Towards an Approach for Configuring
Ontology Validation

Mounira Harzallah'®9, Giuseppe Berio®, and Pascale Kuntz'

! LINA, University of Nantes, Rue Christian Pauc, Nantes, France
{mounira. harzallah, pascale. kuntz}@univ-nantes. fr
2 IRISA, University of Bretagne Sud, Vannes, France
giuseppe. berio@univ-ubs. fr

Abstract. Ontologies are becoming widely recognised as key components in
various types of systems and applications. However, ontology validation
remains a critical open issue. In previous work, we have proposed a standard
typology of problems that need to be removed for validating one ontology.
Indeed, there is no standard vocabulary and definitions for those problems. In
this paper, we introduce checking dependencies between standard problems; a
validation process needs to satisfy checking dependencies for detecting and
removing properly problems mentioned above. Then, we report an experience,
based on 2 ontologies automatically generated from textual resources, showing
how the typology can practically be deployed for configuring a validation
process.

Keywords: Ontology validation - Ontology quality evaluation - Ontology
quality problems - Quality problem checking - Automatically generated
ontology

1 Introduction

Ontologies are becoming widely recognised as key components in various types of
systems and applications: e.g. knowledge management systems, social network anal-
ysis, business intelligence and personalised applications. Ontologies have been and still
are manually designed by human experts. However, the ever-increasing access to
textual sources (as technical documents, web pages and so on) has motivated the
development of tools for automating as much as possible ontology design and
implementation process (being this process often renamed as “ontology learning”), and
further enrichment. As a consequence, human involvement is rather minimised when
such tools are used. Promising results have been reached [1, 2]. Unfortunately,
experimental studies have then put in evidence limits for real-life applications [2, 3]
and recent works recommend a better integration of human involvement [4].
Following this recommendation, we see the process of ontology learning as made
of two main processes running in parallel and cooperating: (1) a generation process
and (2) a validation process. The generation process focuses on the extraction of
relevant items (such as terms and relations) and the identification and naming of
relevant knowledge (such as concepts). The validation process is performed anytime

© Springer International Publishing Switzerland 2015
A. Fred et al. (Eds.): IC3K 2014, CCIS 553, pp. 388-404, 2015.
DOI: 10.1007/978-3-319-25840-9_24

Towards an Approach for Configuring Ontology Validation 389

when needed during the generation process and beyond. This is because, according to
our experiences, validation should be performed as soon as possible focusing on
subparts (such as subset of concepts) of the ontology under construction. Furthermore,
validation process can be defined as the process guaranteeing the expected quality of
the ontology (while the generation process makes the ontology content available).
Thus, the validation process is a process specifically (i) looking for any poor (or bad or
lower) quality of the ontology under construction through a sort of “quality evaluation”
(or “ontology evaluation’) and then (ii) proposing alternatives and applying selected
alternatives for increasing quality by finding and removing recognised defects (i.e.
modifying/deleting/adding artefacts to the ontology under construction). Since the
pioneering works of Gruber in the 90°s [5], quality evaluation has been discussed in
[6], and, often independently from validation, various procedures and features have
been proposed [7-11]: e.g. defining a set of quality measures, comparing ontologies to
reference ontologies (also called gold standards), performing assessment of formal
correctness, quality qualitative evaluation performed by experts, quality evaluation
according to the results of a given application using the ontology, using pre-defined
anti-patterns corresponding to defects or to potential defects. Roughly speaking, quality
evaluation spans over three major criteria: (1) the dimensions which are evaluated (e.g.
functional dimension, structural dimension or usability dimension) [7, 12], (2) the
evaluation mode (manual vs automated) [13] and the user profile if any (e.g. knowl-
edge engineers, business analysts, practitioners) [9], (3) and the phase in which eval-
uation is conducted (e.g. during the ontology development, before ontology publication
and so on) [9, 14].

An analysis of the state of the art reveals that there are three facets when referring
to “quality evaluation™: (i) scores of ontology quality (such as, high, poor, bad or
numeric scales) evaluated by using several quality measures, (ii) quality problems i.e.
symptoms of defects or potential defects impacting ontology quality, and (iii) defects in
the ontology i.e. the specific ontology artefacts (typically, concepts, relationships,
axioms) which are causes of any poor quality and/or problem. The three facets are
naturally related: for instance, if an ontology is inconsistent, this is a problem in our
terminology i.e. a symptom of a defect in the ontology; the defect is the axioms causing
inconsistency; quality scoring may be defined as dependent on the number of axioms
causing inconsistency (a quality measure). Even though it seems natural that quality
measures being related to defects, this is often not the case (as explained in Sect. 2). For
instance, a measure like “ontology depth” can be used for scoring quality saying that
“ontology quality” is directly proportional to “ontology depth” without referring to any
(potential) defect (in this case, sample defects are the “omitted IS-A relationships™).
This situation leads to difficulties for using quality scores in practice for validation
purposes. On the contrary, problems are introduced and explained as symptoms of
some defects and therefore are closer to defects than scores; thus, using problems and
their dependencies for removing defects seems more effective than using quality scores.
Therefore, in our previous work [15] we have focused on the problem facet. This
previous work has specifically targeted one critical aspect of the problem facet i.e. the
standardisation of problems and problems definitions, currently rather variable.
Accordingly, we have proposed a typology of problems which: makes a synthesis of the
state of the art, is extensible, is easy to understand and based on a well-known quality

390 M. Harzallah et al.

framework defining quality for conceptual models [16] (ontologies are special cases of
conceptual models). However, in that past work, we have not provided details on how,
in practice, the proposed typology can be deployed and used in the context of vali-
dation process. In this paper, we are going to present one experience (based on 2
ontologies automatically built from textual sources) showing how the proposed
typology can concretely be deployed and lessons learned for configuring a validation
process.

