
Learning to Rank Answers for Definitional
Question Answering

Shiyu Wu1, Xipeng Qiu1(B), Xuanjing Huang1, and Junkuo Cao2

1 Shanghai Key Laboratory of Intelligent Information Processing School of Computer
Science, Fudan University, Shanghai, China

{sywu13,xpqiu,xjhuang}@fudan.edu.cn
2 Department of Computer Science, Hainan Normal University, Haikou, China

jkcao@qq.com

Abstract. In definitional question answering (QA), it is essential to
rank the candidate answers. In this paper, we propose an online learn-
ing algorithm, which dynamically construct the supervisor to reduce
the adverse effects of the large number of bad answers and noisy data.
We compare our method with two state-of-the-art definitional QA sys-
tems and two ranking algorithms, and the experimental results show our
method outperforms the others.

1 Introduction

Definitional question answering (QA), as an important form of complex QA, has
attracted more and more attention recently. Definitional QA looks for extended
answers that are composed of pieces of relevant information spread over many
documents in a corpus, such as a biography of a person (e.g. “Who is George
Bush?”), and the definition of a generic term (e.g. “What is naproxen?”) [9].

The development of definitional QA has been boosted by the Text Retrieval
Conference (TREC). For a definitional question such as “Who is X” or “What
is X”, we call “X” target. Most definitional QA systems have the following
pipeline structure:

1. Use target as query to retrieve the related sentences;
2. Rank the returned candidate sentences;
3. Remove redundant sentences and return top k sentences as answers.

In definitional QA, most works focus on the second step, such as pattern
based methods [3,5,10] and centroid vector based methods [1,7]. Xu et al. [10]
ranked candidate sentences by RankSVM [6]. Han et al. [4] ranked the candidate
sentences from the two points of view: topic and definition.

However, most of these rank methods have two weaknesses: firstly, it is dif-
ficult to sample bad answers because the number of bad answers is usually far
larger than good answers; secondly, it is hard to judge whether an answer is
good or not in an objective way, so the training data is often noisy.

In this paper, we propose an online learning algorithm, which dynamically
construct the supervisor on each iteration and assure the quality of the top k

c© Springer International Publishing Switzerland 2015
M. Sun et al. (Eds.): CCL and NLP-NABD 2015, LNAI 9427, pp. 326–332, 2015.
DOI: 10.1007/978-3-319-25816-4 26



Learning to Rank Answers for Definitional Question Answering 327

returned answers, instead of optimizing rank of the whole candidate list. Our
learning algorithm is based on Passive-Aggressive algorithm [2], which passively
accepts a solution whose loss is zero, while it aggressively forces the new proto-
type vector to stay as close as possible to the one previously learned.

The rest of the paper is organized as following. We present our algorithm to
rank the candidate sentences in Sect. 2 and describe the features in Sect. 3. Then
we give our experiments in Sect. 4. Section 5 concludes the paper.

2 Rank Answers with Variant Passive-Aggressive
Algorithm

In this section, we propose an online learning algorithm to rank the answers.
Given a target x and the set of its associated candidate answers C, we find a
subset of Ŷ ⊂ C with size k as the returned answers by

Ŷ = arg max
Y ⊂C

wT Φ(x, Y ), (1)

where Φ(x, Y ) is a feature vector.
We define the distance between two sets A and B by inverse Jaccard

Similarity,
Δ(A,B) = |A ∪ B|/|A ∩ B|. (2)

Assuming that the subset Y ∗ ⊂ C concludes all good answers. We wish to learn
w so that Δ(Ŷ , Y ∗) is as small as possible.

We use Passive Aggressive (PA) algorithm [2] to find the new weight vector
wt+1 to be the solution to the following constrained optimization problem in
round t.

wt+1 = arg min
w

1
2
||w − wt||2 + Cξ (3)

s.t. �(w;xt) <= ξ and ξ >= 0. (4)

where �(w;xt) is the hinge-loss function, ξ is a slack variable, and C is a pos-
itive parameter which controls the influence of the slack term on the objective
function.

