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Abstract Urban traffic congestion has become a serious issue, and improving the
flow of traffic through cities is critical for environmental, social and economic
reasons. Improvements in Adaptive Traffic Signal Control (ATSC) have a pivotal
role to play in the future development of Smart Cities and in the alleviation of
traffic congestion. Here we describe an autonomic method for ATSC, namely,
reinforcement learning (RL). This chapter presents a comprehensive review of the
applications of RL to the traffic control problem to date, along with a case study that
showcases our developing multi-agent traffic control architecture. Three different
RL algorithms are presented and evaluated experimentally. We also look towards
the future and discuss some important challenges that still need to be addressed in
this field.
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1 Introduction

Traffic congestion has become a major issue that is familiar to the majority of
road users, and the environmental, social and economic consequences are well
documented. Ever-increasing vehicle usage rates, coupled with the lack of space
and public funds available to construct new transport infrastructure, serve to further
complicate the issue. Against this backdrop, it is necessary to develop intelligent and
economical solutions to improve the quality of service for road users. A relatively
inexpensive way to alleviate the problem is to ensure optimal use of the existing
road network, e.g. by using Adaptive Traffic Signal Control (ATSC). Improvements
in ATSC have a pivotal role to play in the future development of Smart Cities,
especially considering the current EU-wide emphasis on the theme of Smart, Green
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and Integrated Transport in Horizon 2020 [1]. Setting optimal traffic light timings is
a complex problem, not easily solved by humans.

Autonomic systems exhibit several key properties such as adaptability, self-
management and self-optimisation. Efforts are now underway to incorporate these
highly desirable properties into future transportation networks, leading to the
creation of Autonomic Road Transport Support Systems (ARTS). True ATSC
capabilities are an important component of this vision. In recent years, applications
of machine learning methods such as fuzzy logic, neural networks and evolutionary
algorithms have become increasingly common in ATSC research.

The approach that will be examined in this chapter is reinforcement learning
(RL), a field that has many potential applications in the intelligent transportation
systems (ITS) area. Reinforcement learning for traffic signal control (RL-TSC)
has many benefits; RL agents can learn online to continuously improve their
performance, as well as adapting readily to changes in traffic demand. RL-TSC
systems may be classified as autonomic control systems since they exhibit many
autonomic and intelligent characteristics. Flexible goal orientation via customised
reward functions allows us to choose which system parameters we wish to optimise.
RL-TSC agents are capable of learning ATSC strategies autonomously with no prior
knowledge. Online learning once the system is deployed allows real-time refinement
of the control policy and continuous self-management and self-optimisation.

Traffic control problems have been shown to be a very attractive test bed for
emerging RL approaches [11] and present non-trivial challenges such as developing
strategies for coordination and information sharing between individual agents.
While we deal here only with the use of RL-TSC, there are other reviews of the
applications of machine learning and agent-based technologies in the broader ITS
field that may be of interest to the reader [5, 11, 12, 15, 29].

The remainder of this chapter is structured as follows: the second section
discusses the concept of RL, while the third section describes specific applications
that we have investigated for this study. The following section details the design of
our experimental set up, after which we present our experimental results. Finally,
we conclude by discussing our findings, our plans for future work and a number of
challenges that still need to be addressed in the RL-TSC domain.

2 Reinforcement Learning Algorithms

The term reinforcement learning describes a class of algorithms that have the capa-
bility to learn through experience. An RL agent is deployed into an environment,
usually without any prior knowledge of how to behave. The agent interacts with
its environment and receives a scalar reward signal r based on the outcomes of
previously selected actions. This reward can be either negative or positive, and this
feedback allows the agent to iteratively learn the optimal control policy. The agent
must strike a balance between exploiting known good actions and exploring the
consequences of new actions in order to maximise the reward received during its
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lifetime. Q values represent the expected reward for each state action pair, which
aid the agent in deciding which action is most desirable to select when in a certain
state. The Q values are typically stored in a matrix, which represents the knowledge
learned by an RL agent. For further detail on RL beyond the summary presented in
this chapter, we refer the reader to [14, 42, 49].

2.1 Markov Decision Processes, Policies and Optimality

An RL problem is generally modelled as a Markov decision process (MDP), which
is considered the de facto standard when formalising problems involving learning
sequential decision making [49]. An MDP may be represented using a reward
function R, set of states S, set of actions A and a transition function T [36], i.e. a
tuple hS; A; T; Ri. When in any state s 2 S, selecting an action a 2 A will result in
the environment entering a new state s0 2 S with probability T.s; a; s0/ 2 (0,1) and
give a reward r D R.s; a; s0/.

A policy � determines the agent’s behaviour in its environment. Policies provide
a mapping from states to actions that guide the agent when choosing the most
appropriate action for a given state. The goal of any MDP is to find the best policy
(one which gives the highest overall reward) [49]. The optimal policy for an MDP
is denoted �*.

