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Preface

The series of scientific conferences on “Information Technologies and Mathematical
Modelling” (ITMM) was started in 2002. In the beginning, it was a national confer-
ence, but in 2012, it attained international status. The conference series is named after
Alexander Terpugov, one of the first organizers of the conference, an outstanding
scientist of Tomsk State University and a leader of the famous Siberian school on
applied probability, queueing theory, and applications.

Traditionally, the conference has ten tracks in various fields of mathematical
modelling and information technologies. Throughout the years, the tracks on proba-
bilistic methods and models, queueing theory, telecommunication systems, and soft-
ware engineering have proven to be the most popular ones at the conference. There is
an international presence at the events with participants from many countries including:
Austria, Azerbaijan, Belarus, Bulgaria, China, Hungary, India, Italy, Kazakhstan,
Korea, Poland, and the USA. Many of these foreign participants come to this Siberian
conference every year because of its warm welcome and serious scientific discussions.

This volume presents selected papers devoted to new results in queueing theory and
its applications. It is aimed at specialists in probabilistic theory, random processes,
mathematical modelling, as well as engineers engaged in logical and technical design
and operational management of telecommunication and computer networks.

November 2015 Anatoly Nazarov
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A Multi-server Queueing Model with Markovian
Arrivals and Phase Type Cooperative Services -

Simulation Approach

Srinivas R. Chakravarthy(B)

Department of Industrial and Manufacturing Engineering,
Kettering University, Flint, MI 48504, USA

schakrav@kettering.edu

Abstract. In Chakravarthy [5] a new class of queueing models in which
one type of customers opt for cooperative services with fellow customers
was introduced in the context of a single server. Under the assumption of
versatile Markovian point process for the arrivals, exponential services,
and with a limit of no more than two groups of cooperative customers be
present in the system, the model was analyzed in steady-state and some
interesting numerical examples were illustrated in [5]. In this paper we
generalize that cooperative services model by relaxing the assumptions of
single server, exponential services, and only two groups be present at any
given time. Thus, we consider a multi-server queueing model in which the
customers arrive according to a versatile Markovian point process. One
type of customers require individual services whereas the second type of
customers opt for a cooperative service (to be offered along with other
similar customers). We assume that at any given time there can be at
most K, 2 < K ≤ ∞, groups of customers needing cooperative services
and that the services are of phase type with representation depending
on the type of service offered. While this model can be analyzed using
matrix-analytic method with a very large state space, in this paper we
will study the model using simulation to bring out a few salient features
of this new class of queueing models.

Keywords: Markovian arrival process · Phase type distribution · Coop-
erative services · Phase type distribution · Simulation

1 Introduction

In Chakravarthy [5] a new class of queueing models in which customers can opt
for cooperative services with fellow customers was introduced in the context of a
single server. This type of queueing models has a number of applications in real
word situations. For example, in online shopping which has become so prevalent
that even small and upcoming companies are becoming integral part of this
e-commerce business. According to the U.S. Census Bureau (see www.census.
gov) the annual retail e-commerce (which includes online shopping) has grown

c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 1–12, 2015.
DOI: 10.1007/978-3-319-25861-4 1
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2 S.R. Chakravarthy

from 4.984 billion dollars in 1998 to 260.669 billion dollars in 2013. Thus, more
and more retailers want a piece of action in this business. Consider a small to
medium retailer handling customers’ orders over the phone. Suppose that two
types of customers, say, Type 1 and Type 2, place orders over the phone. The
orders are processed by a receiving attendant (server) and the processing times
(not including the shipping and receiving times) are the actual service times.
Type 1 customers prefer to get their orders shipped directly to their addresses
whereas Type 2 customers, in order to save money in shipping and processing,
prefer to get their orders shipped to a particular location to be picked up by them.
The orders from Type 2 customers will be processed only when the number of
orders hits, say L, a pre-determined threshold, on a non-preemptive priority
(over Type 1) basis provided the server is free. Otherwise, the Type 2 customers
need to wait until the server is available. The requirement of needing exactly
L orders is to make sure they are put in the same package for shipping to a
specific location for all Type 2 customers to individually pick up their order.
Thus, the orders are processed on a FIFO basis within Type 1 and on a non-
preemptive priority basis for Type 2. Similar applications can be found in other
areas notably in service systems requiring parts for offering services and these
parts are ordered as and when the inventory level reaches a certain point.

While cooperative services are widely used in inventory modeling, they are
very rarely considered in queueing literature. The rare situations where coopera-
tive services are considered in queueing literature arise from the point of view of
the service providers as opposed to the customers’ points of view (see e.g., [1,6]).
Basically, in these queueing situations the resources (i.e., service providers) of
many queueing systems are pooled in one form or the other to efficiently provide
services to the pooled customers. This motivated the study of the cooperative
service queueing model in [5], wherein it was pointed out that the model studied
here does not belong to any of the various types of queueing models with batch
(or group) services studied extensively in the literature. Under the assumption of
versatile Markovian point process for the arrivals, exponential services, and with
a limit of no more than two groups of cooperative customers be present in the
system, the model was analyzed in steady-state and some interesting numerical
examples were illustrated. We refer the reader to [5] for details on this.

In this paper we generalize the cooperative services model of [5] by relaxing
the assumptions of single server, exponential services, and only two groups be
present at any given time. The rest of the paper is organized as follows. In Sect. 2
we give a description of the model under study. Some key system performance
measures used in this study are listed in Sect. 3. The roles of some key parameters
for the model under study are discussed in Sect. 4. Some concluding remarks are
given in Sect. 5.

2 Model Description

We consider a c-server queueing system in which customers arrive according to a
Markovian arrival process (MAP ) with representation (D0, D1, D2) of order m.
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The generator D, defined by D = D0 +D1 +D2, governs the underlying Markov
chain of the MAP such that D0 accounts for the transitions corresponding to
no arrival; D1 governs those corresponding to an arrival of a customer who
requires individual services, and D2 governs those corresponding to an arrival of a
customer who requires cooperative services. By assuming D0 to be a nonsingular
matrix, the interarrival times will be finite with probability one and the arrival
process does not terminate. Hence, we see that D0 is a stable matrix. Henceforth,
we will refer to customers requiring individual services as Type 1 customers and
those requiring cooperative services will be referred to as Type 2 customers.

A MAP is a tractable class of Markov renewal processes. It should be noted
that by appropriately choosing the parameters of the MAP the underlying arrival
process can be made as a renewal process. The MAP is a rich class of point
processes that includes many well-known processes such as Poisson, PH-renewal
processes, and Markov-modulated Poisson process. One of the most significant
features of the MAP is the underlying Markovian structure and fits ideally in the
context of matrix-analytic solutions to stochastic models. Matrix-analytic meth-
ods were first introduced and studied by Neuts [10]. The idea of the MAP is to sig-
nificantly generalize the Poisson processes and still keep the tractability for mod-
elling purposes. Furthermore, MAP is a convenient tool to model both renewal
and non-renewal arrivals. It can be shown that MAP is equivalent to Neuts’ versa-
tile Markovian point process. The point process described by the MAP is a special
class of semi-Markov processes. For further details on MAP and their usefulness
in stochastic modelling, we refer to [8,9,11,12] and for a review and recent work
on MAP we refer the reader to [2–4].

Type 1 customers require services individually whereas Type 2 customers
opt for cooperative services to be offered along with a group of other similar
customers. The group size is fixed to be, say, L, 1 ≤ L < ∞. Strictly speaking
L should be a finite number greater than one as it represents a group size.
However, the case L = 1 is included so that this special case will lead to some
interesting applications in non-preemptive priority model [5]. We assume that
Type 1 customers have an infinite waiting space while Type 2 customers have a
restriction that at any given time there can be at most K, 2 ≤ K ≤ ∞, groups
of Type 2 customers in the system. Note that we also allow for the possibility of
K to be infinite.

An arriving Type 1 customer finding an server idle will get into service imme-
diately; otherwise will enter into Type 1 buffer and will wait for a server to be
free to offer Type 1 services. An arriving Type 2 customer will either (a) get
into service immediately along with other similar customers provided a server is
available and there are L − 1 such customers already waiting in the system to
receive cooperative services; (b) get into Type 2 buffer provided there is enough
space available irrespective of whether a server is available or not; (c) with prob-
ability γ, 0 ≤ γ ≤ 1, will become a Type 1 customer and enter into Type 1
buffer since Type 2 buffer is full; or (d) be lost with probability 1−γ since Type
2 buffer is full. On becoming a Type 1, the customer remains as Type 1 until
leaving the system with a service.
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We assume that the service times for both types of customers are of phase
(PH−) type with representation (α(1), T (1)) of dimension n1 for Type 1 and
with representation (α(2), T (2)) of dimension n2 for Type 2. Recall that a PH-
distribution is obtained as the time until absorption in a finite state Markov chain
with one absorption state. It is characterized by an initial probability vector α
and a square matrix T governing the transitions to various transient states.
PH-distributions are defined for both discrete and continuous time. For details
on PH-distributions and their properties, we refer the reader to [10,11,13]. We
also assume that Type 2 customers have a non-preemptive priority over Type 1
customers. Thus, upon completion of a service the free server will offer a service
to a group of Type 2 customers if there are L Type 2 customers waiting; otherwise
the server will offer a service to a Type 1 customer, if any, or becomes idle.

Let η be the stationary probability vector of the Markov process with irre-
ducible generator D. That is, η is the unique (positive) probability vector satis-
fying ηD = 0, ηe=1, where e is a column vector of 1’s of appropriate dimension.
We denote the average arrival rate and the average service rates, respectively, by
λ, μ1, and μ2 and these are given by λ = η(D1 + D2) e , μ1 = [α(1)(−T (1))−1

e ]−1, μ2 = [α(2)(−T (2))−1 e ]−1.
The model outlined in this section can be studied as a Markov process by

keeping track of quantities such as the number of Type 1 and Type 2 customers
waiting for service, the phases of the services, the number of servers busy with
Type 1 and Type 2 customers, and the phase of the arrival process. The generator
of this Markov process can be set up with the help of Kronecker products and
sums of matrices. However, it is clear that the steady-state analysis requires
some form of approximation or truncation due to many (sub)states that grow
without bound (in the case when K = ∞). The accuracy of the approximation
or truncation depends on the degree to which these are carried out. Our focus in
this paper is not in providing an approximation or truncation or a combination of
both in performing the steady-state analysis. These are currently work-in-process
and the results will be reported elsewhere. Instead, our goal is to see how the type
of distributional assumption affects some selected system performance measures
through simulation. Further, this simulated results can be used to compare any
approximation/truncation methods possibly proposed in the future. Thus, the
rest of the paper is based on simulating the cooperative services model described
in Sect. 1 with the help of ARENA [7].

3 Selected System Performance Measures

In this section we will list three key system performance measures among many
for our illustration.

1. The probability, PCHA, that an arriving Type 2 customer becomes a Type
1 customer due to not having enough space in Type 2 buffer.

2. The mean, MWTS, waiting time in the system of a customer.
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3. The fraction, Fbelow = P (YWTS ≤ μCQ
WTS), where μCQ

WTS is the mean wait-
ing time in the system of a customer at an arrival epoch in the classical
MAP/PH/c queue and YWTS to be the waiting time in the system of a
customer at an arrival epoch for the current model under study.

The reasons for using the fraction mentioned above are [5]: (a) from a cus-
tomer’s point of view, MWTS should be less than μCQ

WTS in order to request
cooperative services; and (b) one would like to see more customers leave the
system by spending less time (as compared to μCQ

WTS) in the system.
To our knowledge there is no (analytical or numerical) result reported in the

literature for the fraction of customers whose waiting time in the system is less
than the average waiting time for the classical MAP/PH/c queue. Only for the
most simplest case involving M/M/1 queue, an analytical expression is available
and can easily be verified to be 1 − e−1 = 0.6321. For other cases, one has to
depend on numerical methods and or simulation. In Table 1 (see Sect. 5 below)
we display the simulated values of this fraction along with the mean waiting
time in the system for the classical MAP/PH/c queue under various scenarios.

4 Validation of the Simulated Model

Before we proceed to discuss the simulated results, it is important to validate
our simulated model by comparing our results with the published results in the
literature. The only case for which analytical results are available for the model
under study is for the single server model with exponential services as presented
in [5]. In that paper to obtain the fraction Fbelow simulation was employed and
a comparison of simulated and analytical results was presented (see Table 5 in
[5]); however, the simulation was done only for the single server with exponential
services case. Since this cooperative services model is introduced recently [5] we
do not have other models with analytical results to validate our simulation model.

5 Illustrative Simulated Examples

In this section we will illustrate the model under study with simulated results
using the system performance measures of Sect. 3 under different scenarios for
MAP/PH/c type cooperative services.

For the arrival process, we consider the following five sets of values for D0

and D as follows. Note that here we take D1 = pD and D2 = (1 − p)D and
p, 0 ≤ p ≤ 1, is used as another parameter of the model. It should be pointed
that one can take D1 and D2 differently so as to incorporate any correlation
between the arrivals of Type 1 and Type 2 customers.

1. Erlang (ERLA):

D0 =

⎛
⎜⎜⎜⎜⎝

−5 5 0 0 0
0 −5 5 0 0
0 0 −5 5 0
0 0 0 −5 5
0 0 0 0 −5

⎞
⎟⎟⎟⎟⎠

,D =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
5 0 0 0 0

⎞
⎟⎟⎟⎟⎠
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2. Exponential (EXPA):

D0 =
(−1

)
,D =

(
1
)

3. Hyperexponential (HEXA):

D0 =
(−1.90 0

0 −0.19

)
,D =

(
1.710 0.190
0.171 0.019

)

4. MAP with negative correlation (MNCA):

D0 =

⎛
⎝

−1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

⎞
⎠ ,D =

⎛
⎝

0 0 0
0.01002 0 0.9922
223.4925 0 2.2575

⎞
⎠

5. MAP with positive correlation (MPCA):

D0 =

⎛
⎝

−1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

⎞
⎠ ,D =

⎛
⎝

0 0 0
0.9922 0 0.01002
2.2575 0 223.4925

⎞
⎠ .

The above MAP processes will be normalized so as to have a specific arrival
rate. However, these are qualitatively different in thaty they have different
variance and correlation structure. The first three arrival processes, namely,
ERLA,EXPA, and HEXA, have zero correlation for two successive inter-
arrival times. The arrival processes labeled MNCA and MPCA, respectively,
have negative and positive correlation for two successive inter-arrival times with
values -0.4889 and 0.4889. The ratio of the standard deviation of the inter-arrival
times of these five arrival processes with respect to ERLA are, respectively, 1,
2.23607, 5.01935, 3.15178, and 3.15178.

For both the service times ((α(1), T (1))) and ((α(2), T (2))), we consider the
following three PH−distributions.

A. Erlang (ERLS): α(1) = α(2) = (1, 0, 0, 0, 0),

T (1) = T (2) =

⎛
⎜⎜⎜⎜⎝

−5 5 0 0 0
0 −5 5 0 0
0 0 −5 5 0
0 0 0 −5 5
0 0 0 0 −5

⎞
⎟⎟⎟⎟⎠

.

B. Exponential (EXPS): α(1) = α(2) = 1,

T (1) = T (2) =
(−1

)
.

C. Hyperexponential (HEXS): α(1) = α(2) = (0.9, 0.1),

T (1) = T (2) =
(−10 0

0 −d

)
.
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For all cases considered we fix λ = 1, μ1 = μ2 = 1.2, p = 0.5, and γ = 1.0,
and vary other parameters as follows: L = 2, 4, 5, 10, K = 1, 2, 5, 100, and c =
1, 2, 5, 10. Note that the PH-representations will be normalized except in the case
of hyperexponential in which case d will be chosen to have the specific mean.
In all our examples we simulated the model using 5 replications and for 100,000
units (which in our case is minutes) for each replicate.

Before we discuss a few illustrative examples for the model under study we
display the simulated mean waiting time in the system as well as the fraction,
Fbelow, for the classical MAP/PH/c queue under various scenarios using the
same applicable parameters listed above. Note that the values of the fractions
are displayed within parentheses in the table. It should be pointed out that as
the number of servers increases the mean waiting time in the system, MWTS,
decreases to the mean service time for all except MPCA arrivals. For MPCA
arrivals more than 10 servers are needed to see the MWTS approach the mean
service time. This is as expected and reported in the literature since positively
correlated arrivals tend to behave differently than the others.

Table 1. MWTS and F below for the classical MAP/PH/c queue

Arrival process

c PHS ERLA EXPA HEXA MNCA MPCA

ERLS 2.21(0.630) 3.36(0.634) 11.72(0.632) 3.62(0.629) 238.63(0.634)

1 EXPS 3.81(0.630) 4.88(0.632) 13.18(0.636) 5.22(0.634) 249.03(0.612)

HEXS 34.31(0.640) 34.10(0.635) 42.66(0.622) 34.21(0.630) 247.82(0.617)

ERLS 0.87(0.560) 0.95(0.573) 1.23(0.605) 0.96(0.576) 35.56(0.666)

2 EXPS 0.92(0.625) 1.01(0.622) 1.38(0.618) 1.04(0.619) 35.09(0.667)

HEXS 2.12(0.786) 2.21(0.779) 2.88(0.749) 2.22(0.780) 36.57(0.682)

ERLS 0.83(0.557) 0.83(0.557) 0.84(0.557) 0.83(0.557) 10.17(0.690)

5 EXPS 0.83(0.633) 0.83(0.633) 0.83(0.632) 0.83(0.632) 10.68(0.686)

HEXS 0.84(0.910) 0.84(0.910) 0.84(0.908) 0.84(0.910) 8.37(0.718)

ERLS 0.83(0.557) 0.83(0.557) 0.83(0.557) 0.83(0.557) 4.40(0.700)

10 EXPS 0.83(0.633) 0.83(0.633) 0.83(0.632) 0.83(0.632) 4.35(0.700)

HEXS 0.83(0.911) 0.83(0.911) 0.83(0.911) 0.83(0.910) 3.10(0.764)

Now we will discuss our simulated results for the model under study with regard
to the three measures listed in Sect. 3. First, we look at the measure, PCHA,
whose matrix plot for various scenarios is displayed in Fig. 1.

A quick at this figure reveals the following observations.

– The impact of K appears to decrease as c is increased in all but MPCA
arrivals. This is as expected since the saturation level of the system is sig-
nificantly reduced when c is increased. We didn’t adjust the service rate to
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maintain the same saturation level when going from single to multiple servers
in this particular case.

– In the case of positively correlated arrivals we notice that even for a very low
saturation queue there is a significant number of customers changing from
Type 2 to Type 1.

We now look at the mean waiting time in the system under various scenar-
ios. Since this measure is very large for some scenarios, the matrix plot of
ln(MWTS), the natural logarithm of the mean waiting time in the system,
is displayed in Fig. 2.

From Fig. 2, it can be seen that the MWTS is sensitive to L for all combi-
nations and this is intuitively explained as follows. When L is increased there
is more chance for Type 2 customers to wait longer in the queue to achieve the
requisite group size resulting in a higher mean waiting time. However, the sensi-
tivity of this measure on K can be seen only in the cases of (a) HEXA arrivals
with HEXS services and c = 1; and (b) MPCA arrivals with all three types
of services and for c = 1, 2, 5. However, when c is increased to 2 to more the
sensitivity goes down significantly for HEXA case, and for MPCA one needs
more than 5 servers. This illustrates the significant role played by (positive)
correlation in the arrivals.

Finally, we look at the measure Fbelow by comparing this to the corresponding

classical MAP/PH/c queue. Towards this end, we look at the ratio, FCoop
below

FCQ
below

,

where FCoop
below is the probability that a customer’s waiting time in the system

with cooperative services is less than the mean waiting time in the system of the
corresponding classical MAP/PH/c queue, and FCQ

below is the probability that
a customer’s waiting in the system is less than the mean waiting time in the
classical MAP/PH/c queue. In Fig. 3 we display the bubble charts for this ratio
for the cases when μ1 = μ2 = 1.2 and μ1 = μ2 = 1.2

c . That is, the left side
of Fig. 3 is for a low saturated system and the right side of this figure is for a
reasonably saturated system. The sizes of the bubbles correspond to the values
of the ratios.

In order for the cooperative service model to be better in the sense of more
customers’ waiting time in the system is less than the average waiting time in
the corresponding classical queue, we want this ratio to be at least 1.0. Note
that in these figures we indicate those ratios that are less than 1 by enclosing
them in rectangular boxes.

A quick examination of this figure reveals that this ratio is greater than 1.0
in the case of single server for all scenarios. In the case of 2-server system we see
that highly variable process (HEXS) and positively correlated arrival process
(MPCA) yield this ratio to be greater than one. In the case of other multiple-
server system, the ratio is greater than one under many scenarios only when the
system is moderate to highly saturated.
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Fig. 3. Ratio of the fractions under various scenarios

6 Concluding Remarks

In this paper we considered a multi-server queueing system in which customers,
who arrive according to a versatile Markovian point process, may request for
cooperative services which are offered in groups of fixed size. The purpose of
such requests is to minimize the waiting time in the system or to maximize the
chances of staying in the system shorter than the average time it takes in the
corresponding classical queueing model with first-come-first-served basis or to
share the costs associated with services with fellow customers or a combination
of two or more of these. We also employed simulation approach in order to
quantify certain measures, which otherwise, are very difficult to obtain. Through
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simulated examples we showed the significant benefits in introducing cooperative
services in classical queueing models. Even though the concept of cooperative
services in the context of inventory exists, to our knowledge cooperative service
from a customer’s point of view has not been studied in the literature. Due to
space restriction we restricted our illustrative examples to a few select cases.
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Abstract. This paper is focused on studying the modulated semi-
synchronous integrated flow of events which is one of the mathematical
models for incoming streams of events (claims) in computer communi-
cation networks and is related to the class of doubly stochastic Poisson
processes (DSPPs). The flow is considered in conditions of its incomplete
observability, when the dead time period of a constant duration T is gen-
erated after every registered event. In this paper we propose a technique
for obtaining the formulas for calculation the probability density of the
interval length between two neighboring flow events and the joint prob-
ability density of the length of two successive intervals. Also we find the
conditions of the flow recurrence.

Keywords: Modulated semi-synchronous integrated flow of events ·
Doubly stochastic poisson process (DSPP) · Markovian arrival process
(MAP) · Dead time · Flow parameters estimation · Probability density ·
Joint probability density · Flow recurrence conditions

1 Introduction

Mathematical models of the queueing theory have found wide application in
describing real physical, technical and other objects and systems. It is worthwhile
to note that the conditions of the real objects and systems operation are such
that we can assert that the servers parameters are known and stable as time
goes, but we can not tell this about the intensity processes of the input flows
of events that come to the servers. Moreover, the intensities of the input flows
usually vary within time and frequently their changes are accidental. As a result,
it is necessary to consider the mathematical models of doubly stochastic Poisson
processes (DSPPs), which are characterized by having the number of events in
any given time interval as being Poisson distributed, conditionally to another
positive stochastic process λ (t) called intensity [1–5].

c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 13–27, 2015.
DOI: 10.1007/978-3-319-25861-4 2
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There are two known classes of doubly stochastic flows of events. The first
class contains the flows of events, which intensity process is a continuous random
process. The second class contains flows, which intensity is a piecewise constant
stationary random process with a finite number of states. The second-class flows
are most typical for telecommunication networks. They were considered for the
first time and independently presented in works [6,7]. Since the early 1990s to
date, these flows of events are called as doubly stochastic flows of events or
MAP-flows, or MC-flows [8–13].

In turn, MC-flows may be divided into three groups depending on how the
intensity process changes its state from one to another: (1) synchronous flows –
flows, which intensity process changes its state from one state to another at
random times, which are the time moments of the flow events arrival [14–16];
(2) asynchronous flows – flows, which intensity process changes its state from
one state to another at random times, which do not depend on the time moments
of the flow events arrival [17–19]; (3) semi-synchronous flows – flows, for which
for the one set of states the first definition is valid and for another set of states
the second definition is valid [20–22]. We shall emphasize that synchronous,
asynchronous and semi-synchronous flows can be presented as the mathematical
models of MAP-flows of events with the constraints on the flow parameters [23].

In the recent literature, the problem of estimating the intensity process from
observations of doubly stochastic Poisson processes (DSPPs) has been of a great
interest, since DSPPs have found applications in many fields such as network
theory, peer-to-peer streaming networks and adaptive data streaming, optical
communication systems, statistical modeling, quantitative finance, spatial epi-
demiology, etc. [24–29]. As has been mentioned above, in the real situations the
input flow parameters can be unknown or partially known or, worse, may vary
in time in a random way. That is why, the central problems faced when modeling
these processes are: (1) flow states estimation on monitoring the time moments
of the events occurrence (the filtering of the underlying and unobservable inten-
sity process) [30–33]; (2) flow parameters estimation on monitoring the time
moments of the events occurrence [34–37].

It is worth noting, that in most of the cases researchers consider the mathe-
matical models of the flows, where time moments of the flow events occurrence
are observable. In practice, however, any recording device (server in this context)
spends some finite time for event measurement and registration, during which
server can not handle the next event correctly. In other words, every event reg-
istered by a server causes the period which is called the period of a dead time
[38], during which no other events are observed (they are lost). We may suppose
that this period has a fixed duration (constant dead time). Particularly, we may
find examples of this mathematical model in the real computer networks using
CSMA/CD (Carrier Sense Multiple Access with Collision Detection) protocol.
At the moment of a conflict recording at the in-port of a network node, a jam
signal is transmitted across the network. During the signal transmission, calls
coming to a node of the network are declined and sent to a source of repeated
calls. Here time, during which the network node is closed for calls serving after a
conflict recording, can be interpreted as a dead time of a server, which registers
the conflict in the network nodes.
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In this paper we continue to study the modulated semi-synchronous inte-
grated flow of events [31–33], which is a generalization of the semi-synchronous
flow of events [20] and semi-synchronous integrated flow of events [39] and
belonging to the class of Markovian arrival processes (MAPs). The rest of
the paper is organized as follows. In Sect. 2 we present the modulated semi-
synchronous integrated flow of events, which provides our modeling framework.
In Sects. 3 and 4 we obtain the expressions for probability density of the inter-
val length between two neighboring flow events pT (τ), τ ≥ 0, and the joint
probability density of the length of two successive intervals pT (τ1, τ2), τ1 ≥ 0,
τ2 ≥ 0, explicitly. And finally, in Sect. 5 we obtain the recurrence conditions of
the observable flow of events.

2 Problem Statement

In this paper we consider the modulated semi-synchronous integrated flow of
events (further flow of events), which intensity process is a piecewise constant
stationary random process λ (t) with two states 1, 2 (first, second correspond-
ingly). In the state 1 λ (t) = λ1 and in the state 2 λ (t) = λ2 (λ1 > λ2). The dura-
tion of the process λ (t) staying in the first (second) state is distributed according
to the exponential law with parameter β (α). If at the time moment t the process
λ (t) is found in the first (second) state, then at the interval [t, t + Δt), where Δt
(hereinafter) is sufficiently small, with probability βΔt + o(Δt) (αΔt + o(Δt))
the sojourn time of the process λ (t) in the first (second) state comes to the end
and process λ (t) transits to the second (first) state. During the time interval
when λ (t) = λi, a Poisson flow of events with intensity λi, i = 1, 2, arrives. Also
at any moment of an event occurrence in state 1 of the process λ (t), the process
can change its state to state 2 with probability p (0 ≤ p ≤ 1) or continue to stay
in state 1 with complementary probability 1 − p. I.e., after an event occurrence
the process λ (t) can change or not change its state from state 1 to state 2.
The transition of the process λ (t) from state 2 to state 1 at the moment of an
event occurrence in the second state is impossible. At the moment when the
state changes from the second to the first state, an additional event is assumed
to be initiated with probability δ (0 ≤ δ ≤ 1). Such flows with additional events
initiation are called integrated flows. Under the made assumptions we can assert
that λ (t) is a Markovian process. So the flow can be characterized by {D0,D1},
in terms of the rate matrices,

D0 =
∥∥∥∥

−(λ1 + β) β
(1 − δ)α −(λ2 + α)

∥∥∥∥ , D1 =
∥∥∥∥

(1 − p)λ1 pλ1

δα λ2

∥∥∥∥ .

Intensities of the process λ (t) transitions from state to state with the event
occurrence fill in the matrix D1. Nondiagonal elements of the matrix D0 are
intensities of the process λ (t) transitions from state to state without the event
occurrence. Diagonal elements of the matrix D0 are intensities of the process λ (t)
output from its states taken with the opposite signs. Note also that if β = 0,
then the integrated semi-synchronous flow of events will take place [39].
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Fig. 1. The formation of an observable flow of events

The registration of the flow events is considered in condition of a constant
dead time (of its incomplete observability). The dead time period of a constant
duration T begins after every registered at the moment tk, k ≥ 1, event. During
this period no other events are observed. When the dead time period is over, the
first coming event causes the next interval of a dead time of duration T and so on.
Figure 1 shows the possible variant of the flow operation and observation. Here
1, 2 are the states of the process λ (t); additional events, that may occur at the
moment of the process λ (t) transition from state 2 to state 1, are marked with
letter δ; dead time periods of duration T are marked with hatching; unobserved
events are displayed as black circles, observed events t1, t2, ..., are shown as
white circles.

It should be mentioned that it is not specified exactly, in which state an
additional event is assumed to be initiated with probability δ, when the process
λ (t) changes its state from the second to the first one. This fact is inessential
for further formulas derivation as the event occurrence and the process λ (t)
transition to the first state happens instantly. In practical situations, two variants
are possible: (1) first an additional event is initiated with probability δ in state
2 and thereafter the process λ (t) transition from state 2 to state 1 is made;
(2) first the process λ (t) transition from state 2 to state 1 is made and thereafter
an additional event is initiated with probability δ in state 1. But to obtain
numerical results during simulation procedure, we should take the mentioned
details into account and fix, what occurs first, event or transition.

We should note that the process λ (t) is basically unobservable. We regis-
ter only time moments t1, t2, ... of the events occurrence in observable flow.
The process λ (t) is considered in a steady-state conditions. So under the made
assumptions we can assert that the sequence of the time moments t1, t2, ... cor-
responds to an embedded Markov chain {λ (tk)}, i.e. the flow has the Markov
property if the evolution of the flow is considered from the time moment tk,
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k = 1, 2, ..., of the event occurrence. Denote by τk = tk+1 − tk, k = 1, 2, ..., the
value of the k interval length between two neighboring flow events. In a steady-
state conditions we may take that the probability density of the k interval length
is pT (τk) = pT (τ), τ ≥ 0, for any k (the index T stresses that the probability
density depends on the dead time period duration). Thereby we may also take
that the time moment tk is equal to zero, i.e. the moment of the event occur-
rence is τ = 0. Now let (tk, tk+1), (tk+1, tk+2) be the successive intervals with the
corresponding values of interval length τk = tk+1 − tk, τk+1 = tk+2 − tk+1. Due
to the stationary of the flow, the arrangement of the intervals on a time axis is
arbitrarily. That is why we may consider two successive intervals (t1, t2), (t2, t3)
with the corresponding values of the interval length τ1 = t2 − t1, τ2 = t3 − t2,
τ1 ≥ 0, τ2 ≥ 0, wherein τ1 = 0 corresponds to the time moment t1 and τ2 = 0
corresponds to the time moment t2 of the flow events arrival. The respective
joint probability density is defined as pT (τ1, τ2), τ1 ≥ 0, τ2 ≥ 0.

In that way, the main problem is to obtain the expressions for probability
density pT (τ), τ ≥ 0, and the joint probability density pT (τ1, τ2), τ1 ≥ 0, τ2 ≥ 0,
explicitly, and also to find the recurrence conditions of the observable flow of
events.

3 The Expressions for Probability Density pT(τ )

Let us consider the interval (0, τ) between two neighboring events of the observ-
able flow, which length can be written as τ = T + t, where t is a duration of
the interval between the end of the dead time period and the next observable
event (t ≥ 0). Let pjk(t) be the conditional probability that there is no observ-
able events at the interval (0, t) and λ (t) = λk in condition that at the time
moment t = 0 the value of the process λ (t) is λ (0) = λj , j, k = 1, 2. Denote
the corresponding probability density by p̃jk(t), j, k = 1, 2. Next introduce into
consideration probability qij(T ) – the transitional probability that the process
λ (τ) changes its state from the state i (at the time moment τ = 0) to the
state j (at the time moment τ = T ), i, j = 1, 2, during the dead time period
of the duration T , and probability πi(0|T ) – the conditional probability that
the process λ (τ) sojourns in the state i (i = 1, 2) at the time moment τ = 0
in condition that at this time moment the event of the observable flow arrived
and the dead time period of a constant duration T was generated. With the
above-stated notations the desired probability density pT (τ) can be written as

pT (τ) =

{
0, 0 ≤ τ < T,∑2

i=1 πi(0|T )
∑2

j=1 qij(T )
∑2

k=1 p̃jk(τ − T ), τ ≥ T.
(1)

Let us obtain the explicit expressions for p̃jk(τ −T ), qij(T ), πi(0|T ), i, j, k =
1, 2.

The probabilities pjk(t) satisfy the following systems of differential equations:

p′
11(t) = −(λ1 + β)p11(t) + α(1 − δ)p12(t), p′

12(t) = βp11(t) − (λ2 + α)p12(t);
p′
21(t) = −(λ1 + β)p21(t) + α(1 − δ)p22(t), p′

22(t) = βp21(t) − (λ2 + α)p22(t);
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with the boundary conditions: p11(0) = 1, p12(0) = 0; p21(0) = 0, p22(0) = 1.
Solving these systems, we find

p11(t) = 1
z2−z1

[(λ2 + α − z1)e−z1t − (λ2 + α − z2)e−z2t],
p12(t) = β

z2−z1
(e−z1t − e−z2t), p21(t) = α(1−δ)

z2−z1
(e−z1t − e−z2t),

p22(t) = 1
z2−z1

[(λ1 + β − z1)e−z1t − (λ1 + β − z2)e−z2t] ,
z1 = 1

2 [λ1 + λ2 + α + β − √
(λ1 − λ2 − α + β)2 + 4αβ(1 − δ)],

z2 = 1
2 [λ1 + λ2 + α + β +

√
(λ1 − λ2 − α + β)2 + 4αβ(1 − δ)],

0 < z1 < z2.

(2)

According to the definition of the modulated semi-synchronous integrated
flow of events we introduce the probability p11(t) e−βΔt(1 − e−λ1Δt)(1 − p) =
p11(t)λ1(1 − p)Δt + o(Δt) – the joint probability that the process λ (t) changes
its state from the first state to the first one at the interval (0, t) without the
event occurring (λ (0) = λ1, λ (t) = λ1), and at the half-interval [t, t + Δt) the
duration of the first state of the process λ (t) does not come to the end, the event
of the Poisson flow with intensity λ1 arrives and the process λ (t) remains in the
first state. The joint probabilities take the following form for different j and k
(j, k = 1, 2)

p11(t)λ1(1 − p)Δt + o(Δt), p12(t)αδΔt + o(Δt),
p11(t)λ1pΔt + o(Δt), p12(t)λ2Δt + o(Δt),
p21(t)λ1(1 − p)Δt + o(Δt), p22(t)αδΔt + o(Δt),
p21(t)λ1pΔt + o(Δt), p22(t)λ2Δt + o(Δt).

The corresponding probability densities take the form

p̃
(1)
11 (t) = p11(t)λ1(1 − p), p̃

(2)
11 (t) = p12(t)αδ,

p̃
(1)
12 (t) = p11(t)λ1p, p̃

(2)
12 (t) = p12(t)λ2,

p̃
(1)
21 (t) = p21(t)λ1(1 − p), p̃

(2)
21 (t) = p22(t)αδ,

p̃
(1)
22 (t) = p21(t)λ1p, p̃

(2)
22 (t) = p22(t)λ2.

Then the probability densities p̃jk(t) that the process λ (t) changes its state
from the state j to the state k without the event occurrence at the interval (0, t)
and with the event occurrence at the time moment t, can be written for different
j and k (j, k = 1, 2) as

p̃11(t) = p11(t)λ1(1 − p) + p12(t)αδ, p̃12(t) = p11(t)λ1p + p12(t)λ2,
p̃21(t) = p21(t)λ1(1 − p) + p22(t)αδ, p̃22(t) = p21(t)λ1p + p22(t)λ2.

(3)

Substituting (2) into (3), we obtain the explicit formulas for probability den-
sities p̃jk(t), j, k = 1, 2.

The probabilities qij(τ), 0 ≤ τ ≤ T , satisfy the following systems of differen-
tial equations:

q′
11(τ) = −(pλ1 + β)q11(τ) + αq12(τ), q′

12(τ) = (pλ1 + β)q11(τ) − αq12(τ);
q′
21(τ) = −(pλ1 + β)q21(τ) + αq22(τ), q′

22(τ) = (pλ1 + β)q21(τ) − αq22(τ);
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with the boundary conditions: q11(0) = 1, q12(0) = 0; q21(0) = 0, q22(0) = 1.
Solving these systems, we obtain for τ = T

q11(T ) = π1 + π2e
−(pλ1+β+α)T , q12(T ) = π2 − π2e

−(pλ1+β+α)T ,
q21(T ) = π1 − π1e

−(pλ1+β+α)T , q22(T ) = π2 + π1e
−(pλ1+β+α)T ,

π1 = α
pλ1+β+α , π2 = pλ1+β

pλ1+β+α .
(4)

Turn now to obtaining the probabilities πi(0|T ), i = 1, 2. Denote by πij the
transitional probability that the process λ (τ) changes its state from state i to
state j (i, j = 1, 2) during the time from the moment τ = 0 till the moment of
the next event arrival in observable flow. Since the sequence of the time moments
of the events occurrence in observable flow corresponds to an embedded Markov
chain, the following system of differential equations for πi(0|T ) takes place:

π1(0|T ) = π1(0|T )π11 + π2(0|T )π21,
π2(0|T ) = π1(0|T )π12 + π2(0|T )π22; π1(0|T ) + π2(0|T ) = 1.

(5)

Let us introduce into consideration probability pij – a transitional probability
that the process λ (t) changes its state from state i to state j (i, j = 1, 2) during
the time from the time moment t = 0 (the end of the dead time period) till the
moment of the next observable flow event arrival. Here the probabilities pij are
determined as

pij =
∫ ∞

0

p̃ij(t) dt, (6)

where p̃ij(t) are defined by (3), pij(t) are defined by (2) (i, j = 1, 2). Calculating
the corresponding integrals (6) for different i and j (i, j = 1, 2)

p11 =
∫ ∞
0

p̃11(t) dt = λ1(1 − p)
∫ ∞
0

p11(t) dt + αδ
∫ ∞
0

p12(t) dt,
p12 =

∫ ∞
0

p̃12(t) dt = λ1p
∫ ∞
0

p11(t) dt + λ2

∫ ∞
0

p12(t) dt,
p21 =

∫ ∞
0

p̃21(t) dt = λ1(1 − p)
∫ ∞
0

p21(t) dt + αδ
∫ ∞
0

p22(t) dt,
p22 =

∫ ∞
0

p̃22(t) dt = λ1p
∫ ∞
0

p21(t) dt + λ2

∫ ∞
0

p22(t) dt ,

we obtain
p11 = 1

z1z2
[λ1(1 − p)(λ2 + α) + αδβ],

p12 = 1
z1z2

[λ1p(λ2 + α) + λ2β],
p21 = 1

z1z2
[λ1α(1 − p + pδ) + αδβ],

p22 = 1
z1z2

[λ2(λ1 + β) + pλ1α(1 − δ)],

(7)

where z1z2 = λ1λ2 + λ1α + λ2β + αδβ.
Since the process λ (t) is a Markovian process, the obtained earlier transi-

tional probabilities qij(T ) and pij , i, j = 1, 2, allow us to write the expressions
for transitional probabilities πij , i, j = 1, 2, in the following form

π11 = q11(T )p11 + q12(T )p21, π12 = q11(T )p12 + q12(T )p22,
π21 = q21(T )p11 + q22(T )p21, π22 = q21(T )p12 + q22(T )p22.

(8)
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Substituting first (4) into (8) and next (7) into (8), we obtain

π11 = 1
z1z2

{
λ1(1 − p)(λ2 + α) + αδβ − λ1π2[λ2 − p(λ2 + αδ)]

[
1 − e−(pλ1+β+α)T

]}
,

π12 = 1
z1z2

{
pλ1(λ2 + α) + λ2β + λ1π2[λ2 − p(λ2 + αδ)]

[
1 − e−(pλ1+β+α)T

]}
,

π21 = 1
z1z2

{
α[λ1(1 − p + pδ) + δβ] + λ1π1[λ2 − p(λ2 + αδ)]

[
1 − e−(pλ1+β+α)T

]}
,

π22 = 1
z1z2

{
λ2(λ1 + β) + p λ1α(1 − δ) − λ1π1[λ2 − p(λ2 + αδ)]

[
1 − e−(pλ1+β+α)T

]}
.

(9)

Then, substituting (9) into (5), we obtain the expressions for πi(0|T ), i, j =
1, 2:

π1(0|T ) =
α[λ1(1−p+pδ)+δβ]+λ1π1[λ2−p(λ2+αδ)][1−e−(pλ1+β+α)T ]
λ1α+(pλ1+β)(λ2+αδ)+λ1[λ2−p(λ2+αδ)][1−e−(pλ1+β+α)T ] ,

π2(0|T ) =
pλ1(λ2+α)+λ2β+λ1π2[λ2−p(λ2+αδ)][1−e−(pλ1+β+α)T ]

λ1α+(pλ1+β)(λ2+αδ)+λ1[λ2−p(λ2+αδ)][1−e−(pλ1+β+α)T ] ,
(10)

where π1, π2 are defined in (4).
Substituting first (3) into (1) and next (2), (4) and (10) into (1), carrying

out laborious transformations and considering that t = τ − T , we obtain

pT (τ) =

{
0, 0 ≤ τ < T,

γ(T )z1e−z1(τ−T ) + (1 − γ(T )) z2e
−z2(τ−T ), τ ≥ T,

γ(T ) = 1
z2−z1

[z2 − λ1 + (λ1 − λ2 − αδ)π2(T )] ,
(11)

π1(T ) = π1 + [π2 − π2(0|T )] e−(pλ1+β+α)T ,
π2(T ) = π2 − [π2 − π2(0|T )] e−(pλ1+β+α)T ,

(12)

where zi are defined in (2); πi – in (4); πi(0|T ) – in (10), i = 1, 2.
In particular, by setting T=0 in (11), (12), we obtain the formulas for p(τ)

that were presented in [40].

4 The Expressions for Joint Probability Density pT(τ1, τ2)

Let τ1 = T + t(1), τ2 = T + t(2) be the values of the intervals length for two
successive intervals between the time moments of the events arrival in observable
flow of events, where τ1 = 0 is the arrival time for the first flow event, τ2 = 0
is the arrival time for the second flow event. Since the sequence of the time
moments of the events arrival in observable flow corresponds to an embedded
Markov chain, then with the above notation (see Sect. 3) the joint probability
density pT (τ1, τ2) takes the following form

pT (τ1, τ2) =

⎧⎪⎨
⎪⎩

0, 0 ≤ τ1 < T, 0 ≤ τ2 < T,∑2
i=1 πi(0|T )

∑2
j=1 qij(T )

∑2
k=1 p̃jk(τ1 − T )

×∑2
s=1 qks(T )

∑2
n=1 p̃sn(τ2 − T ), τ1 ≥ T, τ2 ≥ T ,

(13)

where p̃jk(τ1 − T ) = p̃jk(t(1)), p̃sn(τ2 − T ) = p̃sn(t(2)) are defined by (3) and t
should be replaced by t(1) and t(2) in expressions for p̃ij(t), i, j = 1, 2. Then sub-
stituting first p̃jk(t(1)), p̃sn(t(2)), that are defined by (3), next pjk(t(1)), psn(t(2)),
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that are defined by (2) for t = t(1) and t = t(2), next qij(T ), qks(T ), that are
defined by (4), and finally πi(0|T ), i = 1, 2, that are defined by (10), into (13)
and carrying out laborious transformations, we obtain

pT (τ1, τ2) = 0, 0 ≤ τ1 < T, 0 ≤ τ2 < T,

pT (τ1, τ2) = pT (τ1)pT (τ2) + e−(pλ1+β+α)T γ(T ) [1 − γ(T )] λ1[λ2−p(λ2+αδ)]
z1z2

× [
z1e

−z1(τ1−T ) − z2e
−z2(τ1−T )

] [
z1e

−z1(τ2−T ) − z2e
−z2(τ2−T )

]
, τ1 ≥ T, τ2 ≥ T,

(14)

where z1z2 = λ1λ2 + λ1α + λ2β + αδβ and γ(T ), pT (τk) are defined by (11) for
τ = τk, k = 1, 2.

It follows from (14) that in general case the modulated semi-synchronous
integrated flow of events is a correlated flow. By taking in (14) T = 0, we get
the formula for the joint probability density p(τ1, τ2) presented in [40].

There is no difficulty in obtaining the probabilistic characteristics of the
observable flow of events, such as mathematical expectation of the interval length
between the neighboring flow events, variance and covariance:

Mτ = T + γ(T )
z1

+ 1−γ(T )
z2

, Dτ = 2
[

γ(T )
z2
1

+ 1−γ(T )
z2
2

]
−

[
γ(T )
z1

+ 1−γ(T )
z2

]2
,

cov(τ1, τ2) = e−(pλ1+β+α)T λ1γ(T ) [1 − γ(T )] [λ2 − p(λ2 + αδ)] (z2−z1)
2

(z1z2)3
.

It is worthwhile to note that there are three types of events in the modulated
semi-synchronous integrated flow of events: (1) events of a Poisson flow with
intensity λ1; (2) events of a Poisson flow with intensity λ2; (3) additional events,
which are indistinguishable. Introduce into consideration probabilities q

(i)
1 (T ) –

stationary probability that the event appeared is the event of a Poisson flow
with intensity λ1 (first type event) and the process λ(t) changes its state from
the state 1 to the state i (i = 1, 2); q2(T ) – stationary probability that the event
appeared is the event of a Poisson flow with intensity λ2 (second type event);
q3(T ) – stationary probability that the event appeared is an additional event
(third type event). Now it is not difficult to obtain the explicit expressions for
the introduced probabilities on the basis of the above results:

q
(1)
1 (T ) = λ1(1 − p)

α + [(λ2 + αδ)π1 − αδ]
[
1 − e−(pλ1+β+α)T

]
z1z2 − λ1 [λ2 − p(λ2 + αδ)] e−(pλ1+β+α)T

,

q
(2)
1 (T ) = λ1p

α + [(λ2 + αδ)π1 − αδ]
[
1 − e−(pλ1+β+α)T

]
z1z2 − λ1 [λ2 − p(λ2 + αδ)] e−(pλ1+β+α)T

,

q2(T ) = λ2

pλ1 + β + λ1(1 − p − π1)
[
1 − e−(pλ1+β+α)T

]
z1z2 − λ1 [λ2 − p(λ2 + αδ)] e−(pλ1+β+α)T

,

q3(T ) = αδ
pλ1 + β + λ1(1 − p − π1)

[
1 − e−(pλ1+β+α)T

]
z1z2 − λ1 [λ2 − p(λ2 + αδ)] e−(pλ1+β+α)T

.
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Then the stationary probability q1(T ) that the event appeared is the event
of a Poisson flow with intensity λ1 (first type event) can be written as

q1(T ) = q
(1)
1 (T ) + q

(2)
1 (T ) = λ1

α + [(λ2 + αδ)π1 − αδ]
[
1 − e−(pλ1+β+α)T

]
z1z2 − λ1 [λ2 − p(λ2 + αδ)] e−(pλ1+β+α)T

.

Finally, note that π1(0|T ) = q
(1)
1 (T ) + q3(T ), π2(0|T ) = q

(2)
1 (T ) + q2(T ).

5 The Conditions of the Observable Flow Recurrence

Let us consider the specific cases, when the modulated semi-synchronous inte-
grated flow of events becomes the recurrent flow. It can be shown by using the
expressions (11), (12) for γ(T ), π1(T ), π2(T ) and (10) for π1(0|T ), π2(0|T ) that

γ(T ) [1 − γ(T )] = (λ1−λ2−αδ)[λ1α+(pλ1+β)(λ2+αδ)][(pλ1+β)π1(0)−απ2(0)]z1z2

(z2−z1)
2(pλ1+β+α)2[z1z2−λ1[λ2−p(λ2+αδ)]e−(pλ1+β+α)T ]2

×{z1z2 − [2z1z2 − (pλ1 + β + α)(z1 + z2)] e−(pλ1+β+α)T

+[z1z2 − (pλ1 + β + α)(λ1(1 − p) + λ2)]e−2(pλ1+β+α)T },

(15)

where πi(0) is the conditional stationary probability that the process λ(τ)
sojourns in the state i (i = 1, 2) at the time moment τ = 0 in condition that
at this time moment the flow event has arrived (π1(0) + π2(0) = 1). And πi(0),
i = 1, 2, are defined as follows

π1(0) = α λ1(1−p+pδ)+δβ
λ1α+(pλ1+β)(λ2+αδ) , π2(0) = pλ1(λ2+α)+λ2β

λ1α+(pλ1+β)(λ2+αδ) .

Note, that the expression enclosed in braces in formula (15), which we denote
by f(T ), after the transformation can be written in form

f(T ) = z1z2
[
1 − e−(pλ1+β+α)T

]2
+ (pλ1 + β + α)e−(pλ1+β+α)T [z1 + z2

−(λ1(1 − p) + λ2)e−(pλ1+β+α)T ] = f1(T ) + f2(T ) = f1(T ) + ϕ1(T )ϕ2(T ).

It is easy to show, that for any T ≥ 0 we have f1(T ) ≥ 0, ϕ1(T ) > 0 and
ϕ2(T ) > 0 and thus f2(T ) > 0. Hence, for any T ≥ 0 we have f(T ) > 0. It
follows from (15) that:

(1) if λ1−λ2−αδ = 0, then the joint probability density (14) becomes factorable:
pT (τ1, τ2) = pT (τ1)pT (τ2); and it follows from (2) that z1 = λ1, z2 = λ2 +
α + β; (11) implies γ(T ) = 1, and then pT (τk) = λ1e

−λ1(τk−T ), τk ≥ T ,
k = 1, 2, i.e. pT (τ) = λ1e

−λ1(τ−T ), τ ≥ T .
(2) if (pλ1+β)π1(0)−απ2(0) = 0, then the joint probability density (14) becomes

factorable: pT (τ1, τ2) = pT (τ1)pT (τ2); and it follows from (2) that z1 = λ1(1−
p+pδ)+δβ; (11) implies γ(T ) = 1, and then pT (τk) = z1e

−z1(τk−T ), τk ≥ T ,
k = 1, 2, i.e. pT (τ) = z1e

−z1(τ−T ), τ ≥ T .

The third condition of the joint probability density pT (τ1, τ2) factorization
follows from (14): λ2 − p(λ2 + αδ) = 0. In this case pT (τ) is defined by the
formula (11), where
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π2(0|T ) = p; π2(T ) =
pλ1 + β

pλ1 + β + α
+

[
p − pλ1 + β

pλ1 + β + α

]
e−(pλ1+β+α)T ; p �= 1.

In particular, if we put p = 1 in the third condition, we have δ = 0. Then
pT (τ) is defined by the formula (11), where

π2(0|T ) = 1; π2(T ) =
1

λ1 + β + α

[
λ1 + β + αe−(pλ1+β+α)T

]
.

Since the sequence of the time moments t1, t2, ..., tk, ... corresponds to an
embedded Markov chain, then upon meeting one of the above-mentioned con-
ditions or their combination we may show that the joint probability density
pT (τ1, ..., τk) becomes factorable for any k. This suggests that in this case the
observable flow of events is a recurrent flow. For, let pT (τ1, ..., τk, τk+1) be the
joint probability density of τ1, ..., τk, τk+1, where τk = tk+1 − tk, k = 1, 2, ....
For k = 2 we have pT (τ1, τ2) = pT (τ1)pT (τ2). Now we proceed by mathematical
induction. Assume that pT (τ1, ..., τk) = pT (τ1)...pT (τk). Since the sequence of
the time moments t1, t2, ..., tk, tk+1 of the flow events occuring is an embedded
Markov chain, then the flow has the Markov property at the moments of the
flow events arrival. Then pT (τ1, ..., τk, τk+1) = pT (τ1, ..., τk)pT (τk+1|τ1, ..., τk) =
pT (τ1, ..., τk)pT (τk+1|τk), where pT (τk+1|τk) = pT (τk, τk+1)/pT (τk). Since for the
neighboring intervals (tk, tk+1) and (tk+1, tk+2), k = 1, 2, ..., which location
on the time axis is arbitraraly, we have pT (τk, τk+1) = pT (τk)pT (τk+1), then
pT (τk+1|τk) = pT (τk+1). This proves the factorization of the joint probability
density pT (τ1, ..., τk, τk+1).

Note that the factorization conditions are identical for T = 0 [40] and T �= 0.
In further discussion of the flow recurrence conditions we should consider

results obtained in [31–33].
For the first recurrence condition a posteriori probability w(λ1|t) behavior

at the intervals (tk, tk+1), k = 1, 2, ..., is determined with the explicit formulas:

w(λ1|t) = π1 − [π1 − w(λ1|tk + 0)] e−(pλ1+β+α)(t−tk), tk < t ≤ tk + T,

w(λ1|t) = w1[w2−w(λ1|tk+T )]−w2[w1−w(λ1|tk+T )] e−b(t−tk−T )

w2−w(λ1|tk+T )−[w1−w(λ1|tk+T )] e−b(t−tk−T ) , tk + T < t ≤ tk+1,
(16)

where

w(λ1|tk + 0) =
αδ + [λ1(1 − p) − αδ] w(λ1|tk − 0)

λ2 + αδ
,

w1 = λ1−λ2+α+β−2αδ−b
2(λ1−λ2−αδ) , w2 = λ1−λ2+α+β−2αδ+b

2(λ1−λ2−αδ) ,

b =
√

(λ1 − λ2 − α + β)2 + 4αβ(1 − δ),
(17)

and π1 is defined by (4). In spite of the fact that the flow becomes recurrent and
probability density pT (τ) is exponential, a posteriori probability w(λ1|t) depends
on prehistory, i.e. it depends on the time moments t1, t2, ..., tk of the events
occurrence in observable flow. In fact, w(λ1|t) depends on the initial condition
at the time moment tk – the value of w(λ1|tk+0), k = 1, 2, ... . In turn w(λ1|tk+0)
depends on the value of w(λ1|tk − 0), of probability w(λ1|t) at the moment tk,
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when w(λ1|t) changes at the half-interval [tk−1, tk) preceding the half-interval
[tk, tk+1), k = 1, 2, .... Thereby, all prehistory of the flow observation from the
time moment t0 = 0 to tk is concentrated in the value of w(λ1|tk + 0). And it
may be stated that the flow is close to a simple stream. If to add an additional
condition λ1(1−p)−αδ = 0, then a posteriori probability w(λ1|t) will not depend
on prehistory, it will depend on the value of w(λ1|t) at the moment of the event
occurrence tk, i.e. on w(λ1|tk + 0) = αδ/(λ2 + αδ), k = 1, 2, ... . In this case we
may state that the flow is more close to a simple stream.

For the second recurrence condition a posteriori probability w(λ1|t) behavior
at the intervals (tk, tk+1), k = 1, 2, ..., is determined with the explicit formulas
(16), where

w(λ1|tk + 0) =
αδ + [λ1(1 − p) − αδ] w(λ1|tk − 0)

λ2 + αδ + (λ1 − λ2 − αδ)w(λ1|tk − 0)
, k = 1, 2, ... .

In spite of the fact that the flow becomes recurrent and probability density pT (τ)
is exponential, a posteriori probability w(λ1|t) also depends on prehistory, i.e. it
depends on the time moments t1, t2, ..., tk of the events occurrence in observable
flow. In this case we may state that the flow is close to a simple stream.

For the third recurrence condition probability density pT (τ) is defined by
the formula (11) and it is not exponential, so there is no closeness with a simple
stream of events.

6 Conclusion

The obtained results provide the possibility to solve the problem of parame-
ters estimation of the modulated semi-synchronous integrated flow of events in
condition of a constant dead time. One of the most interesting and important
problems of the flow parameters estimation is estimating the dead time period
duration. This is necessary to estimate the quantity of the lost flow events (events
carrying useful information). To solve this problem we can apply the following
methods: (1) maximum-likelihood technique; (2) method of moments.

To estimate duration of the dead time period with maximum-likelihood tech-
nique, first of all, the likelihood function is constructed

L(T |τ1, ..., τn) =
n∏

k=1

pT (τk),

where τk, k = 1, n, are the measured values of the intervals length duration
τk = tk+1 − tk, k = 1, n. Then the following task of optimization is resolved

L(T |τ1, ..., τn) =⇒ max
T

, 0 ≤ T ≤ τmin,

where τmin = min τk, k = 1, n. The point of global maximum T ∗ of the likeli-
hood function L(T |τ1, ..., τn) will be the desired estimation T̂ of the dead time
period duration.
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To solve the estimation problem with the method of moments ˆcov(τ1, τ2)
statistic is constructed. ˆcov(τ1, τ2) is the estimation of theoretical covariance

covT (τ1, τ2) =
∫ ∞

T

∫ ∞

T

[τ1 − Mτ1] [τ2 − Mτ2] pT (τ1, τ2)dτ1dτ2,

where Mτk, k = 1, 2, are mathematical expectations of the intervals length τ1 =
t2 − t1 and τ2 = t3 − t2. Then the equation of moments covT (τ1, τ2) = ˆcov(τ1, τ2)
is solved for the unknown T and a solution of this equation is chosen as T̂ .

Acknowledgments. The work is supported by Tomsk State University Competitive-
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Abstract. In this paper, we provide a simple framework for applying the
mean-field theory to dealing with a heterogeneous work stealing model of
M clusters, each of which consists of N same servers and operates under
two types of work stealing schemes: One within a cluster, and another
between any two clusters. We first set up an infinite-dimensional system
of mean-field equations, which is related to the M clusters. Then we use
the martingale limit theory to prove the asymptotic independence of this
heterogeneous work stealing model. Finally, we analyze and compute the
fixed point, which can give performance analysis of this heterogeneous
stealing model.

Keywords: Work stealing model · Cluster · Martingale limit theory ·
Asymptotic independence · Fixed point · Performance analysis

1 Introduction

Big networks, such as, computer networks, Internet of Things, manufacturing
systems, transportation networks and healthcare systems, are becoming more
complex, and analysis of their resource management is more difficult and chal-
lenging, e.g., see Li [10] and Benaim and Le Boudec [2]. For such a resource
management, a basic issue is to continuously redistribute jobs and service abil-
ity among clusters or servers. Up to now, there have been two useful methods
to do so: Push strategies, in which a processor that is overloaded will send work
to the others; and pull strategies, in which an underloaded processor will ask for
work from other processors with more workload. The push strategies are mainly
used in the centralized systems, where a classical example is the supermarket
models, e.g., see Vvedenskaya et al. [21], Mitzenmacher [15], Li et al. [11], and Li
and Lui [12]. The pull strategies are more appropriate for non-centralized and
relatively large-scale systems, where the work stealing model is one most repre-
sentative scheme. Readers may refer to, such as, Blumofe and Papadopoulos [5],
Blumofe and Leiserson [4], and Berenbrink et al. [3].

The queueing theory and Markov processes are applied to modeling and
analysis for the work stealing models. Squillante and Nelson [20] and Squillante
[19] provided the continuous time Markov models with work stealing scheme
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 28–40, 2015.
DOI: 10.1007/978-3-319-25861-4 3
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over a small number of processors. Hendler and Shavit [9] studied the non-
blocking steal-half work queues. Harchol-Balter et al. [8] and Osogami et al. [17]
analyzed the queueing models with two independent processors under a work
stealing scheme. Anselmi and Gaujal [1] gave a numerical method of the M/G/1
work stealing model. Lu et al. [13] provided a novel load balancing algorithm for
dynamically scalable web services through a join-idle-queue. The mean-field the-
ory is applied to analyzing the work stealing models. Important examples include
Mitzenmacher [16], Gast and Gaujal [7], and Minnebo and Van Houdt [14].

The main contributions of this paper are twofold. The first one is to consider
a heterogeneous work stealing model of M clusters, and to set up an infinite-
dimensional system of mean-field equations, which is related to the M clusters.
The second one is to apply the martingale limit theory to proving the asymp-
totic independence of this heterogeneous work stealing model. Based on this, we
analyze and compute the fixed point, which can give performance analysis of
this heterogeneous work stealing model.

The remainder of this paper is organized as follows. In Sect. 2, we describe a
heterogeneous work stealing model of M clusters, and express the state of this
heterogeneous work stealing model by means of an empirical measure process.
In Sect. 3, we derive an infinite-dimensional system of mean-field equations. In
Sect. 4, we apply the martingale limit theory to proving the asymptotic indepen-
dence. Based on this, we analyze and compute the fixed point, which can give
performance analysis of this heterogeneous work stealing model. Some compu-
tational remarks are given in Sect. 5.

2 A Work Stealing Model

In this section, we first describe a heterogeneous work stealing model of M
clusters, each of which consists of N same servers and operates under two types
of work stealing schemes. Then we express the states of this heterogeneous work
stealing model by means of an empirical measure process.

2.1 Model Description

This heterogeneous work stealing model is composed of M clusters, each of which
contains N same servers and operates under two types of work stealing schemes:
One within a cluster, and another between any two clusters.

In this heterogeneous work stealing model, there are two types of work steal-
ing schemes: (1) The work stealing scheme is operated within a cluster. If a
server completes all its customers and enters an idle period, then the idle server
steals the half of customers from a victim server with the longest queue length.
Notice that the victim server and the idle server are within a cluster. (2) The
work stealing scheme is operated between any two clusters. If a server completes
all its customers and enters an idle period, then the idle server steals the half of
customers from a victim server with the longest queue length in another cluster.
Notice that the victim server and the idle server are in two different clusters,
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Fig. 1. A heterogeneous stealing model of M clusters

respectively. Figure 1 provides a physical illustration for this heterogeneous work
stealing model of M clusters.

Based on Fig. 1, we provide some necessary parameters and notation as
follows.

The Arriving Processes. Let Cr denote the rth cluster. Then customers arrive
at cluster Cr as a Poisson process with arrival rate Nλr for λr > 0, this also
indicates that customers arrive at each server in this cluster as a Poisson process
with arrival rate λr. Upon arrival, each arriving customer chooses dr ≥ 1 servers
independently and uniformly at random from the N servers, and joins the one
whose queue length is the shortest among the dr selected servers. If there is a
tie, the servers with the shortest queue will be chosen randomly.

The Service Processes. The service times of each server in cluster Cr are i.i.d.
and are exponential with service rate μr > 0, and every server has an infinite
waiting space. All customers in any server will be served in the first-come-first-
served (FCFS) manner.
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The Work Stealing Processes Within Cluster Cr. In cluster Cr, once one
server finds no customers and enters an idle period, it chooses br ≥ 1 servers
independently and uniformly at random from the other N − 1 servers, and then
steals the half of customers from one server whose queue length is the longest
among the br selected servers. If there is a tie, the servers with the longest queue
length will be chosen randomly. If each of the br selected servers has not enough
customers, it continues to steal the half of customers from another group of br

selected servers. We assume that the stealing time distribution from one server
to another server within cluster Cr is exponential with stealing rate θr > 0.

The Work Stealing Processes Between Any Two Clusters. Among the M
clusters, each server in cluster Cs can steals the half of customers from one server
in cluster Cr for Cs �= Cr. When server j in cluster Cs finds no customers and
enters an idle period, it first selects cluster Cr by probability pr,s, then it chooses
a
(s)
r ≥ 1 servers independently and uniformly at random from the N servers in

cluster Cr, and steals the half of customers from one server whose queue length
is the longest among the a

(s)
r selected servers. If each of the a

(s)
r selected servers

has not enough customers, it continue to steal the half of customers from another
group of a

(s)
r selected servers. We assume that the stealing time distribution from

cluster Cr to cluster Cs is exponential with stealing rate τr,s > 0.
We assume that the arrival, service and stealing processes are independent

of each other.

2.2 An Empirical Measure Process

Now, we express the states of this heterogeneous work stealing model of M
clusters by means of an empirical measure process.

In cluster Cr, we define n
(N)
r;k (t) as the number of servers with at least k

customers (the serving customer is also taken into account) at time t ≥ 0 for
k ≥ 0 and 1 ≤ r ≤ M . Clearly, n

(N)
r;0 (t) = N, 0 ≤ n

(N)
r;k (t) ≤ N . Let

U
(N)
r;k (t) =

n
(N)
r;k (t)
NM

.

Then U
(N)
r;k (t) is the fraction of servers with at least k customers at time t

in the M clusters. Specifically, n
(N)
r;0 (t) ≡ N for all t ≥ 0, this yields that

U
(N)
r;0 (t) = n

(N)
r;0 (t) /NM ≡ 1/M for all t ≥ 0. Set

U(N)(t) = (U(N)
1 (t),U(N)

2 (t), . . . ,U(N)
M (t)),

where
U(N)

r (t) = (U (N)
r;0 (t), U (N)

r;1 (t), U (N)
r;2 (t), . . .), 1 ≤ r ≤ M.

It is easy to see that for any given t ≥ 0, U(N)(t) is a random vector. From the
exponential or Poisson assumption for the arrival, service and stealing processes,
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{
U(N)(t), t ≥ 0

}
is an infinite-dimensional Markov process whose state space is

given by

Ω(N) ={g : g = (g1,g2, . . .gM ) ,gr = (gr;0, gr;1, gr;2 . . .) ,

1
M

≥ gr;0 ≥ gr;1 ≥ gr;2 . . . ≥ 0, 1 ≤ r ≤ M,

1 =
M∑

r=1

gr;0 ≥
M∑

r=1

gr;1 ≥
M∑

r=1

gr;2 ≥ · · · ≥ 0,

and Ngr;k is a nonnegative integer for k ≥ 0}.

To analyze the Markov process
{
U(N)(t), t ≥ 0

}
, we write

u
(N)
r;k (t) = E

[
U

(N)
r;k (t)

]
, k ≥ 0, 1 ≤ r ≤ M.

Let
u(N)(t) =

(
u(N)
1 (t),u(N)

2 (t), . . . ,u(N)
M (t)

)
,

where
u(N)

r (t) =
(
u
(N)
r;0 (t), u(N)

r;1 (t), u(N)
r;2 (t), . . .

)
, 1 ≤ r ≤ M.

3 The System of Mean-Field Equations

In this section, for this heterogeneous work stealing model of M clusters, we
use a probability analysis to set up an infinite-dimensional system of mean-field
equations satisfied by the expected fraction vector u(N)(t) for t ≥ 0.

Our computation contains the following four parts: (a) the arrival processes in
cluster Cr, (b) the service processes in cluster Cr, (c) the work stealing processes
in cluster Cr, and (d) the work stealing processes between any two clusters.

For (a) and (b), the computation is similar to that in Li et al. [11]. On the
other hand, we only provide a detailed analysis for (c), while (d) can be discussed
similarly.

Part (c). In cluster Cr, the rate that once one server finds no customers and enters
an idle period, it chooses br servers independently and uniformly at random from
the other N − 1 servers, and then steals the half of customers from one server
whose queue length is the longest among the br selected servers is given by

(N − 1) θr

[
u
(N)
r;0 (t) − u

(N)
r;1 (t)

] [
u
(N)
r;k (t) − u

(N)
r;2k(t)

]

×
br∑

m=1

Cm
br

[
u
(N)
r;2k(t) − u

(N)
r;2k+1(t)

]m [
1 − u

(N)
r;2k(t)

]br−m

dt

+ (N − 1) θr

[
u
(N)
r;0 (t) − u

(N)
r;1 (t)

] [
u
(N)
r;k (t) − u

(N)
r;2k−1(t)

]

×
br∑

m=1

Cm
br

[
u
(N)
r;2k−1(t) − u

(N)
r;2k(t)

]m [
1 − u

(N)
r;2k−1(t)

]br−m

dt
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= (N − 1) θr

[
u
(N)
r;0 (t) − u

(N)
r;1 (t)

] [
u
(N)
r;k (t) − u

(N)
r;2k(t)

]

×
{[

1 − u
(N)
r;2k+1(t)

]br −
[
1 − u

(N)
r;2k(t)

]br
}

dt

+ (N − 1) θr

[
u
(N)
r;0 (t) − u

(N)
r;1 (t)

] [
u
(N)
r;k (t) − u

(N)
r;2k−1(t)

]

×
{[

1 − u
(N)
r;2k(t)

]br −
[
1 − u

(N)
r;2k−1(t)

]br
}

dt.

The above rate computation uses a key factor that Equation x − 〈x〉 = k
has only two different solutions: x = 2k and x = 2k − 1, where 〈x〉 denotes the
maximal integer part of the real number x.

Using a similar analysis to that in Sect. 2 of Li et al. [11], an infinite-
dimensional system of mean-field equations is given by: For k ≥ 0, 1 ≤ r ≤ M ,

d
dt

u
(N)
r;k (t) =λr

{[
u
(N)
r;k−1(t)

]dr −
[
u
(N)
r;k (t)

]dr
}

− μr

[
u
(N)
r;k (t) − u

(N)
r;k+1(t)

]

− (N − 1)
N

θr

[
u
(N)
r;0 (t) − u

(N)
r;1 (t)

] [
u
(N)
r;k (t) − u

(N)
r;2k(t)

]

×
{[

1 − u
(N)
r;2k+1(t)

]br −
[
1 − u

(N)
r;2k(t)

]br
}

− (N − 1)
N

θr

[
u
(N)
r;0 (t) − u

(N)
r;1 (t)

] [
u
(N)
r;k (t) − u

(N)
r;2k−1(t)

]

×
{[

1 − u
(N)
r;2k(t)

]br −
[
1 − u

(N)
r;2k−1(t)

]br
}

−
M∑

s �=r

pr,sτr,s

[
u
(N)
s;0 (t) − u

(N)
s;1 (t)

] [
u
(N)
r;k (t) − u

(N)
r;2k(t)

]

×
{[

1 − u
(N)
r;2k+1(t)

]a(s)
r −

[
1 − u

(N)
r;2k(t)

]a(s)
r

}

−
M∑

s �=r

pr,sτr,s

[
u
(N)
s;0 (t) − u

(N)
s;1 (t)

] [
u
(N)
r;k (t) − u

(N)
r;2k−1(t)

]

×
{[

1 − u
(N)
r;2k(t)

]a(s)
r −

[
1 − u

(N)
r;2k−1(t)

]a(s)
r

}
. (1)

with the boundary condition

u
(N)
r;0 (t) ≡ 1

M
,

M∑
r=1

u
(N)
r;0 (t) ≡ 1, (2)

and with the initial condition
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u(N)(0) = g, (3)

where
g ∈ Ω(N).

4 The Fixed Point

In this section, we apply the martingale limit theory to proving the asymptotic
independence of this heterogeneous work stealing model. Based on this, we ana-
lyze and compute the fixed point, which can give performance analysis of this
heterogeneous work stealing model.

From the set Ω(N), we write

ΩN =
{
g ∈ Ω(N) : ge < +∞

}
,

where e is a column vector of ones with a suitable dimension in the context. Let

Ω̃ = {g : g = (g1,g2, . . .gM ) ,gr = (gr;0, gr;1, gr;2 . . .) ,

1
M

≥ gr;0 ≥ gr;1 ≥ gr;2 . . . ≥ 0, 1 ≤ r ≤ M,

1 =
M∑

r=1

gr;0 ≥
M∑

r=1

gr;1 ≥
M∑

r=1

gr;2 ≥ · · · ≥ 0

}

and
Ω =

{
g ∈ Ω̃ : ge < +∞

}
.

In the vector space Ω̃, we take a metric

ρ
(
g,g

′)
= max

1≤r≤M

{
sup
k≥0

{ |gr;k − g′
r;k|

k + 1

}}
, g,g′ ∈ Ω̃.

Note that under the metric ρ
(
g,g

′
)
, the vector space Ω̃ is separable and

compact.
Now, we consider the Markov process {U(N)(t), t ≥ 0} on state space ΩN (or

Ω(N) in a similar analysis). Note that the stochastic evolution of this heteroge-
neous work stealing model is described as the Markov process

{
U(N)(t), t ≥ 0

}
,

and
d
dt

U(N)(t) = AN f(U(N)(t)),

where AN acting on functions f : ΩN → C1 is the generating operator of the
Markov process

{
U(N)(t), t ≥ 0

}
, and

AN =
M∑

r=1

A(r)
N ,
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where
A(r)

N = A(r);Input
N + A(r);Output

N + A(r);WS-I
N + A(r);WS-II

N ,

A(r);Input
N f(g) = Nλr

∞∑
k=1

(
gdr

r;k−1 − gdr

r;k

) [
f

(
g +

er;k

N

)
− f (g)

]
,

A(r);Output
N f(g) = Nμr

∞∑
k=1

(gr;k − gr;k+1)
[
f

(
g − er;k

N

)
− f (g)

]
,

A
(r);WS-I
N f(g) = (N − 1) (gr;0 − gr;1) θr

∞∑

k=1

(gr;k − gr;2k)

×
[
(1 − gr;2k+1)

br − (1 − gr;2k)br
] [

f
(
g − er;2k

N
+

er;k
N

)
− f (g)

]

+ (N − 1) (gr;0 − gr;1) θr

∞∑

k=1

(gr;k − gr;2k−1)

×
[
(1 − gr;2k)

br − (1 − gr;2k−1)
br
] [

f
(
g − er;2k−1

N
+

er;k
N

)
− f (g)

]

A
(r);WS-II
N f(g) =N

M∑

s �=r

pr,sτr,s (gs;0 − gs;1)

∞∑

k=1

(
gr;k − gr;2k

)

×
[(

1− gr;2k+1

)a(s)
r − (1− gr;2k

)a(s)
r

] [
f
(
g − er;2k

N
+

er;k

N

)
− f (g)

]

+ N
M∑

s �=r

pr,sτr,s (gs;0 − gs;1)

∞∑

k=1

(
gr;k − gr;2k−1

)

×
[(

1− gr;2k
)a(s)

r − (1− gr;2k−1

)a(s)
r

] [
f
(
g − er;2k−1

N
+

er;k

N

)
− f (g)

]

Let

A = lim
N→∞

AN , A(r) = lim
N→∞

A(r)
N ; A(r);♣ = lim

N→∞
A(r);♣

N .

Then

Af(g) =λr

M∑
r=1

∞∑
k=1

(
gdr

r;k−1 − gdr

r;k

) ∂

∂gr;k
f (g)

− μr

M∑
r=1

∞∑
k=1

(gr;k − gr;k+1)
∂

∂gr;k
f (g)

−
M∑

r=1

θr (gr;0 − gr;1)
∞∑

k=1

(gr;k − gr;2k)

×
[
(1 − gr;2k+1)

br − (1 − gr;2k)br
] [

∂

∂gr;2k
f (gr) − ∂

∂gr;k
f (gr)

]
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−
M∑

r=1

θr (gr;0 − gr;1)
∞∑

k=1

(gr;k − gr;2k−1)

×
[
(1 − gr;2k)br − (1 − gr;2k−1)

br
] [

∂

∂gr;2k−1
f (gr) − ∂

∂gr;k
f (gr)

]

−
M∑

r=1

M∑
s �=r

pr,sτr,s (gs;0 − gs;1)
∞∑

k=1

(gr;k − gr;2k)

×
[
(1 − gr;2k+1)

a(s)
r − (1 − gr;2k)a(s)

r

] [
∂

∂gr;2k
f (gr) − ∂

∂gr;k
f (gr)

]

−
M∑

r=1

M∑
s �=r

pr,sτr,s (gs;0 − gs;1)
∞∑

k=1

(gr;k − gr;2k−1)

×
[
(1 − gr;2k)a(s)

r − (1 − gr;2k−1)
a(s)
r

] [
∂

∂gr;2k−1
f (gr) − ∂

∂gr;k
f (gr)

]
.

Now, we consider the limiting behavior of the sequence {U(N)(t), t ≥ 0} of
Markov processes. Let U (t) = limN→∞ U(N) (t) and u(t) = limN→∞ u(N)(t).
Then the Markov process

{
U(N) (t) , t ≥ 0

}
with generating operator AN uni-

formly converges on any finite time interval to the limiting Markov process
{U (t) , t ≥ 0} with generating operator A.

As N → ∞ it follows from the system of mean-field Eqs. (1) to (3) that
u(t) is a solution to the following system of limiting mean-field equations: For
k ≥ 0, 1 ≤ r ≤ M ,

d
dt

ur;k(t) =λr

{
[ur;k−1(t)]dr − [ur;k(t)]dr

} − μr[ur;k(t) − ur;k+1(t)]

− θr [ur;0(t) − ur;1(t)] [ur;k(t) − ur;2k(t)]

×
{

[1 − ur;2k+1(t)]
br − [1 − ur;2k(t)]br

}

− θr [ur;0(t) − ur;1(t)] [ur;k(t) − ur;2k−1(t)]

×
{

[1 − ur;2k(t)]br − [1 − ur;2k−1(t)]
br

}

−
M∑

s �=r

pr,sτr,s [us;0(t) − us;1(t)] [ur;k(t) − ur;2k(t)]

×
{

[1 − ur;2k+1(t)]
a(s)
r − [1 − ur;2k(t)]a

(s)
r

}

−
M∑

s �=r

pr,sτr,sr,s [us;0(t) − us;1(t)] [ur;k(t) − ur;2k−1(t)]

×
{

[1 − ur;2k(t)]a
(s)
r − [1 − ur;2k−1(t)]

a(s)
r

}
. (4)

with the boundary condition
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ur;0(t) ≡ 1
M

,

M∑
r=1

ur;0(t) ≡ 1, (5)

and with the initial condition

u(0) = g, g ∈ Ω. (6)

Note that the convergence in the Skorohod topology means the convergence in
distribution for the Skorohod topology on the space of trajectories. The following
theorem applies the martingale limit theory to studying the weak convergence
of the sequence

{
U(N)(t), t ≥ 0

}
of Markov processes as N tends to infinity.

Theorem 1. If U(N)(0) converges weakly to g ∈ Ω as N tends to infinity, then
the sequence

{
U(N)(t), t ≥ 0

}
of Markov processes converges in the Skorohod

topology to the unique and global solution to the system of differential Eqs. (4)
to (6).

Proof: From the martingale characterization of the Markov jump process{
U(N)(t), t ≥ 0

}
, it follows from Rogers and Williams [18] that for k ≥ 0 and

1 ≤ r ≤ M ,

M
(N)
r;k (t) = U

(N)
r;k (t) − U

(N)
r;k (0)

−
∫ t

0

∑

Θ∈Ω−{U(N)(t)}
Q(N)

(
U(N)(s), Θ

) [
Θr;k − U

(N)
r;k (s)

]
ds

is a martingale with respect to the natural filtration associated to the Pois-
son processes involved in the arrival, service and work stealing processes, where
Q(N)

(
U(N)(s), Θ

)
is the Q-matrix of the Markov jump process

{
U(N)(t), t ≥ 0

}
.

Using a similar method to Darling and Norris [6], it is easy to see that if
U(N)(0) converges weakly to g ∈ Ω as N tends to infinity, then the sequence{
U(N)(t), t ≥ 0

}
of Markov processes is tight for the Skorohod topology, and

any limit U(t) of
{
U(N)(t), t ≥ 0

}
asymptotically approaches a single trajectory

identified by the unique and global solution to the system of differential Eqs. (4)
to (6). This completes the proof. �

In what follows we analyze and compute the fixed point of the infinite-
dimensional system of limiting mean-field Eqs. (4) to (6), and then can give
performance analysis of this heterogeneous work stealing model of M clusters.

Let π = (π1, π2, . . . πM ) where πr = (πr;0, πr;1, πr;2, . . .). A row vector π
is called a fixed point of the infinite-dimensional system of limiting mean-field
Eqs. (4) to (6) if π = limt→+∞ u(t) or πr;k = limt→+∞ ur;k(t) for k ≥ 0 and
1 ≤ r ≤ M . It is well-known that if π is a fixed point with respect to the vector
u(t), then

lim
t→+∞

[
d
dt

u(t)
]

= 0.

Taking t → +∞ in both sides of the system of limiting mean-field Eqs. (4)
to (6), we obtain that for k ≥ 1, 1 ≤ r ≤ M,
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λr(π
dr
r;k−1 − πdr

r;k)− μr
(
πr;k − πr;k+1

)

− θr (πr;0 − πr;1)
(
πr;k − πr;2k

) [
(1− πr;2k+1)

br − (1− πr;2k)
br
]

− θr (πr;0 − πr;1)
(
πr;k − πr;2k−1

) [
(1− πr;2k)

br − (1− πr;2k−1)
br
]

−
M∑

s �=r

pr,sτr,s (πs;0 − πs;1)
(
πr;k − πr;2k

) [
(1− πr;2k+1)

a
(s)
r − (1− πr;2k)

a
(s)
r

]

−
M∑

s �=r

pr,sτr,s (πs;0 − πs;1)
(
πr;k − πr;2k−1

) [
(1− πr;2k)

a
(s)
r − (1− πr;2k−1)

a
(s)
r

]
= 0, (7)

with the boundary condition

πr;0 =
1
M

,

M∑
r=1

πr;0 = 1. (8)

In general, it is not easy to compute the fixed point π when considering the M
clusters. Using the fixed point, now we can compute the mean of stationary queue
length in any server in this heterogeneous work stealing model of M clusters.

Let Qr and Q be the stationary queue lengths of any servers in cluster Cr

and in this system, respectively. Then

E [Qr] =
∞∑

k=1

P {Qr ≥ k} =
∞∑

k=1

πr,k

and

E [Q] =
M∑

r=1

E [Qr] =
M∑

r=1

∞∑
k=1

πr,k.

5 Concluding Remarks

This paper discusses a heterogeneous work stealing model of M clusters under
two types of work stealing schemes. We first set up an infinite-dimensional sys-
tem of mean-field equations, which is related to the M clusters. Then we apply
the martingale limit theory to proving the asymptotic independence of the het-
erogeneous work stealing model. Based on this, we analyze and compute the
fixed point, which can give performance analysis of this heterogeneous work
stealing model. Along such a line, there are a number of interesting directions
for potential future research, for example:

– Providing effective algorithms for computing the fixed points of the heteroge-
neous work stealing model of M clusters;

– studying the stability or metastability of this heterogeneous work stealing
model of M clusters; and

– analyzing influence of the M clusters on performance measures of this hetero-
geneous work stealing model.
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Calculus. Wiley, New York (1987)

http://arxiv.org/abs/1504.07974


40 Q.-L. Li and F. Yang

19. Squillante, M.S.: Stochastic analysis of multiserver systems. ACM SIGMETRICS
Perform. Eval. Rev. 34(4), 44–51 (2007)

20. Squillante, M.S., Nelson, R.: Analysis of task migration in shared-memory multi-
processor scheduling. J. ACM 19(1), 143–155 (1991)

21. Vvedenskaya, N.D., Dobrushin, R.L., Karpelevich, F.I.: Queueing system with
selection of the shortest of two queues: an asymptotic approach. Probl. Inf. Trans-
missions 32(1), 20–34 (1996)



Joint Probability Density Function of Modulated
Synchronous Flow Interval Duration Under

Conditions of Fixed Dead Time

Alexander Gortsev and Mariya Sirotina(B)

National Research Tomsk State University, Tomsk, Russian Federation
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Abstract. A modulated synchronous doubly stochastic flow under con-
ditions of a fixed dead time is considered. After each registered event
there is a time of fixed duration T (dead time), during which another flow
events are inaccessible for observation. When duration of the dead time
period finishes, the first happened event creates the dead time period
of duration T again and etc. An explicit form of a probability density
function of interval duration between two adjacent events of modulated
synchronous doubly stochastic flow under conditions of a fixed dead time
is derived. Also an explicit form of a joint probability density function for
modulated synchronous flow interval duration is obtained. A recurrent
conditions for modulated synchronous flow as well as some probabilis-
tic characteristics of the flow are obtained using the formula for a joint
probability density function.

Keywords: Modulated synchronous doubly stochastic flow · Proba-
bility density function of interval duration · Joint probability density
function of interval duration · Recurrent conditions of the flow

1 Introduction

This paper is a continuation of the modulated synchronous flow investigation
which was started in paper [1].

Mathematical models of queueing theory are widely used when describing
the real physical, technological and other processes and systems. In connection
with rapid development of computer equipment and information technologies
an important sphere of queueing theory applications appeared. This sphere was
called as design and creation of data-processing networks, computer communi-
cation networks, satellite networks and telecommunication networks [2].

In the practice, an intensity of input flow varies along with time. Moreover,
these variations are often of a random nature. This leads to consideration of a
doubly stochastic flow of events [3–7]. An example of such flow is a modulated
synchronous doubly stochastic flow [8,9].

c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 41–52, 2015.
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2 Problem Statement

Let us consider the modulated synchronous doubly stochastic flow of events,
whose rate is a piecewise constant random process λ(t) with two states: λ1, λ2

(λ1 > λ2). The sojourn time of the process λ(t) in state λi has exponential prob-
ability distribution function with the parameter αi, i = 1, 2. If at the moment t
the process λ(t) sojourns in the state λi than in the small half-interval [t, t + Δt),
with probability αiΔt + o(Δt) the process finishes its stay in the state λi and
moves to the state λj with probability is one (i, j = 1, 2, i �= j). During the
time random interval when λ(t) = λi Poisson flow with rate λi, i = 1, 2 arrives.
A state transition of the process λ(t) may also occur at the moment of Pois-
son flow event arrival. Moreover, transition from the state λ1 to the state λ2 is
realized only at the moment of event occurrence with probability p (0 < p ≤ 1).
With the complementary probability 1 − p the process remains at the state λ1.
Transition from the state λ2 to the state λ1 is also realized only at the moment
of event occurrence with probability q (0 < q ≤ 1). With the complementary
probability 1−q the process remains at the state λ2. In the described conditions
λ(t) is the Markovian process.

Fig. 1. Forming the modulated synchronous flow

An example of this situation is shown on the Fig. 1, where λ1, λ2 are the states
of the process λ(t), t1, t2, . . . are the moments of the flow events occurrence.

Block matrixes of infinitesimal coefficients are of the form:

D1 =
∣∣∣∣
(1 − p)λ1 pλ1

qλ2 (1 − q)λ2

∣∣∣∣ ,D0 =
∣∣∣∣
−(λ1 + α1) α1

α2 −(λ2 + α2)

∣∣∣∣ .

The elements of the matrix D1 are intensities of the process λ(t) transition
from the state to the state with an event occurrence. Off-diagonal elements of
matrix D0 are intensities of the process λ(t) transition from the state to the state
without an event occurrence. Diagonal elements of matrix D0 are the intensities of
process λ(t) leaving its states, which are taken with the opposite sign. We should
note that if αi = 0, i = 1, 2 there is a usual synchronous flow of events [10].

Emphasize that we assume a priority of the event occurrence in the problem
statement. Event occurs and after that the process λ(t) makes a transition from
the state to state. This circumstance is irrelevant when obtaining the analytical
results because event occurrence and the process λ(t) state transition happen
immediately. When obtaining the numerical results using a simulation modeling,
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there is necessary to have the definiteness what is the first: the event occurrence
or the state transition.

The process λ(t) and event types (Poisson flow events of λ1 and λ2 intensi-
ties) are not observable in principle (in prepositions made λ(t) is latent markov-
ian process). Only the moments of observable events occurrence t1, t2, . . . tk, . . .
are accessible for observation. A stationary mode of the flow is considered.
A sequence of time moments of event occurrence t1, t2, . . . tk, . . . is an imbed-
ded Markov chain {λ(tk)}. So the flow has a markovian chain characteristic
when its evolution is considered from the moment tk, k = 1, 2, ... (the moment
of flow event occurrence).

Let τk = tk+1− tk, k = 1, 2, ..., is a value of a k interval duration between the
moments of an adjacent observable events occurrence. Since the flow functions in
stationary mode then a probability density function of interval duration between
the moments of adjacent observable events occurence is pT (τk) = pT (τ), τ ≥ 0,
for any k. So without the loss of generality the moment tk of event occurence we
can assume equal to null, that means τ = 0.

Let τk = tk+1 − tk, τk+1 = tk+2 − tk+1, k = 1, 2, ..., are a duration values of
adjacent k and k+1 intervals between adjacent observable flow events occurrence.
According to the flow stationarity we can assume k = 1 and consider τ1 = t2 −
t1, τ2 = t3 − t2, τ1 ≥ 0, τ2 ≥ 0 interval durations. Then τ1 = 0 responds to the
moment t1 of observable flow event occurrence and τ2 = 0 responds to the moment
t2 of an observable flow event occurrence. Then corresponding joint probability
density function is of the form pT (τk, τk+1) = pT (τ1, τ2), τ1 ≥ 0, τ2 ≥ 0.

The main purpose of the research work is to obtain an explicit form of a
probability density function pT (τ) as well as an explicit form of a joint proba-
bility density function pT (τ1, τ2). During the investigation recurrense conditions
of observable flow are obtained as well as some probabilistic characteristic of
the flow.

3 Probability Density Function of Modulated
Synchronous Flow Interval Duration

Let τ is a value of the random variable of interval duration between the moments
of two adjacent flow events occurrence. Then a probability density function of
interval duration between the moments of modulated synchronous flow adjacent
event occurrence is written in the form of:

pT (τ) =

{
0, 0 ≤ τ < T,∑2

i=1 πi(0|T )
∑2

j=1 qij(T )
∑2

k=1 p̃jk(τ − T ), τ ≥ T
(1)

where πi(0|T ), i = 1, 2, is a conditional stationary probability that the process
λ(t) sojourns in the state λi at the moment τ = 0 when the flow event occurred
in the moment τ = 0, and the dead time of T duration occurred, i = 1, 2,
(π1(0|T ) + π2(0|T ) = 1); qij(T ), i, j = 1, 2, is a probability that during the time
of T duration the process λ(t) moves from the state λi to the state λj , i, j = 1, 2;
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p̃jk(τ − T ) is a probability density function that on the interval (τ − T, τ) there
are no flow events and in the moment τ the process λ(τ) = λk when at the
moment τ − T the process λ(τ − T ) = λj (j, k = 1, 2).

Let t = τ − T, τ ≥ T . Let us introduce pjk(t), j, k = 1, 2, is a transition
probability that there are no flow events on the interval (0; t) and λ(t) = λk

at the moment t when λ(0) = λj at the moment t = 0 (j, k = 1, 2). Then
for introduced probabilities pjk(t), j, k = 1, 2, we have the following system of
differencial equations:

p′
11(t) = −(λ1 + α1)p11(t) + α2p12(t),

p′
12(t) = −(λ2 + α2)p12(t) + α1p11(t),

p′
22(t) = −(λ2 + α2)p22(t) + α1p21(t),

p′
21(t) = −(λ1 + α1)p21(t) + α2p22(t),

p11(0) = 1, p12(0) = 0, p22(0) = 1, p21(0) = 0.

Solving obtained system of differential equations we find out that

p11(t) = 1
z2−z1

[(λ2 + α2 − z1)e−z1t − (λ2 + α2 − z2)e−z2t] ,
p12(t) = α1

z2−z1
[e−z1t − e−z2t] ,

p22(t) = 1
z2−z1

[(λ1 + α1 − z1)e−z1t − (λ1 + α1 − z2)e−z2t] ,
p21(τ) = α2

z2−z1
[e−z1t − e−z2t] ,

z1,2 = (λ1 + α1 + λ2 + α2) ∓ √
(λ1 + α1 − λ2 − α2)2 + 4α1α2.

(2)

Besides probability densities p̃jk(t) = p̃jk(τ −T ), j, k = 1, 2, from the formula
for the probability density pT (τ) 1 are of the form:

p̃11(τ) = p11(τ)λ1(1 − p) + p12(τ)λ2q,
p̃12(τ) = p11(τ)λ1p + p12(τ)λ2(1 − q),
p̃22(τ) = p22(τ)λ2(1 − q) + p21(τ)λ1p,
p̃21(τ) = p22(τ)λ2q + p21(τ)λ1(1 − p),

(3)

where probabilities pij(τ), i, j = 1, 2, are defined in 2.
Inserting 2 into 3 then changing t on τ −T we can obtaining an explicit form

of the probability densities p̃jk(τ − T ), j, k = 1, 2:

p̃11(τ − T ) = λ1(1−p)
z2−z1

[
(λ2 + α2 − z1)e−z1(τ−T ) − (λ2 + α2 − z2)e−z2(τ−T )

]
+α1λ2q

z2−z1

[
e−z1(τ−T ) − e−z2(τ−T )

]
,

p̃12(τ − T ) = λ1p
z2−z1

[
(λ2 + α2 − z1)e−z1(τ−T ) − (λ2 + α2 − z2)e−z2(τ−T )

]

+α1λ2(1−q)
z2−z1

[
e−z1(τ−T ) − e−z2(τ−T )

]
,

p̃21(τ − T ) = λ2q
z2−z1

[
(λ1 + α1 − z1)e−z1(τ−T ) − (λ1 + α1 − z2)e−z2(τ−T )

]

+α2λ1(1−p)
z2−z1

[
e−z1(τ−T ) − e−z2(τ−T )

]
,

p̃22(τ − T ) = λ2(1−q)
z2−z1

[
(λ1 + α1 − z1)e−z1(τ−T ) − (λ1 + α1 − z2)e−z2(τ−T )

]
+α2λ1p

z2−z1

[
e−z1(τ−T ) − e−z2(τ−T )

]
,

(4)
where z1,2 are defined in 2.
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Lets introduce probability qij(τ) is a probability that during the time of τ
duration the process λ(t) moves from the state λi to the state λj , i, j = 1, 2. For
the introduced probabilities qij(τ), i, j = 1, 2, we have the following system of
differential equations:

q′
11(τ) = −(α1 + pλ1)q11(τ) + (α2 + qλ2)q12(τ),

q′
12(τ) = −(α2 + qλ2)q12(τ) + (α1 + pλ1)q12(τ),

q′
21(τ) = −(α2 + qλ2)q22(τ) + (α1 + pλ1)q21(τ),

q′
22(τ) = −(α1 + pλ1)q21(τ) + (α2 + qλ2)q22(τ),

with a boundary conditions:

q11(0) = 1, q12(0) = 0, q21(0) = 0, q22(0) = 1.

Solving this system of differential equations and assuming τ = T in obtained
solution we found out:

q11(T ) = π2 + π1e
−(α1+pλ1+α2+qλ2)T , q12(T ) = π2 − π2e

−(α1+pλ1+α2+qλ2)T ,
q21(T ) = π1 − π1e

−(α1+pλ1+α2+qλ2)T , q22(T ) = π1 + π2e
−(α1+pλ1+α2+qλ2)T ,

π1 = α2+qλ2
α1+pλ1+α2+qλ2

, π1 = α1+pλ1
α1+pλ1+α2+qλ2

,

(5)
where πi, i = 1, 2, is an apriori stationary probability that in the random time
moment the flow sojourns in the state λi [2].

To find out probabilities πi(0|T ), i = 1, 2, from the initial formula 1 let us
introduce πij , i, j = 1, 2, is a probability that during the time period from the
moment τ = 0 to the moment of the next observable flow event occurrence and
realizing the next flow state drawing the process λ(t) moves from the state λi

to the state λj , i, j = 1, 2.
Then for the introduced probabilities πi(0|T ), i = 1, 2, and πij , i, j = 1, 2,

according to the markovian property of the process λ(t) it is correct to write the
following system of linear equations:

π1(0|T ) = π1(0|T )π11 + π2(0|T )π21,
π2(0|T ) = π2(0|T )π22 + π1(0|T )π12,

π1(0|T ) + π2(0|T ) = 1,

where expressing probabilities πi(0|T ), i = 1, 2, we obtain:

π1(0|T ) =
π21

π12 + π21
, π2(0|T ) =

π12

π12 + π21
. (6)

Besides for the probabilities πij , i, j = 1, 2, according to the markovian prop-
erty of the process λ(t), we can write the following system of linear equations:

π11 = q11(T )p11 + q12(T )p21,
π12 = q11(T )p12 + q12(T )p22,

π11 + π12 = 1,
π21 = q21(T )p11 + q22(T )p21,
π22 = q21(T )p12 + q22(T )p22,

π21 + π22 = 1,

(7)
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where probabilities qij(T ), i, j = 1, 2, are defined in 5, pjk, j, k = 1, 2, is a prob-
ability that during the time interval between the moment t = 0 (the moment of
event occurrence) and the moment of the next event occurrence the process λ(t)
moves from the state λj to the state λk, j, k = 1, 2. The probability pij doesn’t
depend on time, it is a stationary probability of the process λ(t) transition from
the state λj to the state λk between the moments of two adjacent flow events.
Then pjk =

∫ ∞
0

p̃jk(u)Δu.
Integrating the probability density functions p̃jk(t), j, k = 1, 2, obtained in 4,

the following expressions for the transition probabilities pjk, j, k = 1, 2, are
derived:

p11 = λ1(1−p)(λ2+α2)+λ2qα1
z1z2

,

p12 = λ1p(λ2+α2)+λ2(1−q)α1
z1z2

,

p21 = λ2q(λ1+α1)+λ1(1−p)α2
z1z2

,

p12 = λ2(1−q)(λ1+α1)+λ1pα2
z1z2

,

z1z2 = λ1λ2 + λ1α2 + λ2α1,

(8)

Therefore, inserting formulas 8 and 5 into 7 the following expressions for
probabilities πij , i, j = 1, 2, are obtained:

π11 = 1
z1z2

((1 − p)λ1α2 + qλ2(λ1 + α1)
+λ1λ2(1 − p − q)(π1 + π2e

−(α1+pλ1+α2+qλ2)T )),
π12 = 1

z1z2
((1 − q)λ2(λ1 + α1) + pλ1α2

−λ1λ2(1 − p − q)(π1 + π2e
−(α1+pλ1+α2+qλ2)T )),

π21 = 1
z1z2

(qλ2α1 + (1 − p)λ1(λ2 + α2)
−λ1λ2(1 − p − q)(π2 + π1e

−(α1+pλ1+α2+qλ2)T )),
π22 = 1

z1z2
(pλ1(λ2 + α2) + qλ2α1

+λ1λ2(1 − p − q)(π2 + π1e
−(α1+pλ1+α2+qλ2)T )),

(9)

where πi, i = 1, 2, and z1z2 are defined in 8.
Inserting probabilities πij , i, j = 1, 2, defined in 9, into formulas 6 expressions

for the probabilities πi(0|T ), i = 1, 2, are written in the form:

π1(0|T ) = qλ2α1+(1−p)λ1(λ2+α2)−λ1λ2(1−p−q)(π2+π1e−(α1+pλ1+α2+qλ2)T )

z1z2−λ1λ2(1−p−q)(π2+π1e−(α1+pλ1+α2+qλ2)T )
,

π2(0|T ) = (1−q)λ2(λ1+α1)+pλ1α2−λ1λ2(1−p−q)(π2+π1e−(α1+pλ1+α2+qλ2)T )

z1z2−λ1λ2(1−p−q)(π2+π1e−(α1+pλ1+α2+qλ2)T )
,

(10)

where πi, i = 1, 2, and z1z2 are defined in 8.
To get a probabilities πi(T ), i = 1, 2, let introduce πi(τ |T ), i = 1, 2, is a

probability that at the time moment τ the process λ(τ) sojourns in the state λi,
0 < τ < T . Then πi(τ +Δτ |T ), i = 1, 2, is a probabilty that at the time moment
τ +Δτ the process λ(τ) sojourns in the state λi, 0 < τ +Δτ < T . Considering all
possible ways of process λ(τ) behaviour on the interval (τ, τ +Δτ) the following
system of differential equations related on the probabilities πi(τ |T ), i = 1, 2 can
be written out:

π′
1(τ |T ) = −(pλ1 + α1)π1(τ |T ) + (qλ2 + α2)π2(τ |T ),
π′
2(τ |T ) = (pλ1 + α1)π1(τ |T ) − (qλ2 + α2)π2(τ |T ),

with a boundary conditions πi(τ |T )=πi(0|T ) for τ = 0, i = 1, 2.
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Solution of this system is written as follows:

π1(τ |T ) = π1 − (π1 − π1(0|T ))e−(α1+pλ1+α2+qλ2)τ ,
π2(τ |T ) = π2 − (π2 − π2(0|T ))e−(α1+pλ1+α2+qλ2)τ ,

where πi, i = 1, 2, are defined in 5, πi(0|T ), i = 1, 2, are defined in 10.
Inserting in the last formula for the πi(τ |T ), i = 1, 2, instead of τ the value

T and denoting πi(T |T ), i = 1, 2, as πi(T ), i = 1, 2, we obtain:

π1(T ) = π1 − (π1 − π1(0|T ))e−(α1+pλ1+α2+qλ2)T ,
π2(T ) = π2 − (π2 − π2(0|T ))e−(α1+pλ1+α2+qλ2)T ,

(11)

where πi, i = 1, 2, are defined in 5, πi(0|T ), i = 1, 2, are defined in 10.
It is easy to show that

π1(T ) = π1(0|T )q11(T ) + π2(0|T )q21(T ),
π2(T ) = π2(0|T )q12(T ) + π2(0|T )q22(T ). (12)

Inserting 4, 5 and 10 into 1, using 12 and making a difficult enough calcula-
tions we derive an explicit form of a probability density function pT (τ) for the
modulated synchronous doubly stochastic flow in conditions of the fixed dead
time:

pT (τ) = 0, 0 ≤ τ < T,
pT (τ) = γ(T )z1e−z1(τ−T ) + (1 − γ(T ))z2e−z2(τ−T ), τ ≥ T,

(13)

where γ(T ) = 1
z2−z1

(z2−π1(T )λ1−π2(T )λ2), 1−γ(T ) = 1
z2−z1

(−z1+π1(T )λ1+
π2(T )λ2),

z1,2 are defined in 2, πi(T ), i = 1, 2, are defined in 11.

4 Joint Probability Density Function of Modulated
Synchronous Flow Interval Duration

Let τ1, τ2 are a values of the random variable of duration of two adjacent intervals
between the moments of adjacent flow events. Then a joint probability density
function pT (τ1, τ2) is written in the form of:

pT (τ1, τ2) =

⎧⎪⎨
⎪⎩

0, 0 ≤ τ1 < T, 0 ≤ τ2 < T,∑2
i=1 πi(0|T )

∑2
j=1 qij(T )

∑2
k=1 p̃jk(τ1 − T )

×∑2
s=1 qks(T )

∑2
n=1 p̃sn(τ2 − T ), τ1 ≥ T, τ2 ≥ T,

where πi(0|T ), i = 1, 2, are defined in 10, qij(T ), qks(T ), i, j, k, s = 1, 2, are
defined in 5, p̃jk(τ1−T ), p̃sn(τ2−T ), j, k, s, n = 1, 2, are defined in 4 (in formulas
4 it is necessary to change τ on τ1or τ2).

Using the formula 12 and making a changes t1 = τ1 − T, t2 = τ2 − T it is
not difficult to get a formula for a joint probability density function pT (τ1, τ2)
in the form:

pT (τ1, τ2) =

{
0, 0 ≤ τ1 < T, 0 ≤ τ2 < T,
∑2

i=1 πi(T )
∑2

j=1 pij(t1)
∑2

k=1 qjk(T )
∑2

s=1 p̃ks(t2), t1 ≥ 0, t2 ≥ 0,
(14)
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Besides, according to the formulas 1 and 10 we can write the following:

pT (τ1) =
∑2

i=1 πi(T )
∑2

j=1 p̃ij(t1), t1 ≥ 0,

pT (τ2) =
∑2

i=1 πi(T )
∑2

j=1 p̃ij(t2), t2 ≥ 0.

Inserting the values of qjk(T ), j, k = 1, 2, from 5 to 14 and making a difficult
enough manipulations the difference p(τ1, τ2) − p(τ1)p(τ2) is derived as follows:

p(τ1, τ2) − p(τ1)p(τ2) =
e−(α1+pλ1+α2+qλ2)T

∑2
s=1(p̃1s(t2) − p̃2s(t2))

× {π1(T )(π2(0|T )p̃11(t1) − π1(0|T )p̃12(t1))
+π2(T )(π2(0|T )p̃21(t1) − π1(0|T )p̃22(t1))} ,

(15)

where πi(0|T ), i = 1, 2, are defined in 10, πi(T ), i = 1, 2, are defined in 11,
p̃is(t2), p̃ij(t1), i, j, s = 1, 2, are defined in 4. Then the union

∑2
s=1(p̃1s(t2) −

p̃2s(t2)) is of the form:

2∑
s=1

(p̃1s(t2) − p̃2s(t2)) = −(λ1 − λ2)(z1e−z1τ2 − z2e
−z2τ2)/(z2 − z1). (16)

where z1,2 are defined in 2.
Inserting πi(0|T ), i = 1, 2, from 10, πi(T ), i = 1, 2, from 11, p̃ij(t1), i, j = 1, 2,

from 4 into expression in brace from the formula 15, then inserting 16 into 15,
after that making a return changing t1 = τ1 −T, t2 = τ2 −T the formula for the
joint probability density function pT (τ1, τ2) is written as follows:

pT (τ1, τ2) = 0, 0 ≤ τ1 < T, 0 ≤ τ2 < T,
pT (τ1, τ2) = p(τ1)p(τ2) + e−(α1+pλ1+α2+qλ2)T (λ1 − λ2)λ1λ2(1 − p − q)
× ((λ1p+α1)π1(0)−(λ2q+α2)π2(0))((p+q)λ1λ2+λ2α1+λ1α2)

(z2−z2)2(z1z2−λ1λ2(1−p−q)e−(α1+pλ1+α2+qλ2)T )2(α1+pλ1+α2+qλ2)2
× {z1z2

+e−(α1+pλ1+α2+qλ2)T ((α1 + pλ1 + α2 + qλ2)(α1 + λ1 + α2 + λ2) − 2z1z2)
−e−2(α1+pλ1+α2+qλ2)T ((α1 + pλ1 + α2 + qλ2)((1 − p)λ1 + (1 − q)λ2) − z1z2)

}
×(z1e−z1(τ1−T ) − z2e

−z2(τ1−T ))(z1e−z1(τ2−T ) − z2e
−z2(τ2−T )), τ1 ≥ T, τ2 ≥ T,

where πi(0), i = 1, 2, are defined in 10 for T = 0, z1,2 are defined in 2, z1z2 are
defined in 8.

