
Topological Properties for Approximation
Operators in Covering Based Rough Sets

Mauricio Restrepo1(B) and Jonatan Gómez2
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Abstract. We investigate properties of approximation operators being
closure and topological closure in a framework of sixteen pairs of dual
approximation operators, for the study of covering based rough sets. We
extended previous results about approximation operators related with
closure operators.
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1 Introduction

The main concept of rough set theory is the indiscernibility between objects
given by an equivalence relation in a non-empty universe set U . In this paper,
we give necessary conditions for covering-based upper approximation operators
to be closure operators. Three different definitions of approximation operators
were presented in a general framework for the study of covering based rough sets
by Yao and Yao in [20], element based definition, granule based definition and
system based definition. For the element based definition, Yao and Yao consider
four different neighborhood operators. In the granule based definition, they con-
sider six new coverings defined from a covering C. The covering C and the six
new coverings define fourteen pairs of approximation operators. For the system
based definition two new coverings are defined: ∩-closure(C) and ∪-closure(C).
From these neighborhoods operators, new coverings and systems, it is possible
to obtain twenty pair of dual approximation operators. But, as Yao and Yao
noted [20], there are other approximations out of this framework. For example,
Yang and Li present in [18] a summary of seven non dual pairs of approxima-
tion operators used by Żakowski [21], Pomykala [9], Tsang [13], Zhu [28], Zhu
and Wang [30] and Xu and Whang [16]. Restrepo et al. present a framework of
sixteen pair of dual approximations, unifying the two above frameworks, from
duality, conjugacy and adjointness [11].
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Some topological connections with rough sets and generalized rough sets have
been established. The relationships between topology and generalized rough sets
induced by binary relations were studied in [1,5,8]. Q. Wu. proposes a study on
rough sets which includes topological spaces, topological properties and home-
omorphims [10]. L. Zhaowen investigates topological properties of compactness,
separate and connectedness [23]. Finally W. Zhu [32] and G. Xun et al. [17]
study topological characterization of some covering based approximation opera-
tors. Recently X. Bian et al. present a characterization of three types of approx-
imation operators to be closure operators [2]. In this paper, we consider some
previous characterizations of coverings and approximation operators to extend
them to the framework proposed in [11].

The paper is organized as follows. Section 2 presents preliminary concepts
about topology, rough sets, lower and upper approximations in covering based
rough sets, the main neighborhood operators, and different coverings obtained
from a covering C. Section 3 presents topological characterization of coverings for
some upper approximation operators. Section 4 presents necessary conditions for
approximation operators to be closure operators. Finally, Sect. 5 presents some
conclusions and future work.

2 Preliminaries

2.1 Pawlak’s Rough Set Approximations

In Pawlak’s rough set model an approximation space is an ordered pair apr =
(U,E), where E is an equivalence relation defined on a non-empty set U [7]. The
equivalence relation E defines a partition of U , written as U/E. The set [x]E
represents the equivalence class of x and P(U) represents the set of parts of
U . According to Yao and Yao [19,20], there are three different, but equivalent
ways to define lower and upper approximation operators: element based defini-
tion, granule based definition and subsystem based definition. According to the
element based definition, for each A ⊆ U , the lower and upper approximations
are defined by:

apr(A) = {x ∈ U : [x]E ⊆ A} =
⋃

{[x]E ∈ U/E : [x]E ⊆ A} (1)

apr(A) = {x ∈ U : [x]E ∩ A �= ∅} =
⋃

{[x]E ∈ U/E : [x]E ∩ A �= ∅} (2)

The first part of Eqs. (1) and (2) are called element based definition of approx-
imation operators. The second part are called granule based definition.

