covariance matrix, based on local interactions with its neighbors N k

i . �

4.3 Dynamic Map Merging Algorithm

The space-time diffusion methods have been previously used under independent
observations of static variables [51]. In our map merging scenario, the map features
x are static but the robot poses rk

i vary with time k. Besides, the local map of a robot i
at step k is an evolution of its local map at previous steps k′ < k. Thus, the local maps
Y k

i , yk
i (Eq. (4.4)) are not independent and this has to be taken into account, because

otherwise the same information would be considered several times. For the previous
reasons, we propose to use space-time diffusion ideas using as inputs the information
increments associated to the feature estimates instead of the maps Y k

i , yk
i .

72 4 Map Merging

We first pay attention to Eq. (4.5). Using classical matrix block-wise inversion
rules [21, Chap. 0.7], the global estimates x̂k

G of the positions of the static features
x in Eq. (4.5), and its associated block Σk

G
.= E[x̂k

G(x̂k
G)T] within the covariance

matrix (
∑n

i=1 Y k
i)−1 are given by

x̂k
G =

(
I k
G

)−1
ikG, Σk

G =
(

I k
G

)−1
, (4.7)

where I k
G ∈ R

M×M , ikG ∈ R
M are the informationmatrix andvector of the estimates

of the features’ positions x in the global map at step k in IF form,

I k
G =

n∑
i=1

I k
i , ikG =

n∑
i=1

iki , (4.8)

and I k
i ∈ R

M×M and iki ∈ R
M are the information matrix and vector of the local

estimates x̂k
i of the features’ positions x in the local map (Eq. (4.1)) at robot i ∈

{1, . . . , n} and step k in IF form,

I k
i =

(
Hk

i

)T (
Σk

i

)−1
Hk

i , iki =
(

Hk
i

)T (
Σk

i

)−1
x̂k

i . (4.9)

The global estimates r̂k
G,i of the set of poses rk

i of each robot i up to step k

in Eq. (4.5), and its associated block Rk
G,i i

.= E[r̂k
G,i (r̂

k
G,i)

T] within the covariance

matrix (
∑n

i=1 Y k
i)−1, can be obtained from x̂k

G , Σk
G (Eq. (4.7)) and from the local

maps r̂k
i , x̂k

i , Rk
i , Sk

i , Σ
k
i , Hk

i (Eqs. (4.1), (4.2)) as follows:

r̂k
G,i = r̂k

i + Sk
i

(
Σk

i

)−1 (
Hk

i x̂k
G − x̂k

i

)
,

Rk
G,i i = Rk

i − Sk
i

(
Σk

i

)−1 (
Sk

i

)T

+ Sk
i

(
Σk

i

)−1
Hk

i Σk
G

(
Hk

i

)T (
Σk

i

)−1 (
Sk

i

)T
. (4.10)

Here we are interested (Problem1) in computing the blocks in the main diagonal of
the covariance matrix (

∑n
i=1 Y k

i)−1. The expressions for the off-diagonal terms can
be found, e.g., in [4].

Thus, the original problem can be decomposed into two parts: the estimation of the
features’ positions (Eqs. (4.7)–(4.9)), which requires the robots to reach consensus
on the information matrices and vectors of the features’ positions (Eq. (4.8)); and the
estimation of the robot poses (Eq. (4.10)), that only requires information local to each
robot i , and the features estimates x̂k

G , Σk
G . We propose an algorithm that consists

of keeping up-to-date estimates of the features’ positions x̂k
G , Σk

G , using dynamic
average consensus on the information increments of the local information matrices
associated to features’ positions I k

i , iki in Eq. (4.9). At each step k, each robot i uses

4.3 Dynamic Map Merging Algorithm 73

its most recent estimates of x̂k
G andΣk

G to obtain the estimates of its robot poses r̂k
G,i ,

Rk
G,i i (Eq. (4.10)) and propagates this vector r̂k

G,i and the main diagonal elements of

matrix Rk
G,i i to the remaining robots in the network. In the remaining of this section,

we deeply discuss the part concerning the consensus on the information increments.
We revise properties of convergence and unbiasedmean.We carry out a careful study
to show that the estimates are consistent.

For each robot i ∈ {1, . . . , n} we define the following increment information
matrix Δk

i ∈ R
M×M and vector δk

i ∈ R
M ,

Δk
i = I k

i − I k−1
i , δk

i = iki − ik−1
i , for k ≥ 1,

Δk
i = I k

i , δk
i = iki , for k = 0. (4.11)

Note that for all the robots such that k /∈ Ti , the increment information matrices and
vectors will be zero. The associated features’ position estimates within the global
map at step k in Eq. (4.8) can be expressed in terms of the previous global estimate
at step k − 1 and the map increments at k as follows:

I k
G = I k−1

G +
n∑

i=1

Δk
i , ikG = ik−1

G +
n∑

i=1

δk
i . (4.12)

Equivalently, the estimates of the features’ positions in the local map of each robot
i at step k, and in the global map at step k can be expressed in terms of the map
increments at all the previous steps k′ = 0, . . . , k,

I k
i =

k∑
k′=0

Δk′
i , iki =

k∑
k′=0

δk′
i ,

I k
G =

n∑
i=1

k∑
k′=0

Δk′
i ikG =

n∑
i=1

k∑
k′=0

δk′
i . (4.13)

Each robot i maintains an estimate of the averaged information matrix Î A
i (k) ∈

R
M×M and vector îA

i (k) ∈ R
M , and of its degree di (k) containing the number of

times it has updated its local map; recall that each robot i propagates the changes in
its local map at specific and locally decided time steps k ∈ Ti . Robot i ∈ {1, . . . , n}
initializes its variables with

di (−1) = 0, Î A
i (0) = 0, îA

i (0) = 0, (4.14)

and updates them at all k ≥ 0 with the following algorithm [5, 7].

74 4 Map Merging

Algorithm 5 Dynamic map merging—robot i , iteration k.
(Measurement update:)

If k ∈ Ti , di (k) = di (k − 1) + 1,

Î A
i (k+) = (1 − 1/di (k)) Î A

i (k) + Δk
i /di (k),

îA
i (k+) = (1 − 1/di (k))îA

i (k) + δk
i /di (k); (4.15)

otherwise, di (k) = di (k − 1),

Î A
i (k+) = Î A

i (k), îA
i (k+) = îA

i (k). (4.16)

(Spatial update:) If di (k) > 0,

Î A
i (k + 1) =

∑
j∈N k

i ∪{i}
Wi j (k) Î A

j (k+),

îA
i (k + 1) =

∑
j∈N k

i ∪{i}
Wi j (k)îA

j (k+), (4.17)

where the space-time weight matrix W (k) ∈ R
n×n is

Wi i (k) = 1 −
∑

j∈N k
i

Wi j (k), and for j �= i

Wi j (k) = d j (k)/max{dst
i (k), dst

j (k)}, if (i, j) ∈ Ek,

Wi j (k) = 0 otherwise, (4.18)

and where dst
i (k) is the space-time degree of each robot i at step k, containing the

number of map changes propagated by both robot i and its neighborsN k
i up to step

k, dst
i (k) = ∑

j∈N k
i ∪{i} d j (k). �

Robots decide on their ownwhen they want to execute a newmeasurement update
step. If up to step k a robot i never tried to merge its map with the other robots, then
di (k) = 0, and thus it does not execute the spatial update. We consider these robots
i as disconnected from the others ((i, j) /∈ Ek for all j �= i), even if they are in
communication range.

The superscript A in the variables of the previous algorithm refers to the fact that
the matrices and vectors estimated by the robots track the average of the information
increments, instead of its sum. In several places in this paper, we will refer instead
to the global estimates of a robot i , which are obtained from the averaged variables
Î A
i (k), îA

i (k) as follows,

Î G
i (k) = d(k) Î A

i (k), x̂G
i (k) =

(
Î A
i (k)

)−1
îA
i (k),

îGi (k) = d(k)îA
i (k), Σ̂G

i (k) =
(

Î A
i (k)

)−1
/d(k), (4.19)

4.3 Dynamic Map Merging Algorithm 75

where d(k) = d1(k) + · · · + dn(k) is the degree of the robot team containing the
number of times robots propagated changes in their local maps, up to step k. Note
that in order to obtain the global map estimate in Information Filter form Î G

i (k),

îGi (k), or to compute the covariance matrix Σ̂G
i (k), robots need to estimate in par-

allel the total amount of measurement update steps d(k). This can be done, for
instance, using similar techniques as for estimating the number of nodes [28, 47].
Later in this section (Theorem8) we provide an expression (Î A

i (k + 1))−1/di (k) for
the covariance that ensures it remains consistent. When robots compute the unbiased
mean x̂G

i (k) (Eq. (4.19)) and consistent covariance (Î A
i (k + 1))−1/di (k) (Eq. (4.26))

form, they do not need to know d(k), but only di (k) which is local to each robot.

4.4 Properties of the Dynamic Map Merging Algorithm

An interesting property of this map merging algorithm is that the temporal global
maps x̂k

i (t) estimated at each robot i , are unbiased estimates of the true feature
positions x and the covariance matrices are consistent [5, 7]. As a result, the robots
donot need towait for any specificnumber of iterations of themapmerging algorithm.
Instead, they can make decisions on their temporal global map estimates whenever
they need.

Lemma 2 (Convergence) Assume all the robots i ∈ V execute the dynamic map
merging algorithm (Algorithm5), and assume that the set of communication graphs
that occur infinitely often is jointly connected. Let k� ≥ max{k ∈ Ti } for all i ∈ V
be a step when all map updates have been propagated by the robots, and x̂k�

G , Σk�

G be

the centralized global estimate of the features’ positions at this step, (I k�

G , ik�

G in IF

form), given by Eqs. (4.5), (4.7)–(4.9). Then, the estimated information matrix Î G
i (k),

information vector îGi (k), mean x̂G
i (k), and covariance Σ̂G

i (k) as in Eq. (4.19), at
each robot i ∈ V asymptotically converge to this global estimate,

lim
k→∞ Î G

i (k) = I k�

G , lim
k→∞ x̂G

i (k) = x̂k�

G ,

lim
k→∞ îGi (k) = ik�

G , lim
t→∞ Σ̂G

i (k) = Σ
k�

G . (4.20)

Proof As it is stated by [51, Th. 2], if the set of communication graphs Gk that occur
infinitely often is jointly connected, then

lim
k→∞ Î A

i (k) =
n∑

i=1

∑
k′∈Ti

Δk′
i

d
, lim

k→∞ îA
i (k) =

n∑
i=1

∑
k′∈Ti

δk′
i

d
,

which equals I k
G/d(k), ikG/d(k) in Eq. (4.8) when all measurements have been taken,

i.e., when k� ≥ max{k ∈ Ti } for all i ∈ V . �

76 4 Map Merging

Now, we present a more compact expression for Eqs. (4.15)–(4.17) in Algorithm5
which will simplify the analysis of the remaining properties:

di (k) Î A
i (k + 1) =

n∑
j=1

W (k) j i d j (k − 1) Î A
j (k)

+
n∑

j=1

W (k) j i (d j (k) − d j (k − 1))Δk
j , (4.21)

Moreover, since Î A
i (0) = 0, then

di (k) Î A
i (k + 1) =

k∑
k′=0

n∑
j=1

[Φ(k, k′)]i jΔ
k′
j , (4.22)

where matrix Φ(k, k′), with k′ ≤ k, is

Φ(k, k′) = W (k)T . . .W (k′)T (D(k′) − D(k′ − 1)), (4.23)

and D(k) ∈ R
n×n is a diagonal matrix; each entry of its main diagonal Dii (k) equals

the degree di (k) of robot i at step k. The equivalent expressions for îA
i (k + 1) are got

by replacing Î A
j (k), Δk

j with îA
j (k), δk

j .