We can show that multiplication γ(T )(1 − γ(T )) is of the form:

γ(T )(1 − γ(T ))
= (λ1−λ2)((λ1p+α1)π1(0)−(λ2q+α2)π2(0))((p+q)λ1λ2+λ2α1+λ1α2)

(z2−z2)2(z1z2−λ1λ2(1−p−q)e−(α1+pλ1+α2+qλ2)T )2(α1+pλ1+α2+qλ2)2
× {z1z2

+e−(α1+pλ1+α2+qλ2)T ((α1 + pλ1 + α2 + qλ2)(α1 + λ1 + α2 + λ2) − 2z1z2)
−e−2(α1+pλ1+α2+qλ2)T ((α1 + pλ1 + α2 + qλ2)((1 − p)λ1 + (1 − q)λ2) − z1z2)

}
×(z1e−z1(τ1−T ) − z2e

−z2(τ1−T ))(z1e−z1(τ2−T ) − z2e
−z2(τ2−T ))z1z2,

(17)
where πi(0), i = 1, 2, are defined in 10 for T = 0, z1,2 are defined in 2, z1z2 are
defined in 5.
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Lets denote the expression in brace from formula 17 as f(T ). After some
manipulations f(T ) can be written as follows:

f(T ) = z1z2(1 − e−(α1+pλ1+α2+qλ2)T )2

+e−(α1+pλ1+α2+qλ2)T (α1 + pλ1 + α2 + qλ2)
+e−(α1+pλ1+α2+qλ2)T (1 − e−(α1+pλ1+α2+qλ2)T )
×(α1 + pλ1 + α2 + qλ2)((1 − p)λ1 + (1 − q)λ2),

so that for any T ≥ 0 we have f(T ) > 0.
Finally the joint probability density function pT (τ1, τ2) is written as follows:

pT (τ1, τ2) = 0, 0 ≤ τ1 < T, 0 ≤ τ2 < T,

p(τ1, τ2) = p(τ1)p(τ2) + e−(α1+pλ1+α2+qλ2)T λ1λ2(1−p−q)
z1z2

γ(T )(1 − γ(T ))
×(z1e−z1(τ1−T ) − z2e

−z2(τ1−T ))(z1e−z1(τ2−T ) − z2e
−z2(τ2−T )), τ1 ≥ T, τ2 ≥ T,

(18)
where z1,2 are defined in 2, γ(T ), 1 − γ(T ) are defined in 13.

5 Recurrence Conditions for Observable Flow of Events

Let consider a particular cases when modulated synchronous doubly stochastic
flow which functions under conditions of the fixed dead time is a recurrence flow.

1. From the formula 17 for the joint probability density function pT (τ1, τ2) the
first recurrence condition follows. If p + q = 1 then the joint probability
density 17 factors:

pT (τ1, τ2) = pT (τ1)pT (τ2), τ1 ≥ T, τ2 ≥ T.

For this case the probability density function pT (τ) is of the form:

pT (τ) = 0, 0 ≤ τ < T,
pT (τ) = γ(T )z1e−z1(τ−T ) + (1 − γ(T ))z2e−z2(τ−T ), τ ≥ T,

γ(T ) = 1
z2−z1

(z2 − λ1π1 − λ2π2

+(λ1(π1 − q) + λ2(π2 − p))e−(α1+pλ1+α2+qλ2)T ),
1 − γ(T ) = 1

z2−z1
(−z1 + λ1π1 + λ2π2

−(λ1(π1 − q) + λ2(π2 − p))e−(α1+pλ1+α2+qλ2)T ),

where z1,2 are defined in 2, πi, i = 1, 2, are defined in 5.
2. From the formula 18 for the multiplication γ(T )(1 − γ(T )) the second recur-

rence flow condition follows. If (λ1p + α1)π1(0) = (λ2q + α2)π2(0) then the
joint probability density 17 factors:

pT (τ1, τ2) = pT (τ1)pT (τ2), τ1 ≥ T, τ2 ≥ T.

Besides γ(T ) = 1. For this case the probability density function pT (τ) is of
the form:

pT (τ) = 0, 0 ≤ τ < T,
pT (τ) = z1e

−z1(τ−T ), τ ≥ T,

where z1 are defined in 2.



50 A. Gortsev and M. Sirotina

Because a sequence of the moments of observable flow events occurrence t1, t2, . . . ,
tk, . . . is an imbedded Markov chain {λ(tk)} then if the one or both of the flow
recurrence conditions work it is easy to show using the method of mathematical
induction that the joint probability density function p(τ1, τ2, ...τk) factors for any
k: p(τ1, τ2, ...τk) = p(τ1)p(τ2)...p(τk). Therefore an observable event flow becomes
a recurrence flow.

When considering a flow recurrence conditions it is necessary to use results
obtained in [1].

For the first factorization condition p+q = 1 a posteriori probability w(λ1|tk+
0) of the flow state λ1in the time moment tk is of the form:

w(λ1|tk + 0) = q, k = 1, 2, ... .

herefore a posteriori probability w(λ1|t) doesn’t depend on prehistory and only
defines by it meaning in the moment of the observable flow event occurrence. In
this case there is some proximity of the considered flow to the simple stream in
sense that posteriori probability of the state λ1 of the process λ(t) in the moments
of the observable flow events occurence has a constant value equal to q.

For the second factorization condition (λ1p + α1)π1(0) = (λ2q + α2)π2(0) a
posteriori probability w(λ1|tk + 0) of the flow state λ1 in the time moment tk is
of the form:

w(λ1|tk + 0) =
qλ2 + [(1 − p)λ1 − qλ2] w(λ1|tk − 0)

λ2 + [(λ1 − λ2] w(λ1|tk − 0)
, k = 1, 2, ... .

So a posteriori probability w(λ1|t) depends on prehistory in spite of the flow
is recurrent and the probability density pT (τ) has an exponential distribution
pT (τ) = z1e

−z1(τ−T ), τ ≥ T .

6 Probabilistic Characteristics and Probabilities
of the Observable Flow Event Types

It is not difficult to obtain probabilistic characteristics of the observable flow
such as a mean value of interval duration between adjacent events, variance and
covariance.

M(τ) = T + γ(T )
z1

+ 1−γ(T )
z2

, D(τ) = 2(γ(T )
z2
1

+ 1−γ(T )
z2
2

) − (γ(T )
z1

+ 1−γ(T )
z2

)2,

cov(τ1, τ2) = e−(α1+pλ1+α2+qλ2)T γ(T )(1 − γ(T ))λ1λ2(1 − p − q) (z1−z2)
2

(z1z2)3
.

There are two types of events in the flow on the question: (1) Poisson flow events
of the λ1 intensity; (2) Poisson flow events of the λ2 intensity.

Let q
(i)
1 (T ) is a stationary probability that the event occurred is a Poisson

flow event of the λ1 intensity and the process λ(t) moves from the state λ1 to
the state λi, i = 1, 2, q

(i)
2 (T ) is a stationary probability that the event occurred

is a Poisson flow event of the λ2 intensity and the process λ(t) moves from the
state λ2 to the state λi, i = 1, 2.
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Then for the introduced probabilities we can derive the following explicit
expressions:

q
(1)
1 (T ) = (1 − p)λ1

α2+λ2π1+λ2(q−π1)e
−(α1+pλ1+α2+qλ2)T

z1z2−λ1λ2(1−p−q)e−(α1+pλ1+α2+qλ2)T ,

q
(2)
1 (T ) = pλ1

α2+λ2π1+λ2(q−π1)e
−(α1+pλ1+α2+qλ2)T

z1z2−λ1λ2(1−p−q)e−(α1+pλ1+α2+qλ2)T ,

q
(1)
2 (T ) = qλ2

α1+λ1π2+λ1(p−π2)e
−(α1+pλ1+α2+qλ2)T

z1z2−λ1λ2(1−p−q)e−(α1+pλ1+α2+qλ2)T ,

q
(2)
2 (T ) = (1 − q)λ2

α1+λ1π2+λ1(p−π2)e
−(α1+pλ1+α2+qλ2)T

z1z2−λ1λ2(1−p−q)e−(α1+pλ1+α2+qλ2)T ,

where πi, i = 1, 2, z1z2 are defined in 8.
Then a stationary probability q1(T ) that an occurred event is a Poisson flow

event of the λ1 intensity can be written in the form:

q1(T ) = q
(1)
1 (T ) + q

(2)
1 (T ) = λ1

α2 + λ2π1 + λ2(q − π1)e−(α1+pλ1+α2+qλ2)T

z1z2 − λ1λ2(1 − p − q)e−(α1+pλ1+α2+qλ2)T
,

where πi, i = 1, 2, z1z2 are defined in 8.
A stationary probability q2(T ) that an occurred event is a Poisson flow event

of the λ2 intensity can be written in the form:

q2(T ) = q
(1)
2 (T ) + q

(2)
2 (T ) = λ2

α1 + λ1π2 + λ1(p − π2)e−(α1+pλ1+α2+qλ2)T

z1z2 − λ1λ2(1 − p − q)e−(α1+pλ1+α2+qλ2)T
,

where πi, i = 1, 2, z1z2 are defined in 8.
Note that π1(0|T ) = q

(1)
1 (T ) + q

(1)
2 (T ), π1(0|T ) = q

(2)
1 (T ) + q

(2)
2 (T ).

7 Conclusion and Future Research

During this research the explicit form of the joint probability density function
pT (τ1, τ2) of the interval duration between an adjacent events of the modu-
lated synchronous doubly stochastic flow in conditions of the fixed dead time is
derived. There are shown recurrence flow conditions as well as some probabilistic
characteristics of the flow. Also there are shown the explicit form of the such
characteristics as flow event types. The formulas obtained allow us to carry out
an estimation of the flow parameters using the maximum likelihood method or
method of matching moments.
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Stationary Distribution of the Queueing
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Customer Arrivals
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Abstract. Stationary functioning of a queueing network with batch
negative customer arrivals is analyzed. Necessary and sufficient condition
for ergodisity of the isolated node is established. Stationary product-form
distribution of network states is found. Given network model is general-
ization of classic G-network model on the case of several types of negative
customers.

Keywords: Queueing network · Positive customers · Negative cus-
tomers · Ergodicity · Stationary distribution · Product-form

1 Isolated Node

We consider queueing system with exponential single server and T + 1 mutually
independent arriving Poisson flows: positive customers with intensity λ+ and
negative customers of T types with intensities λ−

1 , . . . , λ−
T respectively. Arriving

negative customer of flow with number l instantly deletes (kills) exactly l posi-
tive customers if there are such quantity in the system and deletes all positive
customers if there are less than l customers in the system (l = 1, T ). Nega-
tive customer and deleted positive customers instantly leave the system and
don’t exert influence on the system’s behavior. System state n(t) at moment t
is quantity of the positive customers in the system. Obviously n(t) is Markov
chain with continuous time and state space Z+. If its stationary distribution
{p(n), n = 0, 1, . . .} exists then satisfies the system of equilibrium equations for
vertical sections in transition graph:

λ+p(n) = (μ + λ−
1 + . . . + λ−

T )p(n + 1) + (λ−
2 + . . . + λ−

T )p(n + 2)
+(λ−

3 + . . . + λ−
T )p(n + 3) + . . . + λ−

T p(n + T ), n = 0, 1, . . . . (1)

This is homogenous linear difference equation of order T . Partial solution of (1)
we are looking for in the form p(n) = zn. Substituting one in Eq. (1) we obtain
the characteristic equation

g(z) =
T∑

l=1

zl
T∑

s=l

λ−
s + μz − λ+ =

T∑
s=1

λ−
s

s∑
l=1

zl + μz − λ+ = 0. (2)

c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 53–63, 2015.
DOI: 10.1007/978-3-319-25861-4 5
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We will prove sufficiency of condition

ρ =
λ+

μ +
T∑

t=1
tλ−

t

< 1 (3)

for ergodicity of the process n(t). At first we shall use Descartes theorem [1]. It is
only one reversal of sign on transition from μ to −λ+. Therefore Eq. (2) has only

one strong positive root. By this g(0) = −λ+ < 0 and g(1) =
T∑

t=1
tλ−

t +μ−λ > 0

on the strength (3). So this root z0 ∈ (0, 1). Hence equilibrium Eq. (1) has the
solution p(n) = Czn

0 . From normalization condition one coincides with geometric
distribution:

p(n) = (1 − z0)zn
0 , n = 0, 1, . . . . (4)

We will use Foster ergodic theorem [2]. For irredusible conservative regular
Markov chain with continuous time to be ergodic it is necessary and sufficient

the system of equilibrium equations has nonzero solution that
∞∑

n=0
|p(n)| < ∞.

Equation (2) as we seen has root z0 ∈ (0, 1) when condition (3) is satisfied and
it is being known that (4) is the partial solution of equilibrium Eq. (1). The

series
∞∑

n=0
|p(n)| converges as sum of the geometric progression members with

ratio less than one. Obviously chain is irreducible and conservative. Regularity
follows from leaving rate q(n) of process n(t) from the state n is bounded [3].
Hence the condition (3) is sufficient for ergodicity n(t) and when (3) holds then
ergodic distribution has the form (4).

Lemma 1. 1. All the roots of characteristic Eq. (2) on modulo strong more than
one if ρ > 1.
2. Characteristic Eq. (2) has only root z = 1 (simple root) and rest roots on
modulo strong more than one if ρ = 1.

Proof. Introduce complex variable functions

φ(z) =
T∑

s=1

λ−
s

s∑
l=1

zl + μz, f(z) = −λ+,

then characteristic Eq. (2) becomes g(z) = φ(z) + f(z) = 0.
1. Let be ρ > 1. Introduced functions φ(z) and f(z) are analitical in closed

disk |z| ≤ 1. Inequality

|φ(z)| ≤
T∑

s=1

sλ−
s + μ < λ+ = |f(z)|

is true on the boundary |z| = 1. By Rouche’s theorem the functions φ(z) + f(z)
and f(z) have the same quantity of zeros in the open disk |z| < 1 so function
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g(z) = φ(z) + f(z) hasn’t zeros in disk |z| < 1. On the boundary |z| = 1
characteristic Eq. (2) also hasn’t zeros. Indeed if z = eiϕ, 0 ≤ ϕ < 2π, is root of
(2) then

Re g(z) =
T∑

s=1

λ−
s

s∑
l=1

cos lϕ + μ cos ϕ − λ+ = 0.

But inequality

∣∣∣
T∑

s=1

λ−
s

s∑
l=1

cos lϕ + μ cos ϕ
∣∣∣ ≤

T∑
s=1

sλ−
s + μ < λ+

contradicts above equality. So all the roots of (2) have moduluses strong greater
than one.

2. Let be ρ = 1. The proof is based on modification of Rouche’s theorem
proposed by V. Klimenok [4] and very useful for ergodic conditions research of
queueing processes:

Let the functions φ(z) f(z) be analytic in the open disk |z| < 1 and continuous
on the boundary z = 1 and the following relations hold:

|f(z)||z|=1, z �=1 > |φ(z)||z|=1, z �=1,

f(1) = −φ(1) �= 0.

Let also the functions f(z) and φ(z) have the derivatives at the point z = 1 and
the following inequality holds

f ′(1) + φ′(1)
f(1)

< 0,

then functions f + φ and f have the same quantity of zeros in open disk |z| < 1.
z = 1 is the root of characteristic Eq. (3). This root is simple because g′(1) ≥

μ > 0. We prove there are no other roots on |z| = 1. As g(−1) ≤ −μ − λ+ < 0,
then z = −1 isn’t the root of (2). Let z = eiϕ be the root of (2) then

Re g(z) =
T∑

s=1

λ−
s

s∑
l=1

cos lϕ + μ cos ϕ − λ+ = 0.

As on cycle 0 ≤ ϕ < 2π for ϕ �= 0, ϕ �= π

∣∣∣
T∑

s=1

λ−
s

s∑
l=1

cos lϕ+μ cos ϕ
∣∣∣ ≤

T∑
s=1

λ−
s

s∑
l=1

| cos lϕ|+μ| cos ϕ| <

T∑
s=1

sλ−
s +μ = λ+,

then above equality is not true. So z = 1 is unique and simple root of character-
istic Eq. (2) on the disk |z| = 1.

As z = eiϕ, ϕ �= 0, then

|φ(z)| =
∣∣∣

T∑
s=1

λ−
s

s∑
l=1

eilϕ + μeiϕ
∣∣∣ <

T∑
s=1

sλ−
s + μ = λ+ = |f(z)|,
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because modulus of the sum of complex numbers with multiple ϕ �= 0 arguments
strong less than sum of its moduluses. Next

f(1) = −λ+ = −
T∑

s=1

sλ−
s − μ = −φ(1) < 0,

f ′(1) + φ′(1)
f(1)

=
φ′(1)
f(1)

= − 1
λ+

( T∑
s=1

s(s + 1)
2

λ−
s + μ

)
< 0.

Thereby all conditions of modification V. Klimenok of Rouche’s theorem are sat-
isfied. So characteristic Eq. (2) has only root z = 1 and simple on the boundary
|z| = 1, rest roots on modulo are strong more than one if ρ = 1. �

Lemma 2. Let Qj(n) are some polinomials on variable n, 0 ≤ ϕj < 2π, ϕj �=
ϕm if j �= m (j,m = 1, . . . , k) and

k∑
j=l

Qj(n)einϕj → 0 when n → ∞,

then Qj(n) ≡ 0 (j = 1, . . . , k).

Proof. Let
A = max

1≤j≤k
deg Qj(n),

then

nA
k∑

j=1

Qj(n)
nA

einϕj → 0 when n → ∞.

For j = 1, . . . , k constant Cj exists such that Qj(n)
nA → Cj . Then

nA
( ∑k

j=1 Cje
inϕj +o(1)

)
→ 0, and so

∑k
j=1 Cje

inϕj +o(1) → 0 because A ≥ 0.

Hence εn =
∑k

j=1 Cje
inϕj → 0 when n → ∞. Therefore for every ε > 0 there

exists a number N = Nε then for all n ≥ N there is |εn| < ε. By introduced
notation for εn one has

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εN =
k∑

j=1

Cje
iNϕj

εN+1 =
k∑

j=1

Cje
i(N+1)ϕj

. . . . . . . . . . . . . . . . . . . . . . . .

εN+k−1 =
k∑

j=1

Cje
i(N+k−1)ϕj

.

Absolute magnitude of the determinant Δ of this system of the linear equa-
tions (relative to C1, . . . , Ck) coincides with absolute magnitude of Vandermonde
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determinant, that is |Δ| =
∏

j<k

∣∣∣eiϕj − eiϕk

∣∣∣ �= 0. Let Δm is determinant differs

from Δ by substitution of the column of free terms instead of column m of deter-
minant Δ. Factorizing Δm on this column we have |Δm| < Cε where C – some
constant independent on ε. By Cramer rule

|Cm| =
|Δm|
|Δ| <

C

|Δ|ε.

Hence Cm = 0, m = 1, 2, . . . , k on the strength arbitrariness ε > 0. So Qj(n) → 0
when n → ∞ which means that Qj(n) ≡ 0, j = 1, 2, . . . , k because Qj(n) is
polinomial. �

Theorem 1. Markov chain n(t) is regular. It is ergodic if and only if inequality
(3) holds. The stationary distribution of chain has geometric distribution form
(4) in this case.

Proof. 1. Let λ+ > μ+
∑T

s=1 sλ−
s . All the roots of characteristic Eq. (2) modulus

strong more than one by Lemma 1. We prove that stationary distribution doesn’t
exist, hence Markov chain n(t) is not ergodic. The total solution of Eq. (1) has
form

p(n) =
l∑

j=1

Qj(n)zn
j , (5)

where z1, z2, . . . , zl are all different roots of characteristic Eq. (2), Q1(n),
Q2(n), . . . , Ql(n) are polinomials of n with degrees one less than orders of roots
z1, z2, . . . , zl respectively. Without loss of generality 1 < |z1| ≤ |z2| ≤ . . . ≤ |zl|.
We divide all the roots into groups of roots with equal magnitudes:

|z1| = |z2| = . . . = |zl1 | = r1 < |zl1+1| = |zl1+2| = . . . = |zl2 | = r2 < |zl2+1| =
|zl2+2| = . . . = |zl3 | = r3 < . . . < |zlp+1| = |zlp+2| = . . . = |zl| = rp+1.

Then (5) overwrites as

p(n) =
ll∑

j=1

Qj(n)zn
j +

l2∑
j=l1+1

Qj(n)zn
j + . . . +

l∑
j=lp+1

Qj(n)zn
j . (6)

Representating the roots of characteristic equanion in exponential form zk =
|zk|eiϕk , 0 ≤ ϕk < 2π, we will rewrite (6) as

p(n) = rn
1

l1∑
j=1

Qj(n)einϕj + rn
2

l2∑
j=l1+1

Qj(n)einϕj + . . .+ rn
p+1

l∑
j=lp+1

Qj(n)einϕj =

rn
p+1

[( r1
rp+1

)n
l1∑

j=1

Qj(n)einϕj +
( r2

rp+1

)n
l2∑

j=l1+1

Qj(n)einϕj + . . .



58 Y. Malinkovsky

+
( rp

rp+1

)n
lp∑

j=lp−1+1

Qj(n)einϕj +
l∑

j=lp+1

Qj(n)einϕj

]
, (7)

where 1 < r1 < r2 < . . . < rp+1. If the stationary distribution exists then
p(n) → 0 when n → ∞. Then the expression in square brackets of (7) morewhere
tends to zero, because rp+1 > 1. But all terms of this expression except last

term go to 0 because
∣∣∣einϕj

∣∣∣ = 1 and the polinomials Qj(n), if their degrees are

not zeros, go to ∞ considerably slowly than
(

rj

rp+1

)n

→ 0 when n → ∞ (this
statement obviously if Qj(n) is polinomial of zero degree). Therefore the last
term of expression in square brackets of (7) also tends zero:

l∑
j=lp+1

Qj(n)einϕj → 0 n → ∞.

Without loss of generality account that all ϕj ∈ [0, 2π) and ϕj �= ϕm when
j �= m. By Lemma 2 Qj(n) ≡ 0 when lp+1 + 1 ≤ j ≤ l. Thus (6) take the next
form:

p(n) =
ll∑

j=1

Qj(n)zn
j +

l2∑
j=l1+1

Qj(n)zn
j + . . . +

lp∑
j=lp−1+1

Qj(n)zn
j . (8)

Factor out rn
p in (8) from brackets in similar mode we will prove that all

Qj(n) ≡ 0 in last sum of (8). By induction p(n) ≡ 0. Hence nontrivial solu-
tion of equilibrium Eq. (1) such that p(n) → 0 n → ∞ doesn’t exist, that is
stationary distribution doesn’t exist. So Markov chain n(t) is not ergodic.

2. Let λ+ = μ +
∑T

s=1 sλ−
s . The characteristic Eq. (2) has only root z = 1

(simple) and rest roots modulus strong more than one by Lemma 1. The total
solution of difference equation differs from (5) by availability constant term:

p(n) = C +
l∑

j=1

Qj(n)zn
j ,

where z1, z2, . . . , zl are all different roots of characteristic Eq. (2) apart from
simple root z = 1, Q1(n), Q2(n), . . . , Ql(n) are polinomials of n with degrees one
less than orders of roots z1, z2, . . . , zl respectively. The proof that if p(n) → 0
when n → ∞ then p(n) ≡ 0 in full repeats the proof of point 1. At the end
we get p(n) ≡ C. But p(n) → 0 hence p(n) ≡ 0. So Markov chain n(t) is not
ergodic. �

2 Queueing Network

We consider queueing network consisting of N single-line exponential nodes with
service rate μi for the server of node i (i = 1, N). (T +1)N mutually independent
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Poisson flows arrive from without to the network. More specifically positive
(usual) customer flow with parameter Λi and T negative customer flows with
parameters λil arrive in node i (i = 1, N, l = 1, T ). The negative customers don’t
demand service. Arriving negative customer of flow l instantly deletes (kills)
exactly l positive customers if there are such quantity in the node i and deletes all
positive customers if there are less than l customers in node i (i = 1, N, l = 1, T ).
Negative customer and de ed positive customers instantly leave the network and
don’t exert influence on the network behavior. The positive customer served
in node i instantly and independently on other customers moves to node j as
positive with probability p+ij , as negative customer of flow with number l with
probability p−

ijl, or arrives the network with probability pi0 (i, j = 1, N, l = 1, T )

and
∑N

j=1

(
p+ij +

∑T
l=1 p−

ijl

)
+ pi0 = 1 (i = 1, N). Quantity of places for waiting

of positive customers is unbounded. For distinctness we supposed the positive
customers are served in order of their arrival moments.

We will describe the state of network by random vector

n(t) = (n1(t), n2(t), . . . , nN (t)),

where ni(t) is a quantity of positive customers in node i at time t. Because
primitive assumptions about entering flows and service times distributions n(t)
is multidimensional Markov chain with continuous time and state spase X = ZN

+

where Z+ = {0, 1, . . .}. Assume n(t) is irreducible. For example we can assume
all Λi > 0 and for every i exists l such that λil > 0. Our purpose is to establish
the ergodic condition and to determine the stationary distribution.

We consider isolated node believeing customer flows arrive with rates like
those rates of corresponding flows in the network (which isn’t Poisson). We add
index i as first index corresponding to node number to all notations for isolated
node of Sect. 1. Characteristic Eq. (2) with substituting of root zi0 of (2) become
identity

T∑
l=1

T∑
s=l

λ−
isz

l
0i + μizi0 − λ+

i = 0. (9)

If ergodic condition

ρi =
λ+

i

μi +
T∑

t=1
tλ−

it

< 1, i = 1, N, (10)

holds it follows by results of Sect. 1 that the stationary distribution of isolated
node has form

pi(ni) = (1 − zi0)zni
i0 , ni = 0, 1, . . . . (11)

Hence the probability of full server employment in steady-state is zi0. So flow
intensities of positive and negative customers in network satisfies the next traffic
equations system:
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λ+
i = Λi +

N∑
j=1

μjzj0p
+
ji, i = 1, N, (12)

λ−
il = λil +

N∑
j=1

μjzj0p
−
jil, l = 1, T , i = 1, N. (13)

By the continuity theorem of implicit function and Brauer fixed point theorem
we can prove positive solution of the traffic equations system (12), (13) exists.

If the steady-state distribution {p(n} of Markov chain n(t) exists then one
satisfies to the global balance equations

p(n)
N∑

i=1

[
Λi + (μi + λi1 + . . . + λiT )I{ni �=0}

]
=

N∑
i=1

{
p(n − ei)ΛiI{ni �=0}p(n + ei)

[
μipi0 + λi1 + (λi2 + . . . + λiT )I{ni=0}

]

+
T∑

l=2

p(n+ lei)
[
λil +(λil+1+ . . .+λiT )I{ni=0}

]
+

N∑
j=1

[
p(n+ej −ei)μjp

+
jiI{ni �=0}

+
T∑

l=1

p(n + ej + lei)μj(p−
jil + (p−

jil+1 + . . . + p−
jiT )I{ni=0})

+ p(n + ej)μj(p−
ji1 + p−

ji2 + . . . + p−
jiT )I{ni=0}

]}
, n ∈ ZN

+ . (14)

Here ei is a unit vector of direction i and IA is an indicator of event A equal to
1 if event A occurs and to 0 if event A doesn’t occur.

The main result has the next form.

Theorem 2. Markov process n(t) is regular and if inequalities (10) hold then
it is ergodic. Its stationary distribution {p(n} is defined by

p(n) =
n∏

i=1

pi(ni), n ∈ ZN
+ ,

where pi(ni) and ρi are defined by equalities (11) and (10) respectively, zi0, i =
1, N, are the roots of Eq. (9) belonging to segment [0, 1].

Proof. We have I{ni=0} = 1 − I{ni �=0}, so (14) shapes

p(n)
N∑

i=1

[
Λi + (μi + λi1 + . . . + λiT )I{ni �=0}

]
=

N∑
i=1

{
p(n − ei)ΛiI{ni �=0} + p(n + ei)(μipi0 + λi1 + λi2 + . . . + λiT )−
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p(n + ei)(λi2 + . . . + λiT )I{ni �=0} +
T∑

l=2

p(n + lei)(λil + λil+1 + . . . + λiT )

−
T∑

l=2

p(n + lei)(λil+1 + . . . + λiT )I{ni �=0}

+
N∑

j=1

[
p(n + ej − ei)μjp

+
jiI{ni �=0} +

T∑
l=1

p(n + ej + lei)μj(p−
jil + . . . + p−

jiT )

−
T∑

l=1

p(n+ej + lei)μj(p−
jil+1 + . . .+p−

jiT )I{ni �=0} +p(n+ej)μj(p−
ji1 + . . .+p−

jiT )

− p(n + ej)μj(p−
ji1 + p−

ji2 + . . . + p−
jiT )I{ni �=0}

]}
, n ∈ ZN

+ . (15)

We partition this equation into local balance equations. The sum of terms in the
left side of (15) including factor I{ni �=0} equates to the same sum in the right
side of (15). After the sum of terms in the left side of (15) doesn’t containing
factor I{ni �=0} equates to the same sum in the right side of (15):

p(n)
N∑

i=1

Λi =
N∑

i=1

{
p(n+ei)(μipi0+λi1+. . .+λiT )+

T∑
l=2

p(n+lei)(λil+. . .+λiT )

+
N∑

j=1

[ T∑
l=1

p(n+ej+lei)μj(p−
jil+. . .+p−

jiT )+p(n+ej)μj(p−
ji1+. . .+p−

jiT )
]}

. (16)

p(n)
N∑

i=1

(μi + λi1 + . . . + λiT ) =
N∑

i=1

{
p(n − ei)Λi − p(n + ei)(λi2 + . . . + λiT )

−
T∑

l=2

p(n + lei)(λil+1 + . . . + λiT ) +
N∑

j=1

[
p(n + ej − ei)μjp

+
ji

T∑
l=1

p(n+ej + lei)μj(p−
jil+1 + . . .+p−

jiT )−p(n+ej)μj(p−
ji1 +p−

ji2 + . . .+p−
jiT )

]}
.

We partition previous equations into more detail balance equations:

p(n)(μi + λi1 + . . . + λiT ) = p(n − ei)Λi − p(n + ei)(λi2 + . . . + λiT )

−
T∑

l=2

p(n + lei)(λil+1 + . . . + λiT ) +
N∑

j=1

[
p(n + ej − ei)μjp

+
ji−

T∑
l=1

p(n+ej+lei)μj(p−
jil+1+. . .+p−

jiT )−p(n+ej)μj(p−
ji1+p−

ji2+. . .+p−
jiT )

]
. (17)
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Let probabilities pi(ni) are defined by equalities (13). We will prove that

p(n) = p1(n1)p2(n2) . . . pN (nN ), n ∈ ZN
+ (18)

is solution of local balance Eqs. (16) and (17), that is global balance Eq. (14).
We will devide both sides of (16) on p(n) and use (10), (11), (13) – (15):

N∑
i=1

Λi =
N∑

i=1

{
zi0(μipi0 + λi1 + λi2 + . . . + λiT ) +

T∑
l=2

zl
i0(λil + λil+1 + . . . + λiT )

+
N∑

j=1

[ T∑
l=1

zj0z
l
i0μj(p−

jil +p−
jil+1 + . . .+p−

jiT )+zj0μj(p−
ji1 +p−

ji2 + . . .+p−
jiT )

]}
=

N∑
i=1

[
zi0μipi0 +

T∑
l=1

zl
i0(λil + λil+1 + . . . + λiT )

+
T∑

l=1

zl
i0(λ

−
il −λil +λ−

il+1 − . . .+λ−
iT −λiT )+λ−

i1 −λi1 +λ−
i2 − . . .+λ−

iT −λiT

]
=

N∑
i=1

[
zi0μipi0 +

T∑
l=1

zl
i0(λil + . . .+λiT )+λ−

i1 −λi1 +λ−
i2 −λi2 + . . .+λ−

iT −λiT

]
=

N∑
i=1

[
zi0μipi0 + λ+

i − μizi0 + λ−
i1 − λi1 + λ−

i2 − λi2 + . . . + λ−
iT − λiT

]
=

N∑
i=1

[
zi0μipi0+Λi +

N∑
j=1

zj0μjp
+
ji −μizi0+λ−

i1−λi1+λ−
i2−λi2+ . . .+λ−

iT −λiT

]
=

N∑
i=1

[
zi0μipi0+Λi+

N∑
j=1

zj0μj

(
1−

T∑
l=1

p−
jil−pj0

)
−μizi0+λ−

i1−λi1+. . .+λ−
iT −λiT

]

N∑
i=1

[
Λi + λ−

i1 − λi1 + λ−
i2 − λi2 + . . . + λ−

iT − λiT −
T∑

l=1

N∑
j=1

zj0μjp
−
jil

]
=

N∑
i=1

[
Λi + λ−

i1 − λi1 + λ−
i2 − λi2 + . . . + λ−

iT − λiT −
T∑

l=1

(λ−
il − λil)

]
=

N∑
i=1

Λi,

that is (17) becomes identity. In much the same way we check implementation
of local balance Eq. (18):

μi + λi1 + . . . + λiT =
Λi

zi0
− zi0(λi2 + . . . + λiT ) −

T∑
l=2

zl
i0(λil+1 + . . . + λiT )
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+
N∑

j=1

[zj0

zi0
μjp

+
ji −

T∑
l=1

zj0z
l
i0μj(p−

jil+1 + . . . + p−
jiT ) − zj0μj(p−

ji1 + . . . + p−
jiT )

]

=
Λi

zi0
−

T∑
l=1

zl
i0(λil+1 + λil+2 + . . . + λiT ) +

λ+
i − Λi

zi0

−
T∑

l=1

zl
i0(λ

−
il+1 − λil+1 + . . . + λ−

iT − λiT ) − (λ−
i1 − λi1 + . . . + λ−

iT − λiT ) =

λ+
i

zi0
−

T∑
l=0

zl
i0(λil+1 + λil+2 + . . . + λiT ) + λi1 + λi2 + . . . + λiT =

μi+
1

zi0

T∑
l=1

T∑
s=l

λ−
isz

l
i0−

T∑
l=0

T∑
s=l+1

λ−
isz

l
i0+λi1+λi2+. . .+λiT = μi+λi1+. . .+λiT .

Using Foster ergodic theorem [2] completes the proof. �

3 Conclusion

We have considered stationary functioning of an open queueing network with
batch arrivals of negative customers. Expression for stationary distribution has
been derived in product form. Given network model is generalization of classic G-
network model on the case of several types of negative customers. Research results
have practical importance and may be used for real networks investigation.
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Sojourn Time Analysis of Finite Source Markov
Retrial Queuing System with Collision
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Abstract. This paper deals with a finite source retrial queueing system
of type M/M/1//N with collision of the customers. This means that the
system has one server and N sources. Analysis of the sojourn time in
the system is presented. The analysis is performed under an asymptotic
condition of infinitely increasing number of sources. The approximation
of the distribution of the total sojourn time in the system is derived.

Keywords: Finite source queueing system · Retrial queue · Collision ·
Asymptotic analysis · Sojourn time

1 Introduction

Retrial queue [1–3] is a queuing system characterized by the following basic
assumption: a customer who cannot get service goes to the orbit and, after
some random period of time, returns to the system and tries to get service
again. It is assumed that the orbit is infinitely large and every call repeats his
attempts until he is satisfied. Retrial queueing systems are important to study
computer and telephone systems, digital communication networks with random
access protocols, engineering cellular mobile radio networks, computer networks
and other technical systems. For a comprehensive review of retrial queues and a
summary of many results and literature, the reader is directed to the works by
Falin and Templeton [4], Artalejo and Gomez-Corral [5], and references therein.

In many practical situations, it is important to take into consideration the
fact that the rate of generation of a primary calls degreases as the number of
customers in the system increases. This can be done with the help of finite source
models where each source generates its own flow of a primary customers.

Finite source retrial model can be applied for researching magnetic disk mem-
ory systems, local area networks with CSMA/CD protocols with star topology,
ets. The seminal papers of this area are [6–9]. Dragieva V. in [10] considered
a single server unreliable finite source retrial model in which breakdowns occur
only when the server is busy and after breakdown the server is immediately sent
for repair. A various types of unreliable system with finite numbers of sources
are investigated by Almási B., Sztrick J., Roszik J., for example, in [11,12]. In
this works authors used the software tool MOSEL (Modeling, Specification, and
Evaluation Language) to formulate the model and to calculate and display the
main performance measures.
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 64–72, 2015.
DOI: 10.1007/978-3-319-25861-4 6
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In present paper we consider the M/M/1//N retrial queue with collision.
In the main model it is assumed that if an arriving customer finds the server
busy, then the arriving customer collides with a customer in service and they
both goes to the orbit and the server becomes idle immediately. Choi et al. [13]
considered retrial queues with collision arising from the specific communication
protocol CSMA/CD. In the papers Nazarov A., Lyubina T. are considered the
various open retrial queuing systems with collision of customers [14,15].

In our previous paper [16] we considered a closed retrial queueing system
M/M/1//N with collision. Using method of asymptotic analysis under conditions
of infinitely increasing number of sources, we obtained a distribution of the
number of sources in “waiting” state.

In this paper we propose method of asymptotic analysis under conditions
of infinitely increasing number of sources to research the sojourn time in finite
source Markov retrial queueing system with collision.

2 Model Description

We consider a finite source retrial queuing system of type M/M/1//N in Kendals
notation with collision of the customers. This mean that the system has one
server and N sources. Each one of them generates a primary customers according
to a Poisson flow with rate λ/N . We assume that sources can be in two states:
generating a primary customers and waiting for the end of successful service.
Source which send the customer for service, moves into the “waiting” state and
stays in this state till the end of the service of this customer. If a primary
customer finds server idle, he enters into service immediately, during service
time, which distributed exponentially with parameter μ. Otherwise, if server is
busy, arriving customer involves into collision with servicing customer and they
both moves into the orbit. Retrial customer repeat his demand for service with
an exponential distribution with rate σ/N . We assume that primary customers,
retrial customers and service time are mutually independent.

Lets select a random customer from the system and shall call him the
observed customer. Let us first consider the time between the moment, when
a primary customer enters service for the first time and the time point on which
this customer successfully ends his service. This time period is called the sojourn
time. In the system occur of a situation of the conflict (collision of the customers)
is possible, this feature is necessary to consider in the study of the sojourn time in
the system. Therefore, the sojourn time consist of the total time, which customer
spend on the orbit and the total time of the service. Total service time includes
all period of time in which the observed customer tried to get service, but it
was interrupted by arriving customer and the service time in which observed
customer successfully finished his service.

At time t let i(t) be the number of sources locating in “waiting” state and
k(t) determines the server state

k(t) =

⎧⎨
⎩

0, if the server is free,
1, if the server is busy (not by observed customer),
2, if the server is busy by observed customer.
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Introduce T (t) - the residual sojourn time of the observed customer in the system
at time t.

Assuming that the observed customer locates in the orbit, lets denote by
Gk(u, i, t) = M{ejuT (t)|k(t) = k, i(t) = i} the joint conditional characteristic
function.

For the functions Gk(u, i, t), we can write the system of the finite-difference
equation:

G0(u, i, t − Δt) =

(
1− λ

N − i

N
Δt

)(
1− σ

i

N
Δt

)
ejuΔtG0(u, i, t)

+ λ
N − i

N
ΔtG1(u, i + 1, t) + σ

i − 1

N
ΔtG1(u, i, t)

+
σ

N
ΔtG2(u, i, t) + o(Δt),

G1(u, i, t − Δt) =

(
1− λ

N − i

N
Δt

)(
1− σ

i − 1

N
Δt

)
(1− μΔt) ejuΔtG1(u, i, t)

+ λ
N − i

N
ΔtG0(u, i + 1, t) + σ

i − 1

N
ΔtG0(u, i, t)

+ μΔtG0(u, i − 1, t) + o(Δt),

G2(u, i, t − Δt) =

(
1− λ

N − i

N
Δt

)(
1− σ

i − 1

N
Δt

)
(1− μΔt) ejuΔtG2(u, i, t)

+λ
N − i

N
ΔtG0(u, i + 1, t) + σ

i − 1

N
ΔtG0(u, i, t) + μΔt + o(Δt).

The Kolmogorov backward differential equations are

−∂G0(u, i, t)

∂t
=

[
ju − λ

N − i

N
− σ

i

N

]
G0(u, i, t) + λ

N − i

N
G1(u, i + 1, t)

+ σ
i − 1

N
G1(u, i, t) +

σ

N
G2(u, i, t),

−∂G1(u, i, t)

∂t
=

[
ju − λ

N − i

N
− σ

i − 1

N
− μ

]
G1(u, i, t) + λ

N − i

N
G0(u, i + 1, t)

+ σ
i − 1

N
G0(u, i, t) + μG0(u, i − 1, t),

−∂G2(u, i, t)

∂t
=

[
ju − λ

N − i

N
− σ

i − 1

N
− μ

]
G2(u, i, t) + λ

N − i

N
G0(u, i + 1, t)

+ σ
i − 1

N
G0(u, i, t) + μ.

Note this system in steady state
[
ju − λ

N − i

N
− σ

i

N

]
G0(u, i) + λ

N − i

N
G1(u, i + 1)

+ σ
i − 1
N

G1(u, i) +
σ

N
G2(u, i) = 0,[

ju − λ
N − i

N
− σ

i − 1
N

− μ

]
G1(u, i) + λ

N − i

N
G0(u, i + 1)

+ σ
i − 1
N

G0(u, i) + μG0(u, i − 1) = 0,[
ju − λ

N − i

N
− σ

i − 1
N

− μ

]
G2(u, i) + λ

N − i

N
G0(u, i + 1)

+ σ
i − 1
N

G0(u, i) + μ = 0.

(1)
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In order to solve this system, we use method of asymptotic analysis [17] under
conditions of infinitely increasing number of sources (N → ∞).

3 Method of Asymptotic Analysis

Let us denote
1
N

= ε .
Introducing following substitute

iε = x, u = εw, Gk(u, i) = Fk(w, x, ε), (2)

we can transform system (1) to the form:

[jεw − λ (1 − x) − σx]F0(w, x, ε) + λ (1 − x)F1(w, x + ε, ε)

+ σ (x − ε) F1(w, x, ε) + σεF2(w, x, ε) = 0,

[jεw − λ (1 − x) − σ (x − ε) − μ] F1(w, x, ε) + λ (1 − x) F0(w, x + ε, ε)

+ σ (x − ε) F0(w, x, ε) + μF0(w, x − ε, ε) = 0,

[jεw − λ (1 − x) − σ (x − ε) − μ] F2(w, x, ε) + λ (1 − x) F0(w, x + ε, ε)

+ σ (x − ε) F0(w, x, ε) + μ = 0.

(3)

Theorem 1. The limiting value F0(w, x), F1(w, x), F2(w, x) of function
F0(w, x, ε), F1(w, x, ε), F2(w, x, ε)(the solutions of the system (3)), can be rep-
resented in the following form

F0(w, x) = F1(w, x) = F (w, x) =
d

d − jw
,

F2(w, x) =
μ + a(κ1)F (w, x)

b(κ1)
,

where
d =

σμ

2a(κ1) + μ
,

a(κ1) = λ(1 − κ1) + σκ1,

b(κ1) = λ(1 − κ1) + σκ1 + μ,

κ1 =
2μR2

1

σ(1 − 2R1)
,

R1 =
σ(2λ + μ) − √

σ2(2λ − μ)2 + 8σμλ2

4μ(σ − λ)
.
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Proof. There are two stages of proving.
Stage 1. Using the following denotation lim

ε→0
Fk(w, x, ε) = Fk(w, x) as ε → 0,

the system (3) has the form

− [λ (1 − x) + σx]F0(w, x) + [λ (1 − x) + σx]F1(w, x) = 0 ,

− [λ (1 − x) + σx + μ] F1(w, x) + [λ (1 − x) + σx + μ] F0(w, x) = 0 ,

− [λ (1 − x) + σx + μ] F2(w, x) + [λ (1 − x) + σx]F0(w, x) + μ = 0 .

(4)

From system (4) we obtain that the functions F0(w, x) and F1(w, x) is equal
and function F2(w, x) can be represented as

F0(w, x) = F1(w, x) .= F (w, x),

F2(w, x) =
[λ(1 − x) + σx]F (w, x) + μ

λ(1 − x) + σx + μ
.

(5)

Stage 2. Lets consider the system (3). Using the expansion into a Taylor
series of the first order of smallness about a point x, we get

[jεw − λ (1 − x) − σx]F0(w, x, ε) + [λ (1 − x) + σ (x − ε)] F1(w, x, ε)

+ σεF2(w, x, ε) + λ (1 − x) ε
∂F1(w, x, ε)

∂x
= 0 ,

[jεw − λ (1 − x) − σ (x − ε) − μ] F1(w, x, ε) + [λ (1 − x) + σ (x − ε)

+ μ] F0(w, x, ε) + [λ (1 − x) − μ] ε
∂F0(w, x, ε)

∂x
= 0 ,

[jεw − λ (1 − x) − σ (x − ε) − μ] F2(w, x, ε) + [λ (1 − x) + σ (x − ε)]

· F0(w, x, ε) + λ (1 − x) ε
∂F0(w, x, ε)

∂x
+ μ = 0 .

(6)

Denote the solution of the system (6) as follows

Fk(w, x, ε) = Fk(w, x) + εfk(w, x) + o(ε), k = 0, 1, 2. (7)

Substituting (7) to the system (6) we obtain

ε

{
jwF0(w, x) − σF1(w, x) + σF2(w, x) + λ (1 − x)

∂F1(w, x)
∂x

+
[
λ (1 − x) + σx

]
·
(
f1(w, x) − f0(w, x)

)}

+
[
λ (1 − x) + σx

](
F1(w, x) − F0(w, x)

)
= O(ε2),
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ε

{(
jw + σ

)
F1(w, x) − σF0(w, x) +

[
λ (1 − x) − μ

]∂F0(w, x)
∂x

+
[
λ (1 − x) + σx + μ

]
·
(
f0(w, x) − f1(w, x)

)}

+
[
λ (1 − x) + σx + μ

](
F0(w, x) − F1(w, x)

)
= O(ε2),

ε

{(
jw + σ

)
F2(w, x) − σF0(w, x) + λ (1 − x)

∂F0(w, x)
∂x

+
[
λ (1 − x) + σx

]
·
(
f0(w, x) − f2(w, x)

)
− μf2(w, x)

}

+
[
λ (1 − x) + σx

]
F0(w, x) −

[
λ (1 − x) + σx + μ

]
F2(w, x) + μ = O(ε2).

Considering expressions (5) for the functions F0(w, x), F1(w, x) and F2(w, x)
the system rewrite as

ε

{(
jw − σ

)
F (w, x) + σF2(w, x) + λ (1 − x)

∂F (w, x)
∂x

+
[
λ (1 − x) + σx

]
·
(
f1(w, x) − f0(w, x)

)}
= O(ε2),

ε

{
jwF (w, x) +

[
λ (1 − x) − μ

]∂F (w, x)
∂x

+
[
λ (1 − x) + σx + μ

]
·
(
f0(w, x) − f1(w, x)

)}
= O(ε2),

ε

{(
jw + σ

)
F2(w, x) − σF (w, x) + λ (1 − x)

∂F (w, x)
∂x

+

+
[
λ (1 − x) + σx

]
·
(
f0(w, x) − f2(w, x)

)
− μf2(w, x)

}
= O(ε2).

(8)

Dividing each part of the equation of the system (8) and executing an asymp-
totic transition as ε → 0, we obtain the following system

[
λ (1 − x) + σx

]
·
(
f0(w, x) − f1(w, x)

)
=

(
jw − σ

)
F (w, x)

+ σF2(w, x) + λ (1 − x)
∂F (w, x)

∂x
,

−
[
λ (1 − x) + σx + μ

]
·
(
f0(w, x) − f1(w, x)

)
= jwF (w, x)

+
[
λ (1 − x) − μ

]∂F (w, x)
∂x

,

[
λ (1 − x) + σx

]
·
(
f2(w, x) − f0(w, x)

)
+ μf2(w, x) =

(
jw + σ

)
F2(w, x) − σF (w, x) + λ (1 − x)

∂F (w, x)
∂x

.

(9)
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Using the following denotation

a(x) = λ(1 − x) + σx,
b(x) = λ(1 − x) + σx + μ, (10)

lets multiply the first equation of (9) by b(x), the second equation by a(x) and
add the resulting equation together:

−
{

λ (1 − x) b(x) +
[
λ (1 − x) − μ

]
a(x)

}
∂F (w, x)

∂x
=

[(
jw − σ

)
b(x) + jwa(x)

]
F (w, x) + σb(x)F2(w, x).

(11)

Taking into account the entered denotation (10), expression (5) can be rewrit-
ten as

b(x)F2(w, x) = a(x)F (w, x) + μ.

Substituting this expression to the Eq. (11) we obtain

−
{

λ (1 − x) b(x) +
[
λ (1 − x) − μ

]
a(x)

}
∂F (w, x)

∂x
=

[(
jw − σ

)
b(x) +

(
jw + σ

)
a(x)

]
F (w, x) + σμ.

(12)

In our previous paper [16] we investigated the closed M/M/1//N retrial queueing
system with collision. In this article it was shown that the number of sources in
“waiting” state i(t)ε asymptoticaly converge to the deterministic quantity κ1.
Therefore, taking into account the denotation (2) x = iε, we obtain that x = κ1.

Putting x = κ1 in the Eq. (12), the multiplier before partial derivative
∂F (w, x)

∂x
becomes equal to zero and Eq. (12) can be rewritten as

[(
jw − σ

)
b(κ1) +

(
jw + σ

)
a(κ1)

]
F (w, κ1) + σμ = 0.

Performing this equation and entering denotation d =
σμ

2 · a(κ1) + μ
, we obtain

the following expression for the function F (w, κ1)

F (w, κ1) =
d

d − jw

Note, that function F (w, κ1) does not depend on argument x. Taking into
account this fact and (5), we can write

F (w) =
d

d − jw
,

F2(w) =
μ

b(κ1)
+

a(κ1)
b(κ1)

F (w).

The theorem is proved. ��
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We obtain the characteristic functions of the distribution of the residual sojourn
time. Using the formula of total probability, we can write the following expression
for the characteristic functions of the distribution of the total sojourn time:

H(w) = R0F2(w) + (1 − R0)F (w) =
μ

b(κ1)
R0 +

(
1 − μ

b(κ1)
R0

) d

d − jw
, (13)

where R0 was previously obtained in [16].
Lets perform the inverse substitutions (2) in the formula (13):

H(u) ≈ μ

b(κ1)
R0 +

(
1 − μ

b(κ1)
R0

) d/N

d/N − ju
.

Using denotation q =
μ

b(κ1)
R0, we can write the following expression for the

approximation h(u) of the characteristic function H(u):

h(u) = q +
(
1 − q

) d/N

d/N − ju
.

Knowing h(u), it is easy to show that the approximation of distribution of the
total sojourn time can be written as

A(x) = 1 − (1 − q)e− d
N x.

4 Conclusion

In this paper, we have considered a finite source retrial queuing system
M/M/1//N with collision of the customers. We obtain the equations for con-
ditional characteristic function of the distribution of the residual sojourn time.
This equation was solved under an asymptotic condition of infinitely increasing
number of sources. As the result, we obtain the approximation of the distribution
of the total sojourn time in the system.
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Asymptotic Analysis of the Queueing Network
SM − (GI/∞)K

Alexander Moiseev(B)

Tomsk State University, Tomsk, Russia
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Abstract. We consider the infinite-server queueing network with semi-
Markov arrivals. The system of differential equations for characteristic
function of customers number at the network nodes is derived. The sys-
tem is solved under asymptotic condition of high-rate arrivals. It is shown
that probability distribution of customers at the network nodes can be
approximated by multi-dimensional Gaussian distribution which para-
meters are obtained in the paper. Presented results of numerical experi-
ments allow to determine the approximation applicability.

Keywords: Queueing network · Semi-Markov process · Asymptotic
analysis

1 Introduction

Queueing networks [1] are used for modelling of modern telecommunications and
other systems in many fields where we deal with transmission any objects from
one point to another. In the queueing theory such systems are named as net-
works and points are named as the network nodes. Most investigations consider
the networks with Poisson arrivals but there are results [2] which prove that
the Poisson model can be adequate only in a few cases of modern telecommu-
nication streams. Therefore, many researches use more complex models of the
streams such as Markovian arrival process [3] or semi-Markov process [4]. For
more information about investigations in queues with semi-Markov arrivals see
[5–8].

In the paper, we consider the queueing network with infinite number of
servers at every node. Usually, such models can not be directly applied to real
systems but results of their analysis can be used to obtain some characteristics
of the evolution of systems with limited number of servers. More information
about infinite-server models see [9]. We have considered a simple infinite-server
queueing system with semi-Markov arrivals in the paper [4].

The mathematical model under study is presented in the Sect. 2.
In the Sect. 3, the main method of the investigation – method of the multi-

dimensional screening is described. Kolmogorov equations for the screened
processes are derived in the Sect. 4.

c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 73–84, 2015.
DOI: 10.1007/978-3-319-25861-4 7
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Asymptotic analysis of the obtained equations is performed in the Sects. 5
and 6. In the Sect. 7, the approximation for the multi-dimensional stationary
probability distribution of customers number at the network nodes is obtained.
Numerical results (Sect. 8) prove the applicability of the approximation and
determine its accuracy.

2 Mathematical Model

Consider a queueing network with K nodes, semi-Markov arrivals and infinite
number of servers at every node. A customer that arrives at the network enters
into the k-th node with probability vk, where k = 1, . . . , K. All servers at one
network node have i.i.d. service times with a cumulative distribution function
Bk(x) where k is a number of the node. When the service is completed at the
k-th node the customer moves to the node ν with probability rkν or leaves the
network with probability rk0. Note that

rk0 = 1 −
K∑

ν=1

rkν .

The epochs of customers’ arrivals are equal to transition times t0, t1, . . . ,
tn, . . . of the high-rate semi-Markov process which is determined by semi-Markov
matrix A(x) with entries Alm(x) by the following way:

Alm(x) = P
{

ξn+1 = m, τn+1 <
x

N

∣∣∣ ξn = l
}

.

Here l,m = 1, . . . , L, {ξn, τn} is a stationary Markovian process, N is a parame-
ter which determines the high rate of the arrivals and has a large value (theoret-
ically, we suppose that N → ∞). Values τn determine inter-transition intervals:
tn+1 = tn + τn+1 for n ≥ 0.

Let’s consider semi-Markov process l(t) which is defined as follows [4]:

l(t) = ξn+1, tn ≤ t < tn+1.

Denote by z(t) the residual time from the moment t to the next transition epoch
of the semi-Markov process. So, the process {l(t), z(t)} is Markovian and we
can write the following matrix differential equation for its stationary probability
distribution rl(z) = P{l(t) = l, z(t) < z

N } for l = 1, . . . , L [4]:

r ′(z) = r ′(0) [I − A(z)] (1)

where r(z) = {r1(z), . . . , rL(z)} is a row vector and I is identity matrix.
In the paper [4], we obtained that r ′(0) = λr where row vector r is a

stationary probability distribution of states of the embedded Markov chain ξn.
This vector satisfies the Kolmogorov equation r = r · P where P = lim

z→∞A(z) is
a stochastic matrix of transitions probabilities of the embedded chain. Parameter
λ is determined as follows
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λ =
1

r Ae
,

here A =
∞∫
0

[P − A(x)] dx and e is a column vector with entries all equal to 1.

Denote by ik(t) a number of customers at the k-th node of the network
at the time moment t, k = 1, . . . , K. The goal of the study is to find the
stationary multi-dimensional probability distribution of the customers number
i(t) = {i1(t), . . . , iK(t)} at the network nodes.

3 Method of Multi-dimensional Dynamic Screening

A direct investigation of the process i(t) doesn’t seem possible. So, we use
the method of the multi-dimensional dynamic screening [10] in the study. Let’s
briefly describe it here.

Let’s fix some arbitrary time moment T . Denote by Sk(t) the probability that
the customer which arrives at the network at the moment t ≤ T will be served

at the k-th node at the moment T (k = 1, . . . , K). Denote by S0(t) = 1−
K∑

k=1

Sk(t)

the probability that the customer leave the network before the moment T .
Consider K so called screened point processes numbered from 1 to K which

are formed as follows. The customer which comes in the network at the time
moment t generates a point in the k-th process with probability Sk(t) for all
k = 1, . . . , K and doesn’t generate a point in any of the processes with probability
S0(t). Let the network be empty at some time moment t0 < T . Denote by nk(t)
a number of points generated in the k-th process before the moment t and let’s
use vector notation n(t) = {n1(t), . . . , nK(t)}. It’s obvious that

P{i(T ) = i} = P{n(T ) = i} (2)

for every values of vector i . So, if we find the probability distribution for the
process n(t) we obtain the probability distribution of the process i(t) at the
arbitrary time moment T by using the property (2) and substituting t = T .

In the paper [10], the following expression for a vector of the screening prob-
abilities s(t) = {S1(t), . . . , SK(t)} were obtained:

s(t) =
1
2π

v

∞∫

−∞
e−jα(T−t) (I − B∗(α)R)−1 (B∗(α) − I )

1
jα

dα

where v = {v1, . . . , vK}, R = {rkν}k,ν=1,...,K is a routing matrix, j =
√−1 is

imaginary unit, B∗(α) is a diagonal matrix which diagonal entries given by the
Fourier–Stieltjes transforms B∗

k(α) of the distribution functions Bk(x):

B∗
k(α) =

∞∫

0

ejαx dBk(x), for k = 1, . . . , K.
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4 Kolmogorov Equations

Obviously the process {n(t), l(t), z(t)} is Markovian. Denote by P (n , l, z, t) =
P

{
n(t) = n , l(t) = l, z(t) < z

N

}
its probability distribution. We can write the

following Kolmogorov equations:

1
N

∂P (n , l, z, t)
∂t

=
∂P (n , l, z, t)

∂z
− ∂P (n , l, 0, t)

∂z

+
K∑

k=1

L∑
m=1

∂P (n − ek,m, 0, t)
∂z

Aml(z)Sk(t)+
L∑

m=1

∂P (n ,m, 0, t)
∂z

Aml(z)S0(t) (3)

for all values n≥ 0 , l = 1, . . . , L and z > 0. Here ek is a vector with entries all
equal to 0 except the k-th one which equals to 1.

For partial characteristic functions

H(u , l, z, t) =
∞∑

n1=0

· · ·
∞∑

nK=0

ejun1+···+junK P (n , l, z, t), l = 1, . . . , M,

using vector notation h(u , z, t) = {H(u , 1, z, t), . . . ,H(u ,K, z, t)}, we can
rewrite the Eq. (3) in the following way

1

N

∂h(u , z, t)

∂t
=

∂h(u , z, t)

∂z
+

∂h(u , 0, t)

∂z

{
A(z)

[
1 +

K∑

k=1

(
ejuk − 1

)
Sk(t)

]
− I

}
. (4)

The initial condition for the problem is the following:

h(u , z, t0) = r(z). (5)

In the paper we will solve the problem (4)–(5) under the asymptotic condition
of arrivals’ high rate: N → ∞.

5 The First-Order Asymptotic Analysis

Let’s make the following changes of variables in the problem (4)–(5):

1
N

= ε, u = εw , h(u , t) = f 1(w , t, ε).

So, the problem can be written in the following form

ε
∂f 1(w , z, t, ε)

∂t
=

∂f 1(w , z, t, ε)
∂z

+
∂f 1(w , 0, t, ε)

∂z

{
A(z)

[
1 +

K∑
k=1

(
ejεwk − 1

)
Sk(t)

]
− I

}
, (6)

f 1(w , z, t0, ε) = r(z). (7)

Let’s prove the following statement about the asymptotic solution of this problem
f 1(w , z, t) = lim

ε→0
f 1(w , z, t, ε).
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Theorem 1. The asymptotic solution f1(w, z, t) of the problem (6)–(7) under
a condition ε → 0 is the following:

f1(w, z, t) = r(z) exp

⎧⎨
⎩λ

K∑
k=1

jwk

t∫

t0

Sk(x) dx

⎫⎬
⎭ . (8)

Proof. We perform the proof by two stages.
Stage 1. Let ε → 0 in the Eq. (6). We obtain the following equation

∂f 1(w , z, t)
∂z

+
∂f 1(w , 0, t)

∂z
[A(z) − I ] = 0 .

This equation has a form similar to the Eq. (1). So, we can make a conclusion
that the function f 1(w , z, t) can be represented as

f 1(w , z, t) = r(z)Φ1(w , t) (9)

where Φ1(w , t) is some scalar function.
Stage 2. Let’s perform an asymptotic transition z → ∞ in the Eq. (6):

ε
∂f 1(w ,∞, t, ε)

∂t
=

∂f 1(w , 0, t, ε)
∂z

{
P

[
1 +

K∑
k=1

(
ejεwk − 1

)
Sk(t)

]
− I

}
.

Summing up all rows of this matrix equation by multiplying it by the vector e ,
we obtain

ε
∂f 1(w ,∞, t, ε)

∂t
e =

∂f 1(w , 0, t, ε)
∂z

e
K∑

k=1

(
ejεwk − 1

)
Sk(t).

Dividing this expression by ε and performing the transition ε → 0, we obtain
the following equation:

∂f 1(w ,∞, t)
∂t

e =
∂f 1(w , 0, t)

∂z
e

K∑
k=1

jwkSk(t).

Substituting here the expression (9) and taking into account that r(∞)e = 1
and r ′(0)e = λre = λ, we obtain the following differential equation for the
unknown function Φ1(w , t)

∂Φ1(w , t)
∂t

= Φ1(w , t)λ
K∑

k=1

jwkSk(t).

Solution of the equation with initial condition Φ1(w , t0) = 1 is the following

Φ1(w , t) = exp

⎧⎨
⎩λ

K∑
k=1

jwk

t∫

t0

Sk(x)dx

⎫⎬
⎭ .

Finally, substituting this expression into the formula (9), we obtain the final
form of the function F 1(w , z, t) as the expression (8). The proof is completed.
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6 The Second-Order Asymptotic Analysis

Let h2(u , z, t) be the function that is defined by the expression

h(u , z, t) = h2(u , z, t) exp

⎧⎨
⎩Nλ

K∑
k=1

juk

t∫

t0

Sk(x)dx

⎫⎬
⎭ . (10)

Substituting this expression into the formulas (4)–(5), we obtain the following
boundary value problem:

1
N

∂h2(u , z, t)
∂t

+ λh2(u , z, t)
K∑

k=1

jukSk(t) =
∂h2(u , z, t)

∂z

+
∂h2(u , 0, t)

∂z

{
A(z)

[
1 +

K∑
k=1

(
ejuk − 1

)
Sk(t)

]
− I

}
(11)

with initial condition
h2(u , z, t0) = r(z). (12)

Let’s make the following changes of variables

1
N

= ε2, u = εw , h2(u , z, t) = f 2(w , z, t, ε). (13)

Using new variables, the problem (11)–(12) can be written in the form

ε2 ∂f 2(w , z, t, ε)
∂t

+ λf 2(w , z, t, ε)
K∑

k=1

jεwkSk(t) =
∂f 2(w , z, t, ε)

∂z

+
∂f 2(w , 0, t, ε)

∂z

{
A(z)

[
1 +

K∑
k=1

(
ejεwk − 1

)
Sk(t)

]
− I

}
, (14)

f 2(w , z, t0, ε) = r(z). (15)

Let’s prove the following statement.

Theorem 2. The asymptotic solution f2(w, z, t) = lim
ε→0

f2(w, z, t, ε) of the prob-

lem (14)–(15) under a condition ε → 0 is the following:

f2(w, z, t) = r(z)

× exp

⎧⎨
⎩λ

K∑
k=1

(jwk)2

2

t∫

t0

Sk(x)dx + κ

K∑
k=1

K∑
ν=1

jwkjwν

2

t∫

t0

Sk(x)Sν(x)dx

⎫⎬
⎭ (16)

where
κ = 2f′0e
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and row vector f ′
0 satisfies the system of linear equations

⎧⎨
⎩

f′0 [I − P] = λ [rP − r(∞)] ,

f′0Ae =
λ2a2

2
− 1.

Here a2 = rA2e, A2 =
∞∫
0

x2dA(x).

Proof. We perform the proof by three stages.
Stage 1. Let ε → 0 in the Eq. (14). We obtain the following equation

∂f 2(w , z, t)
∂z

+
∂f 2(w , 0, t)

∂z
[A(z) − I ] = 0 .

This expression has a similar form as the Eq. (1). So, we can make the conclusion
that the function f 2(w , z, t) can be represented in the form

f 2(w , z, t) = r(z)Φ2(w , t) (17)

where Φ2(w , t) is some scalar function.
Stage 2. Taking into account the formula (17), we can write the function

F 2(w , z, t, ε) in the following expansion form

f 2(w , z, t, ε) = Φ2(w, t)

[
r(z) + f (z)

K∑
k=1

jεwkSk(t)

]
+ O

(
ε2

)
(18)

where f (z) is some row vector function which has the property f (∞) = 0 due
to normalization condition.

Let’s substitute the expansion (18) and the expansion ejεwk = 1 + jεwk +
O

(
ε2

)
into the Eq. (14). We obtain the following formula

Φ2(w , t)r(z)λ
K∑

k=1

jεwkSk(t) = Φ2(w , t)

[
r ′(z) + f ′(z)

K∑
k=1

jεwkSk(t)

]
+

Φ2(w, t)

{
r ′(0) + f ′(0)

K∑

k=1

jεwkSk(t)

}{
A(z)

[
1 +

K∑

k=1

jεwkSk(t)

]
− I

}
+O

(
ε2
)
. (19)

Taking into account the Eq. (1), after some transforms, we reduce (19) to the
following form

λr(z) = f ′(z) + r ′(0)A(z) + f ′(0) [A(z) − I ] + O(ε).

Performing the asymptotic transition ε → 0, we obtain the following matrix
differential equation for the function f (z)

f ′(z) = f ′(0) [I − A(z)] − λ [rA(z) − r(z)] .
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Using notation f ′
0 = f ′(0), we can obtain the following linear system for the

vector f ′
0 (see [4]): ⎧⎨

⎩
f ′

0 [I − P ] = λ [rP − r(∞)] ,

f ′
0Ae =

λ2a2

2
− 1.

Stage 3. Let’s substitute the expression (18) and the expansion

ejεwk = 1 + jεwk +
(jεwk)2

2
+ O

(
ε3

)

into the Eq. (14) and perform the asymptotic transition z → ∞. We obtain the
following equation

ε2
∂Φ2(w , t)

∂t
r(∞) + Φ2(w , t)r(∞)λ

K∑

k=1

jεwkSk(t) + λΦ2(w , t)f (∞)

[
K∑

k=1

jεwkSk(t)

]2

= Φ2(w , t)

{
r ′(0) + f ′(0)

K∑
k=1

jεwkSk(t)

}

×
{
P − I + P

K∑
k=1

jεwkSk(t) + P
K∑

k=1

(jεwk)2

2
Sk(t)

}
+ O

(
ε3

)
.

Multiplying both parts of this matrix equation by the vector e and taking into
account that r(∞)e = 1, Pe = e , r ′(0)e = λ and f (∞) = 0 , we can reduce
this equation to the following form

ε2 ∂Φ2(w , t)
∂t

+ λΦ2(w, t)
K∑

k=1

jεwkSk(t) + O
(
ε3

)
=

Φ2(w , t)

⎧
⎨

⎩λ
K∑

k=1

jεwkSk(t) + λ
K∑

k=1

(jεwk)2

2
Sk(t) + f ′(0)e

[
K∑

k=1

jεwkSk(t)

]2⎫⎬

⎭ .

Dividing both parts of this equation by ε2 and performing the transition ε → 0,
we obtain the following differential equation for the unknown function Φ2(w, t)

∂Φ2(w , t)
∂t

= Φ2(w , t)

{
λ

K∑
k=1

(jwk)2

2
Sk(t) + 2f ′

0e
K∑

k=1

K∑
ν=1

jwkjwν

2
Sk(t)Sν(t)

}
.

Using the notation κ = 2f ′
0e and taking into account the initial condition

Φ2(w , t0) = 1, we obtain the following solution:

Φ2(w , t) = exp

⎧
⎨

⎩λ
K∑

k=1

(jwk)2

2

t∫

t0

Sk(x)dx + κ
K∑

k=1

K∑

ν=1

jwkjwν

2

t∫

t0

Sk(x)Sν(x)dx

⎫
⎬

⎭ .

Substituting this expression into the formula (17), we obtain the final form of
the function F 2(w , z, t) as the expression (16). The theorem is proved.



Asymptotic Analysis of the Queueing Network SM − (GI/∞)K 81

7 Stationary Probability Distribution of Customers
Number in the Network

Finally, let’s make in the formula (14) substitutions that are inverse to the
changes of variables (13). Using the formula (10), we obtain the following expres-
sion for the vector characteristic function h(u , z, t) of the number of points have
been generated in the multi-dimensional screened process n(t) inside the interval
[t0, t]:

h(u , z, t) = r(z) exp

⎧⎨
⎩Nλ

K∑
k=1

juk

t∫

t0

Sk(x)dx

+Nλ

K∑
k=1

(juk)2

2

t∫

t0

Sk(x)dx + Nκ

K∑
k=1

K∑
ν=1

jukjuν

2

t∫

t0

Sk(x)Sν(x)dx

⎫⎬
⎭ . (20)

We have derived this expression under the asymptotic condition N → ∞,
therefore, the formula (20) defines the approximation of the actual distribution
for enough large values of the parameter N .

Let’s make the transition z → ∞ and let’s multiply both parts of the expres-
sion (20) by vector e . Using the main formula of the multi-dimensional screening
method (2), we perform a transition to the characteristic function h(u , T ) of the
process under study i(t) at the time moment t = T . So, we can write the follow-
ing approximation for the function h(u , T ) under the condition that N is large
enough:

h(u , T ) = exp

⎧⎨
⎩Nλ

K∑
k=1

juk

T∫

t0

Sk(x)dx

+Nλ

K∑
k=1

(juk)2

2

T∫

t0

Sk(x)dx + Nκ

K∑
k=1

K∑
ν=1

jukjuν

2

T∫

t0

Sk(x)Sν(x)dx

⎫⎬
⎭ .

If we set here t0 → ∞ and T = 0, we obtain the following expression for
the approximation of the characteristic function of the customers number at the
network nodes:

h(u) = exp
{

NλjuSe +
1
2
Nju [λS + κV ] juT

}
. (21)

Here S is a diagonal matrix with diagonal entries equal to Sk =
0∫

−∞
Sk(x)dx and

V is a matrix with entries Vkν =
0∫

−∞
Sk(x)Sν(x)dx.

So, the stationary probability distribution of the number of the customers at
the network nodes for the queueing network SM −(GI/∞)K under the condition
of the high-rate arrivals can be approximated by the multi-dimensional Gaussian
distribution with vector of means NλSe and covariance matrix N [λS + κV ].
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8 Numerical Results

An accuracy of the approximation (21) we have checked for various numerical
examples by comparing values of the approximating distribution with results of
simulations. We introduce here one example which help us to demonstrate the
approximation applicability.

Consider the queueing network SM − (GI/∞)K with semi-Markov matrix
A(x) of the arrival process written in the form A(x) = P ◦ G(x) where P is
a stochastic matrix and G(x) is a matrix with the entries equal to some cumu-
lative distribution functions. The symbol ”◦” here is the Hadamard (entrywise)
matrix production. Consider the example where all entries of the matrix G(x)
are cumulative distribution functions of the gamma distribution in the form
Gkν(x) = γ(αkν ,βkνx)

Γ(αkν) . Let parameters of the arrival process be the following:

P =

⎡
⎣

0.5&0.4&0.1
0.3&0.2&0.5
0.4&0.1&0.5

⎤
⎦ , α =

⎡
⎣

0.5&0.2&0.8
0.5&1.5&1.5
0.3&0.1&0.4

⎤
⎦ , β = N

⎡
⎣

1&0.2&0.4
0.5&1.5&2

0.1&0.2&0.4

⎤
⎦ .

The network consists of four nodes. The service times at nodes also have gamma
distributions with the following values of the shape αk and the rate βk parame-
ters:

α1 = 1.5, β1 = 1.0,
α2 = 0.5, β2 = 0.5,
α3 = 0.4, β3 = 0.2,
α4 = 1.5, β4 = 1.5

where k is a node number.
We concentrate an attention on the node number 3 because the average

number of customers at this node at the stationary regime is equal to N . So,
we can demonstrate how a value of the parameter N affects on the accuracy of
the approximation (21). We will characterize the approximation accuracy by the
Kolmogorov distance [11]

d = sup
x

∣∣∣F̃ (x) − F (x)
∣∣∣

where F̃ (x) is the cumulative distribution function of the Gaussian approxima-
tion (21) and F (x) is the cumulative distribution function constructed based on
the results of the simulation.

Figure 1 represent probability distributions of the number of customers at
the node that are based on the both simulation results and analytical formulas
of Gaussian approximation (21) for N = 1, 5, 10, 50. The Kolmogorov distance
(d) for various values of the parameter N are presented in the Table 1. It is
easy to see that the growth of the arrivals rate (parameter N) implies that
the Gaussian approximation (21) becomes more accurate. We assume that the
approximation is good enough when the Kolmogorov distance d ≤ 0.03. So,
using the results of our numerical experiments, we draw a conclusion that the
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Gaussian approximation (21) can be applicable when the value of the parameter
N (or, in other words, the average number of customers at the network node) is
about 10 or greater.

0
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Fig. 1. Probability distributions of the number of customers at one network node for
various values of the parameter N : analytical approximation (dashed line), simulation
results (solid line).

Table 1. The Kolmogorov distance d between approximation and simulation distrib-
utions in relation to values N .

N 1 5 10 50 100

d 0.155 0.050 0.027 0.015 0.010

9 Conclusions

The asymptotic analysis of the queueing network with high-rate semi-Markov
arrivals is presented in the paper. It is obtained that the multi-dimensional
stationary probability distribution of the customers number at the network nodes
can be approximated by multi-dimensional Gaussian distribution. Parameters of
the approximation is also derived in the paper.
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Numerical examples show that the approximation is enough accurate for
values of the high-rate arrivals parameter N (or, in other words, the average
number of customers at the network node) is about 10 or more.
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Education and Science of the Russian Federation (No. 1.511.2014/K).
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Abstract. The main objective of the paper is to investigate the distri-
bution of the number of lost calls, made during the busy period in one
single server finite queueing system. It is assumed that the customers,
failed to get service are temporarily blocked in the orbit of inactive cus-
tomers for an exponentially distributed time interval. This model and
its variants have many applications, especially for optimization of the
corresponding models with retrials. Using the discrete transformations
method we derive formulas for computing the mean value of the number
of lost calls made during the busy period.

Keywords: Finite queues · Queues with losses · Inactive orbit · Busy
period · Number of lost calls

1 Introduction

The queueing system under consideration has one server which serves N cus-
tomers. Each of these customers in its free state (not being under service or
blocked) produces a Poisson process of demands (calls) of the same rate λ. If
the server is busy at the moment of a call arrival, the customer is blocked for an
exponentially distributed (with intensity μ) time interval. During this interval
the customer is not allowed to do any attempts for service and is said to be
blocked (to be in inactive state, or in the orbit of inactive customers). When the
blocking time is over, the customer moves again in free state and can produce
new demands. The service times have probability distribution function G(x),
with G(0) = 0, Laplace-Stieltjes transform - g(s), first moment - ν−1 and haz-
ard rate function

γ(x) =
G′(x)

1 − G(x)
.

In fact, this system is a queueing model with finite number of sources and
losses, a particular case of the Engset models, and has many applications both,
in itself and for optimization of the finite retrial queues. We may find finite
queues with lost or returning customers in our daily activities as well as in many
telephone, computer and communication systems.
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 85–98, 2015.
DOI: 10.1007/978-3-319-25861-4 8
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The generalized Engset models have been studied in a number of papers
but to the best of our knowledge they are mainly concerned with the blocking
probability in the cases of multiserver system with exponential service times
([11,13,14]). In these models it is assumed that the customers are ready to
produce new calls immediately after the failures. In many real situations this
is not realistic. The customers are lost for the system, but they have to satisfy
their demands by another way, for example by another firm, or operator and so
on. They will hardly have new requests before the completion of the previous
one. During this time the customers should be considered as inactive or missing
from the system. In the finite queues these missing customers change the input
flow of demands and have to be taken into account, as it is in our model with
inactive orbit.

In the queueing models with retrials it is assumed that a customer, unable
to get service at a moment of his/her arrival (because of a busy server/servers,
server vacation or repair and so on) repeats his/her attempts in pre-determined
or random intervals, until receives service. There is a large literature devoted to
retrial queues in the past twenty years. The reader can find a detailed review
of main results, methods of analysis and the literature on retrial queues in the
monographs [2,8]. The simplest example of such model is the situation when a
telephone subscriber gets a busy signal and repeats the call until the demand
is satisfied. Let us now consider the same example, but with the assumption
that the system operator may temporarily prohibit access to the system for all
unsuccessful subscribers. In other words, in some situations (high intensity of the
input flow or of the server utilization and others), all subscribers which obtain
a busy signal are “blocked” for pre-determined or random time interval, during
which they are not allowed to make new calls, neither repeated, nor primary. But
will it improve the system performance? And when exactly? This is an interesting
problem, a particular case of the optimization problems (like optimal control,
cost functions and others), which are ones of the main motivations and tools
for constructing and analyzing competitive queueing models (see for example
[3,6,10] and the references therein). It is namely one of the main motivations for
the analysis presented in this paper.

The steady state analysis of this system is carried out in [4], distribution of
the busy period and the number of successful calls, made during it are studied
in [5]. Here we extend this investigation and consider the number of lost calls,
made during the busy period. The method of analysis is similar to those in the
finite systems with retrials (see ([1,7,12]).

We assume that the busy period starts at time t0 = 0, at which there are no
blocked customers and one of them generates a call. It ends at the first epoch at
which the server is free and there are no blocked customers. Denote:

• by ζ the length of the busy period, its distribution function, P{ζ ≤ x} – by
H(x) and its Laplace – Stieltjes transform – by η(s);

• by NL(t) - the number of lost calls made during the time interval (0, t), t ≥ 0;
• by NLBP - the number of lost calls made during the busy period;
• by ζL

k - the length of the busy period, during which k lost calls occur.
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In Sect. 2 we derive formulas for successively computing the probabilities that
during the busy period exactly k lost calls occur, Sect. 3 is devoted to moments
of the lost calls distribution, especially to the computation of its mean value.
Conclusion closes the paper.

2 Distribution of the Lost Calls Made During the Busy
Period

Let us introduce the following probabilities (densities)

PL
1nk(t, x)dx = P

{
ζ > t,NL(t) = k,C(t) = 1, R(t) = n, x ≤ z(t) < x + dx

}
,

PL
ink(t) = P

{
ζ > t,NL(t) = k,C(t) = i, R(t) = n

}
, i = 0, 1,

PLBP
k = P

{
NLBP = k

}
,

hL
k (t) =

dP
{
ζL
k ≤ t

}
dt

=
dP

{
ζ ≤ t,NLBP = k

}
dt

,

with initial conditions

PL
0nk(0) = 0, PL

1nk(0, x) = δ(x)δ(n,k)(0,0)

and Laplace transforms P
L

ink(s), P
L

1nk(s, x), h
L

k (s). In terms of these quantities,
for the distribution of the lost calls, made during the busy period we have

PLBP
k = P

{
NLBP = k

}
=
∑∞

0
hL

k (t)dt = h
L

k (0),

and for the distribution function of the busy period length -

H(x) =
∞∑

k=0

x
0hL

k (t)dt

Here C(t) is the number of busy servers at instant t (i.e. C(t) is 0 or 1
according to whether the server is free or busy at time t), R(t) is the number of
inactive (blocked) customers at the instant t, z(t) is equal to the elapsed service
time in the case of busy server, δ(x) is Dirac delta and δij is Kronecker’s delta.

To calculate h
L

k (0) we first derive Kolmogorov’s equations for the probabilities
(densities) PL

1nk(t, x) and PL
0nk(t),

d

dt
PL
0nk(t) = −[(N−n)λ+nμ]PL

0nk(t)+(n+1)μPL
0,n+1,k(t)+

∫ t

0

PL
1nk(t, x)γ(x)dx,

∂

∂t
PL
1nk(t, x) = −

[
(N − n − 1)λ + nμ + γ(x) +

∂

∂x

]
PL
1nk(t, x)

+(n + 1)μPL
1,n+1,k(t, x) + (N − n)λPL

1,n−1,k−1(t, x), 0 ≤ n ≤ N − 1, k ≥ 0,
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PL
1nk(t, 0) = (N − n)λPL

0nk(t), 1 ≤ n ≤ N − 1, k ≥ 0,

with
PL
0Nk(t) = PL

1Nk(t, x) = PL
1,−1,k(t, x) = PL

1,n,−1(t, x) = 0,

and
PL
0nk(0) = 0, PL

1nk(0, x) = δ(x)δ(n,k)(0,0).

Besides these equations, the following relations hold

hL
k (t) =

∑∞
0

PL
10k(t, x)γ(x)dx + μPL

01k(t),

N−1∑
n=0

PL
0nk(t) +

N−1∑
n=0

PL
1nk(t) =

∞∑
q=k

∞
t hL

q (x)dx.

Applying Laplace transforms we get

[(N − n)λ + nμ + s]P
L

0nk(s)

= (1 − δn,N−1) (n + 1)μP
L

0,n+1,k(s) +
∫ ∞

0

P
L

1nk(s, x)γ(x)dx, (1)

[(N − n − 1)λ + nμ + γ(x) + s +
∂

∂x
]P

L

1nk(s, x) = δ(x)δ(n,k)(0,0)

+ (1 − δn,N−1) (n + 1)μP
L

1,n+1,k(s, x)

+ (1 − δk0) (1 − δn0) (N − n)λP
L

1,n−1,k−1(s, x), 0 ≤ n ≤ N − 1, k ≥ 0, (2)

0 ≤ n ≤ N − 1, k ≥ 0,

P
L

1nk(s, 0) = (N − n)λP
L

0nk(s), (3)

1 ≤ n ≤ N − 1, k ≥ 0,

h
L

k (s) =
∑∞

0
P

L

10k(s, x)γ(x)dx + μP
L

01k(s), (4)

N−1∑
n=0

P
L

0nk(s) +
N−1∑
n=0

P
L

1nk(s) =
1
s

⎧⎨
⎩

∞∑
q=k

[
h

L

q (0) − h
L

q (s)
]
⎫⎬
⎭ s �= 0. (5)

The systems (1)-(5) can be solved successively for k = 0, 1, . . . with the help
of the discrete transformations method (see for example ([7,9,12]). According to
this method we rewrite Eq. (2) in a matrix form,

[θI − A] P
L

1k(s, x) = Bk,

and find the matrices Y and Λ, such that Y −1AY = Λ, where Λ is a diagonal
matrix. Thus, applying in (2) the transformations

P
L

1k(s, x) = Y Q
L

1k(s, x) (6)
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we get it in the simpler form

[θI − Λ] Q
L

1k(s, x) = Y −1Bk. (7)

Here
θ = γ(x) + s +

∂

∂x
,

I is the identity matrix of order N, A is constructed from (2) in the usual way,
P

L

1k(s, x) is the vector of unknown quantities,

P
L

1k(s, x) =
(
P

L

10k(s, x), . . . , P
L

1,N−1,k(s, x)
)T

,

and
B0 = (δ(x), 0, . . . , 0)T

,

Bk =
(
0, (N − 1)λP

L

1,0,k−1(s, x), . . . , λP
L

1,N−2,k−1(s, x)
)T

, k = 1, 2, . . .

The matrices Y and Λ are found in [4], where the following proposition is
proved.

Proposition 1. The diagonal matrix Λ is equal to

Λ = diag{0,−(μ + λ), . . . ,−(N − 1)(μ + λ)},

and the entries of the kth column of Y, (y0k, . . . , yN−1,k)T
, k = 0, 1, . . . , N − 1

can be calculated by the recursive relations

y0k = 1, (8)

ynk =
−k(λ + μ)

nμ
(y0k + · · · + yn−1,k) +

(N − n)λ
nμ

yn−1,k, (9)

n = 1, . . . , N − 1,

or by their equivalent formulas

ynk =
n∑

i=0

(−1)n−i

(
λ

μ

)i (
N − k − 1

i

)(
k

n − i

)
, (10)

with (
j

l

)
= 0 if l > j.

Furthermore, for the sum of the first n coordinates of the kth column we have

n∑
i=0

yik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∑
i=0

(
λ
μ

)i (
N−1

i

)
for k = 0,

n∑
i=0

(−1)n−i
(

λ
μ

)i (
N−k−1

i

)(
k−1
n−i

)
,

for k = 1, . . . , N − 1
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and therefore
N−1∑
i=0

yik =

{(
1 + λ

μ

)N−1

for k = 0
0 for k = 1, . . . , N − 1.

(11)

The results of this proposition are sufficient to solve the equations of statis-
tical equilibrium as well as the equations determining the busy period length
distribution (see [4]), but here, as Eq. (7) shows, we need the inverse matrix of
Y. To this end we prove the next Theorem 1. The matrix Y depends on the
system paremeters λ, μ and N . In the proof of Theorem 1 we use the dependence
on N and, only in this theorem we will extend notations: the matrix Y will be
denoted as Y (N), its entries - as y

(N)
nk and the adjoint quantity of y

(N)
nk - as

Y
(N)
nk , k = 0, 1, . . . , N − 1, 0, . . . , N − 1.

Theorem 1. The determinant of the matrix Y (N), defined in Proposition 1 is
equal to

det
(
Y (N)

)
=
[
−
(

1 +
λ

μ

)]N(N−1)
2

, (12)

and its inverse matrix,
(
Y (N)

)−1
is equal to

(
Y (N)

)−1

=
(

μ

λ + μ

)N−1

Y (N). (13)

Proof. It is easy to verify Eqs. (12) and (13) for N = 2, 3, i.e. that

(
Y (2)

)−1

=
μ

λ + μ
Y (2), det(Y (2)) = −

(
1 +

λ

μ

)
,

(
Y (3)

)−1

=
μ2

(λ + μ)2
Y (3),det

(
Y (3)

)
= −

(
1 +

λ

μ

)3

.

Further, let us suppose that they hold for N − 1,

(
Y (N−1)

)−1

=
μN−2

(λ + μ)N−2
Y (N−1),

and that

det
(
Y (N−1)

)
=
[
−
(

1 +
λ

μ

)] (N−1)(N−2)
2

.

The first of these equations means that the adjoint quantity Y
(N−1)
ij of the matrix

Y (N−1) is equal to

Y
(N−1)
ij = det(Y (N−1))

μN−2

(λ + μ)N−2
y
(N−1)
ji . (14)
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To prove that these relations hold and for the matrix Y (N), we establish relations
between the entries of Y (N) and Y (N−1). For n = 1, 2, . . . , N − 1 it holds:

y
(N)
ni = y

(N−1)
n,i−1 − y

(N−1)
n−1,i−1, i = 1, . . . , N − 1, (15)

y
(N)
n0 = y

(N−1)
n0 +

λ

μ
y
(N−1)
n−1,0 . (16)

The first of these equations can be proved with the help of formula (10), the
second follows from (9) for k = 0 and the binomial formula

(
N − 1

k

)
=
(

N − 2
k

)
+
(

N − 2
k − 1

)
.

Using (15), (16) and induction on N , it is easy to prove that for all n = 1, 2, . . .
it holds:

y
(N)
ni − y

(N)
n,i+1 =

(
1 +

λ

μ

)
y
(N−1)
n−1,i , i = 0, . . . , N − 2. (17)

Now, if in Y (N) we subtract successively the kth column from the (k − 1)th,
k = 1, . . . , N − 1, then from (17), we get it in the form

Y (N) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1(
1 + λ

μ

)
y
(N−1)
0,0

(
1 + λ

μ

)
y
(N−1)
01 . . .

(
1 + λ

μ

)
y
(N−1)
0,N−2 y

(N)
1,N−1(

1 + λ
μ

)
y
(N−1)
1,0

(
1 + λ

μ

)
y
(N−1)
11 . . .

(
1 + λ

μ

)
y
(N−1)
1,N−2 y

(N)
2,N−1

. . . . .(
1 + λ

μ

)
y
(N−1)
N−2,0

(
1 + λ

μ

)
y
(N−1)
N−1,1 . . .

(
1 + λ

μ

)
y
(N−1)
N−2,N−2 y

(N)
N−1,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

This means that

det(Y (N)) = (−1)N−1

(
1 +

λ

μ

)N−1

det(Y (N−1)), (18)

which proves formula (12).
Further, applying the same procedure in the adjoint quantity Y

(N)
nk , k =

1, ..., N − 1, we obtain that

Y
(N)
nk = (−1)N−1

(
1 +

λ

μ

)N−2 [
Y

(N−1)
n−1,k − Y

(N−1)
n−1,k−1

]
, k = 1, . . . , N − 1,

which, according to (14), (15) and (18) gives

Y
(N)
nk = (−1)N−1 det(Y (N−1))

[
y
(N−1)
k,n−1 − y

(N−1)
k−1,n−1

]

=
(

μ

λ + μ

)N−1

det(Y (N))y(N)
kn .
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For k = 0, if we add all rows of Y (N) to the nth one and apply formulas (11),
we have

det(Y (N)) =
(

1 +
λ

μ

)N−1

Y
(N)
n0 .

Regarding to the fact that y
(N)
0j = 1, the last equation completes the proof of

(13) and of the Theorem 1.

Now we are ready to calculate successively the probabilities PLBP
k that

exactly k lost calls occur during the busy period. For k = 0 the matrix
Eq. (7) gives N linear differential equations,

∂

∂x
Q

L

1nk(s, x) + [n(λ + μ) + γ(x) + s] Q
L

1n0(s, x)

=
(

μ

λ + μ

)N−1

δ(x)yn0, n = 0, 1, . . . , N − 1. (19)

These equations allow to express the quantities Q
L

1n0(s, x) in terms of
their initial conditions, Q

L

1n0(s, 0), and from the relation (6) between Q
L

1n0(s, x)
and P

L

1n0(s, x) - to express P
L

1n0(s, x) in terms of Q
L

1n0(s, 0). Then, from the
relations (3) between P

L

0n0(s) and P
L

1n0(s, 0), and the relations (4) between
P

L

100(s, x), P
L

010(s) and h
L

0 (s) we express P
L

0n0(s) and h
L

0 (s) by Q
L

1n0(s, 0). At
the end, substituting in (1) and in the normalizing conditions (5) we obtain a
system of linear equations for the quantities Q

L

1n0(s, 0). The Laplace – Stieltjes
transform of the busy period length, η(s) should be calculated by the formulas,
given in [5]. Here these formulas are presented in the next Section, Theorem 2.

For k > 0 the procedure is the same, but in the right hand side of (19)
participate the Laplace transforms P

L

1,0,k−1(s, x), . . . , P
L

1,N−2,k−1(s, x) which we
already know. Here we will not go to details about the formulas for computing
the distribution of the number of lost customers, made during the busy period.
We will turn our attention to the moments of this distribution.

3 Moments of the Number of Lost Calls Made During
the Busy Period

We define

ML
(j)
in (t) =

∑∞
k=0

kjPL
ink(t),

M (j)(t) =
∑∞

k=0
kjhL

k (t)

with Laplace transforms ML
(j)

in (s), M
(j)

(s) and

E
[(

NLBP
)j
]

=
∑∞

k=0
kjP

{
NSBP = k

}
=
∑∞

k=0
kjh

L

k (0) = M
(j)

(0).
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For j = 0 we have

ML
(0)

1n (s, x) =
∑∞

k=0
P

L

1nk(s, x) =
∑∞

0
e−stP1n(t, x)dt = P 1n(s, x),

ML
(0)

in (s) =
∑∞

k=0
P

L

ink(s) =
∑∞

0
e−stPin(t)dt = P in(s),

where
P1n(t, x) = P {ζ > t, C(t) = 1, N(t) = n, 0 < z(t) ≤ x} ,

Pin(t) = P {ζ > t, C(t) = i,N(t) = n} .

Formulas for computing the Laplace transforms P 1n(s, x), P in(s) as well as the
Laplace – Stieltjes transform, η(s), of the busy period distribution function are
obtained in [5], where the following theorem is proved.

Theorem 2. The Laplace transforms P 1n(s, x), P in(s) of the probabilities
P1n(t, x), Pin(i), i = 0, 1 and the Laplace – Stieltjes transform, η(s), of the
busy period distribution function can be calculated by the formulas

P 1n(s, x) = [1 − G(x)]
∑N−1

k=0
ynke−[k(λ+μ)+s]x

[
Q1k(s, 0)

+
(

μ

λ + μ

)N−1

yk0

]
, (20)

P 1n(s) =
∫ ∞

0

P 1n(s, x)dx

=
∑N−1

k=0
ynk

1 − gk(s)
k(λ + μ) + s

[
Q1k(s, 0) +

(
μ

λ + μ

)N−1

yk0

]
,

0 ≤ n ≤ N − 1,

P 0n(s) =
1

(N − n)λ

N−1

k=0

ynkQ1k(s, 0), 1 ≤ n ≤ N − 1.

η(s) =
{∑N−1

k=0
Q1k(s, 0)

[
1 + gk(s) − k(λ + μ)

(N − 1)λ

]

+
∑N−1

k=0
gk(s)

(
μ

λ + μ

)N−1

yk0

]

where the initial conditions Q1k(s, 0) satisfy the following system of linear equa-
tions ∑N−1

k=0
Q1k(s, 0)

{
ynk

[
δn,N−1 +

nμ + s

(N − n)λ
− gk(s)

]

+ (1 − δn,N−1)
k(λ + μ)

(N − n − 1)λ
(y0k + · · · + ynk)

}
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=
(

μ

λ + μ

)N−1

k=0

N−1gk(s)ynkyk0 (21)

1 ≤ n ≤ N − 1,

Q10(s, 0)

{
1 + g0(s) +

N−1∑
n=1

sy
(0)
n

(N − n)λ
+ [1 − g0(s)]

(
λ + μ

μ

)N−1
}

+
N−1∑
k=1

Q1k(s, 0)

{
1 + gk(s) +

N−1∑
n=1

synk

(N − n)λ
− k(λ + μ)

(N − 1)λ

}

= g0(s) −
(

λ + μ

μ

)N−1 ∑N−1

k=0
gk(s)yk0. (22)

Here ynk are given in Proposition 1, gk(s) = g(k(λ + μ) + s).

Further, for j = 1 we derive equations for ML
(1)

in (s), M
(1)

(s) multiplying
each of the Eqs. (1)-(4) by k and summing over k = 1, 2, . . . :

[(N − n)λ + nμ + s]ML
(1)

0n (s)

= (1 − δn,N−1) (n + 1)μML
(1)

0,n+1(s) +
∫ ∞

0

ML
(1)

1n (s, x)γ(x)dx, (23)

[(N − n − 1)λ + nμ + γ(x) + s +
∂

∂x
]ML

(1)

1n (s, x)

= (1 − δn,N−1) (n + 1)μML
(1)

1,n+1(s, x) + (1 − δn0) (N − n)λML
(1)

1,n−1(s, x)

+ (1 − δn0) (N − n)λML
(0)

1,n−1(s, x), (24)

0 ≤ n ≤ N − 1,

ML
(1)

1n (s, 0) = (N − n)λML
(1)

0n (s), (25)

1 ≤ n ≤ N − 1,

M
(1)

(s) =
∑∞

0
ML

(1)

10 (s, x)γ(x)dx + μML
(1)

01 (s). (26)

In the same way, summing the normalizing condition (5) over k we have:

1 − η(s)
s

=
M

(1)
(0) − M

(1)
(s)

s
, s �= 0. (27)

Solving the system (23)-(27) we can find the mean number of lost calls, made
during the busy period, E

[
NLBP

]
= M

(1)
(0). We use again the method of

discrete transformations and rewrite Eq. (24) in a matrix form,

[θI − A] ML
(1)

1 (s, x) = D1. (28)
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Here θ, I and A are the same as in the matrix form of (2), ML
(1)

1 (s, x) is the
column vector of the unknown quantities,

ML
(1)

1 (s, x) =
(
ML

(1)

10 (s, x), . . . ,ML
(1)

1,N−1(s, x)
)T

,

and
D1 =

(
0, (N − 1)λML

(0)

10 (s, x), . . . , λML
(0)

1,N−2(s, x)
)T

,

This mean that the transformation

ML
(1)

1 (s, x) = Y Q
(1)

1 (s, x) (29)

will simplify (28) to the form

[θI − Λ]Q
(1)

1 (s, x) = Y −1D1. (30)

Now, to obtain formulas for calculating the mean number of lost calls, made
during the busy period we follow the already discribed procedure. From the
differential equations, equivalent to (30) we express the functions Q

(1)

1 (s, x) in
terms of their initial conditions, Q

(1)

1 (s, 0). Then we express by Q
(1)

1 (s, 0) all
Laplace transforms ML

(1)

1n (s, x), ML
(1)

1n (s), ML
(1)

0n (s) and substituting in (23)
and (27) obtain system of linear equations for Q

(1)

1 (s, 0). At the end, with the
help of (26) we find M

(1)
(s) and E

[
NLBP

]
= M

(1)
(0). Thus we prove the next

Theorem 3.

Theorem 3. The Laplace transforms ML
(1)

in (s), M
(1)

(s) can be calculated by
the formulas

ML
(1)

1i (s) =
∑N−1

n=0
yin

1 − gn(s)
n(λ + μ) + s

Q
(1)

1n (s, 0)

+
(

μ

λ + μ

)N−1

n=0

∑N−1

k=1

N−1(N − k)λynk

∑N−1

q=0
yk−1,qfqn

×
[
Q1q(s, 0) +

(
μ

λ + μ

)N−1

yq0

]
, (31)

where

fqn =

{
1

(n−q)(λ+μ)
1−gq(s)

q(λ+μ)+s for q �= n
−gn(s)

[n(λ+μ)+s]2
− g′

n(s)
n(λ+μ)+s for q = n

ML
(1)

0i (s) =
1

(N − i)λ

N−1

n=0

yin

{
Q

(1)

1n (s, 0) +
(

μ

λ + μ

)N−1

×
∑N−1

k=1
(N − k)λynk

∑N−1

q=0
yk−1,q

[
Q1q(s, 0) +

(
μ

λ + μ

)N−1

yq0

]
f̃qn

}
,

(32)



96 V. Dragieva

with

f̃qn =
{ 1

(n−q)(λ+μ) for q �= n

0 for q = n

n = 0, 1, . . . , N − 1,

M
(1)

(s) =
∑N−1

n=0
y0ngn(s)

[
Q

(1)

1n (s, 0) +
(

μ

λ + μ

)N−1

×
∑N−1

k=1
(N − k)λynk

∑N−1

q=0
yk−1,q

[
Q1q(s, 0) +

(
μ

λ + μ

)N−1

yq0

]
Fqn

]

+
μ

(N − 1)λ

N−1

n=0

y1n

[
Q

(1)

1n (s, 0) +
(

μ

λ + μ

)N−1

×
∑N−1

k=1
(N − k)λynk

∑N−1

q=0
yk−1,q

[
Q1q(s, 0) +

(
μ

λ + μ

)N−1

yq0

]
f̃qn

]
, (33)

Fqn =
{ 1

(n−q)(λ+μ)gn−k(0) for q �= n
1
ν for q = n

(34)

The quantities Q1k(s, 0) are solutions of the system (21), (22) of Theorem 2,
and Q

(1)

1k (s, 0) satisfy the following system of linear equations:

∑N−1

n=0
Q1n(s, 0)

{
yin

[
δi,N−1 +

iμ + s

(N − i)λ
− gi(s)

]

+ (1 − δi,N−1)
n(λ + μ)

(N − i − 1)λ
(y0n + · · · + yin)

}

=
(

μ

λ + μ

)N−1
{

(1 − δi,N−1) (i + 1)μ
(N − i − 1)λ

N−1

n=0

yi+1,n

∑N−1

k=1
(N − k)λynk

∑N−1

q=0
yk−1,q

×
[
Q1q(s, 0) +

(
μ

λ + μ

)N−1

yq0

]
f̃qn

+
∑N−1

n=0
yine

−[n(λ+μ)+s]x
k=1

N−1(N − k)λynk

∑N−1

q=0
yk−1,q

×
[
Q1q(s, 0) +

(
μ

λ + μ

)N−1

yq0

]
Rqn(s)

− [(N − i)λ + iμ + s]
(N − i)λ

N−1

n=0

yin

∑N−1

k=1
(N − k)λynk

∑N−1

q=0
yk−1,q

×
[
Q1q(s, 0) +

(
μ

λ + μ

)N−1

yq0

]
f̃qn, (35)
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i = 1, . . . , N − 1,

Rqn(s) =
{ 1

(n−q)(λ+μ)gk(s) for q �= n

g′
n(s) for q = n

, (36)

A(s) − A(0) = 1 − η(s) − [B(s) − B(0)] , (37)

where

A(s) =
∑N−1

n=0
Q

(1)

1n (s, 0)
[
y0ngn(s) − μ

(N − 1)λ
y1n

]
,

B(s) =
∑N−1

n=0
y0ngn(s)

(
μ

λ + μ

)N−1

×
∑N−1

k=1
(N − k)λynk

∑N−1

q=0
yk−1,q

[
Q1q(s, 0) +

(
μ

λ + μ

)N−1

yq0

]
Fqn

]

+
μ

(N − 1)λ

(
μ

λ + μ

)N−1

n=0

N−1y1n

∑N−1

k=1
(N − k)λynk

∑N−1

q=0
yk−1,q

×
[
Q1q(s, 0) +

(
μ

λ + μ

)N−1

yq0

]
f̃qn.

Here, Q
(1)

1n (0, 0) are solutions of (35)-(37) for s = 0 (s → 0), gk(s), as in
Theorem 2, is equal to the Laplace-Stieltjes transform, g(s) of the service times
in the point s + k(λ + μ), yin can be calculated according to the formulas of
Proposition 1.

In a similar way we can deal with the moments of higher order.

4 Conclusion

In this paper we consider a finite source queueing system of M/G/1 type in
which the failed customers are not allowed neither to queue nor to do repeti-
tions. Instead, they are temporarily blocked in the orbit of inactive customers.
We investigate a descriptor of the system functioning, connected with its busy
period: the number of lost calls made during the busy period. Formulas for
computing the mean value of this descriptor are derived. The discrete transfor-
mations, which are established here for analysis of the lost calls distribution can
be also applied for transient analysis of the system, as a possible future work.
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Abstract. A mathematical model of access method “carrier sense multi-
ple access with collision avoidance” for two active stations was proposed.
The effect of carrier capture and unimodal dependence of the operat-
ing characteristics from the initial width of the contention window was
detected. Measures of preventing the effect of carrier capture, based on
the modifications of the standard protocol were proposed. For research
into the capture effect with a large number of rivals, a simulation model
of the competition process was developed. The efficiency of prevention
measures ensuring fair distribution of a jointly used time resource within
a shared communication medium with an insignificant decrease in the
general throughput of the access method has been shown.

Keywords: 802.11 wireless networks · Contention · A random delay
timer · Positive acknowledgment · The effect of carrier capture ·
Throughput

1 Random Multiple Access Method in 802.11 Wireless
Networks

Let us analyze the wireless local area network (LAN) based on the IEEE 802.11
standard. The fundamental access method of such LANs is called DCF (Distrib-
uted Coordination Function) [1,2] known as carrier sense multiple access with
collision avoidance (CSMA/CA) [2–4]. This mechanism is based upon the fact
that the transmitting station checks whether the carrier signal is present in the
medium, and, before starting transmission of a data frame, expects release of the
communication medium. IEEE 802.11 stations, in contrast to wired Ethernet,
are not capable of detecting collisions in a communication medium [1,5]. Due to
this fact, detection of collisions and non-conflict transmissions of protocol-based
data units is based on the time-outs mechanism and on the algorithm of positive
decision feedback.

Let us analyze the cycle of a data frame transmission from the sending sta-
tion to the recipient station. First and foremost, the sending station senses the
medium to determine if another station is transmitting. Thereafter, at the end
of the inter-frame interval, the random delaying algorithm is initiated to select
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 99–113, 2015.
DOI: 10.1007/978-3-319-25861-4 9
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a random backoff interval (the number of a slot in which the data transmis-
sion may be started). The slot number is selected with equal probability from
the interval [0, Sn − 1], where Sn is the size of the contention window mea-
sured in slot intervals tc and determined by the relation Sn = 2N0+m, m = n if
n ≤ 10−N0 and m = 10−N0 if n ≥ 10−N0. Here N0 = 1, 10 is the initial value
predetermining the width of the contention window during the first attempt of
a sender to transfer data, and n ≥ 0 is the number of retransmission. The width
of the contention window may not exceed the maximum value established by the
standard. For all physical layers and methods of modulation, the IEEE 802.11
standard has established the maximum width of the contention window equal to
Smax = 1024 [2]. The number of a selected slot shall be assigned to the backoff
interval counter to, after which the countdown of slot intervals begins. At the
end of each slot interval, the backoff interval counter shall decrement as long
as medium is idle. If the medium is determined to be busy at any time during
a backoff slot, then the backoff procedure is suspended. Decrementing is resumed
when the medium is idle again. Transmission shall commence when the backoff
interval counter reaches zero (to = 0). When the transmission is completed, the
sender waits for a acknowledgement during the time tout, after which it is con-
sidered that a conflict has occurred, and stations having got into such conflict
increase the n value by one, and the actions targeted at data transmission are
repeated. The width of the contention window is doubled with each attempt of
data frame transmission, until the maximum value is achieved; and the width
of the contention window remains equal to Smax with each subsequent attempt
of data frame transmission. After successful transmission, the window width
obtains the initial value S0.

