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Abstract. Sequencing contents, like tasks, hints, and feedbacks, is an
open issue for Intelligent Tutoring Systems. The common approach is
based on domain analysis by experts, who characterize each content
with skills involved and a difficulty level. In addition, Machine Learn-
ing based sequencers require a specific dataset collection to create users’
models and a sequencing policy, which needs to be tested online with
strong ethical requirements and a high number of users. In this paper
we design a simulated learning environment with customizable scenar-
ios. We also show that a performance prediction method can be used to
crate offline fully personalized students’ models and sequence contents
without domain engineering/authoring effort. The performance predic-
tion method is enhanced by a score-based policy inspired by Vygotsky’s
concept of Zone of Proximal Development and shows promising results
compared to curriculum based policies in the designed simulated envi-
ronment.

Keywords: Sequencing · Performance prediction · Intelligent Tutoring
Systems · Matrix Factorization

1 Introduction

Intelligent Tutoring Systems (ITS) are more and more becoming of crucial impor-
tance in education. Apart from the possibility to practice any time, adaptivity
and individualization are the main reasons for their widespread availability as
app, web service and software. The system generally is composed of an internal
user model and a sequencer, that, according to the given information, sequences
the contents with a policy. On that side many efforts have been put into Bayesian
Knowledge Tracing (BKT), starting with not personalized and single skills user
modeling. The limit of this problem formulation became clear soon, also because
the contents evolved together with the technology. Multiple skills contents were
developed, e.g. multiple step exercises and simulated exploration environment
for learning. In order to maintain the single skill formulation systems fell back
on scaffolding, i.e. a built in structure was inserted in order to clearly distinguish
within the content between the different steps/skills required. As a consequence,
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the engineering and authoring effort to develop an ITS increased exponentially
obliging a meticulous analysis of the contents in order to subdivide and design
them in clearly separable skills.

Other efforts have been put into adaptive sequencing. Its main approach,
based on Reinforcement Learning, can be reconnected to robotics, which has an
availability of accurate simulators and tireless test subjects. The same cannot
be said for ITS where, generally, apart from adults, also children of any age are
involved.

In this paper we propose a novel method of sequencing based on Matrix Fac-
torization Performance Prediction and Vygotsky’s concept of Zone of Proximal
Development. The main contributions are:

1. A content sequencer based on a performance prediction systems that (1) can
be set up and preliminary evaluated in a laboratory, (2) models multiple
skills and individualization without engineering/authoring effort, (3) adapts
to each combination of contents, levels and skills available.

2. Simulated environment with multiple skill contents and students’ knowledge
representation, where knowledge and performance are modeled in a continu-
ous way.

3. Experiments on different scenarios with direct comparison with informed
baseline.

The paper is structured as follows: in Sect. 2 one can find a brief state of the art
description, in Sect. 3 the explanation of the sequencer problem, in Sect. 4 the
simulated learning process, in Sect. 5 the performance based policy and predictor,
in Sect. 6 the experimental results and least the conclusions.

2 Related Work

Many Machine Learning techniques have been used to ameliorate ITS, especially
in order to extend learning potential for students and reduce engineering efforts
for designing the ITS. The most used technology for sequencing is Reinforcement
Learning (RL), which computes the best sequence trying to maximize a previ-
ously defined reward function. Both model-free and model-based [1,12] RL were
tested for content sequencing. Unfortunately, the model-based RL necessitates
of a special kind of data sets called exploratory corpus. Available data sets are
log files of ITS which have a fixed sequencing policy that teachers designed to
grant learning. They explore a small part of the state-action space and yield
to biased or limited information. For instance, since a novice student will never
see an exercise of expert level, it is impossible to retrieve the probability of a
novice student solving some contents. Without these probabilities the RL model
cannot be built [2]. Model-free RL, instead, assumes a high availability of stu-
dents on which one can perform an on-line training. The model does not require
an exploratory corpus but needs to be built while the users are playing with
the designed system. Given the high cost of an experiment with humans, most
authors exploit simulated single skill students based on different technologies like
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Artificial Neural Networks or self developed student models [12,16]. Particularly
similar to our approach is [12], where contents are sequenced with a partic-
ular model-free RL based on the actor critic algorithm [9], which was selected
because of its faster convergence in comparison with the classic Q-Learning algo-
rithm [20]. Unfortunately, RL algorithms still need many episodes to converge
and will always need preliminary trainings on simulated students.