Yao and Yao used the notion of a closure system over U , i.e., a family of
subsets of U that contains U and is closed under set intersection [20]. Given a
closure system S over U , it is possible to construct its dual system S

′, containing
the complements of each K in S, as follows:

S
′ = {∼ K : K ∈ S} (3)
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The system S
′ contains ∅ and it is closed under set union. Given S = (S′,S),

a dual pair of approximation operators can be defined as follows:

apr
S
(A) =

⋃
{K ∈ S

′ : K ⊆ A} (4)

aprS(A) =
⋂

{K ∈ S : K ⊇ A} (5)

2.2 Closures

The notion of closure operator usually is used on ordered sets and topologi-
cal spaces. We present some concepts about ordered structures, according to
Blyth [3].

A family C of subsets of U is called a closure system if it is closed under
intersections.

Closure Operators

Definition 1. A map c : P(U) → P(U) is a closure operator on U if it is
such that, for all A,B ⊆ U :

1. c(A) = c[c(A)], (idempotent).
2. A ⊆ B implies c(A) ⊆ c(B), (order preserving).
3. A ⊆ c(A), (extensive).

Definition 2. A map c : P(U) → P(U) is a joinmorphims if it is such that
c(A ∪ B) = c(A) ∪ c(B), for all A,B ∈ P(U).

It is easy to see that a join morphism is an order preserving: A ⊆ B ⇔
A ∪ B = B, so c(A) ∪ c(B) = c(B) ⇔ c(A) ⊆ c(B).

Topological Closure

Definition 3. A topology for U is a collection τ of subsets of U satisfying the
following conditions:

1. The empty set and U belong to τ .
2. The union of the members of each sub-collection of τ is a member of τ .
3. The intersection of the members of each finite sub collection of τ is a member

of τ .

The pair (U, τ) is called a topological space. The elements in τ are called
open sets. The complement of an open set is called a closed set.

A family B is called a base for (U, τ) if for every non-empty open subset O
of U and each x ∈ O, there exists a set B ∈ B such that x ∈ B. Equivalently, a
family B is called a base for (U, τ) if every non-empty open subset O of U can
be represented as union of a subfamily of B.

The closure of a subset A of a topological space U is the intersection of the
members of the family of all closed sets containing A.
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Definition 4. A topological closure operator on U assigns to each subset A
of U a subset c(A) such that (Kuratowski axioms):

1. c(∅) = ∅, (minimal element)
2. c(A) = c[c(A)], (idempotent).
3. A ⊆ c(A), (extensive).
4. c(A ∪ B) = c(A) ∪ c(B), (join morphism).

The interior of a subset A of a topological space U is the union of the members
of the family of all open sets contained in A. The interior operator on U is an
operator which assigns to each subset A of U a subset A◦ such that the following
statements are true.

1. U◦ = U
2. (A◦)◦ = A◦

3. A◦ ⊆ A
4. (A ∩ B)◦ = A◦ ∩ B◦

Definition 5. Let f, g : P(U) → P(U) be two self-maps. We say that g is the
dual of f , if for all A ∈ P(U),

g(∼ A) =∼ f(A),

where ∼ A represents the complement of A ⊆ U .

In a topological space an interior operator is the dual of a closure operator.

2.3 Covering Based Rough Sets

Covering based rough sets was proposed to extend the range of applications of
rough set theory. In rough set theory the equivalence class of an element x ∈ U
can be considered as its neighborhood, but in covering based rough sets we need
to consider the sets K in C such that x ∈ K.

Definition 6. [24] Let C = {Ki} be a family of nonempty subsets of U . C is
called a covering of U if

⋃
Ki = U . The ordered pair (U,C) is called a covering

approximation space.

Definition 7. [4] Let (U,C) be a covering approximation space and x ∈ U .
The set

md(C, x) = {K ∈ C : x ∈ K ∧ [∀S ∈ C(x ∈ S), (S ⊆ K ⇒ S = K)]} (6)

is called the minimal description of the object x.

Definition 8. [24] A covering C is called unary if |md(C, x)| = 1 for each
x ∈ U .

