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Abstract. As a covering approximation space, its connectivity directly
reflects a relationship, which plays an important role in data mining,
among elements on the universe. In this paper, we study the connectiv-
ity of a covering approximation space and give its connected component.
Especially, we give three methods to judge whether a covering approx-
imation space is connected or not. Firstly, the conception of the maxi-
mization of a family of sets is given. Particularly, we find that a covering
and its maximization have the same connectivity. Second, we investigate
the connectivity of special covering approximation spaces. Finally, we
give three methods of judging the connectivity of a covering approxima-
tion space from the viewpoint of matrix, graph and a new covering.

Keywords: Covering approximation space · Connectivity · Granular
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1 Introduction

At the Internet age, data collected and stored are enormous and inexact. Then,
there are many puzzles in data intelligence processing, such as how to take
effective ways to cope with the uncertainty of ubiquitous information. So how to
solve such bottleneck problem becomes an important issue in computer science
and industry. In order to deal with this issue, researchers have developed many
techniques such as rough set theory [9], fuzzy set theory [21], computing with
words [13], and granular computing [8].

Rough set theory was proposed by Pawlak [10] in 1982 as a tool for deal-
ing with the vagueness and granularity in information system. It is built on
equivalence relation [11]. However, the data in powerful computer systems and
storage media are complex and redundant in the information-based society.
Thus equivalence relation imposes restrictions and limitations on many practical
applications. Therefore, Pawlak’s rough sets has been extended to the covering-
based rough set theory [22,23], relation-based rough sets [12,19,20], fuzzy rough
sets [3,18]. That is to say, Pawlak’s approximation space is extended to gener-
alization approximation space.

However, covering approximation space is a class of generalization approx-
imation space. In addition, covering is a common data structure and is used
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to describe overlapping information blocks in information systems. Therefore,
it is important to investigate the covering approximation space. For a covering
approximation space (U, C), where U is a universe and C is a covering of U , it
is called connected if x is connected to y for each pair x, y ∈ U , namely, there
exist K1, K2, · · · , Kn ∈ C such that x ∈ K1, y ∈ Kn and Ki ∩ Ki+1 �= ∅, for
any x, y ∈ U , i = 1, 2, · · · , n. That is to say, the relationship between elements
of universe relates to connectivity of this covering approximation space.

In this paper, we mainly investigate the connectivity of the covering approxi-
mation space and give three methods to judge its connectivity in terms of matrix,
graph and a new covering. In order to study expediently, we firstly give a new
covering, namely, the maximization of a covering. Particularly, a covering and
its maximization are proved to have the same connectivity. So we study the
connectivity of a covering approximation space through maximization of this
covering. Second, we explore the connectivity of some special covering approx-
imation spaces. Finally, we give three approaches to judge the connectivity of
a covering approximation space by matrix, graph and a new covering. It is the
core of this paper.

The remainder of this paper is organized as follows. In Sect. 2, we review
some basic definitions and related conclusions about covering approximation
space and graph theory. The conception of maximization of a covering and its
properties are given in Sect. 3. Section 4 studies the connectivity of the special
covering approximation spaces. The most important work is Sect. 5. This section
gives three methods to judge the connectivity of a covering approximation space.
Finally, we conclude this paper in Sect. 6.

2 Preliminaries

Covering is often used to describe overlapping information blocks in information
systems. Graph theory is an intuitive and visible mathematical model. In this
section, we introduce the basic definitions and related results about covering and
graph theory.

2.1 Covering Approximation Space

In this subsection, we give the basic concepts of the covering approximation
space.

Definition 1 (Covering [2]). Let U be a universe of discourse, C a family of
subsets of U . If C is a family of nonempty subsets of U , and ∪C = U , C is called
a covering of U .

Definition 2 (Covering approximation space [2]). Let U be a nonempty set, C
a covering of U . The pair (U, C) is called a covering approximation space.