Our developed content sequencer is based on student performance predic-
tions. An example of state of the art method is Bayesian Knowledge Tracing
(BKT) and its extensions. The algorithm is built on a given prior knowledge
of the students and a data set of binary student performances. It is assumed
that there is a hidden state representing the knowledge of a student and an
observed state given by the recorded performances. The model learned is com-
posed by slip, guess, learning and not learning probability, which are then used
to compute the predicted performances [4]. In the BKT extensions also diffi-
culty, multiple skill levels and personalization are taken into account separately
[5,13,14,24]. BKT researchers have discussed the problem of sequencing both in
single and in multiple skill environment in [8]. In a single skill environment the
most not mastered skill is selected, whereas in the multiple skill this behavior
would present a too difficult content sequence. Consequently, the contents with
a small number of not mastered skills are selected. Moreover, [8] points out how
in ITS multiple skill exercises are modeled as single skill ones in order to over-
come BKT limitations. We would like to stress that the sequencing requires an
internal skills representation and consequently, together with the performance
prediction algorithm, is domain dependent.

Another domain dependent algorithm used for performance prediction is the
Performance Factors Analysis (PFM). In the latter the probability of learning is
computed using the previous number of failures and successes, i.e. the represen-
tation of score is binary like in BKT [15]. Moreover, similarly to BKT, a table
connecting contents and skills is required.

Matrix Factorization (MF) is the algorithm used in this paper for perfor-
mance prediction. It has many applications like, for instance, dimensionality
reduction, clustering and also classification [3]. The most common use is for
Recommender Systems [10] and recently this concept was extended to ITS [21].
We selected this algorithm for several reasons:

1. Domain independence: ability to model each skill, i.e. no engineering or
authoring effort in individuating the skills involved in the contents.

2. Having comparable results with BKT latest implementations [22].
3. Possibility to build the system with a common data set, i.e. without an

exploratory corpus.
4. Small computational time on a 3rd Gen Ci5/4 GB laptop and Java imple-

mentation: 0.43 s for building the model with already 122000 lines, negligible
time for performance prediction.
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3 Content Sequencing in ITS

The designed system consists of two main blocks. The first one is the environ-
ment and is represented by the students playing with the ITS. First step toward
a working prototype requires testing in a laboratory. Since optimal control prob-
lems can only be evaluated online, i.e. the sequence optimality can be measured
only after a student worked with it, we designed a simulated learning process that
is described in Sect. 4. We excluded the possibility of collecting an exploratory
corpus because making practice with very easy and very difficult exercises in
random order could be frustrating for the students, who could be children. After
a first validation with real students, only a common data set collection will be
necessary to set up the system with new contents, giving also the possibility
to calibrate the environment and later use it for new sequencing methods. In
this paper we use the word content to refer to the activities a student interacts
with, although our main focus here is task sequencing. Taking advantage of the
simulated learning process characteristics described, we can later interpret con-
tents as different ITS elements. As explained in [17], a content could be a hint, a
feedback, a topic or a task, whose sequencing could in each case take advantage
of the designed system as we will discuss later.

The second block consists of different modules, i.e. the available contents, the
previous interactions of the students with the system (log files), the student Per-
formance Predictor and the Sequencer Policy. We chose a specific Performance
Predictor and policy, but nothing is against using other ones in the future. When
a student plays with the system the next exercise is proposed to him by the
sequencer according to a policy. The Performance Predictor needs the log files of
students playing with the contents considered to predict their scores in the next
contents. The policy is applied in an adaptive way thanks to the information on

Fig. 1. System structure in a block diagram.
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the predicted scores shared between Performance Predictor and Sequencer. In
the following Sections we will describe the different blocks represented in Fig. 1.