2.2 Model-Based Reinforcement Learning

RL can be classified into two categories: model-free (e.g. Q-learning, State-Action-
Reward-State-Action (SARSA)) and model based (e.g. Dyna, Prioritised Sweep-
ing). To implement model-based approaches successfully, it is necessary to know the
transition function T [49], which may be difficult or even impossible to determine
even in relatively simple domains. By contrast, in the model-free approach, this is
not a requirement. Exploration is required for model-free approaches, which sample
the underlying MDP in order to gain knowledge about the unknown model. The use
of a model-based approach in a highly stochastic problem domain like traffic control
also adds unnecessary extra complexity when compared with a model-free approach
[21]. Our analysis in this chapter will focus in the main on model-free approaches
to this problem domain for the reasons outlined above.

One of the most popular RL approaches in use today is Q-learning [44]. It is
an off-policy, model-free learning algorithm that is commonly used in RL-TSC
literature, e.g. [6, 7, 10, 19–21, 30, 38, 39, 52]. It has been shown that Q-learning
converges to the optimum action values with probability 1 so long as all actions are
repeatedly sampled in all states and the action values are represented discretely [45].
In Q-learning, the Q values are updated according to the equation below:

QtC1.st; at/ D Qt.st; at/ C ˛.rt C �Qmaxa.stC1; a/ � Qt.st; at// (1)
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SARSA [37] (meaning State-Action-Reward-State-Action) is another common
model-free RL approach. This algorithm has also been proven to converge to the
optimal value function so long as all state action pairs are visited infinitely often,
and the learning policy becomes greedy in the limit [40]. SARSA is very useful in
nonstationary environments, where an optimal policy may never be reached, and
also in situations where the use of function approximation (FA) is desired [49]. Use
of SARSA is also quite common in RL-TSC literature, e.g. [13, 33, 43, 47]. When
using SARSA, the Q values are updated as follows:

QtC1.st; at/ D Qt.st; at/ C ˛.rt C �Qt.stC1; atC1/ � Qt.st; at// (2)

The learning rate ˛ 2 Œ0; 1� is an input parameter required for many RL
algorithms and determines by how much Q values are updated at each time
step t. The learning rate is typically initialised as a low value (e.g. 0.05) and may
be a constant, or may be decreased over time. Setting ˛ D 0 would halt the
learning process altogether, which may be desirable once a satisfactory solution
is reached. Selecting a value of ˛ that is too large may result in instability and make
convergence to a solution more difficult.

The discount factor � 2 Œ0; 1� controls how the agent regards future rewards and
is typically initialised as a high value (e.g. 0.9). Setting � D 0 would result in a
myopic agent, i.e. an agent concerned only about immediate rewards, whereas a
higher value of � results in an agent that is more forward-looking.

2.3 Exploration vs. Exploitation

When using RL, balancing the exploration–exploitation trade-off is crucial. Explo-
ration is necessary for a model-free learning agent to learn the consequences of
selecting different actions [49] and thus determine the potential benefit of selecting
those actions in the future. Exploitation of known good actions is necessary for the
agent to accumulate the maximum possible reward. As we have seen above, two
of the most common model-free RL algorithms have been proven to converge to
an optimum solution when all states are visited infinitely often (thus exploring all
possible states is a condition for convergence to the optimum policy). While this is
not practical in real-world transportation problems, it is logical that the RL agent
will make better informed decisions, and thus perform better, when an efficient
exploration strategy is in place that allows for sufficient exploration. Conversely,
selecting an inappropriate exploration strategy may result in the agent getting stuck
in a local optimum and not converging to the best possible solution. Excessive
exploration limits the agent’s capacity to accumulate rewards over its lifetime and
may reduce performance. Two algorithms that are commonly used to manage the
exploration–exploitation trade-off are �-greedy and softmax (Boltzmann) [49].
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3 Reinforcement Learning for Traffic Signal Control

In this section, we discuss the development of RL-TSC approaches by various
researchers and the challenges associated with implementation, as well as the
current state of the art. The use of RL as a method of traffic control has been
investigated since the mid-1990s, but the number of published research articles
has increased greatly in the last decade, coinciding with a growing interest in the
broader ITS field among the research community. The potential for performance
improvements in traffic signal control offered by RL when compared to conventional
approaches is vast, and there are many published articles reporting promising
results, e.g. [4, 6, 13, 21, 25, 28, 48]. Thorpe describes some of the earliest work
in this area, and even at this initial stage in the development of RL-TSC, it offered
significant improvements over fixed signal plans [43].

