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Abstract. In this paper we consider an M/GI/∞ queueing system
operating in a semi-Markovian random environment. That is, the arrival
rate and service-time distribution change according to the external semi-
Markov process state transitions. The service policy subject to environ-
ment transitions is as follows: the service-time distribution of the present
customers does not change until their service is finished. The purpose of
our study is to obtain the probability distribution of the number of cus-
tomers in the system under asymptotic condition of high arrival rate and
frequent environment transitions. To do this, we first apply the method
of supplementary variable and the original method of dynamic screening
to our system. We then conduct the asymptotic analysis of the system
to obtain the discrete probability distribution.
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1 Introduction

Queueing systems subject to external stochastic influences such as Markov mod-
ulation and random environment are of considerate interest in scientific litera-
ture. Such influences are often represented as system breakdowns or arrivals of
priority customers (including batch arrivals) that force the system to behave at a
different mode. Namely, several cases of Markov-modulated single-server queues
are studied in [1]. Represented as a road subject to traffic incidents, the M/M/∞
system operating under batch partial failures is considered in [2]. The random
environment is assumed to have only two states: when there is an incident and
when there are no incidents on the road. In [4], authors consider a more general
case of M/M/∞ queue in Markovian random environment with arbitrary finite
number of states. The expression for steady-state factorial moments is obtained.
In [5], the analysis of M/G/∞ system in Markovian random environment is
given. As a result, transient mean and stationary variance of the number of
customers present in the system are obtained; a deeper analysis of exponential
service case is conducted; the asymptotic normality of the number of customers
probability distribution is shown under conditions of high arrival rate and fre-
quent environment transitions due to the central limit theorem. In turn, the
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steady-state mean number of customers in M/M/∞ in semi-Markovian random
environment is obtained in [7] as well as the steady-state distribution of the
number of customers for the environment with 2 states.

Depending on the model application, different service policies of present cus-
tomers with respect to environment transition may be considered. For instance,
in one of the earliest papers [3] a single-server queue with general service-time
is considered subject to interruptions with generally distributed durations. Two
different cases of customer behavior after interruption clearance are studied:
first, the resume policy, when the service is continued as it was left before the
interruption; second, the repeat policy, when the service starts over. In [10,11],
the M/G/∞ system in semi-Markovian random environment is studied. These
papers cover three cases of the present customers’ reaction to environment state
transitions. The first one is considered in the present paper — service-time dis-
tribution stays the same while the customer is in the system. This policy is also
assumed in [5]. In the second case all customers are immediately cleared from
the queue as environment state transition happens. The last case considers cus-
tomers in service moving to a secondary queue which is an infinite-server system
with bulk arrivals. This case is specifically analyzed in [10], and as a result the
steady-state mean number of customers in the secondary queue is obtained.

Infinite-server queues are often used to approximate the behavior of systems
with sufficiently large number of servers, such as banks, call-centers, supermar-
kets or digital distribution platforms. Such objects in reality are often affected
by extraneous factors of stochastic nature which affect their performance. For
instance, the change of bank rate set by the Central bank affects the conditions
under which commercial banks give loans to their clients. These, in turn, sig-
nificantly influence the intensity of clients’ arrival. In this article we consider
a mathematical model of such situation as an M/GI/∞ queue operating in a
random environment, for which the underlying process is a semi-Markov process
with finite number of states. The arrival rate and service-time distribution change
according to the environment state. Note that distribution of service-time cus-
tomers which are currently being served does not change until the service-time
is finished. Say the bank provided a credit to the client on certain conditions
and during the repayment period there was a change of bank rate. The client
will continue to repay his debt on those initial conditions — as mentioned in a
loan agreement.