Lemma 3 (Unbiased mean) The estimates of the features’ positions in the global
map mean x̂G

i (k), for each robot i ∈ V , after k iterations of Algorithm5, such that
di (k − 1) > 0, are unbiased estimates of the true feature positions x,

E
[
x̂G

i (k)
]

= E

[(
Î A
i (k)

)−1
îA
i (k)

]
= x. (4.24)

Proof It can be done in a similar fashion as in [51] by noting that the local features’
positions estimates x̂k

j at each robot j (Eq. (4.1)) are an observation of the true x,

x̂k
j = Hk

i xk
G + vk

j ,with E
[
vk

j

]
= 0,

and the increment information vector δk
j = ikj − ik−1

j is

δk
j =

(
Hk

j

)T (
Σk

j

)−1
vk

j −
(

Hk−1
j

)T (
Σk−1

j

)−1
vk−1

j + Δk
j x,

4.4 Properties of the Dynamic Map Merging Algorithm 77

which combined with Eq. (4.22) gives

îA
i (k) = Î A

i (k)x + 1

di (k − 1)

k−1∑
k′=1

n∑
j=1

[Φ(k − 1, k′)]i j

((
Hk′

j

)T (
Σk′

j

)−1
vk′

j −
(

Hk′−1
j

)T (
Σk′−1

j

)−1
vk′−1

j

)
,

and thus E[(Î A
i (k))−1 îA

i (k)] = x since the noises vk′
j have zero mean for all k and

all j ∈ V . �

Next we present our main result, regarding the consistency of the maps estimated
by the robots, at each iteration. This property is of high interest in map merging
scenarios. This means that at each step k, robots have indeed a map that they can
use. As a result, the robots do not need to wait for any specific number of iterations
of the map merging algorithm. Instead, they can make decisions on their temporal
global map estimates whenever they need. Our result relies on condition I k+1

j � I k
j ,

which means that the local estimates of the features’ positions at successive steps
havemore information, or equivalently, that they becomemore precise. Note that this
is the behavior expected in classical SLAM approaches [17] as more observations
are taken, and in our experiments it has been always observed. There is an additional
condition, di (k) > 0; recall that di (k) = 0 means that robot i has not initiated the
map merging process yet. Since robot i has not computed any covariance yet, it does
not make sense to question whether its covariance is consistent or not.

Theorem 8 (Consistent covariance) Assume that the local map at each robot j
satisfies, for successive steps k, k + 1,

I k+1
j � I k

j , (4.25)

Then, the covariance (Î A
i (k + 1))−1/di (k) estimated by each robot i for which

di (k) > 0, at each iteration k, is consistent with respect to the centralized covariance
matrix Σk

G, (
Î A
i (k + 1)

)−1
/di (k) � Σk

G . (4.26)

Proof Along this proof we use the following change of variables; we let Ĵ A
i (k) be

Ĵ A
i (k) = di (k − 1) Î A

i (k), (4.27)

and note that if di (k − 1) = 0, then Ĵ A
i (k) = 0. FromEq. (4.21), this variable evolves

according to

78 4 Map Merging

Ĵ A
i (k + 1) =

n∑
j=1

W j i (k) Ĵ A
j (k)

+
n∑

j=1

W j i (k)(d j (k) − d j (k − 1))
(

I k
j − I k−1

j

)
, (4.28)

where d j (k) − d j (k − 1) = 1 if robot j introduced a new map increment during the
last step k, and zero otherwise, and W (k) j i , is given by Eq. (4.18). Note that the
entries of matrix W (k) are numbers between 0 and 1, and recall that W j i (k) = 0 if
di (k) = 0 or d j (k) = 0.

We want to prove that, for all i and k,

Ĵ A
i (k + 1) �

n∑
j=1

I k
j = I k

G; (4.29)

this is done by induction. We consider first that case k = 0, where the robots states
Ĵ A

j (k) are initialized with zeros, where d j (−1) = 0, and where the map increments

are exactly the maps at k = 0, since I k−1
j = 0 for k = 0; we have that for all i ,

Ĵ A
i (1) =

n∑
j=1

W j i (0)d j (0)I 0j . (4.30)

Since the weights W j i (k) are numbers between 0 and 1, the degrees d j (0) are equal
to 0 or to 1, and the local information matrices I k

j are positive semidefinite, I k
j � 0,

then we have W j i (k)d j (k)I k
j � I k

j , and thus

Ĵ A
i (1) �

n∑
j=1

I 0j = I 0G . (4.31)

Now that we have proved that it is true for k = 0, we assume it is true for k,
i.e., Ĵ A

j (k) � I k−1
G = ∑n

j ′=1 I k−1
j ′ for all j , and we try to prove than then it holds

for k + 1 as well. Considering Eq. (4.28), and taking into account that the weights
satisfy

∑n
j=1W j i (k) = 1, we have

Ĵ A
i (k + 1) =

n∑
j=1

W j i (k) Ĵ A
j (k)

+
n∑

j=1

W j i (k)(d j (k) − d j (k − 1))
(

I k
j − I k−1

j

)

4.4 Properties of the Dynamic Map Merging Algorithm 79

�
n∑

j=1

W j i (k)

⎛
⎝ n∑

j ′=1

I k−1
j ′

⎞
⎠ +

n∑
j=1

W j i (k)
(

I k
j − I k−1

j

)

=
n∑

j ′=1

I k−1
j ′ +

n∑
j=1

W j i (k)
(

I k
j − I k−1

j

)
. (4.32)

From condition (4.25), I k
i − I k−1

i � 0, and thus, using again the fact thatW j i (k) are
positive numbers between 0 and 1, we have

Ĵ A
i (k + 1) �

n∑
j=1

I k−1
j +

n∑
j=1

(
I k

j − I k−1
j

)
=

n∑
j=1

I k
j = I k

G, (4.33)

concluding that Ĵ A
i (k + 1) � I k

G . Thus, when di (k) > 0,

(
Î A
i (k + 1)

)−1

di (k)
=

(
Ĵ A

i (k + 1)
)−1 �

(
I k
G

)−1 = Σk
G , (4.34)

which concludes the proof. �

Note that the results about the estimated merged maps being unbiased and consis-
tent (Lemma3 and Theorem8) rely on the local maps being consistent as in Eqs. (4.1)
and (4.2). Depending on the sensing model, e.g., if robots can only obtain partial
observations of the features positions, and depending on the local mapping method
used, the local maps may not be consistent. Even in this case, the global maps esti-
mated by our algorithm are more conservative than the centralized map.

We finally note that the estimates of the robot poses r̂k
G,i , Rk

G,i i are obtained by

each robot i by replacing x̂k
G andΣk

G in Eq. (4.10)with itsmost recent estimates of the
features’ positions. It can be easily checked that by using x̂G

i (k), Σ̂G
i (k) (Eq. (4.19)),

the estimates of r̂k
G,i , Rk

G,i i are convergent as in Lemma2; and by using x̂G
i (k) and

the expression for the consistent covariance (Î A
i (k + 1))−1/di (k) the estimates of

r̂k
G,i , Rk

G,i i are unbiased and consistent, as in Lemma3 and Theorem8.

Communication and Memory Costs

Now we discuss what are the benefits of using consensus-based approaches instead
of classical propagation methods, in terms of communication and memory costs.

Several distributed map merging methods rely on propagating local data when-
ever this data changes, e.g., raw data or local map representations. The ones based
on raw (not processed) data, have several inconveniences, and they usually present
large memory and communication costs. The ones that propagate local maps seem
appealing from the communication point of view, since each piece of data traverses
the network only once, whereas consensus-based methods transmit information at

80 4 Map Merging

each iteration. However, methods based on propagating local maps have the incon-
venience that, in addition to the global map, each robot must store the local map of
every other robot in the network. Note that we are considering scenarios where the
communication network can get disconnected at anymoment, and individual or small
groups of robots can leave the remaining team for long periods of time. In order to
properly re-synchronize with them in posterior meetings, and correctly replace the
old information in the global map, robots must keep track of all the information
(local maps) available. Thus, the memory cost is

∑n
i=1((R

k
i + M)2 + (Rk

i + M))

for storing either the n information matrices and vectors, or the n mean vectors and
covariance matrices,3 plus (M k

G)2 + M k
G for the global map. The memory cost does

not scale well with the size of the network, i.e., if the number of robots is increased
without changing the scene size, thememory cost increases aswell. Consensus-based
approaches do not suffer from this problem, since each robot keeps a single repre-
sentation of the scene, and thus the memory cost does not depend on the number of
nodes.

Similarly to the memory cost discussion, in consensus-based approaches, robots
send their single representation of the scene at each iteration, so that the commu-
nication cost per iteration exclusively depends on the size of the scene, and it is
almost equal for all the robots. However, propagation methods do not have any con-
trol about the amount of new information that arrives to a particular robot; thus, they
are prone to generate high communications peaks and bottlenecks in some areas of
the network. The communication load is not properly balanced, so some particular
robots may be sending large amounts of data. Due to the iterative nature of consensus
methods, the total final communication cost may be larger than for other approaches
depending on the number of iterations executed by the robots. This convergence
speed depends on the network topology and it is related to the algebraic connectivity
of the communication graph, as discussed later in this section.

Thus, using consensus strategies is a more efficient choice whenever there is com-
mon information that was observed by several robots, whereas propagation methods
make sense when there is no overlapping in the features observed by the robot team.
Our method combines the benefits of both approaches: consensus is executed to esti-
mate the feature positions x̂k

G , Σ
k
G , with memory cost (M)2 + M and communica-

tion cost per iteration (M)2 + M ; and each robot i locally estimates its poses r̂k
G,i ,

Rk
G,i i (Eq. (4.10)) and propagates vector r̂k

G,i and the main diagonal of Rk
G,i i . Thus,

the memory cost per robot for storing the global map is (
∑n

i=1R
k
i) + (M)2 + M k

G ,
and there is no need to keep any additional information from the other robots. The
communication cost associated to the propagation (vector r̂k

G,i and the main diagonal

of Rk
G,i i) is light, since these elements are vectors. Moreover, in practice, our robots

execute the algorithm described in this paper for estimating the global mean x̂k
G and

3(Rk
i + M)2 is a worst case cost for the information matrices; in practical applications, a better

performance can be achieved by taking advantage of their sparse structure. E.g., for full robot
trajectories approaches, it can be order (M + (l + 1)Rk

i), where l is the average number of features
observed from each robot pose.

4.4 Properties of the Dynamic Map Merging Algorithm 81

covariance Σk
G of the common features, i.e., using the information increments of

the features that appear in several local maps. In addition, a robot i may have been
the only one that has observed some exclusive features. These exclusive features are
managed in the same fashion as for the estimated robot poses, i.e., they are rees-
timated and its mean and the main diagonal entries of their covariance matrix are
propagated. As a result, all the robots have the information of the exclusive features
of the other robots. Thus, the sizeM used in this paragraph refers to the number of
common features, and the sizesRk

i to the number of poses and exclusive features at
robot i . Equivalently, the computational cost of our method, which is cubic on the
size M (Eq. (4.19)), refers to the number of common features as well.

Initial Correspondence and Data Association

The expressions in Eqs. (4.4), (4.7)–(4.10) implicitly assume that the local maps are
expressed in a common reference frame. This issue is related to initial correspon-
dence, network localization, or map alignment problems. A discussion of different
methods for computing this network localization can be found in Chap.3.