3.1 Problem Formulation

The traffic control problem may be considered as a multi-agent system (MAS),
where each agent is autonomous and responsible for controlling the traffic light
sequences of a single junction. In the context of RL-TSC, this scenario is described
by the term Multi-agent Reinforcement Learning (MARL), which consists of
multiple RL agents like those detailed in Sect. 2, learning and acting together in the
same environment. The scenario is a partially observable Markov decision process,
as it is impossible for agents to know every detail about the environment in large-
scale transportation networks in the real world.

The MAS paradigm is inherently very suitable for the management of trans-
portation systems [12] and also for transport simulations. Modern transportation
networks may contain thousands or millions of autonomous entities, each of
which must be represented in simulations. Vehicles, drivers, pedestrians and traffic
signal controllers can all be modelled as agents. Use of MAS allows large-scale
representation of these agents, while also allowing fine-grained detail for each
individual agent if desired. Additionally, MAS is innately robust and highly scalable
[14]; there is no single point of failure and new agents can easily be inserted into the
system. Wooldridge [51] gives a good overview of the main concepts in multi-agent
systems (MAS), which may be of interest to the reader.

A naïve way of using RL to control traffic signals is to train a single RL agent
to control all junctions in the system. However, this approach is not feasible when
considering large networks, due to a lack of scalability and the huge number of
potential actions that may be selected [9]. Thus, MARL is the standard approach in
RL-TSC research, as it scales much better than a single agent controlling an entire
network.
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3.2 Challenges of Applying RL to Traffic Signal Control

A significant challenge in RL-TSC is implementing coordination and information
sharing between agents [11, 21, 28]. The effect of any single agent’s actions on the
environment is also influenced by the actions of other agents [14]. Single agents are
self-interested and will seek only to maximise their personal rewards. For example,
a control policy selected by an agent may result in a local optimum in terms of
traffic movements, but may have a detrimental effect on traffic flows in the network
as a whole, limiting the effectiveness of the other agents. Thus, having multiple
agents that are primarily greedy or self-interested is not necessarily the best option,
and some sort of coordination or information sharing mechanism is necessary to
implement systems relevant to the real world.

One of the main difficulties associated with determining optimal traffic control
policies is the sheer scale of the problem. With respect to RL, the term “curse of
dimensionality” is frequently used to describe the difficulty of dealing with the
plethora of information that must be handled [21, 34, 42, 49]. As each individual
intersection has its own controller agent, the problem complexity increases vastly
in larger road networks. When implementing coordination between agents, this
increase in dimensionality is even more pronounced. In many commonly used
MARL coordination methods, each agent has to keep a set of tables whose size
is exponential in the number of agents [21]. Later, we will examine some of the
approaches used by researchers to tackle these formidable problems. Model-free
RL methods become even more attractive as network size increases, as the absence
of a model reduces the computational complexity when compared with model-based
methods. The continual increase in available computational power is another factor
that will make this challenge easier to deal with in the future.

3.3 State Definitions

One of the most important issues to be considered when designing an RL-TSC
system is that of determining how the state of the environment will be represented to
the agent. Various different approaches to defining the environment state in RL-TSC
problems have been proposed in the literature, with each having its own relative
merits. Queue length is one of the most common state definitions used in RL-
TSC [6] and has been used as a means of state representation in many RL-TSC
research papers, e.g. [3, 4, 6, 16, 19–21]. Wiering [48] proposed a vehicle-based
state definition, based on the expected total waiting time for a vehicle to reach its
destination. Delay-based approaches are also considered in e.g. [7–9, 23, 28, 41, 50].
In [10] the traffic state is estimated by considering both queue length and traffic flow
rate, while [13] presents an approach based on queue length and elapsed time since
the previous signal change.
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3.4 Reward Function Definitions

Choosing an appropriate reward function is equally important as the choice of
state representation when designing an RL-TSC agent. These issues are somewhat
interrelated, in that the reward received by an agent is often related to the difference
in utility between the current and previous states, i.e. the agent is rewarded for
actions that improve the state of the environment. Equivalently, we can think of
optimising some parameter as the agent’s objective, and this objective is specified
in the reward function.

Many different objectives have been considered by authors when defining the
reward function used by RL-TSC agents. These include average trip waiting time
(ATWT)/trip delay, average trip time (ATT), average junction waiting time (AJWT),
junction throughput/flow rate (FR), achieving green waves (GW), accidents avoid-
ance (AA), speed restriction, fuel conservation and average number of trip stops
(ANTS). Brys et al. [13] have proposed delay squared as a possible alternative
reward signal, the idea being that large delays will be punished more severely than
small delays. Their results suggest that the use of delay squared as a reward signal
may result in faster learning rates than simple delay.

It should be noted that many of the proposed reward definitions above rely on
information that is easy to obtain in a simulation, but quite difficult or impractical to
obtain in a real-world setting using current technologies. Data about ATWT, ATT,
ANTS, fuel usage or emissions could not be collected reliably without some form
of Vehicle to Junction (V2J) communication, whereby a vehicle could report these
parameters to a controller agent via wireless communications. This research area is
still under development and is not yet mature enough for widespread deployment.
Also, all or nearly all vehicles using the network would have to have V2J capabilities
for the statistics to be useful in assigning the agent a reward.