The paper is organised as follow. Section 2 provides a short overview on quality
and problems in ontologies. Section 3 introduces the proposed typology of ontology
problems and dependencies between them. Section 4 describes the performed experi-
ence and provides feedback reporting (discussion and lesson learned). Finally, con-
clusions summarise key results.

2 State of the Art Insights

As reported in the Introduction, ontology quality evaluation concerns three related
facets: scoring quality through measurements based on quality measures, quality
problems and defects. Figure 1 below provides a simple picture (as a UML class
diagram), for representing the three facets (i.e. quality problem, quality measure and
defects) and key relationships according to state of the art. Figure 1 can be explained as
follow. Whenever precise and scoped definitions of quality problems are available is
possible to select (or to develop) techniques for detecting or warning about those
problems (a). Quality measures can be used for detecting or warning about
defects/problems, especially when combined with reference values: quality measures
are therefore techniques for that purpose (b). Quality measures are also techniques to
evaluate the ontology quality (c). Ontology problems can be used for a qualitative
assessment of ontology quality (d). When a quality problem is detected, it can trigger
the usage of techniques for detecting defects causing that problem (e). Finally, even if a
problem may not be associated to some techniques for identifying it, this is not suitable.

Sections 2.1 and 2.2 shortly present relevant state of the art insights on quality
measures and problems.

to assess (d)
1 | 0.* |
Ontology Technique to detect/to wam (a,b) | Quality problem
quality 0. 0.
1 Tigger(e) 0. sympton
o e
to evaluate (c)) Quality 0.°* 0.° Defect
0.* IS to detect/to wam (b)

Fig. 1. The three facets of quality evaluation and key relationships.

Towards an Approach for Configuring Ontology Validation 391

2.1 Quality Measures

As reported in the Introduction, existing proposals cover various “quality dimensions”.
In the context of ontologies, dimensions have not been standardised. For instance, they
may be referred to as, syntax, semantics, maintenance and ergonomics or, functional,
structural and usability.

One of the most complete proposals associating dimensions and measures is
probably oQual [12]. In oQual, an ontology is analysed according to three dimensions:
(i) structural (syntax and formal semantics of ontologies), (ii) functional (intended
meaning of the ontology and its components) and (iii) usability (pragmatics associated
with annotations, which contribute to the ontology profiling). A set of measures is
associated with each dimension to score the quality. For instance: for structural
dimension, depth and breadth of a taxonomy; for functional dimension, precision and
recall of the ontology content with respect to its intended meaning; for usability
dimension, number of annotations.

More generally, despite the potential interests of measures proposed in literature,
some of them remain quite disconnected to defects/problems. For instance, the ratio
between number of concepts and number of relations (N°Concepts/N°Relations) is a
quality measure for evaluating “cognitive ergonomics”, which is in turn closely related
to a “easy to use” quality: however, the ontology may not suffer of any problem/defect
concerning its artefacts (concepts, relationships, axioms etc.) because representing as it
is the targeted domain. Therefore, defining quality measures (possibly organised
alongside several dimensions) as entry point does not necessarily make explicit (oc-
curring or potential) defects/problems. On the contrary, defining problems as entry
point provides an evidence of occurring defects that, in turn, lead to poor quality.

2.2 Quality Problems

Roughly speaking, the generic notion of “ontological error” covers a wide variety of
problems affecting different dimensions. In the relevant literature, it is possible to find
precise and less precise definitions for several recognised problems: (1) “taxonomic
errors” [8, 10, 17, 18] or “structural errors” [19], (2) “design anomalies” or “deficien-
cies” [10, 20], (3) “anti-patterns” [11, 19, 21], (4) “pitfalls” or “worst practices [22] and
(5) “logical defects” [19]. Additional errors could complete this list: e.g. (6) “syntactic
errors” [19].

Hereinafter, we shortly present insights on each of the above mentioned problem
cases. Syntactic errors (6) are due to violations of conventions of the language in which
the ontology is represented. While interesting in practice for building support tools,
they are conceptually less important than others: therefore they will be no longer
considered in the remainder.

Taxonomic errors (1) concern the taxonomic structure and are referred to as:
inconsistency, incompleteness and redundancy [17]. Three classes of “inconsistency”
both logical and semantic have been highlighted: circularity errors (e.g. a concept that
is a specialization of itself), partitioning errors (e.g. a concept defined as a special-
ization of two disjoint concepts), and semantic errors (e.g. a taxonomic relationship in

392 M. Harzallah et al.

contradiction with the user knowledge). Incompleteness occurs when for instance,
relationships or axioms are missing. Finally, redundancy occurs when for instance, a
taxonomical relationship can be deduced from the others by logical inference.

Design anomalies (2) concern ontology understanding and maintainability [10, 20]:
lazy concepts (leaf concepts without any instance or not considered in any relation or
axiom), chains of inheritance (long chains composed of concepts with a unique child),
lonely disjoint concepts (superfluous disjunction axioms between distant concepts),
over-specific property range and property clumps (duplication of the same properties
for a large concept set which can be retrieved by inheritance).

