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Abstract. When removing some attributes, the partition induced by
a smaller set of attributes will be coarser and the decision regions may
be changed. In this paper, we analyze the decision region changes when
removing attributes and propose a new type of attribute reducts from the
point of view of vector based three-way approximations of a partition.
We also present a reduct construction method by using a discernibility
matrix.
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1 Introduction

Decision-theoretic rough set (DTRS) models [15,16] are probabilistic general-
izations of Pawlak rough sets [9]. One feature of DTRS models is the tolerance
of decision errors. In contrast to Pawlak approximations [9], both probabilistic
positive and negative regions are not certain and contain errors [1,8,13]. Conse-
quently, the notion of attribute reducts becomes more complicated. In addition
to the condition of positive region preservation required by a Pawlak attribute
reduct [10], we must also consider boundary and negative regions. This leads to
the notion of region vector based attribute reducts.

Compared with Pawlak’s three regions, probabilistic regions of DTRS mod-
els are not monotonic with respect to the set inclusion relation on sets of
attributes [5,18]. Definitions of, and methods for constructing, Pawlak attribute
reducts may not be appropriate for DTRS models. To address the problem of
non-monotonicity, many authors proposed different types of attribute reducts,
such as minimum cost attribute reducts by Jia et al. [2,4], non-monotonic
attribute reducts by Li et al. [5], cost-sensitive attribute reducts by Liao et
al. [6], decision region distribution preservation reducts by Ma et al. [7], and
so on.

Zhao et al. [18] proposed a general definition of an attribute reduct as a
minimal set of condition attributes satisfying properties given in terms of a set
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of evaluation measures. Jia et al. [3] studied systematically several specific classes
of attribute reducts based on a general definition of attribute reducts. Yao [14]
provided a more general conceptual definition of reducts of a set, embracing
notions of attribute reducts, attribute-value pair reducts, and rule reducts.

Based on results from these studies, in this paper we study attribute reducts
by considering changes of decision regions. By using region vector based three-
way approximations, we propose three new definitions of attribute reducts. The
new definitions require that an attribute reduct should perverse high confidence
rules. A method for constructing an attribute reduct is proposed by using the
notion of a discernibility matrix introduced by Skowron and Rauszer [11].

2 Three-Way Approximations of a Classification

An information table is defined by IT = (U,AT, {Va|a ∈ AT}, {Ia|a ∈ AT}),
where U is a finite nonempty set of objects, AT is a finite nonempty set of
attributes, Va is a nonempty set of values for a ∈ AT , and Ia : U → Va is an
information function that maps an object in U to one value in Va. If AT =
C ∪D, where C is a finite set of condition attributes, D is a finite set of decision
attributes and C∩D = ∅, the information table is called a decision table, denoted
by DT .

For a subset of attributes A ⊆ AT , one defines an equivalence relation on U
as follows:

xRAy ⇔ ∀a ∈ A(Ia(x) = Ia(y)). (1)

The equivalence relation RA induces a partition of U , denoted by U/RA =
{[x]RA

| x ∈ U} and U/A or πA for short. The equivalence class containing x
is given by [x]A = {y | ∀a ∈ A(Ia(x) = Ia(y))}. According to Pawlak [10], a
partition induced by a subset of attributes is called a classification of U . The
classification based on the set of decision attributes is given by U/D or πD.

For a subset of objects X ⊆ U and a subset of attributes A ⊆ AT , Let
Pr(X|[x]A) denote the conditional probability of an object belonging to X given
that the object belongs to [x]A. This probability may be simply estimated as
Pr(X|[x]A) = |X ∩ [x]A|/|[x]A|, where |·| denotes the cardinality of a set. In
terms of conditional probability, the main results of DTRS models are approx-
imations of a set through a pair of lower and upper approximations or three
pair-wise disjoint positive, boundary and negative regions. In this paper, we
adopt the formulation with three-way approximations [13,14] by using a slightly
different notional system.

