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Abstract. Rough Sets theory is widely used as a method for estimating
and/or inducing the knowledge structure of if-then rules from a deci-
sion table after a reduct of the table. The concept of the reduct is that
of constructing the decision table by necessary and sufficient condition
attributes to induce the rules. This paper retests the reduct by the con-
ventional methods by the use of simulation datasets after summarizing
the reduct briefly and points out several problems of their methods. Then
a new reduct method based on a statistical viewpoint is proposed. The
validity and usefulness of the method is confirmed by applying it to the
simulation datasets and a UCI dataset. Particularly, this paper shows a
statistical local reduct method, very useful for estimating if-then rules
hidden behind the decision table of interest.

1 Introduction

Rough Sets theory was introduced by Pawlak [1] and used for inducing if-then
rules from a dataset called the decision table. The induced if-then rules sim-
ply and clearly express the structure of rating and/or knowledge hiding behind
the decision table. Such rule induction methods are needed for disease diagno-
sis systems, discrimination problems, decision problems and other aspects. Each
data in the decision table is a sample data consisting of the tuple of condition
attributes’ values and the decision attribute value, and the first step for the rule
induction is to find the condition attributes which do not have any relationship
with the decision attribute, to remove them and finally to reduce the table. The
use of those processes to obtain the reduced table is called a reduct. The conven-
tional rough sets theory to induce if-then rules is based on the indiscernibility
of the samples of the given table by their attributes, and a reduct by the conven-
tional method also uses the same concept and various types of indiscernibility,
their methods and algorithms for the reducts are proposed to date [2–6].

This paper retests the conventional reduct methods through the use of a
simulation dataset and points out their problems and how they lack receptivity
for datasets containing conflicting and/or indifferent data, such as real-world
datasets, after summarizing the conventional rough sets and reduct methods.
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Table 1. Example of a decision table

U (C(1)C(2)C(3)C(4)C(5)C(6)) D

1 563242 3

2 256124 6

3 116226 1

4 416646 6

... ...... ...

N − 1 151252 2

N 513135 4

Then a new reduct method is proposed to overcome their problems from a sta-
tistical point of view. Specifically, the new method recognizes each sample data
in the decision table as the outcomes of random variables of the tuple of the
condition attributes and the decision attribute since the dataset is obtained
from their population of interest. Accordingly, the problem of finding the reduct
through the concept of discernibility can be replaced by the problem of find-
ing the condition attributes which are statistically independent of the decision
attribute. This paper proposes two reduct methods: one is called a global reduct
which examines the statistical independence between each condition attribute
and the decision attribute, and the other is called a local reduct which finds
each condition attribute statistically independent of a decision attribute value.
The validity and usefulness of both reduct methods are confirmed by applying
them to the simulation dataset as well as a UCI dataset [7] prepared for machine
learning. The local reduct particularly shows that it gives important clues in the
search for the if-then rules hidden behind the decision table of interest.

2 Conventional Rough Sets and Reduct Method

Rough Sets theory is used for inducing if-then rules from a decision table S.
S is conventionally denoted S = (U,A = C ∪ {D}, V, ρ). Here, U = {u(i)|i =
1, ..., |U | = N} is a sample set, A is an attribute set, C = {C(j)|j = 1, ..., |C|} is
a condition attribute set, C(j) is a member of C and a condition attribute, and D
is a decision attribute. V is a set of attribute values denoted by V =

⋃
a∈A Va and

is characterized by an information function ρ: U×A → V . Table 1 example where
|C| = 6, |Va=C(j)| = MC(j) = 6, |Va=D| = MD = 6, ρ(x = u(1), a = C(1)) = 5,
ρ(x = u(2), a = C(2)) = 5, and so on.