The minimal description is an important concept in a covering approximation
space.
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Definition 3 (Minimal description [24]). Let (U, C) be a covering approxima-
tion space and x ∈ U . The family of sets MdC(x) = {C ∈ C | x ∈ C ∧ (∀ S ∈
C ∧ x ∈ S ∧ S ⊆ C ⇒ C = S)} is called the minimal description of x. When
there is no confusion, we omit the subscript C.

In the same way, we give the definition of maximal description.
Definition 4 (Maximal description [14]). Let (U, C) be a covering approxima-
tion space and x ∈ U . The family of sets MaxdC(x) = {C ∈ C | x ∈ C ∧ (∀ S
∈ C ∧ C ⊆ S ⇒ C = S)} is called the maximal description of x. When there is
no confusion, we omit the subscript C.

In the following definitions, we introduce two types of coverings.

Definition 5 (Unary [25]). C is unary if |Md(x)| = 1 for all x ∈ U .

Definition 6 (Pointwise-covered [25]). C is called a pointwise-covered covering,
if for any K ∈ C and x ∈ K, K ⊆ ∪ Md(x).

The connectivity of covering approximation space has been used in medical
diagnosis [5]. We will introduce the connected covering approximation space.

Definition 7 [5]. Let (U, C) be a covering approximation space.
(1) Let x, y ∈ U . x is called to be connected to y if there are K1, K2, · · · , Kn ∈ C
such that x ∈ K1, y ∈ Kn and Ki ∩ Ki+1 �= ∅ for each i = 1, 2, · · · , n − 1.
(2) (U, C) is called connected if x is connected to y for each pair x, y ∈ U .

2.2 Graph Theory

Graph is an important tool at the area of mathematics. It has been employed
to find rough set reducts [6]. In this subsection, we present the basic concepts of
graph theory.

Definition 8 (Graph [17]). A set of elements and a relation between them is
called a graph. Specifically, graph is a pair (V, E), there V is called the vertex
set of the graph, E is a unordered pair from the element of V , is called the edge
set of the graph. We say that G′ = (V ′, E′) is a subgraph of G = (V , E) if V ′

⊂ V and E′ ⊂ E.

Definition 9 [1]. (1) Chain(Walk): Let u and v are two vertexes of the graph.
The chain of the graph is a series of finite vertexes and edges u0e1u1· · · un−1enun

(u = u0, v = un), is called u − v chain, where ui−1 and ui, are placed adjacent
to ei(1 ≤ i ≤ n), are two endpoint of the ei.
(2) Path: The chain is called a path, if the internal point of chain is different.
(3) Connected graph: If there is a path between u and v, there u and v are
two different vertexes of the graph, then the graph is connected, otherwise, the
graph is not connected. The maximum connected subgraph is called a connected
component.

Definition 10 (Bigraph [17]). A bigraph (or bipartite graph) G = (V,E) is a
graph whose vertices can be divided into two disjoint sets V1 and V2 such that
every edge connects a vertex in V1 to one in V2. We often use G = (V1 ∪ V2,
E) to denote a bigraph.
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3 Maximization of a Covering

Let C be a family of sets on universe U . If there exist two elements K1, K2 of
C, such that K1 is a subset of K2, then we omit K1, and so on. Like that, we
can get some new sets C′. Then the elements of C′ do not have this containment
relationships. We call C′ the maximization of C. First, we give a symbol of set
theory [7].

Let U be a finite universe and A be a family of subsets of U . Then
Max(A) = {X ∈ A| For all Y ∈ A. If X ⊆ Y , then X = Y }.

Definition 11 (Maximization of sets). Let C be a set of sets. C′ is called the
maximization of C if C′ = Max(C).

Example 1. Let C ={{a, c, d}, {a, b}, {c, d}, {f , d, b}, {a, b, f}} be a family of
sets. Then the maximization of C is that C′ ={{a, c, d} {f , d, b}, {a, b, f}}.

If a family of sets are a covering on the universe U , then the maximization
of these sets is still a covering.

Proposition 1. Let C = {K1, K2, · · · , Kn} be a covering of the universe U
and C′ the maximization of C. Then C′ is also a covering of U .

