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Abstract. In many fields including medical research, e-business and
road transportation, data may vary over time, i.e., new objects and new
attributes are added. In this paper, we present a method for dynamically
updating approximations based on rough fuzzy sets under the variation of
objects and attributes simultaneously in fuzzy decision systems. Firstly, a
matrix-based approach is proposed to construct the rough fuzzy approx-
imations on the basis of relation matrix. Then the method for incremen-
tally computing approximations is presented, which involves the partition
of the relation matrix and partly changes its element values based the
prior matrices’ information. Finally, an illustrative example is employed
to validate the effectiveness of the proposed method.

Keywords: Fuzzy decision system · Rough fuzzy set · Incremental
learning · Matrix

1 Introduction

Rough set theory (RST), proposed by Pawlak [16,17], has been successfully
applied in many fields, such as artificial intelligence, data mining, intelligent
information processing and so on [7,15,18]. However, the Pawlak’s RST could
not efficiently tackle when decision attribute values are fuzzy and each object
with different probability belongs to different decision classes. Dubois et al. [6]
firstly presented rough fuzzy set to solve this problem. Rough fuzzy set has been
investigated in many aspects until now. For example, Yao et al. compared the dif-
ference between fuzzy sets and rough sets [20]. Luo et al. discussed the property
of rough fuzzy ideal in algebraic systems [14]. Xu et al. presented a novel granular
computing approach based formal concept analysis in fuzzy datasets [19].

In many applications, information systems may vary over time, which means
that the objects, attributes and attribute values may change [3,8,11,12]. For
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example, new patients may be added to a medical diagnostic information system,
which may have additional attributes due to the use of new diagnostic instru-
ments. The patient’s record may also be revised over time. How to utilize the
prior knowledge and infuse the new data to update the knowledge becomes a cru-
cial problem. The incremental learning technique is an effective way to solve this
problem [1,4]. For example, Zhang et al. proposed an incremental method for
updating approximations based on matrix computation when the object set
varies with time [22]. Li et al. presented an incremental method for updating
approximations based on the characteristic relation under the attribute general-
ization [9]. Luo et al. proposed two incremental algorithms based on dominance-
based RST with the addition/removal of attribute values [13]. Chen et al.
presented a matrix-based incremental method for updating approximations under
the decision-theoretic rough sets when the attributes and objects are added simul-
taneously [2]. In rough fuzzy sets, Cheng et al. proposed an incremental updating
approximations method when the attribute set evolves over time [5]. Zeng et al.
presented an incremental updating rough fuzzy approximations method when the
object set evolves over time [21]. However, they did not consider Fuzzy Decision
System (FDS) may be changed over time, i.e., the attributes and objects simul-
taneously vary. In this paper, we present an incremental approach based matrix
for updating approximations in FDS under the variation of attributes and objects
simultaneously.

The remainder of this paper is organized as follows. Section 2 introduces
the basic concepts of rough fuzzy set in FDS. Section 3 proposes the matrix
representation of the lower and upper rough fuzzy approximations. Section 4
presents an incremental updating method for rough fuzzy approximations when
the attribute set and the object set vary simultaneously. Section 5 illustrates an
example to validate the effectiveness of the proposed method. Section 6 concludes
the paper and discusses our future work.

2 Preliminaries

In this section, the basic concepts of FDS and rough fuzzy sets are briefly
reviewed [6].

Definition 1. [6] A FDS is 4-tuple S = 〈U,C ∪ D,V, f〉, where U = {xi|i ∈
{1, 2, . . . , n}} is a non-empty finite set of objects, called the universe; C is a
non-empty finite set of condition attributes and D is a non-empty finite set of
fuzzy decision attributes, C ∩ D = ∅; V = VC ∪ VD, where V is the domain of
all attributes, VC is the domain of all condition attributes and VD is the domain
of decision attributes; f is an information function from U × (C ∪ D) to V such
that f : U × C → VC , f : U × D → [0, 1].