2 Problem Statement

We consider an M/GI/∞ queueing system operating in semi-Markovian random
environment. The system under discussion is an infinite-server queue with one
stationary Poisson arrival process with parameter λsN and the unlimited number
of servers each having service-time distribution function Bs(x), s = 1,K. We
use a large parameter N that represents the condition of high arrival rate. Here
s = 1,K is the current state of a semi-Markov stochastic process s(t) defined by
the matrix product P · A(x). The matrix P here is a probability matrix of s(t)
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state transitions and A(x) is a diagonal matrix with conditional sojourn time
cdfs for every state s = 1,K of s(t) on its main diagonal. As there is always
a free server in the system, there is no queue or loss option and each arriving
customer is immediately placed at any free server and stays there for random
time with distribution function Bs(x). Note that we study the case when service-
time distribution of a customer which is currently being served does not change
until its service is finished.

That being said, for considered model we define a two-component process
{i(t), s(t)}, where i(t) with values i ≥ 0 is the number of customers in the
system at time t. Apparently, this process is non-Markovian. To deal with it,
we first apply the original method of dynamic screening and the method of
supplementary variable.

3 Method of Dynamic Screening

The method of dynamic screening can be used for the analysis of both queueing
systems and networks. Further applications may be found in [14–16]. We apply
this method to our system in the following way.

Given that at a certain time t0 the system is empty, we pick a moment T
and track the customer arrivals during the time interval (t0, T ). The customer
will be referred to as “screened” at time t with probability

Ss(t) = 1 − Bs(T − t), s = 1,K, t0 < t < T,

if it arrived at the system at time t < T and was not fully serviced until the
time T . Thus, the screened customers will be in the system taking up its servers
at time T .

Let us denote by n(t) the number of customers that were screened until time
t. Stochastic process n(t) is a screened point process with its points being the
screened customers. The following identity always takes place:

i(T ) = n(T ). (1)

We need to choose time t0 so that at all times t < t0 there are no screened
customers, i.e.

Ss(t) = 1 − Bs(T − t) = 0, s = 1,K, t < t0.

Since Bs(x) is a cumulative distribution function, it is obvious enough to put
t0 = −∞.

We write the possible state transitions of n(t) and their probabilities assum-
ing n(t) = n, n ≥ 0 as follows:

n(t + Δt) =

{
n + 1, with prob. λsΔtSs(t) + o(Δt),
n, with prob. 1 − λsΔtSs(t) + o(Δt),

s = 1,K

Equality (1) allows us to analyze a point process n(t) instead of i(t). Charac-
teristics of the process n(t) at time T coincide with the characteristics of value
i(T ).
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4 Kolmogorov Differential Equations

In order to deal with semi-Markovian process s(t), we first need to apply the
method of supplementary variable. We define z(t) as residual sojourn time of s(t)
process in the current state, i.e. the interval from t until the next environment
transition. It follows that the three-dimensional process {s(t), n(t), z(t)} is a
Markovian one. Therefore, we define the probabilities of system and environment
state at time t as follows:

P (s, n, z, t) = P
{

s(t) = s, n(t) = n, z(t) <
z

N

}
, s = 1,K, n ≥ 0. (2)

Here the big parameter N justifies the condition of frequent environment tran-
sitions that compensates high arrival rate. The matrices that define the process
s(t) are determined as follows:

P =

⎛
⎜⎜⎜⎝

p11 p12 · · · p1K

p21 p22 · · · p2K

...
...

. . .
...

pK1 pK2 · · · pKK

⎞
⎟⎟⎟⎠ ,A(x) =

⎛
⎜⎜⎜⎝

A1(x) 0 · · · 0
0 A2(x) · · · 0
...

...
. . .

...
0 0 · · · AK(x)

⎞
⎟⎟⎟⎠ .

Let τs be the sojourn time of s(t) in state s = 1,K. Then functions As(x) are
defined in the following way:

As(x) = P
{ τs

N
< x

}
= P {τs < Nx} , s = 1,K,

which means that As(x) are the distribution functions of N -fold sojourn time of
s(t) in state s = 1,K.