Dresner and Stone [18] have suggested using RL in their Autonomous Intersec-
tion Management architecture with V2J communications. This approach treats the
intersection as a marketplace where vehicles pay for passage or pay a premium for
priority, and the controller agent’s goal is to maximise the revenue collected. In
future, revenue collected could be used in reward functions for RL-TSC.

3.5 Performance Metrics

Evaluating the merits of any traffic control system requires suitable performance
metrics. In RL-TSC these parameters are doubly important, as an agent must receive
an assessment of its own performance in order to learn. In some cases, these can
be the same or similar parameters used in the environment state definitions or
the reward functions of the individual agents, but aggregated on a network-wide
level to give an assessment of an RL-TSC system. Some performance metrics
used in transportation and RL-TSC literature include reduction in emissions or
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fuel consumption, number of stops in a trip, percentage of stopped vehicles, delay
time/ATWT, vehicle density in various parts of the network, junction queue lengths,
mean vehicle speed and junction throughput.

3.6 Single Agent Reinforcement Learning Approaches

The most basic applications of RL to traffic control in the literature consider only
a single junction controlled by a single agent, in what is called Single Agent
Reinforcement Learning (SARL). While this approach may be appropriate for
signalised intersections that are isolated and not part of a larger control network (e.g.
junctions in small towns), it is not suitable for deployment in large urban networks.
As SARL approaches do not exploit the full potential of RL-TSC, they will not
be discussed in great detail, although they still prove its potential to outperform
conventional approaches. There are a number of published works describing RL
controlled isolated signalised junctions [6, 16, 19, 30, 47].

One such approach is that of Abdulhai et al. [6], where the authors present a case
study of the application of Q-learning to control an isolated two-phase signalised
junction. The Q-learning agent was found to perform on a par with pre-timed signals
on constant or constant-ratio flows and to significantly outperform pre-timed signals
under more variable flows. The authors attributed the latter result to the ability of
the agent to adapt to changing traffic conditions.

In [19], the authors present a study based on a single junction in the Downtown
Toronto area. The designs of three Q-learning agents with different state represen-
tations are outlined, and the performance of these agents is compared to a reference
Webster-based [46] fixed time signal plan. The state definitions considered were
based on (1) arrival of vehicles to the current green direction and queue length
at red directions, (2) queue length and (3) vehicle cumulative delay. The authors
reported that Q-learning outperformed the reference fixed signal plan, regardless
of the state representation used or traffic conditions. The Q-learning agent using
vehicle cumulative delay for state representation was found to produce the best
results in heavy traffic conditions.

3.7 Multi-Agent Reinforcement Learning Approaches

Most authors have focused on developing approaches based on MARL, i.e. networks
consisting of multiple signalised intersections, each controlled by an independent
RL agent. These cases are much more relevant to real-world traffic signal control
problems than the SARL cases described above. One of the most significant early
works in Multi-agent RL-TSC is that of Wiering [48]. Several authors have since
extended Wiering’s approach or used his algorithms as a benchmark for their own
approaches, e.g. [8, 9, 23, 28, 41, 50]. Wiering developed a model-based approach to
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RL-TSC and presents three such algorithms: TC-1, TC-2 and TC-3. He found that
the RL systems clearly outperformed fixed time controllers at high levels of network
saturation, when testing on a simple 3 � 2 grid network. Another interesting aspect
of this research is that a type of co-learning is implemented; value functions are
learned by signal controllers and driver agents, and the drivers also learn to compute
policies that allow them to select optimal routes through the network.

Steingröver et al. [41] extend the work of Wiering, by introducing a basic form of
information sharing between agents. Three new traffic controllers are described by
the authors: TC-SBC (Traffic Controller-State Bit for Congestion), TC-GAC (Traffic
Controller-Gain Adapted by Congestion) and TC-SBC+GAC which combines the
latter approaches. In TC-SBC, a congestion bit is added to the state tuple which
represents the amount of traffic congestion at neighbouring intersections. One major
disadvantage of TC-SBC is that it increases the size of the state space, which makes
the problem more difficult to compute. TC-GAC uses congestion information from
neighbouring junctions when estimating the optimal action selection. An advantage
of this method is that it does not increase the size of the state space, but it never
learns anything permanent about congestion in the network. The algorithms are
tested on a simple grid network, under both fixed and variable flows. All three
methods proposed were found to outperform Wiering’s TC-1, and TC-GAC was
found to provide the best performance under variable traffic flows. A further
extension of this work is presented by Isa et al. in [23]. Two new algorithms
called TC-SBA (Traffic Controller-State Bit for Accidents) and TC-SBAC (Traffic
Controller-State Bit for Accidents and Congestion) are presented, both based on
TC-1. In TC-SBA, similar to TC-SBC, an extra bit is added to the state tuple, this
time representing whether the lane ahead is obstructed by an accident. TC-SBAC
adds both the state and accident bits to TC-1. Both of these approaches suffer from
the same problem as TC-SBC, namely, a substantial increase in the state space. In
the case of TC-SBAC, the state space is four times larger than that of the original
TC-1 algorithm.