Since the classical RST could not deal with the fuzzy concepts in a crisp
approximation space, Dubois and Prade introduced the rough fuzzy set model.
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Definition 2. [6] Let S = 〈U,C ∪ D,V, f〉 be a FDS and A ⊆ C. ˜d is a fuzzy
subset on D, where ˜d(x) (x ∈ U) denotes the degree of membership of x in ˜d. The
lower and upper approximations of ˜d are a pair of fuzzy sets on D with respect
to the equivalence relation RA, and their membership functions are defined as
follows:

RA
˜d(x) = min{˜d(y)|y ∈ [x]RA

}
RA

˜d(x) = max{˜d(y)|y ∈ [x]RA
}

(1)

where RA = {(x, y) ∈ U × U |f(x, a) = f(y, a),∀a ∈ A}, [x]RA
denotes the

equivalence class of an element x under RA and [x]RA
= {y ∈ U |xRAy}.

Example 1. Table 1 illustrates a medical diagnosis FDS, S = 〈U,C ∪ D,V, f〉,
where U = {xi|i ∈ {1, 2, . . . , 10}} denotes the set of patients, the set of con-
dition attributes is C = {headache,musclepain, sorethroat, temperature} =
{c1, c2, c3, c4}, the set of fuzzy decision attribute is D = {Flu} = {d}. The
domain Vc1 = {no,moderate, heavy} = {0, 1, 2}, Vc2 = Vc3 = Vc4 = {no, yes} =
{0, 1}.

Let A = {c1, c2} ⊂ C. U/RA = {{x1, x3, x4}, {x2, x5, x7, x9, x10}, {x6, x8}}.
The fuzzy decision attribute Flu ˜d = { 0.8

x1
, 0.3

x2
, 1

x3
, 0.7

x4
, 0.1

x5
, 0.3

x6
, 0.2

x7
, 0

x8
, 0.4

x9
, 0.2

x10
}.

According to Definition 2, the degrees of membership can be obtained as
follows:

RA
˜d(x1) = RA

˜d(x3) = RA
˜d(x4) = 0.8 ∧ 1 ∧ 0.7 = 0.7;

RA
˜d(x2) = RA

˜d(x5) = RA
˜d(x7) = RA

˜d(x9) = RA
˜d(x10) = 0.1;

RA
˜d(x6) = RA

˜d(x8) = 0;

RA
˜d(x1) = RA

˜d(x3) = RA
˜d(x4) = 0.8 ∨ 1 ∨ 0.7 = 1;

RA
˜d(x2) = RA

˜d(x5) = RA
˜d(x7) = RA

˜d(x9) = RA
˜d(x10) = 0.4;

RA
˜d(x6) = RA

˜d(x8) = 0.3.

Then the lower and upper approximations of ˜d are as follows:

RA
˜d = {0.7

x1
,
0.1
x2

,
0.7
x3

,
0.7
x4

,
0.1
x5

,
0
x6

,
0.1
x7

,
0
x8

,
0.1
x9

,
0.1
x10

};

RA
˜d = { 1

x1
,
0.4
x2

,
1
x3

,
1
x4

,
0.4
x5

,
0.3
x6

,
0.4
x7

,
0.3
x8

,
0.4
x9

,
0.4
x10

}.

3 Matrix Representation of the Lower and Upper
Approximations in the FDS

In this section, we use the matrix-based method for representing the lower and
upper approximations in the FDS. Firstly, the equivalent matrix is proposed in
the FDS. Then two matrix operations are defined. Finally, it is shown that the
lower and upper approximations in the FDS can be effectively computed by the
matrix-based method.
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Table 1. A decision table with a fuzzy decision attribute.