Rough Sets theory focuses on the following equivalence relation and equiva-
lence set of indiscernibility: IC = {(u(i), u(j)) ∈ U2|ρ(u(i), a) = ρ(u(j), a),∀a ∈
C}. IC is an equivalence relation in U and derives the quotient set U/IC = {[ui]C |
i = 1, 2, ...}. Here, [ui]C = {u(j) ∈ U |(u(j), ui) ∈ IC , ui ∈ U}. [ui]C is an equiv-
alence set with the representative element ui and is called an element set of C
in Rough Sets theory [2]. Let be ∀X ⊆ U then X can be approximated like
C∗(X) ⊆ X ⊆ C∗(X) by use of the element set. Here,
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C∗(X) = {ui ∈ U |[ui]C ⊆ X}, (1)
C∗(X) ={ui ∈ U |[ui]C ∩ X �= ∅}, (2)

C∗(X) and C∗(X) are called the lower and upper approximations of X by C
respectively. The pair of (C∗(X), C∗(X)) is usually called a rough set of X by
C. Specifically, let X = Dd = {u(i)|(ρ(u(i),D) = d} then C∗(X) is surely a set
satisfying D = d and C∗(X) is possibly, and they derive if-then rules of D = d
with necessity and possibility, respectively.

The conventional Rough Sets theory seeks a minimal subset of C denoted
with B(⊆ C) satisfying the following two conditions:

(i) B∗(Dd) = C∗(Dd), d = 1, 2, ...,MD.
(ii) a(∈ B) satisfying (B−{a})∗(Dd) = C∗(Dd) (d = 1, 2, ...,MD) does not exist.

B(⊆ C) is called a relative reduct of {Dd|d = 1, ...,MD} preserving the lower
approximation, and is useful for finding if-then rules with necessity, since redun-
dant condition attributes have been already removed from C. In the same way,
a relative reduct preserving the upper approximation can be also defined and
obtained.

LEM1 algorithm [2] and the discernibility matrix method (DMM) [3] are well
known as representative ways to perform reducts. Figure 1 shows an example of
LEM1, and A and {d}∗ at Line 1 of the figure respectively correspond to C
and {Dd|d = 1, ...,MD} in this paper. LEM1, from Line 6 to 15 in the figure,
in principle, checks and executes (i) and (ii) for all the combinations of the
condition attributes.

DMM [3] at first forms a symmetric N ×N matrix having the following (i, j)
element δij :

δij = {a ∈ C|ρ(u(i), a) �= ρ(u(j), a)};

∃d ∈ D, ρ(u(i), d) �= ρ(u(j), d)and {u(i), u(j)} ∩ Pos(D) �= ∅,

= ∗; otherwise(U − Pos(D)).

Here, Pos(D) = ∪MD

d=1C∗(Dd) and ∗ denotes “don’t care”. Then, a relative reduct
preserving the lower approximation can be obtained by the following expression:

F reduct = ∧i,j:i<j ∨ δij . (3)

Here, F reduct is called a discernible function and indicates that reducts are
obtained by arranging all of respective discernibility.

3 Retests of the Conventional Reduct Method

Here we retest the ability of the reducts obtained through LEM1 and DMM by
use of a simulation dataset. The literatures [8–11] show ways of how to generate
simulation datasets. Specifically, let (a) generate the condition attribute values
of u(i), that is, uC(i) = (vC(1)(i), vC(2)(i), ..., vC(|C|)(i)) by the use of random
numbers with a uniform distribution and (b) determine the decision attribute
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Line No. Algorithm to compute a single global covering

1 (input: the set A of all attributes, partition {d}∗ on U ;
output: a single global covering R);

2 Begin

3 compute partition A∗;
4 P := A;

5 R := ∅;

6 if A∗ ≤ {d}∗

7 Then

8 Begin

9 for each attribute a in A do

10 Begin

11 Q := P − {a};

12 compute partition Q∗;
13 if Q∗ ≤ {d}∗ then P := Q

14 end {for}
15 end {then}
16 end {algorithm}

Fig. 1. Example of LEM1 algorithm

value of u(i), that is, uD(i) by use of if-then rules specified in advance and in the
hypotheses shown in Table 2, and repeat the (a) and (b) processes by N times.
Table 1 shows an example dataset generated by the use of those procedures with
the following if-then rule R(d) specified in advance:

R(d) : if Rd then D = d (d = 1, ...,MD = 6), (4)

where Rd = (C(1) = d)
∧

(C(2) = d)
∨

(C(3) = d)
∧

(C(4) = d). The results of
retesting both methods using the N = 10000 dataset showed F reduct

LEM1 = F reduct
DMM =

C(1) ∧ C(2) ∧ C(3) ∧ C(4) ∧ C(5) ∧ C(6) while the results were expected to be
F reduct = C(1)∧C(2)∧C(3)∧C(4) from the rules (4) specified in advance. The
retest experiment was repeated three times by changing the generated dataset
and obtained the same results, or in other words, the expected reducts were not
obtained.

