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Abstract. This paper deals with a finite source retrial queueing system
of type M/M/1//N with collision of the customers. This means that the
system has one server and N sources. Analysis of the sojourn time in
the system is presented. The analysis is performed under an asymptotic
condition of infinitely increasing number of sources. The approximation
of the distribution of the total sojourn time in the system is derived.
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1 Introduction

Retrial queue [1–3] is a queuing system characterized by the following basic
assumption: a customer who cannot get service goes to the orbit and, after
some random period of time, returns to the system and tries to get service
again. It is assumed that the orbit is infinitely large and every call repeats his
attempts until he is satisfied. Retrial queueing systems are important to study
computer and telephone systems, digital communication networks with random
access protocols, engineering cellular mobile radio networks, computer networks
and other technical systems. For a comprehensive review of retrial queues and a
summary of many results and literature, the reader is directed to the works by
Falin and Templeton [4], Artalejo and Gomez-Corral [5], and references therein.

In many practical situations, it is important to take into consideration the
fact that the rate of generation of a primary calls degreases as the number of
customers in the system increases. This can be done with the help of finite source
models where each source generates its own flow of a primary customers.

Finite source retrial model can be applied for researching magnetic disk mem-
ory systems, local area networks with CSMA/CD protocols with star topology,
ets. The seminal papers of this area are [6–9]. Dragieva V. in [10] considered
a single server unreliable finite source retrial model in which breakdowns occur
only when the server is busy and after breakdown the server is immediately sent
for repair. A various types of unreliable system with finite numbers of sources
are investigated by Almási B., Sztrick J., Roszik J., for example, in [11,12]. In
this works authors used the software tool MOSEL (Modeling, Specification, and
Evaluation Language) to formulate the model and to calculate and display the
main performance measures.
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 64–72, 2015.
DOI: 10.1007/978-3-319-25861-4 6



Sojourn Time Analysis of Finite Source Markov Retrial Queuing 65

In present paper we consider the M/M/1//N retrial queue with collision.
In the main model it is assumed that if an arriving customer finds the server
busy, then the arriving customer collides with a customer in service and they
both goes to the orbit and the server becomes idle immediately. Choi et al. [13]
considered retrial queues with collision arising from the specific communication
protocol CSMA/CD. In the papers Nazarov A., Lyubina T. are considered the
various open retrial queuing systems with collision of customers [14,15].

In our previous paper [16] we considered a closed retrial queueing system
M/M/1//N with collision. Using method of asymptotic analysis under conditions
of infinitely increasing number of sources, we obtained a distribution of the
number of sources in “waiting” state.

In this paper we propose method of asymptotic analysis under conditions
of infinitely increasing number of sources to research the sojourn time in finite
source Markov retrial queueing system with collision.

2 Model Description

We consider a finite source retrial queuing system of type M/M/1//N in Kendals
notation with collision of the customers. This mean that the system has one
server and N sources. Each one of them generates a primary customers according
to a Poisson flow with rate λ/N . We assume that sources can be in two states:
generating a primary customers and waiting for the end of successful service.
Source which send the customer for service, moves into the “waiting” state and
stays in this state till the end of the service of this customer. If a primary
customer finds server idle, he enters into service immediately, during service
time, which distributed exponentially with parameter μ. Otherwise, if server is
busy, arriving customer involves into collision with servicing customer and they
both moves into the orbit. Retrial customer repeat his demand for service with
an exponential distribution with rate σ/N . We assume that primary customers,
retrial customers and service time are mutually independent.

Lets select a random customer from the system and shall call him the
observed customer. Let us first consider the time between the moment, when
a primary customer enters service for the first time and the time point on which
this customer successfully ends his service. This time period is called the sojourn
time. In the system occur of a situation of the conflict (collision of the customers)
is possible, this feature is necessary to consider in the study of the sojourn time in
the system. Therefore, the sojourn time consist of the total time, which customer
spend on the orbit and the total time of the service. Total service time includes
all period of time in which the observed customer tried to get service, but it
was interrupted by arriving customer and the service time in which observed
customer successfully finished his service.

At time t let i(t) be the number of sources locating in “waiting” state and
k(t) determines the server state

k(t) =

⎧
⎨

⎩

0, if the server is free,
1, if the server is busy (not by observed customer),
2, if the server is busy by observed customer.
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Introduce T (t) - the residual sojourn time of the observed customer in the system
at time t.

