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Abstract. In statistical parametric speech synthesis, creaky voice can
cause disturbing artifacts. The reason is that standard pitch track-
ing algorithms tend to erroneously measure FO in regions of creaky
voice. This pattern is learned during training of hidden Markov-models
(HMMSs). In the synthesis phase, false voiced/unvoiced decision caused
by creaky voice results in audible quality degradation. In order to elimi-
nate this phenomena, we use a simple continuous F0 tracker which does
not apply a strict voiced/unvoiced decision. In the proposed residual-
based vocoder, Maximum Voiced Frequency is used for mixed voiced and
unvoiced excitation. As all parameters of the vocoder are continuous,
Multi-Space Distribution is not necessary during training the HMMs,
which has been shown to be advantageous. Artifacts caused by creaky
voice are eliminated with this speech synthesis system. A subjective lis-
tening test of English utterances has shown improvement over the tradi-
tional excitation.

Keywords: Speech synthesis - HMM - Creaky voice - Vocoder * Pitch
tracking

1 Introduction

State-of-the-art text-to-speech synthesis is either based on unit selection or sta-
tistical parametric methods. Recently, particular attention has been paid to hid-
den Markov-model (HMM) based text-to-speech (TTS) synthesis [29], which has
gained much popularity due to its flexibility, smoothness and small footprint. In
this speech synthesis technique, the speech signal is decomposed to parameters
representing excitation and spectrum of speech, and are fed to a machine learn-
ing system. After the training data is learned, during synthesis, the parameter
sequences are converted back to speech signal with reconstructing methods (e.g.
speech vocoders, excitation models).

There are three main factors in statistical parametric speech synthesis that
are needed to deal with in order to achieve as high quality synthesized speech
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as unit selection: vocoder techniques, acoustic modeling accuracy and over-
smoothing during parameter generation [31]. In this paper, we investigate the
first factor. A large number of improved excitation models have been proposed
recently (for a comparison, see [18]). Statistical parametric speech synthesis and
most of these excitation models are optimized for regular, modal voices (with
quasi-periodic vibration of the vocal folds in voiced regions) and may not produce
high quality with voices having frequent non-modal sections.

Irregular voice is such a non-modal phonation mode, which can cause dis-
turbing artefacts in hidden Markov-model based text-to-speech synthesis. During
regular phonation (modal voice) in human speech, the vocal cords are vibrating
quasi-periodically. For shorter or longer periods of time instability may occur in
the larynx causing irregular vibration of the vocal folds, which is referred to as
irregular phonation, creaky voice, glottalization, vocal fry and laryngealization
[4,5]. It leads to abrupt changes in the fundamental frequency (F0), amplitude of
the pitch periods or both. Irregular phonation is a frequent phenomenon in both
healthy speakers and people having voice disorders. It is often accompanied by
extremely low pitch and the quick attenuation of glottal pulses. Glottalization
can cause problems for standard speech analysis methods (e.g. FO tracking and
spectral analysis) and it is often disturbing in speech technologies [8].

In this paper we propose an attempt to eliminate the phenomena of non-
modal phonation in HMM-based speech synthesis. More specifically, we hypoth-
esize that a continuous FO tracker, which does not apply a strict voiced /unvoiced
decision caused by creaky voice, can ‘smooth’ the voice irregularities that further
improves modeling capabilities of the HMM-based training framework.

2 Related Work

In our earlier studies, we modeled the creaky voice in HMM-TTS explicitly
using a rule-based [7] and a data-driven irregular voice model [8]. We used a
residual codebook based excitation model [6,9]. We also created an irregular-
to-regular transformation method to smooth irregularities in speech databases
[10]. Another alternative for overcoming the issues caused by creaky voice is to
eliminate miscalculation of pitch tracking by using a more accurate fundamental
frequency (F0) estimation method.

It has been shown recently that continuous FO has advantages in statistical
parametric speech synthesis [17]. For example, it was found that using a con-
tinuous FO, more expressive FO contours can be generated [26-28] than using
Multi-Space Distribution (MSD) [25] for handling discontinuous FO. Another
important observation is that the voiced/unvoiced decision can be left up to the
aperiodicity features in a mixed excitation vocoder [22]. This decision can also
be modeled using a dynamic voiced frequency [13].

Accurate modeling of the residual has been shown to improve the synthe-
sis quality [11,18]. Using a Principal Component Analysis-based (PCA) ‘Eigen-
Residual’ results in significantly more natural speech (in terms of artificiality,
buzziness) than the traditional pulse-noise excitation [16].
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In the following, we introduce a new combination of continuous FO (based on
pitch tracking with Kalman-smoother based interpolation, [17]), excitation mod-
eling (PCA-based residual, [11]) and aperiodicity features (based on Maximum
Voiced Frequency, MVF, [13]).