In [3], Abdoos et al. present a Multi-agent RL-TSC implementation, tested on a
relatively large abstract network consisting of 50 junctions. The authors based their
algorithm on Q-learning, which was tested against reference fixed time signal plans.
At each junction, average queue length (AQL) over all approaching links is used
for state representation, and action selection is by means of selecting the green time
ratio between different links. The proposed algorithm is found to offer a substantial
performance improvement over fixed time control, greatly reducing delay times in
the network.

Salkham and Cahill [38] developed a Multi-agent RL-TSC system, Soilse. This
approach utilises a pattern change detection (PCD) mechanism that causes an agent
to relearn based on the degree of change detected in traffic flows. A collaborative
version SoilseC is also described, which adds a collaborative reward model to the
Soilse architecture to incorporate reward information exchanged between agents.
The authors test their system on a simulated network based on Dublin City centre
consisting of 62 signalised junctions, using assumed traffic flow data. Two baseline
fixed time control schemes were also tested. Soilse and SoilseC were shown to
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outperform both baselines in terms of vehicle AWT and average number of stops.
This work is significant in that a large-scale test of RL-TSC on a real urban traffic
network is presented.

3.8 Coordinated MARL Approaches

A natural extension to the approaches described above is to use MARL to achieve
decentralised and coordinated traffic signal control. Use of RL and game theoretic
approaches to achieve coordination in traffic control agents is certainly plausible
[11], and this is an active research theme in RL-TSC.

Kuyer et al. [28] extend the work of Wiering [48] to develop a coordinated
model-based RL-TSC system using the Max-Plus algorithm as a coordination
strategy. Max-Plus is used to compute the optimal joint action by means of message
passing between connected agents. However, this approach is very computationally
demanding, as agents must negotiate when coordinating their actions. The authors
report improved performance when comparing their approach to that of Wiering
[48] and Bakker et al. [8].

El-Tantawy and Abdulhai [20] and El-Tantway et al. [21] present a coordinated
Multi-agent RL-TSC architecture called MARLIN-ATSC. This is a model-free
architecture based on Q-learning, where the state definition is based on queue
length and the reward definition is based on total cumulative delay. The authors deal
with the dimensionality problem by utilising the principle of locality of interaction
among agents [31] and the modular Q-learning technique [32]. The former principle
means that each agent communicates only with its immediate neighbours, while the
latter allows partitioning of the state space into partial state spaces consisting of
only two agents. This approach significantly reduces the complexity of the problem
while still producing promising results.

In [20], the architecture is tested on a five-intersection network against a Webster-
based fixed time plan, as well as uncoordinated Q-learning controllers. MARLIN-
ATSC was reported to outperform both the fixed timing and uncoordinated RL
approaches, resulting in a reduction in average delay. The proposed architecture
was also found to offer improved convergence times when compared to a network
of independent learning agents.

The authors extend their approach in [21], where the system is tested on a
simulated network of 59 intersections in Downtown Toronto, using input data
provided by the City of Toronto, including traffic counts and existing signal timings.
In this instance, MARLIN-ATSC outperformed the currently implemented real-
world control scheme as well as the uncoordinated RL approach, resulting in a
reduction in average delay, average stop time, average travel time, maximum queue
lengths and emissions. The results presented in [21] are very encouraging, and this
work is one of the largest and most realistic simulation tests of an RL-TSC approach
to date, due to the use of a real urban network, along with real-world traffic data and
signal timings.
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3.9 Multi-Objectivity

Multi-objectivity is an emerging research theme in RL-TSC that has received some
attention in recent years [13, 22, 24–26]. In RL-TSC, this approach seeks to optimise
a number of parameters in the network at once, the idea being that considering
multiple parameters may lead to better solutions and convergence times, as well as
allowing consistent performance even under varying demand levels. This is typically
achieved by expanding the agent’s reward function definition to include multiple
parameters.

The majority of traditional traffic control methods are single objective [26],
seeking optimal solutions based on a single parameter only. As we have seen in
Sect. 3.5, some reward function definitions are more suited to certain traffic patterns,
so combining several definitions may be beneficial where the demand is highly
variable. Multi-objective RL is comparable to single-objective RL in terms of time
complexity [25]; this is because the only extra operation required to extend a single-
objective approach is scalar addition to determine the combined reward signal. This
means that the potential performance improvements can be gained quite cheaply in
terms of computational complexity.