The system of Kolmogorov differential equations that defines the probabilities
(2) is written as follows:

1
N

∂P (s, n, z, t)
∂t

− ∂P (s, n, z, t)
∂z

+
∂P (s, n, 0, t)

∂z
=

λsSs(t) {P (s, n − 1, z, t) − P (s, n, z, t)} + (3)

As(z)
K∑

k=1

pks
∂P (k, n, 0, t)

∂z
, s = 1,K, n ≥ 0

Here we use the denotation

∂P (s, n, 0, t)
∂z

=
∂P (s, n, z, t)

∂z

∣∣∣∣
z=∞

.

Provided z → ∞, the initial condition to such system’s solution is defined as
follows:

P (s, n, t0) =

{
r(s), if n = 0,

0, if n > 0,
s = 1,K (4)
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Here r(s) are the stationary probabilities of embedded Markov chain states of
s(t), s = 1,K. The partial characteristic functions of the process {s(t), n(t), z(t)}
are defined as follows:

H(s, u, z, t) =
∞∑

n=0

ejunP (s, n, z, t), s = 1,K

Here j =
√−1 is the imaginary unit. We rewrite the system (4) using partial

characteristic functions in the following way:

1
N

∂H(s, u, z, t)
∂t

− ∂H(s, u, z, t)
∂z

+
∂H(s, u, 0, t)

∂z
=

λsSs(t)(eju − 1)H(s, u, z, t)+ (5)

As(z)
K∑

k=1

pks
∂H(k, u, 0, t)

∂z
, s = 1,K

We then use the following vector and matrix denotations:

H(u, z, t) =
(
H(1, u, z, t) H(2, u, z, t) · · · H(K,u, z, t)

)
,

Λ =

⎛
⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λK

⎞
⎟⎟⎟⎠ ,S(t) =

⎛
⎜⎜⎜⎝

S1(t) 0 · · · 0
0 S2(t) · · · 0
...

...
. . .

...
0 0 · · · SK(t)

⎞
⎟⎟⎟⎠ ,

to rewrite the system (4) as follows:

1
N

∂H(u, z, t)
∂t

− ∂H(u, z, t)
∂z

+

∂H(u, 0, t)
∂z

[I − PA(z)] = (eju − 1)H(u, z, t)ΛS(t).
(6)

Here I is the identity matrix. Our goal is to obtain the solution to system (6) as
z → ∞ that satisfies the initial condition derived from (4):

H(u, t0) = r. (7)

The row vector r here is the stationary probability distribution of the embedded
Markov chain of the process s(t) and solves the following system of matrix-vector
equations: {

rP = r,

re = 1.
(8)

5 Method of Asymptotic Analysis

Method of asymptotic analysis for queueing systems is the analysis of equa-
tions that define any of the system’s characteristics or parameters [13]. It allows
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us to obtain the explicit distribution, parameters and moments under certain
asymptotic conditions.

We obtain the solution to system (6) under asymptotic conditions of high
arrival rate and frequent environment transitions, that is, as N → ∞.

5.1 First-Order Asymptotic Analysis

Let us define substitutions for system (6) as follows:

ε =
1
N

,u = εw,H(u, z, t) = F1(w, z, t, ε).

Then (6) can be rewritten as

ε
∂F1(w, z, t, ε)

∂t
− ∂F1(w, z, t, ε)

∂z

+
∂F1(w, 0, t, ε)

∂z
[I − PA(z)] (9)

= (ejεw − 1)F1(w, z, t, ε)ΛS(t).

As ε → 0, the following equality holds:

∂F1(w, z, t)
∂z

=
∂F1(w, 0, t)

∂z
[I − PA(z)] . (10)

We then represent the function F1(w, z, t) as a product

F1(w, z, t) = r(z)Φ1(w, t). (11)

Substitution (11) applied to (10) gives the following equation that defines row-
vector r(z):

r(z) =

z∫
0

r′(0) [I − PA(x)] dx (12)

To determine the value r′(0), we make the following substitution

r′(0) = Cr, C = const. (13)

Note that according to (8)

lim
z→∞ r(z) = C

∞∫
0

r [I − PA(x)] dx

= C

∞∫
0

r [I − A(x)] dx = CrA.
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Apparently, the matrix A here is the diagonal matrix containing means As, s =
1,K of distribution functions from A(x) on its main diagonal. According to (8),
the constant C is derived as follows:

C =
1

rAe
=

1
a
.