Thus, the wireless access technology, due to lack of possibility to detect col-
lisions in a communication medium, has three significant differences from the
random access method implemented in the wired medium. Firstly, the wire-
less transmission method employs the mechanism of positive feedback (positive
acknowledgements). Secondly, in contrast to the random access method, in wired
networks the WiFi technology employs the random delay mechanism as early as
during the first transmission. And at last, the wireless access protocol employs
the mechanism of “suspension” of the delaying timer from the time of detection
of the medium occupation until expiration of the random delay timer.

2 Mathematic Modelling of 802.11 Wireless LAN

Let us analyze the operation of a wireless local area network until the first
error-free data frame transmission with obtained acknowledgement on successful
delivery of data. Let us suppose that the wireless LAN contains K stations which
are data sources. Consider that all the sources are independent and equal, and
always have data frames for sending, and all interval spaces are expressed in slot
intervals tc. Let all the stations exchange frames of equal sizes. Then, according
to the sequence of protocol actions, the elementary cycle of data frame transfer
to the recipient will be determined by the size of the interframe space tm, random
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delay period to, duration of “suspension” of the random delay timer tz, time of
data frame transmission tk, and the value of time-out for expecting a positive
acknowledgement tout, which consists of a short interframe space plus the time
of transmission of a positive acknowledgement [2,4]. The average time of data
frame transmission T (K,N0) consists of the weighted sum of average periods of
waiting for failed transmissions and the time of successful transmission [6]:

T (K,N0) = d +
∞∑

N=0

[
Nd +

N−1∑
n=0

t(n,K,N0) + τ(N,K,N0)
]
f(N,K,N0). (1)

Here d = tm + tk + tout, t(n,K,N0) and τ(N,K,N0) are the average conditional
times until failed and successful N -th repeated attempts to send a data frame by
a subscriber, and f(N,K,N0) is the function of probability [7] of the duration
of competition between subscribers for the medium, which is determined by the
probability of successful data frame transmission on the N -th repeated step after
N − 1 failures [6]:

f(N,K,N0) = P (N,K,N0)
N−1∏
n=0

π(n,K,N0). (2)

Along with the average time of data frame transmission, one of the main
indicators showing the efficiency of functioning the data transfer network is the
throughput performance. In the case under analysis, we will look for an individ-
ual throughput performance, the standardized value of which shall be determined
as a ratio between the time necessary for data frame transmission tk and the
average time of data frame transmission T (K,N0):

C(K,N0) =
tk

T (K,N0)
. (3)

Let us analyze the competition of two wireless stations (K = 2) of a local
area network. We denote the competing (conflicting) stations through A and B.
Let us find the probability timing characteristics of the data transmission process
executed by the A station. Let us denote via pn(i) the probability of selection
of random backoff interval with a duration equal to i slot intervals on the n-th
repeated transmission by the A station, and via fn(j) the probability of selection
of random backoff interval with a duration equal to j slot intervals on the n-
th repeated transmission by the B station. Then the conditional probability of
a conflict on the n-th repeated transmission for the A station is determined by
the relation

π(n, 2, N0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0−1∑
i=0

p0(i)
i∑

j=0

f0(j)Li−j , n = 0;

n∑
k=1

Ek(n)

[
Sk−1∑
i=0

pn(i)
i∑

j=0

fk(j)Li−j

+
Sn−1∑
i=Sk

pn(i)
Sk−1∑
j=0

fk(j)Li−j

]
, n ≥ 1.

(4)
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Here Lk represents recurrent probabilities of movement of the B station “bottom-
up” from originally selected slot interval j to a conflict slot interval i selected
by the A station (k is a difference between j-th and i-th slots), for many steps
with successful transmissions:

Lk =

⎧⎪⎪⎨
⎪⎪⎩

∞∑
i=0

f i
0(0)

k∑
i=1

f0(i)Lk−i, k = 1, S0 − 1, L0 = 1;

∞∑
i=0

f i
0(0)

S0−1∑
i=1

f0(i)Lk−i, k = S0, Sn − 1.

(5)

In other words elements Lk include probabilities of all possible actions of the B
station before collision with the A station, if the B station originally selected
slot interval j and the A station selected slot interval i. From this point, it is
not difficult to see that, before the conflict with the A rival, the competing B
station may carry out an unlimited number of successful transmissions in case
of “fallout” of random delay having zero duration. Using the relations for the
arithmetic-geometrical progression [8] for Lk with k = 1, S0 − 1, we obtain the
final relation:

Lk =
Sk−1
0

(S0 − 1)k
, k = 1, S0 − 1. (6)

Inserting (6) into (4), we find the probability of a conflict on the first attempt
of data frame transmission:

π(0, 2, N0) =
S0 − 1

S2
0

[(
S0

S0 − 1

)S0

− 1

]
. (7)

The coefficients Ek(n) in the relation (4) are the probabilities that on the
n-th repeated transmission by the A station, the B station will be in the condition
of the k-th repeated transmission:

E1(1) = 1;

E1(n) =
n−1∑
k=1

Ek(n − 1)
π(n − 1, 2, N0)

[
Sk−1∑
i=1

pn−1(i)
i−1∑
j=0

fk(j)Li−j

+
Sn−1−1∑

i=Sk

pn−1(i)
Sk−1∑
j=0

fk(j)Li−j

]
, n ≥ 2; (8)

Ek(n) =
Ek−1(n − 1)

Sk−1−1∑
i=0

pn−1(i)fk−1(i)

π(n − 1, 2, N0)
, n ≥ 2, k = 2, n.

The average conditional times until failed and successful n-th attempt of
data transmission t(N,K,N0) and τ(N,K,N0) consist of the average duration
of random delay Ns(n) (average number of slots until the start of transmission)
and the average number of suspensions caused by medium capture by the B
station, Zt(n,N0) in case of failure and Zτ (n,N0) in case of success, respectively:

t(n, 2, N0) = Ns(n) + Zt(n,N0)d, τ(n, 2, N0) = Ns(n) + Zτ (n,N0)d.
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Here

Ns =
Sn−1∑
i=0

ipn(i) =
Sn − 1

2
, (9)

and the average numbers of suspensions Zt(n,N0) and Zτ (n,N0) look similar:

Zt(n,N0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0−1∑
i=1

p0(i)
i−1∑
j=0

f0(j)Mi−j , n = 0;

n∑
k=1

Ek(n)

[
Sk−1∑
i=1

pn(i)
i−1∑
j=0

fk(j)Mi−j

+
Sn−1∑
i=Sk

pn(i)
Sk−1∑
j=0

fk(j)Mi−j

]
, n ≥ 1;

(10)

Zτ (n,N0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0−1∑
i=1

p0(i)
i−1∑
j=0

f0(j)Vi−j , n = 0;

n∑
k=1

Ek(n)

[
Sk−1∑
i=1

pn(i)
i−1∑
j=0

fk(j)Vi−j

+
Sn−1∑
i=Sk

pn(i)
Sk−1∑
j=0

fk(j)Vi−j

]
, n ≥ 1;

(11)

The elements Mk and Vk are indicators of the average number of suspensions
of the delaying timer for the A station after selection of random delay with
the duration i on the n-th repeated transmission upon selection of the j-th slot
preceding to the i-th one by the competing B station (k is a difference between
j-th and i-th slots):

Mk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, k = 0;
k∑

m=1
f0(m)

∞∑
i=0

(i + 1 + Mk−m)f i
0(0), k = 1, S0 − 1;

S0−1∑
m=1

f0(m)
∞∑

i=0

(i + 1 + Mk−m)f i
0(0), k = S0, Sn − 1;

Vk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∑
i=0

(i + 1)f i
0(0)

S0−1∑
m=k+1

f0(m)

+
k−1∑
m=1

f0(m)
∞∑

i=0

(i + 1 + Vk−m)f i
0(0), k = 1, S0 − 1;

S0−1∑
m=1

f0(m)
∞∑

i=0

(i + 1 + Vk−m)f i
0(0), k = S0, Sn − 1.

After inserting here the probabilities of fallout of delay duration f0(m), we obtain
the following relations:

Mk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S0

S0 − 1

[(
S0

S0 − 1

)k

− 1

]
, k = 1, S0 − 1;

S0

S0 − 1
+

∑S0−1
m=1 Mk−m

S0 − 1
, k = S0, Sn − 1.

(12)
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Vk =

⎧⎪⎪⎨
⎪⎪⎩

S0 − 2
S0 − 1

(
S0

S0 − 1

)k

, k = 1, S0 − 1;

S0

S0 − 1
+

∑S0−1
m=1 Vk−m

S0 − 1
, k = S0, Sn − 1.

(13)

The indicator of the general throughput performance can be found by analogy
with individual operational speed (3), therewith the numerator of such relation
should be adjusted not only for the package successfully transferred by the A
station, but also for the average number of packages transferred by the B station
for the concerned period:

Cg(2, N0) =
(G(N0) + 1)tk

T (2, N0)
,

where G(N0) will be determined by the weighted amount of the average number
of suspensions of the delaying timer of the A station in expectation of failed and
successful transmissions, which are determined by the relations (10) and (11):

G(N0) =
∞∑

N=0

[
N−1∑
n=0

Zt(n,N0) + Zτ (N,N0)

]
f(N, 2, N0).

The numeric research into the average time of data frame transmission by
the A station shows that the function (1) has a strongly manifested minimum
at the coordinate N0 (see Fig. 1) determining the initial size of the competition
window and, subsequently, the degree of scattering of stations by durations of
delays before the start of the competition procedure. For two competing sta-
tions, the minimum is reached at N0 = 4. It is obvious that the value N0 min-
imizing the average time of data frame transmission maximizes the individual
throughput (see Fig. 1). Moreover, as early as at the stage of formalization of
the task, the probability of capture of the communication medium by one of the
subscribers mentioned in [9,10] has become obvious. This effect manifests itself
especially strongly with small values N0. The effect of capturing the communica-
tion medium causes discrimination-related individual indicators against a good
level of the general throughput performance of the network (see Fig. 1).

As early as at the first attempt of competition between two stations, capture
of the communication medium becomes possible (e.g. by the B station), and its
probability will be determined by the probabilities that for one of the stations
(B) the delay duration will turn out to be shorter than the duration of delay of
the other station (A); then the “succeeded” station (B) will have fallout of zero
duration, which will alternate with shorter delays than the residual value of the
station’s A delaying timer:

Pz(0, 2, N0) =
S0−1∑
i=1

p0(i)Li−1

∞∑
k=1

fk
0 (0) =

1
S2
0

(
S0

S0 − 1

)S0−1

.

From this point, it is not difficult to see that the probability of capture is consid-
erably determined by the initial width of the contention window S0 (see Fig. 2).
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Fig. 1. Average time of data frame transmission, and individual and general through-
put performances
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Fig. 2. Probability of the medium capture by one of the stations

After several conflicts, the possibility of capture for the “succeeded” station
becomes yet more probable.

The main reason for the effect of capturing the communication medium is the
protocol action — “suspension of delay”, because this results in a fact that after
a non-conflict transmission the station may capture the communication medium
for an infinitely long time, getting into the delay interval from 0 to the residual
value of the delay of other stations.

Another reason for an increase in the probability of capturing the commu-
nication medium by one of the subscribers after several conflicts, consists in
various sizes of the contention window for stations withdrawn from the conflict
and stations continuing resolution of the conflict in the condition of waiting for
expiration of delay time and suspension periods. After a positive resolution of the
conflict by one of the stations (or by several stations), the size of its contention
window is reduced in multiples down to the initial value S0 < Sn, which gives
this station a priority right in subsequent competition for the medium with
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“conflicting” stations, because the shorter duration of an occasional delay for
such station has a significantly higher probability as compared with the similar
operational indicator of the “conflicting” station.

It is obvious that to reduce the probability of the effect of medium capturing
for an infinitely long time, it is possible to offer, on one hand, to fix the size
of the contention window for the first and all subsequent transmissions, and on
the other hand – the duration of random delay to should be selected within the
interval from 1 to 2N0 − 1 of slot periods tc, thus excluding the delay of the
zero size. Therewith, medium capturing by one station will never exceed 2N0 −2
successful transmissions until the subsequent conflict or its resolution. Further
we will analyze the measures proposed for modification of the procedure of access
to the communication medium for prevention of the “medium capturing effect”.

3 Preventing the Effect of Capturing Communication
Medium

Let us start considering the methods for prevention of capturing the medium
from the method based upon narrowing the range of random delay values. We
will consider that during the process of competition for the medium, wireless
communication stations make selection of random delay values from the interval
1, Sn − 1 of slot intervals. In such a case, any possibility of selection of zero delay
is excluded, and no station will be able to capture the communication medium for
an infinite time. Let us denote this variant of preventing the effect of capturing
the access to the communication medium as the “modified method”.

In case of a fixed width of the contention window, the probability timing
characteristics of the system will be equal for each attempt of data transmission
by the A and B stations. Then the conditional probability of a conflict on the
n-th repeated transmission for the A station will be determined by the rela-
tion (7).

For the procedure of preventing capture effect, based upon a fixed width of
the competition window, and by excluding any random delay with zero dura-
tion, the probability timing characteristics of the communications system will
be invariant to the number of the repeated transmission. It should be noted
that this method of access to the communication medium should be used with
N0 ≥ 2, because for N0 = 1, the stations will select one and the same slot, i.e.
will always get into a conflict, and none of the stations will be able to transfer
data.

Figure 3 represents comparative curves showing the average time of data
frame transmission by the subscriber in the network from two stations for all
methods of access to the communication medium analyzed by us. The figure
shows that (in case of 100 % loading) in a network of two stations the basic
method of access to the communication medium with a fixed width of a compet-
itive window (BMFW ) is preferential as compared with the three other meth-
ods of struggle for the medium. On one hand, this method ensures less time
of data frame transmission than the time provided for the basic and modified
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Fig. 3. Average time of data frame transmission for the basic (BM ) and modifying
(MM ) access methods, and for the methods with fixed contention window width —
(BMFW ) and (MMFW )

methods, — with N0 = 1, 4, and on the other hand, it is not inferior to any of the
methods along the entire fragment of acceptable values of the primary degree
of the contention windows width. Generally, with N0 = 5, 10, the difference
between the efficiency of the methods is offset.

4 Simulation Modeling of 802.11 Wireless LAN

With a view to studying the behavior of a wireless LAN and to analyzing its
operation speed indices, a program simulating the logic of protocol actions has
been developed for the basic method of access to the shared communication
medium, as well as its suggested modifications to prevent any capture effect
when the physical speed of transmission is equal to 54 Mb/s [2]. As for the pro-
gramming language, the choice between C++ [11] and Python [12] was made
in favour of the latter to save time for development. For modeling of protocol
operations of access to the shared communication medium of the wireless LAN,
the operation of a network with an arbitrary number of stations (subscribers)
is imitated until the general number of packages successfully transferred via the
network reaches the given value before modeling the value. It is supposed that all
stations are always ready to transfer data in the form of packages having equal
length. The operational characteristics under analysis are the average time of
data frame transmission and individual throughput of each station. Moreover,
the quantity of collisions and the number of stations involved in the conflict are
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recorded. The individual average time of data frame transmission is found as the
ratio between the time consumed for transmission of a predetermined number
of packages by all stations and the number of packages transferred by a definite
station. The integral throughput of the method of access to the shared commu-
nication medium is determined by the ratio between the number of transferred
packages given before modeling and the time actually consumed for delivery of
all information to receivers.

Before initiation of the imitation algorithm, an array of stations is created,
whereof each station is an instance of wireless station class. When such class
instance is created, the range of variables such as the degree of width of the
contention window (N0), the number of successfully transferred packages, the
number of collisions, as well as the Boolean variable registering the activity of
the station within the current slot interval is initialized. Moreover, each station
possesses a variable — a delaying timer and variables in which the values of aver-
age time of data frame transmission and individual operational speed are stored.
Additionally, a variable accumulating the total (program or model [13,14]) time
and other auxiliary values has been determined.

After initialization, a cycle of non-conflict package transmission is executed,
which is completed with obtaining an acknowledgement. The total time of pack-
age transmission is immediately complemented with the inter-frame space. Then
all the stations having transferred the package (initially all), regardless of success
or failure, pass the procedure of initialization of the delaying timer (selection of
slot for package transmission). For determination of random numbers, an embed-
ded random number generator is used, which in the Python language implements
the Mersenne Twister algorithm [15].

Further, all stations are monitored in each slot interval for registration of
subscribers with the delaying timer value equal to zero. For each station with
the zero delaying timer in this slot interval, the Boolean sign of activity is set,
and a variable containing the number of stations, which have transferred the
package increases by one. Upon completion of scanning, the value of this variable
is analyzed: if its value is equal to one, the transmission has been successful, if
the values are more than one — a collision has occurred. For stations having got
into a conflict, the value of the degree of width of the competition window is
increased by one. If there has been no transmitting stations in this slot interval,
the control is transferred to the cycle which is carried out until emergence of
at least one active station (station with zero delaying timer) in the next slot
interval. During this cycle, successively, the variable of the total time of package
transmission increases by one, and the values of the delaying timers decrease by
one. If the stations, the delaying timer of which has reached zero, are detected,
the total time of package transmission is complemented by the time necessary for
transmission of one package plus the time-out for acknowledgement expectation.
If the activity of only one station is recorded, the value of its window width degree
takes the initial value N0, and the number of packages successfully transferred by
it increases by one. If there are two or more transmitting stations, the variable
containing the number of conflicts increases by one.
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On the basis of the proposed simulation model, the indices of operational
speed of the 802.11 wireless LAN has been analyzed for various numbers of
network subscribers. For each set of parameters K,N0 (the number of stations
and initial width degree of the contention window), ten cycles to implement
the competition process were executed; each of these cycles included successful
transmission of one million packages by subscribers. The results of modeling the
activity of two, three, five and ten stations averaged by the basic competition
protocol are given in the Table 1 containing the distribution of various operation
parameters of the network starting from the initial width degree of the contention
window N0.

The most informative values are the minimum (Cmin) and maximum (Cmax)
values of individual operational speed (for the network of two stations, the indi-
vidual operational speed of each station Ci is given), and the total throughput
of the system (Cg). Moreover, Table 1 represents the dynamics of changing the
number of collisions attributed to the number of successfully transferred pack-
ages (Q) and distribution of collisions by the number of stations involved in the
conflict q(I), where I is the number of conflicting stations. The standard devia-
tion (σ) of the total throughput is given as a measure of adequacy of obtained
results.

Figure 4 for the standard method of access to the shared medium shows the
comparative curves of the minimum (Cmin) and maximum (Cmax) individual
operational speeds, as well as the curves of the total throughput of the system
(Cgen) as functions of the initial width degree of the contention window. The
assemblage of curves showing the total throughput also includes a curve corre-
sponding to the analytical resolution for the network with two active stations
(Cteor). The represented numerical results make it obvious that with small values
of the N0, there is an effect of capturing the shared communication medium by
one of the stations for any number of competing subscribers in the wireless local
network. At the same time, due to capturing the shared medium by any station
and, as a consequence, non-conflict transfer of any number of packages, there are
good indicators of the total throughput of the network and a strong imbalance
in the indicators of individual operational speed and average time of data frame
transmission of various stations. With an increase in the width of the contention
window, the values of individual characteristics of the stations become aligned,
with a maximum observed in the total throughput against the parameter of the
initial width degree of the contention window. With an increase in the number
of stations in the network, this maximum shifts towards the maximum possible
size of the contention window, and while there is no extremum as such for the
network of two stations, — for the major number of active subscribers the max-
imum is strongly manifested: for three stations — N0 = 4, for five — N0 = 5,
for ten — N0 = 6, and for twenty — N0 = 7. With such initial parameters,
collision transmissions are decreasing, and individual indicators of stations are
equaled against the peak of the total throughput of the wireless network. More-
over, for small N0 the value of total throughput is higher for a network with the
small number of stations, and as the window width increases, the inverse depen-
dence occurs — the more stations, the higher is the throughput. Comparison
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Table 1. Characteristics of the wireless LAN with K stations

K = 2 N0 = 1 N0 = 2 N0 = 3 N0 = 4 N0 = 5 N0 = 6 N0 = 7

0.000004 0.41525 0.38040 0.37676 0.35161 0.30000 0.22920

0.893831 0.38517 0.37831 0.37701 0.35134 0.29988 0.22951

0.000976 0.08718 0.11254 0.06184 0.03124 0.01573 0.00768

0.893834 0.80042 0.75871 0.75377 0.70295 0.59988 0.45871

0.000016 0.00092 0.00028 0.00011 0.00010 0.00024 0.00013

= 3 N0 = 1 N0 = 2 N0 = 3 N0 = 4 N0 = 5 N0 = 6 N0 = 7

0.000004 0.25109 0.24296 0.24690 0.24087 0.21869 0.17974

0.690570 0.26090 0.24437 0.24736 0.24181 0.21915 0.17992

0.001984 0.13956 0.16529 0.10749 0.05873 0.03059 0.01537

0.998 0.968 0.945 0.963 0.979 0.99 0.995

0.002 0.032 0.055 0.037 0.021 0.01 0.005

0.892914 0.76442 0.73057 0.74149 0.72433 0.65670 0.53950

0.000038 0.00126 0.00026 0.00012 0.00015 0.00011 0.00022

= 5 N0 = 1 N0 = 2 N0 = 3 N0 = 4 N0 = 5 N0 = 6 N0 = 7

0.002372 0.13886 0.13904 0.14280 0.14463 0.14002 0.12450

0.319206 0.14928 0.13963 0.14317 0.14580 0.14057 0.12501

0.004215 0.20618 0.23916 0.17296 0.10604 0.05792 0.03008

0.99478 0.92317 0.86557 0.91493 0.94892 0.97155 0.9857

0.00498 0.07483 0.09659 0.07882 0.04970 0.02804 0.0142

0.00024 0.00198 0.03773 0.00617 0.00138 0.00041 0.0001

0 0.00002 0.00010 0.00008 0.00001 0 0

0.890868 0.72341 0.69665 0.71472 0.72653 0.70126 0.62367

0.000053 0.00027 0.00039 0.00014 0.00016 0.00023 0.00005

= 10 N0 = 1 N0 = 2 N0 = 3 N0 = 4 N0 = 5 N0 = 6 N0 = 7

0.020412 0.06339 0.06364 0.06621 0.06940 0.07105 0.06902

0.147836 0.07023 0.06706 0.06831 0.07079 0.07221 0.06970

0.00987 0.29624 0.32358 0.27000 0.19061 0.11598 0.06418

0.98936 0.86016 0.83915 0.86135 0.90057 0.93400 0.96348

0.01013 0.12944 0.14509 0.12644 0.09282 0.06327 0.03574

0.00020 0.00997 0.01481 0.01144 0.00630 0.00268 0.00078

0 0.00043 0.00091 0.00073 0.00030 0.00004 0

0.00030 0.00001 0.00004 0.00004 0.00001 0 0

0 0 0 0.00001 0 0 0

0.885725 0.67481 0.65277 0.67070 0.69965 0.71598 0.69360

0.000057 0.00057 0.00033 0.00025 0.00023 0.00017 0.00022
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Fig. 5. General throughput performance for the basic (BM ) and modifying (MM )
access methods, and for the methods with fixed contention window width — (BMFW )
and (MMFW )

of results of analytical and simulation modeling of a network consisting of two
stations shows that the values of total throughput for various sizes N0 differ by
less than 4 %.

Apart from the basic method of access to a communication medium, the imi-
tation modeling was conducted by taking into account the measures proposed in
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Sect. 3 to reduce the “effect of capture” of the communication medium. Figure 5
represents comparative curves showing the transmitted flow for various methods
of access to the communication medium from the number of active stations of
the network with an optimal value of the contention window width. Figure 5
shows that in networks with six or more active subscribers, exclusion of zero
delay from the interval for selection of random delay before transmission should
be recognized as the best measure to prevent the capture effect. Such measure
completely prevents any capture of communication medium for an infinitely long
time (capture of medium by one subscriber is always limited on top), with a min-
imum payment for fair distribution of the communication medium. Therewith,
the properties of adaptation of a standard protocol to the number of competing
subscribers are preserved due to the function of doubling of the competition
window size after each conflict.

5 Conclusion

The performed analysis is targeted at studying the method of carrier sense multi-
ple access with collision avoidance. Analytic correlations have been obtained for
probability timing characteristics of the competition process between two sta-
tions. The “medium capture effect” and the extreme dependence of operational
parameters on the initial contention window size have been revealed.

It has been suggested to change the parameters of the protocol procedure of
competition, ensuring prevention of the capture effect by saving high values of
individual and integral indices of operational speed.

It has been shown that the optimal initial width of the contention window
(S0) is determined by the active size of the network (the number of compet-
ing stations), and it ensures almost uniform distribution of a jointly used time
resource of the medium between competing subscribers.

Research into the measures preventing the effect of capturing the communica-
tion medium in the local area network containing up to 20 competing subscribers
conducted on the imitation model has shown that the proposed modifications of
the parameters of the protocol competition procedure are effective. It has been
shown that for a nontrivial size of the active network K ≥ 6, the most effective
measure to prevent the capture effect is the modified method preventing the
delay of zero size and ensuring the minimum reduction of the total throughput
capacity.
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On a Flow of Repeated Customers in Stable
Tandem Cyclic Queueing Systems
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Abstract. We investigate tandem queueing systems with control of con-
flicting input flows using cyclic algorithms with readjustments. Input
flows are modulated by a finite-state synchronous Markov chain. Cus-
tomers arrive in Poisson flows of batches with intensities and batch
size distributions determined by the environment. All serviced customers
from the first input flow and randomly selected serviced customers from
the second conflicting input flow in the first system are transferred with
random speeds to the second queueing system. We develop a numeri-
cal algorithm to evaluate the stationary probability distribution for the
number of customers joining the transfer queue at each stage of servers’
operation.

Keywords: Tandem queueing systems · Retrial customers · Non-local
description of output flows · Stationary probability distribution ·
Censoring of Markov chain

1 Introduction

Study of output flows from queueing systems is a known problem in queue-
ing theory. For instance, in a network the output from some nodes is fed into
another nodes. Although many approaches to model flows exist [1], quite a few
results are available so far in queueing problems. For the sake of mathemati-
cal tractability, researcher uses an extended state space to be able to watch for
the output at any time instant. Frequent extension of the state space consists
in adding elapsed/remained time variables to a classical discrete-state number-
in-the-queue model [2]. This leads to investigation of functional equations for
sequences of functions and their partial derivatives. On the other hand, in [3] a
non-classical approach was suggested. It consists in choosing a discrete time-scale
and considering the integral characteristics of the flow over intervals between
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successive observation epochs. This approach has been already proven fruitful
in statistical study of several data present in literature [4], in stability study of
output flows from an intersection under control of a fixed-duration cyclic traffic
signal [5,6], and in a study of an intersection with dependent non-identically
distributed interarrival times [7]. In the present paper we develop a numerical
algorithm to evaluate the stationary probability distribution of the flow of retrial
customers in tandem queueing system from [8–10].

2 Retrial Customers in Tandem Queueing Systems

Although this paper is a sequel to [8–10] it will be useful to recall the following.
Two queueing systems in tandem are considered. The first system accepts con-
flicting input flows Π1, Π2, and the second system accepts conflicting input flows
Π3, Π4. Essentially, the conflict of the flows means that simultaneous servicing of
the customers of different flows is prohibited, that they cannot be summarized,
and that the study cannot be reduced to queueing system with fewer input flows.
The flows Π1, Π2, and Π4 are formed in a random environment with a finite
number d of states e(1), e(2), . . . , e(d). A change of the environmental state may
occur only at instants of the changing of the servers’ states. The probability of
transition from e(k) to e(l) in one step equals ak,l. It is assumed throughout the
paper that the states of the random environment make an aperiodic irreducible
Markov chain. In state of the environment e(k) customers in the flow Πj , j = 1,
2, 4 arrive in groups so that the flow of groups is Poisson with intensity λ

(k)
j , and

a number b in the group appears with probability f(b; j, k). After service in the
first queueing system, each customer from the flow Π1 is directed into the second
queueing system and joins a flow Π5 of repeated customers. After service in the
first queueing system and independently of each other, each customer from the
flow Π2 with probability α becomes a repeated customer joining the flow Π5, or
with probability (1 − α) leaves the tandem systems. Customers of the flow Πj

where j = 1, 2 . . . , 5, arrive into a queue Oj of unlimited capacity.
We will consider the pair of servers in both systems as a single server with

n cyclically changing states Γ (1), Γ (2), . . . , Γ (n) and a fixed duration Tr of the
state Γ (r), r = 1, 2, . . . , n. In addition to the traditional functions of servicing
the conflicting flows Π1, Π2, Π3, and Π4, the server also serves the demands of
the flow Π5. The set Γ = {Γ (1), Γ (2), . . . , Γ (n)} is partitioned into nine mutually
disjoint classes named Γ I, Γ II, . . . , Γ IX. Customers from O5 are serviced in every
state Γ (r) ∈ Γ . Further, at Γ (r) ∈ Γ II customers in O1 are serviced. At Γ (r) ∈ Γ III

customers in O2 are serviced, while, at Γ (r) ∈ Γ IV customers in O3 are serviced.
At Γ (r) ∈ ΓV customers in O4 are serviced, while, at Γ (r) ∈ ΓVI customers in O1

and O3 are serviced. At Γ (r) ∈ ΓVII customers in O2 and O3 are serviced, while,
at Γ (r) ∈ ΓVIII customers in O1 and O4 are serviced. Finally, at Γ (r) ∈ Γ IX

customers in O2 and O4 are serviced. For j = 1 let us set jΓ = Γ II ∪ ΓVI ∪ ΓVIII,
for j = 2 set jΓ = Γ III ∪ΓVII ∪Γ IX. The service process will be defined by means
of saturation flows Πsat

j , j = 1, 2, . . . , 5. Let the saturation flow Πsat
j contain a

nonrandom number �r,j � 1 of customers during the time Tr at Γ (r) ∈ jΓ and
0 customers during the same time at Γ (r) �∈ jΓ , j = 1, 2, 3, and 4. To define
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the saturation flow Πsat
5 we assume that each customer in O5 during the time Tr

with probability pr completes service, leaves O5 and joins Π3, or with probability
(1 − pr) it remains in the queue until the next tact.

All the random objects considered in the paper can be constructed on a
probability space (Ω,F,P). Let the observation instants τ0, τ1, τ2, . . . coin-
cide with the moments of the server’s state changes. Denote by ξi(ω) ∈ E =
{e(1), e(2), . . . , e(d)} the environmental state during the interval (τi, τi+1], by
κj,i(ω) the number in the queue Oj at time τi, by Γi(ω) ∈ Γ the server state
during the time interval (τi−1, τi], by ηj,i(ω) the number of arrivals in Πj during
the time interval (τi, τi+1], by ξj,i(ω) the number of customers in Πsat

j during
the time interval (τi, τi+1], by ξ̄j,i(ω) the number of customers in Πout

j , the
j-th output flow, during the time interval (τi, τi+1]. Let us define a function
ψ(b;x, u) =

(
x
b

)
ux(1 − u)b−x for 0 � u � 1, b = 0, 1, . . . , and x = 0, 1, . . . , b

and functions ϕj(x;k,t), t > 0, k = 1, 2, . . . , d, from series expansions
∞∑

x=0

zxϕj(x;k,t) = exp
{

λ
(k)
j t

( ∞∑
b=1

zbf(b; j, k) − 1
)}

, j = 1, 2.

Here ϕj(x;k,t) determines the probability of x arrivals in Πj during time t in the
environment state e(k). For r = 1, 2, . . . , n−1 set r⊕1 = r+1, and set n⊕1 = 1.
The assumptions on the queueing and service process imply relations

κj,i+1(ω) = κj,i(ω) + ηj,i(ω) − ξ̄j,i(ω), ξ̄j,i(ω) = min{κj,i(ω) + ηj,i(ω), ξj,i(ω)},

Γi+1(ω) = u(Γi(ω)) where u(Γ (r)) = Γ (r⊕1).

Moreover, the conditional probability

P({ω : ηj,i(ω) = bj , ξj,i(ω) = yj , j = 1, 2; η5,i(ω) = b5, χi+1(ω) = e(l)} | Fi)(ω)

w.r.t a σ-algebra Fi = σ(Γt, χt, κ1,t, κ2,t : t = 0, 1, . . . , i) is equal on the event
{ω : Γi(ω) = Γ (r), χi(ω) = e(k), κ1,i(ω) = xi

1, κ2,i(ω) = xi
2} to

ak,lϕ1(b1; e(k), Tr⊕1)ϕ2(b1; e(k), Tr⊕1)δy1,�r⊕1,1δy2,0δb5,min{x1+b1,�r⊕1,1}

for Γ (r⊕1) ∈ 1Γ , equal to

ak,lϕ1(b1; e(k), Tr⊕1)ϕ2(b1; e(k), Tr⊕1)δy1,0δy2,�r⊕1,1ψ(b5;min{x2 + b2, �r⊕1,2}, α)

for Γ (r⊕1) ∈ 2Γ , and equal to

ak,lϕ1(b1; e(k), Tr⊕1)ϕ2(b1; e(k), Tr⊕1)δy1,0δy2,0δb5,0

for Γ (r⊕1) �∈ 1Γ ∪ 2Γ .
Put ξ̄j,−1(ω) = 0 and

ν̂i(ω) = (Γi(ω), χi(ω), κ1,i(ω), κ2,i(ω), ξ̄1,i−1(ω), ξ̄2,i−1(ω)).

Then a marked point process

{(τi(ω), ν̂i(ω), η5,i−1(ω)); i = 1, 2, . . .}



On a Flow of Repeated Customers 117

with the mark ν̂i of customers arrived in Π5 during the time interval (τi−1, τi]
is a nonlocal description of the flow Π5. The stochastic properties of the marks
are presented in the next theorem.

Denote by ak the stationary probability of the state e(k) and set

T = T1 + T2 + . . . + Tn,

�j =
∑
r∈ jΓ

�r,j ,

λ̄
(k)
j = λ

(k)
j

∞∑
b=1

b · f(b; j, k).

Theorem 1. Stochastic sequences

{(Γi(ω), κj,i(ω), χi(ω), ξ̄j,i−1(ω)); i = 0, 1, . . .}, j = 1, 2; (1)
{(Γi(ω), κ1,i(ω), κ2,i(ω), χi(ω), ξ̄1,i−1(ω), ξ̄2,i−1(ω)); i = 0, 1, . . .} (2)

with a fixed probability distribution of a random vector

(Γ0(ω), κ1,0(ω), κ2,0(ω), χ0(ω))

are time-homogeneous Markov chains with period n. The stationary probability
distribution of the Markov chain (1), j fixed, exists if

T

d∑
k=1

akλ̄
(k)
j − �j < 0; (3)

if it exists then

T
d∑

k=1

akλ̄
(k)
j − �j � 0. (4)

Both inequalities (3) with j = 1, 2 are sufficient and both inequalities (4) with
j = 1, 2 are necessary for the existence of the probability distribution of the
Markov chain (2).

In the remainder of the paper we assume that inequality (3) holds for j = 1, 2. The
Lemma below implies that random variables η5,i(ω), i = 0, 1, . . . are identically
distributed when sequences in (1) are strictly stationary, and their common law
of probability distribution is entirely determined by the stationary probability
distribution of the Markov chains (1).

Lemma 1. One has

P({ω : η5,i(ω) = b})

=
d∑

l=1

∑
Γ (r)∈ 1Γ

P({ω : Γi+1(ω) = Γ (r), χi+1(ω) = e(l), ξ̄1,i(ω) = b})
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+
d∑

l=1

∑
Γ (r)∈ 2Γ

�r,2∑
x=b

P({ω : Γi+1(ω) = Γ (r), χi+1(ω) = e(l), ξ̄2,i(ω) = x})ψ(b;x, α)

+
d∑

l=1

∑
Γ (r)∈Γ\(1Γ∪2Γ )

δ0,bP({ω : Γi+1(ω) = Γ (r), χi+1(ω) = e(l)}).

Now we are able to find explicitly the transition probabilities of the Markov
chain (1). For the sake of brevity, let us introduce events

Aj,i(r, k, x1
j , b

1
j ) = {ω : Γi(ω) = Γ (r), χi(ω) = e(k), κj,i(ω) = x1

j , ξ̄j,i−1(ω) = b1j},

Dj,i(x1
j , x

2
j , b

2
j )

= {ω : x2
j = max{0, x1

j + ηj,i(ω) − ξj,i(ω)}, b2j = min{x1
j + ηj,i(ω), ξj,i(ω} }

for x1
j = 0, 1, . . . , x2

j = 0, 1, . . . , b2j = 0, 1, . . . . Then the transition probability
of the Markov chain (1) has the form:

P(Aj,i+1(r ⊕ 1, l, x2
j , b

2
j ) | Aj,i(r, k, x1

j , b
1
j ))

= ak,lP(Dj,i(x1
j , x

2
j , b

2
j ) | Aj,i(r, k, x1

j , b
1
j )).

For Γ (r⊕1) �∈ jΓ we have

P(Dj,i(x1
j , x

2
j , b

2
j ) | Aj,i(r, k, x1

j , b
1
j ))

= P({ω : x2
j = x1

j + ηj,i(ω), b2j = 0} | Aj,i(r, k, x1
j , b

1
j ))

= δ0,b2j
ϕ(x2

j − x1
j ; j, k, Tr⊕1).

Let us consider now the case Γ (r⊕1) ∈ jΓ . Assume x2
j = 0. Then for x1

j � �r⊕1,j

and b2j � �r⊕1,j we have

P(Dj,i(x1
j , x

2
j , b

2
j ) | Aj,i(r, k, x1

j , b
1
j ))

= P({ω : x1
j + ηj,i(ω) � �r⊕1,j , b

2
j = x1

j + ηj,i(ω)} | Aj,i(r, k, x1
j , b

1
j ))

= ϕ(b2j − x1
j ; j, k, Tr⊕1),

when x1
j � �r⊕1,j and b2j > �r⊕1,j

P(Dj,i(x1
j , x

2
j , b

2
j ) | Aj,i(r, k, x1

j , b
1
j )) = 0,

but when x1
j > �r⊕1,j we have

P(Dj,i(x1
j , x

2
j , b

2
j ) | Aj,i(r, k, x1

j , b
1
j )) = 0.

Finally, for x2
j > 0 we have

P(Dj,i(x1
j , x

2
j , b

2
j ) | Aj,i(r, k, x1

j , b
1
j ))

= P({ω : x1
j + ηj,i(ω) � �r⊕1,j , b

2
j = x1

j + ηj,i(ω)} | Aj,i(r, k, x1
j , b

1
j ))

= δ�r⊕1,j ,b2j
ϕ(b2j + �r⊕1,j − x1

j ; j, k, Tr⊕1).

In effect, this proves the following.
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Lemma 2. The transition probability

P(Aj,i+1(r ⊕ 1, l, x2
j , b

2
j ) | Aj,i(r, k, x1

j , b
1
j )) (5)

equals
ak,lϕ(x2

j − x1
j ; j, k, Tr⊕1)

for Γ (r⊕1) �∈ jΓ and b2j = 0; it equals

ak,lϕ(b2j − x1
j ; j, k, Tr⊕1)

for Γ (r⊕1) ∈ jΓ , x2
j = 0, x1

j � �r⊕1,j, and b2j � �r⊕1,j; it equals

ak,lϕ(x2
j + �r⊕1,j − x1

j ; j, k, Tr⊕1)

for Γ (r⊕1) ∈ jΓ , x2
j > 0, x1

j � x2
j + �r⊕1,j, and b2j = �r⊕1,j; it equals 0 in

the remaining cases. Hence, the states of the Markov chain (1) of the form
(Γ (r), e(k), xj , bj) with either Γ (r) �∈ jΓ , bj > 0, or Γ (r) ∈ jΓ , xj = 0, bj >
�r⊕1,j, or Γ (r) ∈ jΓ , xj > 0, bj �= �r⊕1,j are inessential. The remaining states
belong to a single class of communicating states.

Denote by Qx,j(r, k, b) the stationary probability for the state (Γ (r), x, e(k), b) of
the Markov chain (1) with fixed j = 1, 2. Let the essential states be ordered so
that the value of k is shifted first, then the value of b, and, finally, that of x.
This way they make series (to be read row-wise):

(Γ (1), 0, e(1), 0), (Γ (1), 0, e(2), 0), . . . , (Γ (1), 0, e(d), 0),

(Γ (1), 0, e(1), 1), (Γ (1), 0, e(2), 1), . . . , (Γ (1), 0, e(d), 1),
. . . ,

(Γ (1), 0, e(1), �̃1,j), (Γ (1), 0, e(2), �̃1,j), . . . , (Γ (1), 0, e(d), �̃1,j),

(Γ (2), 0, e(1), 0), (Γ (2), 0, e(2), 0), . . . , (Γ (2), 0, e(d), 0),
. . . ,

(Γ (n), 0, e(1), �̃n,j), (Γ (n), 0, e(2), �̃n,j), . . . , (Γ (n), 0, e(d), �̃n,j),

(Γ (1), 1, e(1), �̃1,j), (Γ (1), 1, e(2), �̃1,j), . . . , (Γ (1), 1, e(d), �̃1,j),

(Γ (2), 1, e(1), �̃2,j), (Γ (2), 1, e(2), �̃2,j), . . . , (Γ (2), 1, e(d), �̃2,j),
. . . ,

(Γ (n), 1, e(1), �̃n,j), (Γ (n), 1, e(2), �̃n,j), . . . , (Γ (n), 1, e(d), �̃n,j),

(Γ (1), 2, e(1), �̃1,j), (Γ (1), 2, e(2), �̃1,j), . . . , (Γ (1), 2, e(d), �̃1,j),
. . .

Then introduce the row vectors

Q0,j(r, b) = (Q0,j(r, 1, b), Q0,j(r, 2, b), . . . , Q0,j(r, d, b)),

Q0,j(r) = (Q0,j(r, 1), Q0,j(r, 2), . . . , Q0,j(r, �̃r,j)),
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Qx,j(r) = (Qx,j(r, 1, �̃r,j), Qx,j(r, 2, �̃r,j), . . . , Qx,j(r, k, �̃r,j)), x � 1,

Qx,j = (Qx,j(1), Qx,j(2), . . . , Qx,j(n)), x � 0,

Qj = (Q0,j , Q1,j , . . .)

with stationary probabilities as its elements in accordance to the selected order-
ing. Notice that the vector Q0,j(r, k) contains one element for those r with
Γ (r) �∈ jΓ . Our nearest goal now is to exhibit a matrix structure of the transition
probabilities (5) which is induced by the block-wise partition of the station-
ary probability distribution vector Qj . Since the index j remains unchanged in
course of this operation it will be omitted in notations Qx,j , Qj . Let

Φr(x)=

⎛

⎜⎜⎜⎝

a1,1ϕ(x; j, 1, Tr), a1,2ϕ(x; j, 1, Tr), . . . , a1,dϕ(x; j, 1, Tr)
a2,1ϕ(x; j, 2, Tr), a2,2ϕ(x; j, 2, Tr), . . . , a2,dϕ(x; j, 2, Tr)

...
...

. . .
...

ad,1ϕ(x; j, d, Tr), ad,2ϕ(x; j, d, Tr), . . . , ad,dϕ(x; j, d, Tr

⎞

⎟⎟⎟⎠, x = 0, 1, . . . ,

Φr(x) = 0, x < 0.

Then the d×d matrix consisting of probabilities (5) for k = 1, 2, . . . , d, l = 1, 2,
. . . , d with fixed values for r, x1

j , x2
j , b1j , and b2j can be expressed as Φr⊕1(x2

j −x2
1)

for Γ (r⊕1) �∈ jΓ and b2j = 0, as Φr(b2j −x1
j ) for Γ (r⊕1)∈ jΓ , x2

j = 0, x2
j � �r⊕1,j , and

b2j � �r⊕1,j , as Φr⊕1(�r⊕1,j + x2
j − x1

j ) for Γ (r⊕1) ∈ jΓ , x2
j > 0, x1

j � x2
j + �r⊕1,j ,

and b2j = �r⊕1,j , and as the zero matrix in the remaining cases. The first and
the third cases can be combined if we put �̃r⊕1,j = �r⊕1,j for Γ (r⊕1) ∈ jΓ and
�̃r⊕1,j = 0 and Γ (r⊕1) �∈ jΓ : Φr⊕1(�̃r⊕1,j + x2

j − x1
j ). At the next grouping step

we fix values x1
j � 1 and x2

j � 1 implying b1j = �̃r,j and b2j = �̃r⊕1,j , and find the
square matrices of transition probabilities for r = 1, 2, . . . , n, this corresponds
to series Qx of stationary probabilities with x � 1. Set

Φ(x) =

⎛
⎜⎜⎜⎜⎜⎝

0 Φ2(�̃2,j + x) 0 . . . 0
0 0 Φ3(�̃3,j + x) . . . 0
...

...
...

. . .
...

0 0 0 . . . Φn(�̃n,j + x)
Φ1(�̃1,j + x) 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

.

Then the interesting part of the transition probability matrix is Φ(x2
j − x1

j ).
Now assume that x1

j = x2
j = 0. Then b1j varies from 0 through �̃r,j , and b2j

varies from 0 through �̃r⊕1,j . In this regard let us introduce a matrix of size
(�̃r,j + 1) × (�̃r⊕1,j + 1) with blocks

Φ̃r⊕1 =

⎛
⎜⎜⎜⎝

Φr⊕1(0) Φr⊕1(1) . . . Φr⊕1(�̃r⊕1,j)
Φr⊕1(0) Φr⊕1(1) . . . Φr⊕1(�̃r⊕1,j)

...
...

. . .
...

Φr⊕1(0) Φr⊕1(1) . . . Φr⊕1(�̃r⊕1,j)

⎞
⎟⎟⎟⎠
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and a block matrix

Φ̃ =

⎛
⎜⎜⎜⎜⎜⎝

0 Φ̃2 0 . . . 0
0 0 Φ̃3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Φ̃n

Φ̃1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

.

The repeated rows in the matrix Φ̃r are explained by the fact that the value of
the transition probability (5) doesn’t depend on b1j . Then the block of transition
probabilities corresponding to the sets of states with x1

j = x2
j = 0, is Φ̃. Next,

assume that x1
j = 0 and x2

j � 1. Then b2j = �̃r⊕1,j and b1j = 0, 1, . . . , �̃r,j .
Introduce the column vectors of size (�̃r,j + 1) × 1

( ˜̃Φr⊕1(x))T =
(
Φr⊕1(�̃r⊕1,j + x) Φr⊕1(�̃r⊕1,j + x) . . . Φr⊕1(�̃r⊕1,j + x)

)T

and matrices

˜̃Φ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ˜̃Φ2(x) 0 . . . 0
0 0 ˜̃Φ3(x) . . . 0
...

...
...

. . .
...

0 0 0 . . . ˜̃Φn(x)
˜̃Φ1(x) 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The block of transition probabilities corresponding to x1
j = 0 and x2

j � 1

is ˜̃Φ(x2
j ). Finally, assume that x1

j � 1 and x2
j = 0. Then b1j = �̃r,j , b2j = 0, 1,

. . . , �̃r⊕1,j . Let Ed stand for the d × d identity matrix. Introduce an auxiliary
block matrix Λ with d×d blocks. Let its blocks make n columns, the first �̃1,j +1
block rows have the form (Ed, 0, 0, . . . , 0), then there are �̃2,j +1 rows of the form
(0, Ed, 0, . . . , 0) , and so on, and, finally, �̃n,j +1 rows of the form (0, 0, 0, . . . , Ed)

in conclusion. It’s not hard to prove that ˜̃Φ(x) = ΛΦ(x). Finally, we will need
1 × (�̃r⊕1,j + 1) matrices

˜̃̃
Φr⊕1(x) =

(
Φr⊕1(−x) Φr⊕1(1 − x) . . . Φr⊕1(�̃r⊕1,j − x)

)

and matrices

˜̃̃
Φ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
˜̃̃
Φ2(x) 0 . . . 0

0 0
˜̃̃
Φ3(x) . . . 0

...
...

...
. . .

...

0 0 0 . . .
˜̃̃
Φn(x)

˜̃̃
Φ1(x) 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the block of transition probabilities with x1
j � 1 and x2

j = 0 is
˜̃̃
Φ(x2

j ).
Put �∗ = max{�r,j : r = 1, 2, . . . , n}. In effect, we have found that the transition
probability matrix of the Markov chain (1) has the following block form:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ̃ ˜̃Φ(1) ˜̃Φ(2) ˜̃Φ(3) ˜̃Φ(4) . . .
˜̃̃
Φ(1) Φ(0) Φ(1) Φ(2) Φ(3) . . .
˜̃̃
Φ(2) Φ(−1) Φ(0) Φ(1) Φ(2) . . .

...
...

...
...

...
. . .

˜̃̃
Φ(�∗) Φ(1 − �∗) Φ(2 − �∗) Φ(3 − �∗) Φ(4 − �∗) . . .

0 Φ(−�∗) Φ(1 − �∗) Φ(2 − �∗) Φ(3 − �∗) . . .
0 0 Φ(−�∗) Φ(1 − �∗) Φ(2 − �∗) . . .
...

...
...

...
. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So, the stationary probabilities satisfy the following matrix equalities:

Q0 =
(
Q0Φ̃(0) +

�∗∑
x=1

Qx

˜̃̃
Φ(x)

)
, (6)

Qw =
(
Q0ΛΦ(w) +

�∗+w∑
x=1

QxΦ(w − x)
)
, w � 1. (7)

Because of the specific structure of the transition probability matrix we use cen-
sored Markov chains [12] to obtain an effective numerical algorithm to evaluate
the stationary probability distribution of the Markov chain (1). Fix any integer
a > �∗ and observe the Markov chain (1) at passages of the set

Sa = {(Γ (r), x, e(k), b) : r = 1, . . . , n; k = 1, . . . , d;

(x = 0, b = 0, . . . , �̃r,j) ∨ (1 � x � a, b = �̃r,j)}.

Let
{(Γ̂i(ω), κ̂j,i(ω), χ̂i(ω), ξ̂j,i(ω)); i = 0, 1, . . .} (8)

be the embedded Markov chain. Denote by A(r′, u, l; r, v, k) the conditional prob-
ability to first enter the set Sa through state (Γ (r′), a−u, l, �̃r′,j) ∈ Sa starting in
a state (Γ (r), a + v, e(k), �̃r,j) �∈ Sa. Further, denote by B(r′, u, l; r, k) the condi-
tional probability that the state of the Markov chain (1) is (Γ (r′), a−u, e(l), �̃r′,j)
at the first strong descending ladder time [13] of a sequence {κj,i(ω); i = 0, 1, . . .}
given that the initial state is (Γ (r), a, e(k), �̃r,j). Introduce matrices

A(r′, u; r, v) =

⎛
⎜⎝
A(r′, 1, u; r, 1, v) · · · A(r′, d, u; r, 1, v)

...
. . .

...
A(r′, 1, u; r, d, v) · · · A(r′, d, u; r, d, v)

⎞
⎟⎠ ,

A(u; v) =

⎛
⎜⎝
A(1, u; 1, v) · · · A(n, u; 1, v)

...
. . .

...
A(1, u;n, v) · · · A(n, u;n, v)

⎞
⎟⎠ ,
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B(r′, u; r) =

⎛
⎜⎝
B(r′, u, 1; r, 1) · · · B(r′, u, d; r, 1)

...
. . .

...
B(r′, u, 1; r, d) · · · B(r′, u, d; r, d)

⎞
⎟⎠ ,

B(u) =

⎛
⎜⎝
B(1, u; 1) · · · B(n, u; 1)

...
. . .

...
B(1, u;n) · · · B(n, u;n)

⎞
⎟⎠ .

Then the block matrix of transition probabilities of the censored Markov chain
(8) corresponding to transitions from (Γ (r), x1

j , e
(k), b1j ) to (Γ (r′), x2

j , e
(l), b2j ) with

fixed queue levels x1
j and x2

j , and packed the same way as matrix A(u; v) is, equals

Φ̃ for x1
j = x2

j = 0,

ΛΦ(x2
j ) +

∞∑
y=1

ΛΦ(a + y)A(a − x2
j ; y) for x1

j = 0, x2
j > 0,

˜̃̃
Φ(x1

j ) for x1
j > 0, x2

j = 0,

Φ(x2
j − x1

j ) +
∞∑

y=1

Φ(a + y − x1
j )A(a − x2

j ; y) for x1
j > 0, x2

j > 0.

Lemma 3. One has

B(u) = Φ(−u) +
∞∑

y=0

Φ(y)Aa−1(u − 1; y + 1), u = 1, 2, . . . , �∗, (9)

A(u; v) =
min{�∗−u,v−1}∑

x=1

Aa+x(0; v − x)Ba+x(u + x)

+ B(u + v), u = 0, 1, . . . , �∗ − 1, v = 1, 2, . . . (10)

To prove (9) one should apply the law of total probability to the definition
of the probability B(r′, u, l; r, k) conditioned on the state after one step of the
Markov chain (1). Then, equation (10) is proven by the law of total probabil-
ity applied to the definition of A(r′, u, l; r, v, k) conditioned on the state of the
censored chain (1) at the first strong descending ladder time of the sequence
{κj,i(ω); i = 0, 1, . . .}.

Define, for convenience, by A(0; 0) = Edn the dn × dn identity matrix.

Theorem 2. Assume that

Edn −
∞∑

y=0

Φ(y)A(0; y)
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is an invertible matrix. Then the stationary probabilities Qx(r, k, b) of essential
states (Γ (r), x, e(k), b) satisfy the following matrix equations

Q0 = Q0Φ̃ +
�∗∑

x=1

Qx

˜̃̃
Φ(x), (11)

Qw = Q0Λ

(
Φ(w) +

∞∑
y=1

Φ(�∗ + 1 + y)A(�∗ + 1 − w; y)

+
( ∞∑

y=0

Φ(�∗ + y + 1)A(0; y)
)(

Edn −
∞∑

y=0

Φ(y)A(0; y)
)−1

×
(
Φ(w − �∗ − 1) +

∞∑
y=1

Φ(y)A(�∗ + 1 − w; y)
))

+
�∗∑

x=1

Qx

(
Φ(w − x) +

∞∑
y=1

Φ(�∗ + 1 + y − x)A(�∗ + 1 − w; y)

+
( ∞∑

y=0

Φ(�∗ + 1 + y − x)A(0; y)
)(

Edn −
∞∑

y=0

Φ(y)A(0; y)
)−1

×
(
Φ(w − �∗ − 1) +

∞∑
y=1

Φ(y)A(�∗ + 1 − w; y)
))

, (12)

Q0Λ
(
Edn −

∞∑
y=0

( �∗∑
a=0

Φ(y + a)
)
A(0; y)

)

+
�∗∑

x=1

Qx

(
Edn −

∞∑
y=0

(�∗−x∑
a=0

Φ(y + a)
)
A(0; y)

)

=
1
n

(a1, a2, . . . , ad, a1, a2, . . . , ad, . . . , a1, a2, . . . , ad)

×
(
Edn −

∞∑
y=0

( ∞∑
a=0

Φ(a + y)
)
A(0; y)

)
(13)

Qa =
{a−1∑

x=1

Qx

( ∞∑
y=0

Φ(a + y − x)A(0; y)
)

+ Q0Λ
( ∞∑

y=0

Φ(a + y)A(0; y)
)}(

Edn −
∞∑

y=0

Φ(y)A(0; y)
)−1

, (14)

for w = 1, 2, . . . , �∗, and a = �∗ + 1, �∗ + 2, . . . .
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Here Eqs. (11) and (12) are the Chapman–Kolmogorov stationarity equations
for the censoring set S�∗ . Equation (14) follows from the Chapman–Kolmogorov
stationarity equations for the censoring set Sa with a � �∗+1. Finally, Eq. (13) is
obtained by substituting Eqs. (11), (12), and (14) into a normalization condition
taking into account equal probabilities of all server states and independence of
the server and the environment.

The invertibility condition in Theorem2 holds when �r,j � 2 for all Γ (r) ∈
jΓ . Indeed, a sufficient condition of invertibility consists in the localization of
eigenvalues of the matrix

∞∑
y=0

Φ(y)A(0; y), (15)

those should be less than unity in absolute value [11, c. 118]. The matrix (15)
has only non-negative elements. It is known that among eigenvalues of a non-
negative matrix there is a simple non-negative one which is the largest in absolute
value [11]. Call it ρ. To locate the extreme eigenvalue ρ of the matrix (15) we
will use Gershgorin Circle theorem [11, p. 415]. Denote by φs,t � 0 the element
in row s, column t of the matrix (15). Then ρ satisfies one of equalities

|φs,s − ρ| �
nd∑
t=1
t	=s

φs,t.

Hence

0 � ρ �
nd∑
t=1

φs,t .

Now, let φ̂s,t(y) be the element in row s, column t of Φ(y), ˆ̂
φs,t(y) the element

in row s, column t of the matrix A(0; y). According to the rule of matrix multi-
plication,

nd∑
t=1

φs,t =
∞∑

y=0

nd∑
t=1

nq∑
q=1

φ̂s,q(y) ˆ̂
φd,t(y) =

∞∑
y=0

nq∑
q=1

φ̂s,q(y)
nd∑
t=1

ˆ̂
φq,t(y).

Here the total of ˆ̂
φq,t(y) for t = 1, 2, . . . , nd is the probability that at the

first passage time of the set Sa the chain hits the boundary of it. When the
assumption on �r,j is true this probability must be strictly less than unity. Thus

∞∑
y=0

nq∑
q=1

φ̂s,q(y)
nd∑
t=1

ˆ̂
φq,t(y) <

∞∑
y=0

nq∑
q=1

φ̂s,q(y) � 1.

The second inequality has a probabilistic interpretation as well: summation w.r.t.
q = 1, 2, . . . , nd gives the probability that the queue Oj grows by y in one step.

The stationary probabilities numerically evaluated by Theorem2 are to be
used to obtain the marginal stationary probability distributions of the sequence
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{η5,i(ω); i = 0, 1, . . .}. From now on we show the index j again. So, for Γ (r) ∈ jΓ ,
j = 1, 2 in the steady state we have

P({ω : Γi+1(ω) = Γ (r), χi+1(ω) = e(l), ξ̄1,i(ω) = b})
= Q0(r, l, b), b = 0, 1, . . . , �r,1 − 1,

P({ω : Γi+1(ω) = Γ (r), χi+1(ω) = e(l), ξ̄1,i(ω) = �r,1})

=
∞∑

xj=0

Qx,j(r, l, �r,1) =
al

n
−

�r,1−1∑
b=0

Q0(r, l, b).

A program has been developed in Octave programming environment [14]. As
an example consider the following settings. Suppose we have an environment
with d = 2 internal states and transition probabilities a1,1 = 0.9, a1,2 = 0.1,
a2,1 = 0.4, a2,2 = 0.6. In the state e(1) the flows Π1 and Π2 are Poissonian with
rates λ

(1)
1 = 0.5, λ

(1)
2 = 0.4. In the state e(2) the flows Π1 and Π2 are Bartlett

with parameters λ
(2)
1 = 0.25, ρ1 = 0.5, q1 = 0.5, λ

(2)
2 = 0.2, ρ2 = 0.5, q2 = 0.5

and probability generating functions

∞∑
x=0

zxϕj(x; 2, t) = exp
{

λ(2)t
(ρj(1 − qj)z2

1 − qjz
+ (1 − ρj)z − 1

)}
.

With this choice of parameters the input rates for each flow are constant over
time. Then, put n = 4, T1 = 40, T2 = T4 = 4, T3 = 30, the flow Π1 is services
only in the state Γ (1) and �1,1 = 50, the flow Π2 is serviced only in the state
Γ (3) and �1,1 = 40. Using successively Lemma 1, Theorem 2, and Lemma 1 one
finds:

E η5,i(ω) = 14, var η5,i(ω) = 283.44.

Now, if the flows in the state e(2) are the same as in the state e(1), then

E η5,i(ω) = 14, var η5,i(ω) = 280.64.

The growth in the variance of a batch size leads to increase in the variance of
the number of repeated customers.
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Abstract. In this paper we consider an M/GI/∞ queueing system
operating in a semi-Markovian random environment. That is, the arrival
rate and service-time distribution change according to the external semi-
Markov process state transitions. The service policy subject to environ-
ment transitions is as follows: the service-time distribution of the present
customers does not change until their service is finished. The purpose of
our study is to obtain the probability distribution of the number of cus-
tomers in the system under asymptotic condition of high arrival rate and
frequent environment transitions. To do this, we first apply the method
of supplementary variable and the original method of dynamic screening
to our system. We then conduct the asymptotic analysis of the system
to obtain the discrete probability distribution.

Keywords: Queueing theory · Random environment · Semi-Markov
process · Method of dynamic screening · Method of asymptotic analysis

1 Introduction

Queueing systems subject to external stochastic influences such as Markov mod-
ulation and random environment are of considerate interest in scientific litera-
ture. Such influences are often represented as system breakdowns or arrivals of
priority customers (including batch arrivals) that force the system to behave at a
different mode. Namely, several cases of Markov-modulated single-server queues
are studied in [1]. Represented as a road subject to traffic incidents, the M/M/∞
system operating under batch partial failures is considered in [2]. The random
environment is assumed to have only two states: when there is an incident and
when there are no incidents on the road. In [4], authors consider a more general
case of M/M/∞ queue in Markovian random environment with arbitrary finite
number of states. The expression for steady-state factorial moments is obtained.
In [5], the analysis of M/G/∞ system in Markovian random environment is
given. As a result, transient mean and stationary variance of the number of
customers present in the system are obtained; a deeper analysis of exponential
service case is conducted; the asymptotic normality of the number of customers
probability distribution is shown under conditions of high arrival rate and fre-
quent environment transitions due to the central limit theorem. In turn, the
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 128–140, 2015.
DOI: 10.1007/978-3-319-25861-4 11
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steady-state mean number of customers in M/M/∞ in semi-Markovian random
environment is obtained in [7] as well as the steady-state distribution of the
number of customers for the environment with 2 states.

Depending on the model application, different service policies of present cus-
tomers with respect to environment transition may be considered. For instance,
in one of the earliest papers [3] a single-server queue with general service-time
is considered subject to interruptions with generally distributed durations. Two
different cases of customer behavior after interruption clearance are studied:
first, the resume policy, when the service is continued as it was left before the
interruption; second, the repeat policy, when the service starts over. In [10,11],
the M/G/∞ system in semi-Markovian random environment is studied. These
papers cover three cases of the present customers’ reaction to environment state
transitions. The first one is considered in the present paper — service-time dis-
tribution stays the same while the customer is in the system. This policy is also
assumed in [5]. In the second case all customers are immediately cleared from
the queue as environment state transition happens. The last case considers cus-
tomers in service moving to a secondary queue which is an infinite-server system
with bulk arrivals. This case is specifically analyzed in [10], and as a result the
steady-state mean number of customers in the secondary queue is obtained.

Infinite-server queues are often used to approximate the behavior of systems
with sufficiently large number of servers, such as banks, call-centers, supermar-
kets or digital distribution platforms. Such objects in reality are often affected
by extraneous factors of stochastic nature which affect their performance. For
instance, the change of bank rate set by the Central bank affects the conditions
under which commercial banks give loans to their clients. These, in turn, sig-
nificantly influence the intensity of clients’ arrival. In this article we consider
a mathematical model of such situation as an M/GI/∞ queue operating in a
random environment, for which the underlying process is a semi-Markov process
with finite number of states. The arrival rate and service-time distribution change
according to the environment state. Note that distribution of service-time cus-
tomers which are currently being served does not change until the service-time
is finished. Say the bank provided a credit to the client on certain conditions
and during the repayment period there was a change of bank rate. The client
will continue to repay his debt on those initial conditions — as mentioned in a
loan agreement.

2 Problem Statement

We consider an M/GI/∞ queueing system operating in semi-Markovian random
environment. The system under discussion is an infinite-server queue with one
stationary Poisson arrival process with parameter λsN and the unlimited number
of servers each having service-time distribution function Bs(x), s = 1,K. We
use a large parameter N that represents the condition of high arrival rate. Here
s = 1,K is the current state of a semi-Markov stochastic process s(t) defined by
the matrix product P · A(x). The matrix P here is a probability matrix of s(t)
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state transitions and A(x) is a diagonal matrix with conditional sojourn time
cdfs for every state s = 1,K of s(t) on its main diagonal. As there is always
a free server in the system, there is no queue or loss option and each arriving
customer is immediately placed at any free server and stays there for random
time with distribution function Bs(x). Note that we study the case when service-
time distribution of a customer which is currently being served does not change
until its service is finished.

That being said, for considered model we define a two-component process
{i(t), s(t)}, where i(t) with values i ≥ 0 is the number of customers in the
system at time t. Apparently, this process is non-Markovian. To deal with it,
we first apply the original method of dynamic screening and the method of
supplementary variable.

3 Method of Dynamic Screening

The method of dynamic screening can be used for the analysis of both queueing
systems and networks. Further applications may be found in [14–16]. We apply
this method to our system in the following way.

Given that at a certain time t0 the system is empty, we pick a moment T
and track the customer arrivals during the time interval (t0, T ). The customer
will be referred to as “screened” at time t with probability

Ss(t) = 1 − Bs(T − t), s = 1,K, t0 < t < T,

if it arrived at the system at time t < T and was not fully serviced until the
time T . Thus, the screened customers will be in the system taking up its servers
at time T .

Let us denote by n(t) the number of customers that were screened until time
t. Stochastic process n(t) is a screened point process with its points being the
screened customers. The following identity always takes place:

i(T ) = n(T ). (1)

We need to choose time t0 so that at all times t < t0 there are no screened
customers, i.e.

Ss(t) = 1 − Bs(T − t) = 0, s = 1,K, t < t0.

Since Bs(x) is a cumulative distribution function, it is obvious enough to put
t0 = −∞.

We write the possible state transitions of n(t) and their probabilities assum-
ing n(t) = n, n ≥ 0 as follows:

n(t + Δt) =

{
n + 1, with prob. λsΔtSs(t) + o(Δt),
n, with prob. 1 − λsΔtSs(t) + o(Δt),

s = 1,K

Equality (1) allows us to analyze a point process n(t) instead of i(t). Charac-
teristics of the process n(t) at time T coincide with the characteristics of value
i(T ).
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4 Kolmogorov Differential Equations

In order to deal with semi-Markovian process s(t), we first need to apply the
method of supplementary variable. We define z(t) as residual sojourn time of s(t)
process in the current state, i.e. the interval from t until the next environment
transition. It follows that the three-dimensional process {s(t), n(t), z(t)} is a
Markovian one. Therefore, we define the probabilities of system and environment
state at time t as follows:

P (s, n, z, t) = P
{

s(t) = s, n(t) = n, z(t) <
z

N

}
, s = 1,K, n ≥ 0. (2)

Here the big parameter N justifies the condition of frequent environment tran-
sitions that compensates high arrival rate. The matrices that define the process
s(t) are determined as follows:

P =

⎛
⎜⎜⎜⎝

p11 p12 · · · p1K

p21 p22 · · · p2K

...
...

. . .
...

pK1 pK2 · · · pKK

⎞
⎟⎟⎟⎠ ,A(x) =

⎛
⎜⎜⎜⎝

A1(x) 0 · · · 0
0 A2(x) · · · 0
...

...
. . .

...
0 0 · · · AK(x)

⎞
⎟⎟⎟⎠ .

Let τs be the sojourn time of s(t) in state s = 1,K. Then functions As(x) are
defined in the following way:

As(x) = P
{ τs

N
< x

}
= P {τs < Nx} , s = 1,K,

which means that As(x) are the distribution functions of N -fold sojourn time of
s(t) in state s = 1,K.

The system of Kolmogorov differential equations that defines the probabilities
(2) is written as follows:

1
N

∂P (s, n, z, t)
∂t

− ∂P (s, n, z, t)
∂z

+
∂P (s, n, 0, t)

∂z
=

λsSs(t) {P (s, n − 1, z, t) − P (s, n, z, t)} + (3)

As(z)
K∑

k=1

pks
∂P (k, n, 0, t)

∂z
, s = 1,K, n ≥ 0

Here we use the denotation

∂P (s, n, 0, t)
∂z

=
∂P (s, n, z, t)

∂z

∣∣∣∣
z=∞

.

Provided z → ∞, the initial condition to such system’s solution is defined as
follows:

P (s, n, t0) =

{
r(s), if n = 0,

0, if n > 0,
s = 1,K (4)
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Here r(s) are the stationary probabilities of embedded Markov chain states of
s(t), s = 1,K. The partial characteristic functions of the process {s(t), n(t), z(t)}
are defined as follows:

H(s, u, z, t) =
∞∑

n=0

ejunP (s, n, z, t), s = 1,K

Here j =
√−1 is the imaginary unit. We rewrite the system (4) using partial

characteristic functions in the following way:

1
N

∂H(s, u, z, t)
∂t

− ∂H(s, u, z, t)
∂z

+
∂H(s, u, 0, t)

∂z
=

λsSs(t)(eju − 1)H(s, u, z, t)+ (5)

As(z)
K∑

k=1

pks
∂H(k, u, 0, t)

∂z
, s = 1,K

We then use the following vector and matrix denotations:

H(u, z, t) =
(
H(1, u, z, t) H(2, u, z, t) · · · H(K,u, z, t)

)
,

Λ =

⎛
⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λK

⎞
⎟⎟⎟⎠ ,S(t) =

⎛
⎜⎜⎜⎝

S1(t) 0 · · · 0
0 S2(t) · · · 0
...

...
. . .

...
0 0 · · · SK(t)

⎞
⎟⎟⎟⎠ ,

to rewrite the system (4) as follows:

1
N

∂H(u, z, t)
∂t

− ∂H(u, z, t)
∂z

+

∂H(u, 0, t)
∂z

[I − PA(z)] = (eju − 1)H(u, z, t)ΛS(t).
(6)

Here I is the identity matrix. Our goal is to obtain the solution to system (6) as
z → ∞ that satisfies the initial condition derived from (4):

H(u, t0) = r. (7)

The row vector r here is the stationary probability distribution of the embedded
Markov chain of the process s(t) and solves the following system of matrix-vector
equations: {

rP = r,

re = 1.
(8)

5 Method of Asymptotic Analysis

Method of asymptotic analysis for queueing systems is the analysis of equa-
tions that define any of the system’s characteristics or parameters [13]. It allows
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us to obtain the explicit distribution, parameters and moments under certain
asymptotic conditions.

We obtain the solution to system (6) under asymptotic conditions of high
arrival rate and frequent environment transitions, that is, as N → ∞.

5.1 First-Order Asymptotic Analysis

Let us define substitutions for system (6) as follows:

ε =
1
N

,u = εw,H(u, z, t) = F1(w, z, t, ε).

Then (6) can be rewritten as

ε
∂F1(w, z, t, ε)

∂t
− ∂F1(w, z, t, ε)

∂z

+
∂F1(w, 0, t, ε)

∂z
[I − PA(z)] (9)

= (ejεw − 1)F1(w, z, t, ε)ΛS(t).

As ε → 0, the following equality holds:

∂F1(w, z, t)
∂z

=
∂F1(w, 0, t)

∂z
[I − PA(z)] . (10)

We then represent the function F1(w, z, t) as a product

F1(w, z, t) = r(z)Φ1(w, t). (11)

Substitution (11) applied to (10) gives the following equation that defines row-
vector r(z):

r(z) =

z∫

0

r′(0) [I − PA(x)] dx (12)

To determine the value r′(0), we make the following substitution

r′(0) = Cr, C = const. (13)

Note that according to (8)

lim
z→∞ r(z) = C

∞∫

0

r [I − PA(x)] dx

= C

∞∫

0

r [I − A(x)] dx = CrA.
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Apparently, the matrix A here is the diagonal matrix containing means As, s =
1,K of distribution functions from A(x) on its main diagonal. According to (8),
the constant C is derived as follows:

C =
1

rAe
=

1
a
.

Finally, we write the expression for r(z):

r(z) =
1
a

z∫

0

r [I − PA(x)] dx.

Note that

r(z)
∣∣∣∣
z=∞

=
rA
a

.

Now we set z = ∞ in (5.1) and make substitution (11):

ε
1
a
rA

∂Φ1(w, t)
∂t

+ Φ1(w, t)r [I − P]

= (ejεw − 1)Φ1(w, t)
1
a
rAΛS(t).

Post-multiplication by e of both parts of the latter equation gives us the following
first-order ordinary differential equation:

∂Φ1(w, t)
∂t

=
1
a

ejεw − 1
ε

Φ1(w, t)rAΛS(t)e. (14)

As ε → 0, the function Φ1(w, t) that solves the equation above and satisfies the
initial condition derived from (7) is as follows:

Φ1(w, t) = exp {jwκ1(t)} ,

κ1(t) =
1
a

t∫

−∞
rAΛS(τ)edτ.

Finally, we can write

H(u, t) = F1(w, t, ε) ≈ F1(w, t) =
rA
a

Φ1(w, t) =
rA
a

exp{jwκ1(t)},

where w = Nu. It follows that

M{ejun(t)} = H(u, t)e ≈ h1(u, t) = exp{juκ1(t)N}.

Since (1) takes place, we can finally conclude:

M{ejui(T )} = M{ejun(T )} = H(u, T )e
≈ h1(u, T ) = exp{juκ1(T )N}.
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Let us calculate the value κ1(T ):

κ1(T ) =
∫ T

−∞
rAΛS(t)edt =

∫ T

−∞

K∑
s=1

r(s)AsλsSs(t)dt

=
K∑

s=1

r(s)Asλs

∫ T

−∞
{1 − Bs(T − t)}dt

=
K∑

s=1

r(s)Asλs

∫ ∞

0

{1 − Bs(τ)}dτ =
K∑

s=1

r(s)Asλsbs,

where bs are the service-time means, s = 1,K. Thus

κ1(T ) =
K∑

s=1

r(s)λs

∞∫

0

{1 − Bs(τ)}dτ =
K∑

s=1

r(s)Asλsbs = rAΛBe,

where B is a diagonal matrix containing service-time means bs.

5.2 Second-Order Asymptotic Analysis

In the equation (6) we make a substitution

H(u, z, t) = H2(u, z, t)e{juκ1(t)N}. (15)

The function H2(u, z, t) here is the centered characteristic function as the
following relation takes place:

H2(u, z, t)e = H(u, z, t)e−juκ1(t)Ne

= M {exp [ju(n(t) − κ1(t)N)]} .

The substitution (15) yields an equation which defines H2(u, z, t):

1
N

∂H2(u, z, t)
∂t

− ∂H2(u, z, t)
∂z

+
∂H2(u, 0, t)

∂z
[I − PA(z)] (16)

= H2(u, z, t)
{
(eju − 1)ΛS(t) − juκ′

1(t)I
}

We rewrite the latter system using substitutions

ε2 =
1
N

,u = εw,H2(u, t) = F2(w, z, t, ε)

in the following way:

ε2
∂F2(w, z, t, ε)

∂t
−∂F2(w, z, t, ε)

∂z

+
∂F2(w, 0, t, ε)

∂t
[I − PA(z)] (17)

= F2(w, z, t, ε)[(ejεw−1)ΛS(t) − jεwκ′
1(t)I]
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As ε → 0, the following relation takes place:

∂F2(w, z, t)
∂z

=
∂F2(w, 0, t)

∂z
[I − PA(z)] .

It follows that the function F2(w, z, t) may be represented as follows:

F2(w, z, t) = r(z)Φ2(w, t). (18)

In turn, the function F2(w, z, t, ε) may be approximated with the following
expression:

F2(w, z, t, ε) = Φ2(w, t) {r(z) + jεwf2(z, t)} + O(ε2). (19)

The row-vector function f2(z, t) is to be defined. To do this, first we make a
substitution (19) in the system (17). We also make the following approximation
in (17):

ejεw − 1 = jεw + O(ε2),

and then set ε → 0. These manipulations yield us the following equation that
defines f2(z, t):

∂f2(z, t)
∂z

− ∂f2(0, t)
∂z

[I − PA(z)] + Φ2(w, t)r(z) [ΛS(t) − κ′
1(t)I] = 0. (20)

Here 0 is the row-vector filled with zeros. It follows that as z → ∞, we have the
relation

f2(t) =

∞∫

0

{
∂f2(0, t)

∂z
[I − PA(x)] − r(x) [ΛS(t) − κ′

1(t)I]
}

dx. (21)

The right part of the latter relation is the improper integral. In order for it
to converge, it is necessary that the integrand function converges to 0 as the
variable of integration approaches ∞. That is, the following relation stands for
f2(0, t):

∂f2(0, t)
∂z

[I − P] =
rA
a

[ΛS(t) − κ′
1(t)I] . (22)

The equation above is the non-homogeneous underdetermined system of linear
equations. We represent its solution as a sum of general solution to homogeneous
system and a partial solution to non-homogeneous system:

∂f2(0, t)
∂z

= c(t)r + g(t), (23)

where c(t) is an arbitrary scalar function of t. We write the additional condition
for the function g(t) as follows:

g(t)e = 0, (24)
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Let us now define the explicit expression for (21):

f2(t) =

∞∫

0

{
∂f2(0, t)

∂z
[I − P + P(I − A(z))] − r(z) [ΛS(t) − κ′

1(t)I]
}

dz

=

∞∫

0

[
1
a
rA − r(z)

]
[ΛS(t) − κ′

1(t)I] dz

+

∞∫

0

∂f2(0, t)
∂z

P [I − A(z)] dz

=
1
a
rA

∞∫

0

⎧⎨
⎩I − A−1

z∫

0

[I − A(x)] dx

⎫⎬
⎭ dz [ΛS(t) − κ′

1(t)I] +
∂f2(0, t)

∂z
PA.

Note that A−1
z∫
0

[I − A(x)] dx is a diagonal matrix that contains distribution

functions of both elapsed and residual sojourn time of s(t) at each of its states.
Then denoted by A is the diagonal matrix that contains means of such cdfs
respectively. Finally, we rewrite the expression for f2(t) as follows:

f2(t) =
1
a
rAA [ΛS(t) − κ′

1(t)I] +
∂f2(0, t)

∂z
PA. (25)

Now we show that the row-vector function f2(t) does not actually depend on the
arbitrary scalar function c(t) that is present in (23). To do that, we consider the
following term that is present in (25):

∂f2(0, t)
∂z

PA [ΛS(t) − κ′
1(t)I] e

= [c(t)r + g(t)]PA
[
I − 1

a
erA

]
ΛS(t)e

= g(t)PA
[
I − 1

a
erA

]
ΛS(t)e

+ c(t)rPAΛS(t)e − c(t)
1
a
rPAerAΛS(t)e.

With (8) and a = rAe in mind, we conclude that the two latter terms cancel
each other. Thus, the function c(t) is not present in (25).

Now let us determine the function Φ2(w, t). For this purpose, we again make
substitution (19) in (17) and also the following approximation:

ejεw − 1 = jεw +
(jεw)2

2
+ O(ε3).

As ε → 0 and z → ∞, this yields us the first-order ODE that defines Φ2(w, t):

∂Φ2(w, t)
∂t

=
(jw)2

2
Φ2(w, t) {κ′

1(t) + 2f2(t) [ΛS(t) − κ′
1(t)I] e} . (26)
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Its solution that satisfies the initial condition derived from (7) is of the following
form:

Φ2(w, t) = exp

{
(jw)2

2
κ2(t)

}
, (27)

where

κ2(t) = κ1(t) + 2

t∫

−∞
f2(τ) [ΛS(τ) − κ′

1(τ)I] edτ. (28)

Thus, the expression for the centered characteristic function H2(u, t) is
obtained and is written as follows:

H2(u, t) = F2(w, t, ε) ≈ F2(w, t) =
rA
a

Φ2(w, t)

=
rA
a

exp{ (jw)2

2
κ2(t)} =

rA
a

exp{ (ju)2

2
κ2(t)N}.

It follows that

H(u, t) = H2(u, t)ejuκ1(t)N ≈ rA
a

exp

{
juκ1(t)N +

(ju)2

2
κ2(t)N

}
, (29)

M{ejun(t)} = H(u, t)e ≈ h2(u, t) = exp

{
juκ1(t)N +

(ju)2

2
κ2(t)N

}
. (30)

Considering (1), the following identities are true:

M{ejui(T )} = M{ejun(T )} = H(u, T )e ≈ h2(u, T )

= exp{juκ1(T )N +
(ju)2

2
κ2(T )N},

(31)

where κ2(T ) is of the following form:

κ2(T ) = κ1(T ) + 2

T∫

−∞
f2(t) [ΛS(t) − κ′

1(t)I] edt (32)

According to the definition of functions Ss(t) = 1 − Bs(T − t) it is clear that
lim

t→∞ Ss(t) = 0, s = 1,K. Therefore, it is clear that the improper integral (32)
is converging and thus can be calculated numerically given specific system and
environment parameters.

Obviously, the asymptotic steady-state probability distribution of the number
of customers in the system defined by (31) is normal with first and second
cumulants κ1(t)N and κ2(t)N respectively. It is known that

M{i(T )} ≈ κ1(T )N,D{i(T )} ≈ κ2(T )N. (33)
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Inverse Fourier transform of (31) gives the probability density function of the
normally distributed random variable:

p(x) =
1√

2πκ2(T )N
exp

{
− (x − κ1(T )N)2

2κ2(T )N

}
. (34)

It is necessary to switch from this continuous distribution to discrete as follows:

P (i) = Cp(i), i ≥ 0, (35)

where the constant value C is defined considering the normalizing condition:

∞∑
i=0

P (i) = C

∞∑
i=0

p(i) = 1. (36)

Due to (36), C is given as follows:

C = 1/

∞∑
i=0

p(i) (37)

6 Conclusion

Thus, the Gaussian approximation of the probability distribution of the num-
ber of customers in the system M(λs)/G(Bs(x))/∞ is obtained during the
asymptotic analysis under conditions of high arrival rate and frequent envi-
ronment transitions. Using the method of dynamic screening, we considered a
non-stationary Markov point process n(t) instead of non-Markovian i(t) which
is the number of customers in the system. Then, according to the method of sup-
plementary variable we defined the residual sojourn time z(t) in the present state
of the environment process s(t) to be able to analyze it with theory of Markov
processes tools. After deriving the system of differential equations in terms of
vector characteristic functions of the number of customers in the system, we
conducted the asymptotic analysis of the system in question.

Earlier we considered a problem of M/G/∞ queue operating in Markovian
random environment with the same service policy when service-time distribution
does not change while the customer is in the system. Similarly, we obtained the
steady-state probability distribution of the number of customers in the system.
However, the Markov case narrows down the application area significantly. Thus,
in this paper we considered a more general case with random environment being
semi-Markovian.
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Abstract. We consider a modulated MAP flow of events with two
states; it is one of the mathematical models for an incoming stream
of claims (events) in digital integral servicing networks. The observa-
tion conditions for this flow are such that each event generates a period
of dead time during which other events from the flow are inaccessible
for observation and do not extend the dead time period (unextendable
dead time). We find an explicit form for a probability density of inter-
val duration between neighboring events in the observed flow. We con-
sider the stationary operation mode for the observed flow, so we disregard
the transient processes. The duration estimation of unextendable dead
time is essential to determine the number of the lost events which have
the useful information.

Keywords: Modulated map event flows · Unextendable dead time ·
Probability density function of interval duration · Transition probability

1 Introduction

Mathematical models of queueing theory are widely used to describe real physi-
cal, technical, and other systems and processes. Thanks to the fast development
of computer hardware and information technologies, another important field
of queueing theory applications has arisen, namely the design and creation of
informational and computational networks, computer communication networks,
satellite networks, telecommunication networks, etc. In practice, parameters that
determine the incoming flow of events change in time, and the changes are often
random; the latter has led researchers to consider doubly stochastic flows of
events. One of the first works in this direction was probably the paper [1] in
which a doubly stochastic flow is defined as a flow whose intensity is a random
process. Doubly stochastic flows can be divided into two classes: flows whose
intensity is a continuous random process and flows whose intensity is a piece-
wise constant random process with a finite number of states. We emphasize that
flows of the second class were introduced virtually at the same time in 1979, in
[2–4]. In [2,3], these flows were called MC (Markov Chain) flows; in [4], MVP
c© Springer International Publishing Switzerland 2015
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(Markov Versatile Processes) flows. Starting from the end of the 1980s, the latter,
especially after [5], have usually been called MAP (Markovian Arrival Process)
event flows. We note that MAP-flows of events are especially characteristic for
real telecommunication networks [6].

This article is an immediate development of the studies which were carried
out in [7–15]. In the studies of event flows, we can distinguish two classes of
problems: (1) estimating the states of an event flow [7–9]; (2) estimating flow
parameters [10–15].

One of the distorting factors in our estimates of event flow states and para-
meters is the dead time of sensing devices [16] which results from a detected
event. Other events that occur during a dead time period are inaccessible for
observation (simply speaking, they are lost). We can assume that this period
lasts for some fixed time (unextendable dead time). One example of such flows
is given by the CSMA/CD protocol, a random multiple access protocol with
conflict detection which is widely used in computer networks. At the moment
a conflict is registered (detected) on the input of a certain network node, the
“stub” (“plug”) signal is broadcast in the network; while the “stub” signal is
being sent out, claims arriving to this network node are refused service and are
forwarded to callback source. Here the time during which the network node is
closed for servicing claims that arrive there after a conflict is found can be treated
as the dead time of the device that registers conflicts in the network node.

In this paper an explicit form of a probability density function of interval
duration between neighboring events in modulated MAP event flow with unex-
tendable dead time is derived. The explicit form of the probability density pro-
vides the possibility to solve the problem of the flow parameters estimation and
of the dead time duration.

2 Problem Setting

We consider a modulated MAP flow of events with intensity represented by a
piecewise constant random process λ(t) with two states: λ(t) = λ1 or λ(t) = λ2

(λ1 > λ2 ≥ 0). The time during which process λ(t) remains at the ith, i =
1, 2, state is determing by two random values: (1) the first random value has
exponential distribution function F

(1)
i (t) = 1 − eαit, i = 1, 2; when the ith state

ends process λ(t) transits with probability equal one from the ith state to the
jth, i, j = 1, 2 (i �= j); (2) the second random value has exponential distribution
function F

(i)
2 (t) = 1− eλit, i = 1, 2; when the ith state ends process λ(t) transits

with probability P1(λj |λi) from the ith state to the jth (i �= j)and a flow event
occurs or process λ(t) transits with probability P0(λj |λi) from the ith state to
the jth (i �= j), but the flow event does not occur, or processλ(t) transits from
the ith state to the ith with probability P1(λi|λi) and a flow event occurs. Here
P1(λj |λi) + P0(λj |λi) + P1(λi|λi) = 1; i, j = 1, 2; i �= j. The first and the second
random values are independent from each other. Under these assumptions, λ(t)
is a Markov process. The infinitesimal characteristics matrices for the process
λ(t) are as follows [6]:
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D0 =
∥∥∥∥

−(α1 + λ1) α1 + λ1P0(λ2|λ1)
α2 + λ2P0(λ1|λ2) −(α2 + λ2)

∥∥∥∥ ,

D1 =
∥∥∥∥

λ1P1(λ1|λ1) λ1P1(λ2|λ1)
λ2P1(λ1|λ2) λ1P2(λ2|λ2)

∥∥∥∥ .

The elements of the matrix D1 are intensities of the process λ(t) passing from
the state to the state with an event occurrence. Diagonal elements of matrix D0

are the intensities of process λ(t) leaving its states, which are taken with the
opposite sign. Off-diagonal elements of matrix D0 are intensities of the process
λ(t) passing from the state to the state without an event occurrence. We should
note that if αi = 0, i = 1, 2, there is a usual MAP flow of events [8].

After each event registered at time tk, there begins a time of fixed duration
T (dead time) during which other events from the original modulated MAP flow
are inaccessible for observation. When dead time is over, the first new event
again gives rise to a period of dead time of duration T and so on. One possible
scenario of the resulting situation is shown on Fig. 1, where t1, t2, ... denote the
moments when events occur in the observed flow; 1 and 2 are states of the random
process λ(t); black circles denote modulated MAP flow events inaccessible for
observation; dashed lines denote dead time durations.

The process λ(t) is unobservable in principle, i.e. latent Markov process, and
we can only observe time moments when events in the observed flow t1, t2, ...
occur.

We consider the stationary operation mode the observed flow. Under the
made assumptions the sequence {λ(tk)} at the time moments t1, t2, ..., tk of the

Fig. 1. Forming the observed flow
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events occurrence is an embedded Markov chain. So the observed flow has a
Markovian property if its evolution is considered from the moment tk, k = 1, 2, ...,
of the event occurrence.

Denote by τk = tk+1−tk, k = 1, 2, ... the value of intervals k duration between
neighboring events in the observed flow. In a steady-state conditions we may take
that the probability density of the interval k duration is p(τk) = p(τ), τ ≥ 0,
for any k. Then we can let tk = 0 without loss of generality, i.e. the moment of
the event occurrence is τ = 0. On the other hand, since the event observed at
time moment τ = 0 gives rise to a dead time period of duration T , we get that
τ = T + t, where t is the duration value of the interval between the end of dead
time τ = T and the moment τ = T + t when the next event in the observed flow
occurs. Here we assume that the value of T known exactly.

The aim of this article is to obtain an explicit form of a probability den-
sity function pT (τ) of interval duration in modulated MAP event flows with
unextendable dead time (further observed flow or flow).

3 The Expressions for Probability Density pT(τ )

A probability density function of interval duration between neighboring events
in observed flow is defined by the formula:

⎧⎪⎨
⎪⎩

pT (τ) = 0, 0 ≤ τ < T,

pT (τ − T ) =
2∑

i=1

πi(0|T )
2∑

j=1

qij(T )
2∑

k=1

p̃jk(τ − T ), τ ≥ T,
(1)

where p̃jk(τ − T ) is a probability density function that the process λ(t) changes
its state from the jth state to the kth state without the event occurrence on the
interval (T, T + t) and with the event occurrence at the moment τ = T + t, j, k =
1, 2; qij(T ) is a transition probability that the process λ(t) = λj at the moment
of dead time end τ = T in condition that the process λ(0) = λi at the moment
τ = 0, i, j = 1, 2; πi(0|T ) is a conditional stationary probability that the process
λ(t) sojourns in the state i at the time moment τ = 0 in condition that the flow
event occurred at the moment τ = 0, i = 1, 2, and a dead time period of duration
T occurred at this time moment (π1(0|T )+π2(0|T ) = 1). Let us introduce pjk(t)
is a transition probability that there are no flow events on the interval (T, T + t)
and λ(T + t) = λk at the moment T + t in condition that at the time moment
τ = T λ(T ) = λj , j, k = 1, 2.

As an example, we consider a formula derivation for a probability p11(t). Let
us suppose that the moment of a dead time end is t = 0. We consider the interval
(0, t + Δt) and how the process λ(t) behaves oneself on this intervals.

The interval (0, t + Δt) breaks down into two adjacent intervals: the first
interval (0, t), where t = 0 is a moment of a dead time end and the second small
enough semiinterval [t, t + Δt).

Let us consider three possible cases:
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1. p11(t)e−α1Δte−λ1Δt = (1 − (α1 + λ1)Δt)p11(t) + o(Δt) is a probability that
there are no events on the interval (0, t), the value of the process λ(t) is
λ(t) = λ1 at the moment t in condition that at the time moment t = 0 the
value of the process λ(t) is λ(0) = λ1 and on the semiinterval [t, t + Δt) the
first state does not end;

2. p12(t)(1 − e−α2Δt)e−λ2Δt = α2Δtp12(t) + o(Δt) is a probability that there
are no events on the interval (0, t), the value of the process λ(t) is λ(t) = λ2

at the moment t in condition that at the time moment t = 0 the value of
the process λ(t) is λ(0) = λ1 and on the semiinterval [t, t + Δt) the second
state ends with probability 1−e−α2Δt and the second state does not end with
probability e−λ2Δt;

3. p12(t)e−α2Δt(1 − e−λ2Δt)P0(λ1|λ2) = λ2P0(λ1|λ2)p12(t)Δt + o(Δt) is a prob-
ability that there are not events on the interval (0, t), the value of the process
λ(t) is λ(t) = λ2 at the moment t in condition that at the time moment t = 0
the value of the process λ(t) is λ(0) = λ1 and on the semiinterval [t, t+Δt) the
second state does not end with probability e−α2Δt and the second state ends
with probability 1−e−λ2Δt, the flow event does not occur and the process λ(t)
transits from the second state to the first state with probability P0(λ1|λ2).

There are no another possibilities. So the probability p11(t) at the time
moment t + Δt takes the following form:

p11(t+Δt) = (1− (α1 +λ1)Δt)p11(t)+α2p12(t)Δt+λ2P0(λ1|λ2)p12Δt+ o(Δt).

Transferring the probability p11(t) from the right-hand side to the left-hand
side, dividing the left- and the right-hand side by Δt and passing to the limit
for Δt → 0, we find the differential equation with the initial condition

p′
11(t) = −(α1 + λ1)p11(t) + (α2 + λ2P0(λ1|λ2))p12(t), p11(0) = 1.

Similarly, we have the following system of differential equations with the
initial conditions:

p′
12(t) = (α1 + λ1P0(λ2|λ1))p11(t) − (α2 + λ2)p12(t),

p′
21(t) = −(α1 + λ1)p21(t) + (α2 + λ2P0(λ1|λ2))p22(t),

p′
22(t) = −(α2 + λ2)p22(t) + (α1 + λ1P0(λ2|λ1))p21(t),

p12(0) = 0, p21(0) = 0, p22(0) = 1.

Solving obtained system of differential equations, we find the probabilities
pjk(t), j, k = 1, 2:

p11(t) =
1

z2 − z1
·
[
(λ2 + α2 − z1)e−z1t − (λ2 + α2 − z2)e−z2t

]
,

p12(t) =
α1 + λ1P0(λ2|λ1)

z2 − z1
·
[
e−z1t − e−z2t

]
,
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p21(t) =
α2 + λ2P0(λ1|λ2)

z2 − z1
·
[
e−z1t − e−z2t

]
,

p22(t) =
1

z2 − z1
·
[
(λ1 + α1 − z1)e−z1t − (λ1 + α1 − z2)e−z2t

]
,

z1 =
1
2

[
(λ1 + λ2 + α1 + α2)

−√
(λ1 − λ2 + α1 − α2)2 + 4(α1 + λ1P0(λ2|λ1))(α2 + λ2P0(λ1|λ2))

]
,

z2 =
1
2

[
(λ1 + λ2 + α1 + α2)

+
√

(λ1 − λ2 + α1 − α2)2 + 4(α1 + λ1P0(λ2|λ1))(α2 + λ2P0(λ1|λ2))
]
,

0 < z1 < z2.

(2)

To derive a formula for probability density p̃jk(t) we should consider the
interval (0, t + Δt) and how the process λ(t) behaves oneself on this interval.
The interval (0, t+Δt) breaks down into two adjacent intervals: the first interval
(0, t), where t = 0 is a moment of a dead time end and the second small enough
semiinterval [t, t + Δt).

Then p̃jk(t)Δt+ o(Δt), j, k = 1, 2, is a joint probability that the process λ(t)
changes its the jth state to the lth state without the event occurrence on the
interval (0, t) and on the semiinterval [t, t+Δt) the lth state ends, the flow event
occurs with intensity λl and the process λ(t) transits from the lth state to the
kth state, l = 1, 2.

As an example, we derive a formula for a joint probability p̃11(t)Δt + o(Δt).
Let us consider two cases:

1. p̃
(1)
11 (t)Δt + o(Δt) is a joint probability that the process λ(t) remains at the

first state without the event occurrence on the interval (0, t) and on the
semiinterval [t, t+Δt) the first state ends, the flow event occurs with intensity
λ1 and the process λ(t) remains at the first state. This joint probability can
be written as

p̃
(1)
11 (t)Δt + o(Δt) = p11(t)(1 − e−λ1Δt)P1(λ1|λ1)

= λ1P1(λ1|λ1)p11(t)Δt + o(Δt).

2. p̃
(2)
11 (t)Δt+ o(Δt) is a joint probability that the process λ(t) changes its state

from the first state to the second state without the event occurrence on the
interval (0, t) and on the semiinterval [t, t+Δt) the second state ends, the flow
event occurs with intensity λ2 and the process λ(t) transits from the second
state to the first state. This joint probability can be written as

p̃
(2)
11 (t)Δt + o(Δt) = p12(t)(1 − e−λ2Δt)P1(λ1|λ2)

= λ2P1(λ1|λ2)p12(t)Δt + o(Δt).

Then the joint probability p̃11(t)Δt + o(Δt) take the following form

p̃11(t)Δt + o(Δt) = λ1P1(λ1|λ1)p11(t)Δt + λ2P1(λ1|λ2)p12(t)Δt + o(Δt).
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Diving the left- and the right-hand side by Δt and passing to the limit for
Δt → 0, we find the formula for probability density p̃11(t):

p̃11(t) = λ1P1(λ1|λ1)p11(t) + λ2P1(λ1|λ2)p12(t).

Similarly, another probability densities p̃12(t), p̃21(t), p̃22(t) are obtained.
So the probability densities p̃jk(t), j, k = 1, 2, are of the form:

p̃11(t) = λ1P1(λ1|λ1)p11(t) + λ2P1(λ1|λ2)p12(t),
p̃12(t) = λ1P1(λ2|λ1)p11(t) + λ2P1(λ2|λ2)p12(t),
p̃21(t) = λ1P1(λ1|λ1)p21(t) + λ2P1(λ1|λ2)p22(t),
p̃22(t) = λ1P1(λ2|λ1)p21(t) + λ2P1(λ2|λ2)p22(t),

(3)

where the probability p̃jk(t), j, k = 1, 2, are defined in (2).
Since the sequence {λ(tk)} at the time moments t1, t2, ..., tk... of the flow

events occurence is an embedded Markov chain, the following equations take
place:

π1(0|T ) = π1(0|T )π11 + π2(0|T )π21,
π2(0|T ) = π1(0|T )π12 + π2(0|T )π22,

(4)

where πij is a transition probability that the process λ(t) transits from the ith
state to the jth (i, j = 1, 2) during the time from the event occurrence at the
time moment τ = 0 till the moment of the next flow event occurrence.

To derive πij let us introduce transition probability qij(τ) that the process
λ(τ) = λj at the time moment τ in condition that the process λ(0) = λi at the
time moment τ = 0, i, j = 1, 2. Using a Δ-method described above for introduced
probabilities qij(τ) we obtain the following system of the differential equations
with initial conditions:

q′
11(τ) =

[ − (α1 + λ1) + λ1P1(λ1|λ1)
]
q11(τ)

+(α2 + λ2[1 − P1(λ2|λ2)])q12(τ),
q′
12(τ) =

[ − (α2 + λ2) + λ2P1(λ2|λ2)
]
q12(τ)

+(α1 + λ1[1 − P1(λ1|λ1)])q11(τ),
q′
21(τ) =

[ − (α1 + λ1) + λ1P1(λ1|λ1)
]
q21(τ)

+(α2 + λ2[1 − P1(λ2|λ2)])q22(τ),
q′
22(τ) =

[ − (α2 + λ2) + λ2P1(λ2|λ2)
]
q22(τ)

+(α1 + λ1[1 − P1(λ1|λ1)])q21(τ),
q11(0) = 1, q12(0) = 0, q21(0) = 0, q22(0) = 1.

(5)

Solving the system (5), we find the probabilities qij(τ), i, j = 1, 2:

q11(τ) = π1 + π2e
−aτ , q12(τ) = π2 − π2e

−aτ ,
q21(τ) = π1 − π1e

−aτ , q22(τ) = π2 + π1e
−aτ ,

a = α1 + α2 + λ1[1 − P1(λ1|λ1)] + λ2[1 − P1(λ2|λ2)],

π1 =
α2 + λ2[1 − P1(λ2|λ2)]

α1 + α2 + λ1[1 − P1(λ1|λ1)] + λ2[1 − P1(λ2|λ2)]
,

π2 =
α1 + λ1[1 − P1(λ1|λ1)]

α1 + α2 + λ1[1 − P1(λ1|λ1)] + λ2[1 − P1(λ2|λ2)]
,

(6)
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where the prior final probabilities πi, i = 1, 2, of the ith state of the process λ(t)
are obtained in [7].

Letting in (6) the time moment τ = T , we can rewrite (6) as

q11(T ) = π1 + π2e
−aT , q12(T ) = π2 − π2e

−aT ,

q21(T ) = π1 − π1e
−aT , q22(T ) = π2 + π1e

−aT .
(7)

Since the process λ(t) is a Markov process, the transition probabilities qij(τ) and
pij let us write the expressions for the transition probabilities πij(τ), i, j = 1, 2,
by the Chapman-Kolmogorov formula as

π11 = q11(T )p11 + q12(T )p21, π12 = q12(T )p22 + q11(T )p12,
π21 = q22(T )p21 + q21(T )p11, π22 = q21(T )p12 + q22(T )p22,

π11 + π12 = 1, π21 + π22 = 1,
(8)

where pij is a transition probability that the process λ(t) transits from the
ith state to the jth during the time interval between the moment τ = 0 (the
moment of event occurrence) and the moment of the next event occurrence.
Since τ is a undefined time moment, the transition probabilities pij , i, j = 1, 2,
are determined as

pij =
∫ ∞

0

p̃ij(τ)dτ. (9)

Substituting at first (3) into (9) and then (2) into (9) and calculating the
corresponding integrals, we find

p11 =
λ1P1(λ1|λ1)(λ2 + α2) + λ2P1(λ1|λ2)(α1 + λ1P0(λ2|λ1))

(λ1 + α1)(λ2 + α2) − (α1 + λ1P0(λ2|λ1))(α2 + λ2P0(λ1|λ2)
,

p12 =
λ1P1(λ2|λ1)(λ2 + α2) + λ2P1(λ2|λ2)(α1 + λ1P0(λ2|λ1))

(λ1 + α1)(λ2 + α2) − (α1 + λ1P0(λ2|λ1))(α2 + λ2P0(λ1|λ2)
,

p21 =
λ2P1(λ1|λ2)(λ1 + α1) + λ1P1(λ1|λ1)(α2 + λ2P0(λ1|λ2))

(λ1 + α1)(λ2 + α2) − (α1 + λ1P0(λ2|λ1))(α2 + λ2P0(λ1|λ2)
,

p22 =
λ2P1(λ2|λ2)(λ1 + α1) + λ1P1(λ2|λ1)(α2 + λ2P0(λ1|λ2))

(λ1 + α1)(λ2 + α2) − (α1 + λ1P0(λ2|λ1))(α2 + λ2P0(λ1|λ2)
.

(10)

Taking into account the explicit formulas for qij(T ) into (7) the transition
probabilities (8) take the following form:

π11 = p11 − π2(p11 − p21)[1 − e−aT ],
π12 = p12 + π2(p22 − p12)[1 − e−aT ],
π21 = p21 + π1(p11 − p21)[1 − e−aT ],
π22 = p22 − π1(p22 − p12)[1 − e−aT ].

(11)

Substituting (11) into (4) and taking into account that π1(0|T )+π2(0|T ) = 1,
we obtain the explicit formulas for πi(0|T ), i, j = 1, 2:

π1(0|T ) =
p21 + π1(p11 − p21)[1 − e−aT ]

p12 + p21 − (1 − p11 − p22)[1 − e−aT ]
,

π2(0|T ) =
p12 + π2(p22 − p12)[1 − e−aT ]

p12 + p21 − (1 − p11 − p22)[1 − e−aT ]
,

(12)
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where a and πi are defined by (6) and pij are defined by (10). We rewrite the
formula (1) as:

pT (τ − T ) = [π1(0|T )q11(T ) + π2(0|T )q21(T )]
2∑

k=1

p̃1k(τ − T )

+[π1(0|T )q12(T ) + π2(0|T )q22(T )]
2∑

k=1

p̃2k(τ − T ), τ ≥ T.

(13)

We consider the expressions π1(0|T )q1i(T ) + π2(0|T )q2i(T ), i = 1, 2, in the
formula (13). According to formulas (7), these expressions become

π1(0|T )q11(T ) + π2(0|T )q21(T ) = π1 + [π2 − π2(0|T )]e−aT ,
π1(0|T )q12(T ) + π2(0|T )q22(T ) = π2 − [π2 − π2(0|T )]e−aT .

(14)

We denote by π1(t) = π1 +[π2 −π2(0|T )]e−aT . We can show that π1(t) is the
conditional probability that the process λ(t) sojourns in the state i at the time
moment τ = T in condition that the flow event occurred at the time moment
τ = 0, i = 1, 2, and a dead time period of a duration T occurred at this time
moment. Similarly, π2(t) = π2 − [π2 −π2(0|T )]e−aT . Then we can rewrite (14) as

π1(T ) = π1 + [π2 − π2(0|T )]e−aT ,
π2(T ) = π2 − [π2 − π2(0|T )]e−aT .

(15)

Substituting (15) into (13), we find

pT (τ − T ) = π1(T )
2∑

k=1

p̃1k(τ − T ) + π2(T )
2∑

k=1

p̃2k(τ − T ), τ ≥ T.