Different from standard PA algorithm, we define the loss as,

�(w;x) =
{

0, γ(w;x) > Δ(Y ∗, Ŷ )
Δ(Y ∗, Ŷ ) − γ(w;x), otherwise

(5)

where
γ(w;x) = wT Φ(x, Y ∗) − wT Φ(x, Ŷ ), (6)

We abbreviate �(w;x) to �. If � = 0 then wt itself satisfies the constraint in
Eq. (3) and is clearly the optimal solution. We therefore concentrate on the case
where � > 0.



328 S. Wu et al.

Since it is hard to judge whether an answer is good or not in an objective
way, we do not use directly the manual answer set Y ∗ in our learning process.
We dynamically construct the supervisor on each iteration.

We define θ = min{|Ŷ − Y ∗|, |(C − Ŷ ) ∩ Y ∗|} is the minimal number of bad
answers in top-k and good answers out of top-k. In each iteration, we build Y ∗∗

by inserting θ good answers, denoted as P , from out of top-k into top-k, and
excluding the same number of bad answers, denoted as Q.

Y ∗∗ = (Ŷ − Q) ∪ P. (7)

Now, we will show how we decide P and Q.
Assuming in the round i, the rank of the st is ri(st). After the update of w,

the rank of the st is ri+1(st). We defined the distance of two rankings, d(ri, ri+1)
as the sum of un-concordant pairs.

Theorem 1. Given two rankings r1, r2, over s1, s2, . . . , sm, w.l.g. we let
r1(si) = i, if r2(si) > r2(sj), i < j, then d(r1, r2) ≥ j − i

Proof. Consider the rank r02 : s1 . . . si−1, sj , si, si+1 . . . sj−1 , sj+1 . . . sm.
Obliviously, d(r1, r02) = j − i and the set of the un-concordant pairs of r02
is NC0 : {(sj , si), (sj , si+1), . . . , (sj , sj−1)}. Assuming that there is a rank
r12 : r12(si) > r12(sj), set of the un-concordant pairs of which is denoted as
NC1 and d(r1, r12) < j − i. Then there must be some K ⊆ [i + 1, j − 1] :
∀k ∈ K, (sj , sk) ∈ NC0 ∨ (sj , sk) /∈ NC1. However, ∀k ∈ K, (si, sk) ∈ NC1, so
|NC1| ≤ |NC0|, which is contrast with the assumption.

Theorem 1 can easily be extended to the following case.

Theorem 2. Given two rankings r1, r2, over s1, s2, . . . , sm, w.l.g. we let
r1(si) = i, if I, J ⊆ [1,m],∀i ∈ I,∀ ∈ J, i < j and r2(si) > r2(sj), then
d(r1, r2) ≥ ∑

j∈J j − ∑
i∈I i

Let the positions of elements of P in ri(st) are ri(P1) < ri(P2) < · · · < ri(Pθ),
and positions of elements of Q are ri(Q1) < ri(Q2) < · · · < ri(Qθ), then accord-
ing to our constraints and the Theorem 2

d(ri(st), ri+1(st)) ≥
θ∑

j=1

(ri(Pj) − ri(Qj)) (8)

The lower bound of the distance of two rankings is
∑θ

j=1 (ri(Pj) − ri(Qj)).
We assume ‖wi+1 − wi‖ will be increased with the increase of the lower bound.
The intuition interpretation is if it is asked to change the positions of two adja-
cent sentences in ri(st), the change of w will be small, and instead, if it is asked
to change the positions of two sentences which are the begin and the end of
the ranked list, w will change more largely. In order to minimize ‖wi+1 − wi‖,∑θ

j=1 (ri(Pj) − ri(Qj)) should be minimized by minimizing each ri(Pj) and max-
imizing each ri(Qj). So we get:



Learning to Rank Answers for Definitional Question Answering 329

P : the top-θ good answers in C − Y ∗;
Q : the bottom-θ non-answers in Ŷ .