U c1 c2 c3 c4 d

x1 2 1 0 1 0.8

x2 1 0 0 1 0.3

x3 2 1 0 1 1

x4 2 1 0 1 0.7

x5 1 0 0 1 0.1

x6 0 1 1 0 0.3

x7 1 0 0 1 0.2

x8 0 1 1 0 0

x9 1 0 1 0 0.4

x10 1 0 1 0 0.2

Definition 3. [10] Let S = 〈U,C ∪ D,V, f〉 be a FDS, where U = {xi|i ∈
{1, 2, . . . , n}}, A ⊆ C. The relation matrix is defined as MA = (mA

ij)n×n, where

mA
ij =

{

1, xi ∈ [xj ]RA

0, other
(2)

Proposition 1. [10] MA = (mA
ij)n×n is a symmetric matrix, and mA

ii = 1(i =
1, . . . , n).

Example 2. (Continuation of Example 1) Let A = {c1, c2}, B = {c3, c4}. Then
the relation matrices MA and MB can be calculated as follows.

MA =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

MB =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
0 0 0 0 0 1 0 1 1 1
1 1 1 1 1 0 1 0 0 0
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

From Example 2, it can be easily found that mA
ii = 1,mB

ii = 1, and MA =
(MA)T ,MB = (MB)T.

Definition 4. Let S = 〈U,C ∪ D,V, f〉 be a FDS. The corresponding relation
matrices of A,B ⊆ C are MA = (mA

ij)n×n and MB = (mB
ij)n×n, respectively.

Then the dot operation between MA and MB is defined as follows.

MA • MB = (mA
ij · mB

ij)n×n, (3)
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where • is the dot product of two matrices.

Proposition 2. Let S = 〈U,C ∪ D,V, f〉 be a FDS. The corresponding relation
matrices of A,B ⊆ C are MA and MB, respectively. Then the relation matrix
MA∪B of A ∪ B is MA∪B = MA • MB.

Proof. If mA∪B
ij = 1, according to Definition 3, it follows xi ∈ [xj ]RA∪B

. Then
xi ∈ [xj ]RA

and xi ∈ [xj ]RB
. We have mA

ij = 1 and mB
ij = 1, that is, mA∪B

ij =
mA

ij · mB
ij. If mA∪B

ij = 0, then xi /∈ [xj ]RA∪B
, that is, xi /∈ [xj ]RA

or xi /∈ [xj ]RB
.

Then mA
ij = 0 or mB

ij = 0. Hence mA
ij · mB

ij = mA∪B
ij . The reverse is also true.

Example 3. (Continuation of Example 2) According to Definition 4, we can compute MA•MB

as follows.

MA • MB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

•

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
0 0 0 0 0 1 0 1 1 1
1 1 1 1 1 0 1 0 0 0
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is easy to verify to the relation matrix MA∪B = MA • MB.

Definition 5. Let S = 〈U,C ∪ D,V, f〉 be a FDS, where U = {xi|i ∈
{1, 2, . . . , n}}. ˜d is a fuzzy subset on D, ˜d(x) (x ∈ U) is the degree of mem-
bership of x in ˜d and MA = (mA

ij)n×n is the relation matrix of A ⊆ C. We
define the ⊗max operation as follows.

(MA ⊗max
˜d)(i) = max(mA

i1 · ˜d(x1),mA
i2 · ˜d(x2), . . . ,mA

in · ˜d(xn)) (i = 1, 2, . . . , n)
(4)

where max operation takes the maximum value among the n numbers.

Theorem 1. Let S = 〈U,C ∪ D,V, f〉 be a FDS, where U = {xi|i ∈
{1, 2, . . . , n}}. ˜d is a fuzzy subset on D and MA is the relation matrix of A ⊆ C.
The upper and lower approximations of ˜d are calculated as follows.

RA
˜d = MA ⊗max

˜d; (5)

RA
˜d = l − MA ⊗max

˜dc (6)

where l is the column vector that all elements are one and ˜dc is the complement
of ˜d.