Let t = τ − T, t ≥ 0. Then we have

pT (t) = π1(T )
2∑

k=1

p̃1k(t) + π2(T )
2∑

k=1

p̃2k(t), t ≥ 0. (16)

Substituting at first (3) then (2) into (16) and making sufficiently difficult
transformations, we obtain the explicit form of a probability density function
pT (τ):

pT (τ) =
{

0, 0 ≤ τ < T,
γ(T )z1e−z1(τ−T ) + (1 − γ(T ))z2e−z2(τ−T ), τ ≥ T,

where γ(T ) =
1

z2 − z1

{
z2 − λ1π1(T )[1 − P0(λ2|λ1)] − λ2π2(T )[1 − P0(λ1|λ2)]

}
,

π1(T ), π2(T ) are defined by (15); z1, z2 are defined by (2).
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4 Conclusion

The obtained results provide the possibility to estimate the unknown parame-
ters of a modulated MAP event flows and also the duration of unextendable
dead time. The duration estimation of unextendable dead time is essential to
determine the number of the lost events which have the useful information. The
obtained formula for probability density pT (τ) allows us to carry out an esti-
mation of unknown parameters and duration of unextendable dead time in the
modulated MAP event flows with unextendable dead time by the maximum like-
lihood method or method of moments. In the first case we have to derive the
system of moment’s equations and in the second case the likelihood function.
These estimation problem are the subject of the further research.
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Abstract. The approach originally developed for the investigation of
the traffic, that is, the intensities of information flows in financial mar-
kets, is applied for the statistical analysis of climatic data. The statistical
regularities in the behavior of sensible and latent turbulent heat fluxes
recomputed from 6-hourly NCEP-NCAR for the period 1948 − 2008 in
Atlantic are analyzed. It is proposed to represent these regularities by
probability distributions that are mixtures of several normal (Gaussian)
laws with parameters varying in time. The method of moving separation
of mixtures is used to obtain the values of the parameters of the mix-
tures. This approach allows to analyze the regularities in the variation
of the parameters and, hence, to capture the low-term variability which
can be considered as a trend and high-term dynamics associated with
diffusion or irregular variability.

Keywords: Finite mixtures of normal distributions · Moving separation
of mixtures · Data mining · Probabilistic models

1 Introduction

Surface turbulent air-sea sensible and latent heat fluxes, the language of air-sea
communication, are critically important in many areas of geosciences. Surface
flux data are available from several data sources which each has its strengths and
weaknesses. The most long-term global surface flux time series (for the period
of a century and longer) are available from Voluntary Observing Ship (VOS)
data [4], while for the last several decades satellite observations, reanalyses and
blended products (e.g., OA-FLUX [5,6]) provide global datasets with reasonably
high space and time resolution.
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Our knowledge about variability of surface turbulent heat fluxes is limited
in most cases by the first (in few cases the second) moment of the distribution
of fluxes. These are typically conventionally computed from surface flux time
series and constitute the basis for climatological analyses and validation activi-
ties [7,8]. However, the detailed assessment of surface heat flux characteristics,
including estimation and evaluation of extreme surface flux values requires accu-
rate knowledge of the entire distribution of turbulent heat fluxes and the analysis
of variability in the parameters of this distribution in time and in space. The
situation when one of key ocean-atmosphere variables is extensively used and
studied without explicit knowledge of its statistical distribution makes it diffi-
cult to evaluate surface fluxes in the ocean and climate models, and, thus, damps
the models predictive potential. One more reason why the accurate distribu-
tions of surface turbulent heat fluxes is required is the necessity to quantify and
potentially minimize sampling errors in VOS-based surface flux products [9,10].
Sampling uncertainties being large in magnitude, affect both mean estimates of
surface fluxes and characteristics of extreme fluxes.

An attempt to justify probability distribution for turbulent surface fluxes
has been done in [11] where such a distribution was found to be reasonably
well approximated by so-called Fisher-Tippet (FT) distribution controled by
two parameters, namely locale and scale parameters. In paper [11] these para-
meters were evaluated along with performing goodness-of-fit-tests. The authors
of paper [11] presented global climatologies of the FT distribution parameters
for surface fluxes along with estimation of extreme surface fluxes. Further some
results of evaluation of FT distribution were used for the analysis of centennial
long time series of surface turbulent fluxes reconstructed from VOS observations
for the period from 1880 onward [12]. However, many questions associated with
probability distribution of surface turbulent fluxes still remain open. FT distri-
bution tends frequently underestimate extremely high turbulent heat fluxes and
does not allow to a full extent for the accurate representation of the cases of the
so-called “heavy tails” in flux distributions.

In the present work we further exploit the original idea about generalization
of synoptic time-series of surface fluxes. The scheme is based on the represen-
tation of the probability distribution of the heat flux increments (first order
differences) in form of a mixture of a number of normal (Gaussian) distributions
with different time dependent parameters whose weights may also vary in time.
The method of moving separation of mixtures is used to obtain the values of the
parameters of the mixtures. This approach allows to analyze the regularities in
variation of the distribution parameters and, hence, to capture the low-frequency
and short-term variability in surface fluxes which can be respectively attributed
to longer term changes on the seasonal and interannual timescales and to irreg-
ular variability.

The approach is essentially based on the mathematical models and methods
which were originally proposed for the analysis of the information traffic, that is,
the intensities of information flows in financial markets (see, for example, [1–3]).
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2 Data Homogenization

Traditionally, statistical analysis of the stochastic regularities in the observed
time series analyses all available data without any pre-processing aiming to
homogenize the data. For example, in [11] FT distribution was applied to the
raw surface flux time series. Such an approach, however, can be hardly used
for the analysis of very long time series and the evolution of the distribution
parameters in time. However, the sample used for the statistical analysis is not
homogeneous with individual samples being likely interdependent. To explain
this, we can consider the following schematic example.

Everywhere in what follows the notation ϕ(x) and Φ(x) will be used for the
standard normal (Gaussian) probability distribution density and the standard
normal distribution function, respectively:

ϕ(x) =
1√
2π

e−x2/2, Φ(x) =

x∫

−∞
ϕ(z) dz, x ∈ R.

Let n be a natural number and ξ1, ξ2, . . . , ξn be independent identically
distributed random variables with the common distribution function F (x) =
Φ(x − a) (that is, each ξj has the normal distribution with the mean a and the
unit variance). Let us construct a new set of random variables ζ1, ζ2, . . . , ζn by
setting

ζk = ξ1 + . . . + ξk, k = 1, . . . , n.

Obviously, for each k ∈ {1, . . . , n} the element ζk has the normal distribution
with mean ka and variance k. Therefore, the sample ζ1, ζ2, . . . , ζn is by no means
homogeneous and independent.

Figure 1 illustrates this effect presenting the histogram constructed from the
artificially simulated sample ξ1, . . . , ξn with n = 1000 and a = 2 (above) and
the corresponding sample ζ1, . . . , ζn (below). The lower histogram is essentially
skewed to the right with very few negative values. This is exactly the shape of
the distribution proposed in [11].

Stochastic features of ζk are to a great extent determined by those of the sum
ξ1+ . . .+ξk−1 and only slightly depend on those of ξk. The greater k, the less the
contribution of ξk into ζk is. Therefore, any analysis of the statistical regularities
of ξi, i = 1, . . . , n directly from the sample ζ1, ζ2, . . . , ζn should be performed
with a serious caution. Moreover, from a athematical viewpoint it is incorrect
to apply standard statistical procedures to the sample ζ1, ζ2, . . . , ζn. Practical
applicability of the results based upon such analysis is always questionable.

To avoid the impact of the above mentioned problems (resulting from a long-
time maintained conventional practices) onto analysis of statistical regularities in
the behavior of time series we consider the transformed time series of increments
of the initially observed surface heat fluxes.
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Fig. 1. The histograms constructed from the samples ξ1, . . . , ξn (above) and ζ1, . . . , ζn
(below) with n = 1000 and a = 2.

3 The Outline of the Method of Moving Separation
of Finite Normal Mixtures for the Analysis
of the Observed Time Series

To reveal the structural changes of the observed stochastic processes in time, the
so-called method of moving separation of mixtures (MSM method) is successfully
used. This method was proposed in [1]. Papers [3,13,14] give examples of the
efficient performance of this method. They are related to the analysis of financial
markets, traffic in information systems and plasma turbulence. The key point of
this method is that the variability of the time series can be decomposed into the
dynamical and the diffusive components.

In this method, one-dimensional distributions of the increments of the basic
process are approximated by finite location-scale mixtures of normal distribu-
tions. Theoretical background for these models is based on a statement that
finite normal mixtures can effectively approximate general location-scale normal
mixtures or normal variance-mixtures. These are the limit laws for the distri-
butions of sums of a random number of independent random variables or non-
homogeneous and non-stationary random walks, see details in [1,15,16].

To analyze the changes in the character of stochastic process, the problem
of statistical estimation of unknown parameters of distributions should be suc-
cessively solved for a running sample segment (of a fixed length) forming the



156 V. Korolev et al.

sub-sample to be further analysed. Estimating parameters for the running seg-
ment (or window), one can derive the time series of these parameters. Resulting
time series of the parameters will allow for the analysis of temporal changes in
the behavior of the diffusive and the dynamical components in the process. We
assume that the cumulative density function for a given segment of data centered
at the time moment t can be represented as

Ft(x) =
k∑

i=1

pi(t)
σi(t)

√
2π

x∫

−∞
exp

{
− (t − ai(t))2

2σ2
i (t)

}
dt, (1)

where
k∑

i=1

pi(t) = 1, pi(t) � 0. (2)

(for all x ∈ R, ai(t) ∈ R, σi(t) > 0, i = 1, . . . , k). The model (1) is called a finite
location-scale normal mixture. The parameters p1(t), . . . , pk(t) are the weights
satisfying (2). The parameter k is the number of mixture components.

The parameters of model (1) noticeably depend on time, as it can be seen on
Fig. 2 showing the histograms constructed from different windows of the width
200 and the densities corresponding to the finite normal mixture (1) with the
parameters estimated from the corresponding windows are presented.

The parameter k may be also treated as depending on time. However, for
both purposes of the effective settings of the method and the interpretation of
the results it is preferable to fix the maximum possible value of k in advance. As
a rule, the number of components does not exceed 6 or 7. Typically, at least six
or seven components provide an excellent approximation of any model. When
the parameters of the model (1) are estimated for the moving segments, some
weights may be very close to zero or to be evaluated as zeroes. This implies the
corresponding component to vanish and the number of components to decrease.

The parameters a1(t), . . . , ak(t) are associated with the dynamic component
of the internal variability of the process, and the parameters σ1(t), . . . , σk(t)
are associated with the diffusive one, see [1]. If Zt is a random variable with a
distribution function (1), then its variance can be represented as the sum of the
two components:

DZt =
k∑

i=1

pi(t) [ai(t) − a(t)]2 +
k∑

i=1

pi(t)σ2
i (t), (3)

where

a(t) =
k∑

i=1

pi(t)ai(t).

The first term in the right-hand side of (3) depends only on the weights pi(t)
and the expected values ai(t) of the components of mixture (1). Since Zt is an
increment of the basic process, then ai(t) is the expected value of the increment,
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Fig. 2. The histograms constructed from different windows and the fitted finite normal
mixture densities.

i.e., the “trend” component. Hence, the first component quantifies the part of the
total variance (changeability) which is due to local elementary trends. It is called
the dynamic component of the variance. Moreover, ai(t) is the expected value of
the random variable whose distribution is just the i-th component of mixture (1).
By construction, this random variable is the increment of the initial process at
the unit time interval, that is, ai(t) is the mean velocity of the variation of the
i-th component. Thus, the set of pairs (a1(t), p1(t)), . . . , (ak(t), pk(t)) determines
the distribution of the velocities over local trends at time t.

The second term in the right-hand side of (3) depends only on the weights
pi(t) and the variances σ2

i (t) of the components and represents the purely sto-
chastic diffusive component of the total variance.

4 Estimation of the Parameters by EM Algorithm

To estimate the parameters of model (1), at each window the classical EM
algorithm was used. The EM algorithm is an iterative numerical procedure for
the maximization of the multi-parameter likelihood functions. It was suggested
in [17] and comprehensively described in [1]. Although very many modifications
of this algorithm have already been proposed, the classical EM algorithm remains
to be the most reliable tool for the estimation of the parameters of the finite
normal mixture model (1).
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Nevertheless, in this case this algorithm has some important drawbacks. Per-
haps, the main of them is its instability with respect to the initial approximation.
The finite normal mixture model likelihood function has a very non-smooth sur-
face with peaks, ravines or rills. Therefore, being a “greedy” algorithm, the EM
algorithm converges to the local maximum which is closest to the starting point.
The usual ways to treat this obstacle are the following:

– to choose the starting point at random;
– to choose several starting points and to average the results over the number

of runs;
– to choose several starting points and to use the estimate that delivers the

maximum value of the target likelihood function among the runs as the result.

When the EM algorithm is used in a moving mode as it was done in this
work dealing with moving separation of mixtures, much attention must be paid
to the visualization of the results. For convenient interpretation of the results,
the obtained curves depicting the evolution of the parameters pi(t), ai(t), σi(t),
i = 1, . . . , k in time should be smooth. At the first sight the smoothness of the
resulting curves can be achieved, if the final result of the EM algorithm obtained
at the previous window is used as the starting point for the EM algorithm at
the next window. However, this rule leads to that the danger of hitting the local
extremum instead of the global one increases.

The results obtained for the three ways of the choice of starting points men-
tioned above with some modifications are presented on Fig. 3. On the upmost
graph, the temporal variation of the local trend parameters ai(t) estimated by
the EM algorithm with the random choice of the starting points at each window
is presented. At each window the EM algorithm is run five times, the starting
points are chosen randomly for each run. The results are averaged over runs at
each window. The weights of the components are visualized by colors according
to the color scale at the right. The second graph presents the temporal vari-
ation of the local diffusion parameters σ2

i (t) estimated by the same version of
the EM algorithm with the random choice of the starting points. On the third
graph, the temporal variation of the local trend parameters ai(t) estimated by
the “normal” EM algorithm with the random choice of the starting points for
the weights is presented. At each window the starting point for the rest (location
and scale) parameters is one and the same for all components and is equal to
the sample mean and sample variance, respectively, calculated from the window.
The fourth graph presents the temporal variation of the parameters local diffu-
sion σ2

i (t) estimated by the same version of the EM algorithm. The fifth graph
presents the temporal variation of the local trend parameters ai(t) estimated by
the EM algorithm with the random choice of the starting points at each win-
dow. At each window the EM algorithm is run five times, the starting points
are chosen randomly for each run. At each window, as the result the estimate
that delivers the maximum value of the target likelihood function among the
five runs is taken. The sixth graph presents the temporal variation of the local
diffusion parameters σ2

i (t) estimated by the same version of the EM algorithm
aimed at the maximization of the likelihood function over runs.
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Fig. 3. The resulting parameter curves obtained by three versions of the EM algorithm.
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Fig. 4. The quantiles of the probability distribution of the increments of the heat-flux
process as the isotopes of the probability density surface.

We can conclude that the third version of the EM algorithm with repeated
random choice of starting points and maximization of the results over runs at
each window gives most clear results.

This algorithm was applied to the analysis of temporal variation of the para-
meters of the distribution of increments of the heat-flux process. The obtained
quantiles of the distribution are presented on Fig. 4 as isotopes of the density
surface (the horizontal axis is time covering the period of about 3.5 years). The
seasonal periodicity is clearly seen.

Figure 5 presents the evolution of the moment characteristics of the probabil-
ity distribution of increments of the heat-flux process. It is clearly seen that the
expected value of the increment noticeably oscillates in time with periodically
changing amplitudes. Furthermore, at each period, the amplitudes are smaller
for the period of seasonal increase of general mean than the amplitudes of oscilla-
tions for the period of the seasonal decrease of the general mean. The seasonally
periodical variation of the variance is clearly seen. It is very interesting (if not
surprising) that the purely stochastic diffusive component of the variance (see
the second term on the right-hand side of relation (3)) depicted by the green
curve on the upper right graph makes greater contribution to the total vari-
ance than the dynamic component (see the first term on the right-hand side
of relation (3)) due to systematic trends depicted by the blue curve. It is also
interesting that the distribution of the increments is slightly asymmetric with
right slope heavier than the left one. Another interesting observation is that the
kurtosis of this distribution is maximum during the “calm” period.
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Fig. 5. The moment characteristics of the probability distribution of the increments of
the heat-flux process.

5 Conclusions

In the paper, the method of moving separation of mixtures was applied to the
analysis of statistical regularities in the temporal evolution of heat-fluxes. This
method was realized by a special version of the EM algorithm aimed at the
maximization of the likelihood function within the class of finite normal mixture
models. It was demonstrated that in the stochastic character of the evolution of
heat-fluxes, one basic component with low variance can be identified accompany-
ing by stochastically emerging and disappearing components with large variance.
Some regularities in the temporal variation of the moment characteristics of the
heat-flux process increments were observed.
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Abstract. This paper is devoted to the research of the model of insur-
ance company with an unlimited insurance field and the parameter of
arrival process of insurance risks, which depends on the risks that are
already insured in the company. Using method of characteristic func-
tions we got joint probability distribution of a two-dimensional stochastic
process of a number of risks that are insured in the company and a num-
ber of benefit payments. We also got expressions for the expected values
and variances of components of a two-dimensional process. Total benefit
payments is reviewed and its distribution and numerical characteristic
are found.

Keywords: Mathematical model · Insurance company · Benefit pay-
ments · Queueing system · Characteristic function

1 Introduction

In modern economics mathematical methods are widely used, both for solv-
ing practical tasks and for theoretical modeling of sociology-economic process.
These models and their researches are getting pretty much of attention nowa-
days. Models of actuarial mathematics, which studies insurance, are not left aside
either. Generally, all the papers devoted to the research of insurance company’s
mathematical models have such characteristics of a company’s work as: expected
values of risk’s number, capital, bankruptcy possibility and so on. Thus, paper
[1] is about model of insurance company takes into account advertising expenses,
paper [2] is about model with possibility of reassurance of some company’s risks.
In [3] we got the distribution of number of benefit payments with random vari-
able of the duration of the contract and the stationary Poisson arrival process
of insurance risks. In [4] by using method of asymptotic analysis we have found
probability distribution of two-dimensional process of a number benefit payments
and a number of insurance risks, given that the arrival process of insurance risks
is stationary Poisson. In this paper we research two-dimensional process of a

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25861-4 14
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number of benefit payments and a number of risks, that are insured in the com-
pany, in case when the parameter of the arrival process of insurance risks depends
on the risks that are already insured in the company, which considers possibility
of an implicit advertising, which is no doubt present in real life. Models with
this arrival process of insurance risks are reviewed in [5], but methods of model’s
research are of different nature and the process of a number of benefit payments
is ignored.

2 Mathematical Model and Formulation of the Problem

Let’s review the model of insurance company with an unlimited insurance field
[6] in the form of queuing system with an unlimited number of servers (Fig. 1).
The validity of the insurance contract matches the server’s duration of request
handling. We will assume that risks are flowing into company, forming the arrival
process with intensity that depends on a number of insured risks. Intensity of
that arrival process will be determined by two components: parameter λ, which
determines the arrival process of risks that come independently from insured
ones, and parameter α, which determines the arrival process of risks that are
under the influence of “implicit advertising”. Every risk that has been in the
company for the period of insurance police validity regadless of other risks gen-
erate a demand for insurance payment with γ intensity. And these requests also
form the stationary Poisson process of events. Its natural to assume that benefit
payment is determined by insured accident. We will assume that duration of the
insurance contract for each risk located in the company will be random variable
that is distributed by exponential law with parameter μ.

Fig. 1. Model of the insurance company in form of queuing system with an unlimited
number of servers.

Designations: n(t) — number of benefit payments during the time interval
[ 0 , t ], i(t) — number of insurance risks located in the company at instant of
time t, P (i, n, t) = P{i(t) = i, n(t) = n} — probability distribution of a two-
dimensional process of a number of benefit payments and a number of insurance
risks at instant of time t. The task is to find this distribution.
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3 Joint Probability Distribution of Two-Dimensional
Stochastic Process of a Number of Insurance Risks
and a Number of Benefit Payments

Let’s set up a system of Kolmogorov differential equations [7] for probability
distribution P (i, n, t) using the Δt method. First, the prelimit equalities:

P (i, n, t + Δt) = P (i, n, t)(1 − (λ + iα)Δt)(1 − iγΔt)(1 − iμΔt)
+(λ + (i − 1)α)ΔtP (i − 1, n, t)

+iγΔtP (i, n − 1, t) + (i + 1)μΔtP (i + 1, n, t) + o(Δt).
(1)

System of differential equations will have this form:

∂P (i, n, t)
∂t

= −[λ + i(α + μ + γ)]P (i, n, t) + (λ + (i − 1)α)P (i − 1, n, t)

+(i + 1)μP (i + 1, n, t) + iγP (i, n − 1, t).
(2)

To solve system (2) let’s introduce function:

∞∑
i=0

∞∑
n=0

ejuiznP (i, n, t) = H(u, z, t), (3)

that is characteristic by u and generating by z, where j is the imaginary unit.
We will continue solving the task of determining the form of this function. Then,
form system (2), considering properties of characteristic functions, we will get
partial differential equation of first order for the function H(u, z, t):

∂H(u, z, t)
∂t

= −λH(u, z, t)(1 − eju)

+j
∂H(u, z, t)

∂u
(α + μ + γ − αeju − μe−ju − γz).

(4)

Solution for this differential equation is determined by solving of the following
system of ordinary differential equations for characteristic curves [8]:

dt

1
=

du

−j(α + μ + γ − αeju − μe−ju − γz)
=

dH(u, z, t)
H(u, z, t)λ(eju − 1)

. (5)

We will start by finding the two first integrals of this system. First, let’s take a
look at this equation:

dt =
du

j(α(eju − 1) + μ(e−ju − 1) − γ(1 − z))
. (6)

We will change variables eju − 1 = v, and, considering

u =
ln(v + 1)

j
, du =

dv

j(v + 1)
, e−ju =

1
v + 1

, j2 = −1, (7)
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the Eq. (6) will have this form:

dt =
dv

−(αv2 + (α − μ − γ(1 − z))v − γ(1 − z))
. (8)

Let’s take a look at right part of the last equation. We can write down

αv2 + (α − μ − γ(1 − z))v − γ(1 − z) = α(v − v1)(v − v2), (9)

where v1 and v2 are the roots of said quadratic equation. Let’s write down
expressions for v1 and v2:

v1 =
1
2

[(
1 − μ

α
− γ

α
(1 − z)

)
+

√
D
]
,

v2 =
1
2

[(
1 − μ

α
− γ

α
(1 − z)

)
−

√
D
]
,

(10)

where discriminant is

D =
(
1 − μ

α
− γ

α
(1 − z)

)2
+ 4

γ

α
(1 − z) > 0. (11)

Therefore, roots v1 and v2 are real and different. Besides, given that natural
condition α < μ, roots v1 > 0 and v2 ≤ 0.

Thus, based on the foregoing, Eq. (8) could be written in this form:

dt =
dv

−α(v − v1)(v − v2)
. (12)

Solution for Eq. (12) will have this form:

t =
1

α(v1 − v2)
ln
(

v − v2
v − v1

)
− ln(C̃1), (13)

which will be determining our first integral. Lets write down expression for con-
stant C̃1, we have:

C̃1 = e−t

(
v − v2
v − v1

) 1
α(v1−v2)

. (14)

We denote C1 = C̃
α(v1−v2)
1 , then

C1 = e−tα(v1−v2)

(
v − v2
v − v1

)
. (15)

Other first integral will be found from equation:

dH(u, z, t)
H(u, z, t)λ(eju − 1)

=
du

−j(α + μ + γ − αeju − μe−ju − γz)
. (16)
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Let’s make similar change of variables eju − 1 = v. We will introduce function
H1(v, z, t) = H(u, z, t). Lets write down equation (16) for the function H1(v, z, t)
while splitting variables:

dH1(v, z, t)
H1(v, z, t)

=
λvdv

−(αv2 + (α − μ − γ(1 − z))v − γ(1 − z))
, (17)

or considering (9)

dH1(v, z, t)
H1(v, z, t)

=
λvdv

−α(v − v1(z))(v − v2(z))
, (18)

where v1 and v2 are determined by expressions (10). Let’s write down the solution
for Eq. (18), assuming that v1 = v1(z) and v2 = v2(z):

H1(v, z, t) = C2

[
(v − v2)v2

(v − v1)v1

] λ
α(v1−v2)

. (19)

We will introduce arbitrary differentiable function φ(C1) = C2. Then the
general solution of Eq. (18) considering (15) will have this form:

H1(v, z, t) = φ

[
e−α(v1−v2)t

(
v − v2
v − v1

)][
(v − v2)v2

(v − v1)v1

] λ
α(v1−v2)

. (20)

We define particular solution with the help of initial conditions. To do this,
we will write down value of function H(u, z, t) at t = 0. Then

H(u, z, 0) =
∞∑

i=0

∞∑
n=0

ejuiznP (i, n, 0) =
∞∑

i=0

ejuiP (i), (21)

because at the initial time (i.e. at the moment when insurance company starts
their work) there were no benefit payment, which means P (i, n, 0) = P (i) , if
n = 0 , and P (i, n, 0) = 0, if n > 0.

Let’s denote H(u, z, 0) = G(u), then by using equation (4) we can write down
the equation for function G(u):

j(μ − αeju)
dG(u)

du
+ λejuG(u) = 0. (22)

Solution will have this form:

G(u) = C3

(
eju − μ

α

)− λ
α

. (23)

We will find constant C3 from condition G(0) = 1. We have:

C3 =
(
1 − μ

α

) λ
α

, (24)
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then

G(u) =

⎛
⎜⎝

1 − α

μ
eju

1 − α

μ

⎞
⎟⎠

− λ
α

. (25)

Considering (20) we can write down

H1(v, z, 0) = φ

(
v − v2
v − v1

)[
(v − v2)v2

(v − v1)v1

] λ
α(v1−v2)

, (26)

or ⎛
⎜⎝

1 − α

μ
(v + 1)

1 − α

μ

⎞
⎟⎠

− λ
α

= φ

(
v − v2
v − v1

)(
(v − v2)v2

(v − v1)v1

) λ
α(v1−v2)

. (27)

Now the task is to define the form of function φ(.). Let’s denote

x =
v − v2
v − v1

. (28)

Then

φ(x) =

⎡
⎢⎢⎣

(
1 − α

μ

)
(v2 − v1)

(1 − x) − α

μ
(1 + v2 − x(1 + v1))

⎤
⎥⎥⎦

λ
α

x
λv2

α(v2−v1) , (29)

where it is considered that
v =

v2 − xv1
1 − x

. (30)

Now we can write down the expression for function φ(.):

φ

[
e−α(v1−v2)t

(
v − v2
v − v1

)]
= eλv2t

[(
1 − α

μ

)
(v2 − v1)(v − v1)

] λ
α

×
[
(v − v1) − (v − v2)eα(v2−v1)t−

−α

μ

(
(v − v1)(1 + v2) − (v − v2)(1 + v1)eα(v2−v1)t

)]− λ
α

×
(

v − v2
v − v1

) λv2
α(v2−v1)

.

(31)

Accordingly, we will write down the expression for function H1(v, z, t), taking
into account that v1 and v2 are functions of z and have the form (10). We have:

H1(v, z, t) = eλv2(z)t

[(
1 − α

μ

)
(v1(z) − v2(z))

] λ
α

×
{

(v1(z) − v)
[
1 − α

μ
(1 + v2(z))

]

−(v2(z) − v)eα(v2(z)−v1(z))t

[
1 − α

μ
(1 + v1(z))

]}− λ
α

.

(32)
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By passing from variable v to variable u, let’s write down the expression for
function H(u, z, t):

H(u, z, t) = eλv2(z)t

[(
1 − α

μ

)
(v1(z) − v2(z))

] λ
α

×
{

(v1(z) − eju + 1)
[
1 − α

μ
(1 + v2(z))

]

−(v2(z) − eju + 1)eα(v2(z)−v1(z))t

[
1 − α

μ
(1 + v1(z))

]}− λ
α

.

(33)

Thus, resulting function (33) is characteristic function of two-dimensional sto-
chastic process of a number of risks that are insured in the company and a num-
ber of benefit payments. Knowing this function, we can find one-dimensional
marginal distributions of processes i(t) and n(t).

4 Probability Distributions of a Number of Insurance
Risks and a Number of Benefit Payments

Let’s suppose that in (33) u = 0, now we can get generating function of process
n(t):

H(0, z, t) = F (z, t) = eλv2(z)t

[(
1 − α

μ

)
(v1(z) − v2(z))

] λ
α

×
{

v1(z)
[
1 − α

μ
(1 + v2(z))

]

−v2(z)eα(v2(z)−v1(z))t

[
1 − α

μ
(1 + v1(z))

]}− λ
α

.

(34)

We write down characteristic function of process i(t) by assuming that in (33)
z = 1. Because of

v1(1) =
μ

α
− 1, v2(1) = 0,

we have

H(u, 1, t) = G(u) =

⎛
⎜⎝

1 − α

μ

1 − α

μ
eju

⎞
⎟⎠

λ
α

. (35)

Since the resulting characteristic function (35) does not depend of time, we can
say that process of a number of insurance risks is stationary.

Let’s find probability distributions for a number of insurance risks P1(i) and a
number of benefit payments P2(n, t), by looking at numerical example. Figures 2
and 3 show distributions P1(i) and P2(n, t) for the following parameters: λ = 0.6,
μ = 1, α = 0.9, γ = 0.1, t = 1.
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Fig. 2. Probability distribution of a number of insurance risks

Fig. 3. Probability distribution of a number of benefit payments

5 Numerical Characteristics of a Number of Insured
Risks and a Number of Benefit Payments

Now we can write down expected values for a number of risks and a number of
benefit payments:

E{i(t)} =
1
j

dG(u)
du

∣∣∣∣
u=0

=
λ

μ − α
, (36)

and

E{n(t)} =
∂F (z, t)

∂z

∣∣∣∣
z=1

=
λγ

μ − α
t. (37)
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Following expressions are for variances:

D{i(t)} =
λμ

(μ − α)2
, (38)

and

D{n(t)} = 2
λμγ2

(μ − α)3
t +

λγ

μ − α
t − 2

λμγ2

(μ − α)4
(
1 − e−(μ−α)t

)
. (39)

Formulas (36) and (38) match with the result we got in [5], where one-
dimensional process of a number of insured risks considering “implicit adver-
tising” is researched.

Let’s review correlation coefficient of processes i(t) and n(t). Knowing func-
tion H(u, z, t), we can find joint moment of studied processes. We have:

1
j

∂2H(u, z, t)
∂u∂z

∣∣∣∣
u = 0, z = 1

= E{i(t)n(t)}, (40)

then, considering characteristics we got earlier, let’s write down the expression
for correlation coefficient:

rin(t) =
λγμ(1 − e(α−μ)t)√

λμ[2λμγ2(μ − α)t + λγ(μ − α)3t − 2λμγ2
(
1 − e−(μ−α)t

)
]
. (41)

Nonzero correlation coefficient shows the presence of dependence between
processes i(t) and n(t).

6 Numerical Characteristics of Value of the Total Benefit
Payments

We will denote S(t) as a value of the total benefit payments for all insured
accidents during the time interval [ 0, t ], ξ — the value of the payment for one
insured accident. Let’s introduce characteristic function of the value S(t):

Ψ(η, t) = E{e−ηS(t)}. (42)

Let’s take a closer look at this function. We have:

Ψ(η, t) = E
{

e−ηS(t)
}

= E

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e

−η

n(t)∑
i=0

ξi

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
∞∑

n=0

E

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e

−η

n(t)∑
i=0

ξi

∣∣∣∣∣∣∣∣∣∣
n(t) = n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

P (n, t)

=
∞∑

n=0

E

{
n∏

i=0

e−ηξi

∣∣∣∣∣n(t) = n

}
P (n, t) =

∞∑
n=0

θn(η)P (n, t),

(43)
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where θ(η) = E{e−ηξ} is the characteristic function of the value ξ. With this in
mind we can write down:

Ψ(η, t) =
∞∑

n=0

θn(ξ)P (n, t) = F (θ(η), t). (44)

Let’s introduce functions

w1(η) = v1(φ(η)) =
1
2

[(
1 − μ

α
− γ

α
(1 − φ(η))

)
+
√

D(θ(η))
]
,

w2(η) = v2(φ(η)) =
1
2

[(
1 − μ

α
− γ

α
(1 − φ(η))

)
−
√

D(θ(η))
]
,

(45)

where
D(θ(η)) =

[
1 − μ

α
− γ

α
(1 − φ(η))

]2
+ 4

γ

α
(1 − φ(η)). (46)

Expressions (45), (46) are written considering (10) and (11). Then function
Ψ(η, t) will have this form

Ψ(η, t) = F (θ(η), t) = eλw2(η)t

[(
1 − α

μ

)
(w2(η) − w1(η)

] λ
α

×
(
−w1(η) + w2(η)eα(w2(η)−w1(η)t

−α

μ

[
(−w1(η)(1 + w2(η)) + w2(η)(1 + w1(η))eα(w2(η)−w1(η)t

])− λ
α

.

(47)

Now, that we know the form of the characteristic function of a value of the total
benefit payments, we can obtain the expected value and the variance of value
S(t). Let’s denote E{ξ} = a1, E{ξ2} = a2. Because of

∂Ψ(η, t)
∂η

∣∣∣∣
η=0

= −E{S(t)}, (48)

after transformations we will get

E{S(t)} =
λγa1

μ − α
t. (49)

For the second initial moment S(t) we can write down

∂ 2Ψ(η, t)
∂η 2

∣∣∣∣
η=0

= E{S2(t)}. (50)

Then the variance of the total benefit payments will have the following form:

D{S(t)} =
λγa2

μ − α
t + 2

λμγ2a2
1

(μ − α)3
t − 2

λμγ2a2
1

(μ − α)4
(
1 − e−(μ−α)t

)
. (51)



Research of Mathematical Model of Insurance Company 173

Let’s take a look at another characteristic of S(t) - coefficient of variation
V {S(t)}. It is defined as the ratio of the standart devation to the expected
value:

V {S(t)} =

√
D{S(t)}

E{S(t)} .

Behavior of coefficient of variation V (t) is shown at Fig. 3 with the following
parameters: λ = 5, μ = 1, α = 0.8, γ = 0.1, a1 = 10, a2 = 60. Numerical
calculations show that V {S(t)} is significantly decreasing with the passage of
time, reaching value of 0.01 at t = 540, which allows us to find pretty accurate
prognosed value of the capital of insurance company (Fig. 4).

Fig. 4. Coefficient of variation of the total benefit payments

7 Conclusions

Thereby, in this paper we have researched mathematical model of the insurance
company in the form of queueing system with an unlimited number of servers.
We have found the expression for characteristic function of a two-dimensinal
process of a number of benefit payments and a number of insurance risk. Also
we have found expressions for numerical characteristics of said processes. It is
shown that the results are the generalization of particular cases. Characteristic
function, expected value and variance of a value of the total benefit payments
have also been found. These results may be used for analysis of indicators of
economic activity of insurance companies.
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Abstract. In this paper, we study the queuing system with unlimited
queue and with N servers. We obtain the approximation of probability
distribution of the number of customers in the system. We obtain the
formula of the probability of immediate service and the characteristic
function of a positive waiting time. The optimal number of servers can
be determined by the obtained characteristics.

Keywords: Queuing systems · Waiting time · Approximation of the
probability distribution · Queue

1 Introduction

Mathematical models of queuing systems (QS) is widely used in the solution of
important practical problems arising in connection with the rapid development
of communication systems, the emergence of information systems, the emergence
of a variety and complexity of technological systems, the creation of automated
control systems.

Multiserver QS are mathematical models of real systems and processes in the
area of telecommunications, communication networks, etc. There are papers by
modeling call-centers [1,2].

In this paper we consider queuing system M |GI|N |∞. The system arrival
process is distributed by Poisson law with rate λ. The system has N servers.
Service times on each servers are i.i.d. with distribution function A(x). The
arriving customer occupies any free server or goes to the queue in case of all
servers are busy.

Its known that for the system M |M |N |K Erlang formulas have been obtained
[3]. However, for general service time and infinity queue the obtained problem
theoretically didnot solve, and an analytical solution is not possible, therefore,
the task of obtaining the approximation of stationary probability distribution
P (i), 0 ≤ i < ∞ of the number of customers in the system M |GI|N |∞. We
obtain the formulas for the probability distribution of positive waiting time using
the approximation.

c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 175–184, 2015.
DOI: 10.1007/978-3-319-25861-4 15
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2 Approximation of Probability Distribution
of the Number of Customers in the System M |GI|N |∞

Denote the number of customers in the system at time t by i(t). Then P (i) =
P{i(t) = i} is the probability distribution of the number of customers in the
system at time t.

Let πi be an approximation of the probability distribution which is defined
as a composite distribution [4]

πi =

{
C1P1(i), 0 ≤ i ≤ N,

C2P2(i − N + 1), i ≥ N.
(1)

The probabilities P1(i), where 0 ≤ i < N , are the probabilities of the number
of occupied servers in N-server QS with customers losses (M |GI|N |0), when all
servers are busy. Erlang formula defines the probability P1(i) [5]

P1(i) =
(λa)i

i!
N∑

k=0

(λa)k

k!

, (2)

where a =
∞∫
0

(1 − A(x))dx is the average service time.

The probabilities P2(i) are defined when all servers are busy. In this case,
the block of occupied servers is considered as a single and its service has dis-
tribution function B(x). Therefore, the probabilities P2(i), where i = 0, 1, ...
are defined as the probabilities of the number of customers in the single-server
system M |GI|1|∞ with waiting.

In this case, the Pollaczek-Khinchin formula for the generating function can
be use:

G(x) =
∞∑

n=0

xnP2(n) = (1 − λb)
(1 − x)B∗(λ − λx)
B∗(λ − λx) − x

. (3)

To determine the distribution function B(x) we consider the output process
of serviced customers when all N servers are occupied.

3 Distribution of Sum of Independent Recurrent Process

Consider the sum of N independent recurrent process, with the same distribution
functions A(x).

Let τ be the value of the jump [5] for the total process. Then it is obvious
that τ = min(τ1, τ2, ..., τN ), where τ1, τ2, ..., τN are independent value of jump
for total process.

Therefore
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P{τ > x} = 1 − 1
b

x∫

0

(1 − B(z))dz = P{min{τ1, τ2, ..., τN} > x}

= P{τ1 > x}P{τ2 > x}...P{τN > x} =

⎛
⎝1 − 1

a

x∫

0

(1 − A(z))dz

⎞
⎠

N

.

Hence, for the total process we have the following equation:

1 − 1
a

x∫

0

(1 − B(z))dz =

⎛
⎝1 − 1

a

x∫

0

(1 − A(z))dz

⎞
⎠

N

,

then we differentiate equation by x and obtain the following formula:

B(x) = 1 − Nb

⎛
⎝1 − 1

a

x∫

0

(1 − A(z))dz

⎞
⎠

N−1

1
a
(1 − A(x)).

Knowing
1
b

= N
1
a

[5], then in the system M |GI|N |∞, the distribution func-
tion of the lengths of the intervals of the total process has the form:

B(x) = 1 − (1 − A(x))

⎛
⎝1 − 1

a

x∫

0

(1 − A(z))dz

⎞
⎠

N−1

. (4)

and the density distribution has the following form:

b(x) =

⎧⎨
⎩A′(x)

⎛
⎝1 − 1

a

x∫

0

(1 − A(z))dz

⎞
⎠ +

N − 1
a

(1 − A(x))2

⎫⎬
⎭

×
⎛
⎝1 − 1

a

x∫

0

(1 − A(z))dz

⎞
⎠

N−2

.

4 Expansion of the Function Pollaczek-Khinchin

Probabilities P2(i) can be found using the inverse Fourier transform, or expend-
ing function (3) to a power series in x.

To determine the probability by the second method, we write the following
expansion

B∗(λ − λx) =

∞∫

0

e−(λ−λx)zdB(z) =

∞∫

0

e−λze−λxzdB(z)

=

∞∫

0

e−λz
∞∑

n=0

(λz)n

n!
dB(z) =

∞∑
n=0

xn

∞∫

0

e−λz (λz)n

n!
dB(z).
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Denote

βn =

∞∫

0

e−(λz) (λz)n

n!
dB(z),

we obtain the expansion

B∗(λ − λx) =
∞∑

n=0

xnβn.

Hence

(1 − x)B∗(λ − λx) =
∞∑

n=0

xnβn −
∞∑

n=0

xn+1βn =
∞∑

n=0

xnβn −
∞∑

n=1

xnβn−1

= β0 +
∞∑

n=1

xn(βn − βn−1) =
∞∑

n=1

xnbn.

where b0 = β0, bn = βn − βn−1.
The denominator of the expression (3) is writen in the form

(B∗(λ − λx) − x)−1 =
∞∑

n=0

xnαn. (5)

To determine αn we rewrite the formula (5) as:

1 = (B∗(λ − λx) − x)
∞∑

n=0

xnαn =
∞∑

n=0

xnαn

∞∑
n=0

xnβn −
∞∑

n=0

xn+1αn

=
∞∑

n=0

xn
n∑

k=0

αkβn−k −
∞∑

n=1

xnαn−1 = α0β0 +
∞∑

n=1

xn
n∑

k=0

αkβn−k − αn−1.

Equating coefficients of same powers of x in this expression, we obtain recur-
rence formulas:

α0 =
1
β0

, αn =
1
β0

[
αn−1 −

n−1∑
k=0

αkβn−k

]
.

Considering the expansion of the function G(x), can be written expression

G(x) =
∞∑

n=0

xnP2(n) = (1 − λb)
(1 − x)B∗(λ − λx)
B∗(λ − λx) − x

= (1 − λb)
∞∑

i=0

xibi

∞∑
i=0

xiαi

= (1 − λb)
∞∑

i=0

xi
i∑

k=0

αkbi−k.

Thus

P2(i) = (1 − λb)
i∑

k=0

αkbi−k.
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5 Finding of Constants

Constants C1 and C2 can be found from the normalization condition and the
conditions of “stitching”:

⎧⎨
⎩

∞∑
i=0

πi = 1,

C1P1(N) = C2P2(1),

we obtain

1 =
∞∑

i=0

πi = C1

N∑
i=0

P1(i) + C2

∞∑
i=N+1

P2(i − N + 1) = C1 + C2

∞∑
n=2

P2(n)

= C1 + C2(1 − (P2(0) + P2(1))),

thus

C1 =
P2(1)

P2(1) + P1(N)(1 − (P2(0) + P2(N)))
,

C2 =
P1(N)

P2(1) + P1(N)(1 − (P2(0) + P2(N)))
.

(6)

So expression (1) has the form:

πi =

{
P2(1)

P2(1)+P1(N)(1−(P2(0)+P2(N)))P1(i), 0 ≤ i ≤ N,
P1(N)

P2(1)+P1(N)(1−(P2(0)+P2(N)))P2(i − N + 1), i > N.

6 Probability of Immediate Service

Let τ be the waiting time of customer service start. Using (1) the probability of
immediate service can be written as

P0 =
N−1∑
i=0

πi = C1

N−1∑
i=0

P1(i) = C1(1 − P1(i))

=
P2(1)(1 − P1(N))

P2(1) + P1(N)[1 − (P2(0) + P2(1))]
,

(7)

where considering expressions (2) and (3) the following equalities

P2(0) = G(0) = 1 − λb,

P2(1) = G
′
(0) = (1 − λb)

1 − B∗(λ)
B∗(λ)

,

P1(N) =
(λa)N

N !
N∑

i=0

(λa)i

i!

.
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7 Probability Distribution of a Positive Waiting Time

If the customer arrives in the system at time when all servers are busy, then its
waiting time τ > 0 and this value we call as a positive waiting time τ+.

We find the conditional probability distribution Pq(m), where m > 0 that
there are m customers in the queue considering that all servers are busy.

Using expression (1), we written:

Pq(m) =
πN+m

∞∑
i=0

πN+i

=
C2P2(1 + m)

C2

∞∑
i=0

P2(1 + m)

=
P2(1 + m)
(1 − P2(0))

=
1
λb

P2(1 + m).

(8)

Expression (9) is the conditional probability distribution that there are m
customers in the queue considering that all servers in the system are busy

Pq(m) =
1
λb

P2(m + 1). (9)

We find the generating function Gq(x) of this distribution

Gq(x) =
∞∑

m=0

xmPq(m) =
∞∑

m=0

xm 1
λb

P2(m + 1)

=
1

λbx

∞∑
ν=1

xνPq(ν) =
1

λbx
[G(x) − P0]

=
1

λbx
[G(x) − (1 − λb)]

=
1

λbx

[
(1 − λb)

(1 − x)B∗(λ − λx)
B∗(λ − λx) − x

− (1 − λb)
]

=
1 − λb

λbx

(1 − x)B∗(λ − λx) − B∗(λ − λx) + x

B∗(λ − λx) − x

=
1 − λb

λb

1 − B∗(λ − λx)
B∗(λ − λx) − x

,

then

Gq(x) =
1 − λb

λb

1 − B∗(λ − λx)
B∗(λ − λx) − x

. (10)

This generating function is obtained on the period when all servers are busy.
In this condition, the N-server block of servers is defined by the distribution
function A(x) is permissible to replace the single-server with the distribution
function B(x) from formula (4).

Customer arriving in the system when all servers are busy finds m customers
in the queue with probability Pq(m). So, the waiting time consists of the total
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time service of customers, each having the distribution function B(x) from for-
mula (4) and residual service time of one customer with the distribution function

B0(x) =
1
b

x∫

0

(1 − B(z)) dz.

We denote residual service time by ξ0 and service times of the first, the
second and the m-th customers in the queue by ξ1, ξ2, ..., ξm respectively. Then
the waiting time can be determined by

τ+ = ξ0 + ξ1 + ξ2 + ... + ξm.

We find the characteristic function h(u) of the positive waiting time cus-
tomers in the system M |GI|N |∞. Using total probability law for mean, we can
write

h(u) = M
{
ejut

}
=

∞∑
m=0

M {exp {ju(ξ0 + ... + ξm)} |m(t) = m} Pq(m)

=
∞∑

m=0

M
{
ejuξ0

} (
M

{
ejuξ1

})m
Pq(m) = φ(u)mPq(m),

where φ0(u) and φ(u) are characteristic functions of the residual and total times
service of one customer, here

φ(u) =

∞∫

0

ejuxdB(x). (11)

The last equation for h(u) we rewrite as

h(u) = φ0(u)Gq(φ(u)) = φ0(u)
1 − λb

λb

1 − B∗(λ − λφ(u))
B∗(λ − λφ(u)) − φ(u)

. (12)

So

B0(x) =
1
b

x∫

0

(1 − B(z)) dz,

then

φ0(u) =

∞∫

0

ejuxdB0(x) =
1
b

x∫

0

ejux(1 − B(x))dx =
1

jub
(φ(u) − 1),

therefore, the characteristic function h(u) of formula (12) is written as

h(u) =
1

jub
(1 − λb)

φ(u) − 1
λb

1 − B∗(λ − λφ(u))
B∗(λ − λφ(u)) − φ(u)

. (13)

Here φ(u) has the form (11).
Formulas (5) and (13) completely characterize the waiting time of customer

in the queue N-server system M |GI|N |∞.
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8 Mean of the Positive Waiting Time

Applying the characteristic function h(u) from formula (13), the mean of positive
waiting time customer in the queue is written in the form

τ̄+ =
1
j
h

′
(u)|u=0 =

b2
2b(1 − λb)

, (14)

where b is the mean, and b2 is the second initial moment, defined by distribution
function B(x) from (4).

9 Optimal Number of Servers in the Multiserver System

In order for steady-state regime to exists in N-server queuing system with the
waiting, it is necessary that the system load ρ = λb = λ a

N is less than one.
Therefore, N has to satisfy inequality

N > λa. (15)

The optimal value Nopt of the number of servers is defined by criteria:

Nopt

[
min

N
{N : P (τ > τmax) ≤ δ}

]
.

Let τ be waiting time of customer service start, τmax is the upper limit waiting
time customer service start, δ is allowable share of customers who will wait for
the start of service longer than τmax. The condition P (τ > τmax) ≤ δ can be
replaced by the following equivalent condition

(1 − P0)P (τ+ > τmax) ≤ δ, (16)

where the probability of immediate service is given by (5).
Applying inverse Fourier transform to the function h(u), the probability

P (τ+ > τmax) can be written as the following integration formula:

P (τ+ > τmax) = 1 − 1
2π

∞∫

−∞

1 − e−juτmax

ju
h(u)du. (17)

Here h(u) has the form (13), and

φ(u) =

∞∫

0

ejuxdB(x) = 1 + ju

∞∫

0

ejux[1 − B(x)]dx,

B∗(α) =

∞∫

0

e−αxdx = 1 − α

∞∫

0

e−αx[1 − B(x)]dx = φ(jα), (18)
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and hence
φ(u) = B∗(−ju). (19)

The most consuming is the finding of probability P (τ+ > τmax) in inte-
gral formula (17), because it requires numerical calculation of three-dimensional
integrals: firstly, finding the function B(x) by the formula (4), secondly, find-
ing the Fourier and Laplace transform by the formulas (18)–(19), thirdly, the
calculations probability by the formula (17).

This problem is solved by considering for this task under heavy load.

10 Asymptotic Analysis of a Positive Waiting Time
Under Heavy Load

The characteristic function of a positive waiting time h(u) has the form (13).
We find its limit value under heavy load, when 1 − λb = ε and ε → 0. For this,
in expression (13) performs substitutions

u = εω, h(u) = H(ω, ε),

we obtain the following function

H(ω, ε) =
(φ(εω) − 1)(1 − λb)

λb2jεω

1 − B∗(λ − λφ(εω))
B∗(λ − λφ(εω)) − φ(εω)

. (20)

Let us find its limit for ε → 0. We can write

φ(εω) = Mejεωξ = 1 + jεωξb +
(jεωξ)2

2
b2 + o(ε3),

λ − λφ(εω) = −jεωξb − (jεωξ)2

2
λb2 + o(ε3),

B∗(α) = Me−αξ = 1 − αb +
α2

2
b2 + o(α3),

B∗(λ − λφ(εω)) = B∗
(

jεωb − (jεω)2

2
λb2

)
= B∗

(
−jεω(1 − ε) − (jεω)2

2
b2
b

)

= 1 + b

(
jεω(1 − ε) +

(jεω)2

2
b2
b

)
+

(jεω)2

2
b2 + o(ε3).

Substituting these expressions in expression (20), we obtain:

H(ω, ε) =
1 + jεωb − 1

λb2jεω
ε

1 − jεωb

1 + jεωb − jεωbε + (jεω)2b2 −
[
1 + jεωb + (jεω)2

2 b2

]

=
1
λb

ε
−jεωb

−jεωbε + (jεω)2

2 b2
=

1
1 − jω b2

2b

.
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Performing here the following inverse transformation

ω =
u

ε
=

u

1 − λb
,

we obtain the approximate expression for λb ↑ 1

h(u) ≈ 1
1 − ju b2

2b(1−λb)

.

for the characteristic function, which has the form of the characteristic function
of the exponential distribution with rate

γ =
2b(1 − λb)

b2
. (21)

Note that the mean 1/γ of the asymptotic distribution is equal to the mean
τ̄+ of positive waiting time (14).

Therefore, the probability P (τ+ > τmax) under heavy load can be defined
from the formula:

P (τ+ > τmax) = e−γτmax = exp
{

−2b(1 − λb)
b2

τmax

}
. (22)

11 Conclusion

In this paper, we study the queuing system M |GI|N |∞. We obtain the approx-
imation of probability distribution of the number of customers in the system.
We derive the formula of the probability of immediate service and the charac-
teristic function of a positive waiting time. The optimal number of servers can
be determined by the obtained characteristics.
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Abstract. The new Markov models of multi-channel queueing systems
with instantaneous and delayed feedback are proposed. In these mod-
els part of already serviced calls instantaneously feeds back to channel
while the rest part either leaves the system or feeds back to channel after
some delay in orbit. Behavior of already serviced calls is handled by ran-
domized parameters. Both exact and asymptotic methods to calculate
the quality of service (QoS) metrics of the proposed models are devel-
oped. Exact method is based on the system of balance equations (SBE)
for steady-state probabilities of appropriate three dimensional Markov
chain (3-D MC) while asymptotic method uses the new hierarchical space
merging algorithm for 3-D MC. Results of numerical experiments are
demonstrated.

Keywords: Queueing model · Instantaneous and delayed feedback ·
Three-dimensional markov chain · Exact analysis · Asymptotic analysis

1 Introduction

In examining the literature on the queueing systems, it is evident that major
interest has been focused on the models without feedback phenomena. However,
queueing systems with feedback are adequate mathematical models of many
real situations in which part of already serviced calls return to the system to get
additional service.

Among models of queueing systems with feedback two kinds of models should
be distinguished: (1) models with instantaneous feedback (i.e. models without
orbit) and (2) models with delayed feedback (i.e. models with orbit).

In the available literature both kinds of models have been investigated sepa-
rately. But models of queueing systems with simultaneously instantaneous and
delayed feedback have not been investigated.
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 185–199, 2015.
DOI: 10.1007/978-3-319-25861-4 16
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In this paper, the Markov models of multichannel queueing systems with
instantaneous and delayed feedback are examined. Let’s note that taking into
account of both types of feedback mechanisms leads to increase of vector dimen-
sion which describe the state of the system. As a result an approach to investi-
gate the models based on the system of balance equations (SBE) for steady-state
probabilities becomes inefficient especially for the large scale models. So, devel-
oping efficient methods for asymptotic analysis of models with a large number of
channels and large size of orbit is highly desired. Below we propose both exact
and asymptotic methods to calculate the quality of service (QoS) metrics of the
queueing models with instantaneous and delayed feedback.

The paper is organized as follows. In Sect. 2, brief review of related works
devoted to queueing models with feedback is given. The description of the model
with state-dependent feedback probabilities is presented in Sect. 3. Exact and
asymptotic methods to calculate the QoS metrics are developed in Sect. 4 and
Sect. 5 respectively. The results of numerical experiments performed by using the
developed methods are demonstrated in Sect. 6. Conclusion remarks are given
in Sect. 7.

2 Related Works

Let us first consider the works in which models without orbits (instantaneous
feedback) are investigated. Pioneer work was the paper Takacs [1]. In this paper
model M/G/1/ with instantaneous Bernoulli feedback was examined. The main
result of the paper is the recurrent relations to obtain joint distribution of sojourn
time and number of calls in the system.

Model M/GI/1/∝ with vacations and instantaneous Bernoulli feedback has
been investigated in [2]. The queue length probability generating functions
embedded at the moments of (i) call departures, (ii) call feedbacks and (iii)
server vacation completions are developed.

In paper [3] the model M2/G2/1/∝ with two independent Poisson traffics
and instantaneous Bernoulli feedback were examined. Each type of traffic has
its own service time distribution and the decision to feedback or not is based on
the type of call completing service. Type-1 calls have a non-preemptive priority
over type-2 calls and if a call feeds back it always becomes a type-2 call in the
priority scale. Conditions for the existence of stationary mode are found; both
joint and marginal distributions of the queue lengths are found as well. It is
shown that several earlier known results (for instance, results of the paper [1])
can be obtained simply from the results given here.

In paper [4] the following model M/M/1 with general feedback mechanism
was considered. At the completion of the i -th feeds back cycle the call feedback
with probability p(i) or departs from the system with probability 1-p(i). It is
shown that under some conditions the given model approaches to the M/G/1
with processor sharing (PS) queue discipline. An expression for the Laplace-
Stieltjes transforms (LST) of the sojourn time distribution in the given queueing
system is found.
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In paper [5] LST of the sojourn time distribution in the M/G/1/N with
state-dependent feedback is developed and the author notes that apart from the
special cases N = 1 and N = 2 general algebraic expressions for inverse of LST
will be difficult to obtain.

Model MAP/PH/1/N in which both departure and feedback probabilities
depend on the states of some random environment considered in paper [6]. To
calculate the steady-state probabilities of the appropriate 4-D Markov chain
(MC) the authors apply the Neuts matrix-geometric method [7].

Models of queuing systems with instantaneous feedback and infinite number
of channels were investigated in papers [8,9].

Let’s note that in all above mentioned works it is assumed that primary and
feedback calls have the same channel holding times. Moreover in these works
(except the paper [6]) it is assumed that both departure and feedback probabil-
ities are governed by Bernoulli schema with constant parameters, i.e. they are
state-independent. These assumptions essentially restricted applicability of their
results in real systems.

Two-dimensional models of multi-channel queuing systems in which primary
and feedback calls are not identical in terms of channel occupancy time were
investigated in paper [10]. Moreover in this paper it is assumed that departure
and feedback probabilities are state-dependent. In order calculate their QoS
metrics the space merging approach for two-dimensional Markov chains is used
[11,12].

Now let us consider the works in which models with orbit (delayed feedback)
are examined. First work in this direction was done by Takacs also [13]. In
this paper model M/M/1 with Bernoulli feedback and infinite orbit has been
considered. At each feedback time to channel, besides entire calls return from
the orbit, additional number of calls are also arriving. To find mean length of
the queue, waiting time in the queue and sojourn time in the system the method
of two dimensional generating functions is used.

Model ·/G/k/b,b < ∝ with stationary ergodic flow process and infinite orbit
was examined in [14]. It is assumed that number of feedback for each call is
random variable. It is shown that under some mild conditions feedback flow
converges to a Poisson process as the feedback delay distribution is scaled up.

In the paper [15] model M/G/1 with Bernoulli feedback and finite orbit is
considered. Here it is assumed that when orbit becomes full then all calls from
the orbit instantaneously feed back to the buffer of the queuing system. Joint
distribution of number of calls in system and in orbit is carried out. Similar
model was examined in paper [16]. The only difference is the following: required
switching time for feeds back of call from orbit to buffer is not zero and it is
random quantity with known distribution function.

Model M/G/1 with infinite buffer and exponential sojourn time in orbit was
investigated in [17]. Here feedback probabilities depend on the both number of
calls in the system and in the orbit as well as holding time of calls. Distribution
functions of length of queue, busy period of channel and departure flow are
found.
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Model M/M/n, n> 1, with finite buffer and exponential sojourn time in orbit
was investigated in [18]. Here feedback probabilities depend on the number of
busy channels in the system during the call departure. Both loss probabilities
of primary and feedback calls, average number of busy channels and average
number of feedback calls in the orbit are found.

It is important to note that in all above mentioned works models with instan-
taneous and delayed feedbacks are investigated separately. To our best knowl-
edge, models with both instantaneous and delayed feedbacks are not investigated.

3 Formulation of the Model

This system contains N> 1 identical channels which are used by Poisson flow of
primary calls (p -calls) with intensity λp. The channel occupancy times of p-calls
are assumed to be independent and have identical exponential distribution with
mean 1/μp.

After completion of the service of the p-calls the following decisions might
be accepted: (i) it leaves the system with probability σ1(x ); (ii) it feeds back
instantaneously with probability σ2(x ); (iii) it enters the orbit with probability
σ3(x ) = 1 - σ1(x ) - σ2(x ). These probabilities depend on the parameter x which
denotes the state of some external random environment.

The orbit size for repeated calls (r -calls) is R, 0 < R <∝. It means that an
arrived to orbit call will be accepted if upon its arrival the number of r -calls in
orbit is less than R; otherwise an arrived call will be lost. Sojourn times of r -calls
in the orbit are independent and identically distributed random variables and
they have common exponential distribution with mean 1/λr. It is assumed that
r -calls from the orbit are not persistent, i.e. if upon arrival of r -call all channels
of the system are busy then it is lost eventually.

Distribution functions of channel occupancy time of heterogeneous r -calls
(instantaneous and delayed) are assumed to be independent and exponential
with common mean 1/μr generally speaking For simplicity the model as well
as in order to find analytically tractable results it is assumed that both kinds
of r-calls (instantaneous and delayed) do not return again in future (although
as it seen below the developed approach allows to take into account multiple
repetition as well).

The main performance metrics of the given queueing systems are the fol-
lowing parameters: (i) loss probability of p-calls (Pp); (ii) loss probability of
r -calls from the orbit (Pr); (iii) mean number of p-calls in channels (Lp); (iv)
mean number of r -calls in channels (Lr); (v) mean number of r -calls in the orbit
( Lo); (vi) coefficient of utilization of channels (Cu).

4 Exact Method for Calculation of the Performance
Metrics

By taking into account the form of distribution functions of random variables
involved in the formation of the model, we conclude that operating of the investi-
gated queuing system might be described by the three-dimensional Markov chain
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(3-D MC). So, states of the system at equilibrium at any time are described by
three-dimensional vectors n = (np,nr,no) where the first (np)) and second com-
ponents (nr), respectively, indicate the number of initial and repeated calls in
the channels, and the third component (no) indicates the number of calls in
orbit. The state space (i.e. set of all possible states) S is defined as

S = (n : np = 0, 1, ..., N ;nr = 0, 1, ..., N ;np + nr ≤ N ;no = 0, 1, ..., R) (1)

Let us suppose that the behavior of call which already received initial service
in the system is determined by the number of repeated calls in orbit, i.e. states of
the external random environment are determined by scalar x, which defines the
number of repeated calls in orbit, x=0,1,..., R Since the call is received in orbit
only when at the moment of its receipt total number of repeat calls is smaller
than R, then we have σ3(R)=0.

The intensity of transition from state n to state n ′ is denoted as q=(n , n ′),
n , n ′ ∈ S The combination of these values involve the Q-matrix of the given
MC. They are d below:

q(n ,n ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λp, if n′ = n + e1

npμpσ1(n0), if n′ = n − e1

npμpσ2(n0), if n′ = n − e1 + e2

npμpσ3(n0), if no ≤ R,n′ = n − e1 + e3

nrμr, if n′ = n − e2

noλr, if np + nr ≤ N,n′ = n + e2 − e3, or
np + nr = N,n′ = n − e3

0, in other cases.

(2)

Here ei is the i -th unit vector of the three-dimensional Euclidean space, i = 1,
2, 3. The given three-dimensional MC with finite number of states is irreducible,
which determines the existence of a stationary regime. Let p(n) means a steady-
state probability of n ∈ S. These values comply with the relevant equilibrium
equations system (EES), which is constructed on the basis of (2) and has the
following form:

(λpI(np + nr < N) + npμp + nrμr + noλr)p(n)
= λpp(n − e1)I(np > 0) + (np + 1)μp(p(n + e1)σ1(no)

+p(n + e1 − e2)σ2(no) + p(n + e1 − e3)σ3(no − 1)I(no > 0)) (3)
+(nr + 1)μrp(n + e2) + (no + 1)λr(p(n + e3)δ(np + nr, N)

+p(n − e2 + e3)I(no < R,nr > 0))

Herein after I (A) denotes the indicator function of event A and δ(i, j) rep-
resents Kroneckers symbols. Normalizing condition of the EES can be shown as
below: ∑

n∈S

p(n) = 1 (4)
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After finding a solution of the EES (3), (4) the performance metrics of the
investigated system are determined by the marginal distributions of the 3-D MC.
Thus, since the flow of the primary call is Poisson, their loss probability can be
determined by PASTA theorem [19]:

Pp =
∑
n∈S

p(n)δ(np + nr, N) (5)

Based on the results of the work [14] we conclude that traffic of retrial calls is
considered as Poisson one, and therefore in order to calculate the loss probability
of retrial calls can also be used PASTA theorem. Since the retrial calls are
generated only when the orbit is not empty, then the desired characteristic is
defined as follows:

Pr =
∑
n∈S

p(n)δ(np + nr, N)(1 − δ(no, 0)) (6)

The average number of primary and retrial calls in channels, and retrial calls
in the orbit is defined as the expectation of the appropriate discrete random
variables:

Lx =
N∑
j=1

jΦx(j) (7)

where Φx(j) =
∑

n∈S p(n)δ(nx, j), x ∈ {p, r};

Lo =
R∑

j=1

jΨ(j) (8)

where Ψ(j) =
∑

n∈S p(n)δ(no, j).
Channel utilization coefficient (Cu) is determined based on the formula (7):

Cu = (Lp + Lr)/N. (9)

Unfortunately, due to the complex structure of the Q-matrix of the given
3-D MC it is too complicate (most probably it is impossible) to find analytical
solution to the EES (3), (4). Therefore the only way to solve them is to use
numerical methods of linear algebra (the effective and well-known method for
solving EES is Gauss-Seidel one).

5 Asymptotic Method for Calculation of the Performance
Metrics

The dimension of the EES (3), (4) is determined based on the dimension of
the state space (1), which consists of (N + 1)(N + 2)(R + 1)/2 states, i.e. it
is estimated to be O(N2R). Therefore, the above-given exact method makes it
possible to calculate the performance metrics (5)–(9) only for models with mod-
erate dimensions of the state space (1), but for large scale models it encounters
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great computational difficulties. To eliminate them, we can use the method of
the state space merging theory of stochastic systems [11,12]. Here is provided
a hierarchical space merging algorithm (SMA) for calculating the steady-state
probabilities of the investigated 3-D MC according to the certain asymptotic
conditions.

For the correct application of this method the following condition is consid-
ered: λ >> max{μp, μr}, i.e. it is assumed that the system is operating under
high load.

It should be noted that in the proposed models, as a rule, the arrival intensity
of the p-call significantly exceeds the arrival intensity of r-call from orbit, i.e.
condition λp >> λr is natural. Then, having this assumption we can say that
transition intensity between states inside the planes that are parallel to the base
of the prism is much greater than the transitions intensity between states of
different planes. In that case we can consider the following splitting of the state
space (1):

S =
R⋃

k=0

Sk, Sk ∪ Sk′ = ∅, if k �= k′ (10)

where Sk = {n ∈ S : no = k}, k = 0, 1, ..., R. In other words, it is considered
that entire state space (1) is sliced into different planes that are the parallel to
the base of the prism.

The merging function is determined based on the splitting (10) as follows:

U1(n) =< k >, if n ∈ Sk, (11)

where < k > is a merged state, which includes all states of class Sk. Let
Ω1 = {< k >: k = 0, 1, ..., R}.

According to SMA [11] (see the Appendix of this work) state probabilities of
the initial model are defined as follows

pn ≈ ρk(np, nr)π1(< k >) (12)

where ρk(np, nr) denotes the probability of the state (np, nr) within the split-
ting model with state space Sk, and π1(< k >) is the probability of the merged
state < k >∈ Ω1.

Therefore, for the calculation of the stationary distribution of the initial 3-D
MC we need to find stationary distributions of 2-D MC (their number is equal
R+1) and one 1-D MC. For large number of channels computational difficulties
arise when calculating the stationary distributions of these 2-D MC with state
space Sk, k = 0, 1, ..., R. Therefore in order to calculate stationary distributions
within the classes Sk, k = 0, 1, ..., R it is required to apply SMA to each class. In
other words, we consider the hierarchy of the merged models.

From (10) it is clear that all the splitting models with state spaces Sk, k =
0, 1, ..., R involve identical 2-D MC. Therefore, in the future the value of k is
fixed and splitting model with state space Sk is analyzed.
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In the state space Sk the following splitting is considered:

Sk =
N⋃
i=0

Si
k, S

i
k ∪ Sj

k = ∅, if i �= j (13)

where Si
k = {n ∈ Sk : nr = i}, i = 0, 1, ..., N In other words, we consider a

partitioning of the state space of the splitting model by row.
Further, based on the splitting (13) in the state space Sk the following merged

function is determined:

U2(n) =< i >, if n ∈ Si
k, (14)

where < i > is a merged state, which includes all states of class Si
k. Let

Ω2 = {< i >: i = 0, 1, ..., N}.
According to the SMA we have:

ρk(np, nr) ≈ ρknr
(np)πk

2 (< nr >) (15)

where ρknr
(np) denotes the probability of the state (np, nr) within the splitting

model with state space Snr

k , and πk
2 (< nr >) is the probability of the merged

state < nr >∈ Ω2.
Lets consider the problem of calculating the state probabilities within the

classes Si
k. First of all, lets mention that since the class of states SN

k has only
one state (0, N), then below it is assumed that ρkN (0) = 1.

In the class of states Si
k, i �= N the second component is constant. Therefore,

in splitting models with state space Si
k microstate (np, i) ∈ Si

k can be described
only with the first component. Further, for the sake of convenience in the splitting
model with state space Si

k the state (np, i) is just referred as np, np = 0, 1, ..., N−i.
The transition intensity between the states np and n′

p of the splitting model
with state space Si

k is denoted as qk(np, n
′
p). From (2) we get that these para-

meters are defined as follows:

qk(np, n
′
p) =

⎧⎪⎨
⎪⎩

λp, if n′
p = np + 1

npμpσ1(k), if n′
p = np − 1

0, in other cases.
(16)

Hence, from (16) we get that state probabilities within the splitting model
with state space Si

k, i = 0, 1, ..., N −1 are calculated as state probabilities of 1-D
birth and death process (BDP), i.e.

ρki (j) =
(νp/σ1(k))j

j!
ρki (0), j = 1, 2, ..., N − i (17)

where νp = λp/μp and ρki (0) is determined from the normalizing condition,
i.e.

∑N−i
j=0 ρki (j) = 1.
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The transition intensity from merged state < i > to other merged state < j >
is denoted as qk(< i >,< j >), < i >,< j >∈ Ω2 After certain mathematical
transformations using SMA we get:

qk(< i >,< j >) =

⎧⎪⎨
⎪⎩

μpαk(i), if j = i + 1
iμr if j = i − 1
0, in other cases.

(18)

where αk(i) = σ2(k)
∑N−i

j=1 jρki (j), i = 0, 1, ..., N − 1.
Thus, from (18) we get the following relations to calculate the probabilities

of merged states πk
2 (< nr >), < nr >∈ Ω2:

πk
2 (< nr >) =

(μp/μr)nr

nr!

nr−1∏
i=0

αk(i)πk
2 (< 0 >), nr = 1, 2, ..., N (19)

where πk
2 (< 0 >) is derived from the normalizing condition, i.e.,

∑N
j=0 πk

2 (<
j >) = 1.

Now in order to calculate the stationary distribution of the initial 3-D MC it is
required to find the probabilities of the merged states π1(< k >), < k >∈ Ω1 (see
Eq. (12)). For this purpose we need to determine transition intensities between
classes (layers) Sk, k = 0, 1, ..., R (see splitting (10)).

Lets denote the transition intensity between classes Sk and S′
k as q(Sk, S

′
k)

These intensities are determined by the relations (2), (17) and (19). Then, using
the SMA after certain mathematical transformations we get:

q(Sk, S
′
k) =

⎧⎪⎨
⎪⎩

Λ(k), if k′ = k + 1
kλr, if k′ = k − 1
0, in other cases.

(20)

where Λ(k) = μpσ3(k)
∑N−i

j=1 jρki (j), k = 0, 1, ..., R − 1.
Hence, from (20) we get that the required probabilities of the merged state

π1(< k >), < k >∈ Ω1 are defined as a stationary distribution of 1-D BDP with
variable parameters, i.e.

π1(< k >) =
1

k!λk
r

k−1∏
i=0

Λ(i)π1(< 0 >), k = 1, 2, ..., R (21)

where π1(< 0 >) is derived from the normalizing condition, i.e.,
∑R

k=0 π1(<
k >) = 1.

Finally, the stationary distribution of the initial 3-D MC is derived from (12)
by (17), (19) and (21):

p(np, nr, no) ≈ ρno
nr

(np)π1(< no >)πno
2 (< nr >) (22)
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In summary, we get the following expressions for the approximate calculation
of the required performance metrics of the investigated system:

Pp ≈
R∑

k=0

π1(< k >)
N∑
i=0

ρki (N − i)πk
2 (< i >) (23)

Pr ≈
R∑

k=1

π1(< k >)
N∑
i=0

ρki (N − i)πk
2 (< i >) (24)

Lp ≈
R∑

k=0

π1(< k >)
N∑
j=1

j

N−j∑
i=0

ρki (j)π
k
2 (< i >) (25)

Lr ≈
R∑

k=0

π1(< k >)
N∑
i=0

iπk
2 (< i >) (26)

Lo ≈
R∑

k=1

kπ1(< k >) (27)

Channel utilization coefficient is approximately determined according to (9),
(25) and (26).

6 Numerical Results

The proposed methods (exact and approximate) allow to study the performance
metrics of the investigated systems with instantaneous and delayed feedback
versus their structural (the number of channels and the size of the orbit) and
load of parameters (arrival and services intensities of primary and retrial calls)
as well as the parameters that determine the behavior of the call after receiving
the primary service (i.e. the probabilities σi(k), i = 1, 2, 3. However, as noted
above, precise analysis is possible only for the models with moderate size.

In order to be short, here are only studied the dependence of performance
metrics on the number of channels for fixed values of other parameters.

The results of the numerical experiments for a hypothetical model are shown
in Figs. 1–5 (for the convenience in the graphical representation, in some cases,
the ordinate axis is illustrated in logarithmic scale). Here are given figures of
the performance metrics for the following values of the load parameters of the
model: λp = 4, μp = 0.5, λr = 2, μr = 0.2. For simplicity, it is assumed that the
probabilities σi(k), i = 1, 2, 3 are constants, in other words, σ1(k) = 0.4, σ2(k) =
0.3, σ3(k) = 0.3 for any k = 0, 1, ..., R − 1, and σ1(k) = 0.5, σ2(k) = 0.5.

The increase in the number of channels leads to a systematic decrease in the
loss probability of the primary challenges (Pp); however, the loss probability of
retrial calls (Pr) increases at small number of channels (N), and after reaching a
certain maximum value, the indicated performance metrics again systematically
decreases (see Figs. 1 and 2). This phenomenon is explained by the effect of the
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Fig. 1. Dependence of the loss probability of the primary and retrial calls on the
number of channels, R = 3

Fig. 2. Dependence of the loss probability of the primary and retrial calls on the
number of channels, R = 10

feedback at small number of channels. As the number of channels is getting
bigger and bigger, the effect of repeated calls almost disappears. In large values
of N the values of the function Pr asymptotically approaches to the values of Pp

but Pr < Pp.
It is interesting to note that the increase in the size of orbit for retrial calls

leads to reduce in the values of both functions Pp and Pr. In other words, the
values of these functions at R = 3 is greater than the values for R = 10 (see.
Figs. 1 and 2).
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In the case of function Pr this property has quite logical explanation, but for
the function Pp it has negative relation, so that increase in the size of orbit has
to result in increase of the loss probability of primary calls. This is due to the
fact that the selected source data for the hypothetical model for any number of
channels (N) and the average number of retrial calls in the orbit (Lo) at R = 3
are substantially greater than at R = 10.

Dependence of average number of primary (Lp) and retrial (Lr) calls, and the
average number of retrial calls in the orbit (Lo) on the number of channels (N)
of the system given in Fig. 3. It is apparent that for the selected data functions

Fig. 3. Dependence of average number of primary (Lp) and retrial (Lr) calls, and the
average number of retrial calls in the orbit (Lo) on the number of channels (N), R = 10

Fig. 4. Dependence of the channel utilization on the number of channel
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Fig. 5. Dependence of the behavior of the absolute error of loss probabilities of primary
(�Pp) and retrial (�Pr) call on the number of channels of the system, λr = 2; λp =
4; μr = 0.2; μp = 0.5; R = 3

Lo and Lp systematically increase, while function Lr is not increasing; wherein
the number of repeated calls in the channels is significantly smaller than the
number of the primary challenges in the channels.

Dependence of the channel utilization on the number of channel is shown
in Fig. 4. As expected, the function of Cu is decreasing function, and moreover
threefold increase in the size of orbit doesn’t affect its value.

Another purpose of the numerical experiments is to determine the accuracy of
the proposed approximate method, and comparison of execution time exact and
approximate algorithms. Regarding the accuracy of the approximate formulas,
we can say that they are strongly dependent on the dimension of the model, on
the absolute values of the load parameters, as well as their relationship. For the
above-mentioned initial data of proposed model the steady-state probabilities in
exact and approximate approaches are very close to each other. However, the
required characteristics is determined as marginal distributions of initial model
so in some cases it is expected that the values of these characteristics might
strongly differentiate from each other. The behavior of these characteristics with
respect to the structural parameters in the exact and approximate approaches
are identical. Furthermore, numerical experiments have shown that an increase in
the dimension of the model, their absolute values are asymptotically approaching
to zero. This is very significant, because approximate approach is proposed only
for very large dimension of the model.

Due to the limited size of work here in Fig. 5 is shown only dependence of the
behavior of the absolute error of loss probabilities of primary (	Pp) and retrial
(	Pr) call on the number of channels of the system.
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7 Conclusion

In the paper model of multi-channel queuing system with instantaneous and
delayed retrial calls were studied. Here some part of the calls may require instan-
taneous repeated service just after the having primary service. And remain part
can either return through the orbit within random time, or leave the system
at all. We consider a general model where it is assumed that service time of
primary and repeated calls vary from each other. Exit probabilities of the calls
after receiving primary service, their immediate return to the channels or enter-
ing orbit depend on the number of repeated calls in the orbit. More ever systems
with finite and infinite dimensions of the orbit were analyzed. It is shown that the
mathematical models of the investigated queuing system is a three-dimensional
Markov chain. The methods of exact and asymptotic analysis of the characteris-
tics of mentioned system were proposed. Accurate analysis is based on a system
of equilibrium equations for the state probabilities, but asymptotic analysis uses
the principles of merging of the state space of stochastic systems. The hierar-
chical state space merging algorithm were proposed in order to calculate the
stationary distribution of the three-dimensional Markov chains.

The proposed approach can be used for studying similar models in which
more complex access schemas with priority for different call types are imple-
mented. In addition this approach can be applied in models in which the exit
probability from the system, return probability to the channels or entering proba-
bility to the orbit depend on the number of different types of calls in the channels
or depends on the sum of them. Solution of the optimizing problems for inves-
tigated queueing system is also important ones. This problems are included to
our future research question.
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Abstract. In this paper, we study the retrial queueing system with two
arrival processes and two orbits with r-persistent exclusion of alternative
customers by method of asymptotic analysis under condition of long
delay. Stationary probability distribution of server states and values of
asymptotic means of the number of customers in the orbits are obtained.

Keywords: Retrial queuing system · r-persistent exclusion of alterna-
tive customers · Orbit · Asymptotic analysis

1 Introduction

Queueing systems, in which arriving customers who find all servers and wait-
ing positions (if any) occupied may retry for service after a period of time,
are called Retrial queues [1–3]. A review of the main results on this topic can
be found in [4]. Retrial queues have been widely used as mathematical models
of different communication systems: shared bus local area networks operating
under transmission protocols like CSMA/CD (Carrier Sense Multiple Access
with Collision Detection), cellular mobile networks, computer and communica-
tions networks, IP networks. Priority control is also wildely used in production
practice, transportation management, etc. Several authors including Choi, B.D.
[6–10], Rengnanathan, N. [11], Krishna Reedy, G.V. [12], Zhu, Y.J. [13] have
studied priority queues. These authors and several others have studied single
server or multi-server queues with two or more priority classes under preemp-
tive or non-preemptive priority rules. Choi, B.D. We analyzed a M/G/1 retrial
queueing systems with two types of calls and finite capacity, Moreno, P. consid-
ered an M/G/1 retrial queue with recurrent customers and general retrial times
[14]. In [15] retrial queue system M/G/1 with queue length r and the priority of
the primary customers is studied. In [16], generalization of [15] is implemented.

In this paper, we study the retrial queueing system M (2)/M (2)/1 with
r-persistent exclusion of alternative customers.

c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 200–208, 2015.
DOI: 10.1007/978-3-319-25861-4 17
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2 Problem Statement

We consider retrial queueing system with two arrival processes and two orbits
with r-persistent collision of alternative customers (Fig. 1).

We assume that two arrival processes to the system are described by the sta-
tionary Poisson process with intensity λ1 and λ2, respectively. Customer, which
finds the free server, occupies it during a random time which is exponentially
distributed with intensity μ1 and μ2, respectively. If, at the moment of arrival,
customer of the first type finds the server busy with a customer of the first type,
then it goes to the orbit 1 (the orbit for customer of the first type), where it
performs a random delay with duration determined by exponential distribution
with intensity σ1. From the orbit 1, after the random delay, the customer tries to
occupy the server again. If at the time of arrival, customer of the first type finds
the server busy with a customer of the second type, then the arrived customer
with probability r1 replaces the customer, which was in service, and occupies
the server, and with probability 1 − r1 it goes to the orbit 1.

The same goes for the second type customer. If at the moment of arrival,
customer of the second type finds the server busy with a customer of the second
type, then it goes to the orbit 2 (the orbit for customer of the second type), where
it performs a random delay with duration determined by exponential distribution
with intensity σ2. From the orbit 2, after the random delay, the customer tries
to occupy the server again. If, at the time of arrival, customer of the second type
finds the server busy with a customer of the first type, then an arrived customer

Fig. 1. Retrial queueing system M (2)/M (2)/1.
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with probability r2 replaces the customer, which was in service, and occupies
the server, and with probability 1 − r2 it goes to the orbit 2.

Let i1(t) be the number of customers in the orbit 1 and i2(t) be the number
of customers in the orbit 2, and the process k(t) defines the server state at the
moment t in the following way:

k(t) =

⎧⎪⎨
⎪⎩

0, if server is free,
1, if server is busy with a customer of the first type,
2, if server is busy with a customer of the second type.

We would like to solve a problem of computation of stationary probability dis-
tribution of the number of customers in the orbits 1 and 2 and server state.

3 System of Kolmogorov Differential Equations

We consider Markovian process {k(t), i1(t), i2(t)}, t ≥ 0.
Let us denote by P {k(t) = k, i1(t) = i1, i2(t) = i2} = Pk(i1, i2, t) a probabil-

ity that, at the moment t , the server in the state k and i1 customers are in the
orbit 1, i2 customers are in the orbit 2.

We write system of differential Kolmogorovs equations for the probability
distribution {P0(i1, i2, t), P1(i1, i2, t), P2(i1, i2, t)}:

∂P0(i1, i2, t)

∂t
=− (λ1 + λ2 + i1σ1 + i2σ2)P0(i1, i2, t) + μ1P1(i1, i2, t) + μ2P2(i1, i2, t),

∂P1(i1, i2, t)

∂t
=− (λ1 + λ2 + μ1 + r2i2σ2)P1(i1, i2, t) + (1− r2)λ2P1(i1, i2 − 1, t)

+ λ1P0(i1, i2, t) + (i1 + 1)σ1P0(i1 + 1, i2, t) + λ1P1(i1 − 1, i2, t)

+ r1λ1P2(i1, i2 − 1, t) + r1(i1 + 1)σ1P2(i1 + 1, i2 − 1, t), (1)
∂P2(i1, i2, t)

∂t
=− (λ1 + λ2 + μ2 + r1i1σ1)P2(i1, i2, t) + (1− r1)λ1P2(i1 − 1, i2, t)

+ λ2P0(i1, i2, t) + (i2 + 1)σ2P0(i1, i2 + 1, t) + λ2P2(i1, i2 − 1, t)

+ r2λ2P1(i1 − 1, i2, t) + r2(i2 + 1)σ2P1(i1 − 1, i2 + 1, t).

4 Equations for Partial Characteristic Function

We introduce the partial characteristic function in the following form:

Hk(u1, u2, t) =
∞∑

i1=0

∞∑
i2=0

eju1i1eju2i2Pk(i1, i2, t), k = 0, 1, 2,

where j =
√−1 is imaginary unit. We rewrite the system (1) for partial charac-

teristic function.
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We can rewrite system (1) as:

− (λ1 + λ2)H0(u1, u2) + jσ1
∂H0(u1, u2)

∂u1
+ jσ2

∂H0(u1, u2)
∂u2

(2)

+ μ1H1(u1, u2) + μ2H2(u1, u2) = 0,

− (λ1 + λ2 + μ1)H1(u1, u2) + jσ2r2
∂H1(u1, u2)

∂u2
− jσ1e

−ju1
∂H0(u1, u2)

∂u1

+ (1 − r2)λ2e
ju2H1(u1, u2) + λ1H0(u1, u2) + λ1e

ju1H1(u1, u2)

+ r1λ1e
ju2H2(u1, u2) − jr1σ1e

j(u2−u1)
∂H2(u1, u2)

∂u1
= 0,

− (λ1 + λ2 + μ2)H2(u1, u2) + jσ1r1
∂H2(u1, u2)

∂u1
− jσ2e

−ju2
∂H0(u1, u2)

∂u2

+ (1 − r1)λ1e
ju1H2(u1, u2) + λ2H0(u1, u2) + λ2e

ju2H2(u1, u2)

+ r2λ2e
ju1H1(u1, u2) − jr2σ2e

j(u1−u2)
∂H1(u1, u2)

∂u2
= 0.

We will solve system (2) using the method of asymptotic analysis under condition
of long delay (σ → 0).

5 The First-Order Asymptotic Analysis

In system (2) we make substitutions:
σm = σγm; σ = ε;um = εwm,m = 1, 2; Hk(u1, u2) = Fk(w1, w2, ε), k =

0, 1, 2.
We can rewrite system (2) in the following form:

− (λ1 + λ2)F0(w1, w2, ε) + jγ1
∂F0(w1, w2, ε)

∂w1
+ jγ2

∂F0(w1, w2, ε)

∂w2
(3)

+ μ1F1(w1, w2, ε) + μ2F2(w1, w2, ε) = 0,

− (λ1 + λ2 + μ1)F1(w1, w2, ε) + jγ2r2
∂F1(w1, w2, ε)

∂w2
− jγ1e

−jεw1 ∂F0(w1, w2, ε)

∂w1

+ (1− r2)λ2e
jεw2F1(w1, w2, ε) + λ1F0(w1, w2, ε) + λ1e

jεw1F1(w1, w2, ε)

+ r1λ1e
jεw2F2(w1, w2, ε)− jr1γ1e

jε(w2−w1) ∂F2(w1, w2, ε)

∂w1
= 0,

− (λ1 + λ2 + μ2)F2(w1, w2, ε) + jγ1r1
∂F2(w1, w2, ε)

∂w1
− jγ2e

−jεw2 ∂F0(w1, w2, ε)

∂w2

+ (1− r1)λ1e
jεw1F2(w1, w2, ε) + λ2F0(w1, w2, ε) + λ2e

jεw2F2(w1, w2, ε)

+ r2λ2e
jεw1F1(w1, w2, ε)− jr2γ2e

jε(w1−w2) ∂F1(w1, w2, ε)

∂w2
= 0.
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Theorem 1. Limiting values {Fk(w1, w2)} of the solution {Fk(w1, w2, ε)} of
the system (3) have the following form:

Fk(w1, w2) = Rkejw1x1+jw2x2 ,

where values R0, R1, R2, x1, x2 is the solution of the following system:

− (λ1 + λ2 + γ1x1 + γ2x2)R0 + μ1R1 + μ2R2 = 0, (4)
(λ1 + γ1x1)R0 − (λ2 + μ1 + r2γ2x2 − (1 − r2)λ2)R1 + (r1λ1 + r1γ1x1)R2 = 0,

(λ2 + γ2x2)R0 + (r2λ2 + r2γ2x2)R1 − (λ1 + μ2 + r1γ1x1 − (1 − r1)λ1)R2 = 0,

− γ1x1R0 + (λ1 + r2λ2 + r2γ2x2)R1 + (r1γ1x1 + (1 − r1)λ1)R2 = 0,

− γ2x2R0 + (r2γ2x2 + (1 − r2)λ2)R1 + (λ1 + r1λ1 + r1γ1x1)R2 = 0.

6 The Second-Order Asymptotic Analysis

To find the asymptotic of the second order we must execute following substitute
at system (2):

Hk(u1, u2) = Hk
(2)(u1, u2) exp

{
j
u1

σ
x1 + j

u2

σ
x2

}

σk = γkσ, σ = ε2, uk = εwk, Hk
(2)(u1, u2) = Fk(w1, w2, ε).

We can rewrite system (2) as:

− (λ1 + λ2)F0(w1, w2, ε) + jγ1ε
∂F0(w1, w2, ε)

∂w1
+ jγ2ε

∂F0(w1, w2, ε)

∂w2
(5)

+ μ1F1(w1, w2, ε) + μ2F2(w1, w2, ε)− γ1x1F0(w1, w2, ε)− γ2x2F0(w1, w2, ε) = 0,

− (λ1 + λ2 + μ1)F1(w1, w2, ε) + jγ2r2ε
∂F1(w1, w2, ε)

∂w2
− r2γ2x2F1(w1, w2, ε)

− jγ1e
−jεw1ε

∂F0(w1, w2, ε)

∂w1
+ γ1x1e

−jεw1F0(w1, w2, ε)

+ (1− r2)λ2e
jεw2F1(w1, w2, ε) + λ1F0(w1, w2, ε)

+ λ1e
jεw1F1(w1, w2, ε) + r1λ1e

jεw2F2(w1, w2, ε)

− jr1γ1εe
jε(w2−w1) ∂F2(w1, w2, ε)

∂w1
+ r1γ1x1e

jε(w2−w1)F2(w1, w2, ε) = 0,

− (λ1 + λ2 + μ2)F2(w1, w2, ε) + jγ1r1ε
∂F2(w1, w2, ε)

∂w1
− r1γ1x1F2(w1, w2, ε)

− jγ2e
−jεw2ε

∂F0(w1, w2, ε)

∂w2
+ γ2x2e

−jεw2F0(w1, w2, ε)

+ (1− r1)λ1e
jεw1F2(w1, w2, ε) + λ2F0(w1, w2, ε)

+ λ2e
jεw2F2(w1, w2, ε) + r2λ2e

jεw1F1(w1, w2, ε)

− jr2γ2εe
jε(w1−w2) ∂F1(w1, w2, ε)

∂w2
+ r2γ2x2e

jε(w1−w2)F1(w1, w2, ε) = 0.
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Theorem 2. Limiting values {Fk(w1, w2)} of the solution {Fk(w1, w2, ε)} of
the system (5) have the following form:

Fk(w1, w2) = RkΦ(w1, w2),

where values R0, R1, R2, x1, x2 is the solution of the system (4).
We write function Φ(w1, w2) in the following form:

Φ(w1, w2) = exp

{
(jw1)

2

2
Q11 +

(jw2)
2

2
Q22 + jw1jw2Q12

}
,

where values Q11, Q12, Q22 is the solution of the following system:

Q11(γ1R0y0 − γ1R0y1 − r1γ1R2y1 + r1γ1R2y2 − γ1R0 − r1γ1R2)
+ Q12(γ2R0y0 + r2γ2R1y1 − γ2R0y2 − r2γ2R1y2 + r2γ2R1)
= λ1R1y1 − x1γ1R0y1 − r1γ1x1R2y1 + (1 − r1)λ1R2y2 + r2λ2R1y2

+ r2γ2x2R1y2 − 1
2
γ1x1R0 − 1

2
λ1R1 − 1

2
r2λ2R1 − 1

2
r2γ2x2R1

− 1
2
r1γ1x1R2 − 1

2
(1 − r1)λ1R2,

Q22(γ2R0d0 − γ2R0d2 − r2γ2R1d2 + r2γ2R1d1 − γ2R0 − r2γ2R1)
+ Q12(γ1R0d0 + r1γ1R2d2 − γ2R0d2 − r1γ1R2d1 + r1γ1R2)
= λ2R2d2 − x2γ2R0d2 − r2γ2x2R1d2 + (1 − r2)λ2R1d1 + r1λ1R2d1

+ r1γ1x1R2d1 − 1
2
γ2x2R0 − 1

2
λ2R2 − 1

2
r1λ2R2 − 1

2
r1γ1x1R2

− 1
2
r2γ2x2R1 − 1

2
(1 − r2)λ2R1,

Q11(γ1R0z
(0)
0 − γ1R0z

(0)
1 − r1γ1R2z

(0)
1 + r1γ1R2z

(0)
2 + r1γ1R2)

+ Q12(γ2R0z
(0)
0 + r2γ2R1z

(0)
1 − γ2R0z

(0)
2 − r2γ2R1z

(0)
2 + r2γ2R1 + γ1R0z

(1)
0

− γ1R0z
(1)
1 − r1γ1R2z

(1)
1 + r1γ1R2z

(1)
2 + r1γ1R2 − γ1R0 − γ2R0)

+ Q22(γ2R0z
(1)
0 − γ2R0z

(1)
2 − r2γ2R1z

(1)
2 + r2γ2R1z

(1)
1 + r2γ2R1)

= λ1R1z
(0)
1 − x1γ1R0z

(0)
1 − r1γ1x1R2z

(0)
1 + (1 − r1)λ1R2z

(0)
2 + r2λ2R1z

(0)
2

+ r2γ2x2R1z
(0)
2 + λ2R2z

(1)
2 − x2γ2R0z

(1)
2 − r2γ2x2R1z

(1)
2 + (1 − r2)λ2R1z

(1)
1

+ r1λ1R2z
(1)
1 + r1γ1x1R2z

(1)
1 + r1γ1x1R2 + r2γ2x2R1,

Values y0, y1, y2; d0, d1, d2; z
(0)
0 , z

(0)
1 , z

(0)
2 ; z

(1)
0 , z

(1)
1 , z

(1)
2 are the solutions

of the system (6)-(9), respectively.

− (a1 + a2)y0 + a1y1 + a2y2 = λ1 − a1, (6)
μ1y0 − (μ1 + a2r2)y1 + r2a2y2 = λ1 + r2a2,

μ2y0 + r1a1y1 − (μ2 + a1r1)y2 = λ1 − r1a1.
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− (a1 + a2)d0 + a1d1 + a2d2 = λ2 − a2, (7)
μ1d0 − (μ1 + a2r2)d1 + r2a2d2 = λ2 − r2a2,

μ2d0 + r1a1d1 − (μ2 + a1r1)d2 = λ2 + r1a1.

− (a1 + a2)z
(0)
0 + a1z

(0)
1 + a2z

(0)
2 = λ2 − a2, (8)

μ1z
(0)
0 − (μ1 + a2r2)z

(0)
1 + r2a2z

(0)
2 = λ2 − r2a2,

μ2z
(0)
0 + r1a1z

(0)
1 − (μ2 + a1r1)z

(0)
2 = λ2 + r1a1.

− (a1 + a2)z
(1)
0 + a1z

(1)
1 + a2z

(1)
2 = λ1 − a1, (9)

μ1z
(1)
0 − (μ1 + a2r2)z

(1)
1 + r2a2z

(1)
2 = λ1 + r2a2,

μ2z
(1)
0 + r1a1z

(1)
1 − (μ2 + a1r1)z

(1)
2 = λ1 − r1a1.

7 Numerical Realization

For example, we take the parameters of arrival processes as:

λ1 = 3, λ2 = 2.

If the parameters of exponential law service are fixed as follow is:

μ1 = 10, μ2 = 20.

The parameters of a random delay with duration determined by exponential
distribution are fixed in following form:

σ1 = 0.02, σ2 = 0.03.

So as σ1 = γ1σ, σ2 = γ2σ, then we will take γ1 = 2, γ2 = 3. Probability
of displacement of the customer from the server by the customer of the first
type r1 = 1. Probability of displacement of the customer from the server by the
customer of the second type r2 = 1.

We have values of asymptotic means of the number of customers in the orbits
with these values of parameters

x1 = 100, x2 = 44

and variance
Q11 = 1.152, Q22 = 0.308

and correlation coefficient
r = 0.421.
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8 Conclusion

In the paper we study the retrial queueing system M (2)—M (2)— 1 with
r-persistent exclusion of alternative customers by method of asymptotic analysis
under condition of long delay. Stationary probability distribution of server states
and values of asymptotic means of the number of customers in the orbits are
obtained. Two-demension marginal distribution of the number of customers in
the orbit 1, in the orbit 2 is asymptotically Gaussian. We obtain the numerical
realization for the condidered parameters.

Acknowledgments. The work is performed under the state order of the Ministry of
Education and Science of the Russian Federation (No. 1.511.2014/K).
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Abstract. We investigate queueing systems with demands having some
random space requirements (capacities) and service times generally
depending on their capacities. For such systems, we discus the problem
of steady-state loss characteristics determination, calculate these char-
acteristics for some special cases and present a way for their estimation.

Keywords: Queueing system · Demand space requirement (capacity) ·
Total demands capacity

1 Introduction

We consider queueing systems of M/G/n-type with identical servers, unbounded
queue and demands of random space requirement. It means that each demand is
characterized by some non-negative random indication named the demand space
requirement or demand capacity ζ. We also assume in general that demand
service time ξ and its space requirement ζ are dependent.

The joint distribution of ζ and ξ random variables we characterize by the
joint distribution function

F (x, t) = P{ζ < x, ξ < t}.

Note that in this case the marginal distribution function of the random variable
ζ and ξ takes the form L(x) = P{ζ < x} = F (x,∞) and B(t) = P{ξ < t} =
F (∞, t) consequently. Denote by η(t) the number of demands present in the
system at the time instant t. We also denote by σ(t) the total sum of space
requirements of these demands. The random process σ(t) is called the total
(demands) capacity. We assume that the values of this process are bounded by
positive number V that will be named the capacity or the buffer space of the
system (in our models we sometimes assume that V = ∞).

The buffer space is occupied by the demand at the epoch it arrives and is
released entirely at the epoch it completes service. If the value V is finite, some
of demands can be lost. A demand having space requirement (capacity) x, which
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arrives at the epoch τ , will be admitted to the system, if σ(τ − 0)+x ≤ V ; then
we have η(τ) = η(τ −0)+1, σ(τ) = σ(τ −0)+x. Otherwise (if σ(τ −0)+x > V ),
the demand will be lost and we have η(τ) = η(τ − 0), σ(τ) = σ(τ − 0). If t is
an epoch of service termination of the demand having space requirement y, we
have η(t) = η(t − 0) − 1, σ(t) = σ(t − 0) − y.

The system under consideration we shall denote by M/G/n/(∞, V ).
If V = ∞, we obtain the classical system M/G/n/∞ with demands of ran-
dom space requirement without losing. Let a be the rate of the demands arrival
process, β1 be the first moment of service time, ρ = aβ1. We assume that, for all
systems under consideration, the following limits exist in the sense of a weak con-
vergence: η(t) ⇒ η, σ(t) ⇒ σ, or, in other words, we can analyse a steady-state
behavior of these systems.

Such systems have been used to model and solve the various practical prob-
lems occurring in the design of computer and communicating systems [1,2].

In the paper, we discus the problem of calculation and estimation of loss
characteristics for the systems of M/G/n/(∞, V ) type.

2 Loss Characteristics for Systems with Bounded
Capacity

It is clear that the most familiar characteristic of losing in the system under con-
sideration is the loss probability Ploss. Intuitively, it is a part of losing demands.
This characteristic can be obtain from the following equilibrium condition [1]:
the mean number of demands admitting to the system during unit of time must
be equal (in steady state) to the mean number of service terminations during
this time. If there are no other limitation in the system, except of the system
capacity one, we can calculate Ploss using the relation

Ploss = 1 −
∫ V

0

DV (V − x) dL(x), (1)

where DV (x) is the steady-state distribution function of the total demands
capacity σ. If the random variables ζ and ξ are independent, we can also calculate
Ploss for one-server system using the relation [3]

Ploss = 1 − 1 − p0
ρ

, (2)

where p0 = P{η = 0} = P{σ = 0} is the steady-state probability that the system
is empty.

For some systems, we can obtain explicit formulas for Ploss. Consider, for
example, the one-server system M/M/1/(∞, V ) with exponentially distributed
demand space requirement. Let random variables ζ and ξ be independent. Denote
by f and μ the parameters of random variables ζ and ξ distributions, respectively.
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Then, we have [1]:

p0 =

⎧⎪⎨
⎪⎩

1 − ρ

1 − ρe−(1−ρ)fV
, if ρ �= 1,

(1 + fV )−1, if ρ = 1;

DV (x) =
{

p0[1 − ρe−(1−ρ)fx], if x ≤ V,
1, if x > V.

(3)

It follows from (1) and (3), or from (2) that

Ploss =

⎧⎪⎨
⎪⎩

1 − ρ

e(1−ρ)fV − ρ
, if ρ �= 1,

(1 + fV )−1, if ρ = 1.

The same result we obtain for the processor sharing system with from the pre-
vious example distributions of demand space requirement and demand length
(which are assumed be independent).

Another example is processor sharing system M/M/1/(∞, V ) − EPS with
demand length proportional to its capacity (ξ = cζ, c > 0, where ζ has an
exponential distribution with parameter f). In this case, we obtain [4]:

p0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − ρ

1 − √
ρe−fV

[
sinh(

√
ρfV ) +

√
ρ cosh(

√
ρfV )

] , if ρ �= 1,

4
3 + 2fV + e−2fV

, if ρ = 1;

DV (x) =

⎧⎪⎨
⎪⎩

p0
1 − ρ

{
1 − √

ρe−fx [sinh(
√

ρfx) +
√

ρ cosh(
√

ρfx)]
}

, if x ≤ V,

1, if x > V

(4)

for ρ �= 1, and

DV (x) =

⎧⎪⎨
⎪⎩

p0
4

(
3 + 2fx + e−2fx

)
, if x ≤ V,

1, if x > V

(5)

for ρ = 1.
From (1), (4) and (5) the next relation follows:

Ploss = p0e
−fV cosh(

√
ρfV ),
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where ρ = a/μ = ac/f.
It is clear that Ploss is less informative loss characteristic of the system under

consideration, because it is a part of losing demands, not a part of losing infor-
mation. Therefore, more informative loss characteristic is the loss probability of
a unit of demand capacity, Qloss, that can be determined as

Qloss = 1 − 1
ϕ1

∫ V

0

xDV (V − x)dL(x), (6)

where ϕ1 = Eζ =
∫ ∞
0

x dL(x).
Note that, for systems under consideration, the inequality Qloss ≥ Ploss

holds. It follows from the obvious inequality

ϕ1 =
∫ ∞

0

ϕ1dL(x) =
∫ ∞

0

x dL(x) ≥
∫ V

0

x dL(x),

if we write out the relation for Ploss in the form

Ploss = 1 − 1
ϕ1

∫ V

0

ϕ1DV (V − x) dL(x).

In some cases, we can also obtain the explicit formulas for Qloss. Consider,
for example, the above systems M/M/1/(∞, V ) and M/M/1/(∞, V ) − EPS.
For the first of them, from (3) and (6), we have:

Qloss =
p0e

−fV

ρ

[
(1 + ρ)eρfV − 1

]
.

For the second system we obtain from (4), (5) and (6) that

Qloss =
p0e

−fV

√
ρ

[sinh (
√

ρfV ) +
√

ρ cosh (
√

ρfV )] .

Note that, for the second system, the relation

Qloss = 1 − 1 − p0
ρ

holds (see [3]).
It is clear that these explicit formulas exist thanks to existence of the explicit

formulas for DV (x).

3 Estimation of Loss Characteristics

Consider a steady-state system QS∞ with Poisson entry and with no losses
(V = ∞). Consider also the system QSV with the same parameters, which dif-
fers from the first one in limitation of system capacity (V < ∞) only. It is clear
that we can analyze the steady state behavior of the second system as well.
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Let D∞(x) and DV (x) be the distribution function of total demands capacity
of the first and second system, respectively. We shall mark all characteristics of
the system QS∞ by lower index ∞, and all ones of the system QSV – by lower
index V . The following statement holds.

Theorem. For arbitrary real x, the inequality D∞(x) ≤ D∞(x) holds.
Proof. Introduce the following notation: χ(t) is the total capacity of demands
arriving to the system on the time interval [0; t); ν(t) is the total capacity of
demands being lost on this interval; μ(t) is the total capacity of demands being
served on this interval. It is obvious that, for arbitrary system, the equality
χ(t) = μ(t) + ν(t) + σ(t) holds, and, obviously, ν∞(t) = 0. Hence, we have

μV (t) + νV (t) + σV (t) = μ∞(t) + σ∞(t),

whereas
σ∞(t) − σV (t) = μV (t) + νV (t) − μ∞(t). (7)

Now we prove the inequality

μV (t) + νV (t) − μ∞(t) ≥ 0.

Introduce the system QS∗ with only difference from the system QS∞ that
demands being lost in the system QSV , in this system are served immediately.
Its characteristics we mark by lower index ∗. It is clear that

ν∗(t) = 0, μ∗(t) = μV (t) + νV (t).

All demands in QS∗ begin its service not later than in the system QS∞,
whereas we obtain μ∗(t) ≥ μ∞(t), and it follows from the relation (7) that

σ∞(t) − σV (t) = μ∗(t) − μ∞(t) ≥ 0.

Thus for arbitrary t ≥ 0 we have σ∞(t) ≥ σV (t).
Then, for distribution functions D∞(x, t) and DV (x, t) of the random vari-

ables σ∞(t) and σV (t) consequently, we obtain D∞(x, t) ≤ DV (x, t), implying
in particular that D∞(x) ≤ DV (x), as t → ∞.

The theorem is proved.

From this theorem we obtain the following corollaries.

Corollary 1. For the loss probability of a demand Ploss, the following inequality
holds:

Ploss = 1 −
∫ V

0

DV (V − x) dL(x) ≤ 1 −
∫ V

0

D∞(V − x) dL(x) = P ∗
loss. (8)

Corollary 2. For the loss probability of a unit of demand capacity Qloss, the
following inequality holds:

Qloss = 1− 1
ϕ1

∫ V

0

xDV (V −x) dL(x) ≤ 1− 1
ϕ1

∫ V

0

xD∞(V −x) dL(x) = Q∗
loss.

(9)
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The values P ∗
loss and Q∗

loss can be interpreted as an upper boundaries for Ploss

and Qloss consequently. They can be used for estimating the system capacity that
guarantees not exceeding of the values Ploss and Qloss consequently, when the
distribution function D∞(x) is known.