Equivalently, for simplicity, we have presented the formulation in Sects. 4.2 and
4.3 including the structures of the information matrices and vectors îA

i (k), Î A
i (k), as

if robots knew the total amount of features m and the relationship between their local
features and the global ones, encoded in the observation matrices Hk

i in Eq. (4.9).
The problem of establishing a relationship between the elements observed by the
different robots is known as data association, and it is discussed in Chap. 2. First,
local matches are established between the variables of neighboring sensors; after
that, exclusive variables are identified without requiring any extra efforts: they are
variables that have not been associated to any other one. Robots discover the features
observed by the others in themessages exchanged at each iteration, and introduce new
columns and rows in îA

i (k), Î A
i (k) accordingly. As a result, the information matrices

and vectors do not contain non-informative zero rows and columns. Information
matrices Î A

i (k) (Eq. (4.19)) are invertible at each iteration of the algorithm and thus
the global map can always be estimated. Note also that the total number of features
m is used only as a tool for presenting the formulation, but it does not need to be
known by the robots or even to be fixed. Instead, the variables managed by the robots
îA
i (k), Î A

i (k) have a structure that is adapted according to the features observed by
the robot team.

Convergence Speed

As we mentioned before, the consensus is asymptotically reached, which means that
the time until completion is infinite. The convergence speed depends on the network
topology and it is related to the algebraic connectivity of the communication graph,
as discussed in [2, 3]. There exist several methods for estimating this algebraic
connectivity, e.g., [6]. The number of iterations can also be easily optimized in a local
way, by executing a new consensus iteration only if the neighborhood has changed,
or if there have been great modifications in the state of some of the robots in the
neighborhood. Here, we provide some well known convergence speed results for the
case that the local maps do not change along the merging. These results only depend

http://dx.doi.org/10.1007/978-3-319-25886-7_3
http://dx.doi.org/10.1007/978-3-319-25886-7_2

82 4 Map Merging

on the graph topology. For dynamic map merging scenarios, the characterization of
this speed strongly depends on the changes in the local maps as well.

The convergence speed of the averaging algorithm presents a geometric rate for
fixed graphs [10, 50] which depends on the second eigenvalue with the largest
absolute value |λ2(W)| in the Metropolis weights matrix (Eq. (A.3) in Appendix
A). If we denote γ = |λ2(W)|, it can be shown that each entry [Î G

i (k)]r,s , [îGi (k)]r
in the information matrices and vectors estimated by the robots evolve according to

|[Î G
i (k)]r,s − [I k

G]r,s | ≤ (γ)k√n max
j

{∣∣∣[Î G
j (0)]r,s − [I k

G]r,s
∣∣∣}, (4.35)

|[îGi (k)]r − [ikG]r | ≤ (γ)t√n max
j

{∣∣∣[îGj (0)]r − [ikG]r
∣∣∣}, (4.36)

for all i ∈ {1, . . . , n}, all r, s ∈ {1, . . . ,M }, and all k ≥ 0.
For graphs with switching topology Gk = (V ,Ek), the convergence speed is geo-

metric if the graph has an interval of joint connectivity τ such that every subsequence

{Gt0+1, . . . , Gt0+τ }

of length τ is jointly connected for all t0 [10]. In these graphs, the τ -index of joint
contractivity δ < 1 is given by

δ = max
W ∈Wτ

{|λ2(W)||W primitive paracontractive}, (4.37)

where Wτ is the set of all products of, at most, τ Metropolis matrices W (t) that
can be obtained in the communication graph. The convergence speed of each entry
[Î G

i (k)]r,s , [îGi (k)]r in the information matrices and vectors estimated by the robots
depends on the τ -index of joint contractivity,

|[Î G
i (k)]r,s − [I k

G]r,s | ≤ (δ)�
k
τ
�√n max

j

{∣∣∣[Î G
j (0)]r,s − [I k

G]r,s
∣∣∣}, (4.38)

|[îGi (k)]r − [ikG]r | ≤ (δ)�
k
τ
�√n max

j

{∣∣∣[îGj (0)]r − [ikG]r
∣∣∣}, (4.39)

where � k
τ
� is the largest integer less than or equal to k

τ
.

Therefore, the convergence speed depends on the topology of the communica-
tion graph. Moreover, from the time complexity analysis, we can see that when
the communication graph is complete, the robots reach consensus in one iteration.
For complete communication graphs, the Metropolis matrix is W = (1/n)11T and
|λ2(W)| = 0. Then, |[Î G

i (k)]r,s − [I k
G]r,s | ≤ 0, |[îGi (k)]r − [ikG]r | ≤ 0 for all k ≥ 1,

all i ∈ {1, . . . , n}, and all r, s ∈ {1, . . . ,M }.

4.5 Simulations 83

4.5 Simulations

We have performedMonte Carlo simulations with 5 robots following the trajectories
in Fig. 4.1a. They start in the right part of the scenario and finish in the left part.
We consider a 10× 10× 10 m scenario with features spread over two walls and the
floor. Three of the robots observe the walls and two of them the floor at different

0 10 20 30 40 50
4

5

6

7

8

9

10

11

x 10−4

Step k

R
M

S
 m

er
g

ed
 m

ap
s

(m
et

er
s)

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

Step k

N
E

E
S

 m
er

g
ed

 m
ap

s

dof

χ2
dof,0.99

NEES

(a)

(b) (c)

Fig. 4.1 a Scenario. 5 robots observing features; 3 robots point toward the walls, and 2 observe
the floor. Red crosses are the ground-truth position of the features. Red triangles represent the
ground-truth robot trajectories. Gray and black dots are the estimated position of the features
observed respectively by several robots and by only one robot. For each feature, we display the 100
points obtained during the 100 Monte Carlo simulations. b Average root mean square error (RMS),
Eq. (4.40). c Average normalized state estimation error squared (NEES), Eq. (4.40)

84 4 Map Merging

heights. Red crosses represent the ground-truth position of the features, and red
triangles the ground-truth robot trajectories. Robots measure features that have a
depth between 0.4 and 5m, and which are placed in front of them and within the
image limits. These observations are corrupted with noises with standard deviation
0.0012 + 0.0019(depth − 0.4)2 for the depth [34], and with standard deviation 1
pixel for the image coordinates. The algorithm used for building and merging the
maps is very similar to the one in the experiment with real RGB-D data, with the
exception that we use the ground-truth data association for the observed features,
and the ground truth initial correspondence for the robots. Robots run the method
discussed in Sect. 4.3 for 50 steps. During the first 30 steps, they move and build their
local maps, and simultaneously, they run the map merging method. During the last
20 steps there are no changes in the local maps, and thus, they run the map merging
algorithm to agree on the latest local maps. The robots propagate the changes in
their local maps after each 3 steps. Our agents exchange data if they are closer than
3.5m. Figure4.1a shows the 3D features position estimated by robot 1 at the last map
merging step k = 50, for the 100 Monte Carlo simulations. Since the observation
noise is small, the points are very accurate and similar to each other. Visually, they
are almost indistinguishable.

We have studied the performance of the method using the following metrics
[8]: the average root mean square error (RMS); and the average normalized state
estimation error squared (NEES). For each robot i , step k, andMonteCarlo simulation
l, we let x̃G,l

i (k) be the difference between the estimates of the common features’
positions in the global map mean x̂G

i (k) in Eq. (4.19) and their ground-truth position

x. Equivalently, we let (Î A,l
i (k + 1))−1/di (k) be the consistent expression of the

covariance matrix of the common features, as in Theorem8, for robot i , step k,
and Monte Carlo simulation l. Figures4.1b, c show the RMS and NEES per step k
computed as follows:

RM S =

√
∑100

l=1
∑n

i=1

(
x̃G,l

i (k)
)T (

x̃G,l
i (k)

)
100n

M
, (4.40)

N E E S =
100∑
l=1

n∑
i=1

(
x̃G,l

i (k)
)T (

di (k) Î A,l
i (k + 1)

) (
x̃G,l

i (k)
)

100n
,

where M is the size of common features.
Figure4.1b shows the RMS per step (blue solid). Due to the information share, the

estimated features positions become more accurate as the iterations go by, reaching
estimation errors per coordinate smaller than 1mm. Figure4.1c displays the NEES
value obtained (red solid), which should follow a χ2 distribution withM degrees of
freedom.Thus, if the estimatedmergedmaps are consistent, the expected value for the
NEES isM (black solid, dof), and it should not overpass the value χ2

0.99,dof (black
dashed). During all the steps, the estimated features’ positions are consistent. This is
the expected behavior for systems where robots observe the full 3D position of the

4.5 Simulations 85

features.Recall thatwe ensure consistency (Theorem8) as long as the centralizedmap
is consistent, and this depends on the local maps being consistent. Thus, for scenarios
where robots only get partial measurements of the features positions, and depending
on the particular localmappingmethod, the localmapsmay not be consistent. Even in
this case, our algorithmwill produce estimatesmore conservative than the centralized
map.

4.6 Closure

In this chapter we have presented an algorithm for dynamically merging feature-
based maps in a robot network with limited communication. This algorithm allows
the robots to have a better map of the environment containing the features observed
by any other robot in the team. Thus, it helps the coordination of the team in several
multi-robot tasks such as exploration or rescue. The algorithm correctly propagates
the new information added by the robots to their local maps. We have shown that,
with the studied strategy, the robots correctly track the global map. At the final step,
they obtain the last global map, which contains the updated information at all the
robots. We have analyzed the performance of the method for robots equipped with
RGB-D sensors in a simulated environment. Additional experiments with real data
acquired with conventional cameras and with RGB-D sensors, under link failures
and switching topologies, are presented in Chap.5.

References

1. P. Alriksson, A. Rantzer, Distributed Kalman filtering using weighted averaging, in Interna-
tional Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, July 2006

2. R. Aragues, J. Cortes, C. Sagues, Distributed consensus algorithms for merging feature-based
maps with limited communication. Robot. Auton. Syst. 59(3–4), 163–180 (2011)

3. R. Aragues, J. Cortes, C. Sagues, Distributed consensus on robot networks for dynamically
merging feature-based maps. IEEE Trans. Robot. 4, 850–854 (2012)

4. R. Aragues, J. Cortes, C. Sagues, Distributed map merging with consensus on common infor-
mation, in European Control Conference, Zurich, Switzerland, July 2013, pp. 736–741

5. R. Aragues, C. Sagues, Y. Mezouar, Feature-based map merging with dynamic consensus
on information increments, in IEEE International Conference on Robotics and Automation,
Karlsruhe, Germany, May 2013, pp. 736–741

6. R. Aragues, G. Shi, D.V. Dimarogonas, C. Sagues, K.H. Johansson, Y. Mezouar, Distributed
algebraic connectivity estimation for undirected graphs with upper and lower bounds. Auto-
matica 50, 3253–3259 (2014)

7. R. Aragues, C. Sagues, Y. Mezouar, Feature-based map merging with dynamic consensus on
information increments. Auton. Robot. 38, 243–259 (2015)

8. Y. Bar-Shalom, X. R. Li, T. Kirubarajan, Estimation with Applications to Tracking and Navi-
gation: Theory Algorithms and Software (Wiley, New York, 2004)

9. F. Bullo, J. Cortes, S.Martinez,Distributed Control of Robotic Networks. AppliedMathematics
Series Princeton University Press, Princeton, 2009), http://coordinationbook.info

http://dx.doi.org/10.1007/978-3-319-25886-7_5
http://coordinationbook.info

86 4 Map Merging

10. G. Calafiore, Distributed randomized algorithms for probabilistic performance analysis. Syst.
Control Lett. 58(3), 202–212 (2009)

11. G. Calafiore, F. Abrate, Distributed linear estimation over sensor networks. Int. J. Control 82(5),
868–882 (2009)

12. R. Carli, A. Chiuso, L. Schenato, S. Zampieri, Distributed Kalman filtering based on consensus
strategies. IEEE J. Sel. Areas Commun. 26, 622–633 (2008)

13. D. W. Casbeer, R. Beard, Distributed information filtering using consensus filters, in American
Control Conference, St. Louis, USA, June 2009, pp. 1882–1887

14. H. Jacky Chang, C.S. George Lee, Y. Charlie Hu, Yung-Hsiang Lu, Multi-robot SLAM with
topological/metric maps, in IEEE/RSJ International Conference on Intelligent Robots and
Systems, San Diego, USA, October 2007, pp. 1467–1472

15. A.Cunningham,V. Indelman, F.Dellaert. DDF–SAM2.0: consistent distributed smoothing and
mapping. In IEEE International Conference on Robotics and Automation, Karlsruhe, Germany,
May 2013, pp. 5220–5227

16. A. Cunningham, K.M. Wurm, W. Burgard, F. Dellaert, Fully distributed scalable smoothing
and mapping with robust multi–robot data association, in IEEE International Conference on
Robotics and Automation, St. Paul, USA, May 2012, pp. 1093–1100

17. G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, M. Csorba, A solution to the
simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom
17(3), 229–241 (2001)

18. D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, B. Stewart, Distributed multirobot explo-
ration and mapping. IEEE Proc. 94(7), 1325–1339 (2006)

19. R.A. Freeman, P. Yang, K.M. Lynch, Stability and convergence properties of dynamic average
consensus estimators, in IEEE Conference on Decision and Control, SanDiego, CA, December
2006, pp. 398–403

20. S. Grime, H.F. Durrant-Whyte, Data fusion in decentralized sensor networks. Control Eng.
Pract. 2(5), 849–863 (1994)

21. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)
22. A. Howard, Multi-robot simultaneous localization and mapping using particle filters. Int. J.