Assuming that the observed customer locates in the orbit, lets denote by
Gk(u, i, t) = M{ejuT (t)|k(t) = k, i(t) = i} the joint conditional characteristic
function.

For the functions Gk(u, i, t), we can write the system of the finite-difference
equation:

G0(u, i, t − Δt) =

(
1− λ

N − i

N
Δt

)(
1− σ

i

N
Δt

)
ejuΔtG0(u, i, t)

+ λ
N − i

N
ΔtG1(u, i + 1, t) + σ

i − 1

N
ΔtG1(u, i, t)

+
σ

N
ΔtG2(u, i, t) + o(Δt),

G1(u, i, t − Δt) =

(
1− λ

N − i

N
Δt

)(
1− σ

i − 1

N
Δt

)
(1− μΔt) ejuΔtG1(u, i, t)

+ λ
N − i

N
ΔtG0(u, i + 1, t) + σ

i − 1

N
ΔtG0(u, i, t)

+ μΔtG0(u, i − 1, t) + o(Δt),

G2(u, i, t − Δt) =

(
1− λ

N − i

N
Δt

)(
1− σ

i − 1

N
Δt

)
(1− μΔt) ejuΔtG2(u, i, t)

+λ
N − i

N
ΔtG0(u, i + 1, t) + σ

i − 1

N
ΔtG0(u, i, t) + μΔt + o(Δt).

The Kolmogorov backward differential equations are

−∂G0(u, i, t)

∂t
=

[
ju − λ

N − i

N
− σ

i

N

]
G0(u, i, t) + λ

N − i

N
G1(u, i + 1, t)

+ σ
i − 1

N
G1(u, i, t) +

σ

N
G2(u, i, t),

−∂G1(u, i, t)

∂t
=

[
ju − λ

N − i

N
− σ

i − 1

N
− μ

]
G1(u, i, t) + λ

N − i

N
G0(u, i + 1, t)

+ σ
i − 1

N
G0(u, i, t) + μG0(u, i − 1, t),

−∂G2(u, i, t)

∂t
=

[
ju − λ

N − i

N
− σ

i − 1

N
− μ

]
G2(u, i, t) + λ

N − i

N
G0(u, i + 1, t)

+ σ
i − 1

N
G0(u, i, t) + μ.

Note this system in steady state
[

ju − λ
N − i

N
− σ

i

N

]

G0(u, i) + λ
N − i

N
G1(u, i + 1)

+ σ
i − 1
N

G1(u, i) +
σ

N
G2(u, i) = 0,

[

ju − λ
N − i

N
− σ

i − 1
N

− μ

]

G1(u, i) + λ
N − i

N
G0(u, i + 1)

+ σ
i − 1
N

G0(u, i) + μG0(u, i − 1) = 0,
[

ju − λ
N − i

N
− σ

i − 1
N

− μ

]

G2(u, i) + λ
N − i

N
G0(u, i + 1)

+ σ
i − 1
N

G0(u, i) + μ = 0.

(1)
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In order to solve this system, we use method of asymptotic analysis [17] under
conditions of infinitely increasing number of sources (N → ∞).

3 Method of Asymptotic Analysis

Let us denote
1
N

= ε .
Introducing following substitute

iε = x, u = εw, Gk(u, i) = Fk(w, x, ε), (2)

we can transform system (1) to the form:

[jεw − λ (1 − x) − σx]F0(w, x, ε) + λ (1 − x)F1(w, x + ε, ε)

+ σ (x − ε) F1(w, x, ε) + σεF2(w, x, ε) = 0,

[jεw − λ (1 − x) − σ (x − ε) − μ] F1(w, x, ε) + λ (1 − x) F0(w, x + ε, ε)

+ σ (x − ε) F0(w, x, ε) + μF0(w, x − ε, ε) = 0,

[jεw − λ (1 − x) − σ (x − ε) − μ] F2(w, x, ε) + λ (1 − x) F0(w, x + ε, ε)

+ σ (x − ε) F0(w, x, ε) + μ = 0.