3 Methods

We trained three HMM-TTS systems with various parameter streams using two
voices. In the following the used databases, the methods for analysis, training of
HMMs and synthesis are presented for a baseline and two improved systems.

3.1 Data

Two English speakers were chosen from the CMU-ARCTIC database [21],
denoted EN-M-AWB (Scottish English, male) and EN-F-SLT (American Eng-
lish, female). Both of them produced irregular phonation frequently, mostly at
the end of sentences. For speaker EN-M-AWB, the ratio of the voiced frames
produced with irregular phonation vs. all voiced frames is 2.25 %, whereas for
speaker EN-F-SLT, this ratio is 1.88 %, measured on the full database using
automatic creaky voice detection [12].

3.2 Analysis

A. HTS-FO0std. In the baseline system, the input is a speech waveform low-pass
filtered at 7.6 kHz with 16 kHz sampling rate and 16 bit linear PCM quantization.
The fundamental frequency (F0) parameters are calculated by a standard pitch
tracker, the RAPT algorithm [23] implemented in Snack [2]. We denote this as
‘FOstd’. 25 ms frame size and 5 ms frame shift are used. In the next step 34-order
Mel-Generalized Cepstral analysis (MGC) [24] is performed on the speech signal
with @ = 0.42 and v = —1/3. The results are the FOstd and the MGC parameter
streams.

As PCA-based residual has been shown to produce better speech quality
than pulse-noise excitation [16], we perform residual analysis in the baseline
system. The residual signal (excitation) is obtained by MGLSA inverse filter-
ing [19]. The SEDREAMS Glottal Closure Instant (GCI) detection algorithm
[15] is used to find the glottal period boundaries in the voiced parts of the
residual signal. Pitch synchronous, two period long frames are used accord-
ing to the GCI locations and they are Hann-windowed. The pitch-synchronous
residual frames are resampled to twice the average pitch period of the speaker
(e.g. for EN-M-AWB, F's = 16kHz, F0,,, = 123Hz, T04,, = 130samples,
framelen,esamplea = 260samples). Finally, Principal Component Analysis is
applied on these frames, and the first principal component is calculated. Figure 1
shows examples for the PCA residual. Instead of impulses, this PCA residual will
be used for the synthesis of the voiced frames.

For text processing (e.g. phonetic transcription, labeling, etc.), the Festival
TTS front-end is used [1].
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Fig. 1. PCA residuals obtained from two period long pitch-synchronous residuals.

B. HTS-F0std+MVF. In the 2nd system, the analysis of the speech wave-
form and residual is similar to HTS-FOstd, resulting in the MGC and FOstd
parameters. After these steps, Maximum Voiced Frequency is calculated from
the speech signal using the MVF _Toolkit [14] with 5ms frame shift, resulting in
the MVF parameter.

C. HTS-FOcont+MVPF. In the third system, we use the same MGC parameter
stream as in the baseline. For the calculation of the fundamental frequency, the
open-source implementation [3] of a simple continuous pitch tracker [17], denoted
as ‘FOcont’, is used. In regions of creaky voice, this pitch tracker interpolates FO
based on a linear dynamic system and Kalman smoothing. Similarly to the 2nd
system, MVF is also calculated here. That is, in the 3rd system we use the
FOcont, MGC and MVF parameter streams.

Figure2 (above the dashed line) shows all the steps applied in the analysis
part of the HT'S-FOcont+MVF system.

3.3 HMM Training

For training, the various parameters are calculated from each frame to describe
the residual (FOstd/FOcont/MVF) and the spectrum (MGC). During training,
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Fig. 2. Analysis (above the dashed line) and synthesis (below the dashed line) with
the HT'S-FOcont+MVF system.

logarithmic values are used as they were found to be more suitable in our exper-
iments. FOstd is modeled with MSD-HMMSs because this stream does not have
values in unvoiced regions. All the other parameter streams (FOcont, MVF, and
MGC) are modeled as simple HMMs. The first and second derivatives of all of the
parameters are also stored in the parameter files and used in the training phase.
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Decision tree-based context clustering is used with context dependent labeling
applied in the English version [29] of HTS 2.2. Independent decision trees are
built for all the parameters and duration using a maximum likelihood criterion.
The parameter streams for the systems are summarized in Table 1.

Table 1. Parameter streams of the three systems.