Similar to [2], we get the update step,

αt = min

⎛
⎝C,

Δ(Y ∗∗, Ŷ ) − wT
t

(
Φ(x, Y ∗∗) − Φ(x, Ŷ )

)
||Φ(x, Y ∗∗) − Φ(x, Ŷ )||2

⎞
⎠ . (9)

Our final algorithm is shown in Algorithm (1).

input : training data set: (xn, Cn, Y ∗
n ), n = 1, · · · , N , and parameters: C, k

output: w

Initialize: w ← 0,;
for t = 0 · · · T − 1 do

pick a sample (xt, Ct, Y
∗
t ) from data set;

calculate Ŷt and Y ∗∗; calculate γ(w; xt),andΔ(Y ∗∗
t , Ŷt);

if γ(w; x) ≤ Δ(Y ∗∗
t , Ŷt) then

calculate αt by Eq. (9);
update w ← w + αt(Φ(xt, Y

∗∗
t ) − Φ(xt, Ŷt)) ;

end
end

Algorithm 1: Passive-Aggressive Algorithm for Answering Raning

3 Features

For simplicity, we assume that each sentence is independent with others and
remove the redundance later, the feature vector can be decomposed by Φ(x, Y ) =∑

s∈Y φ(x, s).

3.1 Features Based on Language Models

For a candidate sentence s, we can calculate log P(s|Corpus) using language mod-
els trained on different corpora. Here we use four corpora: AQUAINT, modified
AQUAINT (AQUAINT*), target corpus (TC) and definition corpus (DC).

Aquaint Aquaint consists of newswire text data in English, drawn from three
sources and contains roughly 375 million words correlating to about 3GB of
data. P (s|Aquaint) is used to estimate the complexity of the sentence.

Aquaint* Aquaint* is the modified version of Aquaint, which replace the named
entities and number word with their entity types(PERSON, LOCATION,
ORGANIZATION, BASICNAME) and POS tag (CD). P (s|Aquaint∗) is
used to measure the complexity of sentence after eliminating the effect of
different number words and named entity of same type.



330 S. Wu et al.

Target Corpus(TC) To each target, we build a TC correspondingly. We get
top ranked 100 snippets by Google with the target as the query. Parameters
are smoothed on Aquaint by Dirichlet smoothing [11].

Definition Corpus(DC) We build a corpus composed of definitional sentence
by collection Wikipedia article on the train targets. Because some words like
named entity phrase and number word may be high related with the specific
target, we rewrite them in the same way as Aquaint*.

We use unigram model to get the four features of the sentence s, log P (s|TC),
log P (s|DC), log P (s|Aquaint), log P (s|Aquaint∗), where the models train by
TC and DC are Dirichlet smoothed with the general corpus of Aquaint and
Aquaint*, respectively.

3.2 Features Based on Dependency Relation Patterns

The syntax of a sentence is also important. For example, appositive struc-
ture often appears in the definition sentences. We use Minipar [8] to get a set
of dependency relations patterns. First, to each sentence s as training sam-
ple, we get a set of triples: 〈word, relation, word〉. Then, we use two wildcard
IN TARGET, OUT TARGET to indicate whether the content word is the tar-
get. Thus, we can get 20 most frequent patterns in the form of <IN TARGET,
relation, OUT TARGET>.

Redundancy Features. Redundancy features are in the form of
ψ(xt, st

ij
, st

i1...ij−1
) to the sentence st

ij
for the target xt. For each content word

tw in target, we test a range [a, b] centered by tw, denoted as rtw, in st
ij

for it.
The word w is in the range rtw if and only if there are at least a−1 and at most
b−1 words between w and tw. We calculate how many content words have been
appeared in the previous sentences as following.

|{w : ∃tw,w ∈ rtw ∨ ∃st
ij′ , 1 ≤ j′ ≤ j − 1, w ∈ st

ij′ }|
|{w : ∃st

ij′ , 1 ≤ j′ ≤ j − 1, w ∈ st
ij′ }|

We used 3 different range [1, 5], [6, 10], [10,+∞] to catch features (Tables 2
and 3).