Robot. Res. 25(12), 1243–1256 (2006)
23. G.P. Huang, N. Trawny, A.I. Mourikis, S.I. Roumeliotis, On the consistency of multi-robot

cooperative localization, in Robotics: Science and Systems, Seattle, WA, USA, June 2009, pp.
65–72

24. G.P. Huang, N. Trawny, A.I. Mourikis, S.I. Roumeliotis, Observability-based consistent EKF
estimators for multi-robot cooperative localization. Auton. Robot. 30(1), 99–122 (2011)

25. S. Huang, Z. Wang, G. Dissanayake, U. Frese, Iterated d-slam map joining: evaluating its
performance in terms of consistency, accuracy and efficiency. Auton. Robot. 27(4), 409–429
(2009)

26. S. Julier, J.K. Uhlmann, General decentralised data fusion with covariance intersection (CI),
in Handbook of Multisensor Data Fusion, ed. by D.L. Hall, J. Llinas (CRC Press, Boca Raton,
2001)

27. K. Konolige, J. Gutmann, B. Limketkai, Distributed map-making, in Workshop on Reason-
ing with Uncertainty in Robotics, International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, 2003

28. A. Leshem, L. Tong, Estimating sensor population via probabilistic sequential polling, IEEE
Signal Process. Lett., 12(5):395–398 (2005)

29. K.Y.K. Leung, T.D. Barfoot, H. Liu, Decentralized localization of sparsely-communicating
robot networks: a centralized-equivalent approach. IEEE Trans. Robot. 26(1), 62–77 (2010)

30. K.Y.K. Leung, T.D. Barfoot, H.H.T. Liu, Decentralized cooperative simultaneous localization
and mapping for dynamic and sparse robot networks, in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Taipei, Taiwan, October 2010, pp. 3554–3561

31. T. Li, J.F. Zhang, Consensus conditions on multi-agent systems with time-varying topologies
and stochastic communication noises. IEEE Trans. Autom. Control 55(9), 2043–2057 (2010)

References 87

32. K.M. Lynch, I.B. Schwartz, P. Yang, R.A. Freeman, Decentralized environmental modeling by
mobile sensor networks. IEEE Trans. Robot. 24(3), 710–724 (2008)

33. E.M. Nebot, M. Bozorg, H.F. Durrant-Whyte, Decentralized architecture for asynchronous
sensors. Auton. Robot. 6(2), 147–164 (1999)

34. C.V. Nguyen, S. Izadi, D. Lovell, Modeling kinect sensor noise for improved 3d reconstruction
and tracking, in International Conference on 3D Imaging, Modeling, Processing, Visualization
and Transmission, Zurich, Switzerland, October 2012, pp. 524–530

35. R.Olfati-Saber, DistributedKalmanfilterwith embedded consensus filters, in IEEE Conference
on Decision and Control Seville, Spain, 2005, pp. 8179–8184

36. R. Olfati-Saber, Distributed Kalman filtering for sensor networks, in IEEE Conference on
Decision and Control, New Orleans, LA, December 2007, pp. 5492–5498

37. R. Olfati-Saber, J.S. Shamma, Consensus filters for sensor networks and distributed sensor
fusion, IEEE Conference on Decision and Control Sevilla, Spain, 2005, pp. 6698–6703

38. L.M. Paz, J.D. Tardos, J. Neira, Divide and conquer: EKF SLAM in O(n). IEEE Trans. Robot.
24(5), 1107–1120 (2008)

39. M. Pfingsthorn, B. Slamet, A. Visser, A scalable hybrid multi-robot SLAM method for highly
detailedmaps, in Lecture Notes in Artificial Intelligence, ed. by U. Visser, F. Ribeiro, T. Ohashi,
F. Dellaert, vol. 5001 (Springer, Berlin, 2008), pp. 457–464

40. W. Ren, R.W. Beard, E.M. Atkins, Information consensus in multivehicle cooperative control.
IEEE Control Syst. Mag. 27(2), 71–82 (2007)

41. D. Rodríguez-Losada, F. Matía, A. Jiménez, Local maps fusion for real time multirobot indoor
simultaneous localization and mapping, in IEEE International Conference on Robotics and
Automation, New Orleans, USA, April 2004, pp. 1308–1313

42. S.I. Roumeliotis, G.A. Bekey, Distributed multirobot localization. IEEE Trans. Robot. Autom.
18(5), 781–795 (2002)

43. D.P. Spanos, R.Olfati-Saber, R.M.Murray,Distributed sensor fusion using dynamic consensus,
in IFAC World Congress, Prague, 2005

44. Y.G. Sun, L. Wang, G. Xie, Average consensus in networks of dynamic agents with switching
topologies and multiple time-varying delays. Syst. Control Lett. 57(2), 175–183 (2008)

45. S. Thrun, Y. Liu, D. Koller, A. Ng, H. Durrant-Whyte, Simultaneous localisation and mapping
with sparse extended information filters. Int. J. Robot. Res. 23(7–8), 693–716 (2004)

46. S. Utete, H.F. Durrant-Whyte, Routing for reliability in decentralised sensing networks. Am.
Control Conf. 2, 2268–2272 (1994)

47. D. Varagnolo, G. Pillonetto, L. Schenato, Distributed statistical estimation of the number of
nodes in sensor networks, in IEEE Conference on Decision and Control Atlanta, USA, 2010,
pp. 1498–1503

48. R. Vincent, D. Fox, J. Ko, K. Konolige, B. Limketkai, B. Morisset, C. Ortiz, D. Schulz, B.
Stewart, Distributed multirobot exploration, mapping, and task allocation. Ann. Math. Artif.
Intell. 52(1), 229–255 (2008)

49. S.B. Williams, H.Durrant-Whyte, Towards multi-vehicle simultaneous localisation and map-
ping, in IEEE International Conference on Robotics and Automation, Washington, DC, USA,
May 2002, pp. 2743–2748

50. L. Xiao, S. Boyd, Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78
(2004)

51. L. Xiao, S. Boyd, S. Lall, A space-time diffusion scheme for peer-to-peer least-square esti-
mation, in Symposium on Information Processing of Sensor Networks (IPSN), Nashville, TN,
April 2006, pp. 168–176

52. X.S. Zhou, S.I. Roumeliotis, Multi-robot SLAM with unknown initial correspondence: the
robot rendezvous case, in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Beijing, China, October 2006, pp. 1785–1792

53. M. Zhu, S. Martínez, Discrete-time dynamic average consensus. Automatica 46(2), 322–329
(2010)

Chapter 5
Real Experiments

Abstract We show some experiments of the methods studied in this book with real
data under different communication schemes. We have carried out experiments using
a data set from Frese and Kurlbaum, a data set for data association, 2008, [1] with
bearing-only information extracted from conventional images. Additionally, we have
analyzed the performance of the data association method and the localization and
map merging algorithms under real data acquired with an RGB-D sensor, which
provides both visual and depth information.

Keywords RGB-D data · Visual data · Distributed and parallel algorithms ·
Localization · Data association · Map merging

5.1 Data Association with Visual Data

The behavior of the data association algorithm is analyzed with the data set [1] with
bearing information obtained with vision (Sony EVI-371DG), in an environment of
60 m × 45 m performing 3297 steps. It is an indoor scenario where the robot moves
along corridors and rooms. The data set contains real odometry data and images
captured at every step (Fig. 5.1). The images are processed and measurements to
natural landmarks are provided. The natural landmarks are vertical lines extracted
from the images and processed in the form of bearing-only data. The observations
in the dataset are labeled so that we have the ground truth data association. This
dataset is very challenging for a conventional visual map building algorithm due
to the limited field of view of the camera (Sony EVI-371DG). Furthermore, the
camera is pointing forward in the same direction of robot motion and the robot
traverses rooms and corridors with few features in common. Note that this situation
is much more complex than situations where the camera can achieve big parallax, or
systems with ominidirectional cameras, where features within 360◦ around the robot
are observed. We analyze the performance of the algorithm under 3 communication
graphs (Fig. 5.2a–c). We select 9 subsections of the whole path for the operation
of 9 different robots (Fig. 5.2d). A separate SLAM is executed on each subsection,
producing the 9 local maps (Fig. 5.2e). The local data associations are computed

© The Author(s) 2015
R. Aragues et al., Parallel and Distributed Map Merging and Localization,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-25886-7_5

89

90 5 Real Experiments

Fig. 5.1 An example of the images used by the 9 robots to test the proposed method [1]. Although
the data set also provides artificial landmarks (white circles on the floor), we do not use them, and
instead we test the algorithm using the lines extracted from natural landmarks (in yellow)

One cycle

(a)

(b) (c)

(d) (e)

Four cycle

−20 −10 0 10 20
−50

−40

−30

−20

−10

0

10

−5 0 5 10 15
−4

−2

0

2

4

6

8

Robot 1
Robot 2
Robot 3
Robot 4
Robot 5
Robot 6
Robot 7
Robot 8
Robot 9

Complete

Fig. 5.2 a–c Communication graphs. d Section of the dataset used in the experiments and trajec-
tories followed by the 9 robots. e Local maps acquired by the 9 robots

using the JCBB [5] since it is very convenient for clutter situations like the considered
scenario (Fig. 5.2e).

Table 5.1 gives statistics about the number of inconsistencies found considering
the different network topologies in Fig. 5.2a–c. We show the obtained associations
compared to the ground truth results. The number of association sets is the number of
connected components of At . The number of good links (true positives) is obtained
associations between 2 features which are true (ground truth). The missing links (false
negatives) are associations that are in the ground truth information, but have been not
detected. And spurious links (false positives) are associations found between features
that are different according to the ground truth. The sixth row, C , is the number of

5.1 Data Association with Visual Data 91

Table 5.1 Initial associations between the 9 local maps

Comm. graph (a) (b) (c)

Association sets
(ground truth)

242 284 400

Association sets 182 218 290

Good links (true
positives)

160 190 228

Missing links (false
negatives)

82 94 172

Spurious links (false
positives)

22 28 62

Conflictive sets (C) 3 5 8

Number of features
msum

138 144 154

Conflictive features 16 24 51

Table 5.2 Management of the inconsistencies

Comm. graph (a) (b) (c)

Iterations 1 1 1

Initial conflictive sets 3 5 8

Resulting conflictive
sets

0 0 0

Resulting incons.
feats.

