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Abstract. Covering-based rough set has attracted much research inter-
est with significant achievements. However, there are few analysis that
have been conducted to quantify covering-based rough set. The approx-
imation number is viewed as a quantitative tool for analyzing the
covering-based rough set. In this paper, we focus on the lower approxi-
mation number. Firstly, we investigate some key properties of the lower
approximation number. Secondly, we establish a lattice and two semi-
lattice structures in covering-based rough set with the lower approxi-
mation number. Finally, based on the lower approximation number, a
pair of matroid approximation operators is constructed. Moreover, we
investigate the relationship between the pair of matroid approximation
operators and a pair of lattice approximation operators.

Keywords: Covering · Rough set · The lower approximation number ·
Granular computing

1 Introduction

Rough sets [1–4] have been used as a tool to analyze the uncertain and incom-
plete information systems in data mining, and granular computing models have
been well established based on rough sets to process the uncertainly of objects. In
data mining research, coverings are a useful form to describe the characteristics
of attributes in information systems [5–7]. Covering-based rough sets serve as
an efficient technique to deal with covering data [8,9]. In recent years, covering-
based rough sets play an important role in data representation and have been
attracting more and more researcher interest [10–12]. There are many significant
achievements in both theory and application. For example, covering approxima-
tion models have been constructed [13–15], covering axiomatic systems have been
established [16–18], covering reduction problems have been defined [19,20], and
covering decision systems have been proposed [6,21].

Most existing research on covering-based rough sets has been conducted qual-
itatively. However, few quantitative analysis for covering-based rough sets have
been conducted. Recently, Zhu and Wang define [19,22] the upper approxima-
tion number function in covering-based approximation space. The upper approx-
imation number of a covering approximation space is equivalent to the rank of
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matrix. In order to have a better understanding of covering-based rough set
quantitatively, it is necessary to investigate the approximation number function.

In this paper, we propose a measurement to study covering-based rough sets
quantitatively. Firstly, we define the lower approximation number, and study
some properties of the lower approximation number. Secondly, with the low
approximation number, we establish a lattice and two semilattice structures in
covering-based rough set. Finally, a pair of matroid approximation operators is
constructed. What’s more, we compare the matroid approximation operators
with a pair of lattice approximation operators, and the pair of matroid operators
exhibit some quantitative characteristic.

The rest of the paper is organized as follows. Section 2 reviews some funda-
mental concepts to be used in this paper. Section 3 presents some quantitative
analysis for covering-based rough set. Section 4 gives the conclusion.

2 Preliminaries

This section, we present some fundamental concepts to be used in this paper.
First, the concept of the poset is given.

Definition 1 (Poset [23]). A relation ≤ on a set P is called a partial order
if it is reflexive, antisymmetric and transitive. A set P together with a partial
order ≤ is called a poset, denoted simply by (P,≤).

In the following, we introduce the semilattice, which is widely applied to
many areas.

Definition 2 (Semilattice [23]). An upper-semilattice is a poset (P,R) in
which every subset {a, b} has a least upper bound a ∨ b. A lower-semilattice
is a poset (P,R) in which every {a, b} has a greatest lower bound a ∧ b. The
upper-semilattice and the lower-semilattice are also called semilattices.

Based on the semilattice, the lattice is presented. In fact, a lattice is a poset
(P,R) which is an upper-semilattice and a lower-semilattice.

Definition 3 (Lattice [23]). A lattice is a poset (L,≤) in which every subset
{x, y} has a least upper bound x ∨ y and a greatest lower bound x ∧ y.

The operations ∨ and ∧ are disjunction and conjunction respectively, and
(L,∧,∨) is an algebraic system induced by the lattice (L,≤). In a lattice, for
any set {x, y}, and for any z ∈ L, if x ≤ z and y ≤ z, the z is called an upper
bound of {x, y}. The set {x, y} have more than one upper bound, and the least
upper bound is denoted by x ∨ y. Similarly, the greatest lower bound of {x, y}
is denoted by x ∧ y. Generally, we also call (L,∧,∨) a lattice. When there is no
confusion, we call L a lattice.

Several special types of lattice are introduced in the following.