Definition 1. In a decision table DT = (U,AT = C ∪ D, {Va|a ∈ AT}, {Ia|a ∈
AT}), given a subset of attributes A ⊆ C and a pair of thresholds 0 ≤ β < α ≤ 1,
the following sets:

POS(α,β)(X|πA) = {x ∈ U | Pr(X|[x]A) ≥ α},

BND(α,β)(X|πA) = {x ∈ U | β < Pr(X|[x]A) < α},

NEG(α,β)(X|πA) = {x ∈ U | Pr(X|[x]A) ≤ β}, (2)



Region Vector Based Attribute Reducts in Decision-Theoretic Rough Sets 357

are called (α, β)-positive, boundary and negative regions of a subset of objects X
with respect to the partition πA.

The three regions are pair-wise disjoint and their union is U . Some of the
three regions may be the empty set. Thus, the family of these regions may not
necessarily be a partition of U .

One can extend the three-way approximations of a set to three-way approx-
imations of a classification πD = {D1,D2, · · · ,Dr}. A straightforward way is to
define three-way approximations component-wise.

Definition 2. In a decision table DT , given a subset of attributes A ⊆ C and a
pair of thresholds 0 ≤ β < α ≤ 1, the vector based (α, β)-positive, boundary and
negative regions of πD with respect to the partition πA are given by:

−−→
POS(α,β)(πD|πA) = (POS(α,β)(D1|πA), · · · ,POS(α,β)(Dr|πA)),
−−−→
BND(α,β)(πD|πA) = (BND(α,β)(D1|πA), · · · ,BND(α,β)(Dr|πA)),
−−−→
NEG(α,β)(πD|πA) = (NEG(α,β)(D1|πA), · · · ,NEG(α,β)(Dr|πA)). (3)

By taking a component-wise union of regions in two vectors
−−→
POS(α,β)(πD|πA)

and
−−−→
BND(α,β)(πD|πA), we obtain a non-negative region vector:

−−−−→¬NEG(α,β)(πD|πA) = (¬NEG(α,β)(D1|πA), · · · ,¬NEG(α,β)(Dr|πA)), (4)

where ¬NEG(α,β)(Dj |πA) = POS(α,β)(Dj |πA) ∪ BND(α,β)(Dj |πA), j = 1, · · · , r.

Another definition is based on the union of the three-way approximations of
all decision classes, we call it a set based definition.

Definition 3. In a decision table DT , given a subset of attributes A ⊆ C and
a pair of thresholds 0 ≤ β < α ≤ 1, the set based (α, β)-positive, boundary and
negative regions of πD with respect to the partition πA are given by:

POS(α,β)(πD|πA) =
⋃r

j=1
POS(α,β)(Dj |πA),

= {x ∈ U | ∃Dj ∈ πD(Pr(Dj |[x]A) ≥ α)};

BND(α,β)(πD|πA) =
⋃r

j=1
BND(α,β)(Dj |πA),

= {x ∈ U | ∃Dj ∈ πD(β < Pr(Dj |[x]A) < α)};
NEG(α,β)(πD|πA) = U − POS(α,β)(πD|πA) ∪ BND(α,β)(πD|πA),

= {x ∈ U | ∀Dj ∈ πD(Pr(Dj |[x]A) ≤ β)}. (5)

A set based (α, β)-non-negative region is defined as the union of positive and
boundary regions:

¬NEG(α,β)(πD|πA) =
⋃r

j=1
{x ∈ U |∃Dj ∈ πD(Pr(Dj | [x]A) > β}. (6)
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As POS(α,β)(πD|πA) only depends on the threshold α, Li et al. [5] call it the
α-positive region. For convenience, we still call it (α, β)-positive region. In the
special case when α = 1 and β = 0, POS(1,0)(πD|πA) and BND(1,0)(πD|πA) are,
in fact, the positive and boundary regions in Pawlak rough set model, respec-
tively. In this case, NEG(1,0)(πD|πA) = ∅.