0 0 0

Deleted links 6 10 34

Good deleted links
(true positives)

2 2 12

Spurious deleted links
(false positives)

4 8 22

conflictive sets. The next row in the table shows the total number of features which
has been associated to any other feature from other local map. The last row gives
information about how many of those features are conflictive. The amount of missing
and spurious associations obtained is very high for the three network topologies. This
is the expected result for many real scenarios, where the landmarks are close to each
other, and where the only available information is their cartesian coordinates. As a
result, the conflictive features are more than a 10 % of the total. In communication
graphs with more cycles (Fig. 5.2b, c), there are more conflictive features. In the three
cases, after a single execution of the detection and the resolution algorithms, all the
inconsistencies are solved (Table 5.2, 1st row). An interesting result is that, although
the algorithm presented in Chap. 2 cannot distinguish between good and spurious
edges, in practice a high number of the deleted edges (last row) are spurious.

http://dx.doi.org/10.1007/978-3-319-25886-7_2

92 5 Real Experiments

5.2 Map Merging with Visual Data

We also show results of some experiments of the map merging method using real
data from the previously described data set [1] with bearing information obtained
with vision (Sony EVI-371DG). The landmarks are vertical lines extracted from
the images (Fig. 5.1). We have carried out these experiments with 9 robots. The
total area covered by the robots is a square of 30 m × 30 m (Fig. 5.3a). We run a
separate SLAM in each robot and obtain 9 maps. We use a bearing-only SLAM
algorithm with features parameterized in inverse depth [3] followed by a transform
to Cartesian coordinates before the merging process. We express the local maps in
global coordinates according to the relative robot poses seen in Fig. 5.3a, obtaining
the results shown in Fig. 5.3b. Note that this is the result of putting the maps together,
without applying a merging method. The team of robots build local maps of the
environment, and then they execute the fusion algorithm presented in Chap. 4 to
merge these maps.

We study the behavior of the map merging method under three different scenarios:
a fixed communication graph, a graph with switching topology, and a graph with link
failures (Fig. 5.4).

We illustrate the performance of our algorithm by comparing the global map
estimated by the robots along the iterations with the actual global map. We consider
the x-coordinate of feature F23 (within the black box in Fig. 5.3). In Fig. 5.5 we show
the estimated information matrices Î G

i (k) and vectors iGi (k) (solid lines) during 40
iterations, compared to the global map I k

G , ikG , Eq. (4.8) (thick solid line). In all cases
the estimates converge to the average value very fast. Note that at iteration 0, robots
1, 7, 8 and 9 have estimated different initial values for F23. Then, they execute the
map merging method proposed and they reach an agreement.

−20 −10 0 10 20

−40

−30

−20

−10

0

10

20

−5 0 5 10 15 20 25

−15

−10

−5

0

5

10

15

F23

Section explored Local maps

(a) (b)

Fig. 5.3 a Trajectories followed by the 9 robots. They cover a region of 30 m × 30 m of the data
set. b Local maps obtained by robots 2 (green), 6 (yellow), and 9 (pink). The feature F23 within the
black box will be used for testing purposes within this section

http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4

5.2 Map Merging with Visual Data 93

R1
R2

R3

R4

R5R6

R7

R8

R9
R1 R2

R3

R4

R5R6

R7

R8

R9
R1

R8

R2

R7

R3

R6

R4

R5

R9

X

(a)

Fixed graph

(b)

Switching graph

(c)

Link failure graph

Fig. 5.4 Communication graphs. a Fixed string graph, with robots 1 and 9 in the extremes. b For
each iteration k, there exists a single edge linking robots ((k − 1) mod 9)+ 1 and (k mod 9)+ 1.
c A connected graph where at each iteration one of its link fails

0 20 40

0

10000

20000

(a) (b) (c)

(d) (e) (f)

0 20 40

0

10000

20000

0 20 40

0

10000

20000

0 20 40

−1000

0

1000

2000

0 20 40

−1000

0

1000

2000

0 20 40

−1000

0

1000

2000

Fig. 5.5 Estimated position (x-coordinate) of F23 at each robot along 40 iterations. We display its
associated components within the information matrices Î G

i (k) (first row) and vectors îG
i (k) (second

row). We analyze the results for the graphs in Fig. 5.4. a Î G
i (k) Fixed graph. b Î G

i (k) Switching

graph. c Î G
i (k) Link failure graph. d îG

i (k) Fixed graph. e îG
i (k) Switching graph. f îG

i (k) Link
failure graph

Figure 5.6 analyzes the evolution of the mean x̂G
i (k) and covariance Σ̂G

i (k)

(Chap. 4) estimated by each robot i (solid lines) for feature F23, x-coordinate. It
can be seen that x̂G

i (k) converges to x̂k
G , Eq. (4.5), (thick solid), and that the consis-

tent expression of the covariance matrix (Î A
i (k + 1))−1/di (k) in Theorem 8 remains

larger than the centralized covariance (thick solid) for all robots and all steps. We
also display the numerical covariance, which cannot be locally computed by the ro-
bots, E[(x̂G

i (k)−x)(x̂G
i (k)−x)T] (dashed lines), which converges to the centralized

covariance.
We analyze the effects of the communication topology on the performance of

the algorithm. In the fixed and the switching communication graphs (Fig. 5.5, first
and second column), the convergence is slower than for the link failure graph

http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4

94 5 Real Experiments

0 20 40

5.4

5.6

5.8

(a) (b) (c)

(d) (e) (f)
0 20 40

5.4

5.6

5.8

0 20 40

5.4

5.6

5.8

0 20 40

−0.2

0

0.2

0 20 40

−0.2

0

0.2

0 20 40

−0.2

0

0.2

Fig. 5.6 Estimated position (x-coordinate) of F23 at each robot along 40 iterations. We display its
associated components within the mean x̂G

i (k) (first row) and covariance Σ̂G
i (k) (second row) using

color solid lines. We analyze the results for the graphs in Fig. 5.4. a x̂G
i (k) Fixed graph. b x̂G

i (k)

Switching graph. c x̂G
i (k) Link failure graph. d Σ̂G

i (k) Fixed graph. e Σ̂G
i (k) Switching graph. f

Σ̂G
i (k) Link failure graph

(Fig. 5.5, third column). In this fixed graph (Fig. 5.4a) the topology is a string, with
robots 1 and 9 in the extremes. This is a specially bad configuration since the time
needed to propagate information from the extreme robots to the whole network
is maximal. The per step convergence factor γ = |λ2(W)| (4.36) depends on the
Metropolis weights matrix, which is

W = 1

3

⎡
⎢⎢⎢⎢⎢⎢⎣

2 1 0 . . . 0
1 1 1 0 0

0
. . .

. . .
. . . 0

.

.

. 0 1 1 1
0 0 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We obtain a value for γ = 0.96 close to 1. This produces a slow convergence. The
convergence bounds are displayed in black dashed lines (Fig. 5.5, first column). In the
switching graph case (Fig. 5.4b), at every time instant, only one communication link
exists in the graph and this sequence takes place in a circular fashion. This is a very
extreme communication scheme where, although the conditions for convergence are
satisfied, the converge speed is expected to be slow. We can see that (Fig. 5.5, second
column) for each robot, estimates remain unchanged during long periods of time, then
they experiment two consecutive changes, and then they remain unchanged again.
Each robot remains isolated during 7 iterations, maintaining its estimates unchanged.

http://dx.doi.org/10.1007/978-3-319-25886-7_4

5.2 Map Merging with Visual Data 95

Then, it exchanges information with its previous neighbor and, in the next iteration,
with its next neighbor. In our case, at each iteration k, there exists a single edge linking
robots ((k − 1) mod 9) + 1 and (k mod 9) + 1. The index of joint connectivity is
τ = 8 since every 8 iterations the joint graph is connected. There are only 9 different
Metropolis weight matrices W (k), depending on the linked robots at time k, that are
repeated successively. We obtained a value for δ = 0.89 using (4.37). We draw the
bounds using black dashed lines (Fig. 5.5, second column).

In the link failure graph (Fig. 5.4c), at each iteration one of the links in the graph
fails although the graph remains connected. Thus, we obtain an index of joint con-
nectivity of τ = 1. Evaluating all the possible Metropolis weight matrices in this
graph, we obtain δ = 0.80. We show the convergence speed bounds (Fig. 5.5, third
column) using black dashed lines. This communication scheme exhibits the fastest
convergence speed, since 0.80k ≤ 0.96k ≤ 0.89�k/8� for all k = 0, 1, . . . This faster
convergence can also be observed in the estimated mean and covariance (Fig. 5.6),
where the estimates approach the global map faster for the link failure graph (third
column). It is noted that regardless of the presence of link failures or changes in the
communication topology, the numerical covariance remains bounded by the locally
computed covariance matrix.

In addition, we display (Fig. 5.7) the global map estimated by robot 1 after 5,
and 20 iterations (colored lines) of the merging algorithm, and under the fixed com-
munication graph (Fig. 5.4a). The maps estimated by the 9 robots are similar. We
compare the estimates at robot 1 to the global map in (4.5) (black lines). Due to the
network configuration, after 5 iterations robot 1 has received information from the
initial local maps of robots 1–6. However, it still knows nothing of the local maps
of robots 7–9 (Fig. 5.7a). As previously stated, this fixed communication graph has
a slow convergence speed. However, after 20 iterations the map estimated by robot
1 is very close to the global map (Fig. 5.7b). In addition, it is observed that the infor-
mation fusion leads to a great improvement in the map quality, where not only the
uncertainty is greatly decreased, but also the local maps are corrected.

−5 0 5 10 15 20 25

−15

−10

−5

0

5

10

15

(a) (b)

−5 0 5 10 15 20 25

−15

−10

−5

0

5

10

15

Fig. 5.7 Global map estimated by robot 1 after 5 (a) and 20 (b) iterations of the merging algorithm,
and under the fixed graph (Fig. 5.4a). Different colors identify the source local map. Although the
global map contains a single estimate per feature, the features observed by more than one robot are
displayed by multiple colored ellipses. The global map x̂k

G , Σk
G is displayed in black

http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4

96 5 Real Experiments

Fig. 5.8 Execution times
(per iteration and robot)
exhibited by the merging
algorithm

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iterations

T
im

e
(s

ec
s.

)

Fixed graph
Switching graph
Link failure graph

Finally, we show the performance of the map merging algorithm in terms of
execution times (Fig. 5.8). During the first iterations, the peaks on the execution
times are due to the expansion and arrangement of the information matrices and
vectors Î G

i (k) and îGi (k) that are performed by the robots whenever they discover
new features in its neighbors’ information. These memory allocation operations,
which are computationally expensive, give rise to this behavior. In the fixed graph
case (in blue solid) this situation continues until iteration 5, when robot 5, the robot
in the central position within the string graph, has received information from all
the robots. Its information matrix Î G

i (5) reaches its maximum size and, from here
to the end of the experiment, its global map estimate changes but its size remains
unchanged. The execution times reach a peak at iteration 5 and from here on, it
decreases. From iterations 5 to 9 other robots achieve the maximal size of their
matrices Î G

i (k), and finally, from iteration 9 to the end of the experiment, the global
map size remains unchanged for all the robots. For this reason, we can see that the
execution times are drastically reduced from iteration 9 to the end of the experiment.
For the switching graph (in black dashed), the first robots that receive information
from all the others are 8 and 9, at iteration 8, and from iterations 9 to 15 robots
1–7 successively expand their maps to the maximum size. Finally, from iteration 16
to the end, all the robot’s global map estimates present the maximal size and only
its contents change. For this reason, the execution times decrease. Finally, for the
link failure graph (in dotted red), due to its higher connectivity, all the expansion
operations are carried out duringthe first 4 iterations, giving rise to the larger peak

5.2 Map Merging with Visual Data 97

−1000 −500 0 500 1000 1500
0

1000

2000

−500

0

500

1000

x

z

y

−500 0 500 10000

1000

2000

0

500

1000

x

z

y

−500
0

500
0

500

1000

1500

2000
−1000

0

1000

x

z

y

−1000 0 10000

1000

2000

3000

−1000

0

1000

x

z

y

−1000 −500 0 500 1000
0
1000
2000

−1000

−500

0

500

1000

z

x

y

Fig. 5.9 An example of the images obtained by the 9 robots with the RGB-D sensor

observed in the plot. After these expansion operations, the execution times are similar
for the three communication graphs.