Proof. Since C is a covering of U, then Ki �= ∅(i = 1, 2, · · · , n) and
n⋃

i=1

Ki = U .

According to Definition 11, K �= ∅, ∀ K ∈ C′. Since ∀ Ki ∈ C there must exist

Kj ∈ C′, such that Ki ⊆ Kj , so U =
n⋃

i=1

Ki ⊆ ⋃

j∈I

Kj , and
⋃

j∈I

Kj ⊆ U , then
⋃

j∈I

Kj = U . Therefore C′ is a covering of U .

The following proposition indicates that the process of maximizing can not
change the connectivity of the covering approximation space.

Proposition 2. Let (U, C) be a covering approximation space and C′ the maxi-
mization of C. (U, C) is connected if and only if (U, C′) is connected.

Proof. ⇒) : If (U, C) is connected, then for any x, y ∈ U , ∃ K1, · · · , Km ∈ C
such that x ∈ K1, y ∈ Km and Ki ∩ Ki+1 �= ∅ (i = 1, 2, · · · ,m). Since C′ the
maximization of C, thus there must exist K ′

1, · · · , K ′
m ∈ C′ such that Ki ⊆ K ′

i.
Therefore x ∈ K1 ⊆ K ′

1, y ∈ Km ⊆ K ′
m for any x, y ∈ U , and K ′

i ∩ K ′
i+1 ⊇ Ki

∩ Ki+1 �= ∅. That is to say (U, C′) is connected.
⇐) : It is straightforward.

Proposition 3. Let C be a covering of the universe U and C′ the maximization
of C. Then MaxdC(x) = MaxdC′(x) for all x ∈ U .

Proof. On one hand, for any K ∈ MaxdC(x), then x ∈ K and ∀ S ∈ C, x ∈ S
∧ K ⊆ S ⇒ S = K, thus K ∈ C′. According to Definition 11, S � ⊆ K for all
S ∈ C′. Therefore, K ∈ MaxdC′(x) i.e. MaxdC(x) ⊆ MaxdC′(x). On the other
hand, ∀K ′ ∈ MaxdC′(x), then ∀ S ∈ C, x ∈ S ∧ K ′ ⊆ S ⇒ S = K ′ based on
Definition 11, that is to say K ′ ∈ MaxdC(x), i.e. MaxdC(x) ⊇ MaxdC′(x). To
sum up, MaxdC(x) = MaxdC′(x).
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Proposition 4. Let C be a covering of the universe U and C′ the maximization
of C. Then MdC′(x) = MaxdC′(x).

Proof. ∀K1, K2 ∈ C′, if K1 �= K2, then K1 �⊆ K2, hence MdC′(x) = MaxdC′(x).

4 The Connectivity of Covering Approximation Space

The connected covering approximation space has been used in medical diagno-
sis [5]. Therefore, it is important and necessary to study the connectivity of a
covering approximation space.

Proposition 5. Let (U, C) be a covering approximation space and C′ the maxi-
mization of C. If C′ is unary on U and C′ �= {U}, then (U, C) is not connected.

Proof. We only need to prove that (U, C′) is not connected based on
Proposition 2. If C′ is unary on U and C′ �= {U}, then for all x ∈ U, |Md(x)| =
1. Thus we suppose (U, C′) is connected, then ∀x, y ∈ U , there exists K1, · · · ,
Km ∈ C′ such that x ∈ K1, y ∈ Km and Ki ∩ Ki+1 �= ∅ (1 ≤ i ≤ m − 1). Let
x′ ∈ K1 ∩ K2, thus |Md(x′)| = 2. It is contradictory with |Md(x)| = 1 for all
x ∈ U . Therefore (U, C′) is not connected. That is to say (U, C) is not connected.

We only suppose that C′ �= {U} in the Proposition 5. It is because that C′ is
connected when C′ = {U}.

Proposition 6. Let (U, C) be a covering approximation space. If C′ is unary on
U , then U |Md(x) (x ∈ U) is a connected component of (U, C).