Houli et al. [22] present a multi-objective RL-TSC algorithm, which is tuned for
three different scenarios: light, medium and heavy traffic. Each level of traffic has
a corresponding Q function. However, adaption occurs offline, as one Q function is
activated at a time based on the number of vehicles entering the network in a given
timeframe.

Brys et al. [13] observed in their experiments that the objectives throughput and
delay are correlated. They implemented a multi-objective RL-TSC algorithm by
replacing the single-objective reward signal with a scalarised signal, which was a
weighted sum of the reward due to both objectives. The onus is on the user, however,
to select weightings that will give good results. They report that the proposed multi-
objective approach exhibits a reduced convergence time, as well as decreasing
the average delay in the network when compared to a single-objective approach.
While performance gains can be seen from this multi-objective approach, selecting
appropriate values for the weightings of rewards was reported to be a very time-
consuming task.

A more advanced approach is presented by Khamis and Gomaa [24, 25] and
Khamis et al. [24]. In [24, 26] the authors develop multi-objective RL-TSC systems
with weighted sum reward functions. Multiple reward criteria are considered in the
combined reward function (FR, ATWT, ATT, AJWT, safety/speed control). The
systems were tested on simple grid-type networks with varying demand levels.
The authors report that their approach outperforms Wiering’s TC-1 [48] algorithm,
resulting in a reduction in the average number of stops and waiting time in each
trip [24], as well as increasing the average speed for each trip [26]. In [25] the
authors extend their work further, considering a total of seven different parameters
in the reward function proposed. This extended approach is tested against TC-1,
Self-Organising Traffic Lights (SOTL) [17] and a genetic algorithm proposed by
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Wiering [50]. The proposed multi-objective approach outperforms the other three
control schemes, again showing a significant reduction in ATWT and number of
stops, as well as an increase in the average speed of vehicles in the network.

3.10 Function Approximation

In complex environments, it is not possible for the RL agent to visit each state action
pair infinitely often to ensure convergence. RL literature describes a technique called
function approximation (FA), whereby explicit tabular representations of rewards
due to each state action pair are not required; instead, it is possible to generalise
across different states and/or actions. By approximating state action pairs, the agent
can learn reasonable behaviour more quickly than a tabular implementation [42]. In
general, the values of the approximate function are defined using a set of tuneable
parameters [49].

Prashanth and Bhatnagar [34, 35] present the first published application of FA
to RL-TSC. Two RL algorithms based on Q-learning are presented: one with full
state representation (FSR) and one using FA. The latter algorithm uses features in
place of FSR, namely, traffic demand and wait. Demand level is classified based
on queue lengths (low, medium or high) and wait is classified based on time that
a red signal has been displayed to the lane. This approach does not require precise
queue length information, and it does not require a precise value of elapsed time,
as time is defined as being above or below a threshold. The goal is to minimise
queue lengths while ensuring fairness so that no lane has an overly long red time.
In [34], the algorithms are benchmarked against reference fixed timings and SOTL
[17] in four test networks. The proposed Q-learning with FA approach consistently
outperformed the other approaches tested, while also being more efficient in terms
of memory usage and computation time compared to RL with FSR.

Abdoos et al. [4] also applied FA to RL-TSC, using tile coding. In tile coding, the
receptive fields of the features are grouped into partitions called tilings in which each
element is called a tile, and the overall number of features that are present at one
time is strictly controlled and independent of the input state [42]. Each intersection
is controlled by a Q-learning agent, and these agents are grouped together to be
controlled by superior agents. These superior agents use tile coding as a method
of linear function approximation because of the large state space involved. This
hierarchical control algorithm was tested on a 3 � 3 junction grid and was found to
outperform a standard Q-learning approach, resulting in reduced delay times in the
network.

Pham et al. [33] present an RL-TSC system based on SARSA that also uses tile
coding as a method of function approximation. In contrast to the approach above,
this system does not include any form of coordination between agents. Instead, each
SARSA agent is completely independent, and tile coding is used only as a method
of approximating the value function for the agent’s local states.
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Arel et al. [7] propose a Q-learning algorithm with function approximation
for traffic signal control. The authors implement a feedforward neural network
trained using back-propagation to provide an approximation to the state action value
function. Testing was conducted on a five-intersection grid, using the proposed
algorithm, along with a longest queue first approach. The authors report that their
Q-learning with function approximation algorithm outperformed the longest queue
first approach at high demand levels.

4 Experimental Design

We now present a case study, which is based on the RL-TSC test bed that
we are currently developing. The microscopic traffic simulation package SUMO
(Simulation of Urban MObility) [27] is the basis for our experimental setup. Agent
logic is defined in our external MARL framework, which is implemented in Java.
Each RL agent is responsible for controlling the light sequences of a single junction.
The TraaS library [2] is used to feed simulation data to the agents and also to send
commands from the agents back to SUMO.