Anti-patterns (3) are known or recognised templates potentially leading to identi-
fied problems [11, 19]. Some classes of anti-patterns are: logical anti-patterns (pro-
ducing conflicts that can be detected by logical reasoning), cognitive anti-patterns
(caused by a misunderstanding of the logical consequences of the axioms), and
guidelines (complex expressions true from a logical and a cognitive point of view but
for which simpler or more accurate alternatives exist).

Pitfalls (4) cover problems for which ontology design patterns (ODPs) are not
available. An ODP cover ad-hoc solutions for the conception of recurrent particular
cases [21]. Poveda et al. [23] have established a catalogue of pitfalls grouped on
7 classes, them-self classified under the three ontology dimensions cited above [12].
Four pitfalls classes are associated with the structural dimension: modelling decisions
(false uses of OWL primitives), wrong inference, no inference (lacks in the ontology
which prevent inferences required to produce desirable knowledge), real-world mod-
elling (common sense knowledge missing). One class is associated with the functional
dimension: requirement completeness (e.g. uncovered specifications). And, two classes
are associated with the usability dimension: ontology understanding and ontology
clarity (e.g. variations of writing-rule and typography for the labels). Poveda et al. [22]
have also tried to classify these pitfalls according to the three taxonomic error classes
[17]; but pitfalls concerning the ontology context do not fit with this classification.

3 Problem Standardisation Overview

Mentioned in the Introduction and made evident in Sect. 2.2, heterogeneity in quality
problems and their definitions is due to distinct experiences, communities and per-
ception of ontologies. Standardisation enables a much better understanding of what
problems are and to what extent these problems are critical before using the ontology.
We have therefore proposed a two-level rigorous problem typology summarised in
Table 1. Level 1 distinguishes logical from social ground problems and level 2 dis-
tinguishes errors from unsuitable situations. Errors are problems mostly preventing the
usage of an ontology. We add “mostly” because in the case of “inconsistency error”
(Table 1), some researches focus on how to make usable inconsistent ontologies [24].
On the contrary, unsuitable situations are problems which do not prevent ontology
usage (within specific targeted domain and applications). Therefore, while errors need
to be solved, unsuitable situations may be maintained as such.

Social ground problems are related to the interpretation and the targeted usage of
the ontologies by social actors (both humans and applications). Logical errors and most

Towards an Approach for Configuring Ontology Validation 393

of logical unsuitable cases can be rigorously formalised within a logical framework; for
instance, they can be formally defined by considering key notions synthesised by
Guarino et al. [25] i.e.: Interpretation (I) (extensional first order structure), Intended
Model, Language (L), Ontology (O) and the two usual relations |= and |— provided in
any logical language. The relation |= is used to express both that one interpretation I is
a model of a logical theory L, written as I |= L (i.e. all the formulas in L are true in I:
for each formula p€L, | |= ¢), and also for expressing the logical consequence (i.e. that
any model of a logical theory L is also a model of a formula: L }= ¢). The relation |— is
used to express the logical calculus i.e. the set of rules used to prove a theorem (i.e. any
formula) ¢ starting from a theory L: L |— ¢). Accordingly, when needed, problems are
formalised by using classical description logic syntax that can also be transformed in
FOL or other logics.

Problems in Table 1 are not independent and need to be checked out and removed
in meaningful order in the context of a validation process. Table 2 below provides a list
of checking dependencies that constraint orders for checking and removing problems.
Checking dependency Al,.., An — BI,..., Bm means that before checking out any Bi,
all problems Ai (i.e. Al to An) need normally to be checked out and removed (i.e. left
out) by appropriate techniques. For in practice configuring a validation process,
dependencies can be used forward or backward as follow: Al,.., An — BI,..., Bm, is
used forward if Al,.., An are checked out and removed before taking into account
B1,..., Bm; Al,.., An — B1,..., Bm is used backward if B1,..., Bm are checked out
before and this is used for checking out and removing Al,..., Am.

It should be noted that removing a logic ground problem from an ontology results
in a new ontology which is or is not logically equivalent to the previous one.
Depending on the problem, there may or may not be a way for removing it by guar-
anteeing logical equivalence. It is clear that L1, L2, L3, L10 can only be removed
without guaranteeing logical equivalence; L4, L5, L6, L12 can be removed by guar-
anteeing logical equivalence; for L7, L8, L11 both ways are possible. It is quite natural
to consider by default that removing any social ground problem results in a new
non-logically equivalent ontology.

In the context of validation process, checking dependencies:

1. Make meaningful or optimize problem checking (for instance, it does not make
sense checking if an ontology is unadapted, if the ontology is inconsistent and
inconsistency problem has not removed yet);

2. Suggest which problems can be removed without causing injection of additional
problems. For instance, checking out if an ontology is not minimal (L12) and
removing the problem, does not make sense without having previously checked out
and removed social contradictions (S1) within the ontology; as a concrete case, if
redundant IS-A relationships (a case for L12) are found, if one of them is removed
and then, another IS-A relationship is removed because suffering of S1, the
ontology may become incomplete (injection of L3 or S4). However, when a
problem is removed without guaranteeing logical equivalence with the new
resulting ontology, all the problems need to be checked out again and all depen-
dencies need to be taken into account once again (as, for instance, when L2 is
removed).

394

M. Harzallah et al.

Table 1. The typology of quality problems.