HTS-FOstd | HTS-FOstd+MVF | HTS-FOcont+MVF
F0std | MSD-HMM | MSD-HMM -

FOcont | - - HMM
MGC |HMM HMM HMM
MVF |- HMM HMM

3.4 Synthesis

A. HTS-FOstd. In the baseline system, unvoiced excitation (if FOstd = 0)
is modeled as white noise. Voiced excitation (if FOstd > 0) is generated using
pitch-synchronously overlap-adding the first PCA component obtained during
the analysis. This is lowpass filtered at 6 kHz (similarly to the HTS 2.2 demo
system), and unvoiced excitation (white noise) is used in the higher frequency
bands. For an example for the result of the synthesis with the HTS-F0std system,
see Fig.3 (a) and (b).

B. HTS-F0std+MVF. In the 2nd system, PCA residuals are overlap-added
similarly to the baseline system, depending on FOstd. After that, this voiced
residual is lowpass filtered at the frequency given by the MVF parameter. In
the frequencies higher than the actual value of MVF, white noise is used. For an
example for the result of the synthesis with the HTS-FOstd+MVF system, see
Fig.3 (c) and (d).

C. HTS-FOcont+MVF. Figure?2 shows all the steps applied in the synthesis
part of the HTS-FOcont+MVF system (below the dashed line). In this 3rd sys-
tem, PCA residuals are overlap-added, but now the density of the residual frames
is dependent on the FOcont parameter. As there is no strict voiced /unvoiced deci-
sion in the FOcont stream, the MVF parameter models the voicing information:
for unvoiced sounds, the MVF is low (around 1kHz), for voiced sounds, the MVF
is high (typically above 4kHz), whereas for mixed excitation sounds, the MVF
is in between (e.g. for voiced fricatives, MVF is around 2-3kHz). Voiced and
unvoiced excitation is added together similarly to the 2nd system, depending on
the MVF parameter stream (see ‘mixed residual signal’ in Fig. 2).

Figure3 (e) and (f) shows an example for the result of the synthesis with
the HTS-FOcont+MVF system. By comparing all three sentence variants, it can
be seen that in the baseline and 2nd systems (subfigures (a) and (c)), FOstd
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Fig. 3. Synthesis examples for the sentence: ‘Please Mom, is this New Zealand, or
Australia?’, by speaker EN-M-AWB. Subfigures (a), (c) and (e) show the generated
FOstd/FOcont parameters; subfigure (b) shows a spectrogram and a fixed 6 kHz MVF;
subfigures (d) and (e) show the spectrograms and the generated MVF parameter.
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is modeled erroneously at the regions of creaky voice (between 1.23-1.36s and
2.98-3.13s) as a result of miscalculated FO during the analysis. In the 3rd system
(subfigure e), FOcont models this well and there is no unvoiced excitation at the
final vowel of the sentence. In the baseline system, the voiced fricative sound ‘z’
(subfigure (b), between 1.65-1.74 s) is extremely buzzy because of the fixed 6 kHz
frequency between the voiced and unvoiced excitation. This is modeled better by
adding the MVF parameter in the 2nd and 3rd systems: the Maximum Voiced
Frequency in the ‘z’ sound is around 2.2kHz (subfigures (d) and (f), between
1.65-1.745s).

4 Evaluation

In order to evaluate the quality of the proposed HTS-FOstd+MVF and HTS-
FOcont+MVF methods, we have conducted a subjective listening test. A major
factor that determines the usefulness of these methods is if human listeners
accept the synthesized speech with no strict voiced/unvoiced decision and a
dynamic Maximum Voiced Frequency.

Therefore, our aim was to measure the perceived ‘naturalness’. We compared
speech synthesis samples of the HT'S-FOstd baseline system with samples of the
proposed systems (HTS-FOstd+MVF and HTS-FOcont+MVF).

4.1 Methods of the Subjective Experiment

To obtain the speech stimuli, we created six models with the baseline and the
two proposed systems and the two English speakers (EN-M-AWB and EN-F-
SLT). 50 sentences not included in the training database were synthesized with
all models and 10 sentences having at least one irregularly synthesized vowel in
the baseline system were selected for the subjective test.

In the test, the three versions of each sentence were included in pairs, resulting
altogether 60 utterances (2 speakers - 10 sentences - 3 versions). We created a
web-based paired comparison test with one CMOS-like question (Comparative
Mean Opinion Score). Before the test, listeners were asked to listen to an example
from speaker EN-F-SLT to adjust the volume. In the test, the listeners had to
rate the naturalness (‘Which of the sentences is more natural?’, ‘1 — 1st is much
more natural’ ... ‘5 — 2nd is much more natural’) as a question for overall
quality. The utterances were presented in a randomized order (different for each
participant). The listening test can be found at http://leszped.tmit.bme.hu/
slsp2015_en/.