Consider, for example, the system M/M/1/(∞, V ) with exponentially dis-
tributed demand capacity (L(x) = 1 − e−fx, x > 0, f > 0) and demand service
time proportional to its capacity (ξ = cζ, c > 0), for the case of ρ = ac/f < 1.
We cannot calculate the exact values Ploss and Qloss in this case, but we can
estimate this characteristics by calculating P ∗

loss and Q∗
loss. Indeed, for similar

system M/G/1/∞ with unbounded system capacity, we have [1]:

D∞(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + ρ2e−(1−ρ)fx

1−2ρ −
− ρ(1−ρ)√

ρ(4+ρ)

(
1−b1

1−b1−ρe−b1fx − 1−b2
1−b2−ρe−b2fx

)
, if ρ �= 1

2 ,

1 + 1
9e−2fx − 1

3

(
11
6 + fx

4 e−fx/2
)

, if ρ = 1
2 ,

where b1 = 2+ρ−
√

ρ(4+ρ)

2 , b2 = 2+ρ+
√

ρ(4+ρ)

2 , and, as it follows from this relation
and inequalities (8), (9),

P ∗
loss =

⎧⎪⎪⎨
⎪⎪⎩

ρ(1−ρ)√
ρ(4+ρ)

(
e−b1fV

1−b1−ρ − e−b2fV

1−b2−ρ

)
− ρe−(1−ρ)fV

1−2ρ , if ρ �= 1
2 ,

1 + 1
9e−2fx − 1

3

(
11
6 + fx

4 e−fx/2
)

, if ρ = 1
2 ;

Q∗
loss =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 + fV )e−fV + (1+ρfV −eρfV )e−fV

1−2ρ + ρ(1−ρ)√
ρ(4+ρ)

×
{

e−b1fV −[1+(1−b1)fV ]e−fV

(1−b1)(1−b1−ρ) − e−b2fV −[1+(1−b2)fV ]e−fV

(1−b2)(1−b1−ρ)

}
, if ρ �= 1

2 ,

1
9

(
10e−fV/2 − e−2fV

)
+ 1

4fV e−fV/2, if ρ = 1
2 .

It is clear that we often can’t calculate the explicit relation for D∞(x). But,
to estimate Ploss, we can calculate the steady-state first and second moments of
total demands capacity in the system M/G/1/∞. Denote by αij = E(ζiξj) the
mixed (i + j)th moment of the random variables ζ and ξ, i, j = 1, 2, .... Let ϕi

and βi be the ith moment of the random variable ζ and ξ consequently. Then,
for the first moment δ1 = Eσ we obtain [1]:

δ1 = aα11 +
a2β2ϕ1

2(1 − ρ)
;

and, for the second moment δ2 = Eσ2 we have [1]:

δ2 = a(α21 + aϕ1α12) +
a3β2ϕ1α11

1 − ρ
+

a2β2ϕ2

2(1 − ρ)
+

a3β3ϕ
2
1

3(1 − ρ)
+

a4β2
2ϕ

2
1

2(1 − ρ)2
.
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Introduce the notation Φ(x) =
∫ x

0
D∞(x − u) dL(u). Then, we have from the

inequality (8) that P ∗
loss = 1 − Φ(V ). It is obvious that Φ(x) is the distribution

function of the random variable κ = σ + ζ, where the random variables σ and
ζ are independent. The first and second moments of the random variable κ can
be calculated by the following formulas:

f1 = Eκ = δ1 + ϕ1, f2 = Eκ2 = δ2 + ϕ2 + 2δ1ϕ1.

We propose to approximate Φ(x) by the function Φ∗(x) = γ(p,gx)
Γ (p) , where

γ(p, gx) =
∫ gx

0
tp−1e−tdt is incomplete Gamma function and Γ (p) = γ(p,∞) is

Gamma function. The values of the parameters p and g we choose so that the
first and second moments f∗

1 = p/g and f∗
2 = p(p + 1)/g2 of the approximate

distribution are equal to f1 and f2 consequently. Hence, we obtain

p =
f2
1

f2 − f2
1

, g =
f1

f2 − f2
1

. (10)

A good quality of this approximation has been confirmed by simulation. So, we
can use the approximate relation P ∗

loss ≈ 1−Φ∗(V ), where the parameters p and
g are determined by formulas (10).

4 Conclusions

In the paper, we investigate queueing systems with demands of random space
requirements (capacity) and demand service time depending on its capacity. For
this systems, we analyze loss characteristics: loss probability and probability
of unit of demand capacity losing. We calculate these characteristics for some
special cases and consider a possibility of their estimation. It is shown that such
estimation is possible, if the distribution function of total demands capacity
is known. For loss probability, we propose to estimate this characteristic by
approximation of a distribution function for the sum of total demands capacity
and demand space requirement with Gamma distribution function.
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Abstract. The research of the queuing system with renewal arrival
process, infinite number of n different types servers and arbitrary service
time distribution is proposed. Expressions for the characteristic function
of the number of busy servers for different types of customers in the
system under the asymptotic condition that service time infinitely grows
equivalently to each type of customers are derived.

Keywords: Queuin system · Renewal arrival process · Different types
servers · Arbitrary service time · Characteristic function · Asymptotic
analysis

1 Introduction

The results of research of the queuing system with infinite number of servers
can be found in articles of A.V. Pechinkin [1–3], A.A. Nazarov, P. Abaev, R.
Razumchik [4], B. D’Auria [5], D. Baum and L. Breuer [6,7], J. Bojarovich and
L. Marchenko [8], E.A. van Doorn and A.A. Jagers [9], N.G. Duffield [10], C.
Fricker and M. R. Jäıbi [11], E. Girlich [12], A. K. Jayawardene and O. Kella
[13], M. Parulekar and A. M. Makowski [14] and others.

Numerous studies of real flows in various subject areas, in particular, telecom-
munication flows and flows in economic systems led to the conclusion about the
inadequacy of the classic models of flows of random events to real data. There
is an interest in investigation of flows, in which the customers are not identical
and therefore require fundamentally different services [23,24]. The queuing sys-
tems with heterogeneous devices include systems of parallel service, which can
be found in articles of G.P. Basharin, K.E. Samuylov [15], A. Movaghar [16], M.
Kargahi [17], J.A. Morrisson, C. Knessl [18], D.G. Down [19], N. Bambos, G.
Michalidis [20] and others. In these works, all systems have a Poisson input and
exponential service time. In the papers [21,22], systems with parallel service of
MMPP and renewal arrivals with paired customers are investigated.

In this paper, we study a queueing system with renewal arrival process and
heterogeneous service. The main difference between the system in the paper from
the previously considered ones is that when the customer comes in the system it
is marked by i-th(i = 1, . . . , n) type in order to given probabilities. Service times
for customers of different types has different arbitrary distribution function.
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 216–225, 2015.
DOI: 10.1007/978-3-319-25861-4 19
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2 Statement of the Problem

Consider the queuing system with infinite number of servers of n different types
and arbitrary service time. Incoming flow is a renewal arrival process with n
types of customers. Recurrent incoming flow is determined by the distribution
function A(x) of the lengths of the intervals between the time of occurrence of
renewal arrival process. At the time of occurrence of the event in this stream only
one customer comes in the system. The type of incoming customer is defined as
i-type with probability pi (i = 1, . . . , n). It is servicing during a random time
having an arbitrary distribution function Bi corresponding to the type of the
customer.

Set the problem of analysis of n-dimensional stochastic process {l1(t),
l2(t), . . . , ln(t)} of the number of busy servers of each type at the moment t.
Incoming stream is not Poisson, therefore the n-dimensional process
{l1(t), l2(t), . . . , ln(t)} is non-Markov. Consider a (n + 1)-dimensional Markov
process {z(t), l1(t), l2(t), . . . , ln(t)},where z(t) —the remaining time from t until
the occurrence of the following event of renewal arrival process.

Denote: {r1(T ), . . . , rn(T )} —the number of customers who have not com-
pleted service at time T and enrolled in at the time t, t < T ;

Si(t) = P{τ
(i)
k > T − t} = 1 − Bi(T − t) —the probability of non-completion

of the service application type i, (i = 1, . . . , n);
1−Si(t) —the probability of completion of the service application type i, (i =

1, . . . , n).
Let at the initial moment of time t0 < T the system is empty, i.e.

l1(t0) = . . . = ln(t0) = 0. Then l1(T ) = r1(T ), . . . , ln(T ) = rn(T ). Thus to study
the process {l1(t), . . . , ln(t)} it is necessary to investigate the n-dimensional
process {r1(t), . . . , rn(t)} at any point of time t0 ≤ t ≤ T and put t = T .

A random (n + 1)-dimensional process {z(t), r1(t), . . . , rn(t)} is a (n + 1)-
dimensional non-stationary Markov chain. Write the system of Kolmogorov dif-
ferential equations for the joint probability distribution P{z, r1, . . . , rn, t}

∂P (z, r1, . . . , rn, t)

∂t
=

∂P (z, r1, . . . , rn, t)

∂z
+

∂P (0, r1, . . . , rn, t)

∂z
(A(z) − 1)

+
∂P (0, r1 − 1, . . . , rn, t)

∂z
p1S1(t)A(z) + . . . +

∂P (0, r1, . . . , rn − 1, t)

∂z
pnSn(t)A(z)

− ∂P (0, r1, . . . , rn, t)
∂z

A(z)
n∑

i=1

piSi(t). (1)

Introduce the characteristic function of the form:

H(z, u1, . . . , un, t) =
∞∑

r1=0

· · ·
∞∑

rn=0

eju1r1 × · · · × ejunrnP (z, r1, . . . , rn, t),

where j =
√−1 – imaginary unit.
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Using (1) write the system of differential equations for the characteristic
function H(z, u1, . . . , un, t)

∂H(z, u1, . . . , un, t)
∂t

=
∂H(z, u1, . . . , un, t)

∂z
+

∂H(0, u1, . . . , un, t)
∂z

(A(z) − 1)

+
∂H(0, u1, . . . , un, t)

∂z
A(z)

n∑
i=1

piSi(t)(ejui − 1), (2)

H(z, u1, . . . , un, t0) = R(z),

where R(z) - stationary probability distribution of the stochastic process z(t).

3 Method of the Asymptotic Analysis

3.1 Asymptotics of the First Order

We will solve the basis equation for the characteristic function (2) in the asymp-
totic condition that service time on appliances growths equivalently to each
other, viz. bi → ∞, where bi =

∫ ∞
0

(1 − Bi(x))dx, i = 1, . . . , n —the average
value of the service time customer such as the i-th.

Denote
tε = τ, t0ε = τ0, bi =

1
qiε

, ui = εxi, (3)

Si(t) = S̃i(τ), i = 1, . . . , n, H(z, u1, . . . , un, t) = F1(z, x1, . . . , xn, τ, ε).

Taking into account (3) we can write (2) as

ε
∂F1(z, x1, . . . , xn, τ, ε)

∂τ
=

∂F1(z, x1, . . . , xn, τ, ε)
∂z

(4)

+
∂F1(0, x1, . . . , xn, τ, ε)

∂z
(A(z)−1)+

∂F1(0, x1, . . . , xn, τ, ε)

∂z
A(z)

n∑

i=1

piS̃i(τ)(ejεxi −1).

Lemma 1. Limit value function F1(z, x1, . . . , xn, τ, ε) at ε → 0 has the form

lim
ε→0

F1(z, x1, . . . , xn, τ, ε) = F1(z, x1, . . . , xn, τ)

= R(z) exp

{
jλ

n∑
i=1

pixi

∫ τ

τo

S̃i(w)dw

}
, (5)

where λ = ∂R(0)
∂z .

Proof. If ε → 0 in (4), then obtain:

∂F1(z, x1, . . . , xn, τ)
∂z

+
∂F1(0, x1, . . . , xn, τ)

∂z
(A(z) − 1) = 0. (6)
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Then we look for F1(z, x1, . . . , xn, τ) as

F1(z, x1, . . . , xn, τ) = R(z)Φ1(x1, . . . , xn, τ), (7)

where Φ1(x1, . . . , xn, τ) - the desired function.
If z → ∞ in (4), then obtain:

ε
∂F1(∞, x1, . . . , xn, τ, ε)

∂τ
=

∂F1(0, x1, . . . , xn, τ, ε)
∂z

n∑
i=1

piS̃i(τ)(ejεxi − 1). (8)

Expand exponents in the Eq. (8) into a Taylor series, divide the left and
right side of it by ε, substitute into the received expression the function
F1(z, x1, . . . , xn, τ) in the form (7) and let ε → 0:

∂Φ1(x1, . . . , xn, τ)
∂τ

= j
∂R(0)

∂z
Φ(x1, . . . , xn, τ)

n∑
i=1

piS̃i(τ)xi. (9)

Taking into account the initial condition Φ1(x1, . . . , xn, τ0) = 1 we obtain the
following expression

Φ1(x1, . . . , xn, τ) = exp

{
jλ

n∑
i=1

pixi

∫ τ

τ0

S̃i(w)dw

}
. (10)

Thus,

F1(z, x1, . . . , xn, τ) = R(z) exp

{
jλ

n∑
i=1

pixi

∫ τ

τ0

S̃i(w)dw

}
.

��
Taking into account Lemma 1 and substitutions (3) we can write the asymp-

totic approximate equality (ε → 0):

H(z, u1, . . . , un, t) = F1(z, x1, . . . , xn, τ, ε) ≈ F1(z, x1, . . . , xn, τ)

= R(z) exp

{
jλ

n∑
i=1

piui

∫ t

t0

Si(w)dw

}
. (11)

For the characteristic function of process {l1(t), . . . , ln(t)} at t = T = 0
denote

h1(u1, . . . , un) = exp

{
jλ

n∑
i=1

piui

∫ 0

−∞
(1 − Bi(−w))dw

}

= exp

{
jλ

n∑
i=1

piuibi

}
. (12)

The function h1(u1, . . . , un) will be called the asymptotics of the first order
for the system GI|GI|∞ with heterogeneous service.
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Defenition 1. The functions

h1
(i)(ui) = Mejuili(t) = h1(0, . . . , ui, . . . , 0) = exp{jλpiuibi}, i = 1, . . . , n,

will be called the asymptotics of the first order for the characteristic function of
the busy servers of any type in system GI|GI|∞ with heterogeneous service.

Consider the asymtotics of the second order for more accurate approximation.

3.2 Asymptotics of the Second Order

Consider the function H(z, u1, . . . , un, t) in the form of

H(z, u1, . . . , un, t) = H2(z, u1, . . . , un, t) exp

{
jλ

n∑
i=1

piui

∫ t

t0

Si(w)dw

}
. (13)

Using (13) in (2) obtain the expression for H2(z, u1, . . . , un, t):

∂H2(z, u1, . . . , un, t)
∂t

+ H2(z, u1, . . . , un, t)jλ
n∑

i=1

piSi(t)ui

=
∂H2(z, u1, . . . , un, t)

∂z
+

∂H2(0, u1, . . . , un, t)
∂z

(A(z) − 1) (14)

+
∂H2(0, u1, . . . , un, t)

∂z
A(z)

n∑
i=1

piSi(t)(ejui − 1),

where λ = ∂R(0)
∂z .

Substitute the following in (14):

tε2 = τ, t0ε
2 = τ0, bi =

1
qiε2

, ui = εxi, (15)

Si(t) = S̃i(τ), i = 1, . . . , n, H2(z, u1, . . . , un, t) = F2(z, x1, . . . , xn, τ, ε)

and obtain:

ε2
∂F2(z, x1, . . . , xn, τ, ε)

∂τ
+ F2(z, x1, . . . , xn, τ, ε)jλε

n∑
i=1

pixiS̃i(τ)

=
∂F2(z, x1, . . . , xn, τ, ε)

∂z
+

∂F2(0, x1, . . . , xn, τ, ε)
∂z

(A(z) − 1) (16)

+
∂F2(0, x1, . . . , xn, τ, ε)

∂z
A(z)

n∑
i=1

piS̃i(τ)(ejεxi − 1).
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Theorem 1. Limit value function F2(z, x1, . . . , xn, τ, ε) at ε → 0 has the form

lim
ε→0

F2(z, x1, . . . , xn, τ, ε) = F2(z, x1, . . . , xn, τ)

= R(z) exp

{
j2
[
λ

n∑

i=1

pi
x2

i

2

∫ τ

τ0

S̃i(w)dw

+

n∑

i=1

p2
i x

2
i
∂fi(0)

∂z

∫ τ

τ0

S̃2
i (w)dw +

n∑

i=1

n∑

g=1,g �=i

pipgxixg

∫ τ

τ0

S̃i(w)S̃g(w)dw

⎤

⎦

⎫
⎬

⎭ ,

(17)

where λ = ∂R(0)
∂z and functions fi(z) are defined by the following system of

equations

∂fi(z)
∂z

+
∂fi(0)

∂z
(A(z) − 1) + λA(z) = λR(z), i = 1, . . . , n. (18)

Proof. Desirable solution of the Eq. (16) should be like the following:

F2(z, x1, . . . , xn, τ, ε) = Φ2(x1, . . . , xn, τ)

×
{

R(z) + jε

n∑
i=1

pixifi(z)S̃i(τ)

}
+ O(ε2).

(19)

Using (19) in (16), obtain:

R(z)jελ
n∑

i=1

pixiS̃i(τ) =
∂R(z)

∂z
+

∂R(0)
∂z

(A(z) − 1) (20)

+jε
n∑

i=1

pixiS̃i(τ)
{

∂fi(z)
∂z

+ (A(z) − 1)
∂fi(0)

∂z
+ λA(z)

}
+ O(ε2).

Hence taking into account ∂R(z)
∂z + ∂R(0)

∂z (A(z)−1) = 0 may earn the following
system of equations for the functions fi(z), i = 1, . . . , n when ε → 0:

∂fi(z)
∂z

+
∂fi(0)

∂z
(A(z) − 1) + λA(z) = λR(z),

which coincides with (18).
Expand exponents in the Eq. (16) into a Taylor series:

ε2
∂F2(z, x1, . . . , xn, τ, ε)

∂τ
= (jε)2A(z)

n∑

i=1

pi
x2

i

2
S̃i(τ)

∂F2(0, x1, . . . , xn, τ, ε)

∂z

+ (jε)

[
A(z)

n∑

i=1

pixiS̃i(τ)
∂F2(0, x1, . . . , xn, τ, ε)

∂z
− λ

n∑

i=1

pixiS̃i(τ)F2(z, x1, . . . , xn, τ, ε)

]

+
∂F2(z, x1, . . . , xn, τ, ε)

∂z
+ (A(z)− 1)

∂F2(0, x1, . . . , xn, τ, ε)

∂z
+ O(ε3).
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Substitute into received expression (19). Since ∂R(z)
∂z + ∂R(0)

∂z (A(z) − 1) = 0
we can write

ε2
∂Φ2(x1, . . . , xn, τ)

∂τ
R(z) = (jε)2Φ2(x1, . . . , xn, τ)

×
[
A(z)λ

n∑
i=1

pi
x2

i

2
S̃i(τ) + A(z)

n∑
i=1

pixiS̃i(τ)
n∑

g=1

pgxgS̃g(τ)
∂fg(0)

∂z

−λ
n∑

i=1

pixiS̃i(τ)
n∑

g=1

pgxgS̃g(τ)fg(z)

]
+ jεΦ(x1, . . . , xn, τ)

n∑
i=1

pixiS̃i(τ)

×
[
λA(z) − λR(z) +

∂fi(z)
∂z

+ (A(z) − 1)
∂fi(0)

∂z

]
+ O(ε3).

Using (18) we obtain the following expression:

ε2
∂Φ2(x1, . . . , xn, τ)

∂τ
R(z) = (jε)2Φ2(x1, . . . , xn, τ)

×
[
A(z)λ

n∑
i=1

pi
x2

i

2
S̃i(τ) + A(z)

n∑
i=1

pixiS̃i(τ)
n∑

g=1

pgxgS̃g(τ)
∂fg(0)

∂z

−λ

n∑
i=1

pixiS̃i(τ)
n∑

g=1

pgxgS̃g(τ)fg(z)

]
+ O(ε3).

(21)

Divide both sides of the expression (21) by ε2 and pass to the limit provided
ε → 0 and z → ∞:

∂Φ2(x1, . . . , xn, τ)
∂τ

= j2Φ2(x1, . . . , xn, τ)

×
[
λ

n∑
i=1

pi
x2

i

2
S̃i(τ) +

n∑
i=1

pixiS̃i(τ)
n∑

g=1

pgxgS̃g(τ)
∂fg(0)

∂z

]
.

(22)

Solution of the differential Eq. (22) corresponding to the initial condition
Φ2(x1, . . . , xn, τ0) = 1 is the function Φ2(x1, . . . , xn, τ) of the form:

Φ2(x1, . . . , xn, τ) = exp

{
j2
[
λ

n∑

i=1

pi
x2

i

2

∫ τ

τ0

S̃i(w)dw +
n∑

i=1

p2
i x

2
i
∂fi(0)

∂z

∫ τ

τ0

S̃2
i (w)dw

+
n∑

i=1

n∑

g=1,g �=i

pipgxixg
∂fi(0)

∂z

∫ τ

τ0

S̃i(w)S̃g(w)dw

⎤

⎦

⎫
⎬

⎭ . (23)

��
Taking into account the approximate equations of the form

H2(z, u1, . . . , un, t) = F2(z, x1, . . . , xn, τ, ε)

≈ F2(z, x1, . . . , xn, τ) = R(z)Φ2(x1, . . . , xn, τ).
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Using (15) write expression for the function H2(z, u1, . . . , un, t):

H2(z, u1, . . . , un, t) = R(z) exp

{
j2
[
λ

n∑

i=1

pi
u2

i

2

∫ t

t0

Si(w)dw

+
n∑

i=1

p2
i u

2
i
∂fi(0)

∂z

∫ t

t0

S2
i (w)dw +

n∑

i=1

n∑

g=1,g �=i

pipguiug
∂fi(0)

∂z

∫ t

t0

Si(w)Sg(w)dw

⎤

⎦

⎫
⎬

⎭ .

Then using (13) we obtain:

H(z, u1, . . . , un, t) = R(z) exp

{
jλ

n∑
i=1

piui

∫ t

t0

Si(w)dw

+ j2

[
λ

n∑
i=1

pi
u2

i

2

∫ t

t0

Si(w)dw +
n∑

i=1

p2i u
2
i

∂fi(0)
∂z

∫ t

t0

S2
i (w)dw

+
n∑

i=1

n∑
g=1,g �=i

pipguiug
∂fi(0)

∂z

∫ t

t0

Si(w)Sg(w)dw

⎤
⎦

⎫⎬
⎭ .

Denote
∫ 0

−∞
S2

i (w)dw =
∫ 0

−∞
(1 − Bi(−w))2dw =

∫ ∞

0

(1 − Bi(w))2dw = βi,

∫ 0

−∞
Si(w)Sg(w)dw =

∫ 0

−∞
(1 − Bi(−w))(1 − Bg(−w))dw

=
∫ ∞

0

(1 − Bi(w))(1 − Bg(w))dw = βig,

i = 1, . . . , n, g = 1, . . . , n.

Then for the characteristic function of the random process {l1(t), l2(t), . . . ,

ln(t)} h2(u1, . . . , un) = Me
j

n∑

i=1
ulli(T )

= H(∞, u1, . . . , un, T ) at t = T = 0 and
t0 → −∞ we obtain

h2(u1, . . . , un) = exp

{
jλ

n∑
i=1

piuibi + j2

[
λ

n∑
i=1

pi
u2

i

2
bi

+
n∑

i=1

p2i u
2
i

∂fi(0)
∂z

βi +
n∑

i=1

n∑
g=1,g �=i

pipguiug
∂fi(0)

∂z
βig

⎤
⎦

⎫⎬
⎭ .

(24)

The expression (24) will be called the asymptotics of the second order for
the system GI|GI|∞ with heterogeneous service.
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4 Conclusion

In this paper, we construct and investigate the mathematical model of the queu-
ing system with the renewal arrival process and heterogeneous service. The
system under consideration is studied using asymptotic analysis. Namely, the
expression for the asymptotic of the first and the second order are obtained for
the characteristic function of the busy servers of each type.

Acknowledgments. The work is performed under the state order of the Ministry of
Education and Science of the Russian Federation (No. 1.511.2014/K).
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Abstract. We consider an unreliable single-server queueing system with
a reserve (back-up) server which is appropriate for modeling, e.g., the
hybrid communication systems having the atmospheric optic channel
(FSO-Free Space Optics) and standby radio channel IEEE 802.11n. We
assume that the main server of the system (optic channel, server 1) is
unreliable while the reserve server (radio channel, server 2) is absolutely
reliable. It is assumed that the service time on the server 1 is essentially
smaller than the service time on the server 2. If the server 1 fails during
the service of a customer, the customer immediately occupies the reserve
server. After failure occurence, the server 1 immediately goes to repair.
When the repair period of the server 1 ends and the customer is served
by the server 2, the customer immediately moves to the server 1. We
consider exponential distributions of all random variables describing the
operation of the system. This assumption allows to minimize the use of
matrix-geometric technique and provide more or less simple analytical
analysis of the system. We derive ergodicity condition and determine
the stationary distribution of the Markov chain describing the process
of the system states using the generating functions and roots methods,
calculate some key performance measures and derive an expression for
the Laplace-Stieltjes transform of the sojourn time distribution of an
arbitrary customer. Illustrative numerical results are presented.

Keywords: Unreliable queueing system · Stationary state distribution ·
Sojourn time distribution

1 Introduction

Queueing theory is the well recognized mathematical tool for solving the impor-
tant problems in logical and technical design, capacity planning, performance
evaluation, statical and dynamic optimization of many real world objects and
processes, especially in telecommunications, manufacturing, computer engineer-
ing, etc. Essential feature of the majority of real life systems and devices is their
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 226–239, 2015.
DOI: 10.1007/978-3-319-25861-4 20
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unreliability, i.e., their ability to fail at a random moment and require repair or
replacement. So, the existing literature in theory of unreliable queueing systems
is huge. For recent references see, e.g., paper [1]. Because the failure of a server
may lead to the break in providing the service to customers, reservation of the
server is highly desirable. So, complementary to the main server, some back-up
server should be ready to resume the service when the main server breaks down.
Such situation occurs, e.g., in modelling hybrid communication systems where
the ultra-high speed atmospheric optic channel (FSO-Free Space Optics) has a
millimeter-wave (71–7 GHz, 81–86 GHz) radio channel as a backup communica-
tion channel for situations of the unfavorable weather conditions, e.g., fog or
mist, see [2]. This model suits also for description of processing of some low pri-
ority flow of customers with occasional possibility of use additional bandwidth of
a channel at periods when the high priority customers are absent in the system.

In this short paper, we analyse an unreliable single-server queueing system
with a reliable reserve (back-up) server which suits for modelling operation of
the hybrid communication systems. The rest of the paper consists of the fol-
lowing. Mathematical model is described in Sect. 2. The process of the system
states is described in Sect. 3. Necessary and sufficient condition for ergodicity of
this process is presented. Stationary distribution of the process states is derived
in the form of generating functions. Problem of computation of stationary dis-
tribution of sojourn time of an arbitrary customer in the system is solved in
terms of Laplace-Stieltjes transform in Sect. 4. Illustrative numerical examples
are presented in Sect. 5. Section 6 concludes the paper.

2 Mathematical Model

We consider a queueing system consisting of an infinite buffer and two servers:
the main working server (server 1) and the back-up (reserve) server (server 2). We
assume that the server 1 is unreliable while the server 2 is absolutely reliable. The
input flow is defined by the stationary Poisson arrival process with parameter λ.
The service times on the server 1 and on the server 2 are exponentially distributed
with parameters μ1 and μ2, respectively. It is assumed that the server 1 is much
high-speed than the server 2. A customer, which arrives into the system and sees
idle and fault- free server 1, immediately occupies this server. If the server is
busy, the customer is placed at the end of the queue in the buffer and is picked-
up for a service later on, according the FIFO discipline. If at the arrival epoch
the server 1 is under repair and the server 2 is idle, the latter server begins
providing the service to the customer. If the server 2 is busy, the customer joins
the buffer.

The server 1 is subject to breakdowns and repairs. The flow of breakdowns
is defined as the stationary Poisson process with parameter h. When the server
fails, the repair period starts immediately. This period has exponential distribu-
tion with parameter τ. Breakdowns arriving during the repair time are ignored
by the system. A customer whose service was interrupted moves to server 2 and
this server starts its service. If the service of a customer is not finished until the
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Fig. 1. State space and transitions of the Markov chain ξt

end of repair period, the customer returns on server 1 and this server starts its
service.

Note, that, due the memoryless property of exponential distribution, the
above scenario of customer service after the transition from server 1 to server 2
and back describes both so called “hot” and “cold” kinds of redundancy.

3 Process of the System States: Stationary Distribution

Let

• it be the number of calls in the system at the moment t, it ≥ 0;

• nt =

{
1, if the server 1 is fault-free (it is idle or working) at the moment t;

2, if the server 1 is under repair and the server 2 serves a customer

at the moment t.
It is easy to see that the process of the system states

ξt = {it, nt}, t ≥ 0,

is a regular irreducible continuous time Markov chain.
The state space and transitions of the chain are shown in Fig. 1.
Let −Q(i,n),(i,n) be the parameter of exponentially distributed time of a stay

of the process ξt in the state (i, n), i ≥ 0, n = 1, 2, and Q(i,n),(i′,n′) be the
intensity of transition of the Markov chain ξt from the state (i, n) to the state
(i′, n′). Let

Qi,j =
(

Q(i,1),(j,1) Q(i,1),(j,2)

Q(i,2),(j,1) Q(i,2),(j,2)

)
.

Lemma 1. Infinitesimal generator Q = (Qi,j) of the Markov chain ξt can be
represented in the block matrix form as

Q =

⎛
⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1 O O . . .
Q−1 Q0 Q1 O . . .
O Q−1 Q0 Q1 . . .
O O Q−1 Q0 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠
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where non-zero blocks are defined by formulas

Q0,0 =
(−(λ + h) h

τ −(λ + τ)

)
, Q0,1 =

(
λ 0
0 λ

)
,

Q−1 =
(

μ1 0
0 μ2

)
, Q0 =

(−(λ + μ1 + h) h
τ −(λ + μ2 + τ)

)
, Q1 =

(
λ 0
0 λ

)
.

It follows from the form of the generator that the chain under consideration
belongs to the class of Quasi Birth-and- Death process, see, e.g., [3].

Theorem 1. The necessary and sufficient condition for existence of the station-
ary distribution of the Markov chain ξt is the fulfillment of the inequality

λ <
τ

h + τ
μ1 +

h

h + τ
μ2. (1)

Proof. It follows from [3], that a necessary and sufficient condition for existence
of the stationary distribution of the chain ξt, t ≥ 0, can be formulated in terms
of the blocks of the generator Q and has the form of the inequality

xQ−1e > xQ1e (2)

where the row vector x is the unique solution of the system of linear algebraic
equations

x(Q−1 + Q0 + Q1) = 0, xe = 1

and e denotes a unit column vector.
It is easily verified by the direct substitution that the solution of this system

is as follows:
x = (

τ

h + τ
μ1,

h

h + τ
μ2). (3)

Using (3) in (2), we easily reduce inequality (2) to the form (1). Theorem is
proved.

In what follows we assume inequality (1) be fulfilled.
Denote the stationary state probabilities of the chain ξt, t ≥ 0, as

αi = lim
t→∞ P {it = i, nt = 1} , βi = lim

t→∞ P {it = i, nt = 2} , i ≥ 0.

The system of balance (Chapman-Kolmogorov) equations for these probabil-
ities is evidently written as follows:

α0 (λ + h) = β0τ + α1μ1, (4)

β0 (λ + τ) = β1μ2 + α0h, (5)

αi (λ + h + μ1) = αi+1μ1 + βiτ + αi−1λ, i > 0, (6)

βi (λ + τ + μ2) = βi+1μ2 + αih + βi−1λ, i > 0. (7)
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Complementing these equations by the normalization equation

∞∑
i=0

(αi + βi) = 1 (8)

we get the system of linear algebraic equations that has the unique solution.
To calculate this solution, we will use the generating functions method. Intro-

duce the generating functions

α (z) =
∞∑

i=0

αiz
i, β (z) =

∞∑
i=0

βiz
i, |z| ≤ 1.

Theorem 2. The generating functions α(z) and β(z) have the following form:

α (z) =
μ1α0 (1 − z) − τβ (z) z

λz2 − (λ + μ1 + h) z + μ1
, (9)

β(z) = [α0hμ1z − β0μ2

(
λz2 − z (h + λ + μ1) + μ1

)
]/[λ2z3 − (hλ + λ2

+ λμ1 + λμ2 + λτ)z2 + (hμ2 + λμ1 + λμ2 + μ1μ2 + μ1τ) z − μ1μ2] (10)

where the probabilities α0 and β0 are expressed as follows:

α0 =

(
λσ2 − (λ + μ1 + h)σ + μ1

)
(hμ2 − λ(h + τ) + μ1τ)

μ1 (1 − σ) (h + τ) (μ1 − λσ)
, (11)

β0 =
α0hμ1σ

λσ2 − (λ + μ1 + h)σ + μ1
, (12)

and the quantity σ is the unique solution of the cubic equation

λ2z3 − (
hλ + λ2 + λμ1 + λμ2 + λτ

)
z2 + (hμ2 + λμ1 + λμ2

+ μ1μ2 + μ1τ)z − μ1μ2 = 0 (13)

in the region |z| < 1.

Proof. Multiplying Eqs. (4)–(6) by the corresponding degrees of z and summing
over i, we obtain the equation

α0 (λ + h)+(λ + μ1 + h)

∞∑

i=1

αiz
i = α1μ1+β0τ+λ

∞∑

i=1

αi−1z
i+μ1

∞∑

i=1

αi+1z
i+τ

∞∑

i=1

βiz
i.

Similarly, we use Eqs. (5)–(7) to get the following equation:

β0 (λ + τ)+(λ + μ2 + τ)
∞∑

i=1

βiz
i = α0h+β1μ2+λ

∞∑

i=1

βi−1z
i+μ2

∞∑

i=1

βi+1z
i+h

∞∑

i=1

αiz
i.
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After some algebra these two equations take the following form:

(
(λ + μ1 + h) z − μ1 − λz2

)
α (z) = τβ (z) z + μ1α0 (z − 1) , (14)

(
(λ + μ2 + τ) z − μ2 − λz2

)
β (z) = hα (z) z + μ2β0 (z − 1) . (15)

Excluding the function α(z) from Eqs. (14)–(15), we get β(z) as a rational
function whose numerator and denominator have multiplier (z − 1). After divi-
sion, we obtain expression (10) for β(z). Equation (9) immediately follows from
relation (14).

Now we focus on the problem of calculating the unknown probabilities α0, β0.
We will solve this problem using the reasonings of analyticity of a generating
function in the unit disk |z| < 1 of the complex plane.

Let us consider the function β(z) given by formula (10). The denominator of
this function is a third order polynomial. It can be shown that, under fulfillment
of ergodicity condition (1), this polynomial has the unique and positive real root
in the unit disk of the complex plane. Denote this root as σ, 0 < σ < 1. As β(z)
is an analytical function, the numerator of (10) must vanish in the point z = σ.
Equating the numerator to zero, we derive expression (12) for β0.

It follows from (9) that
α(1) =

τ

h
β(1). (16)

Using (16) in normalizing Eq. (8), we obtain that

α(1) =
τ

τ + h
, β(1) =

h

τ + h
. (17)

Using (12) and (17) in (10) under z = 1, we derive that probability α0 is of
the form (11). Theorem is proved.

Remark 1. Balance Eqs. (4)–(7) can be derived using the conservation principle
of flows in the graph depicted in Fig. 1. Namely, they can be derived by cutting
the graph via isolation of the nodes of the graph and equating the flow arriving to
any node (this flow is assumed to be equal to the sum of products of probabilities
of the states corresponding to the nodes, from which transition to this node is
possible, by the intensity of the corresponding transition) to the flow departing
from this node (this flow is assumed to be equal to the product of the probability
of this state by the sum of intensities of possible transition from this node). By
means of another cuts of the graph, namely, via cutting the graph by the vertical
lines we can derive another set of equations, namely,

(αi + βi)λ = αi+1μ1 + βi+1μ2, i ≥ 0.

From this system, one more equation for generating functions α(z) and β(z) is
easily derived in the form

α(z)(μ1 − λz) + β(z)(μ2 − λz) = α0μ1 + β0μ2.

From this relation, alternative to formula (9) expression of the generating func-
tion α(z) via the generating function β(z) can be written as
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α(z) = (μ1 − λz)−1(α0μ1 + β0μ2 − β(z)(μ2 − λz)).

It is worth to note that formulas (17) are easy obtained using the cut of the
graph depicted in Fig. 1 by the horizontal line.

Corollary 1. The key performance measures of the system are as follows:

• Probability that the system is empty is given by

P (0) = α(0) + β(0).

• Probability P (1) that, at an arbitrary time moment, the server 1 is fault-free
and probability P (2) that the server 1 is under repair are given by

P (1) =
τ

τ + h
, P (2) =

h

τ + h
.

• Probability P
(1)
serv that, at an arbitrary time moment, the server 1 serves a

customer and probability P
(2)
serv that the server 1 is under repair and the

server 2 serves a customer are given by

P (1)
serv = α(1) − α0, P (2)

serv = β(1) − β0.

• Mean number of customers in the system

EL = α′(1) + β′(1).

Remark 2. Presented here expressions for probabilities P (1) that the server 1
is fault-free and probability P (2) that the server 1 is under repair make condition
(1) intuitively clear. The left hand side of inequality (1) is the mean arrival rate
while the right hand side is the mean departure rate from the system when it is
overloaded because the value of the service rate is equal to μ1 when the server
1 is not broken and is equal to μ2 when this server is broken.

4 Stationary Distribution of Sojourn Time

In the system under consideration, the sojourn time essentially depends on the
breakdowns arrival process and on duration of the repair period. During the
sojourn time of a customer, it may repeatedly move from server 1 to server 2 and
vice versa what complicates the analysis. In this section, we derive the Laplace-
Stieltjes transform of the sojourn time distribution of an arbitrary customer in
the system.

Let V (t) be the stationary distribution function of the sojourn time and
v(s) =

∫ ∞
0

e−stdV (t), Res ≥ 0, be the Laplace-Stieltjes transform of this distri-
bution.



Performance Analysis of Unreliable Queue with Back-Up Server 233

Theorem 3. The Laplace-Stieltjes transform of the sojourn time of an arbitrary
customer in the system is calculated by

v (s) =
∞∑

i=0

pivT
i (s), (18)

where
pi = (αi, βi), i ≥ 0,

and the row vectors vi(s) are calculated as

vi (s) = v0 (s)
[
A (s) [I − B (s)]−1

]i

, i ≥ 1, (19)

where the row vector v0(s) is of the form

v0(s) =
(

μ1 (μ2 + τ + s) + hμ2

(μ1 + h + s) (μ2 + τ + s) − hτ
,

1
μ2 + τ + s

[μ2 + τ
μ1 (μ2 + τ + s) + hμ2

(μ1 + h + s) (μ2 + τ + s) − hτ
]
)

, (20)

and the matrices A(s) and B(s) are given by

A(s) =
( μ1

μ1+h+s 0
0 μ2

μ2+τ+s

)
, B(s) =

(
0 τ

μ2+τ+s
h

μ1+h+s 0

)
. (21)

Proof. Let vi(s) = (vi(s, 1), vi(s, 2)) where vi(s, n), Re s ≥ 0, is the Laplace-
Stieltjes transform (LST ) of the stationary distribution of the sojourn time of
a customer which finds, upon arrival, i customers in the system and the server
1 in the state n, i ≥ 0, n = 1, 2.

To derive formula (18) for vi(s), we use the probabilistic interpretation of the
LST , see, e.g. [4,5]. To this end, we assume that, independently of the considered
system operation, the stationary Poisson flow of so called catastrophes arrives.
Let s, s > 0, be the intensity of this flow. Then vi(s, n) can be interpreted as
the probability of no catastrophe arrival during the sojourn time of an arriving
customer which finds, upon arrival, i customers in the system and the server 1 in
the state n, i ≥ 0, n = 1, 2. This allows us to derive the expression for vi(s, n)
by means of probabilistic reasonings.

Using the probabilistic interpretation of the LST , we are able to write the
following system of linear algebraic equation for v0(s, 1) and v0(s, 2) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v0 (s, 1) =

∞∫

0

e−ste−hte−μ1t μ1 dt +

∞∫

0

e−ste−hte−μ1t h dt v0 (s, 2) ,

v0 (s, 2) =

∞∫

0

e−ste−τte−μ2t μ2 dt +

∞∫

0

e−τte−ste−μ2t τ dt v0 (s, 1) .

(22)
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Integrating in (22), we obtain the system

⎧⎪⎨
⎪⎩

v0 (s, 1) =
μ1

μ1 + h + s
+

h

μ1 + h + s
v0 (s, 2) ,

v0 (s, 2) =
μ2

μ2 + τ + s
+

τ

μ2 + τ + s
v0 (s, 1) .

The solution of this system is as follows:

v0 (s, 1) =
μ1 (μ2 + τ + s) + hμ2

(μ1 + h + s) (μ2 + τ + s) − hτ
, (23)

v0 (s, 2) =
1

μ2 + τ + s

[
μ2 + τ

μ1 (μ2 + τ + s) + hμ2

(μ1 + h + s) (μ2 + τ + s) − hτ

]
. (24)

Formulas (23) and (24) prove validity of formula (20) in the statement of the
theorem.

Now, using the probabilistic interpretation of the LST, we write the following
system of linear algebraic equation for the functions vi(s, 1) and vi(s, 2), i ≥ 1 :

⎧⎪⎨
⎪⎩

vi (s, 1) =
μ1

μ1 + h + s
vi−1 (s, 1) +

h

μ1 + h + s
vi (s, 2) ,

vi (s, 2) =
μ2

μ2 + τ + s
vi−1 (s, 2) +

τ

μ2 + τ + s
vi (s, 1) , i ≥ 1.

(25)

It is evidently easily seen that system (25) can be rewritten in the vector
form as

vi (s) = vi−1 (s) A (s) + vi (s) B (s) , i ≥ 1, (26)

where the matrices A(s) and B(s) have form (21).
From (26), we get the following recursive formula for sequential calculation

of the vectors vi(s) :

vi (s) = vi−1 (s) A (s) [I − B (s)]−1
, i ≥ 1.

Using this formula, we express all vectors vi(s), i ≥ 1, in terms of the vector
v0(s) defined by formulas (20) and (21). The resulting expression for the vectors
vi(s), i ≥ 1, is given by (19).

Now, using the formula of total probability, we write the desired Laplace-
Stieltjes transform of the sojourn time distribution in the form (18).

Theorem is proved.

Corollary 2. The mean sojourn time of an arbitrary customer is calculated
using the formula

Ev = −v′ (0) = −
∞∑

i=0

pi
dvT

i (s)
ds

|s=0.
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Corollary 3. The LST v(n)(s) of the sojourn time distribution of a customer,
which finds, upon arrival, the server 1 in the state n, n = 1, 2, is defined by

(v(1)(s), v(2)(s)) =
∞∑

i=0

vi(s)
(

αi 0
0 βi

)
.

Corollary 4. The mean sojourn times Ev(n) of customers, that find, upon
arrival, the server 1 in the state n, n = 1, 2, are calculated using the formula

(Ev(1), Ev(2)) = −
∞∑

i=0

dvi(s)
ds

|s=0

(
αi 0
0 βi

)
.

5 Numerical Examples

In this section, we present the illustrative numerical examples which demonstrate
the feasibility of the methods developed in the paper and show the behavior of
the mean number of customers in the system depending on parameters of the
system.

Figures 2 illustrates the behavior of the mean number of customers in the
system, EL, as a function of the arrival rate λ for different values of the rate of
breakdowns. In this example, the service rates and the repair rate are taken as:
μ1 = 4, μ2 = 2, τ = 4.

As it is anticipated, the value EL increases when the arrival rate increases
and the system becomes more congested. Also, the value of EL increases when

Fig. 2. The mean number of customers in the system as a function of the arrival rate
for different values of the rate of breakdowns
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Fig. 3. The mean number of customers in the system as a function of the arrival rate
for different values of the ratio µ1

µ2

Fig. 4. The mean number of customers in the system as a function of the rate of
breakdowns

the rate of breakdowns increases. This is also expected because, when the rate
of breakdowns increases, a customer is forced to be serviced more frequently by
the server 2 which has a lower service rate. It is also seen from Fig. 2, that every
curve has an asymptote that corresponds to the values of λ and h for which the
condition (1) for existence of the stationary regime in the system is violated.



Performance Analysis of Unreliable Queue with Back-Up Server 237

Fig. 5. The mean sojourn time as a function of the arrival rate for different values of
the ratio µ1

µ2

Fig. 6. The mean sojourn time as a function of the rate of breakdowns

Figure 3 shows the behavior of the value EL as a function of arrival intensity
λ under different ratios of the service rates μ1 and μ2. In this example we assume
that τ = 4, h = 0.5. The value of service rate at the server 1 is assumed to be
fixed as μ1 = 4 and the value of μ2 is varied to get the predetermined ratio μ1

μ2
.

In such a situation, it is clear that decreasing of the ratio under the fixed values
of μ1 and λ implies the decreasing of the mean EL.
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Figure 4 illustrates the behavior of EL as a function of the rate of breakdowns
h. The other parameters of the system are fixed as follows: λ = 2, μ1 = 4, μ2 =
2, τ = 4.

As it was noted above, the mean number of customers in the system increases
with increasing h. More interesting conclusion is that the corresponding function
is close to the linear one.

The next two figures show the behavior of the mean sojourn time Ev. Figure 5
depicts the mean sojourn times Ev as a function of λ under different values of
the ratio μ1

μ2
. The procedures of changing this ratio and the values of others

parameters are the same as in the case of Fig. 3.
It is seen that the curves in Fig. 5 behave as the corresponding curves in Fig. 3

if the latter ones are shifted down along the y-axis of the plot. Moreover, under
the fixed values of λ and the relation μ1

μ2
, the values of EL and Ev are related as

Ev = λ−1EL. The same effect we observe comparing the graphs in Figs. 6 and
4. This reinforce our belief that Little’s formula is valid for the queueing system
under consideration.

6 Conclusion

Single-server queueing system with main server subject to failures and a back-up
server, which is appropriate for modelling operation of the hybrid communication
systems, is considered. We assume that the main server of the system (optic chan-
nel) is unreliable while the reserve server (radio channel) is absolutely reliable.
All distributions describing customers service and server breakdowns and repair
are exponential. This allows to get relatively simple formulas for stationary dis-
tribution of the Markov chain describing behavior of the system states using the
generating functions. Formulas for computation of the Laplace-Stieltjes trans-
form of the sojourn time distribution are presented with the partial use of the
matrix analytic technique and the method of catastrophes. Illustrative numerical
results giving some insight into the system behavior are presented. Correctness
of Little’s formula is numerically established.

Results can be extended to the cases of more general, e.g., Markov arrival
processes of arrivals and breakdowns and phase type distributions of service and
repair times.
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Compound Poisson Demand Inventory Models
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Abstract. We consider exact probability distributions of demand and
selling time for compound Poisson demand process with exponential
batch size’s distribution in the newsvendor problem’s framework and
compare the results with the normal and diffusion approximation respec-
tively. Also we receive the inventory level’s distribution for on-off control
of inventory level when the process of delivering the product to outlets
is also a compound Poisson independent from the first one.

Keywords: Inventory management · Compound poisson demand ·
Exponential distribution · Distribution of inventory level · Distribution
of selling time

1 The Problem Statement

Nowadays a set of stochastic models are available to solve the inventory con-
trol problem under various conditions encountered in practice, for example, see
Chopra and Meindl [1], and Beyer, Cheng, Sethi, and Taksar [2]. Due to com-
plexity of arising tasks numerical or approximate analytical methods are widely
used. In the latter case the statistical simulation is needed to confirm the theo-
retical results.

Here we compare the exact results for an exponential batch size’s distribution
with the approximate ones which were used to solve the optimization tasks in
Kitaeva, Subbotina, and Zmeev [3], Kitaeva, Subbotina, and Stepanova [4].

Firstly we consider the model described in Kitaeva, Subbotina, and Zmeev [3].
This model is connected with the newsvendor problem. The newsvendor prob-
lem is one of the classical problems of inventory management, see, for example,
Arrow, Harris, and Marshak [5], Silver, Pyke, and Peterson [6]. It has been
studied since the eighteenth century and widely used to analyse systems with
perishable products in such different fields as, for example, health insurances,
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the Ministry of Education and Science of the Russian Federation.
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A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 240–249, 2015.
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airlines, sports and fashion industries. And nowadays a lot of papers related to
this problem are still being published, see reviews by Khouja [7], Qin et al. [8],
a handbook editing by Tsan-Ming Choi [9].

Let the demand be generated by customers arriving according a Poisson
process and requiring amounts of varying size independent of the arrival process.
The amounts required at each arrival (batch sizes) are independent identically
distributed continuous random variables with exponential distribution

pξ(x) =
1
a

exp
(
−x

a

)
, x ≥ 0, a > 0. (1)

The duration of the product’s lifetime is T . At the beginning of a time period T
the buyer has a lot size Q.

In general case, i.e., only the first and second moments of batch sizes distrib-
ution, a1 and a2 respectively, are known, the normal approximation of a random
customer demand at [0, T ] is considered in Kitaeva, Subbotina, and Zmeev [3]
for fast moving items, i.e., λT = d >> 1, and a task of selling (retail) price
optimization is solved. As also shown in Kitaeva, Subbotina, and Zmeev [3] the
asymptotic, i.e., Q/a1 = q >> 1, distribution of the length of time τ it takes to
sell the lot in general case is given by the density function

ũ(t) =
Q√

2πa2λt3/2
exp

(
− a2

1λ

2a2t

(
t − Q

a1λ

)2
)

.

In this paper we get the exact distributions for an exponential distributed
batch sizes and compare the results with the approximate ones. For exponential
distribution a1 = a and a2 = 2a2.

Secondly we consider the following inventory model. Let the product flow
be continuous with fixed rate ν0 , the demand be a Poisson process with con-
stant intensity λ , the values of purchases be independent identically distributed
random variables having an exponential distribution with the mean a.

Let Q(t) denotes the level of inventory at time t. The storage capacity is
bounded. Consider the following control of the inventory level (on-off control):
if Q(·) is above a base-stock level Q0 we begin to deliver the product to outlets.

Let the process of delivering be a compound Poisson with intensity λ∗ and
exponential batch sizes distribution with mean a∗. The process is independent
from the process of customers’ consumption. In this case we get the exact dis-
tribution of Q(·).

The general on-off control model has been investigated in Kitaeva [10],
Kitaeva, Subbotina, and Zmeev [11], where the values of purchases have any
distribution with known the first and second moments, and the process of deliv-
ering is deterministic with a fixed rate. The diffusion approximation of Marcovian
process Q(·) has been considered.

2 The Newsvendor Model

Let X(t) be a random customer demand at [0, t], p(·) be a probability density
function of X(T ) = X.
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Let n be a fixed number of customers at [0, T ], then a demand at [0, T ]

Xn = ξ1 + ξ2 + ξ3 + ... + ξn,

where ξi are independent identically distributed random variables with distrib-
ution (1).

Taking into account the properties of exponential distribution we have that
probability density function of Xn

pn(x) =

⎧⎨
⎩

δ(x), if n = 0,
xn−1

an(n − 1)!
e−x/a , if n ≥ 1 .

Then the probability density function of X

p(x) = δ(x)e−λT +
∞∑

n=1

xn−1

an(n − 1)!
· (λT )n

n!
e−x/a−λT

= δ(x)e−λT + e−x/a−λT

√
λT

ax

∞∑
s=0

1
s!(s + 1)!

(
1
2

· 2

√
λTx

a

)2s+1

= δ(x)e−λT + e−x/a−λT

√
λT

ax
I1

(
2

√
λTx

a

)
,

where I1(·) is the modified Bessel function of the first kind and first order, δ(·)
is the Dirac delta function.

Denote dimensionless quantity λT = d and random value
X

a
= Y . Then

probability density function of Y

pY (x) = δ(x)e−d + e−x−d

√
d

x
I1

(
2
√

xd
)

. (2)

Compare the exact result (2) with the normal approximation used in Kitaeva,

Subbotina, and Zmeev [3]:
X − aλT

a
√

2λT
converges in distribution to a standard nor-

mal random variable N(0, 1) as λT tends to infinity, or Y converges to N(d,
√

2d).
In Fig. 1 the graphics of the exact (solid line) and approximate normal

(dashed line) probability density functions of the demand divided by the pur-
chase’s mean value are shown for different values of parameter d = λT . As d
increases the approximation becomes more accurate.

Let us find exact distribution u(·) of the length of time τ it takes to sell the
lot for the model under consideration.

1. If the lot is bought completely by the first customer conditional probabil-
ity density function of τ u(t|1) = λe−λt, and probability of this event is
∞∫
Q

1
ae−x/a dx = e−Q/a .
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2. If the lot is over when the n-th customer, (n > 1), make a purchase, condi-
tional probability density function of τ

u(t|n) =
λntn−1

(n − 1)!
e−λt,

and probability of this event is

Q∫

0

pn−1(x)dx

∞∫

Q−x

p(y)dy =e−Q/a

Q∫

0

ex/a pn−1(x)dx

= e−Q/a

Q∫

0

ex/a xn−2

an−1(n − 2)!
e−x/a dx =

Qn−1

an−1(n − 1)!
e−Q/a .

So we receive

u(t) = λe−λt−Q/a +
∞∑

n=2

λntn−1

(n − 1)!
e−λt · Qn−1

an−1(n − 1)!
e−Q/a

= λe−λt−Q/a

[
1 +

∞∑
s=1

1
(s!)2

(
λtQ

a

)s
]

.

Taking into account following equation from Abramowitz and Stegun [12]

1 +
∞∑

s=1

1
(s!)2

(
λtQ

a

)s

= I0

(
2

√
λtQ

a

)
,

we finally get

u(t) = λe−λt−Q/a I0

(
2

√
λtQ

a

)
,

where I0(·) is the modified Bessel function of the first kind and zeroth order.

Denote dimensionless quantity
Q

a
= q and random value λτ = γ. Probability

density function of γ

uγ(t) = e−t−qI0

(√
2tq

)
.

In Kitaeva, Subbotina, and Zmeev [3] the approximate (q >> 1) probability
density function of τ has been considered

ũ(t) =
q

2
√

πλt3/2
exp

(
− λ

4t

(
t − q

λ

)2
)

.

It follows

ũγ(t) =
q

2
√

πt3/2
exp

(
− (t − q)2

4t

)
.
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Fig. 1. The exact pY (x) and approximate N(d,
√

2d) probability density functions of
Y for different d.

In Fig. 2 the graphics of the exact (solid line) and approximate (dashed line)
probability density functions of selling time multiplied by λ are shown for differ-

ent values of parameter q =
Q

a
. As q increases the approximation becomes more

accurate.

3 Random Product’s Delivering

Denote stationary probability density function of Q(·)

p(s) =
{

p1(s), s < Q0,
p2(s), s > Q0.
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Fig. 2. The exact ũ(t) and approximate u(t) probability density functions of γ for
different q.

We begin with the case s < Q0. There are three possibilities of how stock
level process Q(·) enters the state s during Δt:
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1. At time t − Δt the stock level was equal to s − ν0Δt , and we have not a
purchase on time interval Δt. Probability of the event is 1 − λΔt + o(Δt).

2. At time t − Δt the stock level was equal to s − ν0Δt + x, and we have a
purchase x on time interval Δt. If x < Q0 − s + ν0Δt the process does not
cross the base-stock level, otherwise the process crosses Q0 at Δt. Probability
of the event is λΔt + o(Δt).

3. At time t − Δt the stock level was equal to s − ν0Δt + x, x > Q0 − s + c0Δt,
and we have a delivering x. Probability of the event is λ∗Δt + o(Δt).

The rest possibilities have probabilities o(Δt).
So we have integral equation for Marcovian process Q(·)

p1(s) = p1(s − ν0Δt)(1 − λΔt)

+λΔt
Q0−s+ν0Δt∫

0

p1(s − ν0Δt + x)pξ(x)dx

+λΔt
∞∫

Q0−s+ν0Δt

p2(s − ν0Δt + x)pξ(x)dx

+λ∗Δt
∞∫

Q0−s+ν0Δt

p2(s − ν0Δt + x)pη(x)dx + o(Δt),

(3)

where pη(x) =
1
a∗ exp

(
− x

a∗
)

, x ≥ 0.

Using Taylor’s expansion for p1(·) and p2(·): pi(s − ν0Δt) = pi(s) −
ν0Δtp′

i(s) + o(Δt), dividing by Δt and tending Δt to zero in (3) we receive

λp1(s) + ν0p
′
1(s) = λ

Q0∫

s

p1(x)pξ(x − s)dx

+λ

∞∫

Q0

p2(x)pξ(x − s)dx + λ∗
∞∫

Q0

p2(x)pη(x − s)dx.

Taking derivative twice with respect to s we have

p′′′
1(s) + (b1 − a−1 − a∗−1)p′′

1(s) + a∗−1(a−1 − b1)p′
1(s) = 0,

where b1 = λ/ν0.
The solution

p1(s) = C1 exp
( s

a∗
)

+ C2 exp((a−1 − b1)s) + C3. (4)

Due to normalization condition C3 = 0. Let a−1 − b1 > 0 , i.e., ν0 > λa. In
essence we need this condition to ensure the existence of the stationary distrib-
ution of inventory level.

Rewrite (4) in following form

p1(s) = C1 exp
(

s − Q0

a∗

)
+ C2 exp[(a−1 − b1)(s − Q0)], s < Q0.
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Let us consider the case Q > Q0.
States and probabilities of the corresponding changes of process Q(·) during

Δt are as follows:

1. At time t − Δt the stock level was equal to s − ν0Δt, and we have neither a
delivering nor a purchase on time interval Δt. The probability of the event is
1 − λΔt − λ∗Δt + o(Δt).

2. At time t−Δt the stock level was equal to s−ν0Δt+x, and we have a purchase
x on time interval Δt, x > ν0Δt. Probability of the event is λΔt + o(Δt).

3. At time t − Δt the stock level was equal to s − ν0Δt + x, and we have a
delivering x, x > ν0Δt. Probability of the event is λ∗Δt + o(Δt).
The rest possibilities have probabilities o(Δt).

So we receive equation

p2(s) = p2(s − ν0Δt)(1 − λΔt − λ∗Δt)

+λΔt

∞∫

ν0Δt

p2(s − ν0Δt + x)pξ(x)dx

+λ∗Δt

∞∫

ν0Δt

p2(s − ν0Δt + x)pη(x)dx + o(Δt).

Analogously the previous case we get

ν0p
′′′

2(s) + (b1 + b2 − a−1 − a∗−1)p′′
2(s) + (a−1a∗−1 − b1a

∗−1 − b2a
−1)p′

2 = 0,

where b2 = λ∗/ν0.
Solution of the above equation

p2(s) = C1 exp(k1s) + C2 exp(k2s) + C3,

where k1,2 = (a−1 + a∗−1 − b1 − b2 ± √
D)/2, D = (a−1 − a∗−1 + b2 − b1)

2

+4b1b2 > 0.
Let the condition holds ν0 < λa + λ∗a∗. It is the second condition of the

stationary distribution’s existence. Then k2 < 0, k1 > 0.
From normalization condition it follows C1 = C3 = 0. So we get

p2(s) = C exp[k2(s − Q0)], s > Q0.

Let us define constants C,C1, C2.
It is easy to see that

p2(Q0) = O(Δt) + p1(Q0 − ν0Δt)(1 − λΔt) + o(Δt). (5)
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From (5) the boundary condition follows: p1(Q0) = p2(Q0), and we get

C = C1 + C2. (6)

On the other hand

p1(Q0) = p1(Q0 − ν0Δt)(1 − λΔt)

+λΔt
∞∫

ν0Δt

p2(Q0 − ν0Δt + x)pξ(x)dx

+λ∗Δt
∞∫

ν0Δt

p2(Q0 − ν0Δt + x)pη(x)dx + o(Δt).

(7)

From (7), taking (6) into account, we have equation

a∗−1C1 + b1C1 + a−1C2 =
(

b2
1 − a∗k2

+
b1

1 − ak2

)
(C1 + C2). (8)

The third equation is normalization condition:
Q0∫

−∞
p1(s)ds +

∞∫
Q0

p2(s)ds = 1,

or, taking (6) into account,

C1

(
a∗ − 1

k2

)
+ C2

(
a

1 − ab1
− 1

k2

)
= 1. (9)

Solving system of Eqs. (6), (8), and (9) we get

C2 =
k2(1 − ab1)(1 + a∗b1 − a∗h)

(1 + a∗b1 − a∗h)(ak2 − 1 + ab1) − a∗2(h − a−1)(1 − ab1)(a−1 − k2)
,

C =
k2(1 − ab1)(1 + a∗b1 − a∗a−1)

(1 + a∗b1 − a∗h)(ak2 − 1 + ab1) − a∗2(ah − 1)(a−1 − b1)(a−1 − k2)
,

where h =
(

b2
1 − a∗k2

+
b1

1 − ak2

)
.

So we obtain stationary probability density function of the inventory level

p(s) =

⎧⎨
⎩

C1 exp
(

s − Q0

a∗

)
+ C2 exp[(a−1 − b1)(s − Q0)], s < Q0,

C exp[k2(s − Q0)], s > Q0.

4 Conclusion

So we see that the approximate selling time’s distribution derived from diffu-
sion approximation of the stock level process gives good results, at least for
exponentially distributed jump sizes of a compound Poisson demand.
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Note that a sum of independent compound Poisson processes is also a com-
pound Poisson process with the intensity equals the sum of the intensities and
jump sizes’ distribution equals the weighted sum of the corresponding jump sizes’
distributions. It means that for the model described in 3-rd section of the paper
the diffusion approximation considered in [10,11] can be used. The compare of
the approximate and exact results for the on-off control model is the theme of
the next research.
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Abstract. We study an M/G/1 queue with multiple vacation and vaca-
tion interruption. Both normal vacation (type I) and working vacation
(type II) are considered. The exhaustive service discipline is assumed in
this paper. At the end of a busy period, depending on the environment,
the server either opts for normal vacation or working vacation. On com-
pletion of type I vacation if the server finds the system empty he goes
for type II vacation. On completion of type II vacation if the server finds
the system empty goes for another type II vacation. On completion of
service in type II vacation, if the server finds one or more customers in
queue he returns to normal service, interrupting the vacation. An arriv-
ing customer, during type I vacation, joins the queue with probability q
or leaves the system with probability 1 − q and during type II vacation
all the arriving customers join the queue. Using supplementary variable
technique we derive the distributions for the queue length and service
status under steady state condition. Laplace-Stieltjes transform of the
stationary waiting time is also developed. Some numerical illustrations
are also given.

Keywords: Multiple vacation · Random environment · Working vaca-
tion · Vacation interruption

1 Introduction

In every queueing system there is a facility providing service. If this facility is
continuously available in the queueing system, the queueing system will work
more efficiently. But this is an ideal condition. The service facility may break
down or sometimes it may require maintenance. In such situations the server will
not be available for a short duration. That duration is considered as vacation.
i.e. the unavailability of server to primary customers is called vacation.
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If the queue is empty the server remains idle. The idle time of the server
can be utilized for some other work. If the customers in the queue is less, the
functioning of the server in a slow rate will reduce the operating cost, energy
consumption, and the start up cost. These advantages are pointing towards work-
ing vacation. Working vacation is an extension of regular vacation. In working
vacation, instead of completely stopping the service the server provides service
at a slow rate. In working vacation the minor maintenance of the server can
be performed successfully without the dissatisfaction of the customers. Working
vacation reduces the chance of reneging of the customers compared to normal
vacation. In this era of high demand for commodities and services which are
available in a short spell, the concept of working vacation is very useful. This
may be the main reason of the extensive research work going on in working
vacation queueing models.

Vacation queueing system is one of the important research fields due to
applicability in communication, network and so on. The wide application of
this concept in all walks of life is the reason for the staggering development
of working vacation models. For more details of vacation models, readers are
referred to the survey paper by Doshi [3]. The monograph by Takagi [5] is an
excellent and detailed study of vacation models. For basic concepts and detailed
discussions on vacation models we refer to [8]. Different types of vacation models
are discussed in the survey paper by Ke et al. [16].

Working vacation was first studied by Servi and finn [6]. They applied
M/M/1 queue with multiple working vacation to model a wave length divi-
sion multiplexing optical access network. They derived the transform formula
for the distribution of the number of customers in the system and sojourn time
distributions in the steady state. Li et al. [11] proved that the stochastic decom-
position property of vacation queues holds for the M/M/1 queueing system
with working vacation. [18] discuss about a queueing system with two heteroge-
neous servers, one of which is always available but the other goes on vacation in
the absence of customers waiting for service. The vacationing server, returns to
serve at a lower rate as an arrival finds the other server busy. In [19] Sreenivasan
et al. discuss about a MAP/PH/1 queueing model in which the server is sub-
ject to taking vacations and offering services at a lower rate during vacation.
The service is returned to normal rate whenever the vacation gets over or when
the queue length hits a specific threshold value. [7,9] discuss M/G/1 queueing
system with working vacation. In this, the normal service period, service period
during vacation and vacation duration follows general distribution. Li et al. [15]
extend the result for M/M/1 working vacation system to M/G/1 case. [7,9,15]
are generalizations of [6]. Kim et al. [12] investigated M/G/1 queue with work-
ing vacation. Tian et al. [14] discuss about discrete time Geo/Geo/1 queue with
multiple working vacation using matrix analytic method. Fuhrmann and Cooper
[2] and Shanthikumar [4] establish stochastic decomposition results for classical
M/G/1 queue with general vacation.

Li and Tian [10,20] introduced and developed the concept of vacation inter-
ruption. Vacation interruption is the coming back of server to service from vaca-
tion without completing vacation due to the arrival of customers in the queue.
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In [13] performance analysis of GI/M/1 queue with working vacation and vaca-
tion interruption is dicussed by Li et al. Zhang and Hou [17] analyze an M/G/1
queue with working vacation and vacation interruption.

The important features of the model discussed in the present work are

– The server goes for vacation only if the queue is empty. i.e. the exhaustive
discipline has been applied.

– Both normal vacation (type I vacation) and multiple working vacation (type
II vacation) are considered here.

– During normal vacation, if a customer arrives, service is not provided until
completion of vacation whereas while in working vacation service is provided
in case customer arrives, however, at a slower rate.

– At the end of a busy period, depending on the environment, the server opts
for normal vacation or working vacation.

– On completion of type I vacation, if the server finds the system empty he goes
for type II vacation.

– On completion of type II vacation if the server finds the system empty he goes
for another type II vacation.

– On completion of service in type II vacation if the server finds one or more
customers in queue he returns to normal service interrupting the vacation.

– A customer arriving during type I vacation, joins the queue with probability
q or leaves the system with probability 1 − q.

– A customer arriving during type II vacation, joins the queue with probability 1.

The rest of the paper is arranged as follows. In Sect. 2 the model and nota-
tions are described. Stability of the system is discussed in Sect. 3. Steady state
distributions are calculated in Sect. 4. Waiting time analysis is done in Sect. 5.
Some numerical illustrations are given in Sect. 6.

2 Model Description

Consider an M/G/1 queue with Poisson arrival of rate λ. Vacation to server
starts whenever the system turns empty at a service completion epoch. There are
two types of vacations. Depending on the environment the server goes either for
type I vacation with probability p1 or for type II vacation with probability p2 such
that p1 + p2 = 1. During type I vacation the arriving customer joins the queue
with probability q or leaves the system with probability 1 − q. On completion of
type I vacation if the server finds the system empty, he goes for type II vacation.
Type II vacation is a working vacation in which a customer is served on arrival
at a lower rate if the server is idle during vacation. On completion of type II
vacation if the server finds the system empty again goes for type II vacation.
On completion of service in working vacation if the server finds one or more
customers in the system it shifts to normal service, interrupting the vacation.
Otherwise the server continues the vacation. If the vacation is completed before
service completion the service is restarted at normal rate.
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Table 1. Distribution functions

Operation Distribution function PDF LST Mean

Normal service S(t) s(t) S∗(s) 1/μ

Vacation service Sv(t) sv(t) S∗
v (s) 1/μv

type I vacation V1(t) v1(t) V ∗
1 (s) 1/γ1

type II vacation V2(t) v2(t) V ∗
2 (s) 1/γ2

The duration of vacations and services follow mutually independent general
distributions. The distribution functions and the corresponding density functions
are as defined above:(Table 1).

– N(t) - Number of customers in the system;
– C(t) - Status of server;
– S′(t) - Elapsed service time of the customer in normal service mode at time t;
– S

′
v(t) - Elapsed service time in working vacation;

– V
′
1 (t) - Elapsed vacation time duration of type I vacation;

– V
′
2 (t) - Elapsed vacation time duration of type II vacation.

C(t) =

⎧⎨
⎩

0, if server is busy with normal service;
1, if the server is in type I vacation;
2, if the server is in type II vacation;

The states of the system at time t can be represented by the continuous time
Markov process {N(t), C(t), t ≥ 0}.

Pn,0(x, t)dx = P {N(t) = n,C(t) = 0, x ≤ S′(t) < x + dx},
for t ≥ 0, x ≥ 0, n ≥ 1

Pn,1(x, t)dx = P {N(t) = n,C(t) = 1, x ≤ V ′
1(t) < x + dx},

for t ≥ 0, x ≥ 0, n ≥ 0

Pn,2(x, y, t)dxdy = P {N(t) = n,C(t) = 2, x ≤ V ′
2(t) < x + dx,

y ≤ S′
v(t) < y + dy}, for t ≥ 0, x > 0, y ≥ 0, n ≥ 0

Let μ(x), μv(x), γ1(x), and γ2(x) be the conditional completion rates of nor-
mal service, vacation service, type I vacation and type II vacation respectively.

Then μ(x)dx =
dS(x)

1 − S(x)
, μv(x)dx =

dSv(x)
1 − Sv(x)

,

γ1(x)dx =
dV1(x)

1 − V1(x)
, γ2(x)dx =

dV2(x)
1 − V2(x)

.

Pn,0(x) = lim
t→∞ Pn,0(x, t), Pn,1(x) = lim

t→∞ Pn,1(x, t),

Pn,2(x, y) = lim
t→∞ Pn,2(x, y, t)
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Define ak =
∫ ∞

0

(λx)k

k!
e−λxdS(x), bk =

∫ ∞

0

(qλx)k

k!
e−qλxdV1(x),

ck =

∫ ∞

0

∫ x

0

(λx)k

k!
e−λxdV2(x)dSv(y) and dk =

∫ ∞

0

∫ y

0

(λy)k

k!
e−λydSv(y)dV2(x)

where ak, bk, ck and dk are the probability for k arrivals during normal service,
type I vacation, type II vacation and vacation service respectively. The corre-
sponding probability generating functions are

A(z) = S∗(λ(1 − z)), B(z) = V ∗
1 (qλ(1 − z)),

C(z) =
∫ ∞

0

e−λ(1−z)xSv(x)dV2(x) and D(z) =
∫ ∞

0

e−λ(1−z)yV2(x)dSv(y).

The diagram (Fig. 1) below provides a pictorial representation of the system
evolution.

Fig. 1. Model description

3 Stability of the System

Theorem: The inequality ρ =
λ

μ
< 1 is necessary and sufficient condition for

the system to be stable.
Let tn be the departure time of nth customer from the system after service

completion or the time at the end of a vacation. Xn be the number of customers
in the system just after the nth departure, or just at the end of a vacation.

Xn+1 =
{

Xn − 1 + Mn+1, for Xn ≥ 1
Mn, for Xn = 0
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where Mn+1 is the number of arrivals during the service of a customer or during
vacation. The arrivals are independent. Then {Xn, n ≥ 1} is a Markov chain
with state space Z+ ∪ {0}. This Markov chain is irreducible and aperiodic. Now
we have to prove the positive recurrence. For that we use the Foster’s Criterion.

Foster’s Criterion(see Pakes [1]): An irreducible and aperiodic Markov chain
is positive recurrent if there exists a non negative function f(i), i ∈ Z+ ∪ {0}
and ε > 0 such that the mean drift ψ(i) = E[f(Xn+1) − f(Xn)/Xn = i] is finite
for all i ∈ Z+ ∪ {0} and ψ(i) ≤ −ε ∀i except for a finite number.

Here let us consider f(s) = s, s ∈ Z+ ∪ {0}
Then the mean drift when i > 0 is given by

ψ(i) = E[f(Xn+1) − f(Xn)/Xn = i]

=
∞∑

j=0

(i + j − 1 − i)aj =
∞∑

j=0

(j − 1)aj = (ρ − 1).

When i = 0
ψ(i) = p1ρ1 + p2(ρ2 + ρ′)

where ρ =
λ

μ
, ρ1 =

qλ

γ1
, ρ2 =

λ

γ2
, ρ′ =

λ

μb
.

Obviously ψ(i) ≤ −ε except for i = 0 which is the sufficient condition for ergod-
icity. The necessary condition follows from Kaplan’s condition which states that
ψ(i) < ∞ ∀i ∈ Z+ ∪ {0} and there exists j ∈ Z+ ∪ {0} such that ψ(i) ≥ 0 for
i ≥ j.

4 Steady State Distribution

Using supplementary variable technique we get the following system of equa-
tions.

dPn,0(x)
dx

= −(μ(x) + λ)Pn,0(x) + λPn−1,0(x)(1 − δ1n), n ≥ 1. (1)

dPn,1(x)
dx

= −(γ1(x) + qλ)Pn,1(x) + qλPn−1,1(x), n ≥ 1. (2)

∂Pn,2(x, y)
∂x

= −(γ2(x) + λ)Pn,2(x, y) + λPn−1,2(x, y)(1 − δ1n), n ≥ 1. (3)

∂Pn,2(x, y)
∂y

= −(μv(y) + λ)Pn,2(x, y) + λPn−1,2(x, y)(1 − δ1n), n ≥ 1. (4)

The steady state boundary conditions at x = 0 and y = 0 are

Pn,0(0) =
∫ ∞

0

Pn,1(x)γ1(x)dx +
∫ ∞

0

Pn+1,0(x)μ(x)dx
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+
∫ ∞

0

Pn+1,2(x, y)μv(y)dy +
∫ ∞

0

Pn,2(x, y)γ2(x)dx, n ≥ 1. (5)

P0,1(0) = p1

∫ ∞

0

P10(x)μ(x)dx. (6)

P0,2(0) = p2

∫ ∞

0

P1,0(x)μ(x)dx +
∫ ∞

0

P0,1(x)γ1(x)dx. (7)

P1,2(x, 0) = λP0,2(x) (8)

To solve the system of Eqs. (1)–(4), let us define the following probability gen-
erating functions for |z| < 1:

P0(x, z) =
∞∑

n=1

Pn,0(x)z
n, P1(x, z) =

∞∑

n=0

Pn,1(x)z
n, P2(x, y, z) =

∞∑

n=1

Pn,2(x, y)zn

Multiplying Eqs. (1)–(4) by zn and summing over n we get

∂P0(x, z)
∂x

= −[λ(1 − z) + μ(x)]P0(x, z). (9)

∂P1(x, z)
∂x

= −[qλ(1 − z) + γ1(x)]P1(x, z). (10)

∂P2(x, y, z)
∂x

= −[λ(1 − z) + γ2(x)]P2(x, y, z). (11)

∂P2(x, y, z)
∂y

= −[λ(1 − z) + μv(y)]P2(x, y, z). (12)

Solving (9) and (10) we get

P0(x, z) = P0(0, z)(1 − S(x))e−λ(1−z)x. (13)

P1(x, z) = P1(0, z)(1 − V1(x))e−qλ(1−z)x = P0,1(0)(1 − V1(x))e−qλ(1−z)x. (14)

Solving (11) and (12) we obtain

P2(x, y, z) = P0,2(0)(1 − V2(x))(1 − Sv(y))e−λ(1−z)(x+y). (15)

Now

Pn,0(x) =
n∑

i=1

Pi,0(0)
(λx)n−ie−λx

(n − i)!
[1 − S(x)]. (16)

Pn,1(x) = P0,1(0)
(qλx)ne−qλx

n!
[1 − V1(x)]. (17)

Pn,2(x, y) = P0,2(0)
(λy)n−1e−λy

(n − 1)!
[1 − Sv(y)][1 − V2(x)]. (18)

Solving (6) and (7) using (16) we get

P0,1(0) = p1P1,0(0)S∗(λ) (19)
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P0,2(0) = [p2 + p1V
∗
1 (λ)]P1,0(0)S∗(λ) (20)

Using the boundary condition we can write PΔ = P

where P = (P0,1(0), P0,2(0), P1,0(0), P2,0(0), . . .) and

Δ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b0 b1 b2 b3 · · ·
0 c0 + d0 c1 + d1 c2 + d2 c3 + d3 · · ·

p1a0 p2a0 a1 a2 a3 · · ·
a0 a1 a2

. . .

a0 a1
. . .

a0
. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is clear that the matrix Δ is irreducible. It is stochastic since
∞∑

k=0

bk = B(1) = 1,

∞∑
k=0

ck + dk = C(1) + D(1) = 1 and
∞∑

k=1

ak + p1a0 + p2a0 = A(1) = 1.

Now we have to prove that Δ is positive recurrent when ρ < 1. Δ is positive

recurrent when
∞∑

k=1

kak < 1, and this condition is satisfied when ρ < 1.

From the matrix Δ,
P0,1(0) = P1,0(0)p1a0. (21)

P0,2(0) = P0,1(0)b0 + P0,2(0)(c0 + d0) + P1,0(0)p2a0. (22)

Pj,0(0) = P0,1(0)bj + P0,2(0)(cj + dj) +
j∑

i=0

Pi+1,0(0)aj−i. (23)

From (23),

P0(0, z) = z
[P0,1(0)(B(z) − 1) + P0,2(0)(C(z) + D(z) − 1)]

z − A(z)
. (24)

From (13),

P0(z) = P0(0, z)
1 − S∗(λ(1 − z))

(λ(1 − z))
. (25)

From (14),

P1(z) = p1P1,0(0)S∗(λ)
1 − V ∗

1 (qλ(1 − z))
(qλ(1 − z))

. (26)

From (15),
P2(z) = [p2 + p1V

∗
1 (λ)]P1,0(0)S∗(λ)Ω(z), (27)
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where Ω(z) =
∫ ∞

0

∫ x

0

(1 − V2(x))(1 − SV (y))e−λ(1−z)(x+y)dxdy.

Let, P (z) = P0(z) + P1(z) + P2(z) be the PGF of the stationary queue size
distribution irrespective of the server’s state.
Then,

P (z) = P0(0, z)
1 − S∗(λ(1 − z))

(λ(1 − z))
+ p1P1,0(0)S∗(λ)

1 − V ∗
1 (qλ(1 − z))

(qλ(1 − z))
+

[p2 + p1V
∗
1 (λ)]P1,0(0)S∗(λ)Ω(z). (28)

Using the condition P(1)=1, we get

P1,0(0) =

[(
p1ρ1 + (p2 + p1V ∗

1 (qλ))(ρ2 + ρ3)

μ − λ
+

p1

γ1
+ (p2 + p1V ∗

1 (qλ))Ω(1)

)
S∗(λ)

]−1

(29)
The expected queue length E(L) = P ′(z)z=1.

=
1

2
(2P

′
0(0, 1)S

∗′
(0) + λP0(0, 1)S

∗′′
(0)− P

′′
0 (0, 1)S∗′

(0)) +
q

2
λP0,1(0)V

∗′′
1 (0) + P0,2(0)Ω

′(1)

(30)

5 Waiting Time Analysis

To find the waiting time of a customer who joins for service at time t, we have
to consider different possibilities depending on the status of server at that time.
The server may be in general busy period, vacation I or in vacation II. Let
W (t) be the waiting time of a customer who arrives at time t and W ∗(s) be the
corresponding LST.

Case 1. The customer arrives to the system when the number of customers is 0
and the server is in vacation. It may be either in vacation I or vacation II. If it
is in vacation II the customer starts getting service immediately and the waiting
time is zero. Let W ∗

0,2(s) be the corresponding LST. Then

W ∗
0,2(s) = 1.

If the server is in vacation I the customer has to wait till the completion of
vacation. Let x be the elapsed vacation time until the arrival of the customer
and W ∗

01(s) be the LST of the waiting time of the customer who arrives when
the system is empty and the server in vacation I. Then

W ∗
0,1(s) =

∫ ∞

0

e−st dV1(x + t)
1 − V1(x)

.

Case 2. The waiting time of the customer who arrives to the system when there
are n customers in the system and the server is providing normal service to
customer is the sum of the remaining service time of the customer in service and
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the service time of the remaining n − 1 customers. Let x be the elapsed service
time of the customer in service and W ∗

n,0(s) be the LST of the waiting time of
the customer who arrives to the system when there are n customers and the
server is busy. Then

W ∗
n,0(s) = S∗(n−1)(s)

∫ ∞

0

e−st dS(x + t)
1 − S(x)

.

Case 3. The waiting time of the customer who arrives to the system when there
are n customers in the system and the server is is in vacation I is the sum of
the remaining vacation time and the service time of the remaining n customers.
Let x be the elapsed vacation time and W ∗

n,1(s) be the LST of the waiting time
of the customer who arrives to the system when there are n customers and the
server is in vacation I. Then

W ∗
n,1(s) = S∗(n)(s)

∫ ∞

0

e−st dV1(x + t)
1 − V1(x)

.

Case 4. The waiting time of the customer who arrives to the system when there
are n customers in the system and the server is is in vacation II is the sum of the
remaining vacation time and the service time of the remaining n customers if
the vacation completes before vacation service. If the service is completed before
vacation completion then the waiting time is the sum of the remaining vacation
service time and the service time of the remaining n− 1 customers. Let x be the
elapsed vacation time, y be the elapsed vacation service time and W ∗

n,2(s) be the
LST of the waiting time when vacation is completed before service and W ∗′

n,2(s)
be the LST of the waiting time of the customer when service is completed before
vacation of the customer who arrives to the system when there are n customers
and the server is in vacation II. Then

W ∗
n,2(s) = S∗(n)(s)

∫ ∞

0

e−st dV2(x + t)
1 − V2(x)

.

W ∗′
n,2(s) = S∗(n−1)(s)

∫ ∞

0

e−st dSv(y + t)
1 − Sv(y)

.

W ∗(s) = p1

∫ ∞

0

P0,1(x)dx

∫ ∞

0

e−st dV1(x + t)
1 − V1(x)

+ p2

∫ ∞

0

P0,2(x, 0)dx

+
∞∑

n=1

S∗(n−1)(s)
∫ ∞

0

Pn,0(x)dx

∫ ∞

0

e−st dS(x + t)
1 − S(x)

+p1

∞∑
n=1

S∗(n)(s)
∫ ∞

0

Pn,1(x)dx

∫ ∞

0

e−st dV1(x + t)
1 − V1(x)
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+p2

∞∑
n=1

S∗(n)(s)
∫ ∞

0

∫ x

0

Pn,2(x, y)dxdy

∫ ∞

0

e−st dV2(x + t)
1 − V2(x)

+p2

∞∑
n=1

S∗(n−1)(s)
∫ ∞

0

∫ y

0

Pn,2(x, y)dxdy

∫ ∞

0

e−st dSv(y + t)
1 − Sv(y)

.

6 Numerical Results

In this section we provides some numerical examples for this model. Assume nor-
mal service time is exponentially distributed with parameter μ, vacation service
time is exponentially distributed with parameter μv, type I vacation duration
is exponentially distributed with parameter γ1 and type II vacation duration is
exponentially distributed with parameter γ2.

6.1 The Variation in Queue Length Due to the Variation
in Vacation Service Rate and Arrival Rate

Let μ = 5, γ1 = 0.4, γ2 = 0.3, q = 0.5.

Fig. 2. Expected queue length E(L) against vacation service rate μv

Figure 2 represents the variation in queue length due to the variation in
vacation service rate and arrival rate when p1 = 0.7, p2 = 0.3 and p1 = 0.3,
p2 = 0.7 respectively. As the value of vacation service rate increases the expected
queue length decreases and as the arrival rate increases the queue length also
increases which are on expected lines. From Fig. 2 When the probability of opting
for type I vacation decreases the expected queue length decreases.
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6.2 The Variation in Queue Length Due to the Variation
in Vacation Service Rate and Duration of Vacation

Let λ = 4, γ2 = 0.05, p1 = 0.3, p2 = 0.7.

Fig. 3. Expected queue length E(L) against vacation service rate μv

Figure 3 represents the variation in queue length due to the variation in vaca-
tion service rate and vacation duration when q = 0.5 and q = 0.2 respectively.
As the duration of vacation decreases the queue length decreases. This is due
to the early return of server from vacation. When the server returns early from
vacation the customer starts getting service earlier and the length of the queue
reduces. When the probability of customer joining the queue during vacation I
reduces the queue length also reduces which are on expected lines.

Conclusion

In this paper we analyzed an M/G/1 queueing model with two types of vacations
and vacation interruption. The server goes for vacation only if the queue is
empty. Both normal vacation(type I vacation) and multiple working vacation
(type II vacation) are considered. At the end of a busy period, depending on
the environment, the server opts either normal vacation or working vacation.
On completion of type I vacation if the server finds the system empty he goes
for type II vacation. On completion of type II vacation if the server finds the
system empty he goes for another type II vacation. On completion of service in
type II vacation if the server finds one or more customers in queue he returns
to normal service interrupting the vacation. If the server is in type I vacation
the customer has to wait until the completion of vacation for getting service. An
arriving customer during type I vacation, joins the queue with probability q or
leaves the system with probability 1−q. We derived the steady state distribution
function. Waiting time analysis is performed. Some numerical illustrations are
also provided.
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Abstract. In this paper we obtain the probability density function of
stock of perishable goods under constant production and hysteresis con-
trol of the selling price.

Keywords: Perishable goods · Hysteresis control · Probability density
function · Diffusion approximation

1 Introduction

Mathematical models and methods of queueing theory [1,2] are widely used in
various fields and, in particular, can be used to analyze the problems of inventory
management with a limited shelf life, which have been intensively studied in
recent years. Several review articles on the topic appeared during that time, for
example S.K. Goyal, B.C. Giri [3], M. Bakker, J. Riezebos, R.H. Teunter [4].
Also worth noting are papers by V.K. Mishra, V.K. Mishra and L.S. Singh [5,6],
R. Begum, S.K. Sahu, R.R. Sahoo [7,8], R.P. Tripathi, D. Singh, T. Mishra
[9], where authors consider models of inventory management of continuously
deteriorating goods under the assumption of a known demand function. In V.
Sharma and R.R. Chaudhary [10] a model is considered where demand is known
function of time, while the deterioration process is random and follows Weibull
distribution. In K. Tripathy and U. Mishra [11] a model is considered in which
demand is a known function of price. To analyse the mathematical models one
can employ the methods of asymptotic analysis that are widely used in the
queuing theory, for example in the mentioned above works by A.A. Nazarov [1],
A.A. Nazarov and S.P. Moiseeva [2].

2 Mathematical Model of the Problem

We consider a single-line queueing system (Fig. 1) in the entrance of which appli-
cations (perishable goods) with arrival rate c come in. We assume that arrival
process can be approximated in such a way that c units arrives per unit time.

The goods continuously deteriorate as they are stored. Let S(t) be the amount
of goods at time t. Then during a small time interval Δt a total of kS(t)Δt

c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 263–274, 2015.
DOI: 10.1007/978-3-319-25861-4 23
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Fig. 1. Mathematical model

is lost. The service, which in this work will be called sales, is provided by parties
with random size x, where the values of purchases x are independent random
variable with probability density function ϕ(x), mean M {x} = a and a second
moment M

{
x2

}
= a2. Selling times follow a Poisson process with intensity λ

that depend on selling price b. We consider the case when the intensity of sales λ
monotonically decreases as b grows. For a given price b and, hence, sales process
intensity λ the average amount of goods S̄(t) is defined as

S̄(t) = S(0)e−kt +
c − λa

k
(1 − e−kt).

Thus if c − λa > 0 and t � 1 we have a constant stock of unsold goods which is
undesirable. If c−λa ≤ 0 we have unsatisfied demand. Hence we need to control
either selling price b, or the pace of goods arrival c depending on current stock.

In this paper we assume that sales are controlled in the following way. First,
two boundary values for the stock of goods are set, S1 S2, such that S2 > S1.
For S < S1 a selling price b0 is established, for S > S2 a selling price b1 < b0
is established. For S1 ≤ S ≤ S2 the selling price will be either b = b0 or b = b1
depending on the trajectory which the process S(t) followed when it entered this
domain. If it crossed the lower bound S1 upwards then b = b0, while if it crossed
the upper bound S2 downwards, then b = b1 . Thus the selling price b = b1 is
set as soon as S(t) reaches S2 and lasts until the stock falls to S1. The domain
S1 ≤ S ≤ S2 is in fact what we call the domain of hysteresis stock control. In
accordance with this, the intensity of selling times flow at any given moment is
given by

λ(S) =

⎧⎨
⎩

λ0, S < S1,
λ0 or
λ1, S > S2

λ1, S1 ≤ S ≤ S2, (1)

It is natural to assume that C −λ0a > 0 and C −λ1a < 0. Finally, there may be
a situation when current demand cannot be fully satisfied by the current stock
of goods. In such case we assume that S(t) < 0. The orders are satisfied in the
order of arrival.

The main goal of this paper is to determine the probability density function
of the stock of goods in this model and several additional assumptions.

Denote

Pi(S, t) =
Pr {S ≤ S(t) < S + dS, λ(t) = λi}

dS
, i = 0, 1. (2)
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Theorem 1. If Pi(S, t) is differentiable in t and SPi(S, t) is differentiable in S
then functions Pi(S, t) satisfy the following system of equations Kolmogorov

∂P1(S, t)
∂t

= −λ1P1(S, t)− ∂

∂S
((c−kS)P1(S, t))+λ1

∞∫

0

P1(S + x)ϕ(x)dx, S ≥ S1,

(3)

∂P0(S,t)
∂t = −λ0P0(S, t) − ∂

∂S ((c − kS)P0(S, t))

+λ0

S2∫
S

P0(x, t)ϕ(x − S)dx , S1 < S < S2,
(4)

∂P0(S,t)
∂t = −λ0P0(S, t) − ∂

∂S ((c − kSI(S))P0(S, t))

+λ0

S2∫
S

P0(x, t)ϕ(x − S)dx + λ1

∞∫
S1

P1(x)ϕ(x − S)dx, S ≤ S1,
(5)

where I(x) is a step unit function.

Proof. Consider two close moments of time t and t + Δt, where Δt � 1. Under
given assumptions the conditional probabilities

P {S(t + Δt) < z, λ(t + Δt) = λ1 |S(t) = S, λ(t) = λ1 } =

(1 − λ1Δt)I(z − S − (c − kS)Δt) + λ1Δt
S−S1∫
0

I(z − S + x)ϕ(x)dx + o(Δt),

(6)
P {S(t + Δt) < z, λ(t + Δt) = λ1 |S(t) = S, λ(t) = λ0 } = 0. (7)

Thus for z ≥ S1 probability

P {S(t + Δt) < z, λ(t + Δt) = λ1} =

(1 − λ1Δt)
∞∫

S1

I(z − S − (c − kS)Δt)P1(S, t)dS

+λ1Δt
∞∫

S1

S−S1∫
0

I(z − S + x)ϕ(x)dxP1(S, t)dS + o(Δt).

(8)

For z ≥ S1 and a small Δt the integral

∞∫
S1

I(z − S − (c − kS)Δt)P1(S, t)dS =
z−(c−kz)Δt+o(Δt)∫

S1

P1(S, t)dS

=
z∫

S1

P1(S, t)dS − P1(z, t)(c − kz)Δt + o(Δt),

and the integral

∞∫

S1

S−S1∫

0

I(z − S + x)ϕ(x)dxP1(S, t)dt =

∞∫

0

ϕ(x)

z+x∫

S1+x

P1(S, t)dSdx.
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Substituting the expressions above into (8), differentiating with respect to z and
taking the limit Δt → 0 we arrive at Eq. (3).

Furthermore, the conditional probabilities

P {S(t + Δt) < z, λ(t + Δt) = λ0 |S(t) = S, λ(t) = λ0 } =

(1 − λ0Δt)I(z − S − (c − kS)Δt) + λ0Δt
∞∫
0

I(z − S + x)ϕ(x)dx + o(Δt), (9)

P {S(t + Δt) < z, λ(t + Δt) = λ0 |S(t) = S, λ(t) = λ1 } =

λ1Δt
∞∫

S−S1

I(x − S + x)ϕ(x)dx + o(Δt). (10)

From where in the domain z ≤ S2 probability

P {S(t + Δt) < z, λ(t + Δt) = λ0} =

(1 − λ0Δt)
S2∫

−∞
I(z − S − (c − kS)Δt)P0(S, t)dS

+λ0Δt
S2∫

−∞

∞∫
0

I(z − S + x)ϕ(x)dxP0(S, t)dS

+λ1Δt
∞∫

S1

∞∫
S−S1

I(z − S + x)ϕ(x)dxP1(S, t)dS+o(Δt).

(11)

For z ≤ S2 and a small Δt

S2∫
−∞

I(z − S − (c − kS)Δt)P0(S, t)dS =
z−(c−kz)Δt+o(Δt)∫

−∞
P0(S, t)dS =

z∫
−∞

P0(S, t)dS − (c − kz)P0(z, t)Δt + o(Δt),

and the integral

S2∫

−∞

∞∫

0

I(z − S + x)ϕ(x)dxP0(S, t)dS =

z∫

−∞
P0(S, t)ds +

S2∫

z

∞∫

S−z

ϕ(x)dxP0(S, t)dS.

Finally, for S1 < S < S2 the integral

∞∫

S1

∞∫

S−S1

I(z − S + x)ϕ(x)dxP1(S, t)dS =

∞∫

S1

∞∫

S−S1

ϕ(x)dxP1(S, t)dS,

while for z ≤ S1 the integral

∞∫

S1

∞∫

S−S1

I(z − S + x)ϕ(x)dxP1(S, t)dS =

∞∫

S1

∞∫

S−z

ϕ(x)dxP1(S, t)dS.

Substituting the expressions above into (11), differentiating with respect to z
and taking the limit Δt → 0 we arrive at Eqs. (4) and (5).
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The solution of the system (3)–(5) must, apparently, satisfy the following
normalising condition

∞∫

S1

P1(S, t)dS +

S2∫

−∞
P0(S, t)dS = 1 (12)

while function P0(S, t) must be continuous at point S1

P0(S1 + 0, t) = P0(S1 − 0, t). (13)

The unconditional probability density function P (S, t) of the stock of goods takes
the form

P (S, t) =

⎧⎨
⎩

P1(S, t), S > S2,
P1(S, t) + P0(S, t), S1 ≤ S ≤ S2,
P0(S, t), S < S1.

(14)

3 Exponential Distribution of the Sale Amount

Let us consider the simplest case when sales are distributed exponentially

ϕ(S) =
1
a

exp(−S

a
).

Denote
Pi(S) = lim

t→∞ Pi(S, t). (15)

In the steady state as t → ∞ Eqs. (3)–(5) take the form

λ1P1(S) +
d

dS
((c − kS)P1(S)) − λ1

a
e

S
a

∞∫

S

P1(x)e− x
a dx = 0, S > S1, (16)

λ0P0(S)+
d

dS
((c−kS)P0(S))− λ0

a
e

S
a

S2∫

S

P0(x)e− x
a dx = 0, S1 ≤ S ≤ S2, (17)

λ0P0(S) + d
dS ((c − kSI(S))P0(S)) − λ0

a e
S
a

S2∫
S

P0(x)e− x
a dx

−λ1
a e

S
a

∞∫
S1

P1(x)e− x
a dx = 0, S < S1.

(18)

Equation (18) can be differentiated and represented as the following differential
equation

d2

dS2
((c − kSI(S))P0(S)) − d

dS
(
c − kSI(S) − λ0a

a
P0(S)) = 0. (19)
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From here, taking into account boundary condition P0(−∞) = 0 in the domain
S ≤ 0

P0(S) = De
c−λ0a

ca S . (20)

In the domain 0 < S < S1 the solution of (19) takes the form

P0(S) =

⎡
⎣W1 + W2

S∫

0

e− x
a (c − kx)− λ0

k dx

⎤
⎦ e

S
a (c − kS)

λ0
k −1. (21)

The condition of continuity of the solution in S = 0 yields D = W1c
λ0
k −1. From

(18) it follows that in S = 0 a condition must holds:

cP ′
0(0 + 0) − kP0(0 + 0) = cP ′

0(0 − 0).

From where W2 = 0. Thus, for 0 < S < S1

P0(S) = De
S
a (1 − k

c
S)

λ0
k −1. (22)

Equation (17) can be differentiated and represented as the following differential
equation

d2

dS2
((c − kS)P0(S)) − d

dS
(
c − kS − λ0a

a
P0(S)) = 0. (23)

Its solution takes the form

P0(S) =

⎡
⎣W1 + W2

S∫

S1

e− x
a (1 − k

c
x)− λ0

k dx

⎤
⎦ e

S
a (1 − k

c
S)

λ0
k −1. (24)

The condition of continuity in the point S1 of (13) gives

W1 = D. (25)

Furthermore, solution (24) must satisfy the initial Eq. (17). Then

W2 = −D[ae− S2
a (1 − k

c
S2)− λ0

k +

S2∫

S1

e− x
a (1 − k

c
x)− λ0

k dx]−1. (26)

Finally, given that in the model considered the amount of goods is always S ≤ c
k ,

the solution of (16) takes the form

P1(S) = Ae
S
a (1 − k

c
S)

λ1
k −1. (27)

The relationship between constants A and D is obtained from the condition that
the set of found solutions must satisfy (18). Then

A = −ae− S1
a (1 − k

c
S1)− λ1

k W2, (28)
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where W2 is determined by the ratio (26). The last constant D is obtained from
the normalising condition (12).

To sum up, the probability density function of the stock of goods is deter-
mined by (20), (22), (24), (27), while constants in these expressions are obtained
from conditions (25), (26), (28) and (12).

For S2 = S1 we get the case of switch (threshold) control of the selling price
and the probability density function P (S) takes the form

P (S) =

⎧⎪⎨
⎪⎩

De
c−λ0a

ca S , S < 0,

D(1 − k
c S)

λ0
k −1e

S
a , 0 ≤ S ≤ S1,

D(1 − k
c S1)

λ0−λ1
k (1 − k

c S)
λ1
k −1e

S
a , S1 < S ≤ c

k ,

(29)

where D is determined by the normalising condition.

Fig. 2. Relationship between the probability density P (S) and the stock size S.

The relationship between the probability density function P (S) and the stock
size S is given on Fig. 1. Threshold S1 = 40, λ0 = 8, c = 10, k = 0.02, a = 1
(Fig. 2).

4 Diffusion Approximation of the Production/Sales
Process Under Switch Control of the Selling Price

In a general case the solution of the system (3)–(5) cannot be obtained even
in the stationary mode. Hence in the following we focus on constructing an
approximate solution. Consider the case of the switch control of the selling price
when thresholds S2 = S1. The system (3)–(5) can be rewritten to yield

∂P (S,t)
∂t = ∂

∂S [(kSI(S) − c)P (S, t)]

−λ(S)P (S, t) +
∞∫
0

λ(S + y)P (S + y, t)ϕ(y)dy,
(30)
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where

λ(S) =
{

λ0, S ≤ S1,
λ1, S > S1 .

(31)

Let us assume that the production speed c = CN , purchase process’ intensities
λ0 = Λ0N, λ1 = Λ1N , threshold S1 = S0N , where N � 1. Let us analyse the
behaviour of the solution of (30) as N → ∞. Denote ε2 = 1/N . Let us introduce
a function

F (S, t, ε) = P (
S

ε
, t). (32)

Consider first the domain S > S0. Equation (30) in this domain takes the form

ε2 ∂F (y,t,ε)
∂t + Λ1F (y, t, ε) =

ε ∂
∂y [(kεy − C)F (y, t, ε)] + Λ1

∞∫
0

F (y + εz, t, ε)ϕ(z)dz.
(33)

Taking Taylor expansion of F (y +εz, t, ε) with respect to the first argument and
focusing our analysis on the first three member of the sum we get

ε2
∂F (y, t, ε)

∂t
= ε

∂

∂y
[(kεy − C + Λ1a)F (y, t, ε)] + Λ1

a2

2
ε2

∂2F (y, t, ε)
∂y2

+ o(ε2).

(34)
Introduce new variables

t = t, u = y − 1
ε
x(t), (35)

where the function x(t) will be determined later on, and a function Q(u, t, ε)
such that

F (y, t, ε) = Q(y − 1
ε
x(t), t, ε). (36)

We impose an additional condition on x(t) to satisfy equation

ẋ(t) = −kx(t) + C − Λ1a. (37)

Then for Q(u, t, ε) we have

∂Q(u, t, ε)
∂t

=
∂

∂u
[kuQ(u, t, ε)] +

Λ1a2

2
Q(u, t, ε) +

o(ε2)
ε2

. (38)

Let
Q(u, t) = lim

ε→0
Q(u, t, ε). (39)

Then
∂Q(u, t)

∂t
=

∂

∂u
[kuQ(u, t)] +

Λ1a2

2
∂2Q(u, t)

∂u2
. (40)

The stochastic differential equation that satisfies (40) for the process u(t) is of
the form

du(t) = −ku(t)dt +
√

Λ1a2dW (t), (41)
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where W (t) – is a standard Wiener process.
From (37) and (41), accounting for the variable changes been made, we have

for the process ξ(t) = ε2S(t) when ε � 1 that

dξ(t) = −kξ(t)dt + (C − Λ1a)dt +
√

Λ1a2εdW (t). (42)

Let

h(z, t) =
∂ Pr {ξ(t) < z}

∂z
. (43)

According to (42) probability density function h(z, t) satisfies

∂h(z, t)
∂t

= − ∂

∂z
[(C − Λ1a − kz)h(z, t)] +

Λ1a2

2
ε2

∂2h(z, t)
∂z2

. (44)

In a steady state we get for probability density function

h(z) = lim
t→∞ h(z, t)

Λ1a2ε
2

2
d2h(z)

dz2
+

d

dz
[(Λ1a − C + kz)h(z)] = 0. (45)

From where accounting for the boundary condition h(∞) = 0 we obtain

h(z) = Be
− (Λ1a−C+kz)2

Λ1a2ε2k . (46)

Consider now the domain S < S0. Equation (30) with respect to function
F (S, t, ε) (32) now takes the form

ε2 ∂F (y,t,ε)
∂t + Λ0F (y, t, ε) =

ε ∂
∂y [(kεyI(y) − C)F (y, t, ε)] + Λ0

∞∫
0

F (y + εz, t, ε)ϕ(z)dz + R(y, ε)
, (47)

where

R(y, ε) = (Λ1 − Λ0)

∞∫

S0− y
ε

F (y + εz, t, ε)ϕ(z)dz = o(ε2),

since the function F (y, t, ε) is bounded and the second moment a2 exists. Hence
we do not account for the last member of the sum in (47). Taking Taylor expan-
sion of F (y + εz, t, ε) with respect to the first argument we get

ε2
∂F (y, t, ε)

∂t
= ε

∂

∂y
[(kεyI(y) − C + Λ0a)F (y, t, ε)] + Λ0

a2

2
ε2

∂2F (y, t, ε)

∂y2
+ o(ε2).

(48)
Considery < 0. Making substitutions (35) and (36) and assuming

ẋ(t) = C − Λ0a, (49)
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we have for ε → 0 for the function (13)

∂Q(u, t)
∂t

=
Λ0a2

2
∂2Q(u, t)

∂u2
. (50)

Let y > 0. Making substitutions (36) and (37) and assuming

ẋ(t) = −kx(t) + C − Λ0a, (51)

we have for ε → 0 for the function Q(u, t) (39)

∂Q(u, t)
∂t

=
∂

∂u
[kuQ(u, t)] +

Λ0a2

2
∂2Q(u, t)

∂u2
. (52)

It follows from (49)–(52) that for ε � 1 the process ξ(t) = ε2S(t) satisfies a
stochastic differential equation

dξ(t) = −kξ(t)I(ξ(t))dt + (C − Λ0a)dt +
√

Λ0a2εdW (t). (53)

Thus the probability density function (43) satisfies the following equation

∂h(z, t)
∂t

= − ∂

∂z
[(C − Λ0a − kzI(z))h(z, t)] +

Λ1a2

2
ε2

∂2h(z, t)
∂z2

,

whereas in a steady state for the probability density function h(z) we have

Λ0a2ε
2

2
d2h(z)

dz2
+

d

dz
[(Λ0a − C + kzI(z))h(z)] = 0. (54)

Taking in account boundary condition h(−∞) = 0 for z < 0 we obtain

h(z) = De
2(C−Λ0a)

Λ0a2ε2
z
. (55)

For 0 = z = s0 the solution of (54) takes the form

h(z) = (D1 + D2

z∫

0

e
− (kx+C−Λ0a)2

kΛ0a2ε2 dx)e
(kz+C−Λ0a)2

kΛ0a2ε2 . (56)

Inz = 0 the continuity conditions h(0 − 0) = h(0 + 0), h′(0 − 0) = h′(0 + 0)
must hold since function h(z) satisfies a second-order differential equation. Hence

D2 = 0 and D = D1e
(c−Λ0a)2

Λ0a2ε2 .
Thus the probability density function h(s) is determined by the following

expression

h(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ae
(C−Λ0a)2

Λ0a2ε2k e
2(C−Λ0a)

Λ0a2ε2
s
, s < 0,

Ae
(ks+C−Λ0a)2

Λ0a2ε2k , 0 ≤ s ≤ s0,

Be
− (ks+C−Λ1a)2

Λ1a2ε2k , s > s0 .

(57)
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The relationship between A and B follows, firstly, from the normalising condition

0∫

−∞
h(s)ds +

s0∫

0

h(s)ds +

∞∫

s0

h(s)ds = 1 ,

and, secondly, from Eq. (30) when S = S0 in a steady state, which under the
above takes the form

(kS0 − c)
∂P (S0,∞)

∂S
+ (k − λ0)P (S0,∞) + λ1

∞∫

0

P (S0 + y,∞)ϕ(y)dy = 0. (58)

Substituting the probability density P (S,∞) with its approximation (57) we
get the second equation that describes the relationship between A and B. To
obtain the final expressions one must, evidently, know the explicit form of the
probability density function ϕ(y).

5 Conclusion

In this paper we obtain expressions for the probability density function of the
stock of perishable goods under constant arrival speed and switch-hysteresis con-
trol of the purchase process intensity. We also obtain the explicit solutions for
the case of exponentially distributed purchase amounts and a diffusion approx-
imation of the goods production/selling process under switch control of selling
intensity. A similar approach can be used when considering other models of con-
trol for production and sales of perishable goods, in particular, a model with
switch-hysteresis control of the production speed.
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Abstract. The problem of Markov-modulated Poisson process intensi-
ties estimating is studied. A new approach based on sequential change
point detection method is proposed to determine switching points of the
flow parameter. Both the intensities of the controlling Markovian chain
and the intensities of the flow of events are estimated. The results of
simulation are presented.