Definition 4 (Bounded, distributive, modular, and complemented
lattices [23]). (i) A lattice (L,∧,∨) is bounded if there exist ⊥,� ∈ L such
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that ⊥ ≤ x ≤ � for all x ∈ L. Generally (L,∧,∨,⊥,�) is used to denote a
bounded lattice (L,∧,∨), where � is the greatest element and ⊥ its least ele-
ment.
(ii) A lattice (L,∧,∨) is distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), and
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z ∈ L.
(iii) A lattice (L,∧,∨) is modular if x ≥ z, we have x∧ (y ∨ z) = (x∧ y) ∨ z for
all x, y, z ∈ L.
(iv) A lattice (L,∧,∨) is complemented if, for any x ∈ L, there exists x

′ ∈ L,
such that x ∨ x

′
= � and x ∧ x

′
= ⊥, we call x

′
a complement of x in L.

This paper we focus on bounded lattice. In order to better understand
bounded lattice, the following we give an example (Fig. 1).

Example 1. Let L = {a, b, c, d, e}. A bounded lattice (L,∧,∨,⊥,�) is shown in
Fig. 1. In fact, a = ⊥ and e = �.

a

b

c

e

d

Fig. 1.

The following we will give the definition of the boolean algebra. In fact, a
boolean algebra is a special lattice that forms a mathematical structure with
high abstraction and broad application.

Definition 5 (Boolean algebra [23]). Let (L,∧,∨,⊥,�) be a bounded lat-
tice. Suppose (L,∧,∨,⊥,�) is a distributive and complemented lattice, then
(L,∧,∨,⊥,�) is called a Boolean algebra.

Note that in a boolean algebra (L,∧,∨,⊥,�), any element x has a unique
complement which we denote by x

′
.

The following definition introduce a covering on a boolean algebra.

Definition 6 (Covering [24]). Let (L,∧,∨,⊥,�) be a bounded lattice and let
C ⊆ L−{⊥}. C is called a covering of L if ∨x∈Cx = �. Further, if C is a covering
of L, and x ∧ y = ⊥ for all x, y ∈ C, x 
= y, then C is called a partition of L.

An example is given to illustrate the definition of covering in the following.

Example 2 (Continued from Example 1). A bounded lattice (L,∧,∨,⊥,�) is
shown in Fig. 1. Let L = {a, b, c, d, e} and C = {b, c, d}. Since ∨x∈Cx = b∨c∨d =
�, we know C is a covering of L. However, c∧d = c 
= ⊥, then C is not a partition
of L.
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In the following definition, a pair of approximation operators is introduced.

Definition 7. [24] Let (L,∧,∨,⊥,�) be a Boolean algebra and let C ⊆ L−{⊥}.
For all x ∈ L,

aprΘ
C

(x) = ∨{c ∈ C|c ≤ x},

aprΘ
C(x) = (apr

C
(x

′
))

′
.

are called the lower, upper lattice approximation of x with respect to C, respec-
tively. When there is no confusion, we omit the subscript C.

3 The Lower Approximation Number

In this section, we first present some properties of the lower approximation num-
ber. Based on the lower approximation number, we establish a lattice and two
semilattice structures in covering-based rough set. Finally, a pair of matroid
approximation operators is established with the lower approximation number.

3.1 Properties of the Lower Approximation Number

Inspired by the approximation operators in rough sets, the low approximation
number based on bounded lattices is defined as follow.

Definition 8 (The lower approximation number). Let (L,∧,∨,⊥,�) be a
bounded lattice, and let C be a covering of L. For all x ∈ L,

gC(x) = |{c ∈ C|c ≤ x}|

is called the lower approximation number of x, and gC is called the lower approx-
imation number function with respect to C. When there is no confusion, we omit
the subscript C.

Note that the low approximation number is defined for a bounded lattice, so we
can study covering-based rough set based on bounded lattices within this general-
ized framework. In the rest of this paper, we restrict ourselves to bounded lattice.
To better understand the lower approximation number, an example is given.

Example 3 (Continued from Example 1). A bounded lattice (L,∧,∨,⊥,�) is
shown in Fig. 1. Let L = {a, b, c, d, e} and C = {a, b, d}. Since ∨x∈Cx = a∨b∨d =
�, we know C is a covering of L. We will compute the lower approximation
numbers of c and e. As a ≤ c, then gC(c) = |{a}| = 1, and a ≤ e, b ≤ e, d ≤ e,
so gC(e) = |{a, b, d}| = 3.