Finally, we write the expression for r(z):

r(z) =
1
a

z∫
0

r [I − PA(x)] dx.

Note that

r(z)
∣∣∣∣
z=∞

=
rA
a

.

Now we set z = ∞ in (5.1) and make substitution (11):

ε
1
a
rA

∂Φ1(w, t)
∂t

+ Φ1(w, t)r [I − P]

= (ejεw − 1)Φ1(w, t)
1
a
rAΛS(t).

Post-multiplication by e of both parts of the latter equation gives us the following
first-order ordinary differential equation:

∂Φ1(w, t)
∂t

=
1
a

ejεw − 1
ε

Φ1(w, t)rAΛS(t)e. (14)

As ε → 0, the function Φ1(w, t) that solves the equation above and satisfies the
initial condition derived from (7) is as follows:

Φ1(w, t) = exp {jwκ1(t)} ,

κ1(t) =
1
a

t∫
−∞

rAΛS(τ)edτ.

Finally, we can write

H(u, t) = F1(w, t, ε) ≈ F1(w, t) =
rA
a

Φ1(w, t) =
rA
a

exp{jwκ1(t)},

where w = Nu. It follows that

M{ejun(t)} = H(u, t)e ≈ h1(u, t) = exp{juκ1(t)N}.

Since (1) takes place, we can finally conclude:

M{ejui(T )} = M{ejun(T )} = H(u, T )e
≈ h1(u, T ) = exp{juκ1(T )N}.



The M/GI/∞ in SM Environment 135

Let us calculate the value κ1(T ):

κ1(T ) =
∫ T

−∞
rAΛS(t)edt =

∫ T

−∞

K∑
s=1

r(s)AsλsSs(t)dt

=
K∑

s=1

r(s)Asλs

∫ T

−∞
{1 − Bs(T − t)}dt

=
K∑

s=1

r(s)Asλs

∫ ∞

0

{1 − Bs(τ)}dτ =
K∑

s=1

r(s)Asλsbs,

where bs are the service-time means, s = 1,K. Thus

κ1(T ) =
K∑

s=1

r(s)λs

∞∫
0

{1 − Bs(τ)}dτ =
K∑

s=1

r(s)Asλsbs = rAΛBe,

where B is a diagonal matrix containing service-time means bs.

5.2 Second-Order Asymptotic Analysis

In the equation (6) we make a substitution

H(u, z, t) = H2(u, z, t)e{juκ1(t)N}. (15)

The function H2(u, z, t) here is the centered characteristic function as the
following relation takes place:

H2(u, z, t)e = H(u, z, t)e−juκ1(t)Ne

= M {exp [ju(n(t) − κ1(t)N)]} .

The substitution (15) yields an equation which defines H2(u, z, t):

1
N

∂H2(u, z, t)
∂t

− ∂H2(u, z, t)
∂z

+
∂H2(u, 0, t)

∂z
[I − PA(z)] (16)

= H2(u, z, t)
{
(eju − 1)ΛS(t) − juκ′

1(t)I
}

We rewrite the latter system using substitutions

ε2 =
1
N

,u = εw,H2(u, t) = F2(w, z, t, ε)

in the following way:

ε2
∂F2(w, z, t, ε)

∂t
−∂F2(w, z, t, ε)

∂z

+
∂F2(w, 0, t, ε)

∂t
[I − PA(z)] (17)

= F2(w, z, t, ε)[(ejεw−1)ΛS(t) − jεwκ′
1(t)I]
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As ε → 0, the following relation takes place:

∂F2(w, z, t)
∂z

=
∂F2(w, 0, t)

∂z
[I − PA(z)] .