The notion of maximal description was introduced by W. Zhu and F. Wang
in [31].
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Definition 9. [31] Let (U,C) be a covering approximation space, K ∈ C. If no
other element of C contains K, K is called a maximal description in C. All
maximal descriptions for x ∈ U in C are denoted as MD(C, x).

Maximal description can be also be defined as:

MD(C, x) = {K ∈ C : x ∈ K ∧ [∀S ∈ C(x ∈ S), (S ⊇ K ⇒ S = K)]} (7)

Definition 10. [20] A mapping N : U → P(U), such that x ∈ N(x) is called a
neighborhood operator.

According to Eqs. (1) and (2), each neighborhood operator defines a pair of
approximation operators, when we use the neighborhood N(x) instead of the
equivalence class [x]E .

apr
N

(A) = {x ∈ U : N(x) ⊆ A} (8)

aprN (A) = {x ∈ U : N(x) ∩ A �= ∅} (9)

Element Based Definition. Equations (8) and (9) give the element based
definition in covering based rough sets, analogous to Eqs. (1) and (2) in rough
set theory.

From md(C, x) and MD(C, x), Yao and Yao define the following neighbor-
hood operators:

1. NC
1 (x) =

⋂{K : K ∈ md(C, x)}
2. NC

2 (x) =
⋃{K : K ∈ md(C, x)}

3. NC
3 (x) =

⋂{K : K ∈ MD(C, x)}
4. NC

4 (x) =
⋃{K : K ∈ MD(C, x)}

The set NC
1 (x) =

⋂
md(C, x) for each x ∈ U , is called the minimal neighborhood

of x.

Granule Based Definition. Generalizing the granule based definitions given
by the second parts of Eqs. (1) and (2), the following dual pairs of approximation
operators based on a covering C were considered in [20]:

apr′
C
(A) =

⋃
{K ∈ C : K ⊆ A} (10)

apr′
C(A) = ∼ apr′

C
(∼ A) (11)

apr′′
C
(A) = ∼ apr′′

C(∼ A) (12)

apr′′
C(A) =

⋃
{K ∈ C : K ∩ A �= ∅} (13)

Generally a covering contains redundant information. For example, some
definitions using all the sets of the covering and using the minimal sets only, are
equivalent. Therefore, it is possible to consider only some particular elements of
the covering.

From a covering C of U , we can define the coverings:
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1. C1 =
⋃{md(C, x) : x ∈ U}

2. C2 =
⋃{MD(C, x) : x ∈ U}

3. C3 = {⋂
(md(C, x)) : x ∈ U} = {⋂(C (C, x)) : x ∈ U}

4. C4 = {⋃
(MD(C, x)) : x ∈ U} = {⋃(C (C, x)) : x ∈ U}

5. C∩ = C \ {K ∈ C : (∃K ⊆ C \ {K}) (K =
⋂
K)}

6. C∪ = C \ {K ∈ C : (∃K ⊆ C \ {K}) (K =
⋃
K)}

Coverings C∩ and C∪ are called the ∩-reduction and the ∪-reduction of C,
respectively. The idea is eliminate the sets that can be expressed as intersection
or union of other sets in the covering.

Using Eqs. 10 to 13, each covering defines two pairs of approximation oper-
ators, therefore for each covering we have fourteen pairs of dual approximation
operators.

Closure System Based Definition. As a particular example of a closure
system, [20] considered the so-called intersection closure S∩,C of a covering C,
i.e., the minimal subset of P(U) that contains C, ∅ and U , and is closed under
set intersection. Similarly, the union closure of C, denoted by S∪,C, is the minimal
subset of P(U) that contains C, ∅ and U , and is closed under set union. It can
be shown that the dual system S′

∪,C, defined by Eq. 3, forms a closure system.
Both S∩ = ((S∩,C)′, S∩,C) and S∪ = (S∪,C, (S∪,C)′) can be used to obtain two
pairs of dual approximation operations, according to Eqs. (4) and (5).