One can construct decision or classification rules from the three regions. In
general, a rule in rough set theory can be expressed in the form of [x]A →
Dj , stating that an object with description [x]A would be in the decision class
Dj . Given a rule [x]A → Dj , Pr(Dj |[x]A) is its confidence and Pr([x]A|Dj) its
coverage [17].

Skowron [12] introduced a concept of generalized decisions. For an object x,
the generalized decision for x is the set all possible decisions for objects in the
equivalence class [x]A. For DTRS, Zhao et al. [18] introduced the notion of (α, β)-
positive, boundary and non-negative decisions. Specifically, for an equivalence
class [x]A ∈ πA, we have:

DPOS(α,β)([x]A) = {Dj ∈ πD | (Pr(Dj |[x]A) ≥ α)},

DBND(α,β)([x]A) = {Dj ∈ πD | (β < Pr(Dj |[x]A) < α)},

D¬NEG(α,β)([x]A) = DPOS(α,β)([x]A) ∪ DBND(α,β)([x]A). (7)

They are probabilistic versions of the generalized decisions.

3 Region Vector Based Attribute Reducts for DTRS
Models

In existing studies, the set based regions are widely used in defining attribute
reducts for DTRS models. The problem of searching for an attribute reduct is to
remove redundant attributes. By successively removing attributes, the resulting
partitions will become coarser. As a result, the decision regions will be changed.
Compared with Pawlak rough set model, the monotonicity of decision region
change no longer holds for DTRS models. It is therefore very important to ana-
lyze how decision region changes with the decrease of attributes.

3.1 An Analysis of Set Based Decision Regions

For the set based three regions, it is easy to verify the following properties:

(1) NEG(α,β)(πD|πA) may not be empty,

(2) NEG(α,β)(πD|πA) ∩ POS(α,β)(πD|πA) = ∅,

(3) NEG(α,β)(πD|πA) ∩ BND(α,β)(πD|πA) = ∅,

(4) POS(α,β)(πD|πA) and BND(α,β)(πD|πA) may have an overlap,

(5) When α > 0.5,∀Di,Dj ∈ πD, i = j,

POS(α,β)(Di|πA) ∩ POS(α,β)(Dj |πA) = ∅,

(6) When α ≤ 0.5, there may exist decision classes such that
POS(α,β)(Di|πA) ∩ POS(α,β)(Dj |πA) = ∅, i = j.
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These properties are essential to our study of attribute reducts in DTRS models.
When we remove some attributes, the confidence of decision rules, as defined

by the conditional probability may change. Consider a subset of condition
attributes A ⊆ C. By definition, an equivalence class of πA is the union of a
family of equivalence classes of C. That is, [x]A = ∪y∈[x]A [y]C = ∪m

k=1[yk]C ,
where [y1]C , . . . , [ym]C are the family of distinct equivalence classes of πC such
that their union is [x]A. Based on this result, one can easily verify the next
lemma.

Lemma 1. For Dj ∈ πD, we have:

(1) Pr(Dj |[x]A) =
m∑

k=1

|[yk]C |
|[x]A| Pr(Dj |[yj ]C),

(2) min{Pr(Dj |[y]C) | y ∈ [x]A} ≤ Pr(Dj |[x]A) ≤ max{Pr(Dj |[y]C) | y ∈ [x]A}.

By removing some attributes, we in fact combine a family rules into a single
rule. According to Lemma 1, the confidence of the new rule [x]A → Dj is the
weighted sum of the confidence of individual rules [yk]C → Dj , k = 1, . . . ,m.

By the set based definition of three regions, [x]C is put into the (α, β)-positive
region POS(α,β)(πD|πC) if Pr(Dj |[x]C) ≥ α for some Dj ∈ πD. Equivalence
classes in positive regions induced by πC with different decision set may merge
into a new equivalence class πA when removing attributes and the new equiv-
alence class may be in the negative region NEG(α,β)(πD|πC), as shown by the
following example from [2].