These results are clearly derived from the indiscernibility and/or discerni-
bility caused by the element set in the conventional Rough Sets theory. The
element sets couldn’t distinguish the differences between samples by the if-then
rules (see Hypothesis 1 in Table 2) or those obtained by chance (see Hypothesis
2 and 3 in Table 2). On the other hand, real-world datasets will contain all kinds
of data generated by Hypotheses 1, 2 and 3. In other words, the conventional
Rough Sets theory does not have any abilities adaptive to sample data caused
by chance.
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Table 2. Hypotheses with regard to the decision attribute value

Hypothesis 1 uC(i) coincides with R(k), and uD(i) is uniquely determined as
D = d(k) (uniquely determined data)

Hypothesis 2 uC(i) does not coincide with any R(d), and uD(i) can only be
determined randomly (indifferent data)

Hypothesis 3 uC(i) coincides with several R(d) (d = d1, d2, ...), and their outputs of
uC(i) conflict with each other. Accordingly, the output of uC(i)
must be randomly determined from the conflicted outputs
(conflicted data)

4 Proposal of Statistical Reduct

4.1 Statistical Global Reduct Method

As mentioned in Sect. 3, conventional reduct methods are unable to reproduce
the forms of reducts specified in advance from the decision table due to a
lack of abilities adaptive to the indifferent and conflicted samples in datasets,
despite the fact that real-world datasets will have such samples. This paper stud-
ies this problem with reducts from the view of STRIM (Statistical Test Rule
Induction Method) [8–11]. STRIM regards the decision table as a sample set
obtained from the population of interest. According to a statistical model, u(i) =
(vC(1)(i), vC(2)(i), ..., vC(|C|)(i), uD(i)) is an outcome of the random variables of
A = (C(1), C(2), ..., C(|C|),D) = (C,D) (hereafter, the names of the attributes
are also used as the random variables). Next, the following probability model will
be specified: For any j, P (C(j) = vC(j)(k)) = p(j, k),

∑MC(j)

k=1 p(j, k) = 1. For
any j1 �= j2, P (C(j1) = vC(j1)(k1), C(j2) = vC(j2)(k2)) = p(j1, k1)p(j2, k2),
that is, C(j1) and C(j2) are independent of each other. According to the rules
specified in (4), if C = (1, 1, 2, 3, 4, 5) (hereafter (112345) briefly), for exam-
ple, then P (D = 1) = 1.0 by use of Hypothesis 1 in Table 2. If C = (123456)
then P (D = 1) = 1/MD = 1/6 by use of Hypothesis 2. If C = (112256) then
P (D = 1) = 1/2 by use of Hypothesis 3. Generally, the outcome of random vari-
able D is determined by the outcome of C, if-then rules (generally unknown)
and the hypothesis shown in Table 2. Consequently, the following expression is
obtained:

P (D,C) = P (D|C)P (C = (vc(1)(i), vc(2)(i), ..., vc(|C|)(i))). (5)

Here, P (D|C) is the condition probability of D by C and dependent on the if-
then rules to be induced by the use of the dataset {u(i) = (vC(1)(i), vC(2)(i), ...,
vC(|C|)(i), uD(i))|i = 1, ..., N}.

In the special case, if C(j) does not exist in the condition part of the if-
then rules to be induced, then D is independent of C(j), that is P (D,C(j)) =
P (D|C(j))P (C(j)) = P (D)P (C(j)). This independency between D and C(j)
can be used for a reduct of the decision table. The problem of whether they are
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independent or not can be easily dealt with using a statistical test of hypothe-
ses by the use of {u(i) = (vC(1)(i), vC(2)(i), ..., vC(|C|)(i), uD(i))|i = 1, ..., N}.
Specifically, specification and testing of the following null hypothesis H0(j) and
its alternative hypothesis H1(j) (j = 1, ..., |C|) were implemented:

H0(j): C(j) and D are independent of each other.
H1(j): C(j) and D are not independent of each other.