The following proposition will give some key properties of the lower approx-
imation number, which is very important to analyze covering-based rough set
quantitatively.
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Proposition 1. Let (L,∧,∨,⊥,�) be a Boolean algebra, and let C be a covering
of L. The following properties of the lower approximation number function gC

hold:
(1) gC(⊥) = 0;
(2) for all x, y ∈ L, if x ≤ y, gC(x) ≤ gC(y);
(3) for all x, y ∈ L, gC(x) + gC(y) ≤ gC(x ∨ y) + gC(x ∧ y).

Proof. (1) : For all c ∈ C, we have ⊥ ≤ c, so gC(⊥) = 0.
(2) : For all a ∈ {c ∈ C|c ≤ x}, we have a ≤ x. If x ≤ y, then a ≤ y.
Therefore, a ∈ {c ∈ C|c ≤ y}. This prove {c ∈ C|c ≤ x} ⊆ {c ∈ C|c ≤ y}. Thus
|{c ∈ C|c ≤ x}| = g(x) ≤ g(y) = |{c ∈ C|c ≤ y}|.
(3) : For all a ∈ {c ∈ C|c ≤ x} or a ∈ {c ∈ C|c ≤ y}, we have a ≤ x or
a ≤ y, so a ≤ x ∨ y. Then a ∈ {c ∈ C|c ≤ x ∨ y}. For all a ∈ {c ∈ C|c ≤ x}
and a ∈ {c ∈ C|c ≤ y}, we have a ≤ x and a ≤ y, so a ≤ x ∧ y. Then
a ∈ {c ∈ C|c ≤ x ∧ y}. Therefore gC(x) + gC(y) ≤ gC(x ∨ y) + gC(x ∧ y).

Based on Definition 8, we present a necessary and sufficient condition for
gC(x) = n.

Proposition 2. Let (L,∧,∨,⊥,�) be a Boolean algebra. Let C be a covering of
L and |C| = n. For any x ∈ L, gC(x) = n if and only if x = �.

Proof. ⇐: It is straightforward.
⇒: If gC(x) = n, then ∀ci ∈ C, we have ci ≤ x. Hence ∨ci∈Cci ≤ x. Since C is a
covering of L, according to Definition 6, we know that ∨ci∈Cci = �. Therefore,
x = �.

3.2 Lattice Establish with the Lower Approximation Number

It is known to us all that lattices are important algebraical structures, and have
a variety of applications in the real world. This section we will establish two
semilattice structures with lower approximation number. Moreover, we establish
a boolean algebra.

Definition 9. Let (L,∧,∨,⊥,�) be a Boolean algebra, and let C be a covering
of L. We define two sets as follow:

T1 = {y ∈ L|(x ≤ y) ∧ (gC(x) = gC(y))},
T2 = {y ∈ L|(y ≤ x) ∧ (gC(x) = gC(y))}.

Based on Definition 9, we will get two semilattice structures. The following
will give the proof.

Proposition 3. (T1,∧) and (T2,∨) are semilattice.

Proof. First for all y1, y2 ∈ T1, we need to prove y1 ∧ y2 ∈ T1. Since y1, y2 ∈
T1, then x ≤ y1 and x ≤ y2, i.e., x ≤ y1 ∧ y2. From x ≤ y1 ∧ y2 ≤ y1, we
know gC(x) ≤ gC(y1 ∧ y2) ≤ gC(y1). For all y1 ∈ T1, gC(y1) = gC(x), that is,
gC(y1∧y2) = gC(x). Therefore, y1∧y2 ∈ T1. Similarly, we can prove y1∨y2 ∈ T2

for all y1, y2 ∈ T2.
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In order to better establish lattice structure, we give the following definition.

Definition 10. Let (L,∧,∨,⊥,�) be a Boolean algebra. Let C be a covering of
L and |C| = n. T3 is defined as follow:

T3 = {x ∈ L|gC(x) + gC(x
′
) = n}.

In fact T3 is not only a lattice, but also a boolean algebra. The following
proposition will give the proof.

Proposition 4. (T3,∧,∨,⊥,�) is a Boolean algebra.

Proof. (i) We need to prove (T3,∧,∨) is a lattice. For all x1, x2 ∈ T3, we have
gC(x1) + gC(x

′
1) = n and gC(x2) + gC(x

′
2) = n. According to Proposition 1, we

know gC(x1) + gC(x
′
1) + gC(x2) + gC(x

′
2) ≤ gC(x1 ∧ x2) + gC(x1 ∨ x2) + gC(x

′
1 ∧

x
′
2)+gC(x

′
1 ∨x

′
2). So gC(x1 ∧x2)+gC(x1 ∨x2)+gC(x

′
1 ∧x

′
2)+gC(x

′
1 ∨x

′
2) = 2n.