Example 1. Consider a decision Table 1, where U = {x1, · · · , x9}, C = {c1, c2},
and D = {d}. The partition induced by the set of condition attributes is given by
U/C = {C1, C2, C3, C4}, where C1 = {x1, x4}, C2 = {x2, x6, x8}, C3 = {x3}, and
C4 = {x5, x7, x9}. The decision partition is given by U/D = {D1,D2,D3}, where
D1 = {x1, x2}, D2 = {x3, x4, x5}, and D3 = {x6, x7, x8, x9}. Let A = {c1}, then
U/A = {A1, A2}, where A1 = C1 ∪ C2 and A2 = C3 ∪ C4.

Assume that α = 0.6 and β = 0.5. We have POS(0.6,0.5)(πD|πC) = C2 ∪
C3 ∪ C4 and NEG(0.6,0.5)(πD|πA) = U . The equivalence classes C3 and C4 in
partition U/C is merged into A2 in partition U/A when we remove attribute c2.
The equivalence class A2 is put into negative region NEG(0.6,0.5)(πD|πA).

When α = 0.6 and β = 0.4, the equivalence class A2 is put into the boundary
region BND(0.6,0.4)(πD|πA). When α = 0.5 and β = 0.3, A2 is put into positive
region POS(0.5,0.3)(πD|πA).

Analogously, some equivalence classes in the positive or negative regions
merge into a new equivalence class, which may be put into the positive, bound-
ary or negative region. There is one exception, that is, the merge of equivalence
classes in the negative region is still in the negative region according to the defi-
nition of negative region. Table 2 summarizes the main results, where the second
column gives the regions of equivalences before the merge, and the third column
gives the regions of the new equivalence class.
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Table 1. A decision table

U x1 x2 x3 x4 x5 x6 x7 x8 x9

c1 1 1 0 1 0 1 0 1 0

c2 1 0 1 1 0 0 0 0 0

d 0 0 1 1 1 2 2 2 2

Table 2. Changes of decision regions after removing attributes

Cases The original regions The new regions after removing attributes

(1) All positive Positive, boundary or negative

(2) Positive and boundary Positive, boundary or negative

(3) Positive and negative Positive, boundary or negative

(4) All boundary Positive, boundary or negative

(5) Boundary and negative Positive, boundary or negative

(6) All negative negative

(7) Positive,boundary and negative Positive, boundary or negative

3.2 Region Vector Based Attribute Reducts

According to the previous analysis, a set based region may become larger,
unchanged or smaller when we remove some condition attributes. This results
in difficulties in constructing an attribute reduct for DTRS models. For exam-
ple, when equivalence classes in positive and negative regions merge, the new
equivalence class will be put into positive, boundary or negative regions. If it
is put into the positive region, the new positive region will be larger. Such a
move may not be desirable because it puts original lower confidence rules into
positive region. On the other hand, if the merged equivalence class is put into
the boundary or negative regions, it cannot guarantee that a positive rule is still
a positive rule after removing attributes.

When equivalence classes with the same decision set are combined, the new
equivalence class can put into the positive region according to Lemma 1. An
original positive rule is still a positive rule after reducing attributes. The gener-
ality stay the same and there is no risk to misclassify a low confidence rule as a
high confidence rule.

Similarly, if equivalence classes in boundary regions with the same decision
set are merged, the merged equivalence class is still in the boundary region by
Lemma 1. This will not change the positive, boundary and negative regions.
When equivalence classes in negative region are merged, the merged equivalence
classes must be put into negative region. This does not change the generality
and nor increases the cost of decision risk.

Based on the above analysis, we propose a new type of attribute reducts
based on a vector representation of three regions.
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Definition 4. In a decision table DT , given a subset of attributes R ⊆ C and
a pair of thresholds 0 ≤ β < α ≤ 1, R is an (α, β)-vregion attribute reduct of
C with respect to the set of decision attributes D if it satisfies the following two
conditions:

(1)
−−−−→
vregion(α,β)(πD|πR) =

−−−−→
vregion(α,β)(πD|πC);

(2) for any R′ ⊂ R,
−−−−→
vregion(α,β)(πD|πR′) = −−−−→

vregion(α,β)(πD|πC).