4 Simulated Learning Process

Given the necessity of preliminary evaluation in a laboratory, it is of crucial
importance to have a simulated environment able to model reality with a certain
degree of fidelity. For our system we required a score and skill representation
between 0 and 1, to be able to test following aspects:

1. Possibility to use score as single success indicator for sequencing.
2. Ability to model a multiple skill domain and students’ knowledge by the

performance predictor.
3. Possibility to change number of skills involved to test flexibility.
4. Possibility to test also noisy processes.

We designed a simulated student based on the following assumptions. (1) A con-
tent is either of the correct difficulty for a student, or too easy, or too difficult.
(2) A student cannot learn from too easy contents and learns from difficult ones
proportionally to his knowledge level. (3) It is impossible to learn from a content
more than the required skills to solve it. (4) The total knowledge at the beginning
is different than zero. (5) The general ability on connected skills helps solving
and learning from a content. The last assumption is more plausible because we
assume to sequence activities of the same domain. For instance, in order to solve
a fraction addition, a student needs more related skills: multiplication, fraction
expansion etc. It is unlikely for a student to do a fraction expansion without
knowing how multiplication works. At the same time the knowledge of multipli-
cation will help him solving the steps on fraction expansion.

A student simulator is a tuple (S,C, y, τ) where, given a set S ⊆ [0, 1]K

of students, si is a specific student described as a vector ϕt. The latter is of
dimension K, where K is the number of skills involved. C ⊆ [0, 1]K is a set of
contents, where cj is the j-th content, defined with a vector ψj of K elements
representing the skills required. ϕi,k = 0 means student’s i skill level k is zero,
whereas ϕi,k = 1 means having full ability. τ : S × C → S is a function defining
the follow-up state ϕt+1 = ϕt + τ of a student si ∈ S after working on contents
ctj . In particular S and C are the spaces of the students and contents respectively.
Finally, a function y defines the performance y(ϕi, ψj). y and τ can be formalized
as follows:

y(ϕi, ψj) := max(1 − ||α||
||ϕi|| , 0)

τ(ϕi, ψj)k :=y(ϕik, ψjk)αk

ỹ :=yε (1)

where
αi,j
k = max(ψjk − ϕik, 0) (2)
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and ε is proportional to the beta distribution B (p, q). We selected p and q in
order to have ỹ ∼ B (

y, σ2
)
, where σ2 is the variance, i.e. the amount of noise.

We chose the beta distribution because it is defined between zero and one as
the score. Consequently it will not change the codomain of the y function. The
characteristic of the formulas are the following. (1) The performance of a student
on a content decreases proportionally to his skill deficiencies w.r.t. the required
skills. (2) The student will improve all the required skills of a content propor-
tionally to his performance and his skill-specific deficiency up to the skill level a
content requires. (3) As a consequence it is not possible to learn from a content
more than the difference from the required and possessed skills. (4) A further
property of this model is that contents requiring twice the skills level that a
student has, i.e. ‖ψj‖ ≥ 2 ‖ϕi‖, are beyond the reach of a student. For this
reason his performance will be zero (y = 0). With a simple experiment without
noise, we can show the plausibility of the designed simulator. We inserted values
in Eq. 1 as follows. Let us consider a system with two skills and represent the
student knowledge as ϕ = {0.3, 0.5}.