Keywords: Markov-modulated poisson process · Jump intensity ·
CUSUM algorithm

1 Introduction

Markovian arrival processes form a powerful class of stochastic processes intro-
duced in [1,2] and thereafter they are widely used now as models for input flows
to queueing systems where the rate of the arrival of customers depends on some
external factors. MAP is a counting process whose arrival rate is governed by a
continuous-time Markov chain.

Queueing systems with jump intensity of customer arrivals is one of the exam-
ples of applying MAP. In such models the intensity is supposed to be piecewise
constant function depended on the state of random environment. Particulary,
this model can be used as a model of a call-center or http-server customers (see
[3,4]), healthcare systems (see [5]), etc. Usually the stationary probabilities of
system states, sojourn and waiting time distributions, mean length of the queue
and other parameters are investigated. To solve such problems there is a need
to estimate parameters of customer arrivals.
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 275–288, 2015.
DOI: 10.1007/978-3-319-25861-4 24
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The typical property of observing time series derived from a MAP is that only
the arrivals but not the states of the controlling Markovian chain can be seen.
The problem is to estimate both the controlling Markovian chain parameters
and parameters of the intensity of the arrival process. A survey of estimation
methods is given in [6]. Its emphasis is on maximum likelihood estimation and
its implementation via the EM (expectation-maximization) algorithm. The EM
iteration alternates between performing an expectation (E) step, which creates
a function for the expectation of the log-likelihood evaluated using the current
estimator for the parameters, and a maximization (M) step, which computes
parameters maximizing the expected log-likelihood found on the E step. These
parameter estimators are then used to determine the distribution of the latent
variables in the next E step. This approach is developed for different conditions
in [7,8], etc. The survey [9] with a huge bibliography is focused on matching
moment method which is also widely used for parameter estimation in MAP
because of its simplicity. This method is used, for example, in [10]. Bayesian
approach based on the a posteriori probability of the controlling chain state is
developed in [11]. It provides estimators with the minimum mean square error.

In this paper we propose a different approach. We use the sequential analysis
methods for parameter estimation in queueing system with jump intensity of
the arrival process. The key idea is to consider time intervals between arrivals
as a stochastic process which parameters change in random points. First we are
going to detect these points using sequential change point detection methods.
Then we are going to estimate the intensity parameters under the assumption
that the intensity is constant between detected change points.

The problem of sequential change point detection can be formulated as fol-
lows. A stochastic process is observed. Several parameters of the process change
in random point. The problem is to detect this change point when the process is
observed online. Sequential methods include a special stopping rule that deter-
mines a stopping time. At this instant a decision on change point can be made.
There are two types of errors typical for sequential change point detection pro-
cedures: false alarm, when one makes a decision that change is occurred before
a change point (type 1 error), and delay, when the change is not detected (type
2 error).

The CUSUM (or cumulative sum control chart) algorithm was proposed by
E.S. Page in [12] and since then it is widely used for online detecting changes in
parameters for different time series both with independent and with dependent
observations, even for autoregressive type processes. Usually the change in the
mean is considered. As far as a change of the state of the controlling Markovian
chain causes a jump of the mean length of an interval between arrivals hence
the lengths of intervals form a sequence of dependent random variables and it
is possible to apply the CUSUM algorithm to this situation. G. Lorden in [14]
established that the CUSUM procedure is optimal in a sense that it provides
minimum mean time of delay in change detecting when mean time between false
alarms is fixed. In this paper we use the CUSUM procedure to determine intervals
of the constant intensity of the observed flow of events. After that parameter
estimators are constructed.
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2 Problem Statement

We consider a Markov-modulated poisson process, i.e. a flow of events, controlled
by a Markovian chain with a continuous time. The chain has two states, transi-
tion between the states happens at random instants. The time of sojourn of the
chain in the i-th state is exponentially distributed with the parameter αi, where
i = 1, 2.

The flow of events has the exponential distribution with the intensity para-
meter λ1 or λ2 subject to the state of the Marcovian chain. The parameters of
the system λ1, λ2 and the instants of switching between the states are supposed
to be unknown. We also suppose that λi � αi, i.e., changes of the controlling
chain states occur more rarely than observed events. Thus some events occur
between switchings of the controlling chain states. This situation is typical for
real processes such as call-center or http-server because one of the states can be
interpreted as a “usual” state of the system and another state as a “peak-time”
state and during each of these states several customers are supposed to arrive.
Besides processes having this property are often used for simulation study of
algorithms for processes with jump intensity of customer arrivals (for example,
see [8,13]).

The sequence of instants of arriving events is observed. The problem is to
estimate the parameters λ1, λ2, α1, α2.

3 Algorithm 1

Let the process {ti}i≥0 be the sequence of the instants when events of the
observed flow occur. Consider the process {τi}i≥1, where τi = ti − ti−1 is the
length of the i-th interval between arriving events in the observed flow as it is
shown at the diagram (Fig. 1).

Fig. 1. Construction of the sequence {τi}.

If the controlling chain is in the l-th state then the mean length between
events is equal to 1/λl. So at the first stage of our procedure we try to detect
the instants of the chain transition from one state to another as the instants of
change in the mean of the process {τi}i≥1 using CUSUM procedures.

Let the parameters λ1, λ2 satisfy the condition

0 < λ2 < λ1;
1
λ2

− 1
λ1

> Δ,
(1)
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where Δ is a certain known positive parameter. Choose then an integer para-
meter k > 1 describing the memory depth. The idea is to compare the values
τi and τi−k. If there are no changes of the controlling chain state within the
interval [ti−k−1, ti] then the values τi and τi−k have the identical exponential
distribution with the mean 1/λ1 or 1/λ2. If the chain state changes within the
interval [ti−k, ti−1] then the expectations of the values τi and τi−k are different.

On one hand the parameter k should allow us to detect changes with minimal
delay, on the other hand it should not be too large to contain more than one
chain state change within the interval [ti−k, ti−1]. Further we consider the choice
of the parameter k in detail.

As the initial state of the chain is unknown, we shall consider two CUSUM
procedures simultaneously. The first procedure is set up to detect increase in
the mean of the process and hence, decrease of the intensity, and the second
procedure is set up to detect decrease in the mean and hence, increase of the
intensity. For the first procedure we introduce the sequence of the statistics

z
(1)
i = τi − τi−k − Δ, i > k. (2)

For the second procedure we introduce the sequence of the statistics

z
(2)
i = τi−k − τi − Δ, i > k. (3)

This statistics are calculated at the instant ti.
Consider then four hypothesis concerning the state of the controlling chain:

– H1(ti−k−1, ti) – the intensity of the arrival process on the interval [ti−k−1, ti]
is constant and equal to λ1;

– H2(ti−k−1, ti) – the intensity of the arrival process on the interval [ti−k−1, ti]
is constant and equal to λ2;

– H1,2(ti−k, ti−1) – the intensity of the arrival process on the interval [ti−k, ti−1]
changed once from λ1 to λ2;

– H2,1(ti−k, ti−1) – the intensity of the arrival process on the interval [ti−k, ti−1]
changed once from λ2 to λ1.

Theorem 1. If the parameter Δ satisfies condition (1) then the statistics z
(j)
i ,

j ∈ {1, 2} (2), (3) have the following properties:

E
[
z
(1)
i

∣∣∣ Hl(ti−k−1, ti)
]

< 0, l = 1, 2;

E
[
z
(1)
i

∣∣∣ H1,2(ti−k, ti−1)
]

> 0;

E
[
z
(2)
i

∣∣∣ Hl(ti−k−1, ti)
]

< 0, l = 1, 2;

E
[
z
(2)
i

∣∣∣ H2,1(ti−k, ti−1)
]

> 0.

(4)
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Proof. Using (1) one obtains

E
[
z
(1)
i

∣∣∣ Hl(ti−k−1, ti)
]

= E [τi − τi−k − Δ| Hl(ti−k−1, ti)]

=
1
λl

− 1
λl

− Δ < 0;

E
[
z
(1)
i

∣∣∣ H1,2(ti−k, ti−1)
]

= E [τi − τi−k − Δ| H1,2(ti−k, ti−1)]

=
1
λ2

− 1
λ1

− Δ > 0;

E
[
z
(2)
i

∣∣∣ Hl(ti−k−1, ti)
]

= E [τi−k − τi − Δ| Hl(ti−k−1, ti)]

=
1
λl

− 1
λl

− Δ < 0;

E
[
z
(2)
i

∣∣∣ H2,1(ti−k, ti−1)
]

= E [τi−k − τi − Δ| H2,1(ti−k, ti−1)]

=
1
λ2

− 1
λ1

− Δ > 0.

So the means of statistics (2), (3) change from negative value to positive when
the intensity of the process changes. These properties determine the construc-
tion of the procedures. We introduce positive values h1 and h2 as the procedures
thresholds and construct the cumulative sums S

(1)
i and S

(2)
i which are recalcu-

lated at the instants ti. For the first procedure it is defined as follows

S
(1)
0 = Δ;

S
(1)
i = max{0, S

(1)
i−1 + z

(1)
i }, i > k;

S
(1)
i = 0, if S

(1)
i ≥ h1.

(5)

For the second procedure the cumulative sum is defined as follows

S
(2)
0 = Δ;

S
(2)
i = max{0, S

(2)
i−1 + z

(2)
i }, i > k;

S
(2)
i = 0, if S

(2)
i ≥ h2.

(6)

If the cumulative sum S
(1)
i reaches the threshold h1 then the decision is made that

the mean time between events increased and hence the intensity of the process
decreased, i.e., it changed from λ1 to λ2. If the cumulative sum S

(2)
i reaches

the threshold h2 then the decision is made that the mean time between events
decreased and hence the intensity of the process increased, i.e., it changed from
λ2 to λ1. Once a sum reaches threshold it is reset to zero and the corresponding
procedure is restarted.

Let the sequence
{

σ
(l)
m

}
m≥0

be the sequence of the instants when the cumu-

lative sum in the l-th procedure reaches the threshold hl, i.e.

σ
(l)
0 = 0;

σ
(l)
m = min

{
tj > σ

(l)
m−1 : S

(l)
j ≥ hl

}
.

(7)



280 Y. Burkatovskaya et al.

Consider a sequence
{

n
(l)
i

}
i≥0

associated with the sequence
{

σ
(l)
m

}
m≥0

as follows

n
(l)
0 = 0;

n
(l)
m = max

{
tj ≤ σ

(l)
m : S

(l)
j > 0, S

(l)
j−1 = 0

}
.

(8)

Thus the instant n
(l)
m is the first instant when the cumulative sum becomes posi-

tive to reach then the threshold. The construction of the sequences are illustrated
at Fig. 2. The instants of occurrences ti are marked by vertical dotted lines. At
the diagram above an example of the sum S

(1)
j behavior is presented and the

instants σ
(1)
m and n

(1)
m are marked out. At the diagram in the middle a similar

example for the sum S
(2)
j is shown.

We consider the instants n
(1)
i as the estimators for the instants when the

mean length between the events increases. They are pointed by up arrows at the
diagram below. In turn the instants n

(2)
i are considered as the estimators for the

instants when the mean length between the events increases. They are pointed
by down arrows at the diagram below.

Fig. 2. Construction of the sequences
{

σ
(l)
m

}
,
{

n
(l)
m

}
.

In connection with sequential change point detection procedures two type of
errors are considered: the false alarm and the skip of the change. A false alarm
occurs when one of the cumulative sums reaches the corresponding threshold in
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the case of the constant intensity of the arrival process. A skip of the change
occurs when the change of the parameter occurs but the corresponding cumula-
tive sum does not reach its threshold.

When implementing the procedure it is possible to encounter false alarm
situations. We shall record all the exceeding the thresholds by either first or the
second cumulative sum. If the same sum reaches threshold several times in a
row, we only record the first occurrence.

Thus the procedure for estimation of instants of intensity switching is
described as follows. Calculate two cumulative sums given by Eqs. (5), (6). Then
construct the sequences

{
σ
(l)
m

}
,
{

n
(l)
m

}
defined by Eqs. (7), (8). Let n

(1)
1 < n

(2)
1 ,

then the initial value of the intensity is equal to λ1. Define the sequence

q0 = 0;
q2l+1 = min

{
n
(1)
i : n

(1)
i > q2l

}
, l ≥ 0;

q2l+2 = min
{

n
(2)
i : n

(2)
i > q2l+1

}
, l ≥ 0.

(9)

The values q1, q2, . . . are calculated using formula (9) while the set
{

n
(2)
i : n

(1)
i > q2l

}
�= ∅;{

n
(1)
i : n

(2)
i > q2l+1

}
�= ∅.

If {
n
(2)
i : n

(1)
i > q2l

}
= ∅

({
n
(1)
i : n

(2)
i > q2l+1

}
= ∅

)

then we set q2l+1 = N (q2l+2 = N), where N is the instant of the last occurrence.
Here the odd instants q2l+1 are the estimators of the instants when the intensity
changes from λ1 to λ2, and the even instants q2l+2 are the estimators of the
instants when the intensity changes from λ2 to λ1.

An example of the sequence construction is illustrated at Fig. 3. The
sequences nl

i are shown at the diagram above. The instants of switching the
controlling chain state from 1 to 2 are pointed by up arrows, the instants of
switching the controlling chain state from 2 to 1 are pointed by down arrows at
the diagram below. The intervals are marked by the numbers of the states of the
controlling chain.

Define estimators for parameters λ1, λ2

λ̂1 =
N1

T1
, λ̂2 =

N2

T2
, (10)

where N1 is the total number of events occurred at the intervals [q2l, q2l+1],
q2l+1 ≤ N and T1 is the total length of these intervals; N2 is the total number
of events occurred at the intervals [q2l+1, q2l+2], q2l+2 ≤ N and T2 is the total
length of these intervals; l ≥ 0 (Fig. 3).

Define estimators for parameters α1, α2

α̂1 =
L1

T1
, α̂2 =

L2

T2
, (11)
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Fig. 3. Construction of the sequences {qm}.

where L1 is the total number of the switching points q2l+1 ≤ N , L2 is the total
number of the switching points q2l+2 ≤ N , l ≥ 0.

If n
(2)
1 < n

(1)
1 , then the initial value of the intensity is equal to λ2 the proce-

dure is similar. Define the sequence

q0 = 0;
q2l+1 = min

{
n
(2)
i : n

(1)
i > q2l

}
, l ≥ 0;

q2l+2 = min
{

n
(1)
i : n

(2)
i > q2l+1

}
, l ≥ 0.

(12)

Here the odd instants q2l+1 are the estimators of the instants when the intensity
changes from λ2 to λ1, and the even instants q2l+2 are the estimators of the
instants when the intensity changes from λ1 to λ2. Estimators for the parameters
λ1, λ2 are calculated using formula (10), where N1 is the total number of events
occurred at the intervals [q2l+1, q2l+2] and T1 is the total length of these intervals;
N2 is the total number of events occurred at the intervals [q2l, q2l+1] and T2 is
the total length of these intervals; l ≥ 0. Estimators for the parameters α1, α2

are calculated using formula (11), where L1 is the total number of the switching
points q2l+2 < N , L2 is the total number of the switching points q2l+1 < N ,
l ≥ 0.

4 Choice of the Algorithm Parameters

In this section the problem of choice of the parameters k, Δ and hl is discussed.
We suppose that changes of the controlling chain states occur more rarely

than observed events. First, we consider the memory depth parameter k. Let n be
a lower bound of the mean number of events between switchings of the controlling
chain states. For the model under consideration it means that nαi ≤ λi. It
means that it is not effective to choose the memory depth k ≥ n or close to n
because in this case there can be many situations when more than one chain state
change occur within the interval [ti−k, ti−1]. On the other hand, the sum S

(l)
i

should reach the corresponding threshold hi after switching of the controlling
chain state, i.e. some statistics z

(l)
i should be positive. It follows from these

considerations and numerical calculations that a good choice of the parameter
k is
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k ≈ n

2
. (13)

Then, turn to the parameters Δ and hl. Condition (1) provides properties
(4). The properties make it possible to construct CUSUM procedures. Thus the
parameter Δ can be chosen from the interval (0, 1/λ2 − 1/λ1), i.e., it is positive
and does not exceed the difference between the mean lengths of the intervals τi
when the controlling chain is in different states. Let this difference be not less
than some d > 0:

1
λ2

− 1
λ1

≥ d. (14)

The parameter Δ and hl affects the characteristics of the CUSUM procedure,
i.e., the mean delay and the mean time between false alarms (see [14]). If the
parameter hl is fixed then increase of the parameter Δ results in decrease of
the mean of the statistic z

(l)
i and hence the sum Si(l) reaches the threshold hl

more slowly and hence, a switching of the controlling chain state from the state
l can be skipped. Consequently, the number of false detection of the controlling
chain state switchings decreases but on the other hand the number of skips of
the controlling chain state switchings increases. If the parameter Δ is fixed then
increase of the parameter hl results in the same effect. Vice versa, decrease of
the parameter Δ or the parameter hl while the other parameter is fixed result in
increase of the number of false detection of the controlling chain state switchings
and decrease of the number of skips of the controlling chain state switchings.

If there are no additional conditions then the procedure is considered to be
optimal when the probabilities of the false detection and the skip of the change
are equal. It can be guaranteed by the following conditions

E
[
z
(1)
i

∣∣∣ Hl(ti−k−1, ti)
]

= −E
[
z
(1)
i

∣∣∣ H1,2(ti−k, ti−1)
]
;

E
[
z
(2)
i

∣∣∣ Hl(ti−k−1, ti)
]

= −E
[
z
(2)
i

∣∣∣ H2,1(ti−k, ti−1)
]
.

(15)

It results in the equations (see Theorem 1)

−Δ = − 1
λ2

+
1
λ1

+ Δ.

Hence the best choice of the parameter Δ is

Δ =
d

2
(16)

where d is defined by the Eq. (14), i.e., Δ is the half of the difference between
the mean lengths of the intervals τi when the controlling chain is in different
states. If the difference is unknown then one has to choose as d a lower bound
of the difference. In other words, one has to define the minimal difference that
should be detected by the algorithm.

Consider now the parameter hl. If the memory depth is equal to k then the
sum S

(l)
i to reach the threshold hl in not more then k steps (while Ez

(l)
i > 0).
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If the parameter Δ satisfies the condition (16) then using (14) and Theorem 1
one obtains

E
[
z
(1)
i

∣∣∣ H1,2(ti−k, ti−1)
]

=
1
λ2

− 1
λ1

− Δ ≥ d − d

2
=

d

2
;

E
[
z
(2)
i

∣∣∣ H2,1(ti−k, ti−1)
]

=
1
λ2

− 1
λ1

− Δ ≥ d − d

2
=

d

2
.

So if the sum S
(l)
i starts from zero it reaches the threshold hl on the average in

2hl/d steps. Hence it is supposed to choose the threshold hl from the condition
2hl/d < k, i.e.

hl <
kd

2
≈ nd

4
. (17)

Note that the parameter hl should not be significantly than its upper bound
because it can increase the number of false alarms.

In general the choice of the CUSUM parameters is a rather difficult problem
requiring further theoretical investigations. Nevertheless, numerical simulations
demonstrated a good quality of the proposed algorithm with the parameters
(13), (16), (17).

5 Algorithm 2

The second algorithm is very similar to the first except of the definition of the
statistics z

(l)
i .

Let we have a certain period of observation [0, T ] and N is the number of
occurrences at the interval. First, we calculate the mean of the length between
occurrences using the usual formula

τ̂ =
T

N
. (18)

The value τ̂ exceeds the mean length of the interval τi when the controlling chain
is in the first state, and vice versa, the mean length of the interval τi exceeds
the value τ̂ when the controlling chain is in the second state, i.e.

1
λ1

< Eτ̂ <
1
λ2

. (19)

Using this property we can construct statistics as follows. For the first procedure
we introduce the sequence of the statistics

z
(1)
i = τi − τ̂ . (20)

For the second procedure we introduce the sequence of the statistics

z
(2)
i = −τi + τ̂ . (21)

Consider then two hypothesis concerning the state of the controlling chain:
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– H1(ti−1, ti) – the intensity of the arrival process on the interval [ti−1, ti] is
constant and equal to λ1;

– H2(ti−1, ti) – the intensity of the arrival process on the interval [ti−1, ti] is
constant and equal to λ2;

Theorem 2. The statistics z
(j)
i , j ∈ {1, 2} (20), (21) have the following prop-

erties:
E

[
z
(1)
i

∣∣∣ H1(ti−1, ti)
]

< 0;

E
[
z
(1)
i

∣∣∣ H2(ti−1, ti)
]

> 0;

E
[
z
(2)
i

∣∣∣ H1(ti−1, ti)
]

> 0;

E
[
z
(2)
i

∣∣∣ H2(ti−1, ti)
]

< 0.

(22)

Proof. Using (19) one obtains

E
[
z
(1)
i

∣∣∣ H1(ti−1, ti)
]

= E [τi − τ̂ | H1(ti−1, ti)] =
1
λ1

− Eτ̂ < 0;

E
[
z
(1)
i

∣∣∣ H2(ti−1, ti)
]

= E [τi − τ̂ | H2(ti−1, ti)] =
1
λ2

− Eτ̂ > 0;

E
[
z
(2)
i

∣∣∣ H1(ti−1, ti)
]

= E [−τi + τ̂ | Hl(ti−1, ti)] = − 1
λ1

+ Eτ̂ > 0;

E
[
z
(2)
i

∣∣∣ H2(ti−1, ti)
]

= E [−τi + τ̂ | H2(ti−1, ti)] = − 1
λ2

+ Eτ̂ < 0.

So one can see that the statistics Z
(l)
i change their means when the intensity

of the arrival process changes. Using in Algorithm 1 statistics (20), (21) instead
of (2), (3) we obtain Algorithm 2.

Consider now the choice of the parameters hl. If n is a lower bound of the
mean number of events between switchings of the controlling chain states then
the sum S

(l)
i should reach the threshold hl on the average less then in n steps,

for example, in n/2 steps. For Algorithm 2 we can not estimate the mean of the
statistic E

[
z
(1)
i

∣∣∣ H2(ti−1, ti)
]

if the parameters αi are unknown because we can
not calculate Eτ̂ . Hence, we use a rather crude estimator

E
[
z
(1)
i

∣∣∣ H2(ti−1, ti)
]

≈ d

2
;

E
[
z
(2)
i

∣∣∣ H1(ti−1, ti)
]

≈ d

2
.

So we come to the inequality

hl <
nd

4
(23)

which is the same as in Algorithm 1.
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6 Numerical Simulation

The model for the considered flow and the suggested algorithms was implemented
with varying parameters. The results are presented in the tables below (Tables 1
and 2 ).

Table 1. The results of the simulation for Algorithm 1.

T λ1 λ2 α1 α2 h1 h2 k Δ λ̂1 λ̂2 α̂1 α̂2

1000 5 1 0,4 0,2 1 1 5 0,2 4,2750 1,0951 0,2458 0,1641

1000 5 1 0,4 0,2 1,8 1,8 5 0,2 3,8424 1,0621 0,1687 0,1226

1000 5 1 0,4 0,2 1,8 1,8 8 0,2 4,3561 1,1852 0,1686 0,1180

Here we use the following notations:

– T is the time of simulation;
– λ1 and λ2 are the intensities of the arrival process in the first and the second

state, correspondingly;
– α1 and α2 are the switching intensities from the first to the second state and

vise versa, correspondingly;
– h1 and h2 are the CUSUM thresholds;
– k is the parameter of the algorithm, the difference between the numbers of

the compared intervals at the statistics (2), (3);
– Δ is the parameter of the algorithm;
– λ̂1 and λ̂2 are the estimators of the parameters λ1 and λ2;
– α̂1 and α̂2 are the estimators of the parameters α1 and α2.

Table 2. The results of the simulation for Algorithm 2.

T λ1 λ2 α1 α2 h1 h2 τ̂ λ̂1 λ̂2 α̂1 α̂2

1000 5 1 0,3 0,2 0,5 0,5 0,3883 5,2336 1,2276 0,322 0,1732

1000 5 1 0,3 0,2 0,8 0,8 0,3929 5,0591 1,2370 0,2573 0,1322

1000 5 1 0,3 0,2 1 1 0,4355 4,7475 1,1972 0,2587 0,1144

1000 5 1 0,1 0,2 0,5 0,5 0,2668 5,6804 2,0053 0,2912 0,2604

1000 5 1 0,1 0,2 0,8 0,8 0,2924 5,1544 1,6825 0,1180 0,1880

1000 5 1 0,1 0,2 1 1 0,2501 5,2498 2,6283 0,1207 0,1297

1000 5 2 0,1 0,2 0,5 0,5 0,2351 6,1085 2,8854 0,3632 0,2656

1000 5 2 0,1 0,2 0,8 0,8 0,2564 5,1785 2,8092 0,1652 0,1289

1000 5 2 0,1 0,2 1 1 0,2486 5,1949 2,8831 0,1219 0,1162

10000 5 1 0,3 0,2 0,8 0,8 0,3830 4,8379 1,3439 0,2316 0,1318

10000 5 1 0,3 0,2 1 1 0,3766 4,6783 1,4326 0,1917 0,1157
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Here we use the same notations as above, τ̂ is the mean length of the interval
between occurrences calculated by (18).

First, the quality of the proposed algorithms on the threshold parameters hi

was studied. Increasing of hi leads to decreasing of probability for the cumulative
sums to reach the thresholds and hence an intensity change can be undetected.
It causes increasing of error of the estimators λ̂l because of not correct estimation
of the controlling chain current state.

On the other hand, increasing of hi results in decreasing the total number
of false alarms. These theoretical conclusions are supported by the simulation
results. As the thresholds increase the estimators of the switching parameters
α̂l decrease because less switching points are detected on the first stage of the
procedures. In Table 2 for h1 = h2 = 1 one can see that the estimators α̂i consid-
erably less the real values of the parameters αi. The best results are obtained for
h1 = h2 = 0, 8 for all intensity parameter values. It supports our considerations
concerning the parameter hl. According to (23) for λ1 = 5 and λ2 = 1 minimal
difference between the mean length of the intervals τi is d = 1/1 − 1/5 = 0.8
and the recommended choice of hl is hl < (0.8 × 5)/4 = 1, but it should not be
significantly less.

Increase of the simulation time from 1000 to 10000 does not influence sig-
nificantly the estimators quality. This result stresses the fact that the proposed
algorithms can be used for small sample size.

7 Conclusion

Markovian arrival processes serve as models for real processes, particularly, for
call-centers or http-server customers, healthcare systems, etc. Input flow inten-
sity estimation and pertinent model setup is necessary to develop dispatching
rule, to calculate optimal number of servers, etc. The suggested algorithms do
not use the distribution function of the observing flow and, hence, can be applied
to parameter estimation of other types of flows.
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Abstract. The paper discusses various models of self-similar Internet
traffic and techniques for estimating the intensity of Long-Range Depen-
dence (LRD). In the experimental part real data sets collected in IITiS
PAN are used together with synthetic LRD flows generated using Frac-
tional Gaussian noise and Markov modulated Poisson processes. We are
especially interested in Markov models since they can be incorporated in
Markov queueing models, for which powerful analytical and numerical
techniques are available.

1 Introduction

In the last decades a growing interest stimulated by experimental measurements
was paid to processes characterized by a slowly decaying correlation structure. In
this paper we review some of the most relevant results in the framework of traffic
modeling and illustrate them with our measurements and their analysis. In more
detail we present different classes of stochastic models which have been used in
the literature, highlighting their main features and the motivation behind their
use. Then we concentrate on Markov models as the most interesting from our
point of view because they may be incorporated in Markov queueing models.

Traffic models can be employed in two different ways: as part of an analytical
model (e.g., as input process in a queue model) or to drive a discrete-event
simulation. In the first case analytical tractability is essential, while in the second
one the key factor is the availability of an efficient generation algorithm; this
problem is particularly relevant for Long-Range Dependence (LRD) processes
because of their infinite memory: for that reason only approximate models can
be used.

In general, traffic models can be used to evaluate networks and protocols (for
instance, TCP-Friendly Rate Control in DCCP [1] is based on the throughput
achieved by TCP connections in similar network conditions) or to estimate the
suitable size of network components (for instance, buffer sizes, server capacities
and link rates) to cope with QoS (Quality of Service) users requirements, usu-
ally measured in terms of (end–to–end) delay, delay jitter and packet loss rate.
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 289–303, 2015.
DOI: 10.1007/978-3-319-25861-4 25
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In order to get accurate performance indexes, it is essential to use realistic traffic
models, i.e. to employ stochastic processes which are able to capture the essential
features of real traffic flows while keeping a reasonable level of tractability.

One of the key points in the evolution of traffic modeling is represented by
the availability of high-quality traffic data. The first (and most famous) data set
was collected between August 1989 and February 1992 on several Ethernet LANs
at the Bellcore Morristown Research and Engineering Center by Leland and
Wilson [2,3]. They were able to record hundreds of millions of Ethernet packets
without loss (irrespective of the traffic load) and with recorded time-stamps
accuracy within 100 μs. The statistical analysis of this dataset highlighted the
presence of “burstiness” (the arrival points appear to form visual clusters, i.e.,
runs of several relatively short interarrival times are followed by a relatively
long one) across an extremely wide range of time scales, corresponding to a
self-similar (it is not surprising that the Hurst parameter H can be used as a
measure of burstiness via the concept of self-similarity) or fractal-like behavior
of the aggregate Ethernet LAN traffic.

This feature makes packet traffic very different from conventional telephone
traffic (for which queuing theory has been developed starting from the pioneering
works by Erlang [4] more than one century ago – see, for instance [5] for a general
overview) and basically derives from a strong correlation among arrivals over
very long time intervals; formally, the data exhibit Long Range Dependence and
this behavior can be easily highlighted by plotting, for instance, the index of
dispersion for counts (IDC), defined as [6]

Ic(τ) =
Var [N(τ)]
E [N(τ)]

(1)

where N(τ) represents the number of arrivals during the interval
[
0, τ

)
and

its variance takes account of the temporal dependence in the analyzed traffic
sequence. The IDC of a LRD process is an increasing function of τ while for a
Poisson process its value is 1 for all τ .

2 Long Range Dependence and Self-similarity

In the literature the terms long-range dependence and self-similarity are often
used without distinction, although they are not equivalent concepts, [7].

A continuous time process Y (t) is exactly self-similar with the Hurst para-
meter H if it satisfies the following condition [8]:

Y (t) d= a−HY (at)

for t ≥ 0, a ≥ 0 and 0 < H < 1. Above equality is in the sense of finite
dimensional distributions and the Hurst parameter expresses the degree of the
self-similarity [9]. The process Y (t) may be non-stationary [10].

In the case of network traffic, one usually has to deal with time series rather
than a continuous process. In that context the above definition can be sum-
marized as follows. Let X(t) be a stationary sequence representing incremental
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process (e.g. in bytes/second). The corresponding aggregated sequence with a
level of aggregation m:

X(m)(k) =
1
m

m∑
i=1

X((k − 1)m + i), k = 1, 2, . . .

is obtained by averaging X(t) over nonoverlapping blocks of length m. The
following condition is satisfied for a self-similar process:

X
d= m1−HX(m)

for all integers m. A stationary sequence X is second-order self-similar if
m1−HX(m) has the same variance and auto-correlation as X for all m. A sta-
tionary sequence X is asymptotically second-order self-similar if m1−HX(m) has
the same variance and auto-correlation as X as m → ∞.

Asymptotically second-order self-similar processes are also called long-range
dependent processes and this property is exhibited by network traffic [8]. Long-
range dependence of data refers to temporal similarity present in the data. Let
X(n) be a second order stationary process (representing for instance the amount
of traffic arriving in consecutive time intervals) with covariance function

r(k) = Cov (X(n),X(n − k)) Δ= E [(X(n) − μ)(X(n − k) − μ)] ,

autocorrelation function

ρ(k) Δ=
r(k)
r(0)

and power density spectrum S(ω), defined as the Discrete Fourier Transform of
r(k), i.e.

S(ω) =
1
2π

∞∑
k=−∞

r(k) eikω .

The process X(n) exhibits long range dependence if and only if it exhibits the
following properties which are all equivalent [11]):

– slowly decaying autocorrelation function: ρ(k) decreases as a non summable
power law when k tends to infinity

ρ(k) ∼ k−α as k → ∞ where 0 < α < 1 (2)

– divergence of the power density spectrum at null frequency: S(ω) diverges as
an integrable power law near the origin

S(ω) ∼ ω−β as ω → 0 (3)

where 0 < β < 1 and β = 1 − α (due to the duality property of the Discrete
Fourier Transform)
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– bad averaging properties: the variance of the aggregated process decays more
slowly than the sample size

Var

(
1
n

n−1∑
i=0

X(i)

)
∼ n−α as n → ∞ (4)

The latter property is often used as a graphical test for LRD, known as
Variance–time plot, which can be easily implemented according to the following
steps:

– Average the signal over nonoverlapping windows of size n

X(n)(k) =
1
n

kn∑
i=(k−1)n+1

X(i)

– Compute the variance σ2
n of the averaged signal for many values of n

– Plot σ2
n against n in a log-log scale

– The slope of the interpolating straight line gives an estimation of the para-
meter α

The aggregate variance method was described e.g. in [7,12,13]. The estimated
value of Hurst parameter is obtained by fitting a simple least squares line through
the resulting points in the plane. The asymptotic slope between −1 and 0 sug-
gests LRD and estimated Hurst parameter is given by H = 1 − slope

2 . Figure 1
shows as an example the variance-time plot for IITiS trace.

Instead, if the autocorrelation function is summable (it is enough to require
that ρ(k) decays geometrically fast), the process exhibits short range dependence
(SRD).

Roughly speaking, the non-summability of the autocorrelations captures the
essence of LRD: even though the high-lag autocorrelations are individually small,
their cumulative effect is of importance, and gives rise to a behavior of the under-
lying stochastic process that is markedly different from that of the convention-
ally considered SRD processes; as highlighted before, this long-term memory
captures the persistence phenomenon (burstiness or, in Mandelbrot’s terminol-
ogy, Joseph Effect) observed in many naturally occurring empirical time series
(not only in internet traffic modeling, but also in econometrics, hydrology and
linguistics, just to cite the most famous examples).

3 Estimation of the Hurst Parameter

Starting from traffic data, one of the key problems is to verify the presence of
some kind of self-similarity (at least asymptotically), which is typically done
through the estimation of the Hurst parameter. Unfortunately, only finite data
sets are available and real traffic data exhibits self-similarity only starting from
some time–scale (indeed, unlike self-similar processes, traffic has a discrete
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nature!) and, in case of long measurement campaigns, it is necessary to take
into account the presence of non stationarity and its effect over the estimation.

Different estimation techniques have been proposed in the literature [11,14,
15], working directly on the aggregated time series or in a transformed domain.
The above-mentioned variance time plot is the most known method of the first
kind, this class also includes other worth-mentioning approaches:

– Rescaled Adjusted Range (R/S) statistics, one of the better known
methods, introduced by the British hydrologist Harold Edwin Hurst. Let X(t)
be the increments of Y (t), i.e. Y (t) =

∑t
i=1 X(i). Then, the R/S statistics or

rescaled adjusted range is the ratio Q(t, k) = R(t, k)/S(t, k) where the range
R(t, k) takes into account the maximum and minimum deviations

R(t, k) = max
0≤i≤k

[Y (t + i) − Y (t) − i

k
(Y (t + k) − Y (t))]

− min
0≤i≤k

[Y (t + i) − Y (t) − i

k
(Y (t + k) − Y (t))]

and S(t, k) denotes the sample standard deviation, given by

S(t, k) =
√

k−1
∑

i=1,k

(X(t + i) − X̄(t, k))2

with X̄(t, k) = k−1
∑

i=1,k X(t + i).
If Y (t) is self-similar with parameter H then E(Q(t, k)) ∼ kH .

– Higuchi’s method involves calculating the length of a path and, in principle,
finding its fractal dimension D. Denoting by N the number of samples of the
time series, the normalized length of the corresponding curve is estimated as
follows:

L(m) =
N − 1
m3

m∑
i=1

⌊
N − i

m

⌋−1 �(N−i)/m�−1∑
k=0

|Y (i + km) − Y (i + (k − 1)m)|

where m is essentially a block size and �·� denotes the greatest integer function.
Then EL(m) ∼ CHm−Dwhere D = 2 − H. Thus a log-log plot of L(m) vs. m
should produce a straight line with the slope of D = 2 − H

– Moment method investigates self-similarity through the behavior of
absolute moments of the aggregated processes X(m)

μ(m)(q) Δ= E

∣∣∣X(m)
∣∣∣
q

According to the definition of self-similarity, μ(m)(q) is proportional to mβ(q),
where β(q) = q(H − 1).

As far as the analysis in a transformed domain is concerned, the main
approaches are the following:
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– Periodogram method is based on the estimation of the spectral density
through the periodogram

I(ω) =
1

2πN

∣∣∣∣∣∣
N−1∑
j=0

X(j) eijω

∣∣∣∣∣∣

2

By definition, a series with LRD should have a periodogram which is propor-
tional to ω1−2H close to the origin. Therefore, a regression of the logarithm
of the periodogram on the logarithm of ω should give a coefficient of 1 − 2H,
hence providing an estimation of the parameter H,

– Whittle estimator, also based on the periodogram I(ω), involves the func-
tion

Q Δ=
∫ π

−π

I(ω)
f(ω;η)

dω

where f(ω;η) is the spectral density and η denotes the vector of unknown
parameters. The Whittle estimator is the value of η which minimizes the func-
tion Q. Unlike the other estimators discussed here, the Whittle estimator is
obtained through a non-graphical method. It also assumes that the parametric
form of the spectral density, i.e. the function f(ω;η), is known,

– Wavelet estimator is based on the analysis of the numerical series in the
wavelet domain [16], taking advantages of the fact that the wavelet coeffi-
cients dj,· at a given resolution level j are quasi–decorrelated; indeed, the
mother wavelet ψ(t) is a band-pass signal and the power–law behavior of
its Fourier transform at frequencies near 0 cancels the power–law divergence
of the spectrum at the origin. Roughly speaking, the coefficient |dj,k|2 mea-
sures the amount of energy in the analyzed signal about the time instant 2jk
and frequency 2−jω0, where ω0 is the central frequency of the chosen mother
wavelet. Thanks to the quasi–decorrelation of coefficients dj,·, a useful spec-
tral estimator can be designed by performing a time average of the |dj,k|2 at
a given scale, that is,

Ŝ
(
2−jω0

)
=

1
nj

∑
k

|dj,k|2

where nj = 2−jN is the available number of wavelet coefficients at octave j.
In case of 1/ |ω|β processes (as in (3)), it is possible to design an estimator Ĥ

for the parameter H from a simple linear regression of log2
(
Ŝ

(
2−jω0

))
on j,

i.e.
log2

(
Ŝ

(
2−jω0

))
=

(
2Ĥ − 1

)
j + c

where the constant c is independent of the analyzing scale j (see, for instance,
[17,18] for a detailed description).

Although the Hurst parameter is well defined mathematically, it is prob-
lematic to measure it properly [7,19] since different methods often produce
conflicting results [20]. To highlight this issue, we have applied several of
the above-mentioned methods to estimate the Hurst parameter in real traces
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collected in IITis Pan and synthetic traces generated with MMPP and fractal
Gaussian models, discussed later in the article.

Table 1 gives the obtained Hurst parameters for one day IITiS traces: trace
1 (6 002 874 samples), trace 2 (13 874 610 samples), and trace 3 (36 135 490
samples). In the case of Wavelets based method a 95% confidence interval should
be interpreted only as a confidence interval on the fitted line. Our previous work
[15] did not confirm the relationship between the degree of LRD and the number
of transmitted packet of a given type. One can see a variance of estimators
obtained with different methods.

Table 1. Hurst parameter estimates for IITiS data traces

trace 1 trace 2 trace 3

Estimator Hurst parameter

R/S method 0.74 0.655 0.763

Aggregate variance method 0.912 0.817 0.933

Periodogram method 0.781 0.715 0.84

Whittle method 0.714 0.599 0.761

Wavelet-based method 0.681 ± 0.013 0.61 ± 0.027 0.71 ± 0.017

Table 2 shows the obtained Hurst parameters for MMPP data traces: MMPP
1 (H = 0.75 and ρ = 0.6), MMPP 2 (H = 0.6 and ρ = 0.6), MMPP 3 (H = 0.79
and ρ = 0.0213), while Table 3 refers to fGn traces. The fGn and MMPP 3
models were used to simulate the LRD data using a theoretical Hurst parameter
and the same theoretical mean as the IITiS data. Different Hurst parameters
have been chosen to represent a low and a high level of long-range dependence
in data. The models are run to produce 200 000 packets. As can be seen, the
MMPP model is more inconsistent than fGn.

Table 2. Hurst parameter estimates for MMPP data traces

MMPP 1 MMPP 2 MMPP 3

Estimator Hurst parameter

R/S method 0.757 0.659 0.798

Aggregate variance method 0.665 0.586 0.715

Periodogram method 0.83 0.549 0.831

Whittle method 0.678 0.57 0.728

Wavelet-based method 0.851 ± 0.036 0.601 ± 0.011 0.841 ± 0.036
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Table 3. Hurst parameter estimates for fGn data traces

fGn 1 fGn 2 fGn 3

Estimator Hurst parameter

R/S method 0.605 0.701 0.939

Aggregate variance method 0.507 0.642 0.88

Periodogram method 0.521 0.661 0.991

Whittle method 0.688 0.75 0.882

Wavelet-based method 0.574 ± 0.028 0.698 ± 0.017 0.937 ± 0.009

4 Non-Markov LRD Traffic Models

In this section we recall other traffic models that exhibit LRD, for sake of brevity
just mentioning their key features:

– Fractional Brownian Traffic The most famous (and the simplest) LRD
traffic model is the Fractional Brownian Traffic [21], in which the cumulative
arrival process is defined as follows:

N(t) = mt +
√

amZH(t)

where ZH(t) denotes the normalized (i.e., σ2 = 1) fractional Brownian motion
(fBm), with Hurst parameter H ∈ [1/2, 1); m > 0 is the mean input rate and
a > 0 is the variance coefficient.

– fractional ARIMA(p,d,q) processes: they are the extension (for fractional
values of d) of the traditional ARIMA processes; unlike fGn, there are addi-
tional degrees of freedom related to the autoregressive components, whose
coefficients can be set to model the short term correlations of actual traffic
data [22,23]

– heavy-tailed On-Off models: they can be seen as a generalization of
MMPP(2), in which the sojourn time in at least one of two states is heavy-
tailed, i.e. the right tail of its distribution decays to zero as

P [X > x] 
 x−α L(x)

where L(x) is a slowly varying function (at infinity), i.e.

lim
t→∞

L(xt)
L(t)

= 1 for any fixed x > 0

These models can be used to describe single connections (indeed, certain traffic
features such as file sizes and related transmission times, CPU times, idle
times, peak rates and connection times are characterized by heavy-tails) and
the actual traffic can be seen as the superposition of many independent on-off
sources.
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– α-stable processes: they permit to combine LRD with heavy-tailed distrib-
ution of the arrival process [24].
It is worth recalling that for α–stable processes (and in general for heavy
tailed processes), the autocovariance function is not defined and thus we have
to modify the usual techniques (such as Variance Time plot, R/S statistic and
so on) in order to estimate the correct value of H [25].

– α–stable Lévy motion, a stochastic process characterized by independent
and stationary increments with α–stable distribution, Note that α–stable Lévy
motion is self-similar with Hurst parameter H = 1/α, but is SRD, since its
increments are independent (the case α = 2 corresponds to the well-known
Brownian motion)

– Linear Fractional Stable Motion (LFSM), the most common extension
of fBm to the α-stable case (for α = 2, the LFSM process is actually fBm).
In this way, we add to the self-similarity and stationary increments property
of Fractional Brownian Traffic, the ability to cope with the non Gaussian
distribution of actual traffic data (see [24,26]).

– multifractal processes: locally they are similar to a fractal process, but,
instead of a single value H of the Hurst parameter as for traditional monofrac-
tal processes. The investigations into the multifractal nature of network traffic
often use wavelet-based [16] analysis and are related to special classes of mul-
tiplicatively generated conservative cascades [27,28].

5 Markov LRD Models

5.1 MMPP Model

Markov chains and Markov-modulated processes (MMP) are well-known mod-
eling techniques which are successful in wide variety of fields. These models
are often motivated by the idea of capturing the long-range dependence which
is seen in real internet traffic and replicating the the Hurst parameter which
characterizes it [7].

Two-state Markov Modulated Poisson Process (MMPP) is also known as
the Switched Poisson Process (SPP). The superposition of MMPP’s is also an
MMPP which is a special case of Markovian Arrival Process (MAP). Following
[29] we use a superposition od d two-state MMPS [15].

A MAP is defined by two square matrices D0 and D1 such that Q = D0+D1

is an irreducible infinitesimal generator for the continuous-time Markov chain
(CTMC) underlying the process, and D0(i, j) (respectively D1(i, j)) is the rate
of hidden (respectively observable) transitions from state i to state j [30]. Two-
state MAP is a Markovian arrival process with square matrices as follows:

D0 =
[−σ1 λ1,2

λ2,1 −σ2

]
, D1 =

[
μ1,1 μ1,2

μ2,1 μ2,2

]

where λi,j ≥ 0, μi,j ≥ 0, for all i, j. The diagonal elements of matrix D0 are
σ1 = λ1,2 + μ1,1 + μ1,2 > 0 and σ2 = λ2,1 + μ2,2 + μ2,1 > 0 such that underlying
continuous-time Markov chain Matrix Q has no absorbing states.
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Following the model proposed in [29], a LRD process (used in our study)
can be modeled as the superposition of d two-state MMPPs. The i-th MMPP
(1 ≤ i ≤ d) can be parameterized by two square matrices:

Di
0 =

[−(c1i + λ1i) c1i

c2i −(c2i + λ2i)

]
, Di

1 =
[

λ1i 0
0 λ2i

]
.

The element c1i is the transition rate from state 1 to 2 of the i-th MMPP and
c2i is the rate out of state 2 to 1. λ1i and λ2i are the traffic rate when the i-th
MMPP is in state 1 and 2 respectively. The sum of Di

0 and Di
1 is an irreducible

infinitesimal generator Qi with the stationary probability vector:

−→π i =
(

c2i

c1i + c2i
,

c1i

c1i + c2i

)

The superposition of these two-state MMPPs is a new MMPP with 2d states
and its parameter matrices, D0 and D1, can be computed using the Kronecker
sum of those of the d two-state MMPPs [31]:

(D0,D1) =
(⊕d

i=1D0
i,⊕d

i=1D1
i
)

The article [29] proposed a fitting method for a superposition of two-state
MAPs (described in Sect. 5.1) based on Hurst parameter as well as the moments.

For real traffic traces the covariance structure of the counting process is well
described by the asymptotic covariance [29]:

cov(k) = ψcovk−β

where ψcov jest an absolute measure of the variance, β = 2 − 2H and k is the
lag. The parameters ψcov and β should be estimated from the real data traces.
The objective of the fitting is to achieve:

γ(k) =
d∑

i=1

γi(k) ≈ ψcovk−β

where 1 ≤ k ≤ 10n and n denotes the number of time scales the model demon-
strate self-similar behavior.

Real traces used in our study comprises of Ethernet traffic data of Bellcore
Laboratory and data captured on the gateway of IITiS.

Bellcore Laboratory data was already interpreted in multiple studies [9,32].
A dedicated hardware has been built for measuring each packet arrival and
the measurements were performed without losses and with high precision. The
large part of collected data is available by Internet. In this study we use the file:
OctExt.TL. It contains the first million of external arrivals gathered during 35 h.
Other data set used in our study has been collected on the Internet gateway of our
Institute [33]. The traffic approximately stands for the few dozen of researchers.

The Hurst parameter was estimated by the Aggregated Variance method.
Figure 1 presents the normalized variance of the aggregated series as a function
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of time scale in log-log coordinates. The slope of IITiS curve (estimated by the
least squares method) is equal to −0.42, which gives the Hurst parameter equal
to 0.79. The slope of Bellcore curve is equal to −0.3, which gives the Hurst
parameter equal to 0.85. For comparison, the same plot is also drawn for the
Poisson process. This line has the slope −1, which gives the Hurst parameter
equal to 0.5 (non-self-similar process). Figure 2 shows the autocorrelations of the
five IPP’s.

Fig. 1. Variance-time plot in log-log scale (IITiS data, May 2012)

Table 4 presents the parameters obtained from the fitting approach. The fit-
ting procedure was also applied to the traces of IP traffic measured at Bellcore
and IITiS. The parameters of the superposition of two-state MMPP’s were fitted
to those obtained from real data traffic. The superposition of five MMPP’s is suf-
ficient to model asymptotic second-order self-similarity of the counting process
over five time-scales. Numerous numerical examples we performed prove the effi-
ciency of this approach.

5.2 Hidden Markov Model

Hidden Markov Model(HMM) may be seen as a probabilistic function of a (hid-
den) Markov chain [34]. This Markov chain is composed of two variables:

– the hidden-state variable, whose temporal evolution follows a Markov-chain
behavior (xn ∈ {s1, . . . , sN} represent the (hidden) state at discrete time n
with N being the number of states)

– the observe variable which stochastically depends on the hidden state (yn ∈
{o1, . . . , oM} and represents the observable at discrete time n with M being
the number of observables)
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Fig. 2. Autocorrelation of the number of arrivals in a time unit (five IPP’s)

Table 4. Obtained parameters of source fitted to second-order self-similarity with
input parameters: H = 0.6 and ρ = 0.6.

λIPP
i c1i c2i

IPP1 27.646 7.241×10−1 7.590×10−2

IPP2 6.944 2.290×10−2 2.400×10−3

IPP3 1.746 7.241×10−4 7.590×10−5

IPP4 0.434 2.290×10−5 2.400×10−6

IPP5 0.119 7.241×10−7 7.590×10−8

Poisson λp = 0

An HMM is characterized by the set of parameters:

λ = {u,A,B}
where:

– u is the initial state distribution, where ui = Pr(x1 = si)
– A is the N × N state transition matrix, where Ai,j = Pr(xn = sj |xn−1 = si)
– B is the N × M observable generation matrix, where Bi,j = Pr(yn = oj |xn

= si)

Given a sequence of observable variables y = (y1, y2, . . . , yL) referred to as the
training sequence, we want to find the set of parameters such that the likelihood
of the model L(y;λ) = Pr(y|λ) is maximum. We solved it via the Baum-Welch
algorithm, a special case of the Expectation-Maximization algorithm which iter-
atively updates the parameters in order to find a local maximum point of the
parameter set.

We used the well-known Bellcore trace of Internet traffic: OctExt.TL. Each
line of this file contains a floating-point time stamp (representing the time in
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seconds since the start of a trace) and an integer length (representing the Eth-
ernet data length in bytes). We translated the sequence of time stamps into the
sequence of inter-arrival times. Then we apply a scheme using Vector Quan-
tization (VQ) to translate the obtained sequence of inter-arrival times into a
sequence of symbols, and training a HMM for this sequence. The quantization
algorithm used is Linde-Buzo-Gray (LBG) algorithm of Vector Quantization
is a clustering technique commonly used in compression, image recognition and
stream encoding. It is the general approach to map a space of vector valued data
to a finite set of distinct symbols, in a way to minimize distortion associated with
this mapping.

We consider an HMM in which the state and the observable variables are
discrete. A little portion of the sequences was used as the training sequence
to learn model parameters. Performance of trained model are tested on the
remaining portions of the sequences.

Then we can use the HMM trained with the Bellcore data as the Internet
traffic source model. Figure 3 displays exemplary series of inter-arrival times
which are obtained from the Bellcore trace and from our HMM traffic source,
both have the same Hurst parameter.
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Fig. 3. The sequence of inter-arrival times for Bellcore trace and HMM traffic source
trace

6 Conclusions

The article represents a practical approach to the problem of modeling stochastic
features of Internet traffic. We summarize the main methods to determine the
Hurst parameter and to include it in traffic models. In particular we show that we
are able to construct efficiently Markov models of traffic with LRD, also with the
use of Hidden Markov Chains. These Markov models may be a part of a computer
network models aiming to evaluate its performance. Of course, the complexity
of traffic models enlarges the size of the entire state space to be considered
and hence the number of equations to be solved numerically. Therefore we are
developing a software tool able to cope with models having hundreds of millions
states.
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Abstract. European exotic put option with payment limitation for
issuer and guaranteed income for holder of the security is researched
when base risk active is share index. The equitable option price, the
securities portfolio structure and a size of the capital answered the hedg-
ing strategy are founded for the option under consideration on diffusion
(B, S)-financial market. Comparative price analysis for two option classes
is carried out and specific properties of decision and decision under lim-
iting are explored.
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1 Introduction

Complexity of a market economy and the current state of requirements to it
encourage more serious analysis techniques (based on real processes modelling)
of it’s theoretical and practical problems. One of the grave units of mathematical
simulation in economy is queueing theory, presenting theoretical foundations of
the effective designing and exploitation of the queuing systems [1].

The set of the investigation subjects of the queueing theory is broad
enough [2]. For example, primary securities market and secondary securities
market are of interest to the theory. In [3] authors point at applicability of
the queueing theory to investigation of the securities price dynamics with agent-
based models which estimate characteristics of investor behavior and the complex
interactions between market participants and they are typically queueing-type
models, that is, models of order flows.

So, to reach exchange more effectively it is needed the following: first, constant
monitoring and forecasting the market of financial assets; second, comprehensive
planning of the exchange work and operative management by the transactions with
financial instruments; third, timely and qualitative client servicing. Since trades
are executed in electronic form with special-purpose programs the queueing the-
ory results (assumed as a basis of the programs) and results of the financial mar-
kets investigation can considerably increase the volume of deals and quality of
deals support.
c© Springer International Publishing Switzerland 2015
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So, the present paper produces results that can be used as preparatory stage
of financial market investigations by queueing theory methods. As of today the
financial instruments of trading and risks hedging [4] on the derivatives market
are presented by futures, forwards and options, particularly the exotic options
[5–9]. The lasts are of interest for investor due to variety of the option’s pay-
ment liabilities [10] and are the stochastic financial mathematics object [11]. An
European put option is a derivative (secondary) security, it is the contract giv-
ing option’s buyer (the holder) the right to sell stipulated underlying asset by
a certain date for a certain price, and option’s seller must satisfy an agreement
when exercising for an option premium [4].

The research is devoted to European exotic put option with payment limita-
tion for issuer and guaranteed income for holder of the security when base risk
active is share index. The payoff function determined the payment size when the
option under consideration exercising is

fT (iT ) = min
{

(K1 − iT )+ ,K2

}
, (1)

where iT is risk asset’s spot price at expiration date T; K1 is exercise price or
strike price; K2 is contracted constant restricted payment of the option writer,
on the one hand, and guaranteed income for option buyer, on the other hand;
a+ = max (a; 0). Stock market index in (1) is a measurement of the value of a
section of the stock market. It is a tool used by investors and financial managers
to describe the market, and to compare the return on specific investments [12,13].
It is computed from the prices of selected stocks (typically a weighted average)
and it can be determined at the current time t as

it =
1
a

n∑
k=1

VkSk
t , (2)

where Sk
t and Vk are the current price and quantity of share with a number k

entered into a so called index basket respectively; a =
n∑

k=1

Vk.

In accordance to (1) the European standard put option payoff liability
assumed as fT (iT ) = (K1 − iT )+ [10] is base for the exotic option under study.
If at the moment T the market state such as K1 > iT then the option holder
gets the size K1 − iT if K1 − iT > K2 or size K2 if K1 − iT < K2; in other cases
(if K1 < iT ) the option buyer earns nothing.

We denote the mathematical expectation by E {·}, the normal (Gaussian)

density with the parameters a and b by N {a; b}, Φ (x) =
x∫

−∞
ϕ (y) dy, ϕ (y) =

1√
2π

exp
{

−y2

2

}
are Laplace distribution function and probability density func-

tion respectively.
The general information from the financial obligations theory is presented

in the Sect. 2. In the Sect. 3 statements needed for the further investigation are
cited. The decision of the proplem under study is given in the Sect. 4. Analysis of
the option price sensivity to the model and derivative parameters is performed
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in the Sect. 5. Economic interpretation based on the numerical results (Sect. 6)
prove the obtained theoretical results.

2 Statement of the Problem

Let us consider complete, without arbitrage and risk-neutral financial market of
two assets, notably: risk (share index) and risk free (bank deposit) active. The
stock market index value is termed index price.

According to (2) the index price is detrmined by stocks prices from index
basket. By-turn the every stock price evolution is given on stochastic basis(
Ω,F,F = (Ft)t>0 ,P

)
[8,10]. The current prices of the securities St and Bt,

t ∈ [0, T ], are specified by (3) and (4) respectively

dSk
t = Sk

t (μkdt + σkdWt), Sk
t = Sk

0 exp
{(

μk − σ2
k

2

)
t + σkWt

}
, (3)

dBt = rBtdt, Bt = B0 exp {rt}, (4)

where W = (Wt)t≥0 is a standard Wiener process, Sk
0 > 0 is the stock initial cost

numbered k, μk ∈ R = (−∞,+∞) is the percentage drift of the stock initial
cost numbered k, σk > 0 is the percentage volatility of the stock initial cost
numbered k in a geometric Brownian motion, B0 > 0 is the risk free asset initial
price, r > 0 is interest rate, k = 1, 2, ..., n .

During time interval t ∈ [0, T ] the investor forms self-financing portfolio
πt = (βt, γt), where Ft−measurable processes βt and γt are parts of the risk free
and risk assets at investment portfolio respectively, and this portfolio secures
investor capital Xt = βtBt + γtit.

The problem involves the fact that to form the portfolio (hedging strategy)
πt = (βt, γt), the evolution of the capital Xt has option price PT = X0 in
accordance to the payoff function (1), as well as, the hedging strategy and cor-
responding capital, ensuring the fulfillment of payment liability XT = fT (iT ).

3 Preliminary Results

All results below are obtained on the assumption of the sole risk-neutral measure
P∗ existence. Relative to this measure the process of the risk asset capitalized
price Ŝk

t = Sk
t /Bt that forms basic asset (2) is martingale, and that condition

guarantees the assigned problem solvability [6–8,10,11]. Theorems are proved
with a glance of the base financial relations (5)-(7) [6–8,10,11]

PT = e−rT E∗ {fT (iT )}, (5)

Xt = E∗
{

e−r(T−t)fT (iT ) |it
}

, (6)

βt =
∂Xt (s)

∂s

∣∣∣∣
s=Bt

, γt =
Xt − βtBt

it
. (7)

where E∗ is a risk-neutral measure averaging.
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Proposition 1. Let us that risk-neutral (martingale) measure P∗ is associated
with source measure P by transformation which looks like

dP∗
t = ZtdPt, (8)

where

Zt = exp

{
−μ − r

σ
Wt − 1

2

(
μ − r

σ

)2

t

}
(9)

is a Girsanovs exponent.
Then stochastic properties of the process S (μ, r) defined by equation

dSk
t (μk, r) = Sk

t (μk, r) (rdt + σkdW ∗
t ) , (10)

with regard to measure P∗ are coinciding with properties of the process S (r)
defined by equation

dSk
t (r) = Sk

t (r) (rdt + σkdWt) , (11)

relative to measure P where

W ∗
t = Wt +

μ − r

σ
t (12)

is Wiener process in reference to measure P∗.

4 Main Results

Theorem 1. For the European exotic put option with payoff function (1) the
current value of the minimal investment portfolio Xt is described by Eq. (13)

Xt = K1e
−r(T−t) [Φ (y1 (T − t)) − Φ (y0 (T − t))] + K2e

−r(T−t)Φ (y0 (T − t))

−
n∑

k=1

Bk
t

[
Φ
(
y1 (T − t) − σk

√
T − t

)
− Φ

(
y0 (T − t) − σk

√
T − t

)]
, (13)

where

y0 (T − t) = min

⎡
⎣ ln

(
K1−K2

Bk
t

)
−
(
r − σ2

k

2

)
t

σk

√
T − t

⎤
⎦, k = 1, 2, ..., n, (14)

y1 (T − t) = min

⎡
⎣ ln

(
K1
Bk

t

)
−
(
r − σ2

k

2

)
t

σk

√
T − t

⎤
⎦, k = 1, 2, ..., n, (15)

Bk
t =

VkSk
t

a
, a =

n∑
k=1

Vk. (16)
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Proof. According to (1), (2), (6) and using change of variables y = x/
√

T − t
and (16) we obtain

Xt = e−r(T−t)E∗
{

min
{

(K1 − iT )+ ,K2

}
|it
}

=
e−r(T−t)

√
2π (T − t)

+∞∫

−∞
min

{(
K1 − 1

a

n∑
k=1

VkSk
t exp

{(
r − σ2

k

2

)
(T − t)

+σk (WT − Wt)})+ ,K2

}
exp
{

− x2

2 (T − t)

}
dx =

e−r(T−t)

√
2π

×
+∞∫

−∞
min

⎧⎨
⎩

(
K1 − 1

a

n∑
k=1

VkSk
t exp

{(
r − σ2

k

2

)
(T − t) + yσk

√
T − t

})+

,K2

⎫⎬
⎭

× exp
{

−y2

2

}
dy =

e−r(T−t)

√
2π

+∞∫

−∞
min

{(
K1 −

n∑
k=1

Bk
t exp

{(
r − σ2

k

2

)
(T − t)

+yσk

√
T − t

})+
,K2

}
exp
{

−y2

2

}
dy. (17)

Using (17) write

min

⎧⎨
⎩

(
K1 −

n∑
k=1

Bk
t exp

{(
r − σ2

k

2

)
(T − t) + yσk

√
T − t

})+

,K2

⎫⎬
⎭

=

⎧⎨
⎩

K2, if sum < K1 − K2,
K1 − sum, if K1 − K2 < sum < K1,
0, if sum > K1

(18)

where sum =
n∑

k=1

Bk
t exp

{(
r − σ2

k

2

)
(T − t) + yσk

√
T − t

}
.

Under (17), (18) it is obviously that (14), (15) are roots of inequalities below

n∑
k=1

Bk
t exp

{(
r − σ2

k

2

)
(T − t) + yσk

√
T − t

}
< K1,

n∑
k=1

Bk
t exp

{(
r − σ2

k

2

)
(T − t) + yσk

√
T − t

}
< K1 − K2,

respectively.
So, from (17), (18) we get

Xt =
e−r(T−t)

√
2π

y0(T−t)∫

−∞
K2 exp

{
−y2

2

}
dy +

e−r(T−t)

√
2π

y1(T−t)∫

y0(T−t)

K1 exp
{

−y2

2

}
dy
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−e−r(T−t)

√
2π

y1(T−t)∫

y0(T−t)

n∑
k=1

Bk
t exp

{(
r − σ2

k

2

)
(T − t) + yσk

√
T − t

}
e− y2

2 dy

= X1
t + X2

t − X3
t . (19)

Summands X1
t , X2

t and X3
t from (19) are defined by the formulas

X1
t = K2e

−r(T−t)Φ (y0 (T − t)), (20)

X2
t = K1e

−r(T−t) [Φ (y1 (T − t)) − Φ (y0 (T − t))], (21)

X3
t =

e−r(T−t)

√
2π

y1(T−t)∫

y0(T−t)

n∑
k=1

Bk
t exp

{(
r − σ2

k

2

)
(T − t) + yσk

√
T − t

}
e− y2

2 dy

=
e−r(T−t)er(T−t)

√
2π

y1(T−t)∫

y0(T−t)

n∑
k=1

Bk
t exp

{
−1

2

(
y − σk

√
T − t

)2}
dy

=
n∑

k=1

Bk
t

1√
2π

y1(T−t)∫

y0(T−t)

exp
{

−1
2

(
y − σk

√
T − t

)2}
dy

=
n∑

k=1

Bk
t

[
Φ
(
y1 (T − t) − σk

√
T − t

)
− Φ

(
y1 (T − t) − σk

√
T − t

)]
. (22)

Then, (13) holds if we substitute (20), (21), (22) into (19).

Theorem 2. The value of the European exotic put option with payment limita-
tion for issuer and guaranteed income for holder of the security on share index
is defined as (23)

PT = K1e
−r(T ) [Φ (y1 (T )) − Φ (y0 (T ))] + K2e

−r(T )Φ (y0 (T ))

−
n∑

k=1

Bk
0

[
Φ
(
y1 (T ) − σk

√
T
)

− Φ
(
y0 (T ) − σk

√
T
)]

, (23)

where y0 (T ), y1 (T ), Bk
0 follow from (14), (15), (16) when t = 0, respectively.

Proof. In accordance with (5) formula (23) arises from PT = X0 [10] and (13)
with t = 0.

Theorem 3. For the European exotic put option with payoff function (1) the
current value of the optimal hedging portfolio πt = (βt, γt) defined by

βt = K1e
−rT [Φ (y1 (T − t)) − Φ (y0 (T − t))] + K2e

−rT Φ (y1 (T − t))

+e−rT
n∑

k=1

Bk
t

[
ϕ
(
y1 (T − t) − σk

√
T − t

)

σm

√
T − t

− ϕ
(
y0 (T − t) − σk

√
T − t

)

σl

√
T − t

]
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− K1e
−rT

[
ϕ (y1 (T − t))
σm

√
T − t

− ϕ (y0 (T − t))
σl

√
T − t

]
− K2e

−rT

σl

√
T − t

ϕ (y1 (T − t)) , (24)

γt =
1
it

{
K1e

−r(T−t) ϕ (y1 (T − t))
σm

√
T − t

− (K1 − K2) e−r(T−t)ϕ (y0 (T − t))
σl

√
T − t

+
n∑

k=1

Bk
t

[
ϕ
(
y0 (T − t) − σk

√
T − t

)

σl

√
T − t

− ϕ
(
y1 (T − t) − σk

√
T − t

)

σm

√
T − t

−Φ
(
y1 (T − t) − σk

√
T − t

)
+ Φ

(
y0 (T − t) − σk

√
T − t

)]}
(25)

where σl and σm, l,m = 1, 2, ..., n are volatilities in which expressions

1
σk

√
T − t

[
ln
(

K1 − K2

Bk
t

)
−
(

r − σ2
k

2

)
t

]
, k = 1, 2, ..., n,

1
σk

√
T − t

[
ln
(

K1

Bk
t

)
−
(

r − σ2
k

2

)
t

]
, k = 1, 2, ..., n,

are minimal for every points of time t ∈ [0, T ].

Proof. In consideration of form of functions (14), (15) and using expression of
Bt from (4) we have

∂y0 (T − t)
∂ert

=
∂

∂ert

{
min

[
1

σk

√
T − t

ln
(

K1 − K2

Bk
t

)
+

σk

√
T − t

2
t

− 1
σk

√
T − t

ln
(
ert
)]}

= − 1
σl

√
T − t

exp{−rt}; k, l = 1, 2, ..., n,

∂y1 (T − t)
∂ert

=
∂

∂ert

{
min

[
1

σk

√
T − t

ln
(

K1

Bk
t

)
+

σk

2
√

T − t
t

− 1
σk

√
T − t

ln
(
ert
)]}

= − 1
σm

√
T − t

exp{−rt}; k,m = 1, 2, ..., n,

and with (7), (13) we find (24), (25).
Expression of a part of the risk asset in optimal hedge follows from (7), (24).

5 Decision Properties

Theorem 4. Sensivity coefficients that determine the dependences of the Euro-
pean exotic put option value with payoff function (1) on the strike price PK1

T =
∂PT /∂K1; on the contracted constant restricted payment of the option writer,
on the one hand, and guaranteed income for option PK1

T = ∂PT /∂K1; on the
expiration time T are defined like this

PK1
T = e−rT [Φ (y1 (T )) − Φ (y0 (T ))] +

K2e
−rT

(K1 − K2)
ϕ (y0 (T ))
σl

√
T − t
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+K1e
−rT

[
1

K1

ϕ (y1 (T ))
σm

√
T

− 1
(K1 − K2)

ϕ (y0 (T ))
σl

√
T

]

−
n∑

k=1

Bk
0

⎡
⎣ 1

K1

ϕ
(
y1 (T ) − σk

√
T
)

σm

√
T

− 1
(K1 − K2)

ϕ
(
y0 (T ) − σk

√
T
)

σl

√
T

⎤
⎦ , (26)

PK2
T =

[ϕ (y0 (T )) + Φ (y0 (T ))]
erT σl

√
T

−
n∑

k=1

Bk
0

(K1 − K2)

ϕ
(
y0 (T ) − σk

√
T
)

σl

√
T

, (27)

PT
T = (K1 − K2) e−rT

[
rΦ (y0 (T )) +

y0 (T ) ϕ (y0 (T ))
2T

]

−K1e
−rT

[
rΦ (y1 (T )) +

y1 (T )ϕ (y1 (T ))
2T

]
+

1
2T

n∑
k=1

Bk
0

[(
y1 (T ) − σk

√
T
)

×ϕ
(
y1 (T ) − σk

√
T
)

−
(
y0 (T ) − σk

√
T
)

ϕ
(
y0 (T ) − σk

√
T
)]

, (28)

k, l,m = 1, 2, ..., n, t = 0 .

Proof. The format of (26), (27), (28) follows from the definition of PK1
T , PK2

T ,
PT

T with (23), (14), (15) with t = 0 and expressions below

∂y0 (T )
∂K1

=
∂
(
y0 (T ) − σk

√
T
)

∂K1
=

1
(K1 − K2)

1
σl

√
T

,

∂y1 (T )
∂K1

=
∂
(
y1 (T ) − σk

√
T
)

∂K1
=

1
K1

1
σm

√
T

,

∂y0 (T )
∂K2

=
∂
(
y0 (T ) − σk

√
T
)

∂K2
= − 1

(K1 − K2)
1

σl

√
T

,

∂y1 (T )
∂K2

=
∂
(
y1 (T ) − σk

√
T
)

∂K2
= 0,

∂yj (T )
∂T

= −yj (T )
2T

,
∂
(
yj (T ) − σk

√
T
)

∂T
= −

(
yj (T ) − σk

√
T
)

2T
, j = 1, 2.

Since it was not answered to get option price’s PT (23) explicit dependence
on share index initial cost i0, so sensivity coefficient of the price PT to numbered
p, p = 1, 2, ..., n, share initial cost Sp

0 as part of the share index (2) was obtained
and presented in Theorem 5.
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Theorem 5. Sensivity coefficient P
Sp
0

T = ∂PT /∂Sp
0 determined the dependence

of the European exotic put option value with payoff function (1) on the numbered
p, p = 1, 2, ..., n share initial cost Sp

0 is defined (29) with (2)

P
Sp
0

T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (Vp/a)
[
Φ
(
y1 (T ) − σp

√
T
)

− Φ
(
y0 (T ) − σp

√
T
)]

, if p �= l, m,

−
(
Sp
0σp

√
T
)−1 n∑

k=1
Bk

0ϕ
(
y0 (T ) − σk

√
T
)

− (Vp/a)

×
[
Φ
(
y1 (T ) − σp

√
T
)

− Φ
(
y0 (T ) − σp

√
T
)]

, if p = l, p �= m,
(
Sp
0σp

√
T
)−1 n∑

k=1
Bk

0ϕ
(
y0 (T ) − σk

√
T
)

+ (Vp/a)

×
[
Φ
(
y1 (T ) − σp

√
T
)

− Φ
(
y0 (T ) − σp

√
T
)]

, if p �= l, p = m.

(29)

Proof. The format of (29) follows from the definition of P
Sk
0

T with (23), (14),
(15) with t = 0 and expressions below

∂yj (T )
∂Sp

0

=
∂
(
yj (T ) − σk

√
T
)

∂Sp
0

= 0, j = 1, 2, if p �= l,m,

∂y1 (T )
∂Sp

0

=
∂
(
y1 (T ) − σk

√
T
)

∂Sp
0

= 0, if p = l, p �= m,

∂y0 (T )
∂Sp

0

=
∂
(
y0 (T ) − σk

√
T
)

∂Sp
0

= −
(
Sp
0σp

√
T
)−1

, if p = l, p �= m,

∂y0 (T )
∂Sp

0

=
∂
(
y0 (T ) − σk

√
T
)

∂Sp
0

= 0, if p �= l, p = m,

∂y1 (T )
∂Sp

0

=
∂
(
y1 (T ) − σk

√
T
)

∂Sp
0

= −
(
Sp
0σp

√
T
)−1

, if p �= l, p = m.

6 Conclusions

Numerical calculations of sensitivity coefficients PK1
T , PK2

T , PT
T and P

Sk
0

T showed
that European exotic put option price with payoff function (1) is increasing
function of strike price PK1

T > 0, decreasing function of limiting the payment
option value PK2

T < 0 and expiration time PT
T < 0. Economic interpretation of

these properties is the following: strike price K1 increment leads to probability
that ranks over iT increase. Thus, payment size under exercising increases and
derivative cost increases too. The more size of the K2 guaranteed income for
option buyer the more payment size for option emitter respectively. Option buyer
risk decreases, and for less risk should pay more. When expiration time T increase
it is difficult to pretend share index movement. So, option buyer risk increases,
and for more risk should pay less.
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It is not succeed to establish analytically derivative value dependence on share
index initial cost. But derivative value dependence on numbered k stock initial
cost Sk

0 from (29) shows that it can be P
Sk
0

T > 0 (and P i0
T > 0) or P

Sk
0

T < 0 (and
P i0

T < 0). These properties can be explained as follows: on the one hand, at the
average spot price Sk

T increment is expected when value Sk
0 is more. Probability

that iT =
(

n∑
k=1

VkSk
T

)
/

n∑
k=1

Vk ranks over exercise price K1 increases. In this

case, option buyer risk increases, and for this risk should pay less. On the other
hand, the case when P

Sk
0

T > 0 meets the situation p �= l, p = m that is impossible.
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Abstract. The model of retail outlet in form of queueing system of
M/M/1/∞ type with request rejection is proposed. The output flow of
the system and the rejected request flow are researched. Average number
of events occurred in these flows is determined. In conditions of increasing
observation time the asymptotic distributions of probabilities of number
of events that occurred in studied flows are found by means of asymptotic
analysis.

Keywords: Queueing system · Method of asymptotic analysis · Method
of torques · Fourier transformation

1 Introduction

Due to development of economic systems, mathematical models of which could
be single-line queueing systems with request rejection, the latter are pretty com-
mon in practice. The “request rejection” means customer impatience and his
unwillingness to stay in queue which may lead to him refusing to stay in queue.

The subject of research is the output flow of served demands and the flow
of demands which refused to stay in queue, because information about output
flow properties is very useful. That way, knowing properties of output flow it is
possible to draw conclusions about the quality of performance of the system and
to analyze its effectiveness.

Output flows research is not getting enough attention due to lack of general
approach to their research. Thus the task of modification of existing methods of
output flow research and development of new ones is pretty relevant [1].

2 Mathematical Model

Mathematical models of queuing systems (QS) are widely used to investigate
various systems with request inflow. The models can be used to describe the
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 314–329, 2015.
DOI: 10.1007/978-3-319-25861-4 27
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operation of a retail facility. In this work we consider one of these models, taking
into account “impatient” customers.

Our mathematical model of this situation is a queuing system, which is fed
a simple request flow with the parameter λ. In this paper, we consider the case
when the service time has an exponential distribution with the parameter μ.

Our model has the following service discipline: if an incoming request encoun-
ters i requests already in the system, then the request is rejected (and leaves the
system) with the probability ri, 0 ≤ ri ≤ 1; on the other hand, the request is
accepted for service with the probability 1 − ri.

Our notation is:

– m(t) – the number of requests that were refused to be serviced during the
time t (the output flow);

– n(t) – the number of requests that have been serviced during the time t;
– i(t) – the number of requests in the system at the time t.

In our QS, as the parameters λ, μ, ri are specified, the process i(t) is a contin-
uous time Markov chain (birth and death process)[2]; the process is controlled by
means of the flows m(t) and n(t). Thus both of these flows are MAP-processes [3].

3 Investigation of the Output Request Flow

Since the two dimensional random process is a Markov chain, the probability
distribution of the process

P (i, n, t) = P{i(T ) = i, n(t) = n}.

We can write down the following system of Kolmogorovs differential equa-
tions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂P (i, n, t)
∂t

= −[λ(1 − ri) + μ]P (i, n, t) + λ(1 − ri−1)P (i − 1, n, t)

+μP (i + 1, n − 1, t),
∂P (0, n, t)

∂t
= −λ(1 − r0)P (0, n, t) + μP (1, n − 1, t),

(1)

To solve this system we introduce the following function [4]:

H(i, u, t) =
∞∑

n=0

ejunP (i, n, t),

where j =
√−1. Then we obtain the following system of equations for these

functions
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂H(i, u, t)
∂t

= −[λ(1 − ri) + μ]H(i, u, t) + λ(1 − ri−1)H(i − 1, u, t)

+μejuH(i + 1, u, t),
∂H(0, u, t)

∂t
= −λ(1 − r0)H(0, u, t) + μejuH(1, u, t),

(2)
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Lets introduce the following row-vector

H(u, t) = {H(0, u, t)H(1, u, t), . . . }

and rewrite the system (2) as

∂H(u, t)
∂t

= H(u, t){Q + μejuB}, (3)

where Q is a three-diagonal matrix for the birth-and-death process i(t); the
matrix looks the following way

Q =

⎡
⎢⎢⎢⎢⎣

−λ(1 − r0) λ(1 − r0) 0 0 . . .
μ −[λ(1 − r1) + μ] λ(1 − r1) 0 . . .
0 μ −[λ(1 − r2) + μ] λ(1 − r2) . . .
0 0 μ −[λ(1 − r3) + μ] . . .

. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎦

(4)

In the matrix B the lower sub-diagonal elements equal 1, while the rest
equal zero. Finally, lets introduce the column-vector E that is the all-one column
E = (1, 1, 1, . . . )T . Then it is easy to see that QE = 0.

We solve the differential-matrix equation under the following initial condi-
tions:

1. n(0) = 0 with probability 1.
2. Assume that at t = 0, the birth-and-death process i(t) has a stationary

probability distribution P (i(t) = i) = R(i), that we will obtain later in this
work. If we set t = 0, then P (i, n, 0) = R(i)δn0 and thus H(i, u, 0) = R(i).
Lets introduce the row-vector

R = (R(0), R(1), R(2), . . . ),

then

H(u, 0) = R

Next, if we set u = 0, then

H(i, 0, t) =
∞∑

n=0

P (i, n, t) = P (i, t) = R(i)

because R(i) is stationary distributed. So the following relation is true:
H(0, t) = R.

Thus, the initial conditions for the system (3) are

H(u, 0) = H(0, t) = R.
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Fig. 1. The transition graph of the process i(t)

4 Final Probability Distribution of the Process i(t)

In a stationary state, the transition graph of the process i(t) looks like (1).
This graph begets the following finite difference system of equations for the

final probability distribution of R(i)
{

λ(1 − r0)R(0) = μR(1),
λ(1 − ri−1)R(i − 1) − [λ(1 − ri) + μ]R(i) + μR(i + 1) = 0.

(5)

Notice, that this system can be written in the matrix form RQ = 0. Lets
rewrite (5) as

λ(1 − ri−1)R(i − 1) − μR(i) = λ(1 − ri)R(i) − μR(i + 1),

then it follows that

λ(1 − ri−1)R(i − 1) − μR(i) = Const.

From the first equation of the system (5) it follows that Const = 0, so

λ(1 − ri−1)R(i − 1) = μR(i).

it comes out that

R(i) = ρ(1 − ri−1)R(i − 1) = · · · = R(0)ρi
i−1∏
k=0

(1 − rk), (6)

where ρ = λ/μ.
The constant R(0) can be obtained from the normalization condition∑∞

i=0 R(i) = 1, that can be written as RE = 1. Its explicit form is RE = 1

R(0) =
1

1 +
∞∑

i=0

ρi
i−1∏
k=0

(1 − rk)

. (7)

Specifically, from (7) it follows that a stationary probability distribution in
our QS exists if

∞∑
i=0

ρi
i−1∏
k=0

(1 − rk) < +∞
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Thus for the row-vector H(u, t) there exists the following Cauchy problem
{

∂H(u, t)
∂t

= H(u, t)
{
Q + μ

(
eju − 1

)
B

}
,

H(u, 0) = R.
(8)

The solution of the system H(u, t) specifies the characteristic function of
n(t). Indeed, if we expand

H(i, u, t) =
∞∑

n=0

ejunP (i, n, t),

and sum up over i, we get

M
{

ejun(t)
}

=
∞∑

n=0

ejun
∞∑

i=0

P (i, n, t) =
∞∑

i=0

H(i, u, t) = H(u, t)E, (9)

where E is the all-ones row-vector.

5 Mean Number of Serviced Requests

Utilizing the properties of the characteristic function, we get the following expres-
sion for M{n(t)}

M{n(t)} =
1
j

∂M
{
ejun(t)

}
∂u

∣∣∣∣∣
u=0

=
1
j

∂H(u, t)
∂u

∣∣∣∣
u=0

E.

Lets denote

n1(t) =
1
j

∂H(u, t)
∂u

∣∣∣∣
u=0

E,

so that

M{n(t)} = n1(t)E.

Then from (8) we get

dn1(t)
dt

= n1(t)Q + μRB,

hence H(0, t) = R. Multiplying both sides on , while keeping in mind that
QE = 0, we get

dM{n(t)}
dt

= μRBE,

alongside the initial condition M{n(0)} = 0. Thus

M{n(t)} = μRBE · t,
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From now on we denote the product μRBE as κ1.
Since

BE =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .

. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

1
1
1
1

. . .

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
1
1
1

. . .

⎤
⎥⎥⎥⎥⎦

then

RBE = [R(0), R(1), R(2), . . . ] ·

⎡
⎢⎢⎢⎢⎣

0
1
1
1

. . .

⎤
⎥⎥⎥⎥⎦

=
∞∑

i=1

R(i)

= 1 − R(0) =

∞∑
i=0

ρi
i−1∏
k=0

(1 − rk)

1 +
∞∑

i=0

ρi
i−1∏
k=0

(1 − rk)

so finally we obtain
M{n(t)} = κ1t = μ(1 − R(0))t. (10)

6 A Solution by Fourier Method

Let Y(u, α) be the Fourier transform of the vector-function H(u, t) over t

Y(u, α) =

∞∫

0

ejαtH(u, t)dt. (11)

Then, integrating this by parts, we get

∞∫

0

ejαt ∂H(u, t)
∂t

dt =

∞∫

0

ejαtdtH(u, t)dt = −R − jαY(u, α),

and from (8) we get

− R − jαY(u, α) = Y(u, α){Q + μ(eju − 1)B}. (12)

Its solution Y(u, α) has the following form

Y(u, α) = R
∞∑

n=0

ejun
[
(μB − Q − jαI)−1

μB
]n

(μB − Q − jαI)−1
.
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Here I the identity matrix. This expression, the definition of H(i, u, t), and
the expression (12) give us the following formula for the Fourier transform of
P (n, t):

P(n, t) =
1
2π

∞∫

−∞
ejαtR

[
(μB − Q − jαI)−1

μB
]n

(μB − Q − jαI)−1 Edα.

7 A Long Time Asymptotic Solution of the Problem (8)

In this part the limiting case → ∞ is investigated. We call the condition t = τT
the asymptotic condition of increasing time. The problem is analyzed by means
of A.A. Nazarov asymptotic method [4].

The first order asymptotics of the characteristic function

H(u, t)E = Mejun(t),

where n(t) is the number of events that took place in the output flow during the
time t, is a function h1(u, t) of the form

h1(u, t) = exp{juκ1t},

where κ1 has already been determined by the method of moment;

κ1 = μ · RBE = μ(1 − R(0)).

7.1 Second Order Asymptotic

To obtain the second order asymptotic h2(u, t) in Eq. (8) lets do the substitution

H(u, t) = H2(u, t)exp{juκ1t}. (13)

Then for H2(u, t) we get the equation

∂H2(u, t)
∂t

= H2(u, t)
{
Q + μ

(
eju − 1

)
B − juκ1I

}
, (14)

where I is the identity matrix.
It follows from (13) that the initial condition for the solution H2(u, t) is the

same as the initial condition for the function H(u, t) in the problem (8)

H2(u, t) = R.

Lets introduce ε such that ε2 = 1/T ; then we plug

tε2 = τ, u = εw,H2(u, t) = F2(w, τ, ε). (15)

into equation (14). The substitution begets the following differential equation

ε2
∂F2(w, τ, ε)

∂t
= F2(w, τ, ε)

{
Q + μ

(
ejεw − 1

)
B − jεwκ1I

}
, (16)
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We solve this equation in two steps.

Step 1. The solution F2(w, τ, ε) of Eq. (16) can be written in the following form

F2(w, τ, ε) = Φ2(w, τ) {R + jεwf} + O(ε2). (17)

At first lets find the vector f , while the scalar function Φ2(w, τ) will be
obtained on the next step. Equation (16) can be rewritten as

O(ε2) = jεw {fQ + R(μB − κ1I)} ,

where we took into account that RQ = 0.
It follows that the vector f is a solution of the inhomogeneous system of

equations
fQ + R(μB − κ1I) = 0. (18)

As the matrix Q is degenerate, we have to impose additional restrictions on
f for the vector to be determined uniquely. Let this restriction be

fE = 0. (19)

Step 2. Multiplying the matrix differential Eq. (16) on E, we get

ε2
∂F2(w, τ, ε)

∂t
E = F2(w, τ, ε)

{
QE + μ

(
ejεw − 1

)
BE − jεwκ1E

}

= F2(w, τ, ε)
{

jεw(μB − κ1I)E + μ
(jεw)2

2
BE

}
+ O(ε3).

Substituting the expansion (17) into this equation, it comes out that

ε2
∂Φ2(w, τ)

∂t
RE = Φ2(w, τ)

(jεw)2

2
{jεw(μRBE + 2μfBE} + O(ε3).

Let the ε → 0 to zero in the last equation. This expression gives the equation
to determine the scalar function Φ2(w, τ)

∂Φ2(w, τ)
∂t

= Φ2(w, τ)
(jw)2

2
κ2).

where
κ2 = μRBE + 2μfBE = κ1 + 2μfBE. (20)

Here the vector f is the solution of (18)-(19).
Obviously, Φ2(w, τ) has the following form

Φ2(w, τ) = exp
{

(jw)2

2
κ2)τ

}

Substituting this expression in (17) and multiplying by E, we obtain

F2(w, τ, ε)E = Φ2(w, τ) {RE + jεwfE} + O(ε2)

= Φ2(w, τ) + O(ε2) = exp
{

(jw)2

2
κ2)τ

}
+ O(ε2).
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We get

H2(u, t)E = exp
{

(ju)2

2
κ2)t

}
+ O

(
1
T

)
. (21)

Plugging this expression into (13), we get the second order asymptotic h2(u, t)
for the characteristic function of n(t)

h2(u, t) = exp
{

juκ1t +
(ju)2

2
κ2)t

}
. (22)

Here κ2 is determined from (20).
It follows that for large enough t we have Dt = κ2t. Obviously that if

fBE = −f(0) �= 0, then the flow n(t) is not Poisson since the necessary condition
M{n(t)} �= D{n(t)} is violated.

Thus, we find that the asymptotic probability distribution of the number of
applications, have completed service in the system during the time t in a growing
period of observation is normal with parameters κ1t and κ2t [5].

7.2 Determination of the Vector F

The explicit expression of (19) is

−λ(1 − r0)f(0) + μf(1) + μR(1) − κ1R(0) = 0,
λ(1 − r0)f(0) − [λ(1 − r1) + μ] f(1) + μf(2) + μR(2) − κ1R(1) = 0,

. . .
λ(1 − ri−1)f(i − 1) − [λ(1 − ri) + μ] f(i) + μf(i + 1) + μR(i + 1) − κ1R(i) = 0,

. . .
(23)

Summing up the first i equations of this system, we get

−λ(1 − r0)f(0) + μf(1) + μR(1) − κ1R(0) = 0,
λ(1 − r1)f(0) + μf(2) + μ [R(1) + R(2)] − κ1 [R(0) + R(1)] = 0,

. . .

λ(1 − ri−1)f(i − 1) + μf(i) +
i∑

ν=1

R(ν) − κ1

i−1∑
ν=0

R(ν) = 0,

. . .

(24)

So, there are the following recurrent relations for f(i), where ρ = λ/μ:

f(i) = ρ(1 − ri−1)f(i − 1) +
κ1

μ

i−1∑
ν=0

R(ν) −
i∑

ν=1

R(ν). (25)

Lets introduce the function b(i) such that

b(i) =
κ1

μ

i−1∑
ν=0

R(ν) −
i∑

ν=1

R(ν) = (1 − R(0))
i−1∑
ν=0

R(ν) −
i∑

ν=1

R(ν)

= R(0) − R(i) − R(0)
i−1∑
ν=0

R(ν) = R(0)
∞∑

ν=i

R(ν) − R(i).

(26)
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Hence, (25) becomes

f(i) = ρ(1 − ri−1)f(i − 1) + b(i), ρ = λ/μ, b(i) = R(0)
∞∑

ν=i

R(ν) − R(i).

It follows that

f(1) = ρ(1 − r0)f(0) + b(1),
f(2) = ρ(1 − r1)ρ(1 − r0)f(0) + ρ(1 − r1)b(1) + b(2),

f(3) = ρ(1 − r2)ρ(1 − r1)ρ(1 − r0)f(0)+
+ρ(1 − r2)ρ(1 − r1)b(1) + ρ(1 − r2)b(2) + b(3).

The general form of these expressions is

f(i) = f(0)ρi
i−1∏
k=0

(1 − rk) +
i−1∑
ν=1

b(ν)
i−1∏
k=ν

(1 − rk) + b(i). (27)

To get f(0), we use the condition fE = 0, that is
∑∞

i=0 f(i) = 0. Then

0 =
∞∑

i=0

f(i)

= f(0) +
∞∑

i=0

{
f(0)ρi

i−1∏
k=0

(1 − rk) +
i−1∑
ν=1

b(ν)
i−1∏
k=ν

(1 − rk) + b(i)

}

= f(0)

{
1 +

∞∑
i=0

ρi
i−1∏
k=0

(1 − rk)

}
+

∞∑
i=0

{
i−1∑
ν=1

b(ν)
i−1∏
k=ν

(1 − rk) + b(i)

}
.

(28)

Finally, we obtain

− f(0) =

∞∑
i=0

{
i−1∑
ν=1

b(ν)
i−1∏
k=ν

(1 − rk) + b(i)

}

1 +
∞∑

i=0

ρi
i−1∏
k=0

(1 − rk)

= fBE. (29)

This expression determines κ2 and, accordingly, D{n(t)}.

7.3 A Specific Case

Let

ri =
{

0, if i < N,
1, if i = N,

In this case

R(i) = R(0)ρi, R(0) =
1∑N

k=0 ρk
=

1 − ρ

1 − ρN+1
.
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Next

f(i) = f(0)ρi +
i−1∑
ν=1

b(ν) + b(i) = f(0)ρi +
i−1∑
ν=1

b(ν), i ≤ N,

0 =
N∑

i=0

f(i) = f(0)
N∑

i=0

ρi +
i−1∑
ν=1

(N + 1 − ν)b(ν).

It follows that

−f(0) =

i−1∑
ν=1

(N + 1 − ν)b(ν)

N∑
i=0

ρi

.

Lets compute b(i). So, finally,

− f(0) =

i−1∑
ν=1

(N + 1 − ν)b(ν)

N∑
i=0

ρi

, b(i) = R(0)(ρi − 1)
ρN+1

ρN+1
. (30)

If f(0) �= 0, then the output flow is not Poisson.

8 Specific Cases of the Flow m(t)

Lets investigate two simplest specific cases of the output flow m(t). Recall that
the flow deals with rejected requests.

1. Let ∀i ri = r. Then the flow m(t) is the simplest one with the parameter
λr (simplest sifted flow).

2. Let

ri =
{

0, if i < N,
1, if i = N,

this means that we deal with a M/M/1/N system. It follows that the flow
m(t) is a recurrent phase flow, since the lengths of its intervals match the
time it takes the process i(t) to return back to the state N before the first
request is lost.
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Indeed, lets take a look at the interval between the time t and the time t
when the request leaves the system.

We adopt the following notation for i ≤ N

gi(α, t) = M{ejα(tn−t) | i(t) = i}.

Then if i < N , we have

g0(α, t − Δt) = (1 − λΔt)ejαΔtg0(α, t) + λΔtg1(α, t) + o(Δt),
gi(α, t − Δt) = [1 − (λ + μ)Δt)] ejαΔtgi(α, t) + λΔtgi+1(α, t)

+μΔtgi−1(α, t) + o(Δt),
gN (α, t − Δt) = [1 − (λ + μ)Δt)] ejαΔtgN (α, t) + λΔt · 1

+μΔtgN−1(α, t) + o(Δt).

Set gi(α, t) ≡ gi(α), then

(λ + jα)g0(α) = λg1(α),
(λ + μ + jα)gi(α) = λgi+1(α, t) + μgi−1(α), 0 < i < N,

(λ + μ + jα)gN (α) = λ + μgN−1(α).

From this system we get the conditional characteristic function

gN (α, t) = M{ejα(tn−t) | i(t) = N}.

The function is of the length of the time interval between t (when our QS is
in the state N) and tn (when the request leaves the system). Since the exponen-
tial distribution has no long-term memory, the distribution of the length of the
remaining interval matches that of the length of the full interval.

9 Investigation of the Output Request Flow

The two dimensional random process {i(t),m(t)} is a Markov chain. For the
process probability distribution function

P (i,m, t) = P{i(t) = i,m(t) = m}

we can write the following expression
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂P (i,m, t)
∂t

= −[λ + μ]P (i,m, t) + λriP (i,m − 1, t)

+λ(1 − ri−1)P (i − 1,m, t) + μP (i + 1,m, t),
∂P (0,m, t)

∂t
= −λP (0,m, t) + λr0P (0,m − 1, t) + μP (1,m, t).

(31)

Denote the sum

H(i, u, t) =
∞∑

n=0

ejumP (i,m, t), (32)
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then we get the following system of equations
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂H(0, u, t)
∂t

= −λ(1 − r0)H(0, u, t) + λr0(eju − 1)H(0, u, t) + μH(1, u, t),
∂H(i, u, t)

∂t
= λ(1 − ri−1)H(i − 1, u, t) − [λ(1 − ri) + μ]H(i, u, t)

+μH(i + 1, u, t) + (eju − 1)λriH(i, u, t).

We can combine H(i, u, t) into the row-vector

H(u, t) = {H(0, u, t)H(1, u, t), . . . }
so that the system becomes

∂H(u, t)
∂t

= H(u, t){Q + λ(eju − 1)r}, (33)

where r is the diagonal matrix with elements ri, the matrix Q is the three-
diagonal infinitesimal matrix of the birth-and-death process i(t); the matrix is
shown in (4).

Just as we did for the serviced request flow, we take the following initial
condition for the differential-matrix equation (33)

H(u, 0) = R = H(0, t),

where R is the row-vector of the stationary probability distribution of the
Markov chain of the process i(t); recall that R was obtained already and has
the following properties: RQ = 0, RE = 1.

Thus, for the row-vector = H(u, t) we have the following Cauchy problem
{

∂H(u, t)
∂t

= H(u, t){Q + λ(eju − 1)r},

H(u, 0) = R.
(34)

The solution of this problem uniquely determines the characteristic function
of m(t) by means of the relation

M
{

eium(t)
}

= H(u, t)E. (35)

9.1 Method of Moments

Lets denote

m1(t) =
1
j

∂H(u, t)
∂u

∣∣∣∣
u=0

then from (34) we get

dm1(t)
dt

= m1(t)Q + λRr.
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Since

M{m(t)} = m1(t)E,

then
M{m(t)} = λRrE · t = κ1t (36)

and

κ1 = λRrE = λ

∞∑
i=0

riR(i).

This expression can be simplified. As we derived the stationary distribution
R(i), we obtained the following relation

κ1 = λ − μ(1 − R(0)), M{m(t)} = [λ − μ(1 − R(0))] · t. (37)

Notice that the following relation is true

M{n(t)} + M{m(t)} = λt

that is quite natural.

9.2 Solution of the Problem (34) by Means of Fourier Transform

Lets do the Fourier transform of H(u, t) over t

Y(u, α) =

∞∫

0

ejαtH(u, t)dt. (38)

Then, similar to the findings of paragraph Sect. 6 of this article, we get

P(m, t) =
1
2π

∞∫

−∞
ejαtR

[
(λr − Q − jαI)−1

λr
]m

(λr − Q − jαI)−1 Edα.

It is problematic to compute this formula numerically since we need to com-
pute the product of the inverse of the infinitely large matrices and to compute
the improper integrals. So we seek an approximate asymptotic solution of (34)
as t → ∞.

9.3 Asymptotic Solution of (34)

Let be large enough. We investigate the limit T → ∞. We call the condition
t = τT , where 0 ≤ τ < ∞ the asymptotic condition of increasing time. Recall
that m(t) is the number of events that appeared in the unserviced request flow
during the time t. Also recall that

H(u, t) · E = M
{

eium(t)
}
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is the characteristic function of m(t). Lets call h1(u, t) the first order asymptotic
of H(u, t)

h1(u, t) = exp{juκ1t},

where the constant κ1 was already determined and it value is

κ1 = λRrE = λ − μ(1 − R(0)).

9.4 Second Order Asymptotic

To obtain the second order asymptotic in the equation of the problem (34) lets
make the substitution

H(u, t) = H2(u, t)exp{juκ1t}. (39)

Then for the function H2(u, t) we get the equation

∂H2(u, t)
∂t

= H2(u, t)
{
Q + λ

(
eju − 1

)
r − juκ1I

}
,

In this equation we make the substitutions

tε2 = τ, u = εw,H2(u, t) = F2(w, τ, ε). (40)

where ε2 = 1/T , to get

ε2
∂F2(w, τ, ε)

∂t
= F2(w, τ, ε)

{
Q + λ

(
ejεw − 1

)
r − jεwκ1I

}
, (41)

This equation is similar to the solution of Eq. (16) is solved in two steps, then
you can write the asymptotic h2(u, t) of the second order for the characteristic
function of m(t)

h2(u, t) = exp
{

(ju)2

2
κ2)t

}
.

Here, the value κ2 is defined

κ2 = λRrE + 2λf2rE = κ1 + 2λf2rE,

where f2 is defined by
The general form of these expressions is

f2(i) = f2(0)ρi
i−1∏
k=0

(1 − rk) +
i−1∑
ν=1

b(ν)
i−1∏
k=ν

(1 − rk) + b(i).

−f(0) =

∞∑
i=0

{
i−1∑
ν=1

b(ν)
i−1∏
k=ν

(1 − rk) + b(i)

}

1 +
∞∑

i=0

ρi
i−1∏
k=0

(1 − rk)

,
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where

R(0)
∞∑

ν=i

R(ν) − R(i) = b(i).

If follows that as t → ∞, the variable m(t) is asymptotically normal with the
mean {m(t)} = κ1t and variance D{m(t)} = κ2t.

Obviously, if f2rE �= 0, then the flow m(t) is not Poisson, since the necessary
condition M{m(t)} = D{m(t)} is violated.

10 Conclusion

1. So, we presented a new model of a retail facility. The model is a type
M/M/1/∞ queuing system with request rejection.

2. The output flow of the system and the flow of flow of rejected requests are
researched. Exact formulas for average number of events that occurred in
both flows are determined. Prelimit distributions of probabilities of number
of events that occurred in these flows in form of integral transformation are
found.

3. The asymptotic distributions of probabilities of number of events that
occurred in flows n(t) and m(t) are found by means of asymptotic analy-
sis proposed by A.A. Nazarov.
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Abstract. In this paper we study a single-server Markovian retrial
queueing system with non-reliable server and threshold-based recovery
policy. The arrived customer finding a free server either gets service
immediately or joins a retrial queue. The customer at the head of the
retrial queue is allowed to retry for service. When the server is busy, it
is subject to breakdowns. In a failed state the server can be repaired
with respect to the threshold policy: the repair starts when the num-
ber of customers in the system reaches a fixed threshold level. Using a
matrix-analytic approach we perform a stationary analysis of the system.
The optimization problem with respect to the average cost criterion is
studied. We derive expressions for the Laplace transforms of the waiting
time. The problem of estimation and confidence interval construction for
the fully observable system is studied as well.

Keywords: Quasi-birth-and-death process · Retrial queues · Perfor-
mance analysis · Confidence intervals

1 Introduction

Different types of single server retrial queueing systems have found applications
in local area networks and communication protocols. In a retrial queue a cus-
tomer who finds the server busy is assigned to a queue of retrial customers. It
is assumed that the arrived customer finding a free server with probability p
gets service immediately or joins a retrial queue with probability 1 − p. Many
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papers study the case p = 1, where customers have a direct access to the server,
or p = 0, when a customer upon arrival goes always to the retrial queue. The
bibliography for these two particular cases as well as a description of a general
model for arbitrary value p can be found in [2].

In our model the customer at the head of the retrial queue is allowed to retry
for service, i.e. the system has a retrial queue with a constant retrial policy or
FCFS retrial queue. The constant retrial policy was introduced by [8] and it was
used in many applications to local area networks and communication protocols,
e.g. in [3,4,6,10]. The system with constant retrial policy is simpler to analyze
that one with the classical retrial policy assuming the state-dependent retrial
intensity, since in the latter case the QBD process with three diagonal block
infinitesimal matrix can be constructed. Moreover the constant retrial policy can
be used in a truncation model of classical policy exhibiting spatial homogeneity
from some orbit level upwards.

The systems with an unreliable server have been studied extensively. But
the systems which combines server breakdowns with a retrial effect are still not
exhaustively examined. We refer the interested readers to the papers of [1,9] and
bibliographies therein. The system under study is assumed to be controllable
in the sense that the repair process in a failed state starts according to the
threshold-based recovery policy. This policy prescribes to switch on/off the repair
facility if the number of customers in the system is higher or lower than a fixed
threshold level qr ≥ 1. The threshold-based recovery was first introduced by [5]
in case of the system with an ordinary queue. Then the obtained results were
generalized by [7] to case of the retrial queue with a constant retrial rate.

Whenever a queueing system is fully observable with respect to their random
time periods such as inter-arrival time, service time, time to failure, repair time,
inter-retrial time and so on, standard parametric estimation methods of math-
ematical statistics seems to be quite appropriate. But the most papers include
only the results about transient and stationary solutions and very few consider
the associated statistical problems. [14] have evaluated confidence intervals for
the mean waiting time of the single server and tandem queues with blocking.
Maximum likelihood estimates of multi-server system with heterogeneous servers
were obtained by [13]. In [12] have studied the estimation of arrival and service
rates for queues based only on queue length data.

The analysis of the presented retrial queue with constant retrial rate, non-
reliable server and threshold-based recovery includes the following contributions:

(a) We model the system as a quasi-birth-and-death (QBD) process with thresh-
old dependent block-tridiagonal infinitesimal matrix and apply a general the-
ory of matrix-analytic solutions to derive the stationary distribution of the
system states and stability condition.

(b) We formulate optimization problem to calculate a threshold level which min-
imizes the long-run average cost per unit of time for the given cost structure.

(c) We derive the main performance characteristics of the system for the given
threshold policy.
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(d) We obtain the Laplace transforms of the waiting time distribution.
(e) We perform a parameter estimation and construct confidence intervals for

the performance measures.

In further sections we will use the notation I for the identity matrix, O
and 0 – respectively for the square matrix and row vector with zero entries.
Furthermore e will denote a column vector of ones and ej – a column vector
with 1 in the j-th position and 0 elsewhere. Vectors and matrices are assumed
to have an appropriate size. The symbol ∇ will stand for the gradient.

2 Mathematical Model and Stability

We consider a M/M/1 queueing system illustrated in Fig. 1. Customers arrive to
the system according to a Poisson stream with intensity λ > 0. The server servers
the customers according to an exponentially distributed time with parameter
μ > 0. If the server is idle at the time of an external arrival, the customer
proceeds to the server with probability p or to the orbit with probability 1 − p.
In particular case p = 1 we get a system with a direct access to the server which
was already studied in [7]. The servicing customer leaves the system after service
completion. If the server is found to be blocked, i.e. busy or failed, the customer
has to enter the infinite capacity retrial queue. We assume a constant retrial
policy, i.e. FCFS discipline for the retrial queue, when the customer at the head
of the queue repeats its requests for service in exponentially distributed retrial
times with intensity τ > 0. The server is assumed to be unreliable. During
a service process it may fail in exponentially distributed time with intensity
α > 0. The repair time is again exponentially distributed with intensity β > 0.
The system under study is regulated by a controller who switches the repair
facility on only when the number of customers in the system reaches a fixed
threshold level qr ≥ 1 and switch it off if the number of customers decreases
below this level. The inter-arrival times, intervals of successive retrials, service,
breakdown and repair times are assumed to be mutually independent.

The system states at time t are described by random vector {N(t),D(t)}t≥0,
where N(t) – the number of customers in the queueing system and D(t) – the

Fig. 1. Scheme of the queueing system
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server state, where

D(t) =

⎧⎪⎨
⎪⎩

0 the server is idle,
1 the server is busy,
2 the server is failed.

Note that if D(t) = 0, the component N(t) ∈ N0, otherwise N(t) ∈ N. The
random process

{X(t)}t≥0 = {N(t),D(t)}t≥0 (1)

is an irreducible continuous-time Markov chain with a state space

E = {x = (n, d);n ≥ 0, d = 0 ∨ n ≥ 1, d ∈ {1, 2}} (2)

and transition intensities λxy(qr) from state x = (n, d) ∈ E to state y = (n′, d′)
∈ E,

λxy(qr) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λp, n′ = n + 1, d′ = 1, d = 0, n ≥ 0,

λ(1 − p), n′ = n + 1, d′ = d = 0, n ≥ 0,

λ, n′ = n + 1, d′ = d ∈ {1, 2}, n ≥ 0,

μ, n′ = n − 1, d′ = 0, d = 1, n > 0,

τ, n′ = n, d′ = 1, d = 0, n > 0,

α, n′ = n, d′ = 2, d = 1, n > 0,

β, n′ = n, d′ = 1, d = 2, n ≥ qr.