Especially, if vregion is a positive, boundary, negative or non-negative region,
then R is called an (α, β)-positive, boundary, negative or non-negative region
attribute reduct of C, respectively. If R only satisfies condition (1), it is called
an (α, β)-positive, boundary, negative or non-negative region consistent attribute
subset of C.

Theorem 1.
−−→
POS(1,0)(πD|πR) =

−−→
POS(1,0)(πD|πC) if and only if

POS(1,0)(πD|πR) = POS(1,0)(πD|πC).

Proof. (⇒) If
−−→
POS(1,0)(πD|πR) =

−−→
POS(1,0)(πD|πC), by definitions of these

regions, we immediately have POS(1,0)(πD|πR) = POS(1,0)(πD|πC).
(⇐) By definition, POS(1,0)(Di|πR) ∩ POS(1,0)(Dj |πR) = ∅ for any Di,Dj ∈
πD, i = j and POS(1,0)(Dj |πR) ⊆ POS(1,0)(Dj |πC). Hence, if POS(1,0)(πD|πR) =
POS(1,0)(πD|πC), we have POS(1,0)(Dj |πR) = POS(1,0)(Dj |πC). It follows that−−→
POS(1,0)(πD|πR) =

−−→
POS(1,0)(πD|πC).

Theorem 1 shows that, in Pawlak rough set model, the two representation
forms are equivalent in judging whether R is a positive region preservation
consistent set of C. For boundary region, we can only get a one-way infer-
ence. That is,

−−−→
BND(α,β)(πD|πR) =

−−−→
BND(α,β)(πD|πC) ⇒ BND(1,0)(πD|πR) =

BND(1,0)(πD|πC), and the reverse is not necessarily true. For a decision-theoretic
rough set model, we can only get one-way inference, i.e.,

−−→
POS(α,β)(πD|πR) =

−−→
POS(α,β)(πD|πC) ⇒ POS(α,β)(πD|πR) = POS(α,β)(πD|πC),

−−−→
BND(α,β)(πD|πR) =

−−−→
BND(α,β)(πD|πC) ⇒ BND(α,β)(πD|πR) = BND(α,β)(πD|πC).

The reverse is not necessarily true. The regions based on vector representation
do not have the monotonicity, as shown by the next example.

Example 2. (continued from Example 1) Let α = 0.40, β = 0.35, R = {c1}, we
have:

POS(0.40,0.35)(πD|πR) = POS(0.40,0.35)(πD|πC) = U,
−−→
POS(0.40,0.35)(πD|πC) = (C1, C1 ∪ C3, C2 ∪ C4),
−−→
POS(0.40,0.35)(πD|πR) = (C1 ∪ C2, C3 ∪ C4, U).

They show that the monotonicity does not hold.
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4 A Reduct Construction Method

For an (α, β)-positive region attribute reduct, the positive rule set does not
change if we merge equivalence classes with the same decisions. We can construct
a discernibility matrix MDPOS([x]C , [y]C) for positive region attribute reduct as
follows:

MDPOS([x]C , [y]C) =

⎧
⎨

⎩

{a ∈ C|Ia(x) = Ia(y)},
if DPOS(α,β)([x]C) = DPOS(α,β)([y]C),

C, otherwise.
(8)

By the discernibility function proposed by Skowron and Rauszer [11]:

f(MDPOS) = ∧ ∨ MDPOS([x]C , [y]C). (9)

We can get a decision reduct, which is a prime implicants of the reduced dis-
junctive form of the discernibility function.