4.2 Results of the Subjective Experiment

Altogether 8 listeners participated in the test (3 females, 5 males). They were all
students or speech experts, between 24—45 years (mean: 37 year). They were not
native speakers of English. On average the whole test took 18 min to complete.
Two listeners noted that some of the sentences were too long to evaluate properly.


http://leszped.tmit.bme.hu/slsp2015_en/
http://leszped.tmit.bme.hu/slsp2015_en/

Residual-Based Excitation with Continuous FO Modeling 35

CMOS

Avs. B

Avs. C

Bvs. C

CMOS percentages for EN-M-AWB

Fig. 4. Results of the listening test for the ‘naturalness’ question (top: speaker EN-
F-SLT, bottom: speaker EN-M-AWB). A: HTS-F0std, B: HTS-FOstd+MVF, C: HTS-
FOcont+MVF. Average CMOS values can be found in the text of Sect. 4.2.

The results of the listening test are presented in Fig.4 for the two speak-
ers and three systems. The figure provides a comparison between the baseline
A: HTS-FOstd system and the two proposed systems (B: HTS-FOstd+MVF, C:
HTS-FOcont+MVF) pair by pair. The answers of the listeners for the ‘natural-
ness’ question were pooled together for the visualization (levels 1-2-3-4-5).

The ratings of the listeners were compared by t-tests as well, with a 95%
confidence level. For speaker EN-F-SLT, HT'S-FOstd+MVF was significantly pre-
ferred over HTS-FOstd (average CMOS for A vs. B: 3.40) and HTS-FOcont+MVF
was significantly preferred over both HT'S-F0std and HTS-F0std+MVF (average
CMOS for A vs. C: 3.60 and for B vs. C: 3.26). This result means that for the
female voice, listeners evaluated the proposed systems as being significantly more
natural than the baseline system. Figure 4 also shows that for speaker EN-F-SLT
(top subfigure), there was no ‘=1’ answer from the listeners.

For speaker EN-M-AWB, system B was slightly preferred over system A,
although this difference is not significant (average CMOS for A vs. B: 3.10).
However, both system A and system B reached significantly higher CMOS scores
than system C (average CMOS for A vs. C: 2.46 and for B vs. C: 2.76). From
this result we can conclude that adding the MVF parameter increased the nat-
uralness, but combined with FOcont, this introduced audible vocoding artifacts.
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By investigating the synthesis samples of speaker EN-M-AWB we found that
the HTS-FOcont+MVF system often resulted in too strong voiced component
in the lower frequency bands for the unvoiced sounds, which might have been
disturbing for the listeners. The original recordings of speaker EN-M-AWB con-
tain significant background noise, and the vocoder introduced unwanted buzzy
components because of this.

During the listening test we noted that subjective ratings can hardly be
focused on buzziness or voiced/unvoiced transitions, but are mostly influenced
by overall speech quality. Hence, it was difficult to evaluate changes in segmental
level separately.

5 Discussion and Conclusions

It was found earlier that using continuous FO has advantages in HMM-TTS
[17,26-28]. Our experiments further support this, because the disturbing arti-
facts caused by creaky voice were eliminated by the proposed vocoder. Dur-
ing training the HMMs, Multi-Stream Distribution modeling was not necessary,
because all paramaters of the HTS-FOcont+MVF system are continouos. In this
system, the voiced/unvoiced decision was left up to the Maximum Voiced Fre-
quency parameter. This kind of aperiodicity modeling is similar to other mixed
excitation vocoders [13,22], but our system is simpler, i.e. uses less parameters
compared to STRAIGHT-based mixed excitation [20,30]. However, MVF does
not always work well for voiced /unvoiced decision (e.g. in case of unvoiced stops
there is a disturbing component in the samples of HT'S-FOcont+MVF). In future
work we will decrease the periodic component of unvoiced sounds.

In this paper we introduced a new vocoder, using (1) Principal Component
Analysis-based residual frames, (2) continuous pitch tracking, and (3) Maximum
Voiced Frequency. In a listening test of English speech synthesis samples, the
proposed system with a female voice was evaluated as significantly more natural
than a baseline system using only PCA-based residual excitation. The listening
test results of the male voice have shown that there is room for improvement in
modeling the unvoiced sounds with this continuous FO model. MVF-based mixed
voiced and unvoiced excitation was found to be extremely useful for modeling
the voiced fricatives (e.g. ‘z’ in Fig.3). However, in case of unvoiced sounds,
the lowest MVF value was 1kHz, which was disturbing for the male voice, but
acceptable for the female voice. It is a question whether the buzziness caused by
the combined FOcont and MVF modeling can be reduced. In the future, we plan
to add a Harmonics-to-Noise Ratio parameter to both the analysis and synthesis
steps in order to investigate this and to further reduce the buzziness caused by
vocoding.

With the proposed methods we extend previous speech processing techniques
dealing with irregular phonation. The above models and results might be useful
for more natural, expressive, personalized speech synthesis.
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