5.3 Data Association, Localization, and Map Merging
with RGB-D

We show experiments using RGB-D cameras, which provide both regular RGB
(Fig. 5.9, first row) and depth image information (Fig. 5.9, second row). Thus, it is
possible to compute the cloud of points in 3D from a single image (Fig. 5.9, third
row). We consider a scenario with 9 robots. Initially, robots are placed at unknown
poses in the environment. From their initial pose, robots take an image of the scene
(Fig. 5.10). They extract SIFT/SURF features [2] from their RGB images and they
use the depth information and the camera parameters to compute the 3D position of
these features, as in Fig. 5.9, third row.

Given the sets of features of two robots, it is possible to establish matches based
on the SIFT/SURF descriptor of the features. Then, robots compute their relative
pose (rotation and translation) using the matches and the 3D position of the features
in a robust way (RANSAC) and discard matches that disagree with the most sup-
ported relative pose candidate (Fig. 5.11). Typically, the number of matches between
overlapping images is high, and the noise in the image points is small. Therefore,
the previous method provides highly accurate results. Robots use their initial images
to compute the relative poses of their nearby robots (Fig. 5.10) and based on this

98 5 Real Experiments

Fig. 5.10 Images taken from the first robot poses. We are depicting the matches (red lines) between
some of the images

−1000 500 2000
z

x

y

Fig. 5.11 SURF/SIFT matches (red) that satisfy the relative rotation and translation restriction.
The ones that are rejected are depicted in yellow

information, they compute their pose in the common reference frame as explained
in Chap. 3. This method to obtain the robot poses in the common frame is not only
restricted to RGB-D images taken from the first robot poses. It can be equivalently
applied to images acquired during the exploration, or to the local maps of the robots.

Each robot explores a region and builds a map of the environment. We let each
robot execute a SLAM algorithm with SIFT/SURF features parameterized in 3D
cartesian coordinates. Robots are represented by their 3D position and orientation,
and robot motions are predicted by computing the relative rotation and translation
between successive images. Figure 5.12 shows the resulting map (red points and el-
lipses) obtained by robot 3 (dark gray triangle) along its trajectory (dashed line). We
also show the 3D RGB-D points observed from some of the steps of the robot trajec-
tory (light gray points) to give an idea of the scene. After exploring, nearby robots
compute the local data association between their maps based on the SIFT/SURF de-

http://dx.doi.org/10.1007/978-3-319-25886-7_3

5.3 Data Association, Localization, and Map Merging with RGB-D 99

R6

R9R2

R3

(a) (b)Local map of robot 3 Data association

Fig. 5.12 a Local map (red points and ellipses) of robot 3 (triangle). The RBG-D points observed
from some steps of the robot trajectory are displayed (gray points) to give an idea of the scene. b
Robots (triangles) compute the data association (lines) between their local maps (dark dots). We
display the associations between robots R2, R3, R6, and R9

0−400−200 0 200 400
−1000

−500

0

500
R4

R3

R1

R8

R6

R2
R5

R7

R9

−400−200 0 200 400
−1000

−500

0

500
R9

R6
R7

R1

R3

R5 R4
R2

R8

−400−200 0 200 400
−1000

−500

0

500
R4

R3

R1

R8

R6

R2
R5

R7

R9

−400−200 0 200 400
−1000

−500

0

500
R4

R3

R1

R8

R6

R2
R5

R7

R9

−400−200 0 200 400
−1000

−500

0

500
R4

R3

R8

R1

R6

R2

R5

R7

R9

−400−200 0 200 400
−1000

−500

0

500
R4

R3

R8

R1

R6

R2
R5

R7

R9

−400−200 0 200 400
−1000

−500

0

500
R4

R3

R8

R1

R6

R2
R5

R7

R9

(a)

(b) (c) (d)

(f)(e) (g)

Comm. graph

Iteration 0 Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 5

Fig. 5.13 a Robots (circles) exchange data with their neighbors in the communication graph (linked
trough lines). Blue lines in figures b–g indicate that the two robots have received information from
each other during the previous iterations. Red circles are robots that have received data from R1;
equivalently, R1 has received data of these robots as well

scriptors and the position of their features. Then, they propagate the local associations
and find and solve inconsistencies as explained in Chap. 2 (Fig. 5.12).

Finally, they merge their local maps and build a global map of the environment
using the communication graph in Fig. 5.13a. In Fig. 5.13b–g we explain how this
communication graph affects the information exchange. We are displaying a link
(blue line) between pairs of robots that have received information from each other
during the previous iterations. Initially (Fig. 5.13b), each robot only has its local infor-
mation and thus there are no lines in the graph. During the first iteration (Fig. 5.13c),
robots exchange information with their one-hop neighbors (blue lines in Fig. 5.13a).
At iteration 2 robots exchange data with their neighbors again according to the graph

http://dx.doi.org/10.1007/978-3-319-25886-7_2

100 5 Real Experiments

−1000

0

1000

2000

3000 −1000
0

1000
2000

−1000

0

1000

2000

Common
Exclusive (R1)

−1000

0

1000

2000

3000 −1000
0

1000
2000

−1000

0

1000

2000

Common
Exclusive (R1)
Exclusive (R3)
Exclusive (R6)

−1000

0

1000

2000

3000 −1000
0

1000
2000

3000

−1000

0

1000

2000

Common
Exclusive (R1)
Exclusive (R3)
Exclusive (R5)
Exclusive (R6)
Exclusive (R7)

−1000

0

1000

2000

3000 −1000
0

1000
2000

3000
4000

−1000

0

1000

2000

Common
Exclusive (R1)
Exclusive (R2)
Exclusive (R3)
Exclusive (R5)
Exclusive (R6)
Exclusive (R7)
Exclusive (R9)

−1000

0

1000

2000

3000 −1000
0

1000
2000

3000

−1000

0

1000

2000

Common
Exclusive (R1)
Exclusive (R2)
Exclusive (R3)
Exclusive (R4)
Exclusive (R5)
Exclusive (R6)
Exclusive (R7)
Exclusive (R8)
Exclusive (R9)

−1000

0

1000

2000

3000 −1000
0

1000
2000

3000
4000

−1000

0

1000

2000 Common
Exclusive (R1)
Exclusive (R2)
Exclusive (R3)
Exclusive (R4)
Exclusive (R5)
Exclusive (R6)
Exclusive (R7)
Exclusive (R8)
Exclusive (R9)

(a) (b) (c)

(d) (e) (f)

Fig. 5.14 Global map estimated by robot R1 at iterations 0–5. Common features observed by
several robots and exclusive areas observed by a single robot are depicted in different colors.
a Iteration 0, b Iteration 1, c Iteration 2, d Iteration 3, e Iteration 4, f Iteration 5

in Fig. 5.13a, and thus they have access to two-hop neighbors data (lines in Fig. 5.13d).
The process is repeated during the next iteration, having access to three-hop
neighbors data (Fig. 5.13e), and so on. After iteration 4 (Fig. 5.13f, g), each robot has
received information from all the other robots. Additional iterations allow the robots
to obtain a more accurate estimate of the global map.

Robots fuse their maps as explained in Chap. 4. Figure 5.14 shows the global
map estimated by robot R1 along iterations 0–4, with contains features observed
exclusively by a single robot (exclusive), as well as features observed by several
robots (common). After 4 iterations, robot R1 has received information from all
the other robots and thus its map already contains estimates for all the features
observed by the team. Successive iterations of the map merging algorithm produce
more accurate estimates of the features (Fig. 5.15).

In the second set of experiments, we study a scenario that is more challenging
from the point of view of the map merging method (Chap. 4). We consider again a
robot team composed by 9 robots that acquire information with RGB-D sensors, and
that extract SIFT features [2] from the images. The robots take 473 images in total,
and from each image around 1333 SIFT points are extracted. This time, robots do
not merge their maps after exploring the region, but we consider different situations.
Four of the robots (R3, R5, R7, R9) have already finished their exploration when
the merging process begins; they provide their local maps at the step k = 0 and
remain static during the execution of the algorithm. Robots R2, R6, R8 on the other
hand, keep on moving and updating their local maps simultaneously to the merging
process. Finally, robots R1 and R4 explore and update their maps as well, but they
form a different exploration cluster and remain disconnected from the team for several
steps. A summary of the time steps when robots propagated their local maps in our
experiment can be seen in Table 5.3. The local maps of the robots contain around 962
features per map at the last step; the smallest and largest local maps belong to robots
R2 and R9 and have respectively 163 and 2858 features. We solve both initialization

http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4

5.3 Data Association, Localization, and Map Merging with RGB-D 101

Table 5.3 Steps Ti at which
robot i propagates its local
map

Fixed agents Exploring agents Other cluster

T3 = {0}
T5 = {0} T2 = {0, 4, 8}
T7 = {0} T6 = {0, 5, 10, 20} T1 = {5, 15, 25}
T9 = {0} T8 = {0, 5, 10, 20} T4 = {5, 15, 25}

and data association in a centralized fashion, using the same method explained for
the first experiment, and focus on the behavior of the map merging method.

As robots move, the communication graph Gk changes and new links appear and
disappear (Fig. 5.16); for instance, R2 gets isolated for some steps (k = 6); R1 and
R4 remain isolated from the others (k = 0, k = 6) until step k = 33; and the
neighbors of all the robots change several times (k = 0 to k = 40). Note that in none
step it is a complete (all-to-all) graph.

We show the evolution of the covariances and mean vectors, and information ma-
trices and vectors of the global map estimated by the robots (Fig. 5.17). We illustrate
it using the x-coordinate of a feature F2,31 which was observed by robots in the cluster
(R1, R4), and in the remaining team (R2, R3, R5, R6, R7, R8, R9). At each step,
we display (blue solid) the estimate that would be obtained by a centralized system
(Eq. (4.5)) considering all the robot local maps. Note that the centralized estimates
change whenever a robot propagates changes of its local map (Table 5.3). The mean
x̂G

i (k), covariance Σ̂G
i (k), and information matrix Î G

i (k) and vector iGi (k) estimated
by all the robots (different colors, dashed) correctly converge to the centralized value
(blue solid). Note that the covariance estimates (Fig. 5.17b, different colors, dashed)
can become smaller than the global one (blue solid) for some robots and iterations,
whereas the consistent expression of the covariance matrix (Î A

i (k + 1))−1/di (k)

in Theorem 8 (Fig. 5.17c, different colors, dashed) remains larger than the central-

−1000

0

1000

2000

3000 −1000
0

1000
2000

3000
4000

−1000

0

1000

2000
Common
Exclusive (R1)
Exclusive (R2)
Exclusive (R3)
Exclusive (R4)
Exclusive (R5)
Exclusive (R6)
Exclusive (R7)
Exclusive (R8)
Exclusive (R9)

Fig. 5.15 Localization of the robots and global map estimated by robot R1 after 20 iterations of
the map merging algorithm

http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4

102 5 Real Experiments

−1000 −500
0 500 −500

0

500

1000

1500

−400
−200

0
200
400

R1

R2

R4

R5

R8

R3

R6
R7

R9
−1000

−500
0

500 −500
0

500
1000

1500

−400
−200

0
200
400

R1

R2

R4

R5

R8

R3

R6
R7

R9

k = 0 k = 6

−1000 −500 0
500 −500

0

500

1000

−200
0

200 R1

R4

R5

R8
R6

R2

R3
R7

R9
−1000

−500
0

500 −500

0

500

1000

−400
−100
200

R4

R1

R8

R5

R3

R2

R6R7

R9

k = 33 k = 40

Fig. 5.16 Communication graphs Gk at different steps k. Robot R8 has received information of the
local maps of the robots displayed in red. x-, y- and z- axes in are in millimeters

ized covariance (blue solid) for all robots and all steps. Since up to step k = 33
robots remain divided into two different clusters, we show as well (green solid) the
estimate that would be obtained by a centralized system (Eq. (4.5)), but considering
only the robot local maps in each cluster. During the time both clusters are separated,
the estimates of different robots (different colors, dashed), correctly track this cluster
centralized value (green solid) that contains all the information that could be avail-
able in the best case to the robots. The robot estimates react to changes in the local
maps in an appropriate way. In particular, up to iteration k = 33, since the cluster
composed by R1, R4 has a complete (all-to-all) topology, their estimates are exactly
equal to the cluster centralized ones (green solid).