Table 1. Simulated learning process with two skills. A simulated student with ϕ =
{0.3, 0.5} scores y and learning τ after interacting with different contents cj .

cj dc y τk

[0.1, 0.1] 0.2 1 [0, 0]

[0.5, 0.6] 1.1 0.617 [0.12, 0.0617]

[0.5, 0.7] 1.2 0.515 [0.1, 0.1]

[0.9, 0.9] 1.8 0 [0, 0]

As it is possible to see in Table 1 with the increase of the content difficulty
the learning increases and the score decreases until ‖ψi‖ ≥ 2

∥
∥ϕj

∥
∥. The maximal

difficulty level is equal to the number of skills since a single skill value cannot
be greater than one.

5 Vygotsky Policy and Matrix Factorization

5.1 Sequencer

The designed sequencer is defined as follows. Let C ⊆ C and S ⊆ S be respec-
tively a set of contents and students defined in Sect. 4, dcj be the difficulty of a
content defined as dcj =

∑K
k=0 ψj,k, ỹ : S×C → [0, 1] be the performance or the

score of a student working on the content, and T be the number of time steps
assuming that the student is seeing one content every time step. The content
sequencing problem consists in finding a policy:

π∗ : (C × [0, 1]) → C. (3)
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that maximize the learning of a student within a given time T without any
environment knowledge, i.e. without knowing the difficulties of the contents and
the required skills to solve them. A common problem in designing a policy for ITS
is retrieving the knowledge of the student from the given information, e.g. score,
time needed, previous exercises, etc. The previous mentioned data types are
just an indirect representation of the knowledge, which cannot be automatically
measured, but needs to be modeled inside the system. Hence, integrating the
curriculum and skills structure is the cause of the high costs in designing the
sequencer. In this paper we try to keep the contents in the Vygotsky’s Zone of
Proximal Development (ZPD) [23], i.e. the area where the contents neither bore
or overwhelm the learner. We mathematically formalized the concept with the
following policy, that we called Vygotsky Policy (VP):

ct∗ = argminc

∣
∣yth − ŷt (c)

∣
∣ (4)

where yth is the threshold score, i.e. the score that keeps the contents in the
ZPD. The policy will select at each time step the content with the predicted
score ŷt at time t most similar to yth. We will discuss further in the experiment
session how to tune this hyper parameter and its meaning.

The peculiarity of the VP is the absence of the difficulty concept. Defining
the difficulty for a content in a simulated environment as ours is easy, because
we mathematically define the skills required. In the real case it is not trivial
and quite subjective. Also the required skills are considered as given in the
other state of the art methods like PFM and BKT, where a table represents the
connection between contents and skills required. Without skills information not
only BKT and PFM performance prediction cannot be used in our formalization,
also sequencing methods [8] have no information to work with.

5.2 Matrix Factorization as Performance Predictor

Matrix Factorization (MF) is a state-of-the-art method for recommender sys-
tems. It predicts which is the future user ratings on a specific items based on his
previous ratings and the previous ratings of other users. The concept has been
extended to student performance prediction, where a student next performance,
or score is predicted. The matrix Y ∈ R

ns×nc can be seen as a table of nc total
contents and ns students used to train the system, where for some contents and
students performance measures are given. MF decomposes the matrix Y in two
other ones Ψ ∈ R

nc×P and Φ ∈ R
ns×P , so that Y ≈ Ŷ = ΨΦ. Ψ and Φ are

matrices of latent features. Their elements are learned with gradient descend
from the given performances. This allows computing the missing elements of Y
and consequently predicting the student performances (Fig. 2). The optimization
function is represented by:

min
ψj ,ϕi

∑

j∈C

(yij − ŷij)
2 + λ(‖Ψ‖2 + ‖Φ‖2) (5)
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where one wants to minimize the regularized squared error on the set of known
scores. The prediction function is represented by:

ŷij = μ + μcj + μsi +
P∑

p=0

ϕT
ipψjp (6)

where μ, μc and μs are respectively the average performance of all contents of
all students, the learned average performance of a content, and learned average
performance of a student. The two last mentioned parameters are also learned
with the gradient descend algorithm.