Proof. According to Definition 5, (MA ⊗max
˜d)(i) = max(mA

i1 · ˜d(x1),mA
i2 ·

˜d(x2), . . . ,mA
in · ˜d(xn)). If mA

ij = 1, it means that xj ∈ [xi]RA
, then mA

ij ·
˜d(xj) = ˜d(xj), otherwise mA

ij · ˜d(xj) = 0. Therefore, according to Definition 2,
(MA ⊗max

˜d)(i) = RA
˜d(xi). In addition, according to RA

˜d =∼ RA
˜dc and Eq. 5,

it is clearly that RA
˜d(xi) = (l − MA ⊗max

˜dc)(i).
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Example 4. Given a FDS S=〈U,C ∪ D,V, f〉 as shown in Table 1. Let A =
{c1, c2}, ˜d = { 0.8

x1
, 0.3

x2
, 1

x3
, 0.7

x4
, 0.1

x5
, 0.3

x6
, 0.2

x7
, 0

x8
, 0.4

x9
, 0.2

x10
}. From the results of Exam-

ple 2, then

RAd̃ = MA ⊗max d̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.8
0.3
1
0.7
0.1
0.3
0.2
0
0.4
0.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0.4
1
1
0.4
0.3
0.4
0.3
0.4
0.4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

RAd̃ = l − MA ⊗max d̃c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2
0.7
0
0.3
0.9
0.7
0.8
1
0.6
0.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.7
0.1
0.7
0.7
0.1
0
0.1
0
0.1
0.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4 Dynamically Maintenance of Approximations in the
FDS Under the Variation of Attributes and Objects

In a dynamic information system, the attribute set and object set may be
changed simultaneously over time. In this section, we discuss the methods of
incremental updating approximations for dynamically changing attributes and
objects in FDS. Based on the above analysis, it is found that the relation matrix
is the key step to compute rough fuzzy approximations based on matrix. If we can
dynamically compute the changed relation matrix with an incremental updating
strategy rather than reconstructing it from scratch, then the running-time will
be reduced and the lower and upper approximations can be obtained directly. In
the following, we discuss how to update the relation matrix incrementally while
the attribute and object sets vary.

Let St = 〈U t, Ct ∪ Dt, V t, f t〉 be a FDS at time t, St+1 = 〈U t+1, Ct+1 ∪
Dt+1, V t+1, f t+1〉 denote the FDS at time t+1, where U t+1 = U t ∪ΔU , Ct+1 =
Ct ∪ ΔC, Dt+1 = Dt ∪ ΔD. To incrementally compute the relation matrices,
we partition the system St+1 into two subsystems. One is SΔU = 〈ΔU,Ct+1 ∪
ΔD,V ΔU , fΔU 〉 and the other is SUt

= 〈U t, Ct+1 ∪ Dt, V Ut

, fUt〉. Then the
SUt

= 〈U t, Ct+1 ∪ Dt, V Ut

, fUt〉 is partitioned into two subsystems again: St =
〈U t, Ct ∪ Dt, V t, f t〉, SΔC = 〈U t,ΔC ∪ Dt, V ΔC , fΔC〉. Suppose |U t+1| = n′,
|U t| = n, |ΔU | = n+, |Ct+1| = m′, |Ct| = m, |ΔC| = m+. Then n′ = n + n+,
m′ = m + m+.
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Theorem 2. Let MCt+1
= (Ut+1mCt+1

ij )n′×n′ be the relation matrix of FDS

St+1. Then (MCt+1
)n′×n′ =

(

(MCt+1

Ut
)n×n (MCt+1

Ut,ΔU )n×n+

(MCt+1

Ut,ΔU )T
n+×n (MCt+1

ΔU )n+×n+

)

, where MCt+1

Ut

denotes the relation matrix of U t under Ct+1, MCt+1

Ut,ΔU denotes the relation
matrix of U t and ΔU under Ct+1 and MCt+1

ΔU denotes the relation matrix of
ΔU under Ct+1.

Proof. According to Definition 3, it is easy to see that the relation matrix MCt+1

can be divided into four parts. Each part can be obtained by Definition 3 directly.

To incrementally compute the relation matrices, we partition the relation
matrix to four parts according to Theorem 2, where the first part (MCt+1

Ut
)n×n

can be incrementally computed.