We make an analysis of the communication and memory costs of our algorithm
(Fig. 5.18, left column a, c, e). These cost include both the consensus on the common
features, as well as the propagation of the mean and the elements in the main diagonal
of the covariance matrix for the exclusive features and robot poses (Sect. 4.4). These
exclusive features and robot poses are re-estimated at each step based on the most
recent estimates of the common features. We consider numbers encoded with single
precision (4 bytes). A benefit of using a consensus-based algorithm is its low memory
cost (Fig. 5.18e) of around 45 MBytes per robot, which does not depend on the
number of robots but only on the scene size. In addition, the communication cost
per iteration (Fig. 5.18a, c) is almost the same for all the robots; observe that there
are almost no differences between the average (gray solid) and maximum costs
(black dashed). We have compared our performance against a method based on
propagation (Fig. 5.18, right column b, d, f). The memory usage (Fig. 5.18f) of the
propagation method is much higher than for our method (Fig. 5.18e). If we sum
up the average communication costs per robot (Fig. 5.18 a–d, gray solid line) for
the 45 iterations (sum of the along the x-axis), we obtain a total of 234 MBytes

http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4

5.3 Data Association, Localization, and Map Merging with RGB-D 103

0 10 20 30 40

1150

1200

1250

1300

Step k

M
ea

n
 (

m
ill

im
et

er
s)

centralized
cen cluster
R1
R2
R3
R4
R5
R6
R7
R8
R9

0 10 20 30 40
0

200

400

600

800

1000

Step k

C
o

va
ri

an
ce

 (
m

ill
im

et
er

s2)

0 10 20 30 40

0

2000

4000

6000

8000

Step k

C
o

va
ri

an
ce

 (
m

ill
im

et
er

s2)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

Step k

In
f.

 m
at

ri
x

(m
ill

im
et

er
s−2

)

0 10 20 30 40

−300

−200

−100

0

Step k

In
f.

 v
ec

to
r

(m
ill

im
et

er
s−1

)

(a)

(b) (c)

(d) (e)

Fig. 5.17 Robots execute the algorithm for fusing their maps for 45 iterations k (x-axis). We
show the evolution of the estimates at each robot (different colors, dashed) of: a the mean vector
x̂G

i (k); b the covariance matrix Σ̂G
i (k); c the consistent expression for the covariance matrix,

(Î A
i (k + 1))−1/di (k) (Theorem 8); d the information matrix Î G

i (k); and e the information vector

îG
i (k). We focus on the evolution of the entry associated to the x-coordinate of feature F2,31. We

display in blue solid the value of this feature coordinate in the global map (Eq. (4.5)). Until step
k = 33, robots remain in two separated clusters, one of them composed by R1, R4, and the other by
the remaining robots. We display as well (green solid) the centralized map that would be obtained
by considering all the available local maps within each cluster. After step k = 33, both cluster
global maps (green solid) become the equal to the global map (Eq. (4.5)) that considers the local
maps of all the robots (blue solid)

http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4
http://dx.doi.org/10.1007/978-3-319-25886-7_4

104 5 Real Experiments

0 20 40

0

20

40

60

80

100

Step k

M
es

sa
g

es
 (

M
B

yt
es

)

Max. Robot
Avg. Robot

0 20 40

0

20

40

60

80

100

Step k

M
es

sa
g

es
 (

M
B

yt
es

)

0 10 20 30 40

0

5

10

Step k

M
es

sa
g

es
 (

M
B

yt
es

)

Max. Robot
Avg. Robot

0 10 20 30 40

0

5

10

Step k

M
es

sa
g

es
 (

M
B

yt
es

)

0 20 40
0

20

40

60

80

100

120

Step k

M
em

o
ry

 (
M

B
yt

es
)

Max. Robot
Avg. Robot
Avg. Local Map

0 20 40
0

20

40

60

80

100

120

Step k

M
em

o
ry

 (
M

B
yt

es
)

(a) (b)

(c) (d)

(e) (f)

Messages map merging Messages propagation

Detail of (a) Detail of (b)

Memory map merging Memory propagation

Fig. 5.18 Messages exchanged (a)–(d) and memory usage (e, f) per robot along 45 iterations of our
algorithm (left column) against a simple propagation method (right column). Numbers are encoded
with single precision (4 bytes). We show the average amount of information (gray solid) as well
the largest amount of information per robot (black dashed). Figures (c, d) show a detail of (a, b). In
figures exhibiting memory costs (e, f), we show the average memory used by the local maps (green
solid)

versus the 61 MBytes used by the propagation method. This means that, due to the
iterative nature of our algorithm, we obtain a total communication cost larger than for
the propagation method. However, paying attention to the communication costs per
robot (black dashed), in our method all the robots exchange similar amounts of data
(Fig. 5.18a, c), whereas the propagation solution exhibits large communication cost
peaks (Fig. 5.18b, d). If robots propagated their observations, i.e., the 3D SIFT point
clouds extracted from their images, then the costs per robot up to step k = 33 would
be 322 MBytes storage and 286 MBytes communication. Obviously, propagating
the raw RGB + depth images instead is an even worse option; the costs per robot

5.3 Data Association, Localization, and Map Merging with RGB-D 105

up to step k = 33 would be 693 MBytes storage and 616 MBytes communication.
After propagating the observations, one of the robots would compute and propagate
the global map, with an associated extra cost. Thus, as it can be seen, propagating
measurements is not efficient, and propagating local maps is memory demanding
and it is prone to large peaks in the communication costs.

Note that the communication costs in Fig. 5.18 do not include the data association.
This cost is highly dependent on the method used to match the features. A deep
discussion of the performance of different matching strategies can be found in [4].

5.4 Closure

In this chapter we have presented several experiments with real data that confirm the
performance of the Map Merging and Localization methods presented in the book. It
has been shown that their flexibility allows the robots to easily cope with situations of
real-world scenarios, where communication is limited and robots get disconnected
from the team for long periods of time. The theoretical results are shown to be cor-
rect, and the robots appropriately track the merged map. As discussed, distributed
methods have low memory complexity. Due to their iterative nature, if we sum up
the communication complexity along all the iterations, they have higher communi-
cation consumption than alternative methods based on propagation. However, the
communication complexity remains almost constant at each iteration, and they do
not generate large communication peaks in some areas of the network. An interesting
future area of research directed toward reducing the communication cost would be
to let the robots decide when they can stop performing additional merging iterations.

References

1. U. Frese, J. Kurlbaum, A data set for data association. Electronically, (2008) http://www.sfbtr8.
spatial-cognition.de/insidedataassociation/

2. D.G. Lowe, Object recognition from local scale-invariant features. IEEE Int. Conf. Comput.
Vis. 709, 1150–1157 (1999)

3. J.M.M. Montiel, J. Civera, J. Davison, Unified inverse depth parametrization for monocular
SLAM, in Robotics: Science and Systems, Philadelphia, USA, August 2006

4. E. Montijano, R. Aragues, C. Sagues, Distributed data association in robotic networks with
cameras and limited communications. IEEE Trans. Robot. 29(6), 1408–1423 (2013)

5. J. Neira, J.D. Tardós, Data association in stochastic mapping using the joint compatibility test.
IEEE Trans. Robot. Autom. 17(6), 890–897 (2001)

http://www.sfbtr8.spatial-cognition.de/insidedataassociation/
http://www.sfbtr8.spatial-cognition.de/insidedataassociation/

Chapter 6
Conclusions

Keywords Networked robots · Distributed systems · Parallel computation ·
Limited communication ·Multi-robot perception · Localization ·Data association ·
Map merging

Along this book, we have presented distributedmethods for localization andmerging
stochastic feature-basedmaps acquired by a team of robots for scenarios with limited
communication.

In the first place, we have studied a very important problemwhich appears in most
localization andmapmerging scenarios, andwhich is particularly hard inmulti-robot
systems: The association of the features observed by the different robots. We have
presented a distributed technique to match several sets of features observed by a team
of robots in a consistent way under limited communications. Local associations are
found only within robots that are neighbors in the communication graph. After that,
a fully decentralized method to compute all the paths between local associations is
carried out, allowing the robots to obtain the relationship between their own features
and the ones observed by the other team members. In addition, each robot detects all
the inconsistencies related with their observations. For every conflictive set detected,
in the second step the method is able to delete local associations to break the conflict
using only local communications. The whole method is proved to finish in finite time
finding and solving all the inconsistent associations.

The problem of localization travels together with the map merging problem. In
multi-robot systems, the establishment of a common reference frame is, in addition,
very important. Usually, robots start at unknown poses and do not share any refer-
ence frame. The localization problem consists of establishing this common frame
and computing the robots’ poses. Each robot is capable of measuring the relative
pose of its neighboring robots. However, it does not know the poses of far robots,
and it can only exchange data using the range-limited communication network. The
network localization problem has been studied for different scenarios: the planar
pose network localization from noisy relative measurements relative to an anchor
node; and the position network computation for higher dimensional scenarios, from
noisy measurements with simultaneous estimation of the centroid. We have ana-
lyzed distributed strategies that allow the robots to agree on a common global frame,

© The Author(s) 2015
R. Aragues et al., Parallel and Distributed Map Merging and Localization,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-25886-7_6

107

108 6 Conclusions

and to compute their poses or positions relative to the global frame. The presented
algorithms exclusively rely on local computations and data exchange with direct
neighbors and have been proved to converge under mild conditions on the communi-
cation graph. Besides, they only require each robot to maintain an estimate of its own
pose. Thus, the memory load of the algorithm is low compared to methods where
each robot must also estimate the positions or poses of any other robot.

The robots explore an environment and build their localmaps. Simultaneously, the
robots communicate and build a global map of the environment. We have deeply dis-
cussed thismapmerging problem and have proposed distributed solutions. Themeth-
ods studied are fully distributed, relying exclusively on local interactions between
neighboring robots. Under fixed connected communication graphs, or time-varying
jointly connected topologies, the estimates at each robot asymptotically converge to
the global map. Moreover, the intermediate estimates at each robot present interest-
ing properties that allow their use at any time: the mean of the global map estimated
by each robot is unbiased at each iteration, and the covariance of the global map esti-
mated by each robot is bounded by the locally computed covariance. The robustness
of the map fusion algorithm under link failures and changes in the communication
topology has been analyzed theoretically and tested experimentally. The algorithm
allows the robots to have a better map of the environment containing the features
observed by any other robot in the team. Thus, it helps the coordination of the team
in several multi-robot tasks such as exploration or rescue.

Experimental results show the performance of the presented algorithms. We have
included simulations at the end of each chapter to show the performance of the studied
methods against the known ground truth and we have also included a chapter with
real experiments using vision information of conventional cameras and of RGB-D
cameras.