In fact, gC(x
′
1 ∧ x

′
2) = gC((x1 ∨ x2)

′
), gC(x

′
1 ∨ x

′
2) = gC((x1 ∧ x2)

′
). It means

that gC(x1 ∧ x2) + gC((x1 ∧ x2)
′
) = n and gC(x1 ∨ x2) + gC((x1 ∨ x2)

′
) = n.

Thus x1 ∨ x2 ∈ T3, x1 ∧ x2 ∈ T3. This proves (T3,∧,∨) is a lattice.
(ii) It is easy to know that for all x ∈ T3, ⊥ ≤ x ≤ �. Hence (T3,∧,∨) is
bounded lattice.
(iii) For all x, y, z ∈ T3, we know x, y, z ∈ L. Since (L,∧,∨,⊥,�) is a Boolean
algebra, then for all x, y, z ∈ L, x∨ (y ∧ z) = (x∨ y) ∧ (x∨ z), and x∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z). Thus (T3,∧,∨) is a distributive lattice.
(iv) For all x ∈ T3, we know gC(x) + gC(x

′
) = n. Then gC(x

′
) + gC(x

′′
) =

gC(x
′
) + gC(x) = n, that is, x

′ ∈ T3. Thus (T3,∧,∨) is a complemented lattice.
From (i)−(iv), we have the conclusion that (T3,∧,∨,⊥,�) is a Boolean algebra.

3.3 A Pair of Matroid Approximation Operators

In this section, a pair of matroid approximation operators is defined using the
lower approximation number. Then, we investigate some properties of the pair of
matroid operators. What’s more, compared with a pair of lattice approximation
operators, the pair of matroid operators exhibit some quantitative characteristic.
First of all, we give the the definition of matroid approximation operators as
follow.

Definition 11. Let (L,∧,∨,⊥,�) be a Boolean algebra. Let C be a covering of
L and |C| = n. For all x ∈ L,

apr
C

(x) = ∧{l ∈ L|gC(x) = gC(x ∧ l)},

aprC(x) = (apr
C

(x
′
))

′
.

are called the lower, upper matroid approximation of x with respect to C, respec-
tively. When there is no confusion, we omit the subscript C.

Based on Definition 11, we have some new properties of the matroid approx-
imation operators. Therefore, a quantitative viewpoint to study covering-based
rough sets is given.
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Proposition 5. Let (L,∧,∨,⊥,�) be a Boolean algebra. Let C be a covering of
L and |C| = n. The following properties hold:
(1) for all x ∈ L, g(x) = g(apr(x));
(2) for all x, y ∈ L, if x ≤ y and g(x) = g(y), then apr(y) ≤ x;
(3) for all x, y ∈ L, if x ≤ y and g(x) < g(y), then apr(x) 
= apr(y).

Proof. (1): For all x ∈ L, suppose that a, b ∈ {l ∈ L|g(x) = g(x ∧ l)} and
a 
= b, so g(x) = g(x ∧ a), g(x) = g(x ∧ b). According to proposition 1, we know
g(x∧ a) + g(x∧ b) ≤ g((x ∧ a) ∨ (x ∧ b)) + g((x ∧ a) ∧ (x∧ b)). Since g((x ∧ a) ∧
(x ∧ b)) = g(x ∧ a ∧ b), and g(x) = g(x ∧ a) ≤ g((x ∧ a) ∨ (x ∧ b)) ≤ g(x), then
g((x∧a)∨(x∧b)) = g(x). Thus g(x)+g(x) = g(x∧a)+g(x∧b) ≤ g(x)+g(x∧a∧b),
that is g(x ∧ a ∧ b) = g(x). Therefore, g(apr(x)) = g(x ∧ a ∧ b ∧ · · · ) = g(x).
(2): Since x ≤ y, then x∧y = x, that is, g(x∧y) = g(x). As g(x∧y) = g(x) = g(y),
we know x ∈ {l ∈ L|g(y) = g(y ∧ l)}. Hence apr(y) = ∧{l ∈ L|g(y) = g(y ∧
l)} ≤ x.
(3): If apr(x) = apr(y), then g(x) = g(apr(x)) = g(apr(y)) = g(y), which
contradicts g(x) < g(y). Therefore apr(x) 
= apr(y).