Logical ground problems

L1. Logical inconsistency: no I of s.t. I |=O

LZ‘FUnadapted ontologies: there is a formula ¢ for some intended models of L, ¢ is false and
OFo

L3. Incomplete ontologies: there is a formula ¢ for each intended models of L, ¢ true and O

5
£ e
L4; Incorrect (or unsound) reasoning: when a false formula ¢ in the intended models O ¥ ¢,
can be derived from a suitable reasoning system (O | ¢)
LS. Incomplete reasoning: when a true formula ¢ in the intended models O |= ¢, cannot be
derived from a reasoning system (O K@)
L6. Logical equivalence of distinct artefacts: O |=Ai: Aj
L7. Logical indistinguishable artefacts: impossible to prove any of the following statements:
(OFA=A), (OFA;N Ajc 1) and (O f cc Ajand ccA))
@»
§ L8. OR artefacts: Ajequivalent to Aj UAy, Ai# Aj, Aj# Ay, but for which (if applicable)
; there is neither role R s.t O |= (AjUAy) < IR. T, nor instance ¢ s.t. O }=c c Ajand O |=c < Ax
=
,§ L9. AND artefacts: Ajequivalent to Aj NAy, Ai# Aj, Aj# Ay, but for which (if applicable)
Z there is no common (non optional) role/ property for Aj and Ax
= | L1o. Unsatisfiability: given an artefact A, O |=A cl)
L11. Complex reasoning: unnecessary complex reasoning when a simpler one exists
L12. Ontology not minimal: unnecessary information
Social ground problems
S1. Social contradiction: contradiction between the interpretation and the ontology axioms
and consequences
E S2. Perception of design errors: e.g. modelling instances as concepts
L
M | S3. Socially meaningless: impossible interpretation
S4. Social incompleteness: lack of artefacts
S5. Lack of/poor textual explanations: lack of annotations
S6. Potentially equivalent artefacts: similar artefacts identified as different
g S7. Socially indistinguishable artefacts: difficult to distinguish different artefacts
; S8. Artefacts with polysemic labels
=
.g S9. Flatness of the ontology: unstructured set of artefacts
é S10. Non-standard formalization of the ontology: unreleased specific logical use

S11. Lack of adapted and certified version of the ontology in various languages

S12. Socially useless artefacts

Towards an Approach for Configuring Ontology Validation 395

Table 2. Checking dependencies between quality problems.

L1 —L2,L3,1L4, L5 L6,L7,L8, L9, If an ontology is inconsistent, inferences do not
L10, L11, L12 make sense and any other problem can be trivially
detected; this dependency should be only used as
forward dependency
L2, L3 — L6,L7, L8, L9, L10, L11, It does not make sense to assess unsuitable
L12 situations on one ontology which is not

L2, L3 — 14,L5 completely finalised; the same is true for
unsound/incomplete reasoning; this dependency
should be used as forward dependency; however a
backward usage is possible (for instance, L6 can
be checked out and this may be used for
highlighting unintended models)

S12, S3 — S2, S5, S6, S7, S8 Useless and meaningless artefacts should be
removed and ontology updated accordingly before
checking out any other problem; however, S10
and S11 can be checked independently; this
dependency has be used as forward dependency

S1, S2, 83, S12 — L2, L3, L4, LS, Meaningless and useless artefacts, design errors and

L6, L7, L8, L9, L10, L11, L12 social contradictions should be removed before
checking out any logic ground problem (except
L1); this dependency can be also used backward:
for instance, L12 is checked out and among
redundant artefacts, S1 is then checked out and
removed accordingly

S2 — S1, S4, S9 Modelling errors should be removed before
checking out social contradiction, incompleteness
and flatness; this dependency has be used as
forward dependency

4 Experience

This section presents an experience on the deployment of the typology based on two
ontologies automatically generated from different corpora by using Text2Onto [1]. We
have used Text20nto in one of our past research projects [26] and realised a full
comparison with similar tools. The comparison results made possible to select Tex-
t20nto as the best choice for realising the work. This was also confirmed by successful
work performed in the project, making possible to use extracted ontologies as com-
ponents for interoperating enterprise systems. However, Text20nto capability for
extracting concepts and taxonomic relationships has been shown to significantly out-
perform its capability for extracting other types of artefact [27, 28].

4.1 Experience Setting

As said above, we have generated two ontologies by using Text2Onto. Generated
raw ontology O1 (resp. O2) contains 441 (resp. 965) concepts and 362 (resp. 408)

396 M. Harzallah et al.

taxonomic relationships. The first ontology (O1) has been generated starting from a
scientific article in the domain of “ontology learning from texts” containing 4500
words. The second ontology (O2) has been generated starting from a technical glossary
composed of 376 definitions covering the most important terms used in the composite
material domain. The glossary contains 9500 words. It has been provided by enter-
prises involved in the project. It should be noted that although showing quite different
content features, the size of the two selected textual resources has been deliberately
limited to enable further detailed analysis of the experience results.

4.2 Typology Deployment for the Experience

In the experience, the deployment of the typology for the ontology problem detection is
performed in two steps. The first step is about the selection of problems that may occur
within the ontology to validate. The second step concerns the identification of
appropriate techniques or the development of new ones for the detection of each of
selected problems.

Problem Selection (First Step). Appropriate techniques are required for the detection
of ontology problems. However, there is no need to possess a technique for each
typology problem to identify problems within an ontology, especially because
ontologies range from very simple (or light) to very complex (or heavy).

In the experience, ontologies generated with Text2Onto are very simple and
basically represented as a list of concepts related by IS-A relationships (i.e. concepts
organised as a taxonomy, what is sometimes referred to a lightweight ontology).