It follows that the function F2(w, z, t) may be represented as follows:

F2(w, z, t) = r(z)Φ2(w, t). (18)

In turn, the function F2(w, z, t, ε) may be approximated with the following
expression:

F2(w, z, t, ε) = Φ2(w, t) {r(z) + jεwf2(z, t)} + O(ε2). (19)

The row-vector function f2(z, t) is to be defined. To do this, first we make a
substitution (19) in the system (17). We also make the following approximation
in (17):

ejεw − 1 = jεw + O(ε2),

and then set ε → 0. These manipulations yield us the following equation that
defines f2(z, t):

∂f2(z, t)
∂z

− ∂f2(0, t)
∂z

[I − PA(z)] + Φ2(w, t)r(z) [ΛS(t) − κ′
1(t)I] = 0. (20)

Here 0 is the row-vector filled with zeros. It follows that as z → ∞, we have the
relation

f2(t) =

∞∫
0

{
∂f2(0, t)

∂z
[I − PA(x)] − r(x) [ΛS(t) − κ′

1(t)I]
}

dx. (21)

The right part of the latter relation is the improper integral. In order for it
to converge, it is necessary that the integrand function converges to 0 as the
variable of integration approaches ∞. That is, the following relation stands for
f2(0, t):

∂f2(0, t)
∂z

[I − P] =
rA
a

[ΛS(t) − κ′
1(t)I] . (22)

The equation above is the non-homogeneous underdetermined system of linear
equations. We represent its solution as a sum of general solution to homogeneous
system and a partial solution to non-homogeneous system:

∂f2(0, t)
∂z

= c(t)r + g(t), (23)

where c(t) is an arbitrary scalar function of t. We write the additional condition
for the function g(t) as follows:

g(t)e = 0, (24)



The M/GI/∞ in SM Environment 137

Let us now define the explicit expression for (21):

f2(t) =

∞∫
0

{
∂f2(0, t)

∂z
[I − P + P(I − A(z))] − r(z) [ΛS(t) − κ′

1(t)I]
}

dz

=

∞∫
0

[
1
a
rA − r(z)

]
[ΛS(t) − κ′

1(t)I] dz

+

∞∫
0

∂f2(0, t)
∂z

P [I − A(z)] dz

=
1
a
rA

∞∫
0

⎧⎨
⎩I − A−1

z∫
0

[I − A(x)] dx

⎫⎬
⎭ dz [ΛS(t) − κ′

1(t)I] +
∂f2(0, t)

∂z
PA.

Note that A−1
z∫
0

[I − A(x)] dx is a diagonal matrix that contains distribution

functions of both elapsed and residual sojourn time of s(t) at each of its states.
Then denoted by A is the diagonal matrix that contains means of such cdfs
respectively. Finally, we rewrite the expression for f2(t) as follows:

f2(t) =
1
a
rAA [ΛS(t) − κ′

1(t)I] +
∂f2(0, t)

∂z
PA. (25)

Now we show that the row-vector function f2(t) does not actually depend on the
arbitrary scalar function c(t) that is present in (23). To do that, we consider the
following term that is present in (25):

∂f2(0, t)
∂z

PA [ΛS(t) − κ′
1(t)I] e

= [c(t)r + g(t)]PA
[
I − 1

a
erA

]
ΛS(t)e

= g(t)PA
[
I − 1

a
erA

]
ΛS(t)e

+ c(t)rPAΛS(t)e − c(t)
1
a
rPAerAΛS(t)e.

With (8) and a = rAe in mind, we conclude that the two latter terms cancel
each other. Thus, the function c(t) is not present in (25).

Now let us determine the function Φ2(w, t). For this purpose, we again make
substitution (19) in (17) and also the following approximation:

ejεw − 1 = jεw +
(jεw)2

2
+ O(ε3).