Proof. Since C′ is unary, then Md(x) = Md(y) for any y ∈ Md(x), thus x ∼ y,
and if z ∈ U − Md(x), then Md(x) ∩ Md(z) = ∅, so x �∼ z. That is to say
U |Md(x) (x ∈ U) is a connected component of (U, C).

Proposition 7. Let (U, C) be a covering approximation space and C′ the max-
imization of C. If C′ is a partition on U and C′ �= {U}, then (U, C) is not con-
nected.

Proof. Since C′ is a partition, thus ∀ K1, K2 ∈ C′, K1 ∩ K2 = ∅, then x �∼ y,
for any x ∈ K1, y ∈ K2. Therefore (U, C) is not connected.

Proposition 8. Let (U, C) be a covering approximation space and C′ the maxi-
mization of C. If C′ = {K1, · · · ,Km} is a partition, then U |Ki(i = 1, 2, · · · ,m)
is connected component of (U, C).

Proposition 9. Let (U, C), a covering approximation space, be connected and
C′ the maximization of C. Then there exists x ∈ K for all K ∈ C′, such that
|MdC′(x)| > 1.

Proof. If (U, C′) is connected, then we suppose that |MdC′(x)| = 1 for all x ∈ K.
Since MdC′ = MaxdC′ , hence ∀ x ∈ K, ∀ y ∈ U − K, thus x is not connected
y, which is contradictory with (U, C′) is connected. Therefore, there must exist
x ∈ K for all K ∈ C′, such that |MdC′(x)| > 1.
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The reverse of Proposition 9 may not hold from the following a counterex-
ample.

Example 2. Let U = {a, b, c, d, e, f} be a universe and K1 = {a, b}, K2 = {b,
c}, K3 = {f, d}, K4 = {d, e}, C = {K1, K2, K3, K4}. There exist b ∈ K1, K2

such that |Md(b)| > 1, and d ∈ K3,K4 such that |Md(d)| > 1, but (U, C) is not
connected.

5 Methods of Judging the Connectivity of a Covering
Approximation Space

As a general covering approximation space, what we care is whether it is con-
nected or not. In this section, we will explore the connectivity of the covering
approximation space from the viewpoint of matrix, graph and a new covering.

5.1 From the Matrix Perspective

First,we give the matrix relating to the covering approximation space.

Definition 12. [15] Let (U, C) be a covering approximation space and U =
{u1, u2, · · · , un}, C = {K1, K2, · · · , Km}. We define a matrix A = (aij)m×n

as follows:

aij =
{

1, uj ∈ Ki,
0, uj /∈ Ki,

where i = 1, 2, · · · ,m; j = 1, 2, · · · , n. Using uj labels the jth column and Ki

labels the ith row. A is called a matrix induced by C.

Example 3. Let U = {a, b, c, d} be a universe. K1 = {a, b}, K2 = {a, c, d},
K3 = {b, c}, K4 = {b, d}, K5 = {c, d}, C = {K1,K2,K3,K4,K5}. Then C′ =
{K1,K2,K3,K4}, hence the matrix Aij as follows:

Aij =

⎛

⎜
⎜
⎝

1 1 0 0
1 0 1 1
0 1 1 0
0 1 0 1

⎞

⎟
⎟
⎠

If we denote all column vectors of the A as A = {α1, α2, · · · , αn}, then a
family of vectors A can be regard as being composed of column vectors αj(j =
1, 2, · · · , n).

Remark 1. Let αj = (a1j , a2j , · · · , amj)� be a column vector. Then we denote
by ‖αj‖ = a1j + a2j + · · · + amj , where j = 1, 2, · · · , n.

Definition 13. Let A be a matrix induced by C and A a set of all column vectors
of A. Then we denote the maximization of the A by Amax as follows:

Amax = {αi ∈ A : ∀ αj ∈ A, ‖αi‖ ≥ ‖αj‖}.
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Example 4 (Continued from Example 3). Amax = { α2 }, where α2 =(
1 0 1 1

) �.

We take any one from Amax, denoted as α. If a row of α is 1, then we omit
column vectors whose values are 1 in the same row with α and the vectors we
have omitted until there do not exist column vectors such that their values are
1 in the same row.