The MF problem does not deal with time, i.e. all the training performances
are considered equally. In order to keep the model up to date, it is necessary to
re-train the model at each time step. MF has a personalized prediction, i.e. a
small number of exercises needs to be shown to each student in order to avoid
the so called cold-start problem. Although some solutions to these problems
have been proposed in [11,21], we will show in the experiment session that these
aspects do not affect the performance of the system, neither they reduce its
applicability. From now on we will call the sequencer utilizing the VP policy and
the MF performance predictor VPS, i.e. Vygotsky Policy based Sequencer.

Fig. 2. Table of scores given for each student on contents (left), completed table by
the MF algorithm with predicted scores (right).

6 Experiment Session

In this section we show how the single elements work in detail. We start with the
student simulator, continue with the VP and end with some experiments with
performance prediction in different scenarios and noise. A scenario is represented
by a number of contents nc, a number of difficulty levels nd, a number of skills
nk, and a number of students for each group nt

1. All the first experiments will
have no noise, i.e. ỹ = y.
1 The MF was previously trained with ns students that were used to learn the charac-

teristic of the contents. Consequently, the dimensions of the MF during the simulated
learning process are: Ψ ∈ R

nc×P and Φ ∈ R
(ns+nt)×P , so that Y ≈ Ŷ = ΨΦ.
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6.1 Experiments on the Simulated Learning Process

To prove the operating principle of the simulator we tested basic sequencing
methods in a particular scenario. The one we chose is described in Fig. 3, with
nd = 7 and nc = 150. For representation purposes we created the contents with
increasing difficulty, so that IDs implicitly indicates the difficulty2. The scenario
mimics an interesting situation for sequencing, i.e. when more apparently equiv-
alent exercises are available. The two policies we used are (1) Random (RND),
where contents are selected randomly, and (2) the in range policy (RANGE),
where each second content is selected in difficulty order (see also Table 3). This
strategy is informed on the domain because it knows the difficulty of the con-
tents. We initialized the students and contents skills with an uniform random
distribution between 0 and 1. Again for representation purposes we show the
average total knowledge of the students that is represented by average of the
students skills sum at each time step. We chose to perform the tests on 10 skills,
i.e. the maximal total knowledge possible is equal to 10. We considered the sce-
nario mastered when the total knowledge of the student group is greater than
or equal to the 95% of the maximal total knowledge.
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Fig. 3. Scenario: content number and difficulty level.

Figure 4 shows the total knowledge of two groups of nt = 200 students,
one group was trained with random policy the other one with the in range
policy. RANGE is characterized by a low variance in the learning process. RND,
instead, has a high variance because the knowledge level of the students at each
time step is given by chance. It is shown that the order in which the student
practices on the contents is important for the total final learning. Figure 4 also
shows how the practice on too many contents of the same difficulty level, after a
while, saturates the knowledge acquisition. All these aspects demonstrate that
the learning progress is plausibly simulated.
2 A content with ID 2 is easier than a content with ID 100, see Fig. 3.
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Fig. 4. Comparison between RANGE and RND. Average skills sum, i.e. knowledge,
over all the students with variance.

6.2 Sensitivity Analysis on the Vygotsky Policy

In order to evaluate the VP we created two more sequencing methods that exploit
information not available in reality. The best sequencing knows exactly which
is the content maximizing the learning for a student, for this reason we called
it Ground Truth (GT). Vygotsky Policy Sequencer Ground Truth (VPSGT),
instead, uses the Vygotsky Policy and the true score y of a student to select
the following content. GT and VPSGT can be considered the upper bound of
the sequencer potential in a scenario (see also Table 3). In order to select the
correct value of yth we plot the average knowledge level at time t = 11 for the
policy with different yth. From Fig. 5 one can see that the policy is working for
yth ∈ [0.4, 0.7], this because of the relationship between Eq. 1 of the student
simulator. In a real environment the interpretation of these results is twofold.