If α > 0.5, Eq. (8) degenerates into the discernibility matrix of a variable
precision rough set (VPRS) model [8]. We can get an α-lower-approximation
attribute reduct. Since VPRS is a special case of DTRS with α > 0.5 and
β = 1 − α, we give a general conclusion for any pair of thresholds (α, β) with
0 ≤ β < α ≤ 1.

Theorem 2. In a decision table DT , given a subset of attributes A ⊆ C and a
pair of thresholds 0 ≤ β < α ≤ 1, A is an (α, β)-positive region consistent set of
C iff for any x, y ∈ U , DPOS(α,β)([x]C) = DPOS(α,β)([y]C) implies [x]A∩[y]A = ∅.

Proof. (⇒) For any x, y ∈ U , if [x]A ∩ [y]A = ∅, [x]A= [y]A. Thus, we have
DPOS(α,β)([x]A) = DPOS(α,β)([y]A). Since A is an (α, β)-positive region consis-
tent set of C, POS(α,β)(Dj |πA) = POS(α,β)(Dj |πC) for any Dj ∈ πD. It follows
that x ∈ POS(α,β)(Dj |πA) ⇔ x ∈ POS(α,β)(Dj |πC), i.e., DPOS(α,β)([x]A) =
DPOS(α,β)([x]C). Similarly, we have DPOS(α,β)([y]A) = DPOS(α,β)([y]C). There-
fore, we can conclude that DPOS(α,β)([x]C) = DPOS(α,β)([y]C), which conflicts
with the assumption.

(⇐) Since A ⊆ C, it is easy to verify that T ([x]A) = {[y]C | [y]C ∈ [x]A/C}
is a partition of [x]A.

(i) For any Dj ∈ πD, if x ∈ POS(α,β)(Dj |πA), then [x]A ⊆ POS(α,β)(Dj |πA).
Since [x]A= [y]A for any y ∈ [x]A, according to the arbitrariness of y
and the assumption that DPOS(α,β)([x]C) =DPOS(α,β)([y]C), we have Dj ∈
DPOS(α,β)([x]C), i.e., x ∈ POS(α,β)(Dj |πC).

(ii) If x ∈ POS(α,β)(Dj |πC), then Dj ∈ DPOS(α,β)([x]C). Since [x]A= [y]A
for any [y]C ∈ T ([x]A), by the assumption, we have DPOS(α,β)([x]C) =
DPOS(α,β)([y]C). It follows that Dj ∈ DPOS(α,β)([y]C) i.e., Pr(Dj |[y]C) ≥ α.
Hence,

p(Dj |[x]A) =
∑

[y]C∈T ([x]A)

|[y]C |
|[x]A|

|[y]C ∩ Dj |
|[y]C | > α, (10)

i.e., x ∈ POS(α,β)(Dj |πA).
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Based on (i) and (ii), we have POS(α,β)(Dj |πA) = POS(α,β)(Dj |πC) for any
Dj ∈ πD, which follows that A is an (α, β)-positive region consistent set of C.

According to Theorem 2, when deleting some attributes, if only equivalence
classes with same decision set are merged, it can guarantee that the deleted
attributes are redundant and the remaining set of attributes is an (α, β)-positive
region consistent set of C.

Example 3. Consider a decision Table 3, where U = {x1, · · · , x10}, C = {c1, c2},
and D = {d}. For the set of condition attributes, we have U/C = {C1, C2, C3},
where C1 = {x1, x2, x3, x4}, C2 = {x5, x6, x7}, C3 = {x8, x9, x10}. For the set of
decision attributes, we have U/D = {D1,D2}, where D1 = {x1, x2, x3, x7, x8, x9}
and D2 = {x4, x5, x6, x10}. Let R = {c1}. We have U/R = {R1, R2}, where
R1 = C1 ∪ C3 and R2 = C2. If α = 0.6, then