Example 5 (Continued from Example 3).

Aij =

⎛
⎜⎜⎝

α1 α2 α3 α4

1 1 0 0
1 0 1 1
0 1 1 0
0 1 0 1

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

α2 α3 α4

1 0 0
0 1 1
1 1 0
1 0 1

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

α2 α4

1 0
0 1
1 0
1 1

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

α2

1
0
1
1

⎞
⎟⎟⎠.

Since ‖α2‖ is the maximization of ‖αi‖(i = 1, · · · , 4), hence we regard α2 as
α. Thus the first row of α is 1, so we omit α1 whose the first row is 1. Because
the values of α3, α4 and α1 are 1 in the second row, we also omit α3, α4.

Definition 14. Let (U, C) be a covering approximation space and A be a matrix
induced by C. The new matrix through the above process is called the simplifica-
tion of A, denoted by Simp(A).

Proposition 10. Let (U, C) be a covering approximation space, A be a matrix
induced by C and N(U,C) the number of connected component of (U, C). We denote
the number of column vector of Simp(A) by NSimp(A), then N(U,C) = NSimp(A).

Proof. We suppose A =
(
α1 α2 · · · αn

)
, Simp(A) =

(
α1 α2 · · · αm

)
, (m ≤ n).

On one hand, for any αi(1 ≤ i ≤ n, i �= 1, · · · ,m) there exist αj(j = 1, · · · ,m)
such that αi, αj have the same 1 in the same row, that is to say ai ∼ aj based on
Definition 12. On the other hand, for any αl, αk (l, k = 1, · · · ,m), then al �∼ ak

based on Definition 14 and Definition 12. Therefore N(U,C) = NSimp(A).

Proposition 11. Let (U, C) be a covering approximation space, A be a matrix
induced by C. Then Simp(A) only has one column vector if and only if (U, C) is
connected.

5.2 From the Graph Perspective

The following proposition is straightforward from the bigraph perspective [16].

Proposition 12. Let (U, C) be a covering approximation space and G a bigraph
induced by C. (U, C) is connected if and only if G is connected.

The above proposition gives a useful way to judge the connectivity of a cov-
ering approximation space. We will introduce another method through a general
graph.
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Definition 15 (Graph induced by Ki). Let C = {K1, K2, · · · , Km} be a cov-
ering. We define the graph G(Ki) = (V,E) induced by Ki = {x1, x2, · · · , xl}
(i = 1, · · · , m) as follows:
(1) V = {vKi

, v′
Ki

};
(2) E = {x1, x2, · · · , xl}, where xj connects vKi

with v′
Ki

, j = 1, 2, · · · , l.

Example 6. Let K = {u1, u2, u3, u4}, then the graph induced by K as shown in
Fig. 1:

u1

u2
u3

u4

Fig. 1. The graph induced by K.

Remark 2. Let G1 = (V1, E1), G2 = (V2, E2) be two graphs induced by K1, K2

respectively, where V1 = {vK1 , v
′
K1

}, V2 = {vK2 , v
′
K2

}. If K1 ∩ K2 �= ∅, then we
denote as vK1 = vK2 and v′

K1
= v′

K2
.

Definition 16 (Graph union [4]). Let G(K1) = (V1, E1), G(K2) = (V2, E2)
be two graphs induced by K1 and K2. Then the union of G(K1) and G(K2) is
defined as a graph (V1 + V2, E1 + E2), denoted by G(K1) ∪ G(K2).

It is clearly that a covering approximation space can induce a graph from
the following definition.

Definition 17. Let (U, C) be a covering approximation space. The graph induced
by C is called the graph induced by (U, C), denoted by G(C).

Example 7. Let (U, C) be a covering approximation space and U = {u1, u2, u3,
u4, u5}, C = {{u1, u3}, {u3, u5}, {u2, u4}}. Then the graph induced by C as
shown in the Fig. 2:

Proposition 13. Let (U, C) be a covering approximation space and G(C) a graph
induced by C. G(C) is connected if and only if (U, C) is connected.