The logic ground problems L1, L10 and L11 cannot trivially occur. Indeed, they
may only occur iff the ontology comprises axioms other than axioms for specifying the
taxonomy.

L2 to LS5 are not applicable because they can be applied only iff intended models
are known in some way, which is not the case within the experience.

The remaining logical ground problems L6, L7, L8, L9 and L12 may occur. Indeed
L6, L8 and L9 may occur when two inverse taxonomic relationships exist within the
ontology (A IS-A B and B IS-A A). L7 trivially occurs because two concepts that are
not equivalents are indistinguishable in this ontology. Finally L12 may occur, for
instance, if it exists three taxonomic relationships as A IS-A B, B IS-A C and A IS-A C
(possible in the ontologies of the experience).

Concerning the social ground problems, all of them may occur. Specifically, some
of them trivially occur. Indeed, S5 (Lack or poor textual explanation) trivially occurs
because Text20nto does not provide any annotation as outcome. Finally, Text20Onto
outcome is transformed on OWL but the produced version is not necessarily certified
(as rules for making the transformation are proprietary): then, S11 trivially occurs.

The problem selection impacts on general checking dependencies (Table 2).
Indeed, whenever a dependency comprises a non-selected problem, this dependency
needs to be rewritten by deleting the problem. For instance, in this experience, the
dependency: L2, L3 — L6, L7, L8, L9, L10, L11, L12

is rewritten as — L6, L7, L8, L9, L10, L11, L12.

Towards an Approach for Configuring Ontology Validation 397

In this case, the dependency is no longer considered because its premises are
(13 b 2
void”.

Techniques for Selected Problem Detection/Warning (Second Step). For logical
ground problems L6, L7, L8 and L12, the OWL ontology version and a reasoner
(Pellet) have been used:

e Concerning L6 (Logical equivalence of distinct artefacts), the reasoner has been
able to identify equivalences between concepts(e.g. area = domain = issue = end =
section = object, path = shape);

e Because of the special form of the ontology comprising only concepts and IS-A
relationships, detecting L7 has been made possible by counting the pairs of non
logically equivalent concepts (checked with L6).

e Concerning L8 and L9 problems, the reasoner has not been able to find any concept
equivalent to union or intersection of other concepts. So that, L8 and L9 do not
occur

e Concerning L12 (Ontology non minimal), the reasoner has been able to detect some
IS-A relationships (original) as inferred other ones.

Apart S5 and S11 problems mentioned above, the other social ground problems
have required to develop our own techniques. However, because most of these prob-
lems can only be detected if stakeholders/users are directly involved (such as end-users,
experts and so on), employed techniques do not guarantee unbiased results.

Through formal inspection, S1 (Social contradiction) has been detected by
specifically inspecting IS-A relationships and pointing the ones contradicting our own
IS-A relationships. S2 (Perception of design errors) has been detected by focusing on
the ambiguity/vagueness of the dichotomy concept vs. instance.

S3 (meaningless artefacts) has been raised for concepts labelled with artificial labels
(e.g. a label such as “tx12”).

S4 (social incompleteness) has been detected as follow: whenever a concept is
connected only to the root (so that it has no other relationship with other concepts
because ontology is lightweight), the ontology is considered to be incomplete because
probably lacking of additional IS-A relationships; this technique only warns about the
problem.

S6 (Potentially equivalent artefacts) has been detected as a problem occurring when
labels for concepts are synonyms according to our domain knowledge (e.g. area = field,
human = person, sheet = plane) or according to known domain references.

S7 (socially indistinguishable artefacts) has been detected whenever it was
impossible for a pair of concepts to both provide factual raison to made them equiv-
alent and factual raison to made them distinct.

S8 (polysemy in artefact labels) has been detected by looking to the existence of
several definitions, within the given domain, for the single concept label (e.g. labels
such as cycle, repair).

S9 has been simply detected by calculating the average depth of the ontology as the
average of taxonomy leaf depth, and comparing it to an expected typical depth (found
in a manually built ontology based on the same documents).

398 M. Harzallah et al.

Table 3. Identified quality problems in O1 and O2.

Types of | Detected problems
problems
Ontology O1 (441 concepts and 362 Ontology O2 (965 concepts and 408
is-a relationships) relationships)

L1 Trivially non occurring Trivially non occurring

L2 NA NA

L3 NA NA

L4 NA NA

L5 NA NA

L6 276 (= 24%23/2, because we found 24 | 57 pairs of equivalent concepts
equivalent concepts) pairs of (detected on the OWL version)
equivalent concepts (detected on
the OWL version)

L7 Trivially occurring; all pairs of Trivially occurring; all pairs of
concepts that are not equivalent are concepts that are not equivalent are
indistinguishable ((441%440/2)-276 indistinguishable ((965 *964/2)-57
indistinguishable pairs) indistinguishable pairs)

L8 No “OR artefact” No “OR artefact”

L9 No “AND artefact” “ No “AND artefact”

L10 Trivially non occurring Trivially non occurring

L11 The ontology does not contain any The ontology does not contain any
situation that can make inferences situation that can make inferences
more complicated more complicated

L12 32 redundant taxonomic relations 49 redundant taxonomic relation

S1 130 taxonomic relations contradict 60 taxonomic relations contradict the
the evaluator’s knowledge evaluator’s knowledge

S2 2 instances were identified as 5 instances were identified as concepts
concepts according to evaluator’s according to evaluator’s knowledge
knowledge