For each agent, state is defined as a vector of dimension 2 + P, where the first two
components are the index of the current phase and the elapsed time in the current
phase. The remaining P components are the maximum queue lengths for each phase.
This is a similar state definition to that of El-Tantawy and Abdulhai [20]. We used
a mixed radix conversion to represent this state vector as a single number, which
is used when setting and retrieving values in the Q values matrix. For all junctions
in our simulations, the number of phases is two. We limit the maximum number of
queueing vehicles considered by an agent to 20, and the maximum phase elapsed
time considered is limited to 30 s. By imposing these limits, we reduce the possible
number of states considered by an agent. Even so, there are over 27,000 possible
states that arise from the ranges used.

The actions available to the agents at each time step are to keep the currently
displayed green and red signals and to set a green light for a different phase. Phases
are subject to a minimum length of 10 s, to eliminate unreasonably low phase lengths
from consideration. There is no fixed cycle length, and agents are free to extend the
current phase or switch to the next phase as they see fit. When changing phases, an
amber signal is displayed for 3 s, followed by an all red period of 2 s and then by
a green signal to the next phase. Actions are selected using the �-greedy algorithm,
which chooses either a random action or the action with the best expected reward,
where � is the probability of choosing a random action. All agents begin with �

set to 0.9 at the beginning of the experiments, and initialising � with a high value
encourages early exploration of different states and actions, as well as improving
convergence times. The value of � is decreased linearly over time, to a final value
of 0.1 after 10 h of simulated time. This final value promotes exploitation of the
knowledge the agent has gained, but still allows for some exploration.
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We tested our agents on a 3 � 3 grid network, with a total of nine signalised
junctions. We have chosen a grid-type network for a number of reasons: this is the
most common type of network used in the RL-TSC literature (e.g. [4, 7, 9, 25, 33–
35, 41, 50]), which makes it easy for researchers to replicate experimental conditions
and compare results. Also, many cities are based on a grid-type layout (e.g.
New York, Washington DC, Miami), and therefore the results presented are relevant
to real urban traffic networks and give an indication of the potential performance
improvements. All lanes in our network have a maximum speed of 50 km/h. Two
distinct traffic demand definitions are used during each 72 h experiment run. The
first 36 h is used as a training period for the agents, which allows them to gain
the required experience. Simple horizontal and vertical routes are defined for this
period, with 200 vehicles per hour travelling on each of the routes AD, BE and CF
and 300 vehicles per hour travelling on each of the routes GJ, HK and IL. These
routes are shown in Fig. 1.

In the second 36 h period, a random traffic pattern is used to simulate a more
unpredictable user demand. A set of random trips were defined and processed using
the SUMO DUAROUTER tool, with a frequency of 1800 vehicles per hour and
a minimum trip distance of 450 m. The results presented for each RL algorithm
are derived by taking an average of ten simulation runs, to give results that are
representative of the algorithm’s performance.

We evaluate three different RL-TSC algorithms, RLTSC-1, RLTSC-2 and
RLTSC-3, all of which are based on Q-learning. In RL-TSC-1, we define the
reward as the difference between the previous and current average queue length
(AQL) at the junction (R.s; a; s0/ D AQLs0 � AQLs), and we have defined a
queueing vehicle as one travelling below 10 km/h. The reward function for RL-
TSC-2 is based on waiting times at the junction. The average waiting times
(AWT) for each junction approach are added, and the reward the agent receives

Fig. 1 The nine-junction test
network
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is the difference between the sums of the current and previous waiting times
(R.s; a; s0/ D ˙AWTs0�˙AWTs). RL-TSC-3 has a multi-objective reward function,
which is the unweighted sum of the reward functions used in RL-TSC-1 and RL-
TSC-2 (R.s; a; s0/ D AQLs0 � AQLs C ˙AWTs0 � ˙AWTs). The learning rate ˛

for all agents is set to 0.08, while the value used for the discount factor � is 0.8. A
fourth agent type which implements fixed signal timing is also tested as a reference.
The fixed timing agent has a cycle length of 60 s and divides the available green
time in the ratio of the fixed flows defined in the first simulation period (40 % green
time to the north to south phase and 60 % green time to east to west phase). The
fixed timing agent maintains the same control scheme throughout the entire 72 h
test period.

5 Experimental Results and Discussion

Results are reported for each of the four algorithms described in the previous
section. The performance metrics we have chosen for the evaluation of our
simulation results are junction queue length, waiting times and vehicle speeds. The
values reported are averages of the results in the entire test network. In Table 1,
a summary of the results for each control method under random flows is shown.
Figures 2 and 3 show queue lengths and waiting times, respectively, which are
plotted for the full 72 h test period. During the first 36 h of each experiment, we
see a gradual improvement in both waiting times and queue lengths for each of
the three RL-TSC approaches, as the agents learn more about the effects of their
actions on the traffic conditions. Of the three RL agent types, RL-TSC-2 offers the
best performance under steady flows, with slightly lower waiting times than the
fixed time agent by the end of the 36 h learning period.