(3)

Fig. 2. The state-transition-intensity diagram for the given threshold qr

Figure 2 illustrates the state transition rates. Now we define a macro-state n
consisting of three states,

n = {(n, 0), (n + 1, 1), (n + 1, 2)}, n ≥ 0.

Define by π = (π0,π1,π2, . . . ) a row vector of stationary state probabilities
with subvectors πn = (π(n,0), π(n+1,1), π(n+1,2)) for the macro-state n, where

π(n,d) = lim
t→∞P[N(t) = n,D(t) = d].
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Theorem 1. For the fixed threshold qr the Markov chain (1) belongs to a class
of the QBD processes with boundary states and block tri-diagonal infinitesimal
matrix Λ = [λxy(qr)],

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Q1,0 Q0 O O O O O . . .
Q2 Q1,1 Q0 O O O O . . .
O Q2 Q1,1 Q0 O O O . . .

. . .
. . .

. . .
. . . . . .

O O O Q2 Q1,2 Q0 O . . .
O O O O Q2 Q1,2 Q0 . . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

qr − 1

,

where

Q1,j =

⎛
⎝

−(λ + τ1{j �=0}) λp 0
μ −(α + λ + μ) α
0 β1{j=2∨qr=1} −(λ + β1{j=2∨qr=1})

⎞
⎠ ,

Q0 =

⎛
⎝

λ(1 − p) 0 0
0 λ 0
0 0 λ

⎞
⎠ , Q2 =

⎛
⎝

0 τ 0
0 0 0
0 0 0

⎞
⎠ ,

and row vector π satisfies the matrix system

πΛ = 0, πe = 1.

Proof. The result follows by arranging the balance equations according to the
macro states n and collecting them in matrix form.

The next statement reveals the condition that is necessary and sufficient to
ensure system stability.

Theorem 2. The necessary and sufficient stability condition for the process
{X(t)}t≥0 is given by

ρ =
λ

μ

(
1 +

α

β

)
+

λ

λp + τ
< 1. (4)

Proof. Consider the matrix A = Q0 + Q1,2 + Q2, composed of matrices defined
above, and let p be its stationary distribution. Since A is irreducible, the vector
p exists such that pA = 0 and p e = 1. It is given by

p =
1

α(pλ + τ) + β(pλ + μ + τ)
(βμ, β(pλ + τ), α(pλ + τ)). (5)

According to the mean drift result of [11] the stability condition is given by the
inequality p Q2e > p Q0e which leads to the proposed inequality.
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3 Evaluation of Performance Measures

Using the general theory of the QBD processes (see e.g. [11]) we get the following
result.

Theorem 3. Subvectors πn,n ≥ 0, of stationary state probabilities are calcu-
lated by

πn = πqr

qr−n∏
i=1

Mqr−i, 0 ≤ n ≤ qr − 1, (6)

πn = πqr
Rn−qr , n ≥ qr,

where the matrices Mi are given by

M0 = −Q2Q
−1
1,0, (7)

Mi = −Q2(Mi−1Q0 + Q1,1)−1, 1 ≤ i ≤ qr − 2,

Mqr−1 = −Q2(Mqr−2Q0 + Q1,2)−1.

The vector πqr
is a unique solution of the system of equations

πqr
(Mqr−1Q0 + Q1,2 + RQ2) = 0, (8)

πqr

( qr−1∑
n=0

qr−n∏
i=1

Mqr−i + (I − R)−1
)
e = 1. (9)

Matrix R is the minimal non-negative solution to matrix equation R2Q2+RQ1,2+
Q0 = O and has the following explicit representation,

R =

⎛
⎜⎜⎝

λ(1−p)
τ

λ2(1−p)
μτ

αλ2(1−p)
μτ(β+λ)

λ
τ

λ(λ+θ)
μτ

λ(λ+τ)α
μτ(β+λ)

λ
τ

λ(λ+τ)
μτ

λ(λ+τ)α+λμτ
μτ(β+λ)

⎞
⎟⎟⎠ . (10)

Proof. Due to the general theory of the QBD processes (see [11, Chapter3,pp.82–
83.]), subvectors πn which correspond to the macro-states n with homogeneous
blocks in the matrix Λ, have geometric structure,

πn = πqr
Rn−qr , n > qr.

For the probabilities πn, 0 ≤ n ≤ qr, of the boundary states the system of
balance equations can be transformed in the form

π0Q1,0 + π1Q2 = 0,

πn−1Q0 + πnQ1,1 + πn+1Q2 = 0, 1 ≤ n ≤ qr − 2,

πqr−2Q0 + πqr−1Q1,2 + πqr
Q2 = 0.
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The last system implies the recurrent relation

πn = πn+1Mn, 0 ≤ n ≤ qr − 1,

where matrices Mn can be evaluated recursively using (7). For the boundary
state n = qr we get

πqr−1Q0 + πqr
Q1,2 + πqr+1Q2 = 0.

Subsequent substitution of πqr−1 = πqr
Mqr−1 and πqr+1 = πqr

R to the last
equality leads to (8). This equation can be solved with respect to the last
unknown vector πqr

together with the normalizing condition which follows from
the relation

∞∑
n=0

πne =
qr−1∑
n=0

πne + πqr

∞∑
n=qr

Rn−qre = 1.

Finally, the structure of matrices Q0, Q1,2, Q2 together with a relation RQ2e =
Q0e implies the form (10).

Corollary 1. Using the probabilities πn, n ≥ 0, we can evaluate different per-
formance measures:

Utilization of the system

U = 1 − π0e1. (11)

Probability of a server being blocked

Pblocking =
( qr−1∑

n=0

πn + πqr
(I − R)−1

)
(e2 + e3). (12)

Mean number of customers in the queue

Q̄ =
( qr−1∑

n=0

nπn + πqr
(qr(I − R) + R)(I − R)−2

)
e. (13)

Mean number of customers in the system

N̄ = Q̄ + Pblocking. (14)

Mean waiting and sojourn times

W̄ =
N̄

λ
, T̄ =

Q̄

λ
. (15)

A natural question that may arise in practice is a calculation of an optimal
threshold policy which leads to the minimum of the system operating costs per
unit of time. To find the optimal threshold q∗ the following cost structure is
introduced: c0 – holding cost per unit time for each customer in the system, c0,0,
c1,0 and c2,0 – usage costs per unit time if the server is idle, busy or failed for
N(t) < qr. For N(t) ≥ qr the costs c0,1, c1,1 c2,1 – usage costs together with the
operational costs of the repair facility.
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Corollary 2. The average cost function g(qr) is of the form

g(qr) = c0N̄ +
qr−2∑
n=0

πn(c0,0, c1,0, c2,0)′ + πqr−1(c0,0, c1,1, c2,1)′ (16)

+ πqr
(I − R)−1(c0,1, c1,1, c2,1)′,

where (c0,i, c1,i, c2,i)′ is a column-vector of the costs per unit of time, i = 0, 1.

In many cases a simple exhaustion method is quite appropriate to calculate the
optimal value q∗

r . Setting d
dqr

g(qr) = 0 the optimal threshold level q∗
r can also

be numerically evaluated.

4 The Waiting Time Distribution

Here we want to calculate the distribution function of the waiting time W of
the customer in the retrial queue. In comparison to the classical queue, where
the conditional waiting time of the tagged customer is Erlang distributed, the
conditional waiting time in a present system will depend on the future arrivals.
It happens due to the presence of the threshold-based policy for the recovering
of the server and due to the fact that with probability p a new arrival is served
according to the LCFS (last come first served) discipline. Therefore it is required
to observe the state of the tagged customer up to the time where its service
begins. The further calculation is performed by analyzing of the auxiliary Markov
chain just after an arrival of the tagged customer at time t+,

{X̂(t)}t≥t+ = {N(t),D(t),M(t)}t≥t+ .

The state space of this process is

Ê = {x̂ = (n, d,m)|n ≥ 0, d = 0 ∨ n ≥ 1, d ∈ {1, 2}, 0 ≤ m ≤ n}

with an absorption states with m = 0 when the tagged customer receives the
service. The component M(t) of the process denotes the position of the tagged
customer in the list of waiting customers at time t. This component can only
decrease at retrial time when the server is idle. If the server is busy or failed
then we obviously have M(t∗) = N(t∗) − 1. The process is absorbed when the
component M(t) becomes equal to zero.

The waiting time distribution of the tagged customer is obtained as follows.
First we calculate the Laplace transform of the conditional waiting time distri-
bution given the system state and the position of the tagged customer after the
arrival. Using the law of total probability and the state distribution just after the
arrival of the tagged customer, the conditioning is removed. Numerical inversion
of the Laplace transform completes the calculation.

Denote by w(n,d,m)(t) the probability density function of the conditional wait-
ing time given state x̂ = (n, d,m) ∈ Ê and w̃n,d,m(s) =

∫ ∞
0

e−stw(n,d,m)(t)dt the
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corresponding Laplace transform (LT). Then due to the PASTA property and
the law of total probability the unconditional LT is of the form

w̃(s) =
∞∑

n=0

π(n,0)p +
∞∑

n=0

π(n,0)(1 − p)w̃(n+1,0,n+1)(s) (17)

+
∞∑

n=1

π(n,1)w̃(n+1,1,n)(s) +
∞∑

n=1

π(n,2)w̃(n+1,2,n)(s),

where the first summand represents the stationary probability that a tagged
customer does not have to wait for service, i.e. W = 0; the last three terms
represent the LT of the waiting time given W > 0.

Now we partition the conditional LT w̃(n,d,m)(s), (n, d,m) ∈ Ê, according to
the number of customers in the system and define the column-vectors

w̃n,m(s) = (w̃(n,0,m)(s), w̃(n+1,1,m)(s), w̃(n+1,2,m))′, m ≤ n ≤ qr + m − 1.

For the calculation of the conditional waiting time we make use of the Laplace
transform of conditional service time for n ≥ qr: Let h1(t) and h2(t) denote the
probability density functions from the start in an busy or failed state to the next
departure. Obviously we have

h1(t) =
μ

μ + α
(μ + α)e−(μ+α)t +

α

μ + α

∫ t

0

(μ + α)e−(μ+α)xhf (t−x)dx,

h2(t) =
∫ t

0

βe−βxh1(t − x)dx.

Denote by h̃1(s) and h̃2(s) the corresponding LT. For these functions we get

h̃1(s) =
μ(β + s)

(μ + α + s)(β + s) − αβ
, h̃2(s) =

β

β + s
h̃1(s).

Theorem 4. The vector of conditional Laplace transforms w̃n,m(s),m ≤ n ≤
q + m − 2 under stability condition satisfy the following recurrent relations

w̃n,m(s) = Mq−n−1
1 (s)Mm

2 (s)w̃q+m−1,m(s) (18)

+Mq−n−1
1 (s)

m−1∑
r=0

Mr
2 (s)L2(s)w̃q+r−1,m−1(s)

+
q−n−2∑

r=0

Mr
1 (s)L1(s)w̃n+r−1,m−1(s), n ≤ q − 2,

w̃n,m(s) = Mq−n+m−1
2 (s)w̃q+m−1,m(s)

+
q−n+m−2∑

r=0

Mr
2 (s)L2(s)w̃n+r−1,m−1(s), n ≥ q − 1,

w̃q+m−1,m(s) = ϑ̃m−1
1 (s)(ϑ̃0(s), ϑ̃1(s), ϑ̃2(s))′, w̃n,0(s) = (0, 1, 1)′,
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where

Mj(s) = −(Q1,j − sI)−1Q0, Lj(s) = −(Q1,j − sI)−1Q2, i = 1, 2, (19)

ϑ̃0(s) =
τ

τ + λp(1 − h̃1(s)) + s
, ϑ̃1(s) = h̃1(s)ϑ̃0(s), ϑ̃2(s) = h̃2(s)ϑ̃0(s). (20)

Proof. The Markov property of the process {X̂(t)} implies the following system

(λ + θ + s)w̃(n,0,m)(s) = λpw̃(n+1,1,m)(s) + λ(1 − p)w̃(n+1,0,m) + θw̃(n,1,m−1)(s),
(α + λ + μ + s)w̃(n+1,1,m)(s) = αw̃(n+1,2,m)(s) + λw̃(n+2,1,m)(s) + μ w̃(n,0,m)(s),
(λ + βI{n≥q−1} + s)w̃(n+1,2,m)(s) = λw̃(n+2,2,m)(s) + βw̃(n+1,1,m)(s)I{n≥q−1},

where w̃(n,1,0)(s) = w̃(n,2,0)(s) = 1 and w̃(n,0,0)(s) = 0. After routing block
identification taking into account the difference of the transition rates for the
states below and above threshold level, this system can be expressed in matrix
form

(Q1,1I{n≤qr−2} + Q1,2I{n≥qr−1} − sI)w̃n,m(s) + Q0w̃n+1,m(s) + Q2w̃n−1,m−1(s) = 0.

The recursive forward substitution applied qr + m − 1 − n times using the
notations (19) leads to the expressions (18). Note that the Laplace transforms
w̃qr+m−1,m(s) do not depend on future arrivals to the queue, since the number of
customers in the retrial queue always exceeds the given threshold level qr during
the waiting time of the tagged customer. To calculate the components of this
vector we derive the Laplace transforms ϑ̃d(s) of the waiting time for the cus-
tomer at the head of the retrial queue given the initial server state d ∈ {0, 1, 2}.
Obviously these LTs satisfies (20), since the random time to absorption is equal
to the sum of the service time given states 1 or 2 of the server plus the time to
absorption given state 0.

If we take into account the sequence of epochs at which the queue size
decreases in one unit, we easily find the expression (18).

Corollary 3. For the unconditional LT of the waiting time distribution we have

W̃ (s) =
1
s
(1 − πWe + πW w̃(s)),

where the contribution 1−πWe is equal to the first summand of (17) and πW w̃(s)
stands for the last three terms defined in (17).

5 Confidence Intervals for Performance Measures

Consider a real life system which runs without control, i.e. qr = 1, and system
parameters are unknown. Using random samples drawn from observed data we
derive simple parameter estimators. An estimator q̂∗

r for the optimal threshold
q∗
r is calculated from them next. Given a system which runs under threshold q̂∗

r

we provide consistent and asymptotically normal estimators and corresponding
confidence intervals for its performance measures. Numerical examples illustrate
the performance improvement due to introduced control at the end of the section.
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5.1 System Parameter Estimators

Let (X1,X2, . . . , Xn), (Y1, Y2, . . . , Yn), (Z1, Z2, . . . , Zn), (U1, U2, . . . , Un) and (H1,
H2, . . . , Hn) each be random samples of size n, which, respectively, are drawn from
different exponentially distributed inter-arrival time populations with parameter
λ, exponentially distributed service time populations with parameter μ, expo-
nentially distributed time to failure populations with parameter α, exponentially
distributed repair time populations with parameter β and exponentially distrib-
uted inter-retrial time populations with parameter τ . It follows that E[X̄] = 1

λ ,
E[Ȳ ] = 1

μ , E[Z̄] = 1
α , E[Ū ] = 1

β and E[H̄] = 1
τ , where X̄, Ȳ , Z̄, Ū and H̄ are the

sample means of inter-arrival time, service time, time to failure, repair time and
inter-retrial time. It is obvious that X̄, Ȳ , Z̄, Ū and H̄ are the maximum likelihood
estimators of 1

λ , 1
μ , 1

α , 1
β and 1

τ . Let (J1, J2, . . . , Jn) be the random sample of size
n with

Ji =

{
1 if the i-th arrived customer finding server idle proceeds to the server,
0 if the i-th arrived customer finding server idle proceeds to the orbit.

Obviously,
J̄ · n

d−→ B(n, p)

is binomially distributed with parameters n and p. It follows that E[J̄ ] = p and
V[J̄ ] = p(1−p)

n . Thus, this relative frequency J̄ serves as an unbiased estimator
for probability p.

5.2 Optimal Threshold Estimator

We use the average cost function g(qr) from (16) to derive an estimator q̂∗
r for

the optimal threshold q∗
r . For this reason we transform the optimization problem

min
qr∈N

g(qr) = min
qr∈N

g(qr, λ, μ, α, β, τ, p) = g(q∗
r ) (21)

into

min
qr∈N

g(qr, X̄
−1, Ȳ −1, Z̄−1, Ū−1, H̄−1, J̄) = g(q̂∗

r ) (22)

and numerically evaluate q̂∗
r .

5.3 The Consistent and Asymptotically Normal Estimator

Let φ(λ, μ, α, β, τ, p) denote any function from corollaries 3.1 and 3.2, which
characterizes the performance of the system which runs under threshold q̂∗

r . For
example it can be the cost function g(q̂∗

r ) or the mean number of customers in
the system N̄(q̂∗

r ) with qr = q̂∗
r . In order to derive an estimator for φ we linearize

φ̂(X̄, Ȳ , Z̄, Ū , H̄, J̄) = φ(X̄−1, Ȳ −1, Z̄−1, Ū−1, H̄−1, J̄)
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around the point μ = (λ−1, μ−1, α−1, β−1, τ−1, p) and get the approximation

φ̂(X̄, Ȳ , Z̄, Ū , H̄, J̄) ≈ φ̂(μ) − μ ∇φ̂(μ) + (X̄, Ȳ , Z̄, Ū , H̄, J̄) ∇φ̂(μ). (23)

The random vector

(X̄, Ȳ , Z̄, Ū , H̄, J̄) d−→ MN (μ, Σ)

is asymptotically multi-normal distributed with mean vector μ and covariance
matrix Σ = diag( 1

λ2n , 1
μ2n , 1

α2n , 1
β2n , 1

τ2n , p(1−p)
n ) due to the multivariate central

limit theorem. We employ the theorem of the affine transformation on the above
approximation and get

φ̂(X̄, Ȳ , Z̄, Ū , H̄, J̄) d−→ N
(
φ̂(μ),∇φ̂t(μ) Σ ∇φ̂(μ)

)

= N
(
φ(λ, μ, α, β, τ, p),∇φ̂t(μ) Σ ∇φ̂(μ)

)
.

(24)

Hence, it is a consistent and asymptotically normal estimator of any performance
measure φ(λ, μ, α, β, τ, p).

5.4 Confidence Intervals for Performance Measures

Using Slutsky’s theorem we get from (24)
(
φ̂(X̄, Ȳ , Z̄, Ū , H̄, J̄) − φ(λ, μ, α, β, τ, p)

)
√

∇φ̂t(X̄, Ȳ , Z̄, Ū , H̄, J̄) Σ̄ ∇φ̂(X̄, Ȳ , Z̄, Ū , H̄, J̄)

d−→ N (0, 1)

with Σ̄ = 1
n · diag(X̄2, Ȳ 2, Z̄2, Ū2, H̄2, J̄(1 − J̄)). In other words we have

P

[
nα

2
<

(
φ̂(X̄, Ȳ , Z̄, Ū , H̄, J̄) − φ(λ, μ, α, β, τ, p)

)
√

∇φ̂t(X̄, Ȳ , Z̄, Ū , H̄, J̄) Σ̄ ∇φ̂(X̄, Ȳ , Z̄, Ū , H̄, J̄)
< −nα

2

]
= 1 − α

where nα
2

is obtained from Normal tables. This implies the following 100(1−α)%
asymptotic confidence interval:

φ(λ, μ, α, β, τ, p) ∈
[
φ̂(X̄, Ȳ , Z̄, Ū , H̄, J̄) + nα

2

√
∇φ̂t(X̄, Ȳ , Z̄, Ū , H̄, J̄) Σ̄ ∇φ̂(X̄, Ȳ , Z̄, Ū , H̄, J̄),

φ̂(X̄, Ȳ , Z̄, Ū , H̄, J̄) − nα
2

√
∇φ̂t(X̄, Ȳ , Z̄, Ū , H̄, J̄) Σ̄ ∇φ̂(X̄, Ȳ , Z̄, Ū , H̄, J̄)

]
.

5.5 Numerical Examples

The following numerical examples show the performance improvement due to
introduced optimal threshold q̂∗

r . We use the general representation of the confi-
dence interval derived above in order to calculate confidence intervals for different
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performance measures, e.g. the mean number of customers in the system N̄ or
the average cost function g.

In order to get some numerical results we simulate our system with parame-
ters fixed in the following way:

λ = 1.0, μ = 2.0, α = 0.2, β = 5.0, τ = 10.0, p = 0.5.

To perform a simulation we use the probability of an initial state of system which
is calculated by (6). The samples (X1,X2, . . . , Xn), (Y1, Y2, . . . , Yn), (Z1, Z2, . . . ,
Zn),(U1, U2, . . . , Un) and (H1,H2, . . . , Hn) are drawn as described in Subsect. 5.1.
The costs are: c0 = 0.1, c0,0 = 0.5, c1,0 = 0.5, c2,0 = 0.5, c0,1 = 2.0, c1,1 =
2.0, c2,1 = 2.0.

(a)

(b)
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Fig. 3. Confidence intervals for g (a) and N̄ (b)

Figure 3(a) illustrates the confidence intervals for the long-run average cost
g(q̂∗

r ) versus sample size n. Take note that exact value q∗
r as well as the estimation

q̂∗
r equal to 3 and the exact value of the cost function g(3) = 1.107. For the repair

threshold qr = 1 we have g(1) = 2.14. Thus, an optimized threshold considerably
reduces the system costs. The costs estimation becomes stable for n ≥ 500.

On the other hand, the confidence intervals for the mean number of customers
in the system N̄(q̂∗) versus n are illustrated in Fig. 3(b). The exact value N̄(q∗

r ) =
2.25 for q∗

r = 3. For the threshold level qr = 1 we have N̄(1) = 1.42. Thus, the
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average number of customers in the system increases with qr. The estimation
becomes stable for n ≥ 500.
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Abstract. In the paper, the retrial queueing system of MMPP |M |1
type is studied by means of the second order asymptotic analysis method
under heavy load condition. During the investigation, the theorem about
the form of the asymptotic characteristic function of the number of calls
in the orbit is formulated and proved. The asymptotic distribution is
compared with the exact one obtained by means of numerical algorithm.
The conclusion about method application area is made.
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1 Introduction

In queueing theory, there are two classes of queueing systems: systems with
queue and loss systems. In real systems, there are situations when queue cannot
be explicitly identified, but also call is not lost if it comes when the service device
is unavailable. Often primary call does not refuse to be serviced and performs
repeated calls to get the service after random time intervals. Examples of these
situations are telecommunication systems, cellular networks, call-centres. Thus
a new class of queueing systems has been appeared: systems with repeated calls
or retrial queueing systems.

The first papers about retrial queues were published in the middle of 20th
century. The most of them were devoted to practical problems and influence of
repeated attempts on telephone traffic, communication systems etc. [1–4]. The
most comprehensive description and detailed comparison of classical queueing
systems and retrial queues are contained in books and papers authored by J.R.
Artalejo, A. Gomez-Corral, G.I. Falin and J.G.C. Templeton [5–7].

Today there are many papers devoted to these systems. Scientists from dif-
ferent countries study different types of retrial queues, develop methods of their
investigation, solve practical and theoretical problems in this area. But the major-
ity of studies of retrial queueing systems are performed numerically or via com-
puter simulation [8–10]. Belarusian researchers A.N. Dudin and V.I. Klimenok
[11] mainly use matrix methods in their works. Also matrix methods for retrial
queues analysis were used by M.F. Neuts, J.R. Artalejo, A. Gomez-Corral [12],
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J.E. Diamond, A.S. Alfa [13], etc. Asymptotic and approximate methods were
applied by G.I. Falin [14], V.V. Anisimov [15], T. Yang [16], J.E. Diamond [17], B.
Pourbabai [18], etc. But analytical results were obtained only in cases of simple
input and service processes (e.g. stationary Poisson input process or the exponen-
tial distribution of service law) [6].

In this paper, we study the retrial queueing system MMPP |M |1 by means
of the second order asymptotic analysis method under heavy load condition.
Characteristics of performance of retrial queueing systems under heavy and light
loads were studied by G.I. Falin [14], V.V. Anisimov [15] and A. Aissani [19].
Also S.N. Stepanov’s work [20] is devoted to investigation under “extreme”load
(the intensity of primary calls tends to infinity or zero).

In the paper we use the asymptotic analysis method developed by Tomsk
scientific group for investigation of all types of queueing system and networks
[21,22]. Principle of the method is derivation of asymptotic equations from the
systems of equations determined models states and then getting formulas for
asymptotic functions.

In a number of our previous papers (eg. [23]) devoted to the study of various
single-server retrial queueing system, we applied the asymptotic analysis method
for retrial queueing systems under a heavy load condition. We obtained formu-
las for asymptotic characteristic functions of the probability distribution of the
number of calls in the orbit in systems with different input processes and services
laws: M |M |1, M |GI|1, MMPP |M |1, MMPP |GI|1. However, we have demon-
strated that the proposed method has a fairly narrow range of applicability:
for the load rate ρ > 0.95, Kolmogorov distance between exact and asymptotic
distributions has values Δ ≤ 0.05. In this regard, we propose to increase the
accuracy of the approximation by getting the second order asymptotic formula.

The rest of the paper is organized as follows. In the Sect. 2, the description
of the mathematical model of retrial queue MMPP |M |1 is presented and the
process of the system states is analysed. In the Sect. 3, we introduce asymptotic
functions and determine the limit condition of heavy load, then the theorem
about the formula for the asymptotic characteristic function is formulated and
proved. The last Sect. 4 is devoted to the numerical comparison of the asymptotic
distribution with exact one.

2 Mathematical Model and the Process Under Study

In the paper, retrial queueing system of MMPP |M |1 type is analyzed. The
input process is Markov Modulated Poisson Process which is a particular case
of Markovian Arrival Process (MAP) and it is defined by matrix D0 and D1

[24,25]. The underlying process n(t) is Markov chain with continuous time and
finite set of states n = 1, 2, . . . , W .

We denote the generator of the underlying process n(t) by matrix Q = D0 +
D1. And the matrix Q has elements qmv where m, v = 1, 2, . . . , W .

D1 is a diagonal matrix with elements ρλn where n = 1, 2, . . . , W and ρ is
some parameter defined below. We introduce a matrix Λ = diag{λn}. Then the
following equality holds: D1 = ρΛ.
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The vector-row θ is the stationary probability distribution of the underlying
process n(t). θ is defined as the unique solution of the system:

{
θQ = 0,
θe = 1 (1)

where e is unit column-vector, 0 is zero row-vector.
The service time of each call is distributed by exponential law with parame-

ter μ. If a call arrives when a service device (server) is free, the call occupies the
device for the service. If the server is busy, the call goes to the orbit (source of
repeated calls) where it is staying during a random time distributed exponen-
tially with parameter σ. After this random time, the call from the orbit makes an
attempt to reach the device. If the device is free, the call occupies it, otherwise
the call immediately returns to the orbit. Structure of the system is presented
in Fig. 1.

Fig. 1. Retrial queueing system MMPP |M |1

The rate of MMPP is defined as λ = θ · ρΛ · e.
Let the system parameters be such that the following equation holds:

θ · Λ · e = μ. (2)

So, the parameter ρ is calculated as ρ =
λ

θ · Λ · e =
λ

μ
and it is called the

load of the system. Thus the stationary state of the system exists when ρ < 1.
And the heavy load condition is determined by limit condition ρ ↑ 1.

Let i(t) be the random process described the number of calls in the orbit and
by k(t) be the random process defined the server state as follows:

k(t) =
{

0, if device is free,
1, if device is busy at the moment t.

The problem is to find the probability distribution of the number of calls in
the orbit in this system.
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However, the process i(t) is not Markovian. So firstly we will consider the
multidimensional process {k(t), n(t), i(t)} which is a continuous time Markov
chain.

We denote the probability that the device is in the state k, there are i calls
in the orbit and the underlying process in the state n at the time moment t by
P (k, n, i, t) = P{k(t) = k, n(t) = n, i(t) = i}. So the following direct system of
Kolmogorov differential equations for the system states probability distribution
P (k, n, i, t) can be written:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P (0, n, i, t)
∂t

= −(ρλn + iσ − qnn)P (0, n, i, t) + μP (1, n, i, t)

+
∑
v �=n

P (0, v, i, t)qvn,

∂P (1, n, i, t)
∂t

= −(ρλn + μ − qnn)P (1, n, i, t)

+ρλnP (1, n, i − 1, t)(1 − δi,0) + ρλnP (0, n, i, t)
+(i + 1)σP (0, n, i + 1, t) +

∑
v �=n

P (1, v, i, t)qvn, for i ≥ 0, n = 1, N

(3)

where δi,0 is Kronecker symbol which is defined as δi,j =
{

0, if i �= j,
1, if i = j.

We denote row-vectors P(k, i) = {P (k, 1, i), P (k, 2, i), . . . , P (k,N, i)} where
P (k, n, i) = lim

t→∞ P (k, n, i, t). Then in stationary state, the system (3) has the
following matrix form:

⎧⎨
⎩

P(0, i)(Q − ρΛ − iσI) + μP(1, i) = 0,
P(1, i)(Q − ρΛ − μI) + P(0, i)ρΛ + (1 − δi,0)P(1, i − 1)ρΛ

+σ(i + 1)P(0, i + 1) = 0, for i ≥ 0
(4)

where I is the identity matrix.
So we have the system of matrix difference equations.

3 Asymptotic Analysis Method Under Heavy Load
Condition

We introduce the partial characteristic functions:

H(k, u) =
∑

i

ejuiP(k, i), for k = 0, 1

where j =
√−1 is the imaginary unit.

Then the system (4) is rewritten as the following system:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(0, u)(Q − ρΛ) + jσ
∂H(0, u)

∂u
+ μH(1, u) = 0,

H(1, u)(Q − ρΛ − μI) + H(0, u)ρΛ + ejuH(1, u)ρΛ

−jσe−ju ∂H(0, u)
∂u

= 0.

(5)
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We will solve the system (5) by the method of asymptotic analysis under
heavy load condition. The heavy load condition is defined by the assumption
that ρ ↑ 1 or ε ↓ 0 where ε is an infinitesimal variable ε = 1 − ρ > 0.

First of all, we introduce notations:

u = εw, H(0, u) = εG(w, ε), H(1, u) = F(w, ε).

Then the system (5) can be rewritten as:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εG(w, ε)(Q − (1 − ε)Λ) + jσ
∂G(w, ε)

∂w
+ μF(w, ε) = 0,

F(w, ε)(Q + (1 − ε)(ejεw − 1)Λ − μI)

+(1 − ε)εG(w, ε)Λ − jσe−jεw ∂G(w, ε)
∂w

= 0.

(6)

For obtaining the second order asymptotic formula, it is necessary to consider
following expansions of functions:

G(w, ε) = G(w) + εg(w) + ε2g2(w) + O(ε3), (7)

F(w, ε) = F(w) + εf(w) + ε2f2(w) + O(ε3) (8)

where O(ε3) is an infinitesimal variable of order ε3.
The characteristic function of the number of calls in the orbit h(u) = Meju·i(t)

can be presented by introduced notations in the following form:

h(u) = [H(0, u) + H(1, u)] e =
[
εG

(u

ε
, ε

)
+ F

(u

ε
, ε

)]
e.

Using expansions (7) and (8), the characteristic function of the number of
calls in the orbit is presented as

h(u) = F
(u

ε

)
e + ε

[
G

(u

ε

)
+ εf

(u

ε

)]
e + O(ε2)

where functions F(w),G(w) and f(w) are defined in expansions (7) and (8), and
the parameter ε = 1 − ρ.

Then we will call the function h1(u) = F
(u

ε

)
e as the first order asymptotic

characteristic function and the function

h2(u) = F
(u

ε

)
e +

[
εG

(u

ε

)
+ εf

(u

ε

)]
e (9)

as the second order asymptotic characteristic function.
In the paper [23], we found that the first order asymptotic characteristic

function h1(u) has the form of the characteristic function of gamma distribution:

h1(u) = F
(

u

1 − ρ

)
e =

(
1 − ju

(1 − ρ)β

)−α

where
α = 1 +

μ

σ
β, β =

μ

vΛe − μve + μ
, (10)
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and the vector v is a solution of the inhomogeneous system vQ = θ(μI − Λ).
The second order asymptotic characteristic function h2(u) is defined by the

following theorem.

Theorem 1. The second-order asymptotic characteristic function has the fol-
lowing form

h2(u) =
(

1 − ju

(1 − ρ)β

)−α
{

1 + (1 − ρ)

[
ju

(1 − ρ)
ve − j

∫ ju
(1−ρ)

0

a(y)
(jy − β)

dy

]}

where function a(w) is presented as follows:

a(w) =
α

β

(
1 − jw

β

)−1 [
−jw

2vΛe − μve
μ

+ (jw)2
δ

μ

]

−2vΛe − μve
μ

+ 2jw

(
δ

μ
− μ

σ

)
− 2

(
1 +

μ

σ

)(
1 − jw

β

)
+ jwve

μ

σ
,

α and β are described by formula (10), the constant δ is defined as

δ = μve + v1(Λe − μe) − μ

2

and v1 is a solution of the inhomogeneous system

v1Q =
μ

β
θ − 1

2
(θΛ − μθ) − (vΛ − μv).

Proof. The proof will be carried out in several steps.

Step 1: Derivation of asymptotic equations.

Substituting expansions (7) and (8) into the system (6), performing some trans-
formations, and equating the coefficients under the same powers of ε, we obtain
the following system of equations for unknown functions F(w), G(w), f(w),
g(w), f2(w) and g2(w):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jσG′(w) + μF(w) = 0,
F(w)(Q − μI) − jσG′(w) = 0,
G(w)(Q − Λ) + jσg′(w) + μf(w) = 0,
jwF(w)Λ + f(w)(Q − Λ) + G(w)Λ + jσjw · G′(w) − g′(w) = 0,
G(w)Λ + g(w)(Q − Λ) + f2(w)Λ + μf2(w) = 0,(

−jw +
(jw)2

2

)
F(w)Λ + jwf(w)Λ + f2(w)(Q − μI) − G(w)Λ

+g(w)Λ − jσ
(jw)2

2
· G′(w) + jσjwg′(w) − jσg′

2(w) = 0.

(11)

To get one more scalar equation, we sum equations of the system (6) and
multiply the result equation by the unit column-vector e. Taken into account
that Qe = 0, we obtain equation:

F(w, ε)(1 − ε)Λe + jσe−jεw ∂G(w, ε)
∂w

e = 0.
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We substitute expansions (7) and (8) into obtained equation and again equate
coefficients under the same powers of ε. As the result, we write the following
system:

⎧⎪⎨
⎪⎩

F(w)Λe + jσG′(w)e = 0,
−F(w)Λe + f(w)Λe − jσjwG′(w)e + jσg′(w)e = 0,

−f(w)Λe + f2(w)Λe + jσ
(jw)2

2
G′(w)e − jσjwg′(w)e + jσg′

2(w)e = 0.

The first two equations are linearly dependent on the first four equations of
the system (11), so we will use for further derivations only the last equation:

− f(w)Λe + f2(w)Λe + jσ
(jw)2

2
G′(w)e − jσjwg′(w)e + jσg′

2(w)e = 0. (12)

Six matrix equations in the system (11) and one scalar equation (12) are
enough to find functions F(w),G(w) and f(w) which are necessary for obtaining
the second order asymptotic characteristic function h2(u).

Step 2: Multiplicative form of functions F(w),G(w).

Obviously, summing the first and second equations of the system (11), we can
write:

F(w) = θΦ(w) (13)

where the unknown scalar function Φ(w) is defined as Φ(w) = F(w)e.
Then the first equation of the system (11) has the form:

G′(w) = j
μ

σ
F(w) = j

μ

σ
θΦ(w). (14)

Step 3: Determination of functions G(w) and f(w).

Summing up the third and the fourth equations of the system (11), we obtain

{G(w) + f(w)}Q + jwF(w)Λ + jσjwG′(w) = 0.

Given the formula (14), it is easy to show that

{G(w) + f(w)}Q = −jwΦ(w)θ {Λ − μI} . (15)

Let the solution of the Eq. (14) with respect to the vector G(w) + f(w) has
the form:

G(w) + f(w) = jwΦ(w)v + ϕ(w)θ (16)

where ϕ(w) is an arbitrary scalar function and vector v is a solution of the
following system:

vQ = θ(μI − Λ). (17)

For existence of the solution of the system (15), it is necessary that the rank
of the augmented matrix be equal to the rank of the matrix Q. Because the
determinant det(Q) = 0 the rank of the augmented matrix must be less than
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the dimension of the system. Then it is sufficient that the following condition
should hold:

(μθ − θΛ)e = 0,

what is true due to the condition (2).
So from the Eq. (15), it follows that

f(w) = jwΦ(w)v + ϕ(w)θ − G(w). (18)

Step 4: Obtaining of expression for the function g′(w).

From the third equation of the system (11), it follows that:

jσg′(w) = G(w)(Λ − Q) − μf(w).

By substituting the expression (17) into this formula, we get:

jσg′(w) = G(w)(Λ − Q + μI) − μjwΦ(w)v − μϕ(w)θ. (19)

Step 5: Derivation of the explicit expression for the scalar function Φ(w) and
calculation of functions F(w) and G(w).

Summing up the fifth and the sixth equations of the system (11) and multiplying
the result by the vector e, we can write:

f(w)Λe + jσg′(w)e + jσ(1 − jw)G′(w)e = 0.

We substitute formulas (14) and (19) into the last expression and take into
account the expression (2). So, the following equation is derived:

jwΦ(w)(vΛe − μ) + jσ(1 − jw)G′(w)e + μG(w)e = 0.

We differentiate this equation:

jΦ(w)(vΛe−μ)+ jwΦ′(w)(vΛe−μ)+σG′(w)e+ jσ(1− jw)G′′(w)e+μG′(w)e = 0.

So the following equation can be obtained by performing some transforma-
tions:

Φ(w)
[
jvΛe − jμve + jμ + j

jμ2

σ

]

= Φ′(w) [−jwvΛe + jwμve + μ − jwμ] .
(20)

Denote β =
μ

vΛe − μve + μ
, α = 1 +

μ2

σ(vΛe − μve + μ)
. Then the formula

(20) can be rewritten as:

Φ(w)jα = Φ′(w)(β − jw).

The solution of this equation has the form:

Φ(w) = c(w + jβ)−α (21)
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where c is an arbitrary constant and it is equal to (jβ)α from the initial condition
Φ(0) = 1.

So, the formula (21) is rewritten as

Φ(w) =
(

1 +
jw

β

)−α

. (22)

Turning to expressions (13) and (14), we can obtain functions F(w), G(w):
⎧⎪⎪⎨
⎪⎪⎩

F(w) = θ

(
1 +

jw

β

)−α

,

G(w) = θ

(
1 +

jw

β

)−α+1

.

(23)

Step 6: Getting of the expression for the function f2(w).

From the fifth equation of system (11), we obtain the following expression:

jσg′
2(w) = g(w)(Λ + Q) − G(w)Λ − μf2(w). (24)

Substituting the expressions (18), (23) and (24) in the sixth equation of the
system (11), the following equation is obtained:

[g(w) + f2(w)]Q = jwΦ(w)(θΛ − μθ)

+(jw)2Φ(w)
[
μ

β
θ − 1

2
(θΛ + μθ) − (vΛ − μv)

]
− jwϕ(w)(θΛ − μθ).

Let the solution of this equation with respect to the vector g(w) + f2(w) has
the form:

g(w) + f2(w) = (jw)2Φ(w)v1 − jwΦ(w)v + jwϕ(w)v + ϕ2(w)θ (25)

where ϕ2(w) is an arbitrary scalar function, v is a solution of the system (16)
and vector v1 is a solution of the following system:

v1Q =
μ

β
θ − 1

2
(θΛ + μθ) − (vΛ − μv).

For existence of a solution of the system (17), it is necessary that the rank
of the augmented matrix be equal to the rank of the matrix Q. Because the
determinant det(Q) = 0, the rank of the augmented matrix must be less than
the dimension of the system. Then it is sufficient that the following condition
should hold: [

μ

β
θ − 1

2
(θΛ + μθ) − (vΛ − μv)

]
e = 0.

It is easy to show that this condition is satisfied.
Then from the Eq. (25), we have

f2(w) = (jw)2Φ(w) · v1 − jwΦ(w)v + jwϕ(w)v + ϕ2(w)θ − g(w). (26)
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Step 7: Derivation of the explicit expression for the scalar function ϕ(w).

Substituting all found expressions in the Eq. (12), the following equation can be
obtain:

Φ(w)
[
−jw(2vΛe − μve) + (jw)2

(
μve + v1(Λe − μe) − μ

2

)]

+ϕ(w) [−θΛe + jw(μ + vΛe − μve)] − jwG(w)(Λe + μe) + μg(w)e = 0.

We denote δ = μve + v1(Λe − μe) − μ

2
.

Differentiating the equation, we obtain:

Φ′(w)
[
−jw(2vΛe − μve) + (jw)2δ

]
+ Φ(w)

[−j(2vΛe − μve) + 2j2wδ
]

+ϕ′(w)
[
−θΛe + jw

μ

β

]
+ ϕ(w)j

μ

β
− jwG′(w)(Λe + μe)

−jG(w)(Λe + μe) + μg′(w)e = 0.

Taking into account formulas (2), (10), (18) and (19), the following differen-
tial equation is obtained:

ϕ′(w)
(

1 − jw

β

)
− jϕ(w)

α

β
= jΦ(w)a(w) (27)

where

a(w) =
α

β

(
1 − jw

β

)−1 [
−jw

2vΛe − μve
μ

+ (jw)2
δ

μ

]
− 2vΛe − μve

μ

+2jw

(
δ

μ
− μ

σ

)
− 2

(
1 +

μ

σ

) (
1 − jw

β

)
+ jwve

μ

σ
.

The solution of the inhomogeneous differential equation (27) has form:

ϕ(w) = e
j
∫w
0

α/β

1− jx
β

dx
{

ϕ(0) + j

∫ w

0

e
−j
∫ y
0

α/β

1− jx
β

dx Φ(y)a(y)
1 − jy/β

dy

}
. (28)

Given normalization condition for the function F(w): F(0)e = 1, from the
expression(16) we have ϕ(0) = 0.

It is easy to show that
∫ w

0

α/β

1 − jx
β

dx = jαln
(

1 − jw

β

)

and ∫ w

0

(
1 − jy

β

)α
Φ(y)a(y)
1 − jy

β

dy =
∫ w

0

a(y)
1 − jy

β

dy.
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So, the solution (28) has the following form:

ϕ(w) = j

(
1 − jw

β

)−α ∫ w

0

a(y)
1 − jy

β

dy = −jΦ(w)
∫ w

0

a(y)
jy − β

dy.

Step 8: Obtaining of the final formula for the function h2(u).

Turning to the formula (16), we have

{G(w) + f(w)}e = jwΦ(w)ve + ϕ(w)

=
(
1 − jw

β

)−α {
jwve − j

∫ w

0
a(y)
jy−β dy

}
.

(29)

From the formula (9), the second order asymptotic characteristic function
for retrial queueing system MMPP |M |1 is represented as

h2(u) = F
(

u

1 − ρ

)
e + (1 − ρ)

[
G

(
u

1 − ρ

)
e + f

(
u

1 − ρ

)
e
]

.

Taking into account expressions (23) and (29), we obtain that the function
h2(u) has the following form:

h2(u) =
(

1 − ju

(1 − ρ)β

)−α
{

1 + (1 − ρ)

[
ju

1 − ρ
ve − j

∫ u
1−ρ

0

a(y)
jy − β

dy

]}
.

So the theorem is proved.

Having the second order asymptotic characteristic function h2(u), we can
construct the asymptotic probability distribution P2(i) of the number of calls in
the orbit by means of the formula of inverse Fourier transform.

4 Numerical Analysis of the Results

To determine the applicability range of the proposed method, we compare the
obtained asymptotic distribution and the distribution obtained by numerical
solution of the system of linear algebraic equations (4) and calculate Kolmogorov
distance between distributions.

Consider an example. Let the system parameters be the following:

μ = 1, σ = 1,

Λ =

⎛
⎝

0.588 0 0
0 0.980 0
0 0 1.373

⎞
⎠,Q =

⎛
⎝

−0.5 0.2 0.3
0.1 −0.3 0.2
0.3 0.2 −0.5

⎞
⎠.

In Figs. 2 and 3, comparison of distributions are shown for different value of
the load ρ (Dn is exact distribution which is obtained numerically, P1n and P2n

are the first order and the second order asymptotic distributions, respectively).
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Fig. 2. Comparison of asymptotic and exact distributions for ρ = 0.8

Fig. 3. Comparison of asymptotic and exact distributions for ρ = 0.95



356 E. Fedorova

Table 1. Kolmogorov distance between asymptotic and exact distributions

Values of the load rate First-order asymptotic Second-order asymptotic

distribution distribution

ρ = 0.7 0.350 0.118

ρ = 0.8 0.235 0.050

ρ = 0.9 0.114 0.026

ρ = 0.95 0.050 0.018

In the Table 1 we show the Kolmogorov distance between asymptotic and
exact distributions:

Δ = max
0≤i≤N

∣∣∣∣∣
i∑

n=0

Dn −
i∑

n=0

Pn

∣∣∣∣∣
for different values of the parameter of load ρ.

We chose the condition Δ ≤ 0.05 as the criteria of method application. So
the second order asymptotic analysis method is applied for ρ ≥ 0.8.

5 Conclusion

In the paper, we study the retrial queueing system MMPP |M |1 by means of the
second order asymptotic analysis method under heavy load condition. During
the investigation, the asymptotic characteristic function of the number of calls
in the orbit is obtained. Numerical comparison of asymptotic distributions (of
the 1st and the 2nd orders) with the exact one is performed. The comparison
shows that the application area of the second order asymptotic method increases
by 4 times than first order asymptotic results: for load rate ρ > 0.8 Kolmogorov
distance has values Δ ≤ 0.05.

In this regard, there is the question about the increasing the accuracy of the
method by means of obtaining the third order asymptotic formula. However,
studies have shown that this approximation does not increase the range of the
method applicability. So for ρ ≤ 0.8 it need to develope other methods of system
studying.

Acknowledgments. This work is performed under the state order of the Ministry of
Education and Science of the Russian Federation No. 1.511.2014/K.
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Abstract. The main signaling protocol for IP Multimedia Subsystem
is Session Initiation Protocol. A typical procedure for a session estab-
lishment involves two types of signaling messages with different priority:
Invite message, which initiate a session, and non-Invite messages, which
continue session establishment. In the paper for the analysis of two types
signaling messages service process the single server asymmetric polling
system with two infinite queues and a non-zero switching time is pro-
posed. We estimate the waiting time for the gated and the exhaustive
service disciplines using input data applicable to signaling traffic analy-
sis. For the exhaustive discipline the formulas for the second moments
of the waiting time were obtained and calculation of the first and the
second moments of the waiting time was carried out.

Keywords: SIP · Polling system · Gated · Exhaustive · Symmetric ·
Switching time · Second moment · Queue

1 Introduction

The service of several types customer can be implemented via polling system with
multiple queues of finite or infinite capacity, non-zero switching time and one
or more servers which are common for all queues. Polling systems were studied
starting from 1950’s and the number of works in this area is quite large. One can
find a comprehensive review of results on the polling systems in [12,14] indicating
work with the theoretical results and the application of polling systems to the
analysis of technical systems, including public health systems, air and railway
transportation, and telecommunication systems.

In our paper we study a polling model applicable to the analysis of signaling
traffic in telecommunication networks. One of the elements of modern telecom-
munication network is a server of Session Initiation Protocol [10], which today
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is one of the major signaling protocols in the Next Generation Networks. The
waiting time of SIP signaling messages at SIP-server is an important perfor-
mance measure because of limited lifetime of the SIP messages. Constructing
a model for the analysis of SIP message waiting time we consider two types of
SIP-messages: low priority Invite messages for the session initiation and so-called
non-Invite messages for the session establishment which have a high priority.

To describe SIP messages service by a SIP-server and analyze the random
service time of a SIP message we used the classical queueing theory for the study
of complex systems [7,8]. We develop the mathematical model of a SIP-server as
a polling system with two infinite queues, non-zero switching time and a single
server. The purpose of our investigation is to estimate numerical characteristics
of the random waiting time of a customer in the queueing system for two service
disciplines - gated and exhaustive.

The polling system with two queues and the both service disciplines was
investigated in [12] where the formulas for the mean waiting time in case of
a symmetric model with non-zero switching time and in case of an asymmet-
ric model with zero switching time were obtained. For the exhaustive service
discipline in [12] they obtain the mean waiting time both for symmetric and
asymmetric models with non-zero switching time. Part of these results is also
published in earlier studies [3,4,13]. In this paper, explicit expressions for the
mean waiting time in an asymmetric polling system with two queues, non-zero
switching time and the gated service discipline are presented. In [6] the formulas
for the second waiting time moments were obtained for a symmetric polling sys-
tems with two, three and four queues with zero and non-zero switching time for
the both service disciplines. They notice in [6] that most research has focused
only on the mean waiting times due to prohibitively growing complexity in com-
puting higher-order moments of the waiting time. With regard to the analysis of
SIP signaling traffic in [5,11] it was shown that the exhaustive service discipline
corresponds to lower blocking probability and lower queue length and there-
fore lower waiting time for the priority customers in comparison with the gated
service discipline. So the contribution of this paper is developing explicit expres-
sions for the second moments of the waiting time distribution in an asymmetric
polling system with two queues, non-zero switching time and the exhaustive
service discipline which is more effective applying to the SIP signaling traffic
analysis.

The paper is organized as follows. In Sect. 2 we introduce all the necessary
concepts and denotation and describe the polling system with non-zero switching
time and two queues. In Sects. 3 and 4 we carry out the mathematical analysis
of the model for the gated and the exhaustive service disciplines, respectively.
Section 5 provides examples of numerical analysis, were we analyze the effective-
ness of the gated and the exhaustive service disciplines in terms of waiting time.
Finally, we summarize our key results.
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2 The Polling System with Non-zero Switching Time
and Two Queues

We consider the asymmetric polling system with two queues and non-zero switch-
ing time classified according to the Basharin-Kendall’s notation as M2|G2|1|∞
(Fig. 1).

Fig. 1. Polling system with two queues and non-zero switching time.

According to the gated service discipline only customers standing in front of
the gate are served during this server’s visit. According to the exhaustive service
discipline the server serves customers until the queue is emptied.

We assume the Poisson incoming flow of customers with parameter λ =

λ1 + λ2. The mean service time of a customers at Qi queue is bi =
∞∫
0

t dBi(t)

with distribution function (DF) Bi(t) [7]. We denote kth moment of service

time by b
(k)
i =

∞∫
0

tk dBi(t), k � 2, the Laplace-Stieltjes transform (LST) of DF

by B̃i(x) =
∞∫
0

e−xtdBi(t), x � 0, i = 1, 2. The value ρi = λib
(1)
i is the load

from Qi customers, i = 1, 2, the value ρ =
2∑

i=1

λib
(1)
i forms the system total

load. The necessary and sufficient stability conditions obey the inequality ρ < 1.
The mean, kth moment and LST of switching time to queue Qi, i = 1, 2 are
denoted by si, s

(k)
i and S̃i(x), i = 1, 2, respectively. The value s = s1 + s2 is

total switching time, and si - switching time to queue Qi, i = 1, 2. Hamiltonian
cycle is equal C = ρC + s, and C = s

1−ρ . The notation corresponds to [14].

3 Gated Service Discipline

In this section an asymmetric gated polling system with two queues and non-zero
switching time is considered. We obtain the expressions for the first moments of
the waiting time distribution for both queues. For special cases of a symmetric
system and for zero switching time the presented expressions coincide with the
formulas obtained in [12].

Let Xj
i denote the number of customers in the queue Qj when the server

serves customers at the queue Qi, i, j = 1, 2. Let Ai(T ) denote the number of
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customers arriving to the queue Qi during a time interval of length T , Bik —
k-th customers service time at the queue Qi, i = 1, 2.

The values Xj
i+1 and Xj

i are related as follows:

Xj
i+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xj
i + Aj

(
Xi

i∑
k=1

Bik + Si+1

)
, j �= i,

Ai

(
Xi

i∑
k=1

Bik + Si+1

)
, j = i.

(1)

Let pi(n1, n2) be the stationary probability, that n1 customers are in the
queue Q1 and n2 customers are in the queue Q2 at polling instant of the queue Qi,
n1, n2 � 0, i = 1, 2. The generating function (GF) of the number of customers
in the system at polling instant of the queue Qi is denoted by Gi (z1, z2):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G1 (z1, z2) = G2

(
z1, B̃2 (λ1(1 − z1) + λ2(1 − z2))

)

×S̃1 (λ1(1 − z1) + λ2(1 − z2)) ,

G2 (z1, z2) = G1

(
B̃1 (λ1(1 − z1) + λ2(1 − z2)) , z2

)

×S̃2 (λ1(1 − z1) + λ2(1 − z2)) .

(2)

We denote the mean number of customers in the queue Qj at polling instant
of the queue Qi as fi(j):

fi(j) := M
[
Xj

i

]
=

∂Gi(z1, z2)
∂zj

∣∣∣∣
(z1,z2)=(1,1)

, i, j = 1, 2 (3)

We use the following notation: v = λ1(1 − z1) + λ2(1 − z2), B̃i(0) = 1,

dB̃i (ν)
dν

∣∣∣∣∣
ν=0

= −bi,
dS̃i(v)

dv

∣∣∣∣∣
ν=0

= −si,
∂v

∂zi
= −λi,

d2S̃i(v)
(dv)2

∣∣∣∣∣
ν=0

= s
(2)
i ,

d2B̃i(ν)
(dν)2

∣∣∣∣∣
ν=0

= b
(2)
i ,

if (z1, z2) = (1, 1) then ν (1, 1) = 0, Gi (1, 1) = 1, S̃i(0) = 1, i = 1, 2.
From (4) we obtain all values fi(j) i, j = 1, 2:

⎧⎪⎪⎨
⎪⎪⎩

f1(1) = λ1C,
f1(2) = λ2 (ρ2C + s1) ,
f2(2) = λ2C,
f2(1) = λ1 (ρ1C + s2) .

(4)

The second moments (5) of the Xj
i are also obtained from GF Gi (z1, z2),

i, j = 1, 2:

fi (j, k) =
∂2Gi (z1, z2)

∂zj∂zk

∣∣∣∣
(z1,z2)=(1,1)

, fi (i, i) =
∂2Gi (z1, z2)

(∂zi)
2

∣∣∣∣∣
(z1,z2)=(1,1)

. (5)
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For the gated service disciplines we get the following system:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 (1, 1) = f2 (1, 1) + 2f2 (1, 2) b2λ1 + f2 (2, 2) b22λ
2
1 + f2 (2) b

(2)
2 λ2

1

+2s1λ1 (f2 (1) + f2 (2) b2λ1) + s
(2)
1 λ2

1,

f1(1, 2) = f2(1, 2)ρ2 + f2(2, 2)b2λ1ρ2 + f2(2)b(2)2 λ1λ2

+s1λ2f2(1) + 2s1λ1ρ2f2(2) + s
(2)
1 λ1λ2,

f1(2, 1) = f2(1, 2)ρ2 + f2(2, 2)b2λ1ρ2 + f2(2)b(2)2 λ1λ2

+s1λ2f2(1) + 2s1λ1ρ2f2(2) + s
(2)
1 λ1λ2,

f1(2, 2) = f2(2, 2)b22λ
2
2 + f2(2)b(2)2 λ2

2 + 2f2(2)b2λ2
2s1 + s

(2)
1 λ2

2,

f2(1, 1) = f1(1, 1)b21λ
2
1 + f1(1)b(2)1 λ2

1 + 2f1(1)b1λ2
1s2 + s

(2)
2 λ2

1,

f2(1, 2) = f1(1, 2)ρ1 + f1(1, 1)b1λ2ρ1 + f1(1)b(2)1 λ1λ2

+s2λ1f1(2) + 2s2λ2ρ1f1(1) + s
(2)
2 λ1λ2,

f2(2, 1) = f1(1, 2)ρ1 + f1(1, 1)b1λ2ρ1 + f1(1)b(2)1 λ1λ2

+s2λ1f1(2) + 2s2λ2ρ1f1(1) + s
(2)
2 λ1λ2,

f2 (2, 2) = f1 (2, 2) + 2f1 (1, 2) b1λ2 + f1 (1, 1) b21λ
2
2

+f1 (1) b
(2)
1 λ2

2 + 2s2λ2 (f1 (2) + f1 (1) b1λ2) + s
(2)
2 λ2

2.

(6)

The value f1 (1, 1) satisfies the following equation:

f1 (1, 1)
λ2
1

=

(
Cb

(2)
1 λ1 + s

(2)
2

) (
1 + 2ρ2 − 2ρ32 − ρ1ρ2 − 2ρ1ρ

2
2

)

(1 − ρ)(1 − ρ1ρ2)(2ρ1ρ2 + ρ + 1)

+

(
Cb

(2)
2 λ2 + s

(2)
1

)
(1 + ρ1ρ2)

(1 − ρ)(1 − ρ1ρ2)(2ρ1ρ2 + ρ + 1)
+

2s21
(
ρ − ρ21ρ

2
2

)
(1 − ρ)2(1 − ρ1ρ2)(2ρ1ρ2 + ρ + 1)

+
2s1s2 (1 + ρ + ρ1ρ2 (1 − ρ − 2ρ1ρ2))
(1 − ρ)2(1 − ρ1ρ2)(2ρ1ρ2 + ρ + 1)

+
2s22

(
ρ22 + ρ32 − ρ42 + ρ1 + 2ρ1ρ2 − 2ρρ1ρ

2
2 − ρ21ρ2

)
(1 − ρ)2(1 − ρ1ρ2)(2ρ1ρ2 + ρ + 1)

.

(7)

The equations for f2 (2, 2) can be obtained in the same way.
The LST of the DF for the waiting time with the gated service discipline is

given by

W̃i(x) =
1 − ρ

s

Gi

(
B̃i(x)

)
− Gi (1 − x/λi)

x − λi + λiB̃i(x)
. (8)

From (9) we get the mean waiting time for an asymmetric polling system
with the gated service discipline in the form of

ωi = − d

dx
W̃i(x)

∣∣∣∣
x=0

=
fi(i, i)
2λ2

i C
(1 + ρi), i = 1, 2. (9)

In case of an asymmetric gated polling system with two queues and non-zero
switching time we obtain the following equations:



Comparison of Polling Disciplines 363

⎧⎪⎪⎨
⎪⎪⎩

ω1 =
(1 + ρ1)f1(1, 1)

2λ2
1C

,

ω2 =
(1 + ρ2)f2(2, 2)

2λ2
2C

.
(10)

From (10) it follows that

ω1 =
(1 + ρ1)

2s(1 − ρ1ρ2)(2ρ1ρ2 + ρ + 1)
×

{ (
Cb

(2)
2 λ2 + s

(2)
1

)
(1 + ρ1ρ2)

+
(
Cb

(2)
1 λ1 + s

(2)
2

) (
1 + 2ρ2 − 2ρρ22 − ρ1ρ2

)

+
2s21

(
ρ − ρ21ρ

2
2

)
(1 − ρ)

+
2s1s2 (1 + ρ + ρ1ρ2 (1 − ρ − 2ρ1ρ2))

(1 − ρ)

+
2s22

(
ρ22 + ρ32 − ρ42 + ρ1 + 2ρ1ρ2 − 2ρρ1ρ

2
2 − ρ21ρ2

)
(1 − ρ)

}
,

(11)

ω2 =
(1 + ρ2)

2s(1 − ρ1ρ2)(2ρ1ρ2 + ρ + 1)
×

{ (
Cb

(2)
1 λ1 + s

(2)
2

)
(1 + ρ1ρ2)

+
(
Cb

(2)
2 λ2 + s

(2)
1

) (
1 + 2ρ1 − 2ρρ21 − ρ1ρ2

)

+
2s21

(
ρ21 + ρ31 − ρ41 + ρ2 + 2ρ1ρ2 − 2ρρ21ρ2 − ρ1ρ

2
2

)
(1 − ρ)

+
2s1s2 (1 + ρ + ρ1ρ2 (1 − ρ − 2ρ1ρ2))

(1 − ρ)
+

2s22
(
ρ − ρ21ρ

2
2

)
(1 − ρ)

}
.

(12)

In case of a symmetric gated polling system with two queues and non-zero
switching time using (11) with ρ1 = ρ2 = ρi, s1 = s2 = si, b

(2)
1 = b

(2)
2 = b

(2)
i ,

λ1 = λ2 = λi we obtain the mean waiting time as follows:

ωgated symm =
b
(2)
i λi

(1 − 2ρi)
+

s
(2)
i

2si
+

si(4ρi + 1)
2(1 − 2ρi)

. (13)

In case of zero switching time the mean waiting time for the first queue from
(11) with s1 = s2 = 0 is equal to

ω1(si = 0)

=
(1 + ρ1)

(
b
(2)
1 λ1

(
1 + 2ρ2 − 2ρ32 − ρ1ρ2 − 2ρ1ρ

2
2

)
+ b

(2)
2 λ2 (1 + ρ1ρ2)

)

2(1 − ρ1 − ρ2)(1 − ρ1ρ2)(2ρ1ρ2 + ρ1 + ρ2 + 1)
.

(14)

The special cases (13) and (14) are also obtained in [12].

4 Exhaustive Service Discipline

In this section an asymmetric exhaustive polling system with two queues and
non-zero switching time is considered. The expressions for the first moments of
the waiting time distribution are known from [12]. Using the approach of [6]



364 Y. Gaidamaka and E. Zaripova

we obtain the expressions for the second moments of the waiting time distribu-
tion for an asymmetric system. For the special case of a symmetric system the
presented expressions for the second moments of the waiting time distribution
coincide with the formulas obtained in [6].

The values Xj
i and Xj

i+1 for the exhaustive service discipline are linked by
the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1
1 = X1

2 + A1

(
X2

2∑
k=1

Θ2k + S1

)
,

X1
2 = A1(S2),

X2
2 = X2

1 + A2

(
X1

1∑
k=1

Θ1k + S2

)
,

X2
1 = A2(S1),

(15)

where Ai(T ) is the same as for the gated discipline, Θik is the k-th customer
service time at queue Qi, i = 1, 2.

Values Θik are independent and distributed identically with LST θ̃i(x), which
is the solution of expression (16) and correspond to the LST of the DF for the
length of a busy period at the queue Qi in polling system with the exhaustive
service discipline [2]:

θ̃i(x) = B̃i

(
x + λi − λiθ̃i (x)

)
. (16)

The first three moments of the busy period in Eqs. (17)–(19) are necessary
for the moments of waiting time:

θi = −θ̃′(0) =
bi

1 − ρi
, (17)

θ
(2)
i = θ̃

′′
(0) =

b
(2)
i

(1 − ρi)
3 , (18)

θ
(3)
i = −θ̃

′′′
(0) =

b
(3)
i

(1 − ρi)
4 +

3λi

(
b
(2)
i

)2

(1 − ρi)
5 . (19)

The GF Gi (z1, z2) of the number of customers in the system at polling instant
of the queue Qi is given by

⎧⎨
⎩

G1(z1, z2) = G2

(
z1, θ̃2 (λ1 (1 − z1))

)
· S̃1 (λ1(1 − z1) + λ2(1 − z2)) ,

G2(z1, z2) = G1

(
θ̃1 (λ2 (1 − z2)) , z2

)
· S̃2 (λ1(1 − z1) + λ2(1 − z2)) .

(20)

We denote S̃i (λ1(1 − z1) + λ2(1 − z2)) is the LST of the DF Si (t) . The Si (t)
is the DF of switching time to queue Qi. The values fi(j) of the mean number of
customers we estimate by derivation of GF G1(z1, z2) and G2(z1, z2), i, j = 1, 2:

fi(j) = M
[
Xj

i

]
=

∂Gi(z1, z2)
∂zj

∣∣∣∣
(z1,z2)=(1,1)

. (21)
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We use the following notation: ρi = λibi, ηi = λi(1 − zi), v = η1 + η2,

dS̃i(v)
dv

∣∣∣∣∣
v=0

= −si,
∂v

∂zi
= −λi,

d2S̃i(v)
(dv)2

∣∣∣∣∣
v=0

= s
(2)
i ,

d2θ̃i(ηi+1)
(d(ηi+1))

2

∣∣∣∣∣
ηi+1=0

=
b
(2)
i

(1 − ρi)
3 .

If (z1, z2) = (1, 1), then ν (1, 1) = 0, Gi (1, 1) = 1, S̃i(0) = 1, θ̃i(0) = 1, i = 1, 2.
Note that for the exhaustive service discipline ∂Gi(z1,z2)

∂zi
= 0, so the exhaus-

tive service discipline is easier in calculations that the gated service discipline.
The values fi(j) expressed in the following explicit form [14]:

⎧⎪⎪⎨
⎪⎪⎩

f1(1) = λ1C (1 − ρ1) ,
f1(2) = λ2s1,
f2(1) = λ1s2,
f2(2) = λ2C (1 − ρ2) .

(22)

The second moments (23) of the Xj
i are also defined in the same way as for

the gated service discipline.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(2, 2) = λ2
2s

(2)
1

f2(1, 1) = λ2
1s

(2)
2

f2(1, 2) = λ1λ2s1s2 + ρ1λ1λ2s2C + s
(2)
2 λ1λ2

f2(2, 1) = λ1λ2s1s2 + ρ1λ1λ2s2C + s
(2)
2 λ1λ2

f1(1, 2) = λ1λ2s1s2 + ρ2λ1λ2s1C + s
(2)
1 λ1λ2

f1(2, 1) = λ1λ2s1s2 + ρ2λ1λ2s1C + s
(2)
1 λ1λ2

f2(2, 2) = λ2
2s

(2)
2 + f1(1, 1)

(
b1λ2
1−ρ1

)2

+ λ1Cλ2
2

[
b
(2)
1

(1−ρ1)
2 + 2s2b1

]

+2
(
λ1λ2s1s2 + ρ2λ1λ2s1C + s

(2)
1 λ1λ2

)
b1λ2
1−ρ1

+ λ2
2s

(2)
1 + 2λ2

2s1s2

f1(1, 1) = λ2
1s

(2)
1 + f2(2, 2)

(
b2λ1
1−ρ2

)2

+ λ2Cλ2
1

[
b
(2)
2

(1−ρ2)
2 + 2s1b2

]

+2
(
λ1λ2s1s2 + ρ1λ1λ2s2C + s

(2)
2 λ1λ2

)
b2λ1
1−ρ2

+ λ2
1s

(2)
2 + 2λ2

1s1s2

(23)

Using the system (23), we get f1(1, 1) and f2(2, 2) in the explicit form, by
way of example

f1(1, 1)
λ2
1

=
s
(2)
1 (1 − ρ1) (1 − ρ − ρ2 + 2ρρ2)

(1 − ρ + 2ρ1ρ2) (1 − ρ)
+

s
(2)
2 (1 − ρ1)

2

(1 − ρ + 2ρ1ρ2) (1 − ρ)

+
b
(2)
1 λ1ρ

2
2C

(1 − ρ + 2ρ1ρ2) (1 − ρ)
+

b
(2)
2 λ2C (1 − ρ1)

2

(1 − ρ + 2ρ1ρ2) (1 − ρ)

+
2s21 (1 − ρ1) ρ2

(
1 − ρ − ρ2 + 2ρ1ρ2 + ρ22

)

(1 − ρ + 2ρ1ρ2) (1 − ρ)2
+

2s22ρ1ρ2 (1 − ρ1)
2

(1 − ρ + 2ρ1ρ2) (1 − ρ)2

+
2s1s2 (1 − ρ1)

(−2ρ21ρ2 + ρ21 + 3ρ1ρ2 − ρ1 − ρ + 1
)

(1 − ρ)2 (1 − ρ + 2ρ1ρ2)
.

(24)
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The LST of the DF for the waiting time with the exhaustive service discipline
is given by

W̃i (x) =
1 − ρ

s

1 − Gi (1 − x/λi)

x − λi + λiB̃i(x)
. (25)

From (25) we get for exhaustive polling system the first ωi and the second
W

(2)
i moments of the waiting time distribution at the queue Qi, i = 1, 2, in the

form of

ωi = − d

dx
W̃i(x)

∣∣∣∣
x=0

=
fi(i, i)

2λ2
i (1 − ρi)C

+
λib

(2)
i

2 (1 − ρi)
, (26)

W
(2)
i = d2

(dx)2
W̃i(x)

∣∣∣
x=0

=
λib

(3)
i

3(1 − ρi)
+

(
λib

(2)
i

)2

2(1 − ρi)2
+

fi(i, i, i)
3(1 − ρi)λ3

i C
+

fi(i, i)b
(2)
i

2(1 − ρi)2λiC
.

(27)

From (26) it follows that the mean waiting time for exhaustive polling system
and non-zero switching time at the queue Q1 have the following form:

ω1 =
s
(2)
1 (1 − ρ − ρ2 + 2ρρ2)

2s (1 − ρ + 2ρ1ρ2)
+

s
(2)
2 (1 − ρ1)

2s (1 − ρ + 2ρ1ρ2)

+
λ1b

(2)
1 (1 − ρ − ρ2 + 2ρ2ρ) + b

(2)
2 λ2 (1 − ρ1)

2 (1 − ρ + 2ρ1ρ2) (1 − ρ)

+
s22ρ1ρ2 (1 − ρ1)

s (1 − ρ + 2ρ1ρ2) (1 − ρ)
+

s1s2 (1 − ρ1)
s (1 − ρ)

+
s21ρ2

(
1 − ρ − ρ2 + 2ρ1ρ2 + ρ22

)
s (1 − ρ + 2ρ1ρ2) (1 − ρ)

.

(28)

The expression for ω2 can be obtained in the same way.
In case of a symmetric exhaustive polling system with two queues and non-

zero switching time using (28) with ρ1 = ρ2 = ρi, λ1 = λ2 = λi, s1 = s2 = si,
b
(2)
1 = b

(2)
2 = b

(2)
i , s

(2)
1 = s

(2)
2 = s

(2)
i we obtain the mean waiting time as follows:

ωexhaustive symm =
b
(2)
i λi

(1 − 2ρi)
+

s
(2)
i

2si
+

si

2 (1 − 2ρi)
. (29)

Special case (29) is also obtained in [12].
In case of zero switching time the mean waiting time for the first queue from

(28) with s1 = s2 = 0 is equal to

ω1 (si = 0) =
λ1b

(2)
1 (1 − ρ − ρ2 + 2ρ2ρ) + b

(2)
2 λ2 (1 − ρ1)

2 (1 − ρ + 2ρ1ρ2) (1 − ρ)
. (30)

Comparing the expressions (13) for the gated service discipline and (29) for
the exhaustive service discipline we found that

ωgated symm − ωexhaustive symm =
4ρisi

2(1 − 2ρi)
. (31)
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In case of non-zero switching time and ρi > 0, ρ = 2ρi, ρ < 1, the value
of (31) is positive. Hence for a symmetric polling system the exhaustive service
discipline is more effective in terms of the mean waiting time. Therefore, we will
obtain formulas for the second moments of the waiting time distribution for an
asymmetric polling system with two queues and equal non-zero switching time
for the exhaustive service discipline. We use the following notation: s1 = s2 = s0,
s
(k)
1 = s

(k)
2 = s

(k)
0 , k = 2, 3.

To estimate the second moment of the waiting time it is necessary to know
the values of the third moments of the customer’s number at the queues:

fi (j, k, l) =
∂3Gi (z1, z2)
∂zj∂zk∂zl

∣∣∣∣
(z1,z2)=(1,1)

. (32)

By way of example the value f1(1, 1, 1) satisfy the following equation:

f1(1, 1, 1)
λ3
1

=
s
(3)
0 (1 − ρ1)
(1 − ρ) A

×
(
3ρ21ρ

2
2 + 3ρ1ρ

3
2 − 3ρ21ρ2 − 6ρ1ρ

2
2 + 2ρ21 + 6ρ1ρ2 + 3ρ22 − 4ρ1 − 3ρ2 + 2

)
(1 − ρ) A

+
2s0b

(3)
1 λ1ρ

3
2

(1 − ρ)2 A
+

2s0b
(3)
2 λ2 (1 − ρ1)

3

(1 − ρ)2 A

+
6s0

(
b
(2)
1

)2

λ2
1ρ

3
2

(
2ρ1ρ2 + ρ22 − ρ1 − 2ρ2 + 1

)

(1 − ρ + 2ρ1ρ2) (1 − ρ)3 A

+
6s0b

(2)
1 λ1b

(2)
2 λ2ρ2 (1 − ρ1)

(−ρ21ρ2 + ρ1ρ
2
2 + ρ21 + 2ρ1ρ2 − 2ρ1 − ρ2 + 1

)

(1 − ρ + 2ρ1ρ2) (1 − ρ)3 A

+
6s0

(
b
(2)
2

)2

λ2
2

(
ρ21 + 2ρ1ρ2 − 2ρ1 − ρ2 + 1

)
(1 − ρ1)

3

(1 − ρ + 2ρ1ρ2) (1 − ρ)3 A

+
3s

(2)
0 b

(2)
1 λ1ρ

3
2

(−ρ21 + 2ρ1ρ2 + ρ22 − 2ρ2 + 1
)

(1 − ρ + 2ρ1ρ2) (1 − ρ)2 A

+
3s

(2)
0 b

(2)
2 (1 − ρ1)

3
λ2

(−ρ22 + 2ρ1ρ2 + ρ21 − 2ρ1 + 1
)

(1 − ρ + 2ρ1ρ2) (1 − ρ)2 A

+
3s20λ1b

(2)
1 ρ22

(1 − ρ)3 A (2ρ1ρ2 − ρ1 − ρ2 + 1)
(−12ρ31ρ

2
2 + 13ρ31ρ2 + 27ρ21ρ

2
2 + ρ1ρ

3
2

−ρ42 − 4ρ31 − 35ρ21ρ2−20ρ1ρ
2
2 + ρ32 + 12ρ21 + 31ρ1ρ2 + 5ρ22 − 12ρ1 − 9ρ2 + 4)

+
3s20λ2b

(2)
2 (1 − ρ1)

3

(1 − ρ)3 A (2ρ1ρ2 − ρ1 − ρ2 + 1)
(12ρ21ρ

2
2 + ρ32 − 9ρ22ρ1 − 11ρ2ρ

2
1 − ρ31 + ρ22

+16ρ1ρ2+5ρ21 − 5ρ2 − 7ρ1 + 3)+
3s0s

(2)
0 (1 − ρ1)

(1 − ρ)2 A (1 − ρ + 2ρ1ρ2)
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×(−6ρ41ρ
3
2 + 6ρ21ρ

5
2 + 15ρ41ρ

2
2 + 15ρ31ρ

3
2 − 3ρ21ρ

4
2 − 3ρ1ρ

5
2 − 9ρ41ρ2

−44ρ31ρ
2
2 − 15ρ21ρ

3
2 + 2ρ1ρ

4
2 + 2ρ41 + 32ρ31ρ2 + 48ρ21ρ

2
2 + 9ρ1ρ

3
2+

+ρ42 − 8ρ31 − 42ρ21ρ2 − 24ρ1ρ
2
2 − 3ρ32 + 12ρ21 + 24ρ1ρ2 + 5ρ22−8ρ1 − 5ρ2 + 2)

+
6s30ρ2 (1 − ρ1)

(1 − ρ + 2ρ1ρ2) A (1 − ρ)3
× (4ρ51ρ

2
2 − 6ρ41ρ

3
2 + 2ρ21ρ

5
2 − 3ρ51ρ2 − 2ρ41ρ

2
2

+18ρ31ρ
3
2 − ρ1ρ

5
2 + ρ51 + 6ρ41ρ2 − 20ρ31ρ

2
2 − 22ρ21ρ

3
2 − ρ1ρ

4
2 − 3ρ41 + 4ρ31ρ2

+36ρ21ρ
2
2 + 14ρ1ρ

3
2 + ρ42 + 2ρ31 − 18ρ21ρ2 − 24ρ1ρ

2
2 − 4ρ32 + 2ρ21 + 15ρ1ρ2

+6ρ22 − 3ρ1 − 4ρ2 + 1),

where A = 3ρ21ρ
2
2 − 3ρ21ρ2 − 3ρ1ρ

2
2 + ρ21 + 5ρ1ρ2 + ρ22 − 2ρ1 − 2ρ2 + 1 is the load

parameter.
The second moment W

(2)
1 of the waiting time distribution of customers at

the first queue in an asymmetric polling system with two queues and identical
switching times and the exhaustive service discipline is given by

W
(2)
1 =

s
(3)
0 A1

6s0A
+

b
(3)
1 λ1A2

3 (1 − ρ) A

+
b
(3)
2 λ2 (1 − ρ1)

2

3 (1 − ρ) A
+

(
λ1b

(2)
1

)2

A3

2 (1 − ρ)2 (2ρ1ρ2 − ρ1 − ρ2 + 1)

+
b
(2)
1 λ1b

(2)
2 λ2A4

2 (1 − ρ + 2ρ1ρ2) (1 − ρ)2 A
+

(
b
(2)
2

)2

λ2
2A5

(1 − ρ + 2ρ1ρ2) (1 − ρ)2 A

+
s
(2)
0 b

(2)
2 λ2A6

2s0 (1 − ρ + 2ρ1ρ2) (1 − ρ) A
+

s
(2)
0 b

(2)
1 λ1A7

2s0 (1 − ρ + 2ρ1ρ2) (1 − ρ) A

+
s0λ1b

(2)
1 A8

2 (1 − ρ)2 A (1 − ρ + 2ρ1ρ2)
+

s0λ2b
(2)
2 (1 − ρ1)

2
A9

2 (1 − ρ)2 A (1 − ρ + 2ρ1ρ2)

+
s
(2)
0 A10

2 (1 − ρ) A (1 − ρ + 2ρ1ρ2)
+

s20ρ2A11

(1 − ρ + 2ρ1ρ2) A (1 − ρ)2
,

(33)

where the loading parameters A, A1, ..., A11 are listed below:

A = ρ21ρ
2
2 − 3ρ21ρ2 − 3ρ1ρ

2
2 + ρ21 + 5ρ1ρ2 + ρ22 − 2ρ1 − 2ρ2 + 1,

A1 = 3ρ21ρ
2
2 + 3ρ1ρ

3
2 − 3ρ21ρ2 − 6ρ1ρ

2
2 + 2ρ21 + 6ρ1ρ2 + 3ρ22 − 4ρ1 − 3ρ2 + 2,

A2 = 3ρ21ρ
2
2 + 3ρ1ρ

3
2 − 3ρ21ρ2 − 6ρ1ρ

2
2 + ρ21 + 6ρ1ρ2 + 3ρ22 − 2ρ1 − 3ρ2 + 1,

A3 = 6ρ31ρ
3
2 + 12ρ21ρ

4
2 + 6ρ1ρ

5
2 − 9ρ31ρ

2
2 − 27ρ21ρ

3
2 − 18ρ1ρ

4
2 + 5ρ31ρ2

+29ρ21ρ
2
2 + 33ρ1ρ

3
2 + 4ρ42 − ρ31 − 15ρ21ρ2 − 31ρ1ρ

2
2 − 11ρ32 + 3ρ21

+15ρ1ρ2 + 11ρ22 − 3ρ1 − 5ρ2 + 1,
A4 = −3ρ31ρ

2
2 − 3ρ21ρ

3
2 + 3ρ31ρ2 + 7ρ21ρ

2
2 + 5ρ1ρ

3
2 − ρ31 − 7ρ21ρ2 − 5ρ1ρ

2
2

−ρ32 + 3ρ21 + 5ρ1ρ2 + ρ22 − 3ρ1 − ρ2 + 1,

A5 =
(
ρ21 + 2ρ1ρ2 − 2ρ1 − ρ2 + 1

)
(1 − ρ1)

2
,

A6 =
(−ρ22 + 2ρ1ρ2 + ρ21 − 2ρ1 + 1

)
(1 − ρ1)

2
,

A7 = 3ρ31ρ
3
2 + 6ρ21ρ

4
2 + 3ρ1ρ

5
2 − 6ρ31ρ

2
2 − 15ρ21ρ

3
2 − 9ρ1ρ

4
2 + 4ρ31ρ2

+19ρ21ρ
2
2 + 19ρ1ρ

3
2 + 2ρ42 − ρ31 − 12ρ21ρ2 − 20ρ1ρ

2
2 − 6ρ32 + 3ρ21

+12ρ1ρ2 + 7ρ22 − 3ρ1 − 4ρ2 + 1,
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A8 = −3ρ41ρ
3
2 + 3ρ31ρ

4
2 + 3ρ21ρ

5
2 − 3ρ1ρ

6
2 + 6ρ41ρ

2
2 + 6ρ31ρ

3
2 + 6ρ21ρ

4
2

+6ρ1ρ
5
2 − 4ρ41ρ2 − 19ρ31ρ

2
2 − 17ρ21ρ

3
2 − 16ρ1ρ

4
2 − 2ρ52 + ρ41 + 15ρ31ρ2

+27ρ21ρ
2
2 + 25ρ1ρ

3
2 + 8ρ42 − 4ρ31 − 21ρ21ρ2 − 21ρ1ρ

2
2 − 11ρ32 + 6ρ21

+13ρ1ρ2 + 7ρ22 − 4ρ1 − 3ρ2 + 1,
A9 = 12ρ21ρ

2
2 + ρ32 − 9ρ1ρ

2
2 − 11ρ21ρ2 − ρ31 + ρ22 + 16ρ1ρ2 + 5ρ21

−5ρ2 − 7ρ1 + 3,
A10 = −6ρ41ρ

3
2 + 6ρ21ρ

5
2 + 15ρ41ρ

2
2 + 15ρ31ρ

3
2 − 3ρ21ρ

4
2 − 3ρ1ρ

5
2 − 9ρ41ρ2

−44ρ31ρ
2
2 − 15ρ21ρ

3
2 + 2ρ1ρ

4
2 + 2ρ41 + 32ρ31ρ2 + 48ρ21ρ

2
2 + 9ρ1ρ

3
2

+ρ42 − 8ρ31 − 42ρ21ρ2 − 24ρ1ρ
2
2 − 3ρ32 + 12ρ21 + 24ρ1ρ2 + 5ρ22

−8ρ1 − 5ρ2 + 2,
A11 = 4ρ51ρ

2
2 − 6ρ41ρ

3
2 + 2ρ21ρ

5
2 − 3ρ51ρ2 − 2ρ41ρ

2
2 + 18ρ31ρ

3
2 − ρ1ρ

5
2

+ρ51 + 6ρ41ρ2 − 20ρ31ρ
2
2 − 22ρ21ρ

3
2 − ρ1ρ

4
2 − 3ρ41 + 4ρ31ρ2 + 36ρ21ρ

2
2

+14ρ1ρ
3
2 + ρ42 + 2ρ31 − 18ρ21ρ2 − 24ρ1ρ

2
2 − 4ρ32 + 2ρ21 + 15ρ1ρ2

+6ρ22 − 3ρ1 − 4ρ2 + 1.

In case of a symmetric exhaustive polling system with two queues and non-
zero switching time the second moment W

(2)
i , i = 1, 2, of the waiting time

distribution of customers from (33) with ρ1 = ρ2 = ρi, b
(k)
1 = b

(k)
2 = b

(k)
i ,

s
(k)
0 = s

(k)
i , λ1 = λ2 = λi is equal to

W
(2)
i =

=

(
2ρ2i − ρi + 2

)
(ρ2i − ρi + 1)

⎛
⎜⎝ b

(3)
i λi

3 (1 − 2ρi)
+

s
(3)
i

6si
+

(
b
(2)
i

)2

λ2
i

(1 − 2ρi)
2 +

s
(2)
i b

(2)
1 λi

2si (1 − 2ρi)

⎞
⎟⎠

+
sib

(2)
i λi

(
6ρ2i − 5ρi + 4

)

2 (1 − 2ρi)
2 (ρ2i − ρi + 1)

+
s
(2)
i

(
4ρ2i − 3ρi + 2

)
2 (1 − 2ρi) (ρ2i − ρi + 1)

+
s2i ρi

(
2ρ2i − 2ρi + 1

)

(1 − 2ρi)
2 (ρ2i − ρi + 1)

.

(34)

The special case (34) is also obtained in [6].

5 Numerical Experiment

In this section we present results of computation of the first and the second
moments of the waiting time distribution for the gated and the exhaustive service
disciplines using input data applicable to signaling traffic analysis [5,9,11]. Let
si = 2 ms be the mean switching time to the queue Qi, i = 1, 2, b1 = 4 ms be
the mean service time of the first type customers (non-Invite), b2 = 10 ms be
the mean service time of the second type customers (Invite). For typical session
initiation procedure [9] the values of input flow rates λ1 and λ2 are related as
follows: λ1 = 6λ2.

Figure 2 shows the dependence of the mean waiting times ω1 and ω2 at the
queues Q1 and Q2 on the total input load ρ. Two service disciplines, gated and
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Fig. 2. Mean waiting time for gated and exhaustive service disciplines.

Fig. 3. The second moments of the waiting time distribution for exhaustive service
discipline.

exhaustive, were compared under the exponential service time and the deter-
ministic service time with the same mean values of b1 and b2.

The first thing to notice is that the mean waiting time for an exponential
service time is higher than those for a deterministic service time for the both
service disciplines. As might be expected, the mean waiting time for the exhaus-
tive service discipline is always less than those for the gated service discipline.
It follows from the fact that the value of (31) is positive with the above input
data.
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Figure 3 illustrates the calculation of the second moments W
(2)
1 and W

(2)
2 of

the waiting time distribution for the exhaustive service discipline using formula
(33). Figure 3 shows the dependence of W

(2)
1 and W

(2)
2 at the queues Q1 and Q2

on the total input load ρ. The calculations were made for the exhaustive service
discipline because it is more effective than the gated service discipline applying
to the SIP signaling traffic analysis.

6 Conclusion

In this paper we study a single server asymmetric polling system with non-zero
switching time for two service disciplines - gated and exhaustive. The waiting
time is one of the key performance characteristics of the system related to SIP
signaling traffic analysis. First we analyzed the mean waiting time for both the
gated and the exhaustive service disciplines. Numerical analysis shows that the
exhaustive service discipline is preferable to gated one in terms of the mean
waiting time. So after that we analyzed the second moments of the waiting time
distribution only for the exhaustive service discipline. The paper provides the
explicit expressions for the second moments of the waiting time distribution for
a single server asymmetric polling system with non-zero switching time and the
exhaustive service discipline.

We thank Professor Konstantin Samouylov from Peoples’ Friendship Univer-
sity of Russia for comments that greatly improved the paper.
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Abstract. Stationary functioning of a closed queueing network with
temporarily non-active customers and multi-regime service strategies
is analyzed. Non-active customers are located in the network nodes in
queues, being not serviced. For a customer, the opportunity of passing
from its ordinary state to the temporarily non-active state (and back-
wards) is provided. Quantity of work for customer service is a random
distributed value. Stationary distribution insensitivity with respect to
functional form of distribution of work quantity for customer service is
established.

Keywords: Closed queueing network · Non-active customers · Multi-
regime service · Stationary distribution insensitivity

1 Introduction

Currently, attention to queueing theory is mainly stimulated by the need to
apply results of this theory to important practical problems. During the past
years, an important research effort has been devoted to the problem of queue-
ing systems reliability. In practical terms, it is important to consider several
different approaches: the queueing system can break down totally or partially.
Yu.V. Malinkovsky have introduced into consideration queuing networks with
multi-regime service strategies: systems at such networks can operate at several
regimes. Each regime corresponds to a certain degree of service efficiency.

Herewith, the problem of customer reliability becomes relevant too. Indeed
not only queueing system can break down. Customers may also lose their quality
indicators. Queueing network with temporarily non-active customers is a model
with customers, which are partly unreliable. The necessity of their study was
caused by practical considerations, because such networks allow us to consider
models with partially unreliable customers. Non-active customers are located in
the network systems in queues, being not serviced. For a customer, the opportu-
nity of passing from its ordinary state to the temporarily non-active state (and
backwards) is provided. Non-active customers can be interpreted as customers
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 373–383, 2015.
DOI: 10.1007/978-3-319-25861-4 31
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with defect that makes them unfit for service. G. Tsitsiashvili and M. Osipova
[1,2] have observed an open exponential queueing network with non-active cus-
tomers and have established the form of stationary distribution.

The standard assumption in analysis of classical queueing networks [3,4] is
that service time is exponentially distributed random value. But real numer-
ous statistical data prove the opposite. Therefore there is an actual problem
to develop an analytical apparatus for the study of queueing networks with
arbitrary functions of service time distribution. Currently, this problem attracts
increasing attention of researchers. The first result about stationary distribu-
tion insensitivity belongs to B.A. Sevastyanov, who has observed queueing sys-
tem M/G/m/0 and has proved stationary distribution insensitivity [5]. BCMP-
theorem (Baskett, Chandy, Muntz, Palacios) [6] is the first result about sta-
tionary distribution insensitivity for queueing networks. We have generalized
the result [1,2] in the case of random distributed service times [7–9]. We have
established stationary distribution insensitivity with respect to functional form
of service time distribution.

V.A. Ivnitsky [10] has considered quite interesting class of queueing networks:
customer service has not “temporal” but so-called “energetical” interpretation.
Every service operation is characterized by the random variable of work to be
performed. Stationary distribution insensitivity with respect to functional form
of distribution of work quantity for customer service has been obtained for dif-
ferent classes of open and closed queueing networks [10] and for closed queueing
networks with non-active customers [11].

This paper provides stationary functioning of a closed queueing network with
temporarily non-active customers and multi-regime service strategies. Quantity
of work for customer service is a random distributed value. Stationary distribu-
tion insensitivity with respect to functional form of distribution of work quantity
for customer service is established.

2 Queueing Network Description

A closed queueing network with the set of systems J = {1, 2, . . . , N} is con-
sidered. M customers are circulating in the network. Non-active customers are
located in the network systems in queues, being not serviced. There are input
Poisson flows of signals with rates νi and ϕi, i ∈ J . When arriving at the system
i ∈ J the signal with rate νi induces an ordinary customer, if any, to become a
non-active. When arriving at the system i ∈ J the signal with rate ϕi induces an
non-active customer, if any, to become an ordinary. Signals do not need service.

Let ni(t), n′
i(t) are numbers of ordinary and non-active customers at the

system i ∈ J at time t accordingly and n′′
i (t) – the number of service regime.

Stochastic process z(t) = ((ni(t), n′
i(t), n

′′
i (t)), i ∈ J) is considered. Space

of states for process z(t) is Z = {(z = (n1, n
′
1, n

′′
1), . . . , (nN , n′

N , n′′
N ))|ni, n′

i ≥
0,

∑
i∈J(ni + n′

i) = M,n′′
i = 0, . . . , ri, i ∈ J}.

Numbering of ordinary customers in the system queue is made from the
“tail” of the queue to the device. Non-active customers in the queue of the
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system i ∈ J are numbered as follows: a customer, which has become non-active
in the last turn, has number n′

i. When arriving at the system i ∈ J the signal
with rate νi induces an ordinary customer with number 1 to become a non-active
customer with number n′

i +1. When arriving at the system i ∈ J the signal with
rate ϕi induces a non-active customer with number n′

i to become an ordinary
customer with number 1. So, the set of customers numbers in the system i ∈ J
is (1, . . . , n′

i, 1, . . . , ni).
The discipline of service is LCFS-PR. When arriving at the system i ∈ J

a customer receives immediate service and gets number ni + 1. Displaced cus-
tomer keeps number ni and becomes the first in the queue to finish its ser-
vice. Customer service has not “temporal” but so-called “energetical” interpre-
tation. Every service operation is characterized by the random variable of work
to be performed. Quantities of work for customer service are independent ran-
dom distributed values ηi(ni + n′

i) with functions of distribution Bi(ni + n′
i, z)

(Bi(ni + n′
i, 0) = 0, i ∈ J) and expected values τi(ni + n′

i) < ∞. The speed of
customer service is αi(ni + n′

i, n
′′
i ), i ∈ J . Here ni, n

′
i are numbers of ordinary

and non-active customers in the system i ∈ J accordingly, n′′
i – the number of

regime. After the service in the system i ∈ J the customer passes to the system
j ∈ J with the probability pi,j (

∑N
j=1 pi,j = 1). Let pi,i = 0, i ∈ J .

Each system can operate at several regimes corresponding to different degrees
of its efficiency. Time of regime switching is an exponentially distributed random
value. Switching is possible only to neighboring regimes. System i has a single
device, which can operate at ri + 1 regimes. Denote 0 as basic service regime.
The work time at the basic regime is an exponentially distributed random value
with the rate σi(ni + n′

i, 0), then the device is switched to regime 1. For states
(ni, n

′
i, n

′′
i ), where 0 ≤ n′′

i ≤ ri − 1, the work time at the regime n′′
i is also an

exponentially distributed random value, the device is switched to regime n′′
i + 1

with the rate σi(ni + n′
i, n

′′
i ) or to regime n′′

i − 1 with the rate ρi(ni + n′
i, n

′′
i ).

The work time at the regime ri is an exponentially distributed random value
with the rate ρi(ni +n′

i, ri), then the device is switched to regime ri − 1. During
switching the number of customers does not change.

The switching from the regime 0 to 1 can be interpreted as partial working
capacity decline, so the speed of customer service decreases from the value αi(ni+
n′

i, 0) to αi(ni + n′
i, 1). Analogically the transition from the regime n′′

i to the
regime n′′

i + 1 means reduction of service speed. Transition from the regime n′′
i

to the regime n′′
i − 1 means the recovery of working capacity, which was lost

after switching from the regime n′′
i − 1 to n′′

i .
A traffic equations system is:

εi =
N∑

j=1

εjpj,i, i ∈ J. (1)

It has been proved [4], that traffic equations system has the unique non-trivial
solution up to constant.
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3 Stationary Distribution Insensitivity

We consider a closed queueing network with multi-regime service strategies,
quantities of work for customer service are independent random distributed
values. In this instance z(t) is not a Markov process. Denote by ψi,k(t) – the
remaining quantity of work for service of the customer, which has position k in
the system i at time t, ψi(t) = (ψi,1(t), . . . , ψi,ni+n′

i
(t)), i ∈ J .

dψi,ni+n′
i
(t)

dt = −αi(ni + n′
i), i ∈ J.

So we introduce into consideration Markov process ζ(t) = (z(t), ψ(t)), where
ψ(t) = (ψ1(t), . . . , ψN (t)).
Denote by

F (z, x) = F (z, x1,1, . . . , x1,n1+n′
1
;x2,1, . . . , x2,n2+n′

2
; . . . ;xN,1, . . . , xN,nN+n′

N
)

= lim
t→∞ P{z(t) = z, ψi,1(t) < xi,1, . . . , ψi,ni+n′

i
(t) < xi,ni+n′

i
, i ∈ J}, z ∈ Z,

xk,l ∈ R∀ k = 1, N, l = 1, nk + n′
k.

Functions F (z, x) are called stationary functions of probabilities states dis-
tribution of the process ζ(t).

The model of closed queueing network with temporarily non-active customers
has been considered in [11]. Quantity of work for customer service was a random
distributed value. The following theorem has been proved.

Theorem 1. Markov process ζ(t) is ergodic. Stationary functions of probabili-
ties states distribution of the process ζ(t) are:

F (z, x) = G−1(M,N)p1(n1, n
′
1)p2(n2, n

′
2) . . . pN (nN , n′

N )×

×
N∏

i=1

ni+n′
i∏

s=1

1
τi(s)

xi,s∫

0

(1 − Bi(s, u))du, z ∈ Z,

where

pi(ni, n
′
i) = εi

ni

(εiνi

ϕi

)n′
i

ni+n′
i∏

s=1

τi(s)
αi(s)

,

εi is the traffic equations system solution. G(M,N) is a normalizing constant.

For a closed queueing network with multi-regime service strategies the fol-
lowing theorem is true.

Theorem 2. Markov process ζ(t) is ergodic. Under conditions

σi(ni + n′
i, n

′′
i − 1)αi(ni + n′

i, n
′′
i )ρi(ni + n′

i − 1, n′′
i ) (2)

= σi(ni + n′
i − 1, n′′

i − 1)αi(ni + n′
i, n

′′
i − 1)ρi(ni + n′

i, n
′′
i ),



Stationary Distribution Insensitivity of a Multi-regime Queueing Network 377

1 ≤ ni + n′
i ≤ M, 1 ≤ n′′

i ≤ ri, 1 ≤ i ≤ N,

stationary functions of probabilities states distribution of the process ζ(t) are:

F (z, x) = G−1(M,N)p1(n1, n
′
1, n

′′
1)p2(n2, n

′
2, n

′′
2) . . . pN (nN , n′

N , n′′
N ) (3)

×
N∏

i=1

ni+n′
i∏

s=1

1
τi(s)

xi,s∫

0

(1 − Bi(s, u))du, z ∈ Z,

where

pi(ni, n
′
i, n

′′
i ) = εi

ni

(εiνi

ϕi

)n′
i

ni+n′
i∏

s=1

τi(s)
αi(s, n′′

i )

n′′
i∏

k=1

σi(0, k − 1)
ρi(0, k)

, (4)

εi is the traffic equations system solution (1). G(M,N) is a normalizing constant,
which can be found from the following condition

∑
((n1,n′

1,n′′
1 ),...,(nN ,n′

N ,n′′
N ))∈Z

p((n1, n
′
1, n

′
1), . . . , (nN , n′

N , n′′
N )) = 1. (5)

Proof. Denote by ei ∈ Z – the vector, which coordinates equal 0 with the
exception of (ni, n

′
i, n

′′
i ) = (1, 0, 0), denote by e′

i ∈ Z – the vector, which
coordinates equal 0 with the exception of (ni, n

′
i, n

′′
i ) = (0, 1, 0), analogically

denote by e′′
i ∈ Z – the vector, which coordinates equal 0 with the exception of

(ni, n
′
i, n

′′
i ) = (0, 0, 1), i ∈ J .

We consider the process ζ(t). In the case of exponentially distributed ser-
vice times the process z(t) is ergodic by ergodic Markov theorem. The process
ζ(t) is also ergodic, because ζ(t) is obtained from z(t) by adding of continuous
components.

The process ζ(t) can change its states due to incoming signals or regime
switching. Such changes we call spontaneous changes.

Suppose that h is a small time interval and consider the probability

P{z(t + h) = z, ψi,1(t + h) < xi,1, . . . , ψi,ni+n′
i
(t + h) < xi,ni+n′

i
, i ∈ J}.

This event may occur in the following ways:

1. From the moment t during time h there were no spontaneous changes and
service in any system was not over. The probability of this event is

P{z(t) = z, ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i )hIni>0 ≤ ψi,ni+n′

i
(t)

< xi,ni+n′
i
+ αi(ni + n′

i, n
′′
i )hIni>0, i ∈ J}

×(1 −
∑N

i=1
(νiIni>0 + ϕiIn′

i>0 + σi(ni + n′
i, n

′′
i )

+ρi(ni + n′
i, n

′′
i ))h + o(h)).



378 J. Kruk and Y. Dudovskaya

2. During time h a customer has been serviced in the system j ∈ J and has been
routed to the system i ∈ J . There were no spontaneous changes.

P{z(t) = z − ei + ej , ψk,1(t) < xk,1, . . . , αk(nk + n′
k, n′′

k)hInk>0

≤ ψk,nk+n′
k
(t) < xk,nk+n′

k
+ αk(nk + n′

k, n′′
k)hInk>0, k ∈ J, k �= i, k �= j,

ψj,1(t) < xj,1, . . . , ψj,nj+n′
j
(t) < xj,nj+n′

j
, ψj,nj+n′

j+1(t)

< αj(nj + n′
j + 1, n′′

j )(h − θ),

ψi,1(t) < xi,1, . . . , αi(ni + n′
i − 1, n′′

i )(h − θ)Ini>1 ≤ ψi,ni+n′
i−1(t)

< xi,ni+n′
i−1 + αi(ni + n′

i − 1, n′′
i )(h − θ)Ini>1}

×Bi(ni + n′
i, xi,ni+n′

i
+ αi(ni + n′

i, n
′′
i )θ)pj,iIni>0.

3. During time h an informational signal with rate νi has arrived at the system
i ∈ J . There were no other spontaneous changes. No customer was serviced.

P{z(t) = z + ei − e′
i, ψk,1(t) < xk,1, . . . , αk(nk + n′

k, n′′
k)hInk>0

≤ ψk,nk+n′
k
(t) < xk,nk+n′

k
+ αk(nk + n′

k, n′′
k)hInk>0, k ∈ J, k �= i,

ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i )h ≤ ψi,ni+n′

i
(t)

< xi,ni+n′
i
+ αi(ni + n′

i, n
′′
i )h}(νih + o(h))In′

i>0.

4. During time h an informational signal with rate ϕi has arrived at the system
i ∈ J . There were no other spontaneous changes. No customer was serviced.

P{z(t) = z − ei + e′
i, ψk,1(t) < xk,1, . . . , αk(nk + n′

k, n′′
k)hInk>0

≤ ψk,nk+n′
k
(t) < xk,nk+n′

k
+ αk(nk + n′

k, n′′
k)hInk>0, k ∈ J, k �= i,

ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i )hIni>1 ≤ ψi,ni+n′

i
(t)

< xi,ni+n′
i
+ αi(ni + n′

i, n
′′
i )hIni>1}(ϕih + o(h))Ini>0.

5. During time h service regime of system i was increased by 1. There were no
other spontaneous changes. No customer was serviced.

P{z(t) = z − e′′
i , ψk,1(t) < xk,1, . . . , αk(nk + n′

k, n′′
k)hInk>0 ≤ ψk,nk+n′

k
(t)

< xk,nk+n′
k

+ αk(nk + n′
k, n′′

k)hInk>0, k ∈ J, k �= i,

ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i − 1)(h − θ) + αi(ni + n′

i, n
′′
i )θ ≤ ψi,ni+n′

i
(t)

< xi,ni+n′
i
+ αi(ni + n′

i, n
′′
i − 1)(h − θ) + αi(ni + n′

i, n
′′
i )θ}

×(σi(ni + n′
i, n

′′
i − 1)h + o(h)).
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6. During time h service regime of system i was decreased by 1. There were no
other spontaneous changes. No customer was serviced.

P{z(t) = z + e′′
i , ψk,1(t) < xk,1, . . . , αk(nk + n′

k, n′′
k)hInk>0 ≤ ψk,nk+n′

k
(t)

< xk,nk+n′
k

+ αk(nk + n′
k, n′′

k)hInk>0, k ∈ J, k �= i,

ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i + 1)(h − θ) + αi(ni + n′

i, n
′′
i )θ ≤ ψi,ni+n′

i
(t)

< xi,ni+n′
i
+ αi(ni + n′

i, n
′′
i + 1)(h − θ) + αi(ni + n′

i, n
′′
i )θ}

×(ρi(ni + n′
i, n

′′
i + 1)h + o(h)).

Hereinbefore 0 < θ < h.
7. During time h there were more than two changes of queueing network condi-

tion. This probability is o(h).

Therefore

P{z(t + h) = z, ψi,1(t + h) < xi,1, . . . , ψi,ni+n′
i
(t + h) < xi,ni+n′

i
, i ∈ J}

= P{z(t) = z, ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i )hIni>0 ≤ ψi,ni+n′

i
(t)

< xi,ni+n′
i
+ αi(ni + n′

i, n
′′
i )hIni>0, i ∈ J}

×(1 −
∑N

i=1
(νiIni>0 + ϕiIn′

i>0 + σi(ni + n′
i, n

′′
i )

+ρi(ni + n′
i, n

′′
i ))h + o(h)) +

∑N

i=1

∑N

j=1,j �=i
P{z(t) = z − ei + ej , ψk,1(t)

< xk,1, . . . , αk(nk + n′
k, n′′

k)hInk>0

≤ ψk,nk+n′
k
(t) < xk,nk+n′

k
+ αk(nk + n′

k, n′′
k)hInk>0, k ∈ J, k �= i, k �= j,

ψj,1(t) < xj,1, . . . , ψj,nj+n′
j
(t) < xj,nj+n′

j
, ψj,nj+n′

j+1(t)

< αj(nj + n′
j + 1, n′′

j )(h − θ),

ψi,1(t) < xi,1, . . . , αi(ni + n′
i − 1, n′

i)(h − θ)Ini>1 ≤ ψi,ni+n′
i−1(t) (6)

< xi,ni+n′
i−1 + αi(ni + n′

i − 1, n′′
i )(h − θ)Ini>1}

×Bi(ni + n′
i, xi,ni+n′

i
+ αi(ni + n′

i, n
′′
i )θ)pj,iIni>0

+
∑N

i=1
P{z(t) = z + ei − e′

i, ψk,1(t) < xk,1, . . . , αk(nk + n′
k, n′′

k)

×hInk>0 ≤ ψk,nk+n′
k
(t) < xk,nk+n′

k
+ αk(nk + n′

k, n′′
k)hInk>0,

k ∈ J, k �= i, ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i )h ≤ ψi,ni+n′

i
(t)

< xi,ni+n′
i
+ αi(ni + n′

i, n
′′
i )h}(νih + o(h))In′

i>0

+
∑N

i=1
P{z(t) = z − ei + e′

i, ψk,1(t) < xk,1, . . . , αk(nk + n′
k, n′′

k)hInk>0
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≤ ψk,nk+n′
k
(t) < xk,nk+n′

k
+ αk(nk + n′

k, n′′
k)hInk>0, k ∈ J, k �= i,

ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i )hIni>1 ≤ ψi,ni+n′

i
(t)

< xi,ni+n′
i
+ αi(ni + n′

i, n
′′
i )hIni>1}(ϕih + o(h))Ini>0

+
∑N

i=1
P{z(t) = z − e′′

i , ψk,1(t) < xk,1, . . . , αk(nk + n′
k, n′′

k)hInk>0

≤ ψk,nk+n′
k
(t) < xk,nk+n′

k
+ αk(nk + n′

k, n′′
k)hInk>0, k ∈ J, k �= i,

ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i − 1)(h − θ) + αi(ni + n′

i, n
′′
i )θ ≤ ψi,ni+n′

i
(t)

< xi,ni+n′
i
+ αi(ni + n′

i, n
′′
i − 1)(h − θ) + αi(ni + n′

i, n
′′
i )θ}

×(σi(ni + n′
i, n

′′
i − 1)h + o(h))+

+
∑N

i=1
P{z(t) = z + e′′

i , ψk,1(t) < xk,1, . . . , αk(nk + n′
k, n′′

k)hInk>0

≤ ψk,nk+n′
k
(t) < xk,nk+n′

k
+ αk(nk + n′

k, n′′
k)hInk>0, k ∈ J, k �= i,

ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i + 1)(h − θ) + αi(ni + n′

i, n
′′
i )θ ≤ ψi,ni+n′

i
(t)

< xi,ni+n′
i
+ αi(ni + n′

i, n
′′
i + 1)(h − θ) + αi(ni + n′

i, n
′′
i )θ}

×(ρi(ni + n′
i, n

′′
i + 1)h + o(h))Ini>0 + o(h).