(3)

Theorem 1. The limiting value F0(w, x), F1(w, x), F2(w, x) of function
F0(w, x, ε), F1(w, x, ε), F2(w, x, ε)(the solutions of the system (3)), can be rep-
resented in the following form

F0(w, x) = F1(w, x) = F (w, x) =
d

d − jw
,

F2(w, x) =
μ + a(κ1)F (w, x)

b(κ1)
,

where
d =

σμ

2a(κ1) + μ
,

a(κ1) = λ(1 − κ1) + σκ1,

b(κ1) = λ(1 − κ1) + σκ1 + μ,

κ1 =
2μR2

1

σ(1 − 2R1)
,

R1 =
σ(2λ + μ) − √

σ2(2λ − μ)2 + 8σμλ2

4μ(σ − λ)
.
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Proof. There are two stages of proving.
Stage 1. Using the following denotation lim

ε→0
Fk(w, x, ε) = Fk(w, x) as ε → 0,

the system (3) has the form

− [λ (1 − x) + σx]F0(w, x) + [λ (1 − x) + σx]F1(w, x) = 0 ,

− [λ (1 − x) + σx + μ] F1(w, x) + [λ (1 − x) + σx + μ] F0(w, x) = 0 ,

− [λ (1 − x) + σx + μ] F2(w, x) + [λ (1 − x) + σx]F0(w, x) + μ = 0 .

(4)

From system (4) we obtain that the functions F0(w, x) and F1(w, x) is equal
and function F2(w, x) can be represented as

F0(w, x) = F1(w, x) .= F (w, x),

F2(w, x) =
[λ(1 − x) + σx]F (w, x) + μ

λ(1 − x) + σx + μ
.

(5)

Stage 2. Lets consider the system (3). Using the expansion into a Taylor
series of the first order of smallness about a point x, we get

[jεw − λ (1 − x) − σx]F0(w, x, ε) + [λ (1 − x) + σ (x − ε)] F1(w, x, ε)

+ σεF2(w, x, ε) + λ (1 − x) ε
∂F1(w, x, ε)

∂x
= 0 ,

[jεw − λ (1 − x) − σ (x − ε) − μ] F1(w, x, ε) + [λ (1 − x) + σ (x − ε)

+ μ] F0(w, x, ε) + [λ (1 − x) − μ] ε
∂F0(w, x, ε)

∂x
= 0 ,

[jεw − λ (1 − x) − σ (x − ε) − μ] F2(w, x, ε) + [λ (1 − x) + σ (x − ε)]

· F0(w, x, ε) + λ (1 − x) ε
∂F0(w, x, ε)

∂x
+ μ = 0 .

(6)

Denote the solution of the system (6) as follows

Fk(w, x, ε) = Fk(w, x) + εfk(w, x) + o(ε), k = 0, 1, 2. (7)

Substituting (7) to the system (6) we obtain

ε

{

jwF0(w, x) − σF1(w, x) + σF2(w, x) + λ (1 − x)
∂F1(w, x)

∂x

+
[
λ (1 − x) + σx

]
·
(
f1(w, x) − f0(w, x)

)}

+
[
λ (1 − x) + σx

](
F1(w, x) − F0(w, x)

)
= O(ε2),
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ε

{
(
jw + σ

)
F1(w, x) − σF0(w, x) +

[
λ (1 − x) − μ

]∂F0(w, x)
∂x

+
[
λ (1 − x) + σx + μ

]
·
(
f0(w, x) − f1(w, x)

)}

+
[
λ (1 − x) + σx + μ

](
F0(w, x) − F1(w, x)

)
= O(ε2),

ε

{
(
jw + σ

)
F2(w, x) − σF0(w, x) + λ (1 − x)

∂F0(w, x)
∂x

+
[
λ (1 − x) + σx

]
·
(
f0(w, x) − f2(w, x)

)
− μf2(w, x)

}

+
[
λ (1 − x) + σx

]
F0(w, x) −

[
λ (1 − x) + σx + μ

]
F2(w, x) + μ = O(ε2).

Considering expressions (5) for the functions F0(w, x), F1(w, x) and F2(w, x)
the system rewrite as

ε

{
(
jw − σ

)
F (w, x) + σF2(w, x) + λ (1 − x)

∂F (w, x)
∂x

+
[
λ (1 − x) + σx

]
·
(
f1(w, x) − f0(w, x)

)}

= O(ε2),

ε

{

jwF (w, x) +
[
λ (1 − x) − μ

]∂F (w, x)
∂x

+
[
λ (1 − x) + σx + μ

]
·
(
f0(w, x) − f1(w, x)

)}

= O(ε2),

ε

{
(
jw + σ

)
F2(w, x) − σF (w, x) + λ (1 − x)

∂F (w, x)
∂x

+

+
[
λ (1 − x) + σx

]
·
(
f0(w, x) − f2(w, x)

)
− μf2(w, x)

}

= O(ε2).