Proof. It is straightforward based on the Definitions 15 and 16 and Remark 2.

Proposition 14. Let (U, C) be a covering approximation space and G(C) a graph
induced by C. Then the numbers of connected component of (U , C) and the graph
G(C) are equal.

Example 8 (Continued from Example 7). Since the graph induced by C has two
connected component from the Fig. 2, thus N(U,C) = 2.
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u1 u2
u3

u4u5

Fig. 2. The graph induced by C.

5.3 From Covering Perspective

In the following discussion, we will continue to simplify a covering in terms of a
covering for herself. First, we give the notion of friends of an element.

Definition 18 [26]. Let (U, C) be a covering approximation space. For any
x ∈ U , ∪{K : x ∈ K ∧K ∈ C} is called the friends of x, denoted by Friends(x).

According to Definition 18, it is clear that {Friends(x) : x ∈ U} is a covering
on the U , we denote by C1. We already know that C′

1 is also a covering and both
of them have the same connectivity in Sect. 3. Now, for every element x on U ,
we can get the friends of x in the covering approximation space (U, C′

1). Then
{Friends(x) : x ∈ U} is also a covering, denoted by C2 = {Friends(x) : x ∈ U},
then we get C′

2. Following it until we get a partition C′
N .

Example 9. Let (U, C) be a covering approximation space. C = {C1, C2, C3},
C1 = {a, c}, C2 = {a, b, d}, C3 = {b, e, f}. Since Friends(a) = {a, b, c, d},
Friends(b) = {a, b, d, e, f}, Friends(c) = {a, c}, Friends(d) = {a, b, d},
Friends(e) = Friends(f) = {b, e, f}. Thus C′

1 = {{a, b, c, d}, {a, b, d, e, f}}.
In the same way, we get C2 = {U , {a, b, c, d}, {a, b, d, e, f}}, then C′

2 = {U}.

If C′
N is a partition induced by above process, then this partition is called

the simplification of C. It is provided in the following Definition 19.

Definition 19. Let (U, C) be a covering approximation space. If C′
N is a partition

induced by above process, then we call C′
N is the simplification of C, denote by C′

N .

The notion of simplification of a covering can help us to judge the connectivity
of a covering approximation space from the following proposition.

Proposition 15. Let (U, C) be a covering approximation space and C′
N the sim-

plification of C. Then (U, C) is connected if and only if C′
N = {U}.

Proof. It is straightforward based on the process of the simplification of a cov-
ering.

Proposition 16. Let (U, C) be a covering approximation space and C′
N the sim-

plification of C. Then an equivalence classes of C′
N is a connected component of

(U, C).
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Proof. We suppose C′
N = {K1, · · · ,Km}, then Ki∩Kj = ∅(i, j = 1, · · · ,m) based

on Definition 19. According to the process of the simplification of a covering,
there must exist a covering C′

n and z ∈ U such that x ∈ MdC′
n
(z) and y ∈

MdC′
n
(z) for any x, y ∈ Ki(i = 1, · · · ,m). Since (U, C) and (U, C′

n) have the same
connectivity, thus x ∼ y. On the other hand, for any x ∈ Ki and y ∈ Kj(i �= j),
since Ki ∩ Kj = ∅, thus x �∼ y. Therefore an equivalence classes of C′

N is a
connected component of (U, C).

6 Conclusions

In order to improve the high-efficiency in data mining, we have studied the con-
nectivity of the covering approximation space and given three methods to judge
its connectivity. First, we have given a conception of maximization of a family of
sets, so the maximization of a covering has been given. Then we have investigated
the relationship between covering and its maximization. Especially, we give that
a covering and its maximization have the same connectivity. Second, we have
studied the connectivity of special covering approximation spaces. Finally, we
have given three methods to judge the connectivity of a covering approximation
space with the aid of matrix, graph and a new covering.