According to the above three definitions Yao and Yao present twenty pairs of
dual approximation operators, four from the element based definition, fourteen
from granule based definition and two from the system based definition based
on ∩-closure and ∪-closure.

The pairs of approximation operators (apr
N

, aprN ), (apr′
C
, apr′

C
) and

(apr′′
C
, apr′′

C
) are dual pairs.

2.4 Other Framework of Lower and Upper Approximations

A summary of seven pairs of approximation operators for covering based rough
sets was presented in [14,18]. In all cases only two lower approximations have
been used. Żakowski first extended Pawlak’s rough set theory from a partition to
a covering in [21]. The second type of covering rough set model was presented by
Pomykala in [9], Tsang [13] studied the third type. Zhu defined the fourth and
the fifth types of covering-based approximation in [28,30]. Xu gave the definition
of the sixth type in [16]. The seventh type of approximation operations can be
found in [15].

Some of these approximation operators were already presented in Yao and
Yao’s framework, therefore we only present the different ones. The four upper
approximations are listed as follows:

1. HC
1 (A) = LC

1 (A) ∪ (
⋃{md(C, x) : x ∈ A − LC

1 (A)})
2. HC

3 (A) =
⋃{NC

2 (x) : x ∈ A}
3. HC

4 (A) = LC
1 (A) ∪ (

⋃{K : K ∩ (A − LC
1 (A)) �= ∅})

4. HC
5 (A) =

⋃{NC
1 (x) : x ∈ A}
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where LC
1 (A) is the lower approximation defined as:

LC

1 (A) =
⋃

{K ∈ C : K ⊆ A} = apr′
C
(A). (14)

2.5 New Framework of Approximation Operators

Some equivalences and relationships among the operators in the two previous
frameworks were studied and established by M. Restrepo et al. [11]. The Table 2
summarizes a framework of sixteen pairs of approximation operators, establish-
ing equivalences among the two frameworks above, Yao and Yao’s framework
and Yang and Li’s framework.

All the operators listed in Table 2 satisfy the relation A ⊆ apr(A) for all
A ⊆ U , so they are upper approximations. Also, all they satisfy apr(∅) = ∅.

According to W. Zhu [24] operators 5, 6, 7 and 8 are not join morphisms and
according to [25], operators 9, 10, 11 and 12 are not idempotent.

The following propositions show that apr
NC

3
is an idempotent operator.

Proposition 1. If z ∈ NC
3 (x) then NC

3 (z) ⊆ NC
3 (x).

Proof. If z ∈ apr
NC

3
(x), we will show that MD(C, x) ⊆ MD(C, z). In fact, if

K ∈ MD(C, x), then z ∈ K, because z ∈ NC
3 (x). Now, if S ⊇ K then K = S,

because K is a maximal element. From MD(C, x) ⊆ MD(C, z), we have that⋂
MD(C, x) ⊇ ⋂

MD(C, z) and therefore NC
3 (z) ⊆ NC

3 (x).

Proposition 2. The operator apr
NC

3
is idempotent.

Proof. Clearly apr
NC

3
(apr

NC

3
(A)) ⊆ apr

NC

3
(A).

If z ∈ apr
NC

3
(A), then NC

3 (z) ⊆ A. We will show that NC
3 (z) ⊆ apr

NC

3
(A).

In fact, if w ∈ NC
3 (z), by Proposition 1, we have that NC

3 (w) ⊆ NC
3 (z) ⊆

A, therefore w ∈ apr
NC

3
(A). Since NC

3 (z) ⊆ apr
NC

3
(A) we have that z ∈

apr
NC

3
(apr

NC

3
(A)). So apr

NC

3
(apr

NC

3
(A)) = apr

NC

3
(A) and apr

NC

3
is an idem-

potent operator.

From duality, it is easy to establish the following corollary.

Corollary 1. The operator aprNC

3
is idempotent.