(8)

Dividing each part of the equation of the system (8) and executing an asymp-
totic transition as ε → 0, we obtain the following system

[
λ (1 − x) + σx

]
·
(
f0(w, x) − f1(w, x)

)
=

(
jw − σ

)
F (w, x)

+ σF2(w, x) + λ (1 − x)
∂F (w, x)

∂x
,

−
[
λ (1 − x) + σx + μ

]
·
(
f0(w, x) − f1(w, x)

)
= jwF (w, x)

+
[
λ (1 − x) − μ

]∂F (w, x)
∂x

,

[
λ (1 − x) + σx

]
·
(
f2(w, x) − f0(w, x)

)
+ μf2(w, x) =

(
jw + σ

)
F2(w, x) − σF (w, x) + λ (1 − x)

∂F (w, x)
∂x

.

(9)
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Using the following denotation

a(x) = λ(1 − x) + σx,
b(x) = λ(1 − x) + σx + μ, (10)

lets multiply the first equation of (9) by b(x), the second equation by a(x) and
add the resulting equation together:

−
{

λ (1 − x) b(x) +
[
λ (1 − x) − μ

]
a(x)

}
∂F (w, x)

∂x
=

[(
jw − σ

)
b(x) + jwa(x)

]
F (w, x) + σb(x)F2(w, x).

(11)

Taking into account the entered denotation (10), expression (5) can be rewrit-
ten as

b(x)F2(w, x) = a(x)F (w, x) + μ.

Substituting this expression to the Eq. (11) we obtain

−
{

λ (1 − x) b(x) +
[
λ (1 − x) − μ

]
a(x)

}
∂F (w, x)

∂x
=

[(
jw − σ

)
b(x) +

(
jw + σ

)
a(x)

]
F (w, x) + σμ.

(12)

In our previous paper [16] we investigated the closed M/M/1//N retrial queueing
system with collision. In this article it was shown that the number of sources in
“waiting” state i(t)ε asymptoticaly converge to the deterministic quantity κ1.
Therefore, taking into account the denotation (2) x = iε, we obtain that x = κ1.

Putting x = κ1 in the Eq. (12), the multiplier before partial derivative
∂F (w, x)

∂x
becomes equal to zero and Eq. (12) can be rewritten as

[(
jw − σ

)
b(κ1) +

(
jw + σ

)
a(κ1)

]
F (w, κ1) + σμ = 0.

Performing this equation and entering denotation d =
σμ

2 · a(κ1) + μ
, we obtain

the following expression for the function F (w, κ1)

F (w, κ1) =
d

d − jw

Note, that function F (w, κ1) does not depend on argument x. Taking into
account this fact and (5), we can write

F (w) =
d

d − jw
,

F2(w) =
μ

b(κ1)
+

a(κ1)
b(κ1)

F (w).

The theorem is proved. ��
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We obtain the characteristic functions of the distribution of the residual sojourn
time. Using the formula of total probability, we can write the following expression
for the characteristic functions of the distribution of the total sojourn time:

H(w) = R0F2(w) + (1 − R0)F (w) =
μ

b(κ1)
R0 +

(
1 − μ

b(κ1)
R0

) d

d − jw
, (13)

where R0 was previously obtained in [16].
Lets perform the inverse substitutions (2) in the formula (13):

H(u) ≈ μ

b(κ1)
R0 +

(
1 − μ

b(κ1)
R0

) d/N

d/N − ju
.

Using denotation q =
μ

b(κ1)
R0, we can write the following expression for the

approximation h(u) of the characteristic function H(u):

h(u) = q +
(
1 − q

) d/N

d/N − ju
.

Knowing h(u), it is easy to show that the approximation of distribution of the
total sojourn time can be written as

A(x) = 1 − (1 − q)e− d
N x.

4 Conclusion

In this paper, we have considered a finite source retrial queuing system
M/M/1//N with collision of the customers. We obtain the equations for con-
ditional characteristic function of the distribution of the residual sojourn time.
This equation was solved under an asymptotic condition of infinitely increasing
number of sources. As the result, we obtain the approximation of the distribution
of the total sojourn time in the system.
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