This paper adopts a Chi-square test since it is a standard method for testing
the independency of two categorical variables by use of the contingency table
MC(j) × MD. Chi-square tests are widely used in a data mining area for feature
selection [12]. The test statistic χ2 of C(j) vs. D is

χ2 =
MC(j)∑

k=1

MD∑

l=1

(fkl − ekl)2

ekl
, (6)

where, fkl = |U(C(j) = k)
⋂

U(D = �)|, U(C(j) = k) = {u(i)|vC(j)(i) = k},

U(D = l) = {u(i)|uD(i) = l}, ekl = np̂(j, k)p̂(D, l), n =
∑MC(j)

k=1

∑MD

l=1 fkl,
p̂(j, k) = fk /n, p̂(D, l) = f l/n, fk =

∑MD

l=1 fkl, f l =
∑MC(j)

k=1 fkl. χ2 obeys a
Chi-square distribution with degrees of freedom df = (MC(j) − 1) × (MD − 1)
under H0(j) and test condition [13]: np̂(j, k)p̂(D, l) ≥ 5. This paper proposes a
reduct method to adopt only the C(j)s of H0(j) that were rejected and to con-
struct a decision table composed by them since the test of the hypotheses can’t
control type II errors but only type I errors by a significance level. This paper
names the proposed method the statistical global reduct (SGR) to distinguish
it from the conventional method.

A simulation experiment was conducted to confirm the validity of the pro-
posed method using the decision table of the samples of N = 10000 used in
Sect. 2, and the following procedures:

Step1: Randomly select samples by NB = 3000 from the decision table (N =
10000), and form a new decision table;

Step2: Apply SGR to the new table, and calculate χ2 every C(j);
Step3: Repeat Step1 and Step2 Nr = 100 times.

Table 3 shows the arrangement of the results of the simulation experiment,
that is, the average (AVE), standard deviation (S.D.), maximum (Max) and
minimum (Min) of χ2, and their corresponding p-values for every C(j) (j =
1, ..., 6). The table shows the following:

(1) There are clear differences and big gaps in χ2 values between those of C(1)−
C(4) dependent on D and those of C(5) or C(6) independent of D, and are
not overlapped by fluctuating ranges of the χ2 value.

(2) Accordingly, there are clear differences in p-values between them.
(3) This reduct method of adopting rejected C(j)s of H0(j) and to construct a

decision table composed by them is valid and useful since the notion repro-
duces the expected reduct.
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Table 3. Results of test for independence by Bootstrap method (N = 10000, NB =
3000, Nr = 100): C(j) (j = 1, ..., 6) vs. D

χ2 C(1) C(2) C(3) C(4) C(5) C(6)

AVE 341.69 360.59 313.27 327.40 24.79 25.23

S.D. 37.35 35.91 35.31 34.55 7.04 6.06

Max 451.19 471.25 412.19 418.39 47.83 40.61

Min 270.7 285.91 232.56 255.42 10.93 8.21

p-value Max 9.44E-80 6.84E-84 9.87E-72 5.28E-73 3.91E-03 2.52E-02

Min 4.29E-43 3.98E-46 1.45E-35 4.59E-40 9.93E-01 9.99E-01

4.2 Statistical Local Reduct Method

In this section, a statistical local reduct (SLR) method which is applied for every
decision attribute value, that is, every if-then rule, is proposed corresponding to
the SGR method. The SLR method is applicable for the decision table which
doesn’t even have a relative reduct and/or the SGR. Specifically, (5) also holds
at D = l, that is,

P (D = l, C) = P (D = l|C)P (C = (vc(1)(i), vc(2)(i), ..., vc(|C|)(i))). (7)

Accordingly, the discussion in Sect. 4.1 holds even in the case where D is replaced
in H0(j) and H1(j) with D = l, and the test of statistical independency between
C(j) and D = l can be used for the reduct method for every D = l or if-then rule.

Table 4 shows a set of new rules specified in advance in order to confirm the
validity and usefulness of the SGL and SLR method. For example, (1100001) at
Rule 1 of the table means there is a rule that if (C(1) = 1)

∧
(C(2) = 1) then

D = 1. The set of new rules doesn’t include redundant condition attributes, that
is, D is dependent on all condition attributes. The same simulation experiment
in 4.1 was conducted replacing (4) with the set of rules in Table 4 and the
results of the applied SGR method were summarized in Table 5 in the same way
as Table 3. The validity of the SGR method is also confirmed since the table
suggests the condition attributes seemed to be independent of D never existing,
which coincides with the rules specified in advance. However, the structure of
the if-then rules specified in advance is left almost unknown.