Acknowledgments. This work is in part supported by The National Nature Sci-
ence Foundation of China under Grant Nos. 61170128, 61379049 and 61379089, the
Key Project of Education Department of Fujian Province under Grant No. JA13192,
the Project of Education Department of Fujian Province under Grant No. JA14194,
the Zhangzhou Municipal Natural Science Foundation under Grant No. ZZ2013J03,
and the Science and Technology Key Project of Fujian Province, China Grant No.
2012H0043.

References

1. Bollobás, B.: Modern Graph Theory. Springer, New York (1998)
2. Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Extensions and inten-

tions in the rough set theory. Inf. Sci. 107, 149–167 (1998)
3. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst.

17, 191–209 (1990)
4. Gao, S.: Graph Theory and Network Flow Theory. Higher Education Press, Beijing

(2009)
5. Ge, X.: Connectivity of covering approximation spaces and its applications on

epidemiological issue. Appl. Soft. Comput. 25, 445–451 (2014)
6. Jensen, R., Shen, Q.: Finding rough set reducts with ant colony optimization. In:

Proceedings of the 2003 UK Workshop on Computational Intelligence, pp. 15–22
(2003)

7. Lai, H.: Matroid Theory. Higher Education Press, Beijing (2001)
8. Lin, T.Y.: Granular computing on binary relations. In: Alpigini, J.J., Peters, J.F.,

Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 296–299.
Springer, Heidelberg (2002)



The Connectivity of the Covering Approximation Space 445

9. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publishers, Boston (1991)

10. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
11. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177, 3–27 (2007)
12. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Infor-

maticae 27, 245–253 (1996)
13. Wang, F.: Outline of a computational theory for linguistic dynamic systems: toward

computing with words. Int. J. Intell. Control Syst. 2, 211–224 (1998)
14. Wang, Z., Shu, L., Ding, X.: Minimal description and maximal description in

covering-based rough sets. Fundamenta Informaticae 128, 503–526 (2013)
15. Wang, S., Zhu, W., Zhu, Q., Min, F.: Characteristic matrix of covering and its

application to boolean matrix decomposition. Inf. Sci. 263, 186–197 (2014)
16. Wang, S., Zhu, W., Zhu, Q., Min, F.: Four matroidal structures of covering and

their relationships with rough sets. Int. J. Approximate Reasoning 54, 1361–1372
(2013)

17. West, D., et al.: Introduction to Graph Theory. Pearson Education, Singapore
(2002)

18. Wu, W., Leung, Y., Mi, J.: On characterizations of (I, T) -fuzzy rough approxima-
tion operators. Fuzzy Sets Syst. 154, 76–102 (2005)

19. Yao, Y.Y.: On generalizing pawlak approximation operators. In: Polkowski, L.,
Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, p. 298. Springer,
Heidelberg (1998)

20. Yao, Y.: Relational interpretations of neighborhood operators and rough set
approximation operators. Inf. Sci. 111, 239–259 (1998)

21. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
22. Zakowski, W.: Approximations in the space (u, π). Demonstratio Mathematica 16,

761–769 (1983)
23. Zhu, W., Wang, F.: Reduction and axiomization of covering generalized rough sets.

Inf. Sci. 152, 217–230 (2003)
24. Zhu, W.: Relationship between generalized rough sets based on binary relation and

covering. Inf. Sci. 179, 210–225 (2009)
25. Zhu, W., Wang, F.: On three types of covering-based rough sets. IEEE Trans.

Knowl. Data Eng. 19, 1131–1144 (2007)
26. Zhu, W., Wang, F.: A new type of covering rough sets. In: 2006 3rd International

IEEE Conference on Intelligent Systems, pp. 444–449. IEEE (2006)


	The Connectivity of the Covering Approximation Space
	1 Introduction
	2 Preliminaries
	2.1 Covering Approximation Space
	2.2 Graph Theory

	3 Maximization of a Covering 
	4 The Connectivity of Covering Approximation Space
	5 Methods of Judging the Connectivity of a Covering Approximation Space
	5.1 From the Matrix Perspective
	5.2 From the Graph Perspective
	5.3 From Covering Perspective

	6 Conclusions
	References