First we assume yth will be approximately the score keeping the students
in the ZDP. Second, from a RL perspective, this value would allow finding the
trade-off between exploring new concepts and exploiting the already possessed
knowledge. Moreover, as one can see in Fig. 6, the policy obtains good results
if compared with GT for some yth, but for others the policy is outside the
ZPD and the students do not reach the total knowledge of the scenario. In
some experiments we noticed that the width of the curve in Fig. 5 decreased so
that the outer limits of the yth interval create a sequence outside the ZPD. As
consequence we selected the value yth = 0.5 that was successful in most of the
scenarios.

6.3 Vygotsky Policy Based Sequencer

The scenario we selected for the tests with the VPS has nc = 150, nd = 6,
nk = 10 and nt = 400. In order to train the MF-model a training and test data
set need to be created. We used ns = 300 students who learned with all the
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Fig. 5. Policy selection, i.e. the performance of the Vygotsky policy with different yth

at the same time step. Different groups of students learned with the Vygotsky policy
with yth values going from 0.1 to 0.9. As shown in the figure the knowledge levels
change according to the yth selected.

Table 2. Parameters MF.

Parameters Choice

Learning rate 0.01

Latent features 60

Regularization 0.02

Number of iteration 10

contents in order of difficulty. We used 66% of the data to train the MF-model
and the remaining 34% to evaluate the Root Mean Squared Error (RMSE) for
selecting the regularization factor λ and the learning rate of the gradient descent
algorithm. We performed a full Grid Search and selected the parameters shown in
Table 2. The sequencing experiments are done on a separate group of nt students.
In order to avoid the cold start problem 5 contents are shown to them and their
scores added to the training set of the MF. For T = 40 the best content c∗t

j is
selected with the policy VP for the nt students, using the predicted performance
ŷt
ij . In order to avoid the deterioration of the model, after each time step the

model is trained again once all students saw an exercise. A detailed description
of the algorithm of the sequencer can be found in Algorithm1, where Y0 is the
initial data set.

As one can see in Fig. 7 the VPS selects the first content similarly to RANGE.
Then the prediction allows to skip unnecessary contents speeding up the learning.
Once the total knowledge arrives around 95%, the selection policy cannot find
contents that fit to the requirements. Consequently the students learn as slow
as the RND group, as one can see from the saturating curve. In Fig. 8 GT
selects the contents in difficulty order skipping the unnecessary ones. The average
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Fig. 6. Effects of the different yth on the final knowledge of the students. The learning
curves of the student groups that learned with the different Vygotsky policies.

Algorithm 1. Vygotsky Policy based Sequencer.

Input: C, Y0 π, si, T
1 Train the MF using Y0;
2 for t = 1 to T do
3 for All c ∈ C do
4 Predict ŷ (cj , si) Eq. 6;
5 end

6 Find ct∗ according to Eq. 5;

7 Show ct∗ to si with Eq. 1;

8 Add y
(
si, c

t∗) to Yt;
9 Retrain the MF; // Corrects over- or underestimation by the MF

10 end

sequence of the VPS, instead, is also with approximately increasing difficulty but
in an irregular way. This is due to the error in the prediction performance. In
conclusion the proposed sequencer gains 63% over RANGE and 150% over RND.

The presented experiments show how the MF is able, without domain infor-
mation, to model the different skills of students and contents and partially mim-
ics the best sequence, which is the one selected by GT in Fig. 8.

6.4 Advanced Experiments

In this section we want to show the correct working of the sequencer changing
the parameters of the scenario nk and nc and later adding noise. In order to do so
we consider the percentage of gain of VPS with respect to RANGE considering
a specific time step t = 30 with nk = 10 and nd = 6. As one can see in Fig. 10
the gain obtained by the sequencer depends on the available number of contents.
Since in RANGE each second content is selected, with nc < 60 there are not
enough contents for all time steps. Our sequencer can adapt without problems to
the situation. The optimal point for the in range policy is when nc = 60 because
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changes over time.
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Fig. 8. Average sequence selected by the GT and the VPS. The VPS approximate the
optimal sequence that GT computes thanks to the real skills of the students.