S3 13 concepts with meaningless labels 21 concepts with meaningless labels
according to evaluator’s knowledge according to evaluator’s knowledge

S4 168 concepts only connected to root 360 concepts only connected to root

S5 Trivially occurring (not counted) Trivially occurring (not counted)

S6 9 pairs of concepts with synonymous |3 pairs of concepts with synonymous
labels labels

S7 No couple of socially No couple of socially indistinguishable
indistinguishable artefacts artefacts

S8 7 concepts with polysemic labels 9 concepts with polysemic labels

S9 Flat ontology, Average depth of Flat ontology, Average depth of
leaves = 2.02, Expected depth = at leaves = 1.99, Expected depth = at
least 5 least 7

S10 No: a OWL version is available No: a OWL version is available

S11 The ontology is not certified The ontology is not certified

S12 121 useless concepts according to 31 useless concepts according to

evaluator’s knowledge

evaluator’s knowledge

Towards an Approach for Configuring Ontology Validation 399

Finally, useless artefacts (S12) have been considered as such if it is impossible to
provide simple and clear raison for including artefacts in the ontology (for instance,
‘train’, ‘cannot’ were trivially out of the ontology domain scope).

Table 3 above summarizes the problems detected, by using deployed techniques, in
the two generated ontologies. Next section provides a discussion on experience feed-
back, mostly based on Table 2.

4.3 Discussion

During the experience, we have remarked the interest, when applicable, of keeping in
mind “numbers of occurrences” of a given problem (for instance, S1 can be considered
occurring several times as many as ontology artefacts suffer of the problem). Indeed,
occurrences are a simple way to highlight differences in the two ontologies, then to
identify causes of problems (i.e. defects) and potential correlations between problems.
However, not all the problems can be counted: for instance, flatness problem (S9)
cannot be counted.

The six most occurring problems are the same for Ol and O2, three are social and
three are logical problems: S1, S4, S12, L6, L7 and L12. These problems have been
checked involving both concepts and relationships. Occurrences of these problems are
quite different in O1 and O2: S1 (O1: 130, O2: 45), S12 (O1: 121, O2: 31), L6(O1:
300, O2: 65), These differences may be quite surprising because numbers of concepts
and relations in O1 are lower than in O2. We have therefore tried to provide alterna-
tives non-exclusive explanations. Two explanations have been provided.

One alternative explanation concerns the nature of the content of the incoming
textual resource. A technical glossary (starting point for O2) naturally providing def-
initions of terms, is more self-contained and more focused than a scientific paper
(starting point for O1). Indeed, few concept labels in O2 can be considered very generic
thus loosely related to the domain while this is not the case for Ol. This seems to be
confirmed by the fact that S12 (useless artefacts) occurs very often in Ol if compared
to O2.

A second non-exclusive alternative explanation is traced back to the usage of
Wordnet made by Text2Onto. Indeed, generic and rather useless concepts belonging to
Ol enable Text20nto to also introduce IS-A relationships belonging to Wordnet; these
IS-A relationships are due to the several meanings associated by Wordnet to terms (for
instance, for term “type” in case of Ol, Text2Onto extracted: “type” IS-A “case”;
“type” IS-A “group” and “type” IS-A “kind”; each IS_A relation concerns one quite
specific and distinct meaning of the term “type”). This is confirmed by much higher
occurrences of S1 in Ol than in O2 (remember that S1 has been detected by focusing
on IS-A relationships only, see Sect. 4.2).

Occurrences can also be fruitful for establishing potential correlations between
problems. A problem is potentially correlated to another one if the presence of one
problem is potentially due to the presence of another one. However, correlations cannot
substitute checking dependencies mentioned in Sect. 3: indeed, checking dependencies
are by definition independent from the ontology and the technique used to detect
problems while correlations are based on occurrences which are consequences of those

400 M. Harzallah et al.

techniques and the ontology. As a consequence, dependencies are stronger than cor-
relations. Correlations should confirm established checking dependencies (Table 2) and
provide insights on using those dependencies in forward or backward direction;
however, correlations can also be additional to those dependencies.

We have found the following three interesting correlations.

Correlation 1: S12 seems correlated with S1 (raised from results reported Table 3:
OI1(S12: 121, S1: 130) and O2 (S12: 31, S1:45)). The correlation, as also explained
above, can be justified because in the experience useless concepts are often source of
incorrect taxonomic relationships; the correlation confirms the (forward) checking
dependency between S12 and S1.

Correlation 2: S9 (ontology flatness) shows similar values for the two ontologies
(Table 3 reports O1(S9: 2:02) and O2(S9: 1:99)). S9 seems to be correlated to S4:
frequency of S4 is mostly the same for the two ontologies, and S9 also occurs o. The
correlation can be justified because S4 is checked by counting the concepts only related
to the root. If S4 occurs often, in any case, the average depth tends to depend on
number of concepts only related to the root. This correlation is additional to the ones in
Table 2.

Correlation 3: S12 seems correlated with L6 (raised from results reported in
Table 3: O1(S12: 121, L6: 276) and O2 (S12: 31, L6: 57)) because useless artefacts
have generated additional logical equivalences; the correlation confirms the (forward)
checking dependency between S12 and L6).