These graphs show a marked difference between the fixed time and RL-TSC
control schemes under random traffic flows during the second 36 h phase of the
experiments. We see that the fixed time agents clearly cannot cope with the random
traffic patterns in the network; this is expected as these agents are optimised for
fixed ratio flows. However, all three RL-TSC-based algorithms can adapt to this
random traffic load, albeit with fluctuations in the queues and waiting times due
to the unpredictability of the demand. From the summary of experimental results
presented in Table 1, it is clear that RL-TSC-1 performs the best under these

Table 1 Summary of performance under random traffic flows (average values)

Algorithm Queue length Vehicle speed (km/h) Waiting time (s)

Fixed timing 8.55 7.98 346.49

RL-TSC-1 2.93 12.91 39.26

RL-TSC-2 3.68 12.29 57.42

RL-TSC-3 3.37 12.58 48.32
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unpredictable traffic conditions, with the highest vehicle speeds and the lowest
queue lengths and waiting times. RL-TSC-2 performs slightly worse here, with
lower vehicle speeds and increased waiting times and queues compared to RL-
TSC-1. RL-TSC-3 performs somewhere between the latter two algorithms; this is
reasonable as it is effectively a hybrid of these approaches.

By taking an average of ten simulation runs for each agent type, we have
demonstrated that RL-based approaches offer consistently better performance under
variable traffic flows than fixed time traffic signal plans. Each RL algorithm is
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also competitive with fixed traffic signals under more predictable flows, with RL-
TSC-2 offering the best performance under this type of flow regime. Further work
is required on RL-TSC-1 and RL-TSC-3 in order for them to achieve the same
performance under predictable flows as a fixed time controller. In general, our
findings concur with those of Abdulhai et al. in [6], who showed that a Q-learning
agent can perform on a par with pre-timed signals under fixed flows and outperform
pre-timed signals under more variable flows. Further work is also required on
our multi-objective algorithm RL-TSC-3, in order to improve its performance.
These refinements may include considering different reward definitions, along
with determining the optimal weighting for each of the parameters considered.
Determining the optimal parameter weightings in multi-objective reward functions
is a time-consuming endeavour, so we may consider implementing a learning-based
approach to determine these weightings automatically.

In summary, we recommend the use of RL-TSC-2 for conditions where there are
fixed flows or fixed ratio flows. RL-TSC-1 is recommended for highly variable traf-
fic conditions, while the multi-objective RL-TSC-3 algorithm performs somewhere
between the two and offers good all-round performance.

6 Conclusions and Future Work

As we have outlined in this chapter, the field of RL-TSC is a very promising one. We
have provided the reader with a general introduction to the concept of RL, as well
as discussing the factors that need to be taken into consideration when designing
MARL architectures capable of controlling traffic signals and how various authors
have addressed these challenges in their own research. In our experiments, we have
demonstrated the suitability of RL-TSC to deal with time-varying flows and random
traffic patterns when compared to a fixed time control scheme. RL-TSC has matured
significantly in the last decade, and while much has been accomplished, it has
yet to advance beyond theory and simulations. There have been no reported field
deployments at the time of writing, but this is the ultimate goal of RL-TSC research.

Real-world deployment would of course necessitate a blend between both
offline and online learning to be successful. Ideally, agents would first be trained
offline in a simulator, using real-world network geometry and traffic demand data.
Incorporating some online learning would allow the agents to adapt to changing
traffic patterns, if this behaviour is desired. Finding the right balance between online
and offline learning will be important when deploying RL-TSC systems in the field
and remains unaddressed in the literature. Further studies using real road networks
and corresponding traffic demand data should be conducted to further this aim,
preferably using the existing signal plans as a benchmark.

Questions concerning the robustness and reliability of controllers and the effect
of a failure on traffic dynamics also remain unanswered at the time of writing. One
must also consider how RL-TSC will interface with other promising approaches
in ITS in the future, e.g. Autonomous Intersection Management [18]. Many
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approaches in the literature use parameters for state and reward definitions that are
not easily obtained in real traffic networks, e.g. ATWT. To apply these approaches,
we will need to develop and include the required data gathering capabilities in our
traffic networks, e.g. vehicle detecting cameras, vehicle to junction communications
or even floating car data.

Some of the recently emerging themes in RL-TSC, e.g. function approximation,
multi-objectivity and coordination, also deserve further attention. There is certainly
great potential in these areas, and only a handful of papers in the literature have
investigated these themes. There may also be scope for further theories from
mainstream RL literature to be applied to the RL-TSC domain in the future.
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