The following example shows that operators aprNC

2
and aprNC

4
are not idem-

potent operators.

Example 1. (Operators aprNC

2
and aprNC

4
are not idempotent).

Let us consider the covering C = {{1}, {1, 2}, {2, 3}, {4}, {1, 2, 3}, {1, 4}} of
U = {1, 2, 3, 4}. The minimal description md(C, x), the maximal description
MD(C, x) and the neighborhood operators are listed in Table 1.

aprNC

2
({1}) = {1, 2}, while aprNC

2
({1, 2}) = {1, 2, 3}, therefore aprNC

2

is not an idempotent operator. Similarly, aprNC

4
({2}) = {1, 2, 3}, while

aprNC

4
({1, 2, 3}) = {1, 2, 3, 4}, therefore aprNC

4
is not an idempotent operator.
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Table 1. Illustration of neighborhood operator for the covering C.

x md(C, x) MD(C, x) NC
1 (x) NC

2 (x) NC
3 (x) NC

4 (x)

1 {{1}} {{1,2,3},{1,4}} {1} {1} {1} {1,2,3,4}
2 {{1,2},{2,3}} {{1,2,3}} {2} {1,2,3} {1,2,3} {1,2,3}
3 {{2,3}} {{1,2,3}} {2,3} {2,3} {1,2,3} {1,2,3}
4 {{4}} {{1,4}} {4} {4} {1,4} {1,4}

According to properties in Table 2, operators 2, 4, 9, 10, 11 do not satisfy
idempotent property, operators from 5 to 8 are not join morphisms and operator
12 does not satisfy any property. Obviously each topological closure is a closure
operator.

3 Topological Characterization of Upper Approximations

The following propositions are characterization of upper approximation opera-
tors presented in [17]. Similar results for lower approximations and their relation
with interior operators, can be established from duality.

Table 2. Properties of upper approximations.

n Upper approximation Property

Idempotence Order preserving Join

1 aprNC
1

= apr′
C3

= HC
6 Yes Yes Yes

2 aprNC
2

No Yes Yes

3 aprNC
3

Yes Yes Yes

4 aprNC
4

= apr′′
C

= apr′′
C2

= apr′′
C∩ = HC

2 No Yes Yes

5 apr′
C

= apr′
C1

= apr′
C∪ = aprS∪ Yes Yes No

6 apr′
C2

Yes Yes No

7 apr′
C4

Yes Yes No

8 apr′
C∩ Yes Yes No

9 apr′′
C1

= apr′′
C∪ No Yes Yes

10 apr′′
C3

= HC
7 No Yes Yes

11 apr′′
C4

No Yes Yes

12 aprS∩ No Yes No

13 HC
1 Yes No No

14 HC
3 No Yes Yes

15 HC
4 Yes No No

16 HC
5 Yes Yes Yes
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Proposition 3. [17] HC
1 is a topological closure if and only if C is unary.

Proposition 4. [17] HC
1 is a topological closure if and only if there exists a

topology τ , on U such that C is a base for (U, τ).

Proposition 5. [17] HC
2 is a topological closure if and only if {NC

4 (x) : x ∈ U}
forms a partition of U .

Proposition 6. [17] HC
3 is a topological closure if and only if exists a topology

τ , on U such that, {NC
2 (x) : x ∈ U} is a base for (U, τ) and for all x ∈ U ,

{N2C(x)} is a local base at x for (U, τ).

Proposition 7. [17] HC
4 is a topological closure if and only if C is a base for

some topology τ on U and (U, τ) consists of two disjoints subspaces U1 and U2,
satisfying:

1. For K,K ′ ∈ C with K �= K ′, we have: K ∩ U2 = K ′ ∩ U2 = ∅ or K ∩ U2 �=
K ′ ∩ U2 and {K ∩ U2 : K ∈ C} is a partition of U2.

2. (U1, τ1) is a discrete space and (U2, τ2) is a pseudo-discrete space.