4.4 Lessons Learned: Configuring a Validation Process

Discussion above points out that explanations for quality problems can be traced back
to the content features of the incoming textual resources (e.g. technical content vs
scientific content) and the usage of external resources. It is therefore suggested that to
reduce the complexity of the validation process contents of the incoming textual
resources should be evaluated and possibly improved before learning the ontology.
Correlations (Sect. 4.3) and dependencies (as in Table 2 but rewritten as explained
in Sect. 4.2) between problems can be merged, when not in contradiction. Once
merged, an order for configuring (and then running) a validation process can be
identified (Fig. 2 above). It should be noted that, according to what has been said in
Sect. 3, whenever a problem is removed, if the new resulting ontology is not logically
equivalent to the previous ontology, all dependencies need to be reconsidered: as a
consequence, the validation process moves to the initial step (status “Checking S3,
S12” in Fig. 2 above). This order configuration is reasonable for any other lightweight
ontology built and validated in the same context of the reported experience i.e. (i) with
the same tool (e.g. Text20nto) with the same tool parameters, (ii) the same typology
deployment (same selected problems, same associated techniques, see Sect. 4.2), and
(iii)) whenever a problem is removed, the resulting ontology remains lightweight
(otherwise additional problems need to be selected when typology is deployed).

Towards an Approach for Configuring Ontology Validation 401

new updated ontology no longer logically equivalent to the previous ontology

Validation process step status

(" Checking S5, S6,S7,S8)
(—Ghecking 53,512 forward gep_| 807 Decide o remave
do / Remove problems exit/
Remove problems
precondition = if required
forward dep - oqui 4
c
(Checking S2 \ forward dep (___ Checking S4 Yorelatior| 9/ Decide to remove
do / Remove problems >{ blems [exit/

do /R p
L J Remove problems

precondition = If required)

-
forward dep
Checking S1 orwarddep ((Checking L6 to L12
1 do /R p I do / Decide to remove
;) exit/
Remove problems
L precondﬁm=lfreqdred)
N J

Fig. 2. Identified ordered steps (UML state machine).

5 Conclusions

Through the paper, we have reported a typology of problems impacting the quality of
an ontology and introduced checking dependencies for properly detecting and
removing problems within a validation process. These dependencies are generally valid
and can be reused in any case. Through an experience, we have presented how in
practice the typology can be deployed (i.e. problems to be considered and techniques
for detecting them). Based on experience results, we have then analysed how a vali-
dation process can be configured (i.e. in which order problems need to be checked out
and removed). The resulting configuration merges dependencies (independent from the
experience) with correlations (dependent from the experience); however, the configu-
ration seems reasonable when other ontologies built with the same tool (Text20Onto) are
validated according to the typology deployment made for the experience.

Of course, the experience itself does not cover various important aspects reported
below:

e Because ontologies used in the experience are lightweight, typology deployment
has only concerned a subset of problems; important problems, especially logic
ground errors, are not covered by the deployment; however, specific techniques
have been developed for trying to detect most of the logical ground problems; these
techniques focus on algorithms for explaining reasoning and supporting users for
expressing expected facts; however, some works (through SPARQL queries [10],
anti-patterns [21, 29], heuristics [30], tools [23, 30], have undertaken more
empirical ways for looking to problems (therefore, often more focusing warning
about problems than on detecting occurring problems);

402 M. Harzallah et al.

e Deployed techniques for social ground problems are quite simple; several works
have investigated techniques that can be associated to social ground problems (for
instance [10, 11, 23, 31]). However, some techniques for social ground problems
are not clearly confined because problems themselves while well-defined cover a
quite large spectre of situations; other social ground problems are even recognised
as open issues (such as S10, [32]).

These aspects can be turned into research perspectives for the work targeting
ontologies comprising general axioms, dependencies and correlations mixing logic
ground and social ground problems, and in the latter case, the preferred usage
(forward-backward) of dependencies.

References

1. Cimiano, P., Vdlker, J.: Text2onto. In: Montoyo, A., Munoz, R., Métais, E. (eds.) NLDB
2005. LNCS, vol. 3513, pp. 227-238. Springer, Heidelberg (2005)

2. Cimiano, P., Maedche, A., Staab, S., Volker, J.: Ontology learning. In: Studer, R., Staab, S.
(eds.) Handbook on ontologies. International Handbooks on Information Systems, pp. 245—
267. Springer, Heidelberg (2009)

3. Hirst, G.: Ontology and the lexicon. In: Studer, R., Staab, S. (eds.) Handbook on Ontologies.
International Handbooks on Information Systems, 2nd edn, pp. 269-292. Springer,
Heidelberg (2009)

4. Simperl, E., Tempich, C.: Exploring the economical aspects of ontology engineering. In:
Studer, R., Staab, S. (eds.) Handbook on Ontologies. International Handbooks on
Information Systems, 2nd edn, pp. 445-462. Springer, Heidelberg (2009)

5. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition
5(2), 199-220 (1993)

6. Gomez-Perez, A.: Some ideas and examples to evaluate ontologies. In: Proceedings of the
11th Conference on Artificial Intelligence for Applications, pp. 299-305 (1995)

7. Duque-Ramos, A., Fernandez-Breis, J.T., Aussenac-Gilles, N., Stevens, R.: Oquare: asquare
based approach for evaluating the quality of ontologies. J. Res. Prac. Inf. Technol. 43, 159—
173 (2011)

8. Gomez-Perez, A.: Ontology evaluation. In: Staab, S., Studer, R. (eds.) Handbook on
ontologies. International Handbooks on Information Systems, 1lst edn, pp. 251-274.
Springer, Heidelberg (2006)