Theorem 3. Suppose the MCt+1

Ut
= (mCt+1

ij )n×n, MCt

Ut
= (mCt

ij )n×n, MΔC
Ut

=
(mΔC

ij )n×n are the relation matrices of the FDS of SUt

, St, SΔC , respectively.
The elements of the relation matrix MCt+1

Ut
can be updated as follows.

(1) if mCt

ij = 0, then mCt+1

ij = mCt

ij ;
(2) if mCt

ij = 1, and mΔC
ij = 1, then mCt+1

ij = mCt

ij ;
(3) if mCt

ij = 1, and mΔC
ij = 0, then mCt+1

ij = 0.

Proof. It follows directly from Proposition 2.

According to Theorem 3, we compute the matrix MCt+1

Ut
only by updating

the case (3) while not recomputing the whole matrix.

Theorem 4. Given the relation matrices MCt+1

ΔU = (mΔU
ij )n+×n+ , MCt+1

Ut
=

(mCt+1

ij )n×n. Then MCt+1

Ut,ΔU = (mUt,ΔU
ij )n×n+ can be updated as follows.

(1) if xi and xj are equivalent under Ct+1, where xi ∈ U t, i = {1, 2, . . . , n},
xj ∈ ΔU , j = {n+1, n+2, . . . , n+n+}, then mUt,ΔU

[i:] = mΔU
[(j−n):], mUt,ΔU

[:(j−n)] =

mCt+1

[:i] . In addition, if xi and xi′ are equivalent under Ct+1, xj and xj′ are
equivalent under ΔC, where i′ ∈ {1, 2, . . . , n}, j′ ∈ {n+1, n+2, . . . , n+n+},
then mUt,ΔU

[i′:] = mΔU
[(j−n):],m

Ut,ΔU
[:(j′−n)] = mCt+1

[:i] .

(2) if xi and xj do not satisfy the above conditions, then mUt,ΔU
i(j−n) = 0. In addi-

tion, if xi and xi′ , xj and xj′ satisfy the above conditions, then mUt,ΔU
i′(j−n) = 0,

mUt,ΔU
[:(j′−n)] = mUt,ΔU

[:(j−n)].

where mUt,ΔU
[i:] denotes the ith row in the matrix MCt+1

Ut,ΔU , mUt,ΔU
[:j] denotes the

j th column in the matrix MCt+1

Ut,ΔU and the others are the same.
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Proof. If xi and xj are equivalent, then according to Theorem 2, mUt,ΔU
[i:] =

mΔU
[(j−n):]. Besides, according to Proposition 1, we have mUt,ΔU

[:(j−n)] = mCt+1

[:i] . In
addition, if xi and xi′ , xj and xj′ are in the same the equivalence class, then we
have mUt,ΔU

[i′:] = mUt,ΔU
[i:] = mΔU

[(j−n):], mUt,ΔU
[:(j′−n)] = mUt,ΔU

[:(j−n)] = mCt+1

[:i] according to
Proposition 1 and the above results. The proof of case (2) is analogous.

5 An Illustrative Example

To incrementally compute the approximations when objects and attributes alter
simultaneously, an example is given to illustrate the proposed method. Let St =
〈U t, Ct ∪ Dt, V t, f t〉 be a FDS at time t, where U = {xi|i ∈ {1, 2, . . . , 10}},
Ct = {ci, 1 ≤ i ≤ 4} (see Table 1). At the time t + 1, the attributes {c5, c6}
and the objects {x11, x12, x13} are added to St+1. c5 denotes the runny noses, c6
denotes the cough, and Vc5 = Vc6 = {No, Y es} = {0, 1}. Then ΔC = {c5, c6},
ΔU = {x11, x12, x13}, U t+1 = U t ∪ ΔU , Ct+1 = Ct ∪ ΔC (see Table 2).

Table 2. A decision table with fuzzy decision attributes at time t.