Propositions (3) to (7) are the characterization of operators 4, 13, 14 and 15
being topological closures, therefore closure operators. Also are closure operators
9, 10 and 11, because they are defined as apr′′

C
for different coverings: C1, C3

and C4.

4 Algebraic and Topological Properties

From properties in Table 2, it is easy to establish the following propositions.

Proposition 8. Operators 1, 3 and 16 are topological closure operators.

Proposition 9. Operators 1, 3, 5, 6, 7, 8 and 16 are closure operators.

The following propositions show some properties of unary coverings.

Proposition 10. A covering C is unary if and only if there exists a topology τ ,
on U such that C is a base for (U, τ).

Proof. It is a consequence of Propositions 1 and 2.

Proposition 11. For any covering C, the covering C3 is unary.

Proof. The elements in C3 are the neighborhoods NC
1 (x) for x ∈ U , so C3 =

{NC
1 (x)} and it is unary, because the minimal description of each x ∈ U has

only an element, |md(C3, x)| = 1. Therefore C3 is unary.

Proposition 12. If C is unary, then C1 and C∪ are unary.

Proof. The covering C1 is made of sets in minimal descriptions of x ∈ U . Since
C is unary, clearly C1 is unary. C∪ is unary, because C1 = C∪, as was established
in [12].
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Corollary 2. If C is unary, apr′
C1
, apr′

C3
and apr′

C∪ are topological closures.

Proposition 13. If C is unary, then aprN1
= aprN2

.

Proof. Using the number of elements in md(C, x), we can see that
⋃

md(C, x) =⋂
md(C, x), therefore, NC

1 (x) = NC
2 (x) and aprNC

1
= aprNC

2
.

Corollary 3. If C is unary, aprNC

2
is a topological closure.

Corollary 4. If C is unary, aprNC

2
is a closure operator.

The following example shows that unary covering is not a condition of closure
operator for aprNC

4
.

Example 2. (An unary covering such that aprNC

4
is not an idempotent operator).

Let us consider the covering C = {{1}, {2, 3}, {4}, {1, 2, 3}, {1, 4}} of
U = {1, 2, 3, 4}. The minimal description md(C, x), the maximal description
MD(C, x) and the neighborhood operators are listed in Table 3.

Table 3. Illustration of minimal and maximal description.

x md(C, x) MD(C, x) NC
1 (x) NC

2 (x) NC
3 (x) NC

4 (x)

1 {{1}} {{1,2,3},{1,4}} {1} {1} {1} {1,2,3,4}
2 {{2,3}} {{1,2,3}} {2,3} {2,3} {1,2,3} {1,2,3}
3 {{2,3}} {{1,2,3}} {2,3} {2,3} {1,2,3} {1,2,3}
4 {{4}} {{1,4}} {4} {4} {1,4} {1,4}

According to Table 3, C is unary.
aprNC

4
({2}) = {1, 2, 3}, while aprNC

4
({1, 2, 3}) = {1, 2, 3, 4}, therefore aprNC

4
is not a idempotent operator.

Proposition 14. If C is a covering of U and {NC
4 (x) : x ∈ U} forms a partition

of U , then apr′′
C
is a topological closure.

Proof. It is a consequence of Proposition 5.

5 Conclusions

This paper studies the properties of upper approximation operators for the study
of coverings based rough sets, extending the results presented in [32] to the
framework presented in [11]. We show that aprNC

3
is an idempotent operator. We

give necessary conditions for topological closures and closure operators. For an
unary covering C, we have that operators 1, 2, 5, 8 and 16 are topological closures
and therefore closure operators. Necessary condition for closure operators in the
new framework are given. As future work we will establish sufficient conditions
for topological closure and closure operators.
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11. Restrepo, M., Cornelis, C., Gómez, J.: Duality, conjugacy and adjointness of

approximation operators in covering-based rough sets. Int. J. Approximate Rea-
soning 55, 469–485 (2014)
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