Then, the SLR method was applied for one of the same datasets of Nr = 100
times used in Table 5. As one of examples, Table 6 shows the contingency table
of the case of D = 1 vs. C(j) (j = 1, ..., 6) and the results of a chi-square test of
them with df = (MC(j) − 1), and suggests the following knowledge:

(1) The p-values of C(5) and C(6) are quite high compared with those of the
other condition attributes and indicate that C(5) and C(6) are independent
of D = 1, that is, they are redundant and should be removed from the
viewpoint of reduct.
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Table 4. Example of if-then rules for a simulation experiment

Rule No. specified rule: (C(1)C(2), ..., C(6)D)

1 (1100001)

2 (0011001)

3 (0000222)

4 (2200002)

5 (0033003)

6 (0000333)

7 (4400004)

8 (0044004)

9 (0000555)

10 (5500005)

11 (0066006)

12 (0000666)

Table 5. Results of test for independence by Bootstrap method using sample dataset
generated by rules in Table 4 (N = 10000, NB = 3000, Nr = 100): C(j) (j = 1, ..., 6)
vs. D

χ2 C(1) C(2) C(3) C(4) C(5) C(6)

AVE 209.56 206.35 244.57 234.94 252.45 219.59

S.D. 29.38 29.08 30.14 30.72 27.41 28.83

Max 293.56 290.93 318.17 317.52 310.48 314.13

Min 140.01 147.43 185.15 162.5 186.58 153.62

p-value Max 1.17E-47 3.95E-47 1.33E-52 1.80E-52 4.72E-51 8.69E-52

Min 5.71E-18 2.51E-19 2.14E-26 4.03E-22 1.14E-26 1.81E-20

(2) The frequencies of C(1) = 1, C(2) = 1, C(3) = 1 and C(4) = 1 are relatively
high compared with those of the rest of the same C(j) (j = 1, ..., 4) set.
Accordingly, the combinations of C(j) = 1 (j = 1, ..., 4) will most likely
construct the rules of D = 1.

The above knowledge of (1) and (2) coincides with the specifications of Rules 1
and 2 in Table 4 and the same results also have been obtained from the cases of
D = l (l = 2, ..., 6), and thus through them the validity and usefulness of the
SLR method have been confirmed.

5 An Example Application on an Open Dataset

The literature [7] provides a lot of datasets for machine learning. This paper
applied the SGR and SLR method for the “Car Evaluation” dataset included in
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Table 6. Example of contingency table by local reducts (N = 3000, df = 5): D = 1 vs. C

D = 1 C

|U(D = 1)| = 486 1 2 3 4 5 6

1 141 122 137 141 78 88

2 64 67 89 80 95 74

3 82 86 59 82 74 79

4 58 77 53 52 93 101

5 79 58 83 75 71 64

6 62 76 65 56 75 80

χ2 52.83 35.01 66.42 53.16 2.99 13.33

p-values 3.64E-10 1.5E-06 5.68E-13 5.00E-10 0.702 2.05E-2

Table 7. Arrangement of Car Evaluation dataset of UCI

unified
attribute
value

C(1):
buying

C(2):
maint

C(3):
doors

C(4):
person

C(5):
lug boot

C(6):
safety

D:
class
(freq.)

1 vhigh vhigh 2 2 small low unacc (1210)

2 high high 3 4 med med acc (383)

3 med med 4 more big high good (69)

4 low low 5more – – – vgood (65)

them. Table 7 shows the summaries and specifications of the dataset: |C| = 6,
|VC(1)| = |VC(2)| = |VC(3)| = 4, |VC(4)| = |VC(5)| = |VC(6)| = 3, |VD| = 4,
N = |U | = |VC(1)| × |VC(2)| × |VC(3)| × |VC(4)| × |VC(5)| × |VC(6)| = 1728 which
consists of every combination of condition attributes’ values, and there were not
any conflicted or identical samples. The frequencies of the decision attribute
values extremely incline toward D = 1 as shown in Table 7.

Table 8 shows the results obtained by the SGR method, that is, χ2 and the
corresponding p-values at every C(j) (j = 1, ..., |C|) and suggests that C(3)
is independent of D and redundant compared to those of the other condition
attributes, and should be removed from the viewpoint of the reduct.