Every probability from (6) may be expressed in terms of functions

Ft(z, x) = P{z(t) = z, ψi,1(t) < xi,1, . . . , ψi,ni+n′
i
(t) < xi,ni+n′

i
, i ∈ J}.

Consider the decomposition of Ft(z, x) in a Taylor series, taking into consid-
eration that

P{z(t) = z, ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i )h ≤ ψi,ni+n′

i
(t) < xi,ni+n′

i

+αi(ni + n′
i, n

′′
i )h, i ∈ J} = Ft(z, xi,1, . . . , xi,ni+n′

i
+ αi(ni + n′

i, n
′′
i )h, i ∈ J)

−
N∑

k=1

Ft(z, xi,1, . . . , xi,ni+n′
i
+αi(ni +n′

i, n
′′
i )h, i ∈ J, i �= k;xk,1, . . . , xk,nk+n′

k−1,

+αk(nk + n′
k, n′′

k)h) + . . . + Ft(z, xi,1, . . . , xi,ni+n′
i−1, αi(ni + n′

i, n
′′
i )h, i ∈ J).

Therefore

P{z(t) = z, ψi,1(t) < xi,1, . . . , αi(ni + n′
i, n

′′
i )h ≤ ψi,ni+n′

i
(t) < xi,ni+n′

i

+αi(ni + n′
i, n

′′
i )h, i ∈ J} = Ft(z, xi,1, . . . , xi,ni+n′

i
, i ∈ J)

+
N∑

i=1

∂Ft(z, xi,1, . . . , xi,ni+n′
i
, i ∈ J)

∂xi,ni+n′
i

αi(ni + n′
i, n

′′
i )h

−
N∑

i=1

∂Ft(z, xl,1, . . . , xl,nl+n′
l
, l ∈ J, l �= i;xi,1, . . . , xi,ni+n′

i−1, 0)
∂xi,ni+n′

i
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×αi(ni + n′
i, n

′′
i )h + o(h).

We consider Bi(ni + n′
i, xi,ni+n′

i
+ θ) as a function of the variable θ, use its

decomposition in a Taylor series and let t tend to infinity. So we obtain the
following differential equations system:

F (z, x) = F (z, x) + h

N∑
i=1

αi(ni + n′
i, n

′′
i )

(
∂F (z, x)
∂xi,ni+n′

i

−
( ∂F (z, x)

∂xi,ni+n′
i

)
xi,ni+n′

i
=0

)
Ini>0 −

( N∑
i=1

(
νiIni>0 + ϕiIn′

i>0

+σi(ni + n′
i, n

′′
i ) + ρi(ni + n′

i, n
′′
i )

)
h + o(h)

)
F (z, x)

+ h

N∑
j=1

N∑
i=1,i �=j

αj(nj + n′
j + 1, n′′

j )pj,iBi(ni + n′
i, xi,ni+n′

i
) (7)

×
(∂F (z + ej − ei, x)

∂xj,nj+n′
j+1

)
xj,nj+n′

j
+1=0

Ini>0 +
N∑

i=1

F (z + ei − e′
i, x)(νih + o(h))In′

i>0

+
N∑

i=1

F (z−ei+e′
i, x)(ϕih+o(h))Ini>0+

N∑
i=1

F (z−e′′
i , x)(σi(ni+n′

i, n
′′
i −1)h+o(h))

+
N∑

i=1

F (z + e′′
i , x)(ρi(ni + n′

i, n
′′
i + 1)h + o(h)) + o(h).

Subtracting F (z, x) from both sides of (7), dividing both sides of (7) by h
and letting h tend to zero, we obtain the following differential equations system:

F (z, x)

N∑

i=1

(
νiIni>0 + ϕiIn′

i
>0 + σi(ni + n

′
i, n

′′
i ) + ρi(ni + n

′
i, n

′′
i )
)

=

N∑

i=1

αi(ni + n
′
i)

(
∂F (z, x)

∂xi,ni+n′
i

( ∂F (z, x)

∂xi,ni+n′
i

)

x
i,ni+n′

i
=0

)

Ini>0

+

N∑

j=1

N∑

i=1,i�=j

αj(nj + n
′
j + 1)pj,iBi(ni + n

′
i, xi,ni+n′

i
)

×
(∂F (z + ej − ei, x)

∂xj,nj+n′
j
+1

)

x
j,nj+n′

j+1=0
Ini>0 (8)

+

N∑

i=1

F (z + ei − e
′
i, x)νiIn′

i
>0 +

N∑

i=1

F (z − ei + e
′
i, x)ϕiIni>0

+

N∑

i=1

F (z − e
′′
i , x)σi(ni + n

′
i, n

′′
i − 1) +

N∑

i=1

F (z + e
′′
i , x)ρi(ni + n

′
i, n

′′
i + 1).
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Divide (8) into the next local balance equations:

F (z, x)
(
νiIni>0 + ϕiIn′

i>0

)
= F (z + ei − e′

i, x)νiIn′
i>0 + F (z − ei + e′

i, x)ϕiIni>0,
(9)

αi(ni + n′
i)

(( ∂F (z, x)
∂xi,ni+n′

i

)
xi,ni+n′

i
=0

− ∂F (z, x)
∂xi,ni+n′

i

)
Ini>0

=
N∑

j=1,j �=i

αj(nj + n′
j + 1)pj,iBi(ni + n′

i, xi,ni+n′
i
) (10)

×
(∂F (z + ej − ei, x)

∂xj,nj+n′
j+1

)
xj,nj+n′

j
+1=0

Ini>0, i ∈ J.

F (z, x)
(
σi(ni + n′

i, n
′′
i )Ini>0 + ρi(ni + n′

i, n
′′
i )
)

= F (z − e′′
i , x)σi(ni + n′

i, n
′′
i − 1)Ini>0+

+ F (z + e′′
i , x)ρi(ni + n′

i, n
′′
i + 1)Ini>0. (11)

Substituting F (z, x), determined by means of (3), (4), into local balance
Eqs. (9), (10) and (11), considering (2) and traffic equation system (1), we obtain
identity. �	
Denote by {p(z), z ∈ Z} – stationary distribution of the process z(t). From the
foregoing theorem, considering equality p(z) = F (z,+∞), we obtain

Corollary 1. Process z(t) is ergodic. Under conditions (2) z(t) has stationary
distribution

p(z) = G−1(M,N)p1(n1, n
′
1, n

′′
1)p2(n2, n

′
2, n

′′
2) . . . pN (nN , n′

N , n′′
N ), z ∈ Z,

which does not depend on functional form of Bi(s, x), i ∈ J . Probabilities
pi(ni, n

′
i, n

′′
i ), i ∈ J, may be found by means of (4).

4 Conclusion

We have considered stationary functioning of a closed queueing network with
temporarily non-active customers and multi-regime service strategies. Expres-
sion for stationary distribution has been derived. Finally, stationary distribution
insensitivity with respect to functional form of distribution of work quantity for
customer service is established. Research results have practical importance and
may be used for real networks investigation.
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Abstract. In the paper, the dynamic and adaptive RQ-systems with
incoming MAP-flow of requests are investigated with the method of
asymptotic analysis. It is shown that the dynamic and the adaptive RQ-
systems are asymptotically equivalent. The results obtained by investi-
gating the dynamic RQ-systems can be used to determine the probability
distribution of customers in the orbit of the adaptive RQ-systems.

Keywords: Retrial queue system · Highly-loaded RQ-system ·
Throughput capacity

1 Introduction

Retrial Queue Systems (RQ-systems) are relevant to describe telephone net-
works, local area networks with random multiple access protocols, broadcast
and cellular radio networks, technological and transport systems and others.
RQ-systems have been investigated by J.R. Artalejo [1], B.D. Choi, G.I. Falin
[2], I.I. Khomichkov, A.N. Dudin [3], A.A. Nazarov [4–6], V.I. Klimenok [7].
There is a difference between RQ-systems and classical queueing systems. In
RQ-systems, the requests entering the system and finding the service device
busy, do not leave the system but join the orbit to retry to occupy the service
device later [8–10].

Static random access protocols have been analyzed by A.N. Tuenbayeva,
N.M. Yurevich, A.A. Nazarov and others. These investigations show that sta-
tic RQ-systems with conflicts and announcing are not steady even under the
infinitely small load.

To solve the problems of information loss and stabilization of RQ-systems
the modifications of random multiple access protocols are given:

– dynamic access protocols for the stationary Poisson flow are considered by I.I.
Khomichkov, Y.D. Odyshev, S.L. Shokhor and others;

– adaptive access protocols for the systems with the stationary Poisson flow are
studied by R.L. Rivest, V.A. Mikhaylov, D.Y. Kuznetsov [11].

c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 384–392, 2015.
DOI: 10.1007/978-3-319-25861-4 32
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Models of the stationary Poisson [12] in RQ-systems are not relevant for real
telecommunication streams and so, it causes the task to investigate RQ-systems
with correlated incoming flow (for example, MMPP, MAP) [6].

That is why in this paper we study dynamic and adaptive RQ-systems with
incoming MAP-flow (Markov Arrival Process).

2 Mathematical Model of Dynamic RQ-System

In this paper under the term RQ-system we mean the queue system with the
orbit and incoming MAP-flow of requests controlled by the dynamic access
protocol [13].

MAP-flow of requests comes to the system input from the external source.
This inflow is defined by matrix Q of infinitesimal characteristics qvn of Markov
chain n(t). The chain controls MAP-flow. Also we give the set of non-negative
numbers ρλn and probabilities dnn = 0 defined by matrix D = [dνn] and scalar
matrix ρΛ of conditional densities ρλn on the main diagonal.

If the service device is free at the time of a request arrival the request occupies
it to be served for some random amount of time arranged according to the
exponential law with parameter μ. Having been successfully served the request
leaves the service device. If at the time of a request being served one more request
arrives this new request joins the orbit.

From the orbit after some random delay the request with the dynamic inten-
sity γ/i that depends on the state of the orbit retries for service; i – the number
of arrivals in the orbit. If the service device is free the request is served, if the
service device is occupied the request comes back to the orbit [14].

The system state at the time tis defined by a three-dimensional Markov
chain {k(t), n(t), i(t)}, where i(t) – the number of requests in the orbit, n(t) –
the values of a Markov chain, managing MMPP flow, and k(t) defines the service
device state as follows: k(t) = 0 if the device is free, and k(t) = 1 if the device
is servicing the request.

Let us denote P {k(t) = k, n(t) = n, i(t) = i} = P (k, n, i, t) as the probability
of the device state k at the time t,the state of a Markov chain n and the number
of requests in the orbit – i. So, the probabilities distribution P (k, , i, t) satisfy the
following Kolmogorov differential equation system for probabilities distribution
P (k, n, i, t)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂P (0,n,i,t)
∂t = −(ρλn + γ)P (0, n, i, t) + μP (1, n, i, t)

+
∑
ν

{P (0, ν, i, t)(1 − dνn)} qνn,

∂P (1,n,i,t)
∂t = −(ρλn + μ)P (1, n, i, t) + γP (0, n, i + 1, t) + ρλnP (0, n, i, t)

+ρλnP (0, n, i − 1, t)
+

∑
ν

{P (1, ν, i, t)(1 − dνn) + P (0, ν, i, t)dνn + P (1, ν, i − 1, t)dνn} qνn .

(1)

The solution of Kolmogorov simultaneous Eq. (1) determines completely the
functioning of dynamic RQ-system with incoming MAP-flow. Prelimit inves-
tigation will be performed with the method of generating functions.
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3 Research of Dynamic RQ-System with the Method
of Generating Functions

We consider the system is functioning in steady regime, i.e. P (k, n, i, t) ≡
P (k, n, i) Let us present system (1) for stationary distribution matrix form. Denot-
ing row-vectors

P(k, i) = {P (k, 1, i), P (k, 2, i), ..., P (k,N, i)} ,

we get P(0, 0)(Q − ρΛ) + P(1, 0)μ − P(0, 0)A = 0, i = 0,

P(1, 0)(Q−ρΛ−μI)+P(0, 0)ρΛ−P(1, 0)A+P(0, 0)A+P(0, 1)γ = 0, i = 0,

P(0, i)(Q − ρΛ − γI) + P(1, i)μ − P(0, i)A = 0, i ≥ 1, (2)

P(1, i)(Q − ρΛ − μI) + P(0, i)ρΛ + P(1, i − 1)ρΛ
+P(0, i + 1)γ − P(1, i)A + P(0, i)A + P(1, i − 1)A = 0 , i ≥ 1 ,

where matrix A = D ∗ Q, is Hadamard product of two matrixes D and Q.
To solve system (2) we define vector generating functions

G(k, x) =
∞∑

i=0

xiP(k, i), k = 0, 1 . (3)

Taking into account Eq. (3) we get from system (2) the following system for
functions G(k, x):
{

G(0, x)(Q − ρΛ − γI − A) + G(1, x)μ = −γP(0, 0),
G(0, x)((ρΛ + A)x + γI) + G(1, x)(Q + (x − 1)(ρΛ + A) − μI)x = γP(0, 0) .

(4)

From system (4) we get expressions for G(0, x) G(1, x):

G(0, x) = P(0, 0)
{

γI +
γ

μ
x (Q + (x − 1) (ρΛ + A) − μI)

} {
(1 − x)γI + xQ

− 1
μ

(Q − ρΛ − A − γI) (Q + (x − 1)(ρΛ + A)) x

}−1

, (5)

G(1, x) = − 1
μ

[γP(0, 0) + G(0, x)(Q − ρΛ − A − γI)] .

Let us denote matrixes

(x) = γI +
γ

μ
x (Q + (x − 1) (ρΛ + A) − μI) ,

B(x) = (1 − x)γI + xQ − x

μ
(Q − ρΛ − A − γI) (x − 1) (Q + ρΛ + A) ,

then Eq. (5) we rewrite as G(0, x) = P(0, 0)A(x)B−1(x).
Generating function G(0, x) is defined for all the function valuesx ∈ [0, 1],

but matrix B(x) is confluent withx = xν , where xν are roots of the equation
|B(x)| = 0 in the investigated interval [0, 1].
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We write the reciprocal matrix B−1(x) as B−1(x) = 1
|B(x)|D

T (x), where
elements D(x)n1n2 of matrix D(x) are cofactors for elements B(x)n1n2 of matrix
B(x).

It follows from zero equation of determinant |B(xν)| = 0 that components of
vector P(0, 0)satisfy homogeneous linear equation system

P(0, 0)A(xν)BT (xν) = 0.

This system defines components values of vector P(0, 0)within the accuracy
of multiplicative invariable with the values determined by the normalization
requirement. So, we managed to find expressions (5) for generating functions
G(k, x).

4 Research of Dynamic RQ-System with the Method
of Asymptotic Analysis

Defining explicit expression (5) for generating function in mathematical models
of RQ-systems is an unordinary situation. That is why it is necessary to devise
other methods of analysis for such models. The method of asymptotic analysis is
the most productive [15]. We shall devise it for our model. It will let us display
the efficiency of this method by comparing asymptotic results with prelimit ones.
Also it will let us compare them with asymptotic results we got for adaptive RQ-
system.

We modify system (4) as follows:
⎧⎨
⎩

H(0, u)(Q − ρΛ − A − γI) + H(1, u)μ = −γP(0, 0),
H(0, u)(ρΛ + A + e−juγI)
+H(1, u)(Q + (eju − 1)(ρΛ + A) − μI) = e−juγP(0, 0) ,

(6)

where ρ – parameter for defining the limit heavy load condition for RQ-system,
whereas function H(k, u) = G(k, eju) = G(k, x).

System (6) will be solved with the method of asymptotic analysis under a
heavy load ρ ↑ S1 [16], where S1 is throughput capacity of RQ-system. Denoting
ε = S1 − ρ we consider ε → 0. And we solve system (6) under this condition. In
system (6) we substitute

ρ = S1 − ε, u = εw, Hk(u) = Fk(w, ε), P(0, 0) = εΠ(ε).

And rewrite⎧⎨
⎩

F0 (w, ε) (Q − (S1 − ε)Λ − A − γI) + F1 (w, ε) μ = −γεΠ(ε),
F0 (w, ε)

(
(S1 − ε)Λ + e−jεwγI + A

)
+F1 (w, ε)

(
Q +

(
ejεw − 1

)
(S1 − ε)Λ − μI − A(1 − ejεw)

)
= e−jεwγεΠ(ε) .

(7)

Theorem 1. The S1-value of the throughput capacity of the dynamic RQ-system
with incoming MAP-flow equals the value of the equation root

γR0E − R1(S1Λ + A)E = 0 , (8)
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where row-vector Rk is joint probability distribution of the service device state
and the values of Markov chain managing the incoming MAP-flow. It is deter-
mined by the equations

R0 (S1) = μR {(μ + γ) I + S1Λ + A − Q}−1
,

R1 (S1) = R
{
I − μ [(μ + γ) I + S1Λ + A − Q]−1

}
.

(9)

Proof. There are two stages of proving.

Stage 1. We denote lim
ε→0

Fk(w, ε) = Fk(w). Fulfilling this limiting transition we
obtain the system

{
F0 (w) (Q − S1Λ − A − γI) + F1 (w) μ = 0 ,
F0 (w) (S1Λ + A + γI) + F1 (w) (Q − μI) = 0 .

(10)

We solve Fk(w) system as follows

Fk(w) = RkΦ(w) , (11)

where function Φ(w) at infinity is equal to zero, and Rk is probability distribution
of the device state determined by the system

{
R0 (Q − S1Λ − A − γI) + R1μ = 0 ,
R0 (S1Λ + A + γI) + R1 (Q − μI) = 0 .

(12)

It is easy to show that (R0 + R1)Q = 0, i.e. RQ = 0, where R = R0 + R1 and
it satisfies normalization requirement RE = 1. Then R0 and R1 are dependent
on S1 and are determined by equations

R0 (S1) = μR {(μ + γ) I + S1Λ + A − Q}−1
,

R1 (S1) = R
{
I − μ [(μ + γ) I + S1Λ + A − Q]−1

}
,

coinciding with (9).

Stage 2. Having rewritten (7) as follows
⎧⎨
⎩

F0 (w, ε) (Q − S1Λ − A − γI + εΛ) + F1 (w, ε) μ = −γεΠ(ε) + O
(
ε2

)
,

F0 (w, ε) (S1Λ + γI − ε(Λ + jwγI) + A)
+F1 (w, ε) (Q − μI + jεw(S1Λ + A)) = γεΠ(ε) + O

(
ε2

)
,

we sum up all the equations of the system according to k and n and obtain the
equation

F0 (w, ε) εjwγE − F1 (w, ε) jεw(S1Λ + A)E = 0 ,

that lets us get

F0 (w, ε) γE − F1 (w, ε) (S1Λ + A)E = 0 .

Using (11) we get the equation

R0Φ(w)γE − R1Φ(w)(S1Λ + A)E = 0 ,
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that causes the expression

γR0E − R1(S1Λ + A)E = 0 ,

which coincides with (8) and determines the value of the throughput capacity S
of the dynamic RQ-system.

5 Mathematical Model of Adaptive RQ-System

Let us consider unilinear queue system with orbit and incoming MAP-flow man-
aged by the adaptive access protocol. We name this system adaptive RQ-system
with incoming MAP-flow.

MAP-flow comes to the system input. This inflow is defined by matrix Q of
infinitesimal characteristics qvn of Markov chain n(t). The chain controls MAP-
flow. Also we give the set of non-negative numbers ρλn and probabilities dnn = 0
defined by matrix D = [dνn]and scalar matrix ρΛ of conditional densities ρλn

on the main diagonal.
If the service device is free at the time of a request arrival the request occupies

it to be served for some random amount of time arranged according to the
exponential law with parameter μ. Having been successfully served the request
leaves the service device. If at the time of a request being served one more request
arrives this new request joins the orbit. From the orbit after some random delay
the request with the dynamic intensity 1/T , where T – the adapter condition at
the current time we shall determine later, retries for service. If the service device
is free the request is served, if the service device is occupied the request comes
back to the orbit.

The system state at the time tis defined by a four-dimensional Markov process
{k(t), n(t), i(t), T (t)}, where k(t) determines the device state as follows: k(t) =
0 if the device is free, and k(t) = 1 if the device is servicing the request. The
values of a Markov chain, managing MMPP flow equal n(t), whereas i(t) – the
number of requests in the orbit. The adapter during the time t changes its states
T (t) as follows: T (t+Δt) = T (t)−αΔt, if k(t) = 0, and T (t+Δt) = T (t)+βΔt,
if k(t) = 1, where α > 0, β > 0 – the adapter parameters which values are given.

This adaptive system was investigated with the method of asymptotic analy-
sis under a heavy load condition. We defined the throughput capacity S of an
adaptive RQ-system as a supremum of those ρ-values for which there exist sta-
tionary function regimes of an adaptive RQ-system model, and considering the
asymptotic condition ρ ↑ S fulfilled. The investigations caused the following
theorem.

Theorem 2. The S2-value of the throughput capacity of the adaptive RQ-system
with incoming MAP-flow of arrivals is determined by the system of equations

{
γR0E − R1(S2Λ + A)E = 0 ,
αR0E − βR1E = 0 ,

(13)
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where α, β– adapter parameters, which values are given, γ– some positive con-
stant determined also by the system, Rk– probability distribution of the device
states defined by the equations

R0 (S2, γ) = μR {(μ + γ) I + S2Λ + A − Q}−1
,

R1 (S2, γ) = R
{
I − μ [(μ + γ) I + S2Λ − Q]−1

}
.

(14)

The first equation of system (13) for the defining the throughput capacity of
the adaptive RQ-system and equation (8) for defining the throughput capacity
of the dynamic RQ-system make us conclude that the throughput capacity of
the adaptive RQ-system S2 is equal to the throughput capacity of the dynamic
RQ-system S1, i.e. S1 = S2.

Equation (14) for the defining probability distribution of the device states
of the adaptive RQ-system coincide with Eq. (9) for the defining probability
distribution of the device states of the dynamic RQ-system.

6 Numerical Analysis of the Dynamic RQ-System

We write the vector characteristic function H(u) for probability distribution
P(i) = P(0, i) + P(1, i) of the arrivals’ number in orbit as

H(u) = H(0, u) + H(1, u) = H(0, u)
(
I − 1

μ
(Q − ρΛ − A − γI)

)
− γ

μ
P(0, 0) .

Then the probability distribution p(i) = P(i)E of the arrivals’ number in the
orbit is determined by the inverse Fourier transform from the scalar characteristic
function h(u) = Mejui(t) =

∑
i

ejuip(i) = H(u)E:

p(i) =
1
2π

π∫

−π

e−juih(u)du . (15)

For the given parameters values μ = 1, γ = 3 and matrixes

Q =

⎛
⎝

−0.7 0.4 0.3
0.1 −0.4 0.3
0.4 0.5 −0.9

⎞
⎠ , Λ =

⎛
⎝

1 0 0
0 2 0
0 0 4

⎞
⎠ ,

E =

⎛
⎝

1
1
1

⎞
⎠ , I =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ , D =

⎛
⎝

0 0.5 0.3
0.4 0 0.6
0.2 0.4 0

⎞
⎠ , (16)

which define h(u), by means of numerical integration (15) we obtain probability
distribution of the arrivals’ number in orbit p(i) (Table 1).

This distribution is characterized by the sequence of δi = p(i + 1)/p(i)which
rapidly gets steady and with i ≥2 takes the value within the accuracy of three
signs after the comma.

There exist the similar results for other values of parameters μ, γ and
matrixes Λ and Q. The dynamic RQ-system with the given values of parameters
and matrixes has the value of the throughput capacity equal to S1 = 0.540.
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Table 1. Probability distribution p(i) of the arrivals’ number in orbit,i = 0,1,2,. . .

i 0 1 2 3 4 5 6 7 . . .

p(i) 0.052 0.026 0.026 0.025 0.063 0.024 0.023 0.022 . . .

δi 0.506 0.970 0.972 0.972 0.881 0.972 0.972 0.972 . . .

7 Numerical Analysis of the Adaptive RQ-System

Having the given parameters of the adaptive RQ-system we define the values
of the throughput capacity S2 and variable γ. Let the values of parameters be
defined as μ = 1, β = 1, and the values of matrixes in form (16).

Solving system (13) according to S2 and γ we get the following numerical
results (Table 2).

Table 2. The values S2 and γ with different α

α 0.4 0.6 0.8 1 2 3.774 5 10 100 10 · 105

S2 0.035 0.125 0.194 0.25 0.416 0.540 0.583 0.659 0.740 0.75

γ 0.116 0.230 0.363 0.510 1.349 3 4.182 9.102 99.011 9.999

Using the data in Table 2 we can conclude that if α/β increases the S2-value
increases too as well as the γ-value.

In Table 2 if α = 3.774 the throughput capacity of the adaptive RQ-system
S2 = 0.540 and γ = 3. This goes with the throughput capacity of the dynamic
RQ-system S1 = 0.540 when γ = 3. This supports the asymptotic equivalence
of the adaptive and dynamic RQ-systems with incoming MAP-flow of arrivals.

8 Conclusion

In the paper, the dynamic and adaptive RQ-systems with incoming MAP-flow
of arrivals with the method of asymptotic analysis under the high load con-
dition are investigated. As a result of the researching the dynamic RQ-system
we got probability distribution of arrivals in orbit p(i), Eq. (8) for defining the
throughput capacity S1. Having investigated the adaptive RQ- system we got
simultaneous equations (13) to define the throughput capacity S2 and γ-value.
The coincidence of S1 and S2 was showed.

Then all the analytical results were presented numerically. Also the equality
of the throughput capacities S1 and S2 under the certain parameters was given.
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Abstract. According to analytics, the global mobile date traffic will
grow three times faster than fixed traffic by 2019. The number of user’s
mobile devices is supposed to increase from 4.1 billion to 4.9 billion while
the number of mobile device connections can reach even 10 billion. Broad-
band speeds in wireless networks are expected to double from 1.7 Mbps
to 4.0 Mbps to the end of 2019. As it is noted the mobile video traffic will
be up to 72 percent of the global mobile traffic. As the number of wireless
connections tends to increase significantly, it results in dramatic mobile
traffic growth. Mobile service providers face the challenge to utilize lim-
ited radio resources efficiently. In this paper, we propose a mathematical
model of radio resources allocation in broadband wireless networks such
as LTE-Advanced in terms of queuing systems and evaluate blocking
probability and average amount of occupied resources.

Keywords: LTE-advanced · Resource allocation policy · Queuing sys-
tem with limited resources

1 Introduction

High popularity of various multimedia mobile services is conditioned by huge
amount of mobile devices and attractiveness of mobile services. Users prefer to
use their smart phones, tablets, etc. for business needs and entertaining via wire-
less networks. To deliver a service with expected quality providers have focused
on methods and techniques to utilize resources more efficiently and more flexible.
In modern high-speed wireless networks such as LTE and LTE-Advanced, every
mobile session will be allocated with radio resources based on type of service,
distance between mobile device and base station and multiple access scheme.

We consider that each mobile device can transfer data to the LTE base
station with specific data rate. Let’s denote maximum bitrate for customer
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c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 393–403, 2015.
DOI: 10.1007/978-3-319-25861-4 33



394 K. Samouylov et al.

i as follows: cmax
i = w log2 (1 + γipmax), where wis a spectral bandwidth, pmax

is maximum transmit power of the base station and γi is signal-to-noise ratio
for the session, that depends on distance between user device and base station,
possible obstacles between them, etc. New session will be accepted only if there
is enough resources to serve it, i.e.

∑
i

ci
cmax
i

� 1, where Ai is required data rate
for session i. In order to evaluate network performance measures we design a
mathematical model in terms of queuing system with finite amount of resources
to analyze blocking probability and average amount of occupied radio resources.

2 Model Description

In paper [2] multiple servers queuing system is considered where each customer
occupies on arrival some random amount of finite resources. At the end of service
time the amount of allocated resources is fully released, see Fig. 1. If there is not
enough resources to meet customer requirements, the customer is denied service.
Random variables (RV) of required resources assumed to be independent of
arrival and service processes, mutually independent and identically distributed.
In this type of queue we have to remember a vector of allocated resources for
each customer. Thus, it significantly complicates state space of the corresponding
random process and its analysis.

Fig. 1. Diagram of a general model

To simplify the model we offer to track only total amount of occupied resources.
As soon as we don’t know how many resources have been allocated to each cus-
tomer, we assume that amount of released resources on a departure of a customer
is also random and may differ from allocated one.

Given the total amount of allocated resources and the number of customers
in system, RV of released resources are independent from past behaviour of the
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system and its cumulative distribution function (CDF) can be obtained using
the Bayes theorem.

In [2] it was shown that average amount of occupied resources of initial and
simplified models are very close to each other in case of Poisson arrival process
and exponential service distribution time. Later in [4], simulations showed that
not only average values but also steady state distribution of allocated resources
for both models are very close. Finally, in [3], it was analytically proved that
steady-state distributions of total occupied resources and number of customers
are equal. Note, that some generalizations discussed in [6] include a system in
which the service time and the amount of resources allocated to the customer
are dependent random variables, and each customer has three random charac-
teristics: the number of devices required for the service, resources and service
time.

In this paper we analyze simplified model with N servers and limited amount
R of a discrete resource (Fig. 2). Customers arrive according to the Poisson
process with rate λ. Service times are mutually independent, independent of
arriving process and are exponentially distributed with rate μ. Let us denote
ξ(t) – number of customers in the system at time t, and δ(t) < R – amount of
total occupied resources. Customer i requires ri � 0 units of discrete resources,
RVs ri are mutually independent and identically distributed with CDF F (x),
meanmand variance σ2.

Fig. 2. Diagram of simplified model

Customer i will be lost in case the system doesn’t have enough resources (R−
δ(t) < ri) or if there is no free servers, i.e. ξ(t) = N . Total amount of occupied
resources δ(t) increases by ri � 0 immediately after arrival of a customer.

Total amount of occupied resourcesδ(τi) will decrease by random value νi
at time τi as soon as customer i is served. Given the number of total occupied
resources δ(τi) = y and number of customers in the system ξ(τi) = k, RVs νi are
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independent from previous system behavior and have CDF Fk(x|y) = P (νi �
x|ξ(τi) = k; δ(τi) = y), 0 � x � y.

RVs ri attain values j = 0, R, and pj = P (ri = j) is a probability that
arriving customer requires j units of resource. Let’s denote p

(k)
j , j = 0, R a k-

fold convolution of probabilities pj , which allows to calculate the total amount
of occupied resources y =

∑k
i=0 ri. CDF Fk(x|j) of units of resources released

by a customer on departure is piecewise-constant function and it has a saltus at
x = i, i = 0, R on a value

pkij =
pip

(k−1)
j−i

p
(k)
j

, 0 < i � j, j = 0, R. (1)

In general case convolutions p
(k)
j , k � 2 can be calculated using probabilities

pi, 0 � i � R according to following recurrent formula:

p
(k)
j =

j∑
i=0

pip
(k−1)
j−i . (2)

Random process X(t) = (ξ(t), δ(t)) over the set X =
⋃N

k=0 Xk, Xk = {(k, i) |
0 � i � R, p

(k)
i > 0} is a Markov chain. Figure 3 shows the state transitions

diagram, where 1 � i < N , 0 � s � j � q � R.

Fig. 3. State transition diagram

Infinitesimal matrix A = [a((i, j), (k, r))] has a block three-diagonal struc-
ture with main diagonal blocks Ψ0, Ψ1, ..., ΨN , upper blocks Λ1, ..., ΛN and lower
blocks M0, ...,MN−1.

Ψ0 = −λPR, (3)

Λ1 = (λ0,j)(j|(1,j)∈X1) = λpj , (4)

M0 = (μi,0)(i|(1,i)∈X1) = μ, (5)

Ψn = (ψi,j)(i,j|(n,i),(n,j)∈Xk)

{−(λPR−i + nμ), i = j
0, i �= j

, n = 1, N − 1, (6)

ΨN = (ψi,j)(i,j|(N,i),(N,j)∈XN )

{−Nμ, i = j
0, i �= j

, (7)



Analyzing Blocking Probability in LTE Wireless Network 397

Λn = (λi,j)(i,j|(n,i)∈Xk−1,(n,j)∈Xk)

{
λpj−i, i � j � R
0 , n = 2, N, (8)

Mn = (μi,j)(i,j|(n,i)∈Xk+1, (n,j)∈Xk)

⎧⎨
⎩

(n + 1) μ
p
(n)
j pi−j

p
(n+1)
i

, j � i � R

0
, (9)

n = 1, N − 1.
Having infinitesimal matrix A we obtain stationary distribution for X(t) =

(ξ(t), δ(t)), where
q0,0 = lim

t→∞ P{ξ(t) = 0, δ(t) = 0}, (10)

qk,i = lim
t→∞ P{ξ(t) = k, δ(t) = i}, 1 � k � N, 0 � i � R. (11)

Based on formulas (3)–(9) the set of equilibrium equations can be written as
follows:

λPRq0,0 − μ
R∑

j=0

q1,j = 0, (12)

(λPR−j + iμ) qi,j − λ

j∑
s=0

pj−sqi−1,s − (i + 1)μ
R∑

s=j

p
(i)
j ps−j

p
(i+1)
s

qi+1,s = 0, (13)

0 � j � R, 1 � i � N − 1.

NμqN,j − λ

j∑
s=0

pj−sqN−1,s = 0, 0 � j � R. (14)

Denote vectors of state probabilitiesq0 = q0,0, qi = (qi,j)j=0,R, i = 1, . . . , N .
Then, the set of equilibrium equations can be written in vector form:

q0Ψ0 − qT1 M0 = 0, (15)

qTi Ψi − qTi+1Mi − qTi−1Λi = 0, i = 1, . . . , N − 1, (16)

qTNΨN − qTN−1ΛN = 0. (17)

Matrix A is indecomposable and conservative with three diagonal blocks
thus we apply UL matrix decomposition techniques [1]. Given steady-state dis-
tribution of vector q we calculate average number of occupied resources in the
system:

b =
N∑

k=0

bk

N∑
i=k

qk,i, (18)

where bk means number of occupied resources in case of k customers in the
system:

bk =

N∑
i=0

ip
(k)
i

N∑
i=0

p
(k)
i

. (19)
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Blocking probability can be found as:

B = 1 −
N∑

k=0

N∑
i=k

qk,i

N−i∑
j=1

pj . (20)

Average number of customers in the system can be calculated using the
following formula:

N̄ =
N∑
i=0

iqi,

where

qi =
R∑

j=0

qi,j . (21)

In [3] analytical solution of (3)–(9) was obtained for initial model. In the case
of discrete numbers of allocated resources we derive more simple equations to
calculate steady-state probabilities distribution:

qk,• = lim
t→∞ P{ξ(t) = k} = p0

ρk

k!

R∑
i=0

p
(k)
i , 0 < k � N, (22)

qk,j = lim
t→∞ P{ξ(t) = k ; δ(t) = j } = p0

ρk

k!
p
(k)
j , (23)

0 � j � R, 0 < k � N,

p0 =

(
1 +

N∑
k=1

ρk

k!

R∑
i=0

p
(k)
i

)−1

. (24)

Thus the average amount of occupied resourcesbis easier to calculate:

b =
N∑

k=0

bkqk,• = p0

N∑
k=0

ρk

k!

R∑
i=0

ip
(k)
i . (25)

System blocking probability can also be obtained as follows:

B = 1 −
N−1∑
k=0

R∑
i=0

qk,i

R−i∑
j=0

pj = 1 − p0

N−1∑
k=0

ρk

k!

R∑
i=0

p
(k+1)
i . (26)

3 Numerical Results

We considered different distributions for resource allocation such as binomial,
shifted binomial and geometric distributions. We also assume that total amount
of system resources R is equal to the number of servers N .

To evaluate systems characteristics we calculated k -fold convolutions p
(k)
j for

each suggested distributions using formula (2).
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If RVs rj � 0 have binomial distribution

pi =
(

r
i

)
pi(1 − p)r−i, 0 � i � r, (27)

where p = m
r , then p

(k)
j =

(
kr
j

)
pj(1 − p)kr−j . Probability that i units of

resource are released on departure of k -th customer in case when these k cus-
tomers occupy j units of resources is

pkij =
pip

(k−1)
j−i

p
(k)
j

=

(
r
i

)(
k r − r
j − i

)

(
kr
j

) , (28)

0 � i � r, i � j, 0 � j � kr, it depends only from the maximum quantity of
resources r which can be allocated to the customer j.

However shifted binomial distribution is more interesting for application,
because in real networks resource requirements of any session is always greater
than zero. Thus, number of allocated resources to the customer j is only positive
number, rj > 0 and it is distributed with

pi =
(

r − 1
i − 1

)
pi−1(1 − p)r−i, 1 � i � r, (29)

where p = m−1
r−1 and p

(k)
j =

(
k(r − 1)
j − k

)
pj−k(1 − p)kr−j . Therefore the

pkij =

(
r − 1
i − 1

)(
(k(r − 1) − (r − 1)
(j − k) − (i − 1)

)

(
k(r − 1)
j − k

) (30)

is for number of released resources on the departure, where 1 < i � r, i � j,
k � j � k(r − 1), 1 < k � j.

To a better comparative research we explore the key system performance
characteristics in case of using geometrical distribution for the quantity of allo-
cated resources. i.e.

pi = pi(1 − p), 1 � i � r, (31)

where p
(k)
j =

(
k + j − 1

k

)
pj(1 − p)k and probabilities for number of released

resources

pkij =

(
k + j − i − 2

k − 1

)

(
k + j − 1

k

) (32)
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where i � j, k � j, 1 < k � j.
We consider the total amount of system resources and the number of servers

is equal and N = R = 100, while the arriving rate is λ = {12, 13, . . . , 20} and
average service time μ−1 = 1.

Figures 4, 5 and 6 show the relation between average number of customers
in the system, average amount of occupied resources, blocking probability and
system load ρ correspondingly for three different distributions of rj . We selected
mean m = 5, 4, maximum quantity of resources allocated to each customer
r = 18 for each suggested distributions, but the variances are different.
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As we can see on Fig. 4, average number of customers in the system when
ρ > 1 grows faster in case of geometrically distributed quantities of allocated
resources. Contrary to the average number of customer the graph of average
amount of resources for geometrical distribution leans to the graph correspond-
ing to the binominal distribution. As soon as variance of geometrical distribu-
tion higher than the variance of binomial distributions we studied the relation
between the same system characteristics and variance of distributions under dif-
ferent loads.

Figures 7, 8 and 9 depict the relation between average number of customers
in the system, average amount of occupied resources, blocking probability and
variance σ.
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As variance of resource distribution grows, the average number of customers
in the system increases, while the average amount of occupied resources drops.
The more resource is needed to service customer session the higher probability
that customer is lost.

4 Conclusion

In this paper, we analyzed simplified mathematical model in case of discrete
distribution of radio resources in LTE base station. We suggested analytical and
numerical methods to calculate the most interesting characteristics of the model.
Besides, we investigated relation between system performance characteristics and
distribution of allocated resources.

In result we state that high variance of distribution of allocated resources
leads to lower average number of customers in the system and average amount
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of occupied resources. In heavy load states system will accept customer’s sessions
with minimal requirements. Our further study will include computing algorithm
complexity analysis and design of more effective algorithms.

The authors wish to express their appreciation to Prof. V. Naumov for sug-
gesting the problem and his help during the research.
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Abstract. In this paper we concretize a condition when an aggregation
of n oneserver queuing systems into multiserver system for n → ∞ leads
to an disappearance of a queue (in some probabilistic sense) and to a
transformation of multiserver system into a system with infinite number
of servers. An initial oneserver system is a system with Poisson input
flow or with some modifications of this flow like a regular flow without
an aftereffect or with Poisson flow in a random environment. Such formu-
lation of a problem is connected with a large number of articles devoted
to a modeling of computer networks by queuing systems with infinite
number of servers and to a justification of these models application for
real networks with finite number of servers.

Keywords: Poisson flow · Regular flow without aftereffect · Kolmogorov-
Chencov condition

1 Introduction

In this paper we analyze a condition when an aggregation of n oneserver queuing
systems into multiserver system for n → ∞ leads to an disappearance of a queue
(in some probabilistic sense) and to a transformation of multiserver system into
a system with infinite number of servers.

Such formulation of a problem is connected with a large number of articles
devoted to a modeling of computer networks by queuing systems with infinite
number of servers (see for an example [1,2]) and to a justification of these models
application for real networks with finite number of servers. Indeed in a queuing
system with infinite number of servers each customer passes through the system
without any delay. So it is much simpler to calculate different distributions in
the system. Another cause of this consideration is a convergence to zero of a
probability that a virtual waiting time is positive in described limiting transition
and so service quality increases significantly.

An initial oneserver system is a system with Poisson input flow or with some
modifications of this flow like a regular flow without an aftereffect or with Poisson
c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 404–414, 2015.
DOI: 10.1007/978-3-319-25861-4 34
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flow in a random environment. All these considerations are closely connected
with a concept of Poisson flow which is a foundation of regular random process
without aftereffect and of its different modifications.

Considered problem is solved using (1) a limit theorem for a convergence
of multiserver queuing system to infinite server system, (2) a concept of C -
convergence for random processes, (3) sufficient Kolmogorov-Chencov condition
of C - convergence, (4) a concept of ε - entropy for a calculation of an asymp-
totic of Gaussian random process maximum distribution. Emphasize that regu-
lar random process without aftereffect is very convenient for an application of
Kolmogorov-Chencov condition.

2 Preliminaries

Denote F1 metric space of deterministic functions defined on the segment [0, T ]
with uniform metric . Put F the set of continuous and bounded by the unit func-
tions defined on F1. Say that the sequence of random processes zn = zn(t), n ≥
1, C - converges to the random process z = z(t), 0 ≤ t ≤ T, if for any functional
f ∈ F the convergence of mean values

Mf(zn) → Mf(z), n → ∞
takes place.

Denote D the space of random functions on the segment [0, T ] which almost
surely (a.s.) have not breaks of the second kind and designate C the space of
random functions on the segment [0, T ] which a.s. are continuous on the segment
[0, T ]. Represent the following sufficient conditions of C - convergence [3, Chapter
3, Theorems 6, 7, Corollary 1].

Theorem 1. Assume that random functions zn ∈ D, n ≥ 1, and random func-
tion z ∈ C. For C - convergence zn → z, n → ∞, it is sufficient that finite
dimensional distributions of random functions zn(t) converge to finite dimen-
sional distributions of random function z(t) and the “moment” condition of
Kolmogorov-Chencov [4] is true: for some C > 0, α > 1, β > 1, λ > 0 and for
any 0 ≤ t1 < t < t2 < T

sup
n

M(|zn(t2) − zn(t)|α |zn(t) − zn(t1)|β) ≤ C(t2 − t1)1+λ. (1)

Assume that z(t), 0 ≤ t ≤ T, is Gaussian process Mz(t) = 0, Mz2(t) <
a < ∞ then this process is a.s. continuous. Formulate conditions of the following
limit relation for the process z(t).

Theorem 2. If there is positive number C satisfying the inequality

ε2(t, t + u) = M(z(t) − z(t + u))2 ≤ Cu, 0 ≤ t ≤ t + u ≤ T,

then

P

(
sup

0≤t≤T
z(t) > L

)
→ 0, L → ∞. (2)
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Proof. In the condition of Theorem2 the minimal number N(r) of balls with the
radios r in the metric space ([0, T ], ε) (here ε(t, t + u) is a half metric on [0, T ])
covering the segment [0, T ] satisfies the inequality N(r) ≤ TCr−2 and so Dadly

integral Ψ(z) =
∫ z

0

(ln N(r))1/2dr constructed by the relative entropy lnN(r)

satisfies the condition: Ψ(T ) < ∞. Consequently we have the relation (2) from
[5], [6, Theorem 1].

Theorem 3. Assume that the sequence of random processes zn(t), n ≥ 1, 0 ≤
t ≤ T, C - converges to Gaussian and continuous random process z(t), such

that P

(
sup

0≤t≤T
z(t) > L

)
→ 0, L → ∞ and the sequence of positive numbers

Ln → ∞, n → ∞. Then for n → ∞ we have the limit relation

P

(
sup

0≤t≤T
zn(t) ≥ Ln

)
→ 0. (3)

Proof. Take arbitrary positive number ε > 0 and choose such L(ε) that

P ( sup
0≤t≤T

z(t) > L(ε)) < ε.

From C - convergence of zn(t) to z(t) for n → ∞ it is possible to take such n(ε),
that for n > n(ε) the inequality

∣∣∣∣P
(

sup
0≤t≤T

z(t) > L(ε)
)

− P

(
sup

0≤t≤T
zn(t) > L(ε)

)∣∣∣∣ < ε

is true and so

P

(
sup

0≤t≤T
zn(t) > L(ε)

)
< 2ε, n > n(ε).

From the convergence Ln → ∞, n → ∞, it is possible to find such n1(ε) > n(ε)
that for n > n1(ε) the inequality Ln > L(ε) is true, consequently

P

(
sup

0≤t≤T
zn(t) ≥ Ln

)
≤ P

(
sup

0≤t≤T
zn(t) > L(ε)

)
≤ 2ε, n > n1(ε).

The relation (3) is proved.

3 Main Theorem

Consider the series scheme in which the characteristics of n - server queuing
system are defined by the parameter n → ∞ which characterizes an intensity of
input flow tending to infinity. Denote en(t) a number of input flow customers
arriving before the moment t, en(0) = 0. Assume that qn(t) is a number of busy
servers in this system at the moment t, qn(0) = 0, τj is the service time of j
input flow customer and τj , j ≥ 1, is a sequence of independent and identically
distributed random variables (s.i.i.d.r.v.‘s) with the distribution function (d.f.)
F (t) (F = 1 − F ), which has continuous and bounded by f̄ > 0 density f(t).
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Theorem 4. Assume that for some T > 0 the following conditions are true.

1. Men(t) = nm(t) where m(t) is differentiable and non decreasing function
with continuous and bounded by some positive number M derivative.

2. For n → ∞ the sequence of random processes xn(t) =
en(t) − nm(t)√

n
, n ≥ 1,

C - converges on [0, T ] to the random processes aξ(g(t))+bηt. Here g(t), 0 ≤ t ≤
T, is differentiable and non decreasing function with bounded by some positive
number G derivative, ξ(t) is standard Wiener process, a �= 0, b is nonnegative
number, η is standard normal random variable independent from ξ(t).

3. The inequality Q(T ) =
∫ T

0

F (t)dm(t) < 1 is true.

Then

P

(
sup

0≤t≤T
qn(t) = n

)
→ 0, n → ∞. (4)

Proof. Denote q∞
n (t) a number of busy servers at the moment t in the system

with input flow described by the process en(t) provided that there is infinite
number of servers. From the condition 2 and [7, chapter II, Sect. 1, Theorem 1]
we have that for n → ∞ the sequence of random processes

yn(t) =
q∞
n (t) − nm(t)√

n
, n ≥ 1,

C - converges on the segment [0, T ] to the random process ζ(t), defined by the
equality

ζ(t) = a

∫ t

0

F (t − u)dξ(g(u)) + bη

∫ t

0

F (t − u)du + Θ(t), 0 ≤ t ≤ T,

where Θ(t) is centered Gaussian process independent from ξ(t) with the covari-

ation function R(t, t + u) =
∫ t

0

F (v + u)F (v)dm(v).

Lemma 1. The random process ζ(t) for some C > 0 satisfies the inequality

ε2(t, t + u) = M(ζ(t) − ζ(t + u))2 ≤ Cu, 0 ≤ t ≤ t + u ≤ T.

Proof. Indeed the equality

ε2(t, t + u) = a2M

(∫ t

0

F (t − v)dξ(g(v)) −
∫ t+u

0

F (t + u − v)dξ(g(u))
)2

+b2M

(∫ t

0

ηF (t − v)dv −
∫ t+u

0

ηF (t + u − v)dv

)2

+ M(Θ(t) − Θ(t + u))2

is true and

M(Θ(t) − Θ(t + u))2 = R(t, t) + R(t + u, t + u) − 2R(t, t + u)
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=
∫ t

0

F (v)F (v)dm(v) +
∫ t+u

0

F (v)F (v)dm(v) − 2
∫ t

0

F (v + u)F (v)dm(v)

= 2
∫ t

0

(F (v) − F (v + u))dm(v) +
∫ t+u

t

F (v)F (v)dm(v) ≤ M(2T f̄ + 1)u,

M

(∫ t

0

ηF (t − v)dv −
∫ t+u

0

ηF (t + u − v)dv

)2

=
(∫ t

0

F (t − v)dv −
∫ t+u

0

F (t + u − v)dv

)2

=
(∫ t

0

F (t − v)dv

)2

+
(∫ t+u

0

F (t + u − v)dv

)2

− 2
∫ t

0

F (t − v)dv

∫ t+u

0

F (t + u − w)dw

≤
∫ t

0

F (t − v)dv

∫ t

0

(F (t − w) − F (t + u − w))dw ≤ T 2f̄u.

Calculate now

M

(∫ t

0

F (t − v)dξ(g(v)) −
∫ t+u

0

F (t + u − v)dξ(g(u))
)2

= M

[(∫ t

0

F (t − v)dξ(g(v))
)2

+
(∫ t+u

0

F (t + u − v)dξ(g(v))
)2

−2
∫ t

0

F (t − v)dξ(g(v))
∫ t+u

0

F (t + u − w)dξ(g(w))
]

=

∫ t

0

F
2
(t − v)dg(v) +

∫ t+u

0

F
2
(t + u − v)dg(v) − 2

∫ t

0

F (t − v)F (t + u − v)dg(v)

≤ Gf̄Tu + Gu = G(f̄T + 1)u,

consequently

ε2(t, t + u) ≤ Cu, C = a2G(f̄T + 1) + M(2T f̄ + 1) + b2T 2f̄ .
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The process ζ(t) obviously satisties the conditions

Mζ(t) = 0, Mζ2(t) ≤ ag(T ) + m(T ), 0 ≤ t ≤ T.

Then from Theorem 2 and Lemma 1 we obtain the limit relation

P

(
sup

0≤t≤T
ζ(t) ≥ L

)
→ 0, L → ∞.

Consequently for n → ∞

P

(
sup

0≤t≤T
ζ(t) ≥ (1 − Q(T ))n√

n

)
→ 0.

And from C - convergence for n → ∞ of random processes sequence yn(t), n ≥ 1,
to the random process ζ(t) on the segment [0, T ] and from Theorem3 we obtain

the relation P

(
sup

0≤t≤T
q∞
n (t) ≥ n

)
→ 0, n → ∞. Using the end of the proof in

[7, chapter II, Sect. 1, Theorem 1] remark that the random events

{qn(t) < n, 0 ≤ t ≤ T} = {q∞
n (t) < n, 0 ≤ t ≤ T}.

Consequently from the inequality qn(t) ≤ n we obtain the limit relation

P

(
sup

0≤t≤T
qn(t) ≥ n

)
= P

(
sup

0≤t≤T
qn(t) = n

)
→ 0, n → ∞.

Remark 1. Theorem 4 statement means a convergence of a virtual waiting time
in n - server queuing system on the segment [0, T ] to zero and so characterizes
a disappearance of a queue after an aggregation of n oneserver queuing systems
for n → ∞.

Remark 2. For a validity of the formula (4) it is sufficient a fulfillment of the
conditions 1, 2 for arbitrary T > 0 and an equity of the condition 3 on T.

4 Examples

In this section examples of input flows which satisfy the conditions 1, 2 of
Theorem 4 are considered. All these examples are based on a fulfillment of the
“moment” Kolmogov-Chencov condition (1).

4.1 Aggregation of Regular Input Flows Without Aftereffect

Assume that x(t), 0 ≤ t ≤ T, is a number of random flow points on a half
interval [0, t), denote m(t) = Mx(t). Call random flow described by the process
x(t) regular and without aftereffect if the function m(t) is continuous and for
any 0 ≤ t1 < t2 ≤ t3 < t4 ≤ T r.v.‘s x(t2)−x(t1), x(t4)−x(t3) are independent.
Following [8] give general representation of the regular flow without aftereffect.
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Assume that there are nonnegative continuous and nondecreasing functions

mk(t), k ≥ 1, and the series
∞∑

k=1

kmk(t) = m(t) converges. Define random func-

tion xk(t) as a number of points of Poisson flow with the mean Mxk(t) = mk(t)
on a half-interval [0, t), 0 ≤ t ≤ T, k ≥ 1. Suppose that random functions

xk(t), k ≥ 1, are independent and consider the sum
∞∑

k=1

kxk(t) = x(t). In

[8, Chapter “Flows of random events without aftereffect”, Sect. 4] it is shown that
this random sum gives general representation of the regular flow without after-
effect.

Assume that for some nonnegative functions λk(t) ≤ λk < ∞, k ≥ 1, the

functions mk(t) =
∫ t

0

λk(u)du, 0 ≤ t ≤ T, and the series
∞∑

k=1

k2λk = G < ∞.

Then the series
∞∑

k=1

kmk(t) = m(t) = Mx(t),
∞∑

k=1

k2mk(t) = g(t) = Dx(t)

converge and the following inequalities take place

dm(t)
dt

≤
∞∑

k=1

kλk = M < ∞,
dg(t)
dt

≤
∞∑

k=1

k2λk = G < ∞, 0 ≤ t ≤ T. (5)

Put x1(t), x2(t), . . . the sequence of independent copies of the random process
x(t). Define the random process en(t) which characterizes input flow into aggre-

gated n - server queuing system by the equality en(t) =
n∑

k=1

xk(t). From this

definition and first inequality in (5) we have that the condition 1 of Theorem 4
is true. Consider now the normed sum

yn(t) =
en(t) − nm(t)√

n
, n ≥ 1.

Prove that the random process yn(t), n → ∞, C - converges to random process
ξ(g(t)). Indeed from multidimensional central limit theorem finite dimensional
distributions of the process yn(t) tend to multidimensional distributions of the
process ξ(g(t)). From the inequality (5) we obtain

sup
n

M(yn(t) − yn(t1))2(yn(t2) − yn(t))2

= sup
n

M(yn(t) − yn(t1))2M(yn(t2) − yn(t))2

= D(x(t) − x(t1))D(x(t2) − x(t)) = (g(t) − g(t1))(g(t2) − g(t))

≤ G
2
(t2 − t1)2, 0 ≤ t1 < t < t2 ≤ T. (6)
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Consequently for α = 2, β = 2, λ = 1, C = G
2

the random processes
yn(t), n ≥ 1, satisfy the “moment” condition of Kolmogorov-Chencov (1). So
from Theorem 1 we have C - convergence of the random process yn(t), n → ∞,
to the random process ξ(g(t)). Consequently the condition 2 of Theorem4 also
is fulfilled.

4.2 Poisson Input Flows with Independent Random Intensities

Consider following multiserver queuing system in random environment. Denote
x(t), 0 ≤ t ≤ T, Poisson flow with the random intensity λ which has the dis-
tribution P (dλ), λ > 0, and satisfies the inequality Mλ4 < ∞. Assume that
x1(t), x2(t), . . . are independent copies of the process x(t) with independent ran-
dom intensities λ1, λ2, . . . which have the common distriribution P (dλ). Take an
aggregation of n oneserver queuing systems in which input flow is characterized

by the random process en(t) =
n∑

k=1

xk(t). From the definition of en(t) we have

Men(t) = nm(t), m(t) = Mx(t) = tMλ,
dm(t)

dt
= Mλ (7)

and so the random process en(t) satisfies the condition 1 of Theorem 4.
Consider the sequence of random processes

yn(t) =
en(t) − Men(t)√

n
, n ≥ 1,

and prove that this sequence for n → ∞ C - converges to the random process√
Mλξ(t) + tη

√
Dλ. Here ξ(t) is the standard Wiener process, η is the standard

Gaussian r.v. and ξ(t), η are independent.
It is obvious that the covariation function r(t, s) of the random process x(t)

coincides with the covariation function of the random process yn(t).Calculate
r(t, s), 0 ≤ t ≤ s = t + τ :

r(t, s) = Mx(t)x(s) − Mx(t)Mx(s) = Mx2(t) + Mx(t)(x(s) − x(t))

−Mx(t)Mx(s) = tMλ + t2Mλ2 + tτMλ2 − ts(Mλ)2 = tMλ + tsDλ.

From the multidimensional central limit theorem we have that multidimensional
distributions of the random process yn(t) for n → ∞ converge to multidimen-
sional distributions of the Gaussian random process

√
Mλξ(t) + tη

√
Dλ.

Denote δk(t′, t′′) = xk(t′) − Mxk(t′) − xk(t′′) + Mxk(t′′), Mδk(t′, t′′) = 0.
Calculate for 0 ≤ t1 ≤ t ≤ t2 ≤ T

sup
n

M((yn(t2) − yn(t))2 (yn(t) − yn(t1))2)

= sup
n

M

(∑n
k=1 δk(t, t2)√

n

)2 (∑n
k=1 δk(t1, t)√

n

)2
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= sup
n

1
n2

∑
1≤k,l,p,q≤n

Mδk(t, t2)δl(t, t2)δp(t1, t)δq(t1, t)

= sup
n

1
n2

⎡
⎣ ∑
1≤k≤n

Mδ2k(t1, t)δ2k(t, t2) +
∑

1≤k �=l≤n

Mδ2l (t1, t)δ2k(t, t2)

+2
∑

1≤k �=l≤n

Mδk(t1, t)δk(t, t2)δl(t1, t)δl(t, t2)

⎤
⎦ = sup

n

[
Mδ21(t1, t)δ

2
1(t, t2)

n

+
n(n − 1)Mδ21(t1, t)δ

2
2(t, t2)

n2
+

2n(n − 1)Mδ1(t1, t)δ1(t, t2)δ2(t1, t)δ2(t, t2)
n2

]

≤ Mδ21(t1, t)δ
2
1(t, t2) + Mδ21(t1, t)Mδ22(t, t2) + 2(Mδ1(t1, t)δ1(t, t2))2.

Further for a convenience introduce the designations Mλ = λ, Mλi = λi, i =
2, 3, 4. It is clear that

(Mδ1(t1, t)δ1(t, t2))2 ≤ ((t − t1)(t2 − t)λ2)2 ≤ (t2 − t1)2T 2λ2
2
,

Mδ21(t1, t)Mδ22(t, t2) ≤ ((t − t1)λ + (t − t1)2λ2)((t2 − t)λ + (t2 − t)2λ2)

≤ ((t2 − t1)λ + (t2 − t1)Tλ2)2 = (t2 − t1)2(λ + Tλ2)2

and

M(x1(t) − x1(t1))2 = λ(t − t1) + λ2(t − t1)2 ≤ λ(t2 − t1) + λ2(t2 − t1)2,

M(x1(t2) − x1(t))2 = λ(t2 − t) + λ2(t2 − t)2 ≤ λ(t2 − t1) + λ2(t2 − t1)2,

M(x1(t) − x1(t1))2(x1(t2) − x1(t))2

=
∫ ∞

0

P (dλ)(λ(t − t1) + λ2(t − t1)2)(λ(t2 − t) + λ2(t2 − t)2)

≤
∫ ∞

0

P (dλ)(λ(t2 − t1) + λ2(t2 − t1)2)2 ≤ (t2 − t1)2(λ2 + 2λ3T + λ4T 2),
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consequently

Mδ21(t1, t)δ
2
1(t, t2)

≤ M
(
(x1(t) − x1(t1))2 + (t − t1)2λ

2
)(

(x1(t2) − x1(t))2 + (t2 − t)2λ
2
)

≤ 2(t2 − t1)2λ
2
(λ(t2 − t1) + λ2(t2 − t1)2) + (t2 − t1)2(λ2 + 2λ3T + λ4T 2)

+((t2 − t1)2λ
2
)2 ≤ (t2 − t1)2[T 2λ

4
+ 2λ

2
(λT + λ2T 2) + λ2 + 2λ3T + λ4T 2].

So for 0 ≤ t1 ≤ t ≤ t2 ≤ T the following inequality is true

sup
n

M((yn(t2) − yn(t))2 (yn(t) − yn(t1))2) ≤ (t2 − t1)2C,

where

C = [T 2λ
4

+ 2λ
2
(λT + λ2T 2) + λ2 + 2λ3T + λ4T 2] + 2T 2λ2

2
+ (λ + Tλ2)2

Consequently for α = 2, β = 2, λ = 1 and for calculated here constant C the
“moment” condition of Kolmogorov-Chencov (1) is fulfilled. So from Theorem1
we obtain C - convergence of the random process yn(t) to the random process√

Mλξ(t) + tη
√

Dλ. Then the condition 2 of Theorem4 is true also.

4.3 Aggregation of Poisson Input Flows with Common Random
Intensity

Assume that the intensity λ of Poisson flow is random and has numerable num-
ber of meanings λ1, λ2, . . . with probabilities p1, p2, . . . Consider n Poisson flows
which have the same random intensity λ and for any λ = λk are independent
(that is input flows are conditionally independent). Denote x1(t), x2(t), . . . ran-
dom processes characterizing Poisson input flows with the random intensity λ
common for all flows. Define input flow to aggregated n - server queuing sys-

tem by the equality en(t) =
n∑

k=1

xk(t) and designate conditional random process

(en(t)/λ = λk).
It is clear that the conditional random process (en(t)/λ = λk) for any k satis-

fies the condition 1 of Theorem 4. Define random process yn(t) =
en(t) − Men(t)√

n
and consider for k = 1, 2, . . . the sequence of conditional random processes

{(yn(t)/λ = λk), n ≥ 1}.

Using results of previous subsection it is not difficult to prove that the ran-
dom process (yn(t)/λ = λk) for n → ∞ C - converges to the random process
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√
λkξ(t), 0 ≤ t ≤ T. Here ξ(t) is the standard Wiener process. Consequently the

conditional random process (en(t)/λ = λk) for any k satisfies the conditions 1,
2 of Theorem 4.

If for any k ≥ 1 the following condition
∫ T

0

F (t)λkdt < 1 (8)

is true then from Theorem 4 we have for k ≥ 1 the relation

P

(
sup

0≤t≤T
qn(t) = n/λ = λk

)
→ 0, n → ∞. (9)

Put arbitrary ε > 0 and define such K(ε) > 0 that
∑

k>K(ε)

pk < ε. Then by

chosen ε,K(ε) it is possible to find such N(ε) that for n > N(ε)

P

(
sup

0≤t≤T
qn(t)/λ = λk

)
< ε, 1 ≤ k ≤ K(ε).

Consequently we have

P

(
sup

0≤t≤T
qn(t) = n

)
=

∞∑
k=1

pkP

(
sup

0≤t≤T
qn(t) = n/λ = λk

)
≤ 2ε, n > N(ε).

So from the condition (8) random input flow described by the process en(t)

satisfies to the limit relation P

(
sup

0≤t≤T
qn(t) = n

)
→ 0, n → ∞.
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Fractal Queues Simulation Peculiarities
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Abstract. Relevant to the modern theory of computer networks design
questions of developing adequate service models of fractal traffic are con-
sidered in the article. The fidelity criteria of heavy-tailed distributions
(HTD), which take into account the HTD distortion effect on the results
of fractal queues simulation, are offered. The problem of HTD significant
distortions in their realization during simulation is revealed and exam-
ined. To solve this problem we also developed the method, which does
not require the use of “long arithmetic”.

Keywords: Fractal traffic · Queueing theory · Simulation modeling ·
Random number generators

1 Introduction

The discovery of fractal properties of information networks traffic [1] was the
key to understanding the reason of a number of major failures in projects of net-
work devices aimed at ensuring the quality of information exchange and based
on the classical theory of queues. This discovery led to a radical correcting of
mathematical models of traffic and methods of traffic service. In the descrip-
tion and analysis of fractal traffic such mathematical concepts as self-similar
stochastic process, long-range dependence (LRD) and heavy-tailed distribution
(HTD) have been widely used [1–3]. In these studies much attention has been
given to the methods of fractal traffic identification based on various types of
mathematical models [4].

The queueing systems are the most appropriate mathematical models [3,5–8]
for the purposes of designing the network devices on the system level. This article
discusses and solves some problems caused by peculiarities of simulation of fractal
queueing systems [8]. Fractal systems (FS) are called the systems of GI|GI|n|m
class, which have the following properties. The independent interval τi between
the time of receipt of the i-th and (i + 1)-th requests in FS has the same for all
i distribution function (DF) A(t) with mathematical expectation (m.e.) E(τi) =
τ̄ < ∞. Independent service interval xi (processing time) of any i-th request has
DF B(t) with m.e. E(xi) = x̄ < ∞. At least one of the DF A(t), B(t) describes
a fractal random variable (r.v.) (i.e. it is asymptotically power [9]) and has an
infinite variance. The load rate ρ of considered FS does not exceed one:

ρ =
x̄

nτ̄
≤ 1.

c© Springer International Publishing Switzerland 2015
A. Dudin et al. (Eds.): ITMM 2015, CCIS 564, pp. 415–432, 2015.
DOI: 10.1007/978-3-319-25861-4 35
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As FS study with a help of analytical methods is complicated, so the sim-
ulation modeling (SM) [6] is widely used for their calculation, and one of the
most common tools is a GPSS simulation system [10]. The traditional way to
improve the reliability and accuracy of simulation estimates is the development
and application of appropriate powerful methods of variance reduction, such
as the essential sampling method and the method of stratification; the meth-
ods are used to estimate the probability of rare events [11]. Unfortunately, the
available literature describing the methods of variance reduction in FS model-
ing refers mainly to estimated ruin probability in models of risk insurance, or,
equivalently, the waiting time in line systems with a single channel. Asmussen
et al. [12] described several algorithms for the M |G|1 queue, which require an
explicit representation of random sums timeout. Boots and Shahabuddin [13]
developed a very efficient algorithm for SM of GI|GI|1 system with Weibull dis-
tribution of service time. The development of efficient parameter estimates for
HTD based on the limited samples relates to the same range of issues. The solu-
tion of this problem is given in a large number of publications; we point out for
example the papers [14,15]. However, we found no studies in which the accuracy
of implementation of HTD on the basis of pseudo random number generators
has been studied by accurate methods, rather than using sample estimates. The
simple accurate methods applied in the article can identify the problem of serious
distortions realized in SM of HTD. The problem of HTD distortion is analyzed
on the basis of the need to ensure proper FS simulation. There are developed
effective ways to solve this problem.

2 FS Simulation Tasks

Typical representatives of FS systems are Pa|M |n|m, M |Pa|n|m and Pa|Pa|n|m.
Here the symbol Pa corresponds to the Pareto distribution (PD). If the buffer size
m is finite, it is required for a given m to define the probability P of request loss
(direct problem) or to find the smallest size m, guaranteeing that the probability
of loss is not greater than P (inverse problem). When m = ∞ is then the subject
of special interest is the average queue length L or the average queueing time W .

Power and asymptotically power distributions, the typical representative of
which is PD, are referred to HTD. PD with the parameters K,α will be denoted
in short as Pa(K,α). Its distribution function F (t) has the form

F (t) = 1 −
(

K

t

)α

, α > 0, K > 0, t ≥ K, (1)

where α is the shape parameter, K is the smallest value of r.v. (and the scale
parameter).

The initial moment of k-th order ξ(k) for r.v. ξ ∈ Pa(K,α) is determined
taking into account the DF (1) as follows:

ξ(k) = E(ξk) =

∞∫

K

tkdF (t) =

{
αKk

α−k , α > k,

∞, α ≤ k, (k = 1, 2, ...).
(2)
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Hence, when α > 1 we obtain a finite mathematical expectation

ξ(1) = ξ̄ =
αK

(α − 1)
, (3)

when α > 2 – the finite variance

Var(ξ) = σ2
ξ = ξ(2) − ξ̄2 =

αK2

(α − 1)2(α − 2)
. (4)

If we consider PD with infinite variance and finite m.e., the shape parameter α
is situated in the range 1 < α ≤ 2. This range of values ofα is the most relevant
in simulation of information networks with fractal traffic. The smaller α, the
heavier the tail of PD is. By changing scale parameter K at given α, one can
obtain any required m.e.

If both DF A(t) and B(t) are PD, then FS adequately takes into consideration
all the main features of the serviced fractal traffic [1] – namely its statistical self-
similarity, the presence of specific load fluctuations and LRD on the incoming
values.

Adequate reflection of the main peculiarities of the serviced fractal traffic by
network devices leads to a wide application of FS to address issues of quality
assurance of data exchange. This queueing systems study, in which DF A(t)
and/or B(t) are HTD, is also a promising direction of the mathematical queueing
theory development [3]. This confirms the relevance of the questions which are
considered in the article.

3 The Problem of HTD Distortion Realized in SM

3.1 Displacement of PD Moments

Using the method of the inverse transformation (inversion) DF (1) we obtain
the following formula to generate r.v. ξ ∈ Pa(K,α):

ξ = K(1 − u)−1/α. (5)

where u is basic r.v. (BRV) uniformly distributed in the area from 0 to 1. As a
result of the equivalent replacement distribution (1 − u) → u, formula (5) takes
the form

ξ = Ku−1/α. (6)

Formula (6) can be obtained directly by inverse transformation of the tail
F̄ (t) = 1 − F (t) = (K/t)α:

ξ = F̄−1(u) = Ku−1/α,

where F̄−1 is inverse to F̄ function. We will show in Sect. 5 that the formulas
derived from tail inverse transformation are more preferable then the formulas
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derived from DF inverse transformation not only in terms of high speed but also
in terms of the overcoming HTD distortions.

The reason of distortions realized in the SM of HTD is a discreteness of
BRV software generators. Software random number generators realizes discrete
BRV (DBRV) u′ with a set of equally probable values {0, ε, 2ε, 3ε, ..., 1 −
ε, 1} forming a uniform lattice with step ε (usually zero or one of this set
are excluded). For example, in GPSS citeten generator Uniform(1,0,1) realizes
DBRV, taking values {0.000000, 0.000001, ..., 0.999999} with a step between
them ε = 10−6. The value of ε will be further called the sample spacing. Using the
expression Uniform(1,0,1)+1E-6#Uniform(1,0,1) in GPSS the DBRV is realized
with sample spacing ε = 10−12 (the sign # denotes here multiplication, constant
1E-6 – value 10−6). In other languages a step ε ≈ 10−15 is usually provided by.

Thus, in the inverse transformation (6) there instead of BRV u there is DBRV
u′ and, consequently, instead of a continuous r.v. ξ ∈ Pa(K,α) the discrete r.v.
(d.r.v.) ξ′ is implemented:

ξ′ = K(u′)−1/α. (7)

In SM of FS it turns out that in the case of the PD realization and other
HTD (as opposed to the realization of DF with light tails) the step ε = 10−15

and, especially, the step ε = 10−6 is too large and leads to a significant difference
the properties of generated d.r.v. ξ′ from the properties of r.v. ξ ∈ Pa(K,α).
Let us determine, for example, the exact values of the initial moments of ξ

′(k)

d.r.v. ξ′ (7), taking into account the finite number N = 1/ε of its possible values,
corresponding to the values DBRV u′

i:

ξ′(k) = E(ξ′k) =
N∑

i=1

P(ξ′
i)ξ

′k
i =

N∑
i=1

1
N

Kku′− k
α

i = KkN −1
N∑

i=1

(iN −1)
− k

α

= KkN −1
N∑

i=1

i−
k
α N

k
α = KkN

k
α −1

N∑
i=1

i−
k
α ( α > k, N = 1/ε); (8)

then calculate for different ε m.e. E(ξ′), a variation σ2
ξ′ and coefficient of variation

(c.v.) C ′
ξ d.r.v. ξ′ on the derived from (8) formulas

E(ξ′) = KN
1
α −1

N∑
i=1

i−
1
α , (9)

σ2
ξ′ = ξ′(2) − E2(ξ′) = K2N

2
α −1

(
N∑

i=1

i−
2
α

)
− E2(ξ′), Cξ′ =

σξ′

E(ξ′)
(10)

and compare it with the corresponding numerical characteristics of r.v. ξ ∈
Pa(K,α) (Table 1). The characteristics E(ξ) and Cξ of r.v. ξ ∈ Pa(K,α) are
calculated using the formulas (2). All values in the Table are precise or approx-
imated to five significant digits.

Presented in Table 1 the results of calculations using the exact formulas (9)
and (10) demonstrate the presence of substantial deviations of characteristics
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Table 1. Numerical characteristics d.r.v. ξ′, implementing the r.v. ξ ∈ Pa(K, α) at
K = 1

α E(ξ′) E(ξ) Cξ′ Cξ

ε = 10−6 ε = 10−12 ε = 10−15 ε = 10−6 ε = 10−12 ε = 10−15

1.01 13.415 24.612 29.662 101.00 3.856 3.9866 · 104 9.7690 · 105 ∞
1.1 8.0297 10.154 10.549 11.000 48.305 1.0882 · 104 1.7677 · 105
1.2 5.4565 5.9457 5.9828 6.0000 26.687 2450.9 2.4357 · 104
1.3 4.1777 4.3269 4.3320 4.3333 15.488 618.20 3965.6

1.4 3.4432 3.4989 3.4999 3.5000 9.5534 182.69 802.54

1.5 2.9755 2.9998 3.0000 3.0000 6.2716 63.247 200.02

1.6 2.6548 2.6666 2.6666 2.6666 4.3646 25.390 60.269

1.7 2.4222 2.4286 2.4286 2.4286 3.2008 11.710 21.649

1.8 2.2463 2.2500 2.2500 2.2500 2.4563 6.1655 9.2253

1.9 2.1089 2.1111 2.1111 2.1111 1.9590 3.6806 4.6685

2 1.9985 2.0000 2.0000 2.0000 1.6136 2.4601 2.7891

generated by d.r.v. ξ′ on the characteristics to be realized by r.v. ξ ∈ Pa(K,α).
Therefore, we will further talk about this d.r.v. ξ′ as the r.v. belonging to the
discrete Pareto distribution DPa(K,α, ε) where ε is a sample spacing of used
DBRV. In Table 1 the values of E(ξ′), Cξ′ are the values to be converged to
by corresponding sample estimates with the increase of the amount of realized
samples to infinity.

Table 1 also shows that the heavier the tail of PD is, the more m.e. of actually
realized r.v. ξ′ differs from m.e. subject to the realization of r.v. ξ. The ends of
the interval 1 < α ≤ 2 are the centers of critical areas: α = 1 point is a center of
critical area for the realized m.e., α = 2 point is for the realized c.v.

The reason for HTD distortions is that for values DBRV u′ similar while
using a formula of transforming DF to one and using the inversion formula of
the tail to zero, with heavy tails of the distribution and the usual step ε there
are too many large r.v. values that are essential for the formation of moments,
they are not realized simply.

3.2 The Elementary Universal Method of Reducing Distortion

Estimating the general case (for all α > 0) the last in (8) the sum at the top and
bottom with suitable integrals by means of elementary algebraic transformations
there can be derived a simple estimate of the moments displacement Δξ(k):

k

α
ξ(k)ε 1− k

α < Δξ(k) < ξ(k)ε 1− k
α , (α > K), (11)

where Δξ(k) =
∣∣∣ξ′(k) − ξ(k)

∣∣∣. In this case actually realized k-th interval ξ′(k) is

always less than the interval to be realized ξ(k). Coefficient of reducing γ =
ξ(k)/ξ′(k) → ∞ is at α ↓ k. If α ≤ k, then ξk = ∞ and γ = ∞.

The performed calculations and the analysis of the obtained general equation
(11) leads to the conclusion that the moment displacement of PD using any fixed
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ε (i.e. any length digit grid of generator BRV) can be arbitrarily large. Obviously,
there are similar features in other HTD realization.

When realizing light-tailed distributions with discreteness of machine arith-
metic does not lead to significant errors. For example, the transformation (−λ−1×
ln u′) of DBRV u′ in the step ε = 10−6 implements discrete version of exponential
r.v. with m.e. 0.999992 · λ−1 and c.v. 0.99995. The relative differences between
these values from the corresponding exact characteristics λ−1 and 1 of continu-
ous exponential r.v. are comparable to ε and they are sufficiently small to allow
to ignore them in the practice of SM systems with queues.

The differences between PD and the realized discrete PD can be estimated
by the distance R between the DF F (t) and Fd(t):

R = max
t

|Fd(t) − F (t)| , (12)

where Fd(t) is DF r.v. ξ′ realized for the given ε transformation (7). The trans-
formation (7) displays a uniform lattice N of equally probable values of d.r.v. u′

on irregular lattice N of equally probable values of d.r.v. ξ′. DF Fd(t) is stepped
piecewise constant function with altitude jumps R = Δ = 1/N = ε in points
t = ξi ± 0 of r.v. possible values ξ′ (i = 1, ..., N). Thus, the distance R (12)
between F (t) and Fd(t) is equal to a step ε of BRV.

Hence the universal elementary method of reducing realized HTD distortion
consists in the reduction of step ε, i.e. in the digit increase of used generators
of standard random numbers. When ε → 0 the distance R = ε → 0, and the
moments displacement (11) Δξ(k) → 0. By increasing the number of decimal
places to one, step ε is reduced by an order.

Unfortunately, this simple method for any fixed number of digits does not
guarantee the appropriate accuracy of the PD realization and many other HTD.
According to Table 1, if α ≤ 1.3, then 15-digits of generators are not enough
number to realize m.e. E(ξ′) with acceptable accuracy, providing at least 4 dec-
imal digits of precision. And it is not enough for the realization of the infinite
“with the precision”, i.e. achieved the value of 10,000, the variation coefficient
is near the point α = 2. Using formulas (9) and (10), the sum in which can be
easily calculated by means of WolframAlpha, it is easy to determine that for 4
exact numbers of realized m.e. when α = 1.1 it is necessary to generate DBRV u′

with more than 30 decimal digits, and for the realization of acceptable accuracy
c.v. when α = 2, and 1000 decimal digits of DBRV is not enough. But the main
disadvantage of this elementary method is that the increase in the number of
digits DBRV u′ does nothing if the realization of the inverse transform (5) or
(6) does not perform calculations with the same number of significant digits. It
requires the use in the generation of r.v. ξ ∈ Pa(K,α) “long arithmetic”(realized,
for example, by presentation of numbers of character strings) that drastically
reduces the rate of r.v. generation. In practice, it leads to a reduction by orders
of magnitude in the received samples and the effect of verification distributions
realized in these samples is not shown.
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4 Effect of HTD Distortion on SM of FS Results

4.1 Singularities of Empirical Estimates of PD Parameters

If α ∈ (1, 2] for a sample ξ′
1, ..., ξ

′
n of d.r.v. values ξ′ ∈ DPa(K,α, ε)) the estima-

tion Êξ′ = (ξ′
1 + ... + ξ′

n)/n is calculated, then Êξ′ → E(ξ′) when n → ∞. The
convergence estimating Êξ′ to E(ξ′) is very slow due to the large c.v. Cξ′ . Thus
if α = 1.1, then even if a relatively large sample spacing ε = 10−6 to obtain
an acceptable approximation 8.028 to the exact value of E(ξ′) = 8.0297 (see
Table 1) required volume sample was at n = 109.

At the same time different ways of the distribution parameters estimating
in the sample ξ′

1, ..., ξ
′
n lead to different results. Therefore, we must carefully

estimate and justify the applied data and cautiously interpret them. For example,
if the sample ξ′

1, ..., ξ
′
n parameters K and α are estimated by maximum likelihood

method, leading to the formulas

α̂ = n/(
∑n

i=1
ln ξ′

i − n ln K̂), K̂ = min{ξ′
i}, (13)

then such estimates converge to the exact values of K and α sufficiently fast and
even for ε = 10−6 are substantially unbiased. With the obtained estimates K̂, α̂
it is possible to get an indirect estimate of m.e. in the form Ê′

ξ = K̂α̂/(α̂ − 1).
This estimate, respectively, is sufficiently precise. But it does not converge to the
m.e. E(ξ′) of sampling units but to m.e. E(ξ) = αK/(α − 1) of r.v. ξ subjected
to realization. The reason for this lies in the fact that the method of maximum
likelihood uses the probability density of the r.v. ξ ∈ Pa(K,α).

4.2 Singularities of SM FS M |Pa|1|∞
The system M |Pa|1|∞ service time x appertains to the distribution Pa(K,α)
and, if α ∈ (1, 2], then the stationary average length L(ρ) of requests line is
infinite for any ρ ∈ (0, 1]. In fact, according to the Pollaczek-Khinchine formula
[5] here for any ρ ∈ (0, 1] there is

L(ρ) =
ρ2(1 + C2

x)
2(1 − ρ)

= ∞, (14)

as the variation coefficient of Cx at α ∈ (1, 2] is infinite. But if FS to be investi-
gated by SM method, then instead of service time x ∈ Pa(K,α) realized during
x′ ∈ DPa(K,α, ε) is realized, and for example, when K = 1, α = 2, ε = 10−15

in accordance with (14), at a sufficiently high run-length model it is obtain:

L(ρ) ≈ ρ2(1 + 2.792)
2(1 − ρ)

≈ 4.39ρ2

1 − ρ
(15)

(see Table 1). This conclusion is also confirmed by the results of simulation exper-
iments. The peculiarity of the case is considered a fundamental difference of
simulation solutions (15) of the exact (14).
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4.3 Singularities of SM FS Pa|M |1|∞
In the system Pa|M |1|∞ the average waiting time can be found accurately (5)
by the formula

W =
σ

μ(1 − σ)
, (16)

where μ = 1/x̄ is the service intensity, σ is the only root of the equation

σ = A∗(μ − μσ) (17)

in the area 0 ≤ σ < 1, A∗(s) =
∞∫
0

e−stdA(t) is Laplace transform (LT) distribu-

tion function A(t).
In this case A(t) is Pareto DF (1). Therefore, LT A∗(s) is as follows:

A∗(s) = F ∗(s) = E(e−sτ ) =

∞∫

0

e−stdF (t) =

∞∫

K

e−st αKα

tα+1
dt = αKα

∞∫

K

e−stt−α−1dt,

where τ ∈ F (τ). Assuming it the Eq. (17) is reduced to relatively easily solved
by numerical method equation:

σ = αKαμα(1 − σ)αΓ (−α,Kμ(1 − σ)), (18)

where Γ (c, x) is incomplete gamma function: Γ (c, x) =
∫ ∞

x
tc−1e−tdt.

Solving the Eq. (18) by the numerical method at α = 1.1,K = 1 (i.e. τ̄ = 11)
for any ρ (i.e. μ = 1/(ρτ̄) = 1/11/ρ), we determine the corresponding σ and L,
presented in Table 2 (the exact values are approximated). It also presents the
results of the FS SM at ε = 10−12 and run-length n = 10 million requests – they
are estimates LSM of average queue length L and estimates ρSM of load rates ρ.

Table 2. Results of exact calculation and simulation of FS Pa|M |1|∞ at τ ′ ∈
DPa(1, 1.1, ε), ε = 10−12, n = 107

ρ σ L LSM ρSM ρ′

0.1 0.259078 0.03497 0.047 0.136 0.108

0.2 0.648676 0.36928 0.505 0.275 0.217

0.3 0.871632 2.03703 2.733 0.402 0.325

0.4 0.964199 10.7730 14.41 0.532 0.433

0.5 0.992816 69.1015 98.14 0.673 0.542

0.6 0.999076 648.429 859.3 0.831 0.650

0.7 0.999939 11526.7 − − 0.758

Note that all estimates ρSM in Table 2, despite the high run-length n, are sig-
nificantly higher than its final values when n → ∞ values ρ′ = x̄

E(τ ′) = x̄
τ̄

τ̄
E(τ ′) =
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ρ 11
10.154 = 1.0833 ρ (see also Table 1), which illustrates the problem of slow con-

vergence estimates for SM of FS. The reasons for this phenomenon, which quite
complicates SM of FS are the infinite variance of distribution A(T ), B(T ), and
the high correlation between the number of requests coming in distant from each
other with equal length intervals of time.

To calculate the average queue length realized in SM, you can calculate the
LT DF F ∗

d (s) r.v. τ ′ ∈ DPa(K,α, ε) according to the formula

F ∗
d (s) = E(e−sτ ′

) = E(e−sK(u′)−1/α

) =
1
N

N∑
i=1

e−sK(εi)−1/α

(ε = 1/N). (19)

As the exact calculations show, the LT F ∗(S) and LT F ∗
d (s) for various α and

ε ≤ 10−6 coincide over wide ranges of values s with precision up to 6 and
more significant digits. However, the impact on the SM results of such a small
distortion of LT caused by the discreteness of BRV generators can be significant.

Let us consider a specific example of the SM of system Pa|M |1|∞. Let us
suppose that α = 1.1,K = 1 (while the average time τ̄ between the requests
receipt is 11) is required to find W = W (ρ) when the load rate ρ = x̄/τ̄ = 0.4. It
occurs when loading x̄ = 0.4τ̄ = 4.4, i.e. when μ = 1/x̄ = 0.22727. Numerically
solving equation (17) for this value of μ and A∗(s) = F ∗

d (s) (19), we determine
σ = 0.964199, and, according to (16), W = W (0.4) = 118.5.

When SM of this FS with generator sample spacing of DBRV ε = 10−6

average time τ̄ ′ between requests entering will be 8.0297 (see Table 1). The load
rate ρ = 0.4 is reached at x̄ = 0.4 · 8.0297 = 3.21188, i.e., when μ = 1/x̄ =
0.311344. SM of this FS at such μ (when running about 125 million requests)
provides for the load rate ρ the estimation ρSM = 0.401 � 0.4, and for W –
the estimation WSM = 19.657. Thus, the simulation solution of the task of the
magnitude of WSM (ρ) at ρ = 0.4 obtained by SM is different from the exact
solution more than five times.

The obtained by SM method results uniquely are determined by the discrete-
ness of the used BRV generator. Indeed, taking into account the LT (19), the
Eq. (17) for the considered FS takes the form

σ = 10−6
106∑
i=1

1/ exp[(0.3113441(1 − σ))(10−6i)
−1/1.1

], (20)

and its exact numerical solution σ = 0.85953, in accordance with (16), at
μ = 0.311344 giving W ′ = 19.653. The obtained above simulation estimation
WSM = 19.657 is consistent with the exact solution. For the transition from
calculated with help of Eq. (20) W ′, implemented in the SM when n → ∞ the
corresponding L′, you can use the Little’s formula in the form of L′ = W ′/τ̄ ′.

No matter how small HTD sampling is it is very important in terms of
moments realization, minor LT distortions of realized HTD are important for
solution σ to Eq. (17). Finally, we discover the existence of significant, some-
times fundamental deterministic errors in the results of SM FS M |Pa|1|∞ and
Pa|M |1|∞.
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4.4 Singularities of Other Systems with HTD

The performed for systems Pa|M |1|∞ and M |Pa|1|∞ analysis of deterministic
errors of average waiting time W and the average queue length L, realized in the
SM shows that these errors are significant and are caused by the final length of
digits grid of BRV generators. Obviously, that SM of other FS with power and
asymptotically power distributions determined at the input patterns generally
also burdens with significant deterministic errors of obtained results in general
case. This conclusion can be extended to SM of all other systems as GI|GI|m|n
class with asymptotically power distribution and other HTD.

5 Effective Methods to Eliminate HTD Distortions

The control of results accuracy of SM with a help of classical methods such
as “three sigma rule” allows evaluating only a random deviation of simulated
evaluation of the exact desired values, which is caused by the statistical nature
of these estimates. The analysis made in Sect. 4 of the article shows that in
FS simulation along with classical control of estimates’ statistical error it is
necessary to provide also a control of deterministic errors arising due to the
distortion of realized HTD or to eliminate the deterministic error through the
development of more accurate methods of HTD generation. We offer effective
methods for HTD generating, which can eliminate distortions in the sense that
the amount of distortion is reduced to the level of the minor computational errors
that typical for realization of light-tailed distributions.

5.1 Summation of Scaled Pseudo Random Numbers

A simple and, as the in-depth analysis shows, agreed with machine arithmetic
way out is to realize BRV in the form of “long sum” of several appropriately
scaled realizations of the standard random numbers. A simple example of such
sum in the GPSS language (with use of the Uniform generator twice) is given
in Sect. 3.1. Similarly BRV can be realized as the sum of several scaled random
numbers obtained with the help of a standard generator.

However, in the above example, the GPSS language the correct application of
the sum of two 6 digits uniformly distributed r.v., where the first term is realizing
the first 6 digits after the decimal point, and the second – the next 6 digits has no
doubt. Indeed, in general, the GPSS uses arithmetic calculates with an accuracy
of at least 15 decimal digits. Therefore, this sum is realized exactly as 12 digits
BRV. But if you add three independent standard random numbers using the
expression Uniform(1,0,1)+1E-6#Uniform(1,0,1)+1E-12#Uniform(1,0,1), then
instead of 18-digits BRV it actually formed approximated result with a smaller
number of significant digits. Even longer sums will also be approximated to the
number of digits, which is realized in the simulation language by the machine of
floating-point arithmetic.
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However, the use of such “long sum” is realized by formulas, obtained with a
help of the tail inverse transformation, like formula (6), and allows you to solve
the problem of HTD distortion.

Similarly, in a program with the usual arithmetic (with 15 significant decimal
digits) using the standard 15 digits random number generator – let it be a
generator RAND() to realize uniform in the interval (0, 1] DBRV u′ with sample
spacing ε = 10−15, the u′′ sum of three terms

u′′ = RAND() + 10−15RAND() + 10−30RAND() (21)

will be a random number with 15 exact significant figures instead of 45. However,
if in order to implement HTD the formula obtained by the inverse transformation
of the tail is used, then the problem of HTD distortion with a help of long sums
as (21) is actually achieved. This occurs because the step of values DBRV u′′

lattice decreases as they are closer to zero (see Sect. 3.1). If for values close
to one the lattice spacing is equal to 10−15 , then it near zero (where the first
two terms in (21)vanish), the lattice spacing reaches 10−45, since in mashine
arithmetic the first zeros after the decimal point at the mantissa are converted
to the value of the number’s order. Formula (21) can be used, for example in
Excel, wherein step ε is exactly 10−15.

Depending on the method of realization of the standard generator its sample
spacing may be different. For example, if the RAND() generator is implemented
by multiplicative congruent method with module m = 231, the lattice spacing
value will be ε = 2−31. In this case, as the scale factor in terms of additional
components of weighted sum of type (21) one should use 2−31, 2−62, etc.

Let us calculate m.e. of Pareto d.r.v. ξ′, realized by formula (6) with K =
1, α = 1.1 with use of DBRV u′′, which is formed by the “long-sum” (21) .To do
this we first assume that all u′′

i are 45-bit values with sample spacing ε = 10−45.
Then, in accordance with formula (9)

E(ξ′) = 10−45
1045∑
i=1

(u′′
i)

− 1
1.1 = 1045(

1
1.1−1)

⎛
⎝

1045∑
i=1

i−
1

1.1

⎞
⎠ = 10.9991540... , (22)

that is sufficiently close to the exact value of m.e. subject to the realization of
Pareto r.v. E(ξ) = 11 (a normal 15-digit generator realizes r.v. ξ′ with m.e.
10.549, see Table 1). Now let us take into account that only 1015 values of u′′,
realized by the sum of (21) (when the first two terms are equal to zero), coincide
with the corresponding first at the bottom 1015 values of 45-digit DBRV. Others
1030 values realized by the sum (21) coincide with the corresponding values of 45-
digits DBRV only up to 15 significant digits (not counting the first zeros after
the decimal point). Applying the sensitivity analysis, it is easy to show that
the result of the calculation (22) with such precision representation of values
u′′ representation will change only after the 15-th decimal figure. However, the
general rules of approximation in the calculation prove the same.

However, it means that all the nine shown in (22) digit values E(ξ′) are
accurate, and therefore, E(ξ′) coincides with E(ξ) = 11 up to five significant
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figures. The calculations confirmed that the method of “long sums” really allows
us to solve the problem of distortion of HTD in SM.

The advantage of the “long sums” method lies in its simplicity. When using
it to solve the problem of HTD distortion we do not need to use the “long
arithmetic” and slowing of calculations only occurs during the generation of r.v.
with HTD because of use of pseudo random number generator several times.
Calculations by analogy with (22) made for 6-digits random number generators
indicate that an acceptable deterministic error of m.e. realization of Pareto r.v.
ξ if α ≥ 1.1 is achieved by a “long-sum” six or eight scaled random numbers.
The m.e. of realized r.v. ξ′ in this case coincides at α ≥ 1.1 with the m.e. of r.v.
ξ wit the accuracy up to four or five significant digits.

Disadvantages of the method consists in the fact that it does not guarantee
the absence of moments displacement over the entire range of realized distribu-
tion parameters, and in case of “long enough sum” of scaled random numbers
the generation of random variables slows down in proportion to the number of
terms in this sum.

We emphasize once again that the method of long sums does not work when
HTD realizing formulas are received with inverse transformation of DF. For
example, when using the formula (5) the method will not work, because without
a transition to “long arithmetic” it is not possible to approach to one with a
small step. The usual double-precision arithmetic, which provides 15 accurate
decimal digits, by subtracting the number less than 10−15 from one results in
one exactly.

5.2 Basic Cascade Method

Suppose we have a random number generator RAND1() with a number of dec-
imal digits r ≥ 12 and RAND2(), which has at least 6 digits. We divide the
area t ≥ K of r.v. values x ∈ Pa(K,α) at intervals with a help of points
K1 = K,K2 = K1 · 106/α,K3 = K2 · 106/α, and so on. With regard to (1)
the probability of intervals (Ki,Ki+1) will amount pi = P (Ki ≤ x < Ki+1) =
0.999999 · 10−6(i−1), i = 1, 2, ... . Let us imagine the tail F̄ (t) = (K/t)α as a
linear combination of the corresponding conventional tails:

F̄ (t) =
∞∑

i=1

piF̄i(t), (23)

where

F̄i(t) =

⎧⎨
⎩

1, if t < Ki,
F̄ (t)−F̄ (Ki+1)

pi
, if Ki ≤ t < Ki+1,

0, if Ki+1 ≤ t.

(24)

The random variable x with the tail of the distribution F̄ (t) = (K/t)α we
will generate as a mixture of r.v. xi, with tails (24) shown on Fig. 1. Components
xi of the mixture should be selected with the corresponding probabilities pi.
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Fig. 1. Tails (24) for K = 1, α = 1.1. The scale on the axis t is logarithmic

In accordance with the said procedure of r.v. generation x ∈ Pa(K,α) can be
represented as shown in Fig. 2. The cycle starting at step Step2 (excluding con-
dition test) is performed once approximately one time per every 106 procedure
calls (twice one time per 1012 calls, etc.) to enable on the average a sufficiently
rapid generation of r.v. x. Step Step3 realizes a method inverse transformation
for the tail F̄i(t).

Fig. 2. Basic cascade generation algorithm r.v. with PD

The method is not difficult to modify and for the generator RAND() with
a different length of digits grid, with other partitions of axis t at intervals of
conditional distributions, and with the other, not decimal system of calculation.

By suitable linear transformations of r.v. x on the output of basic cascade
generator versions of PD, other than (1) can be realized. For example, to realize
r.v. y that has Pareto DF in version

Fy(t) = 1 −
(

b

b + t

)α

, b > 0, t ≥ 0,

it is enough to put K = b, refer to the basic cascade generator and convert the
resulting value of x to y by the formula y = x − b.
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5.3 Checking the Accuracy of the Cascade Method

To estimate the accuracy of the proposed cascade method of HTD realization let
us calculate m.e. E(x′) d.r.v. x′, which is actually realized in the procedure shown
in Fig. 2 for K = 1, α = 1.1, and compare it m.e. with the exact value of the 11
m.e. of r.v. x ∈ Pa(1, 1.1). As the used generator RAND1() has r ≥ 12 decimal
digits, we consider the worst case r = 12. Let us calculate m.e. E(x′) realized
through conventional m.e. Ei(x′). In interval (Ki,Ki+1) in accordance with algo-
rithm step Step3 is realized d.r.v. x′ = (u′ · 10−6(i−1)(1 − 10−6) + 10−6i)−1/1.1 =
(0.999999 · 10−6(i−1)u′ + 10−6i)−1/1.1. Hence, running all equally probable val-
ues u′, we obtain the formula

Ei(x′) = 10−12
1012∑
n=1

(0.999999 · 10−6(i−1)10−12n + 10−6i)
−1/1.1

= 10−12
1012∑
n=1

(0.999999 · 10−6(i+1)n + 10−6i)
−1/1.1

. (25)

The results of calculation of conditional m.e. (25), the corresponding probabili-
ties pi = 0.999999 · 10−6·(i−1) of intervals and unconditional m.e. are presented
in Table 3. These calculations are made with a large margin of accuracy and
in Table 3 are approximated. We see that unconditional m.e. E(x′) of actually
realized d.r.v. x′ up to 6−7 significant figures coincides with the m.e. E(x) = 11
of r.v. x ∈ Pa(1, 1.1).

Table 3. Calculation of unconditional m.e realized d.r.v. x′

i Ei = Ei(x
′) pi piEi Partial amount of piEi

1 7.86717E+00 9.99999E-01 7.867160 7.867161

2 2.24060E+06 9.99999E-07 2.240596 10.10776

3 6.38130E+11 9.99999E-13 0.638130 10.74589

4 1.81742E+17 9.99999E-19 0.181742 10.92763

5 5.17607E+22 9.99999E-25 0.051761 10.97939

6 1.47416E+28 9.99999E-31 0.014742 10.99413

7 4.19847E+33 9.99999E-37 0.004198 10.99833

8 1.19574E+39 9.99999E-43 0.001196 10.99952

9 3.40551E+44 9.99999E-49 0.0003406 10.99986

10 9.69901E+49 9.99999E-55 9.699E-05 10.99996

11 2.76231E+55 9.99999E-61 2.762E-05 10.999997

The calculations show that basic cascaded generator solves the problem of
displacement moments realized by PD with high accuracy. There are only minor
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computational errors, comparable with errors in the realization of light-tailed
distributions. These computational errors are negligible when using 12-digits
and more conventional 15-digits generators of BRV.

Table 3 also allows to see the cascade method possesses virtually inexhaustible
even with modern supercomputers “reserve” of precision: the performance of 1018

floating point operations per second, and the continuous generation of samples
within a day, getting into the range of conditional distributions with the number
i = 5 happen only with probability of order of 0.01. Intervals with numbers
i > 5 will not be represented, and therefore realized m.e. will be somewhat
understated. But it will be a consequence of the statistical properties of the
realized distribution and not developed into the generation of r.v. deterministic
error. Thus, the problem of development of methods for the reduction of variation
in SM of FS is reliably separated from the problem of deterministic displacement
of realized sample.

Compared with the method of “long sums” the cascade method has poten-
tially higher performance, as it takes on average virtually only two calls to stan-
dard random number generator. To achieve a comparable displacement using
15-digits random number generators the method of may require three or more
calls, depending on the parameter α. Of course, in practice, it is now easier to use
the method of “long sums”, because there are no cascade generators in libraries
of simulation systems. But it is fixable.

5.4 Realization of Subexponential HTD

Characteristic representatives HTD related to subexponential distributions are
Weibull distribution and lognormal distribution. Weibull distribution is the dis-
tribution with the tail F̄ (t) = e−(t/λ)β

which is heavy at 0 < β < 1. The smaller
β, the heavier the tail is. The method of the inverse transformation of the tail
is obtained for generation of r.v. ξ having a Weibull distribution with λ = 1,
the formula ξ = (−ln(u))1/β . Let us calculate the displacement of m.e. E(ξ′)
realized r.v. ξ′ = (−ln(u′))1/β :

E(ξ′) = ε

1/ε∑
i=1

(− ln(iε))1/β
. (26)

When β = 1/7 and ε = 10−12 using the formula (26) we calculate E(ξ′) =
5039.990168 .... Such precision of the m.e. realization can be considered as accept-
able, since the exact value of m.e. E(ξ) = λΓ (1 + β−1) = Γ (1 + 7) = 7! = 5040.
When β = 0.01 we have E(ξ) = 100! � 9.33 · 10157. An attempt to realize
such a distribution by means of a conventional machine arithmetic with dou-
ble precision leads to a banal overflow of digit gripd. When β = 0.05 m.e.
E(ξ) = 20! � 2.4329 · 1018, and realized at ε = 10−15 m.e. E(ξ′) � 2.4232 · 1018

has only two precise figures.
Since the basic cascade algorithm, shown in Fig. 2, is not intended to the

present case, you can apply the method of “long sums”, or develop a cascade
method to realize the Weibull distribution.
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The lognormal distribution is a the distribution of r.v. ξ = eσ x+μ where x is
standard normal r.v. Normal and lognormal distributions possesses DF, which
can not be expressed in closed form in terms of elementary functions, so to use the
method of the inverse transformation for the realization of these distributions is
difficult. Let us consider an embodiment of the lognormal r.v. ξ with the standard
normal r.v. x realized by Box-Muller method. Initially, two independent values
BRV u1 and u2 are converted into two independent realization of x1 and x2

standard normal r.v. x by the formulas:

x1 =
√

−2 ln u1 · sin(2πu2), x2 =
√

−2 ln u1 · cos(2πu2), (27)

then two corresponding realization of lognormal r.v. ξ are calculated:

ξ1 = eσ x1+μ, ξ2 = eσ x2+μ. (28)

The m.e. E(ξ) = eμ +σ2
2 . Calculation of double sums which determine the realized

m.e. E(ξ′) is difficult, but it is a clear indication that the realized displacement
of m.e. can be large at any finite number of digits DBRV u′

1. Since large values
of ξ′ are generated at near zero values of u′

1, to reduce the displacement u1 can
be realized by “long-term sums”.

With the development of the base cascade algorithm to generate lognormal
r.v. we should keep in mind that DF is not expressed in terms of elementary
functions.

The considered examples of subexponential distributions are aiming to develop
a generic version of the cascade algorithm, which would allow customizing eas-
ily the realization of a sufficiently broad class of HTD, including subexponential
distributions.

5.5 Universal Version of Cascade Generation Algorithm HTD

The main condition determining the choice of intervals for conditional distri-
butions of mixture (23) is a decrease in the probability of these intervals in
geometric sequence. It allows choosing the intervals of conditional distributions
that have a low probability by several calls to the DBRV generator with lim-
ited digit. Figure 3 shows a universal version of the cascade algorithm, when the
main condition for the selection intervals is kept, and at step Step3 we use either
inverse transformations of unconditional DF or any other method of generating
of r.v. x, where large x corresponds to small u.

With a help of direct verification of expressions received during the realiza-
tion of the shown in Fig. 3 algorithm (with symbolic given K,α), we can easily
see that it is equivalent to the basic cascade algorithm realization of the PD.
Setting universal cascade algorithm for the realization of other PD is carried
out the recording in step Step3 formula for generating unconditional r.v. with
the required distribution when large x correspond to small u. In realizing the
lognormal distribution in step Step3 there is need to record consistently four
transformations (27) and (28) (replacing K,α in the line Input by σ and μ),
using the realization of BRV u1 generator Rand1() (which has at least 12 decimal
digits), and to realize BRV u2 Rand2() can be used.
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Fig. 3. Universal cascade algorithm configured to generate r.v. with PD

5.6 Notes on the Realization of Asymptotic Power HTD

Asymptotic power HTD has a tail F̄ (t) = cL(t)t−α, where c is constant, L(t) is
a slowly varying function, α > 0.

If L(t) has the tail that can be reversed, then for the realization of the
asymptotic power HTD there can be used universal cascade algorithm. As an
example of inverse transformed asymptotic power tail we can cite the tail F̄ (t) =
0.5(1 + t−α)t−α, t ≥ 1. By the tail inverse transformation to realize the cor-
responding r.v. we get a formula x = [(

√
1 + 8u − 1)/2]−1/α used in step Step3

of universal cascade algorithm. The problem of calculating (
√

1 + 8u − 1) of the
formula for small u is solved with its transformation for such u in a Taylor series
with a small number of terms.

If the inverse transformation of the tail is difficult, as for example in case of
L(t) = ln(t), then it is necessary to use either the appropriate inverse transfor-
mation numerical methods, or methods for generating r.v. x by its probability
density (for example, the method of rejection sampling).

6 Conclusion

The r.v. generators study used in SM indicates that HTD are generally realized
with significant distortions, which leads to significant errors in the results of
fractal queueing systems SM.

The reason of HTD distortions is a discreteness of used standard random
numbers generators. Smoothing of their discreteness due to the transition to the
“long arithmetic” is ineffective because there are the additional hardware costs
or loss of productivity.

The article proposed and investigated effective and relatively simple methods
of HTD realization, namely the method of summation of scaled realization of
the standard random numbers and universal cascade method of HTD realization.
These methods do not require the use of “long arithmetic” and result in minimal
performance loss.
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In practice the SM does not often require samples of such volume at which
the merits of the proposed cascade method are manifested regularly and in obvi-
ous way. However, this method is useful as it frees a researcher from the need
to estimate in simulation of fractal systems the deterministic errors caused by
discreteness of random number generators and may occur with finite probability
for any length of sample.
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