−−→
POS(α,β)(πD|πC) = (C1 ∪ C3, C2)

and
−−→
POS(α,β)(πD|πR) = (R1, R2) =

−−→
POS(α,β)(πD|πC). It is easy to verity that

{c1} is an (α, β)-positive region attribute reduct of C, it guarantees that the
positive rules unchanged although their confidence is different. Before removing
attributes, the positive rules are C1→P D1, C3→P D1, with confidence 0.750 and
0.667, respectively. By deleting attribute set {c2}, equivalence classes C1 and C3

merge into R1. We get a new positive rule R1→P D1, with a confidence of 0.714.
On the other hand, we have DPOS(α,β)(C1) = {D1}, DPOS(α,β)(C2) = {D2},

DPOS(α,β)(C3) = {D1}. The corresponding discernibility matrix MPOS(0.6,β) is
showed in Table 4. The attribute reduct is {c1}, which is consistent with Defini-
tion 4.

Similarly, we can present the discernibility matrix MD¬NEG([x]C , [y]C) for
non-negative region attribute reducts as follows:

MD¬NEG([x]C , [y]C) =

⎧
⎨

⎩

{a ∈ C|Ia(x) = Ia(y)},
if D¬NEG(α,β)([x]C) = D¬NEG(α,β)([y]C),

C, otherwise.
(11)

Table 3. A decision table

U x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

c1 1 1 1 1 0 0 0 1 1 1

c2 1 1 1 1 0 0 0 0 0 0

d 1 1 1 2 2 2 1 1 1 2

Table 4. The discernibility matrix MPOS(0.6,β) of Table 3

C1 C2 C3

C1 C

C2 {c1} C

C3 C {c1, c2} C
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Theorem 3. Given a decision table DT , A ⊆ C is an (α, β)-non-negative region
consistent set of C iff for any x, y ∈ U , if D¬NEG(α,β)([x]C) = D¬NEG(α,β)([y]C),
then [x]A ∩ [y]A = ∅.

Proof. It is similar to the proof of theorem 2.
The discernibility function of the matrix is given by:

f(MD¬NEG) = ∧ ∨ MD¬NEG([x]C , [y]C). (12)

A prime implicant of the reduced disjunctive form of the discernibility function
is an (α, β)-non-negative region attribute reduct.

5 Conclusion

In this paper, we analyze the decision region changes when deleting attributes.
It is found that positive rules are unchanged when equivalence classes in positive
region with the same decision set are merged. It is also true for the equivalence
classes in non-negative region with the same decision set. The notion of vec-
tor based attribute reduct is proposed. One can use the standard method to
construct a reduct based on a discernibility matrix.
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Raś, Z.W. (eds.) Methodologies for Intelligent Systems. LNCS, vol. 689, pp. 295–
305. Springer, Heidelberg (1993)

13. Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180, 341–353
(2010)

14. Yao, Y.Y.: The two sides of the theory of rough sets. Knowl.-based Syst. 80, 67–77
(2015)

15. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating con-
cepts. Int. J. Man-Mach. Stud. 37, 793–809 (1992)

16. Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theorectic rough set model. In:
Ras, Z.W., Zemankova, M., Emrich, M.L. (eds.) Methodologies for Intelligent sys-
tems, vol. 5, pp. 17–24. Norh-Holland, New York (1990)

17. Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models.
Inf. Sci. 178, 3356–3373 (2008)

18. Zhao, Y., Wong, S.K.M., Yao, Y.: A Note on Attribute Reduction in the Decision-
Theoretic Rough Set Model. In: Peters, J.F., Skowron, A., Chan, C.-C., Grzymala-
Busse, J.W., Ziarko, W.P. (eds.) Transactions on Rough Sets XIII. LNCS, vol. 6499,
pp. 260–275. Springer, Heidelberg (2011)


	Region Vector Based Attribute Reducts in Decision-Theoretic Rough Sets
	1 Introduction
	2 Three-Way Approximations of a Classification
	3 Region Vector Based Attribute Reducts for DTRS Models
	3.1 An Analysis of Set Based Decision Regions
	3.2 Region Vector Based Attribute Reducts

	4 A Reduct Construction Method
	5 Conclusion
	References