Appendix A
Averaging Algorithms and Metropolis
Weights

Throughout this document, we frequently refer to averaging algorithms. They have
become very popular in sensor networks due to their capability to reach agreement
in a distributed way. Let us assume that each robot i ∈ V has initially a scalar
value zi(0) ∈ R. Let W ∈ R

n×n
≥0 be a doubly stochastic matrix such that Wi,j > 0

if (i, j) ∈ E and Wi,j = 0 when j /∈ Ni. This matrix is such that Wi,i ∈ [α, 1],
Wi,j ∈ {0} ∪ [α, 1] for all i, j ∈ V , for some α ∈ (0, 1]. Assume the communication
graph G is connected. If each robot i ∈ V updates zi(t) at each time step t ≥ 0 with
the following averaging algorithm,

zi(t + 1) =
n∑

j=1

Wi,j zj(t), (A.1)

then, as t → ∞, the variables zi(t) reach the same value for all i ∈ V , i.e., they reach
a consensus. Moreover, the consensus value is the average of the initial values,

lim
t→∞ zi(t) = z� = 1

n

n∑

j=1

zj(0), (A.2)

for all i ∈ V [1, 2]. Observe that each robot i updates its variables zi(t) using
local information since the weight matrix has zero entries for nonneighboring
robots, Wi,j = 0 when j /∈ Ni. Let e(t) = (z1(t), . . . , zn(t))T − (z�, . . . , z�)

T be
the error vector at iteration t. The number of iterations t necessary for reaching
||e(t)||2/||e(0)||2 < ε ranges between a single iteration for complete graphs, and
order n2 log(ε−1) iterations for networks with lower connectivity like string and
circular graphs [1, Theorems1.79 and 1.80].

© The Author(s) 2015
R. Aragues et al., Parallel and Distributed Map Merging and Localization,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-25886-7

109

110 Appendix A: Averaging Algorithms and Metropolis Weights

A common choice for the matrix W ∈ R
n×n is given by the Metropolis weights

given by [3],

Wi,j =

⎧
⎪⎨

⎪⎩

1
1+max{|Ni|,|Nj |} if j ∈ Ni, j �= i,

0 if j /∈ Ni, j �= i,
1 − ∑

j∈Ni
Wi,j, if j = i,

(A.3)

for i, j ∈ V , j �= i, where |Ni|, |Nj| are the number of neighbors of robots i, j. Note
that each robot can compute the weights that affect its evolution using only local
information. The algorithm (A.1) using the Metropolis weights W converges to the
average of the inputs.

References

1. F. Bullo, J. Cortes, S. Martinez, Distributed Control of Robotic Networks.
Appliedmathematics series. (PrincetonUniversity Press, Princeton, 2009). http://
coordinationbook.info

2. W. Ren, R. W. Beard. Distributed Consensus in Multi-vehicle Cooperative Con-
trol. Communications and control engineering. (Springer, London, 2008)

3. L. Xiao, S. Boyd, S. Lall. A scheme for robust distributed sensor fusion based on
average consensus. In Symposium on Information Processing of Sensor Networks
(IPSN). Los Angeles, (2005), pp. 63–70

http://coordinationbook.info
http://coordinationbook.info

Appendix B
Auxiliary Results for Distributed Localization

Development of the Expressions of the Planar Localization Algorithm
in Sect. 3.3.1

During the first phase, θ̃a
V a and its covariance Σθ̃a

V a
are

θ̃a
V a = Σθ̃a

V a
A aΣ−1

zθ
zθ , Σθ̃a

V a
= (A aΣ−1

zθ
(A a)T)−1. (B.1)

In the second phase, the updated measurements w and a first-order propagation of
the uncertainty Σw are

w =
[

z̃xy

θ̃a
V a

]
=

[
R̃zxy

θ̃a
V a

]
, Σw =

[
R̃Σzxy R̃T + JΣθ̃a

V a
JT JΣθ̃a

V a

Σθ̃a
V a

JT Σθ̃a
V a

]T

. (B.2)

The estimates in the third phase are the solution of the linear system

p̂a
V a =

[
x̂a
V a

θ̂a
V a

]
= (BΣ−1

w BT)−1BΣ−1
w w. (B.3)

To write in explicit form x̂a
V a and θ̂a

V a we first compute the information matrix
Υw = Σ−1

w ,

Υw =
[

Υz̃xy −Υz̃xy J
−JT Υz̃xy Σ−1

θ̃a
V a

+ JT Υz̃xy J

]

, (B.4)

© The Author(s) 2015
R. Aragues et al., Parallel and Distributed Map Merging and Localization,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-25886-7

111

http://dx.doi.org/10.1007/978-3-319-25886-7_3

112 Appendix B: Auxiliary Results for Distributed Localization

where Υz̃xy is as in Eq. (3.11), Υz̃xy = (R̃Σzxy R̃T)−1, and where we have used the

following blockwise inversion relations
[

A B
C D

]−1

=
[

E F
G H

]
, with

E = A−1 + A−1B
(

D − CA−1B
)−1

CA−1 =
(

A − BD−1C
)−1

,

F = −A−1B
(

D − CA−1B
)−1 = −

(
A − BD−1C

)−1
BD−1,

G = −
(

D − CA−1B
)−1

CA−1 = −D−1C
(

A − BD−1C
)−1

,

H =
(

D − CA−1B
)−1 = D−1 + D−1C

(
A − BD−1C

)−1
BD−1.

(B.5)

The information matrix Υp̂a
V a = (BΣ−1

w BT) and its inverse Σp̂a
V a are

Υp̂a
V a =

[
(A a ⊗ I2)Υz̃xy(A

a ⊗ I2)T −(A a ⊗ I2)Υz̃xy J
−JT Υz̃xy(A

a ⊗ I2)T Σ−1
θ̃V a

+ JT Υz̃xy J

]

,

Σp̂a
V a =

[
Σx̂ Σx̂,θ̂

ΣT
x̂,θ̂

Σ
θ̂

]

, with

(B.6)

Σ
θ̂

= ((Σθ̃a
V a

)−1 − JT Υz̃xy EJ)−1,

Σx̂ = L−1 + L−1(A a ⊗ I2)Υz̃xy JΣ
θ̂
JT Υz̃xy(A

a ⊗ I2)T L−1,

Σx̂,θ̂
= L−1(A a ⊗ I2)Υz̃xy JΣ

θ̂

E = (A a ⊗ I2)T L−1(A a ⊗ I2)Υz̃xy − I,

L = (A a ⊗ I2)Υz̃xy(A
a ⊗ I2)T .

(B.7)

Zp
n and Mp

n Matrices Defined by Blocks in the Proof of Theorem6

In [1], a classification of matrices defined by blocks and a study of their properties
is given. Here we show a brief summary of some of these properties. We use the
notation A = [

Aij
]
for a real matrix A ∈ R

np×np defined by blocks, where each block
Aij is a p × p matrix, for all i, j ∈ {1, . . . , n}.
Definition 6 ([1]) Matrix A is of class Zp

n if Aij is symmetric for all i, j ∈ {1, . . . , n}
and Aij 	 0 for all i, j ∈ {1, . . . , n}, j �= i. In addition, it is of class Ẑp

n if A ∈ Zp
n

and Aii
 0 for all i ∈ {1, . . . , n}. Matrix A is of class Mp
n if A ∈ Ẑp

n , and there exist
positive scalars u1, . . . , un > 0 such that

n∑

j=1

ujAij
 0 for all i ∈ {1, . . . , n}.

http://dx.doi.org/10.1007/978-3-319-25886-7_3
http://dx.doi.org/10.1007/978-3-319-25886-7_3

Appendix B: Auxiliary Results for Distributed Localization 113

Lemma 4 ([1, Lemma3.8]) Let A ∈ Zp
n and assume that ∀J ⊂ {1, . . . , n}, there

exists i ∈ J such that
∑

j∈J Aij
 0. Then, there exists a permutation π such that
∑

j≥i Aπ(i),π(j)
 0, for all i ∈ {1, . . . , n}.
Theorem 9 ([1, Theorem3.11]) Let A ∈ Zp

n , let u1, . . . , un > 0 and let

n∑

j=1

Aijuj 0, for all i ∈ {1, . . . , n}. (B.8)

Assume that there exists a permutation π of {1, . . . , n} such that

∑

j≥i

Aπ(i),π(j)uπ j
 0, for all i ∈ {1, . . . , n}. (B.9)

Then, A ∈ Mp
n .

Theorem 10 ([1, Theorem4.7]) Let

A + AT ∈ Mp
n , D = blkDiag (A11, . . . , Ann) , and A = D − N .

Then ρ
(
D−1N

)
< 1.

Reference

1. L. Elsner, V. Mehrmann, Convergence of block iterative methods for linear sys-
tems arising in the numerical solution of Euler equations. Numerische Mathe-
matik 59(1):541–559 (1991)

Index

A
Anchor node, 38, 41, 49, 53, 58
Average consensus, 5, 67

C
Centralized system, 4, 43, 58, 65, 66
Centroid frame, 40, 49, 53, 54, 61
Common frame, 37, 39, 40, 49, 98
Communication graph, 4, 13, 15, 39, 49, 55,

71, 89, 99
Consistent feature, 24
Conventional cameras, 2, 89, 92

D
Data association, 6, 8, 11, 91, 98
Data association graph, 15
Data association set, 15, 16, 19
Distributed system, 4, 5, 43, 54, 55, 58, 65,

66, 71
Dynamic map merging, 65, 75

E
Exclusive feature, 23, 24, 100

F
Feature, 11, 13, 65, 69, 85
Feature-based map, 65, 85
Feature label, 23

G
Global merged map, 65, 69, 95

I
Inconsistent association, 11, 15, 19, 26, 90
Information matrices and vectors, 6, 67, 70,

71, 82, 92

L
Limited communication, 4, 11, 13, 65, 66,

71, 85
Localization, 7, 8, 37–41, 43, 49, 55, 58, 60,

98
Local map, 65, 67, 89, 92, 98
Local matching, 11, 13, 14, 89, 98

M
Map merging, 6, 8, 65, 66, 92
Multi-robot systems, 1, 5, 13

N
Neighbor robot, 11, 13, 49, 65, 66

O
Omnidirectional cameras, 2, 32

R
Relative measurements graph, 39, 41, 49, 51
Relative pose measurement, 37–41, 54
Resolved feature, 25
RGB-D cameras, 4, 97

S
Static map merging, 65

© The Author(s) 2015
R. Aragues et al., Parallel and Distributed Map Merging and Localization,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-25886-7

115

116 Index

Stochastic map, 4, 69
Switching topology, 4, 66, 82, 92, 94

U
Unbiased mean, 75

V
Visual perception, 2, 89, 92

	Preface
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Classical Approaches
	1.3 Document Organization
	References

	2 Distributed Data Association
	2.1 Introduction
	2.2 Problem Description
	2.2.1 Matching Between Two Cameras
	2.2.2 Centralized Matching Between n Cameras
	2.2.3 Distributed Matching Between n Cameras

	2.3 Propagation of Local Associations
	2.4 Algorithm Based on Trees
	2.5 Feature Labeling
	2.6 Algorithm Based on the Maximum Error Cut
	2.7 Simulations
	2.8 Closure
	References

	3 Distributed Localization
	3.1 Introduction
	3.2 Problem Description
	3.3 Planar Localization from Noisy Measurements
	3.3.1 Centralized Algorithm
	3.3.2 Distributed Algorithm

	3.4 Centroid-Based Position Estimation from Noisy Measurements
	3.4.1 Position Estimation Relative to an Anchor
	3.4.2 Centralized Centroid-Based Position Estimation
	3.4.3 Distributed Centroid-Based Position Estimation

	3.5 Simulations
	3.6 Closure
	References

	4 Map Merging
	4.1 Introduction
	4.2 Problem Description
	4.3 Dynamic Map Merging Algorithm
	4.4 Properties of the Dynamic Map Merging Algorithm
	4.5 Simulations
	4.6 Closure
	References

	5 Real Experiments
	5.1 Data Association with Visual Data
	5.2 Map Merging with Visual Data
	5.3 Data Association, Localization, and Map Merging with RGB-D
	5.4 Closure
	References

	6 Conclusions
	Appendix AAveraging Algorithms and MetropolisWeights
	Appendix BAuxiliary Results for Distributed Localization
	Index