U c1 c2 c3 c4 c5 c6 Flu

x1 2 1 0 1 1 0 0.8

x2 1 0 0 1 0 1 0.3

x3 2 1 0 1 1 0 1

x4 2 1 0 1 0 0 0.7

x5 1 0 0 1 0 1 0.1

x6 0 1 1 0 1 0 0.3

x7 1 0 0 1 0 1 0.2

x8 0 1 1 0 0 0 0

x9 1 0 1 0 0 1 0.4

x10 1 0 1 0 0 1 0.2

x11 1 0 0 1 0 1 0.4

x12 1 0 0 1 0 1 0.1

x13 2 1 0 1 1 1 0.9

Firstly, we compute the relation matrix MΔC
Ut

according to Definition 3 and
the relation matrix MCt

Ut
is the result of Example 3.
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MΔC
Ut

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 1 1
1 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 1 0 1 1
1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

MCt

Ut
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Secondly, we compute the relation matrix MCt+1

Ut
. According to Proposition 1,

we only compute the elements under the principal diagonal of the matrix MCt+1

Ut
.

We judge the elements which values are “1” under the principal diagonal of the
matrix MCt

Ut
whether change or not according to Theorem 3. Then we can get

the matrix MCt+1

Ut
.

MCt+1

Ut
=

1 2 3 4 5 6 7 8 9 10
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1

where there are eight elements changed under the principal diagonal of the
matrix MCt

Ut
.

Thirdly, we compute the relation matrix MCt+1

ΔU according to Definition 3.

MCt+1

ΔU =

⎛

⎝

1 1 1 0
2 1 1 0
3 0 0 1

⎞

⎠

Then according to Theorem 4,

(1) because x2 and x11 are equivalent, then mUt,ΔU
[2:] = mΔU

[1:] , mUt,ΔU
[:1] = mCt+1

[:1] .

(2) according to mCt+1

25 = 1, mCt+1

27 = 1, we have mUt,ΔU
[5:] = mΔU

[1:] , mUt,ΔU
[7:] =

mΔU
[1:] , according to the mΔU

11,12 = 1, then mUt,ΔU
[:2] = mCt+1

[:2] .
(3) because x2 and x13 are not equivalent, then mUt,ΔU

[13] = 0. The others are the
same.



182 Y. Huang et al.

We get the relation matrix

MCt+1

Ut,ΔU =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2 3
1 0 0 0
2 1 1 0
3 0 0 0
4 0 0 0
5 1 1 0
6 0 0 0
7 1 1 0
8 0 0 0
9 0 0 0
10 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where the first and second column are the same to the second column of MCt+1

Ut
,

and the second, fifth, seventh row are the same to the first row of MCt+1

ΔU . Obvi-
ously, it may reduce the computing time than reconstructing the matrix.

Lastly, according to Theorems 1, 2, we obtain the upper and lower approxi-
mations of ˜dt+1.

RCt+1
˜dt+1 = {0.8

x1
,
0.1
x2

,
0.8
x3

,
0.7
x4

,
0.1
x5

,
0.3
x6

,
0.1
x7

,
0
x8

,
0.2
x9

,
0.2
x10

,
0.1
x11

,
0.1
x12

,
0.9
x13

}

RCt+1
˜dt+1 = { 1

x1
,
0.4
x2

,
1
x3

,
0.7
x4

,
0.4
x5

,
0.3
x6

,
0.4
x7

,
0
x8

,
0.4
x9

,
0.4
x10

,
0.4
x11

,
0.4
x12

,
0.9
x13

}

6 Conclusions

In FDS, the attribute and object sets may alter simultaneously. How to effectively
compute the lower and upper rough fuzzy approximations is a crucial problem.
In this paper, we presented an incremental method for updating rough fuzzy
approximations based on matrix, and gave an example to show the effectiveness
of the approach. In the future work, we will develop the algorithm to validate the
proposed method and extend them to handle the problems of updating approx-
imations when the attributes, objects and attributes values vary simultaneously
with time in FDS. The parallel strategy to improve the algorithm will be taken
into account in the future too.
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