The following proposition shows that the matroid approximation operators
inherit some traditional properties of approximation operators such as monotony.
However, the idempotence does not hold.

Proposition 6. Let (L,∧,∨,⊥,�) be a Boolean algebra. Let C be a covering of
L and |C| = n. The following properties of the matroid approximation operators
apr, apr hold: for all x, y ∈ L,
(1)apr(⊥) = ⊥, apr(⊥) = ⊥;
(2)apr(�) = �, apr(�) = �;
(3)apr(x) ≤ x, x ≤ apr(x);
(4)apr(apr(x)) ≤ apr(x), apr(x) ≤ apr(apr(x)).

Proof. Because of duality, we only need to prove that these properties hold for
the matroid lower approximation operator.
(1) and (2): They are both straightforward.
(3): For all x ∈ L, since g(x) = g(x ∧ x), we have x ∈ {l ∈ L|g(x) = g(x ∧ l)}.
Therefore, ∧{l ∈ L|g(x) = g(x ∧ l)} ≤ x, that is, apr(x) ≤ x.
(4): For all a ∈ {l ∈ L|g(apr(x)) = g(apr(x)∧l)}, we have g(apr(x)) = g(apr(x)∧
a). Since g(x) = g(apr(x) ∧ a) ≤ g(x∧ a) ≤ g(x), then we know g(x) = g(x∧ a),
which implies that a ∈ {l ∈ L|g(x) = g(x ∧ l)}. Thus {l ∈ L|g(apr(x)) =
g(apr(x) ∧ l)} ⊆ {l ∈ L|g(x) = g(x∧ l)}. As apr(apr(x)) = ∧{l ∈ L|g(apr(x)) =
g(apr(x) ∧ l)} and apr(x) = ∧{l ∈ L|g(x) = g(x ∧ l)}. Therefore apr(apr(x)) ≤
apr(x).

Based on the lower approximation operators, we investigate the properties
of the lattice approximation operators.

Proposition 7. Let (L,∧,∨,⊥,�) be a Boolean algebra. Let C be a covering of
L. For all x, y ∈ L, if x ≤ y and g(x) = g(y), then
(1) aprΘ(x) = aprΘ(y);
(2) aprΘ(x ∧ y) = aprΘ(x ∨ y).
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Proof. (1): For all x, y ∈ L, if x ≤ y, then {c ∈ C|c ≤ x} ⊆ {c ∈ C|c ≤ y}. Since
g(x) = g(y), we know |{c ∈ C|c ≤ x}| = |{c ∈ C|c ≤ y}|, that is {c ∈ C|c ≤
x} = {c ∈ C|c ≤ y}. Therefore, ∨{c ∈ C|c ≤ x} = aprΘ(x) = aprΘ(y) = ∨{c ∈
C|c ≤ y}.
(2): It is straightforward.

In the following, the relationship between the lower matroid approximation
operator and the lower lattice approximation operator is studied.

Proposition 8. Let (L,∧,∨,⊥,�) be a Boolean algebra. Let C be a covering of
L. For all x, y ∈ L, if x ≤ aprΘ(y), then apr(x) ≤ y.

Proof. For all z ∈ aprΘ(y), we know z ≤ y. Since x ≤ aprΘ(y), then x ≤ y, that
is, x ∧ y = x. Hence g(x ∧ y) = g(x), that is y ∈ {l ∈ L|g(x ∧ l) = g(x)}. As
apr(x) = ∧{l ∈ L|g(x ∧ l). Therefore, apr(x) ≤ y.

Similarly, by duality, the relation between the upper matroid approximation
operator and the upper lattice approximation operator is also investigated.

Proposition 9. Let (L,∧,∨,⊥,�) be a Boolean algebra. Let C be a covering of
L. For all x, y ∈ L, if aprΘ(x) ≤ y, then x ≤ apr(y).

4 Conclusion

This paper further studies the concept of the lower approximation number func-
tion, and shows that the covering-based rough set can be characterized by the
lower approximation number. On one hand, we investigate some key properties
of the lower approximation number. On the other hand, we establish some lat-
tice structures based on the lower approximation number. Moreover, a pair of
matroid approximation operators is constructed with the lower approximation
number. Finally, we investigate the relation between the pair of matroid approx-
imation operators and a pair of lattice approximation operators. These studies
illustrate that the lower approximation number can be viewed as a quantitative
tool for analyzing the covering-based rough set.
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