9. Hartmann, J., Spyns, P., Giboin, A., Maynard, D., Cuel, R., Suarez-Figueroa, M.C., Sure,
Y.: Methods for ontology evaluation. Technical report. Knowledge Web Deliverable D1.2.3
(2004)

10. Baumeister, J., Seipel, D.: Smelly owls-design anomalies in ontologies. In: Proceedings of
18th International Florida Artificial Intelligence Research Society Conference, pp. 215-220
(2005)

11. Roussey, C., Corcho, O., Blazquez, L.M.V.: A catalogue of owl ontology antipatterns. In:
Proceedings of 5th International Conference on Knowledge Capture, pp. 205-206 (2009)

12. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology evaluation and
validation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 140-154.
Springer, Heidelberg (2006)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

Towards an Approach for Configuring Ontology Validation 403

Vrandecic, D.: Ontology evaluation. In: Studer, R., Staab, S. (eds.) Handbook on ontologies.
International Handbooks on Information Systems, 2nd edn, pp. 293-314. Springer,
Heidelberg (2009)

Tartir, S., Arpinar, [.B., Sheth, A.P.: Ontological evaluation and validation. In: Poli, R.,
Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications,
pp- 115-130. Springer, Netherlands (2010)

Gherasim, T., Harzallah, M., Berio, G., Kuntz, P.: Methods and tools for automatic
construction of ontologies from textual resources: a framework for comparison and its
application. In: Guillet, F., Pinaud, B., Venturini, G., Zighed, D.A. (eds.) Advances in
Knowledge Discovery and Management. SCI, vol. 471, pp. 177-201. Springer, Heidelberg
(2013)

Krogstie, J.: Specialisations of SEQUAL. In: Model-Based Development and Evolution of
Information Systems, pp. 281-326. Springer, London (2012)

Gomez-Perez, A., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering: With
Examples from the Areas of Knowledge Management, e-commerce and the Semantic Web.
Advanced Information and Knowledge Processing. Springer, New York (2001)

Fahad, M., Qadir, M.A.: A framework for ontology evaluation. In: Proceedings of the 16th
International Conference on Conceptual Structures (ICCS 2008), vol. 354, pp. 149-158
(2008)

Buhmann, L., Danielczyk, S., Lehmann, J.: D3.4.1 report on relevant automatically detectable
modelling errors and problems. Technical report LOD2-Creating Knowledge out of
Interlinked Data (2011)

Baumeister, J., Seipel, D.: Anomalies in ontologies with rules. Web Seman. Sci. Serv.
Agents World Wide Web 8(1), 55-68 (2010)

Corcho, O., Roussey, C., Blazquez, L.M.V.: Catalogue of anti-patterns for formal ontology
debugging. In: Atelier construction d’ontologies: vers un guide des bonnes pratiques, afia,
pp. 2-12 (2009)

Poveda, M., Suarez-Figueroa, M.C., Gomez-Perez, A.: A double classification of commonpitfalls
in ontologies. In: Proceedings of the workshop on ontology quality at ekaw, pp. 1-12 (2010)
Poveda-Villaloén, M., Sudrez-Figueroa, M.C., Gomez-Pérez, A.: Validating ontologies with
OOPS! In: ten Teije, A., Volker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M.,
Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603,
pp. 267-281. Springer, Heidelberg (2012)

Bertossi, L., Hunter, A., Schaub, T.: Inconsistency Tolerance. Springer, Heidelberg (2005)
Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Studer, R., Staab, S. (eds.)
Handbook on ontologies. International Handbooks on Information Systems, 2 edn, pp. 1-17.
Springer, Heidelberg (2009)

Harzallah, M.: Développement des ontologies pour I’interopérabilité des systémes
hétérogenes, applications aux cas industriels du projet ISTA3. Livrable final de la tache
2.4 du projet ISTA3. Interop-vlab.eu/workspaces/ISTA%203 (2012)

Volker, J., Sure, Y.: Data-driven change discovery-evaluation. Technical report. Deliverable
D3.3.2for SEKT Project, Institute AIFB, University of Karlsruhe (2006)

Gherasim, T., Harzallah, M., Berio, G., Kuntz, P.: Problems impacting the quality of
automatically built ontologies. In: Proceedings of the 8th Workshop on Knowledge
Engineering and Software Engineering, held in Conjunction with ECAI 2012, pp. 25-32
(2012)

Roussey, C., Scharffe, F., Corcho, O., Zamazal, O.: Une méthode de débogage d’ontologies
owl basées sur la détection d’anti-patrons. In: Actes de la 21e conférence en ingénierie des
connaissances, pp. 43-54 (2010)

404

30.

31.

32.

M. Harzallah et al.

Pammer, V.: Automatic support for ontology evaluation-review of entailed statements and
assertional effects for owl ontologies. Ph.D. thesis, Graz University of Technology (2010)
Burton-Jones, A., Storey, V., Sugumaran, V.: A semiotic metrics suite for assessing the
quality of ontologies. Data Knowl. Eng. 55(1), 84-102 (2005)

Kalfoglou, Y.: Cases on semantic interoperability for information systems integration:
Practices and applications. IGI Global, Hershey (2010)

	Towards an Approach for Configuring Ontology Validation
	Abstract
	1 Introduction
	2 State of the Art Insights
	2.1 Quality Measures
	2.2 Quality Problems

	3 Problem Standardisation Overview
	4 Experience
	4.1 Experience Setting
	4.2 Typology Deployment for the Experience
	4.3 Discussion
	4.4 Lessons Learned: Configuring a Validation Process

	5 Conclusions
	References