Table 3. Sequencers description.

Policy Description

Random (RND) Contents are selected randomly

In Range (RANGE) Each second content is selected in difficulty
order

Ground Truth (GT) Selects the contents according to which is the
one maximizing the learning

Vygotsky Policy based Sequencer Ground
Truth

Chooses the next content using the policy and
the real score of (VPSGT) a student

Vygotski Policy based Sequencer (VPS) Chooses the next content using the policy and

the predicted score of a student
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Fig. 9. Gain over RANGE policy varying nk. The gain is measured at a specific time
step in percentage, considering the average knowledge level of the two groups of stu-
dents, one practicing with the RANGE sequencer and one with the VPS.
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Fig. 10. Gain over RANGE policy varying nc. The gain is measured at a specific time
step in percentage, considering the average knowledge of the two groups of students,
one practicing with the RANGE sequencer and one with the VPS.

there is exactly the necessary number of contents for the student to learn. When
nc > 60 the students see many unnecessary contents and consequently learn
slower. Figure 9 with nc = 60, t = 30 and nd = 6 shows the dependencies
between skills and gain. The experiments demonstrated a high adaptability of
the sequencer to the different scenarios.

Last we experimented the results robustness adding noise, i.e. ỹ = yε. We
experimented with σ2 ∈ [0, 0.5]. As one can see in Fig. 11 with σ2 = 0.1 the
Vygotsky sequencers are still able to produce a correct learning sequence but
more time is required. The VPSGT is the one that suffered the most from the
introduction of noise, probably related to the selection of yth.
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Fig. 11. Effect of noise in the simulated learning process. Beta distribution noise with
σ2 = 0.1.

6.5 Outlook

VPS has an advantage in comparison to other state of the art methods because
it does not require a detailed analysis of the skills involved. Nevertheless, some
steps are required for the VPS to be integrated within a learning platform.
This aspect has been addressed in [17] for a commercial ITS, where a first offline
feasibility discussion was done. Thanks to VPS domain independence, conceptual
integration required minor changes. For technical integration we utilized the
work in [19] where a novel minimal invasive integration for a Machine Learning-
powered sequencer was presented. Another open question is how to select yth.
In [17], we explained how this value should be tailored to the available contents
exploiting the passing score set by expert. In [6,7] is proposed to personalize
the threshold value by means of the output of an affect recognition applied to
students speech input. The proposed rule based policy suggests to increase yth
if the student felt under-challenged and decrease it if he felt over-challenged.
Alternatively a combination of MF and emotion recognition could be designed.

7 Conclusions

In this paper we presented VPS, a sequencer based on performance prediction
and Vygotsky’s concept of ZPD for multiple skills contents with continuous
knowledge and performance representation. We showed that MF is able deal-
ing with the most actual problems of Intelligent Tutoring Systems, like time
and personalization, retrieving automatically skills required and difficulty. We
proposed VP, a performance based policy that does not require direct input of
domain information, and a student simulator that helps in preliminary off-line
evaluation. The designed system achieved time gain over random and in range
policy in almost each scenario and is robust to noise. This demonstrates how
the sequencer could solve many engineering/authoring efforts. Nevertheless, an
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experiment with real students is required to better confirm the validity of the
assumptions of the simulated learning process. A different evaluation is required
for the performance prediction based sequencer. Some work was done in this
direction and was mentioned in the previous section. In conclusion, to use VPS,
no content analysis is required, since the MF will reconstruct the domain infor-
mation, thanks to continuous score representation. This will allow the integra-
tion of the sequencer in ITS whose content analysis is not affordable. With the
results obtained in this paper we plan to extend such an approach also to other
intervention strategies to further reduce the engineering efforts in ITS after an
complete evaluation on real students.
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