As ε → 0 and z → ∞, this yields us the first-order ODE that defines Φ2(w, t):

∂Φ2(w, t)
∂t

=
(jw)2

2
Φ2(w, t) {κ′

1(t) + 2f2(t) [ΛS(t) − κ′
1(t)I] e} . (26)
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Its solution that satisfies the initial condition derived from (7) is of the following
form:

Φ2(w, t) = exp

{
(jw)2

2
κ2(t)

}
, (27)

where

κ2(t) = κ1(t) + 2

t∫
−∞

f2(τ) [ΛS(τ) − κ′
1(τ)I] edτ. (28)

Thus, the expression for the centered characteristic function H2(u, t) is
obtained and is written as follows:

H2(u, t) = F2(w, t, ε) ≈ F2(w, t) =
rA
a

Φ2(w, t)

=
rA
a

exp{ (jw)2

2
κ2(t)} =

rA
a

exp{ (ju)2

2
κ2(t)N}.

It follows that

H(u, t) = H2(u, t)ejuκ1(t)N ≈ rA
a

exp

{
juκ1(t)N +

(ju)2

2
κ2(t)N

}
, (29)

M{ejun(t)} = H(u, t)e ≈ h2(u, t) = exp

{
juκ1(t)N +

(ju)2

2
κ2(t)N

}
. (30)

Considering (1), the following identities are true:

M{ejui(T )} = M{ejun(T )} = H(u, T )e ≈ h2(u, T )

= exp{juκ1(T )N +
(ju)2

2
κ2(T )N},

(31)

where κ2(T ) is of the following form:

κ2(T ) = κ1(T ) + 2

T∫
−∞

f2(t) [ΛS(t) − κ′
1(t)I] edt (32)

According to the definition of functions Ss(t) = 1 − Bs(T − t) it is clear that
lim

t→∞ Ss(t) = 0, s = 1,K. Therefore, it is clear that the improper integral (32)
is converging and thus can be calculated numerically given specific system and
environment parameters.

Obviously, the asymptotic steady-state probability distribution of the number
of customers in the system defined by (31) is normal with first and second
cumulants κ1(t)N and κ2(t)N respectively. It is known that

M{i(T )} ≈ κ1(T )N,D{i(T )} ≈ κ2(T )N. (33)
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Inverse Fourier transform of (31) gives the probability density function of the
normally distributed random variable:

p(x) =
1√

2πκ2(T )N
exp

{
− (x − κ1(T )N)2

2κ2(T )N

}
. (34)

It is necessary to switch from this continuous distribution to discrete as follows:

P (i) = Cp(i), i ≥ 0, (35)

where the constant value C is defined considering the normalizing condition:

∞∑
i=0

P (i) = C

∞∑
i=0

p(i) = 1. (36)

Due to (36), C is given as follows:

C = 1/

∞∑
i=0

p(i) (37)

6 Conclusion

Thus, the Gaussian approximation of the probability distribution of the num-
ber of customers in the system M(λs)/G(Bs(x))/∞ is obtained during the
asymptotic analysis under conditions of high arrival rate and frequent envi-
ronment transitions. Using the method of dynamic screening, we considered a
non-stationary Markov point process n(t) instead of non-Markovian i(t) which
is the number of customers in the system. Then, according to the method of sup-
plementary variable we defined the residual sojourn time z(t) in the present state
of the environment process s(t) to be able to analyze it with theory of Markov
processes tools. After deriving the system of differential equations in terms of
vector characteristic functions of the number of customers in the system, we
conducted the asymptotic analysis of the system in question.

Earlier we considered a problem of M/G/∞ queue operating in Markovian
random environment with the same service policy when service-time distribution
does not change while the customer is in the system. Similarly, we obtained the
steady-state probability distribution of the number of customers in the system.
However, the Markov case narrows down the application area significantly. Thus,
in this paper we considered a more general case with random environment being
semi-Markovian.
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