Table 1. Results on TREC 2005 (k = 12)

System F-3 Score

Soft-Pattern (SP) 0.29

Human Interest Model (HIM) 0.30

RankPA 0.35



Learning to Rank Answers for Definitional Question Answering 331

Table 2. F-3 score on the TREC 2006

k RankPA RankSVM Han

10 0.25 0.18 0.23

15 0.29 0.23 0.24

20 0.28 0.24 0.26

25 0.28 0.244 0.26

30 0.26 0.234 0.26

35 0.23 0.194 0.23

Table 3. Recall on the TREC 2006

k RankPA RankSVM Han

10 0.31 0.23 0.29

15 0.39 0.32 0.33

20 0.45 0.37 0.38

25 0.45 0.40 0.40

30 0.46 0.40 0.42

35 0.47 0.42 0.44

4 Experiments

We use three datasets from TREC 2004 ∼ 2006, which include 65, 75, 75 defin-
itional questions respectively.

We firstly use Lucene1 to get at most 200 sentences from Aquaint related to
the target, and the query is just the target.

We adopt F-3 score, which used in the TREC definitional question answering
task [9].

NR =
r

R
(10)

NP =
{

1, l < 100 × (r + a)
1 − l−100×(r+a)

1 , otherwise
(11)

F-3 =
10 × NR × NP

9 × NP + NR
(12)

where r is number of vital nuggets in the system response, R is number of
vital nuggets in the gold standard, a is number of okay nuggets in the system
response and l is length of the system response. Vital nuggets represent the
most important facts about the target and should be included. Okay nuggets
contribute to relevant information but are not essential.

4.1 Comparison with Other Systems

Kor and Chua [7] gave the results of Soft Pattern model (SP) and Human Inter-
ests Model (HIM), which both used questions in TREC 2004 as training data
and questions in TREC 2005 as test data. Table 1 shows our method clearly
outperforms SP and HIM.
1 Apache Lucene, http://lucene.apache.org.

http://lucene.apache.org


332 S. Wu et al.

4.2 Comparison with Other Ranking Algorithms

To demonstrate the effectiveness of our ranking method, we also compare it with
RankSVM [10] and Han [4]. We use the questions in TREC 2005 as training data
and TREC 2006 as test data. The targets include PERSON, ORGANIZATION,
THING, EVENT.

5 Conclusion

In this paper, we propose an online learning algorithm, which dynamically con-
struct the supervisor on each iteration and assure the quality of the top k
returned answers, instead of optimizing rank of the whole candidate list. In
the future, we will seek the applications of our method on the ranking problems
in other tasks such as summarization.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able comments. This work was partially funded by the National Natural Science Foun-
dation of China (61472088, 61363032), the National High Technology Research and
Development Program of China (2015AA015408), Shanghai Science and Technology
Development Funds (14ZR1403200).

References

1. Chen, Y., Zhou, M., Wang, S.: Reranking answers for definitional qa using language
modeling. In: Proceedings of ACL (2006)

2. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-
aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)

3. Cui, H., Kan, M.: Generic soft pattern models for definitional question answering.
In: Proceedings of ACL (2005)

4. Han, K., Song, Y., Rim, H.: Probabilistic model for definitional question answering.
In: Proceedings of SIGIR (2006)

5. Hildebrandt, W., Katz, B., Lin, J.: Answering definition questions using multiple
knowledge sources. In: Proceedings of HLT-NAACL (2004)

6. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of SIGKDD (2002)

7. Kor, K., Chua, T.: Interesting nuggets and their impact on definitional question
answering. In: Proceedings of SIGIR (2007)

8. Lin, D.: Minipar: a minimalist parser. In: Maryland Linguistics Colloquium (1999)
9. Voorhees, E.: Overview of the trec 2004 question answering track. In: Proceedings

of TREC (2004)
10. Xu, J., Cao, Y., Li, H., Zhao, M.: Ranking definitions with supervised learning

methods. In: Proceedings of WWW (2005)
11. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied

to information retrieval. ACM Trans. Inf. Syst. 22, 179–214 (2004)


	Learning to Rank Answers for Definitional Question Answering
	1 Introduction
	2 Rank Answers with Variant Passive-Aggressive Algorithm
	3 Features
	3.1 Features Based on Language Models
	3.2 Features Based on Dependency Relation Patterns

	4 Experiments
	4.1 Comparison with Other Systems
	4.2 Comparison with Other Ranking Algorithms

	5 Conclusion
	References