Table 8. Results of global reduct for Car Evaluation dataset: D vs. C(j) (j = 1, ..., 6)

C(1) C(2) C(3) C(4) C(5) C(6)

D χ2 189.24 142.94 10.38 371.34 53.28 479.32

p-value 5.92E-36 2.54E-26 3.20E-01 4.04E-77 1.03E-09 2.39E-100
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Table 9. Results of local reduct for Car Evaluation dataset: D = � (� = 1, ..., 4) vs.
C(j) (j = 1, ..., 6)

C(1) C(2) C(3) C(4) C(5) C(6)

D = 1 χ2 22.94 19.24 2.58 111.00 8.81 118.81

p-value 4.16E-05 2.44E-04 4.62E-01 7.88E-25 1.22E-02 1.59E-26

D = 2 χ2 11.77 10.77 3.19 192.56 6.52 194.25

p-value 8.21E-03 1.30E-02 3.64E-01 1.53E-42 3.85E-02 6.59E-43

D = 3 χ2 84.33 84.33 0.39 34.70 0.26 36.26

p-value 3.61E-18 3.61E-18 9.42E-01 2.92E-08 8.78E-01 1.34E-08

D = 4 χ2 70.20 28.60 4.23 33.08 37.69 130.00

p-value 3.87E-15 2.72E-06 2.38E-01 6.57E-08 6.53E-09 5.90E-29

Table 10. Examples of contigency table and χ2 test by local reducts

(a) D = 1 vs. C(j) (j = 1, ..., 6)

VC(i) C(1) C(2) C(3) C(4) C(5) C(6)

1 360 360 326 576 450 576

2 324 314 300 312 392 357

3 268 268 292 322 368 277

4 258 268 292 – – –

χ2 22.94 19.24 2.58 111.00 8.81 118.81

p-value 4.16E-05 2.44E-04 4.62E-01 7.88E-25 1.22E-02 1.59E-26

(b) D = 4 vs. C(j) (j = 1, ..., 6)

VC(i) C(1) C(2) C(3) C(4) C(5) C(6)

1 0 0 10 0 0 0

2 0 13 15 30 25 0

3 26 26 20 35 40 65

4 39 26 20 – – –

χ2 70.20 28.60 4.23 33.08 37.69 130.00

p-value 3.87E-15 2.72E-06 2.38E-01 6.57E-08 6.53E-09 5.90E-29

Table 9 shows the results obtained by the SLR method, that is, χ2 and the
corresponding p-values at every D = l (l = 1, ..., 4) and C(j) (j = 1, ..., |C|) and
suggests the following:

(1) C(3) is commonly redundant at D = l (l = 1, ..., 4), which coincides with the
results by the SGR method.

(2) With regard to the if-then rule of D = 1, C(5) is redundant. In the same
way, C(2) and C(5) at D = 2 are, and C(5) at D = 3 is.
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Table 11. Examples of estimated rules by use of the local reduct results in Table 10

Rule
No.

examples of
estimated rules
(C(1)C(2)C(3)
C(4)C(5)C(6)D)

distribution of
decision values
(n1, n2, n3, n4)

p-value(χ2) accuracy coverage

1 (0000011) (576, 0, 0, 0) 3.58E-53(246.59) 1.00 0.476

2 (0001001) (576, 0, 0, 0) 3.58E-53(246.59) 1.00 0.476

3 (0001011) (192, 0, 0, 0) 1.03E-17(82.20 1.00 0.157

4 (1000001) (360, 72, 0, 0) 6.47E-11(50.43) 0.83 0.296

5 (0100001) (360, 72, 0, 0) 6.47E-11(50.43) 0.83 0.296

6 (1000011) (144, 0, 0, 0) 2.61E-13(61.64) 1.00 0.119

7 (0100011) (144, 0, 0, 0) 2.61E-13(61.64) 1.00 0.119

8 (1001001) (144, 0, 0, 0) 2.61E-13(61.64) 1.00 0.119

9 (0101001) (144, 0, 0, 0) 2.61E-13(61.64) 1.00 0.119

10 (0000034) (277, 204,30, 65) 2.24E-37(173.49) 0.113 1.000

11 (0000304) (368, 144,24, 40) 1.24E-4(20.65) 0.069 0.615

12 (0000334) (88, 64, 0, 40) 1.85E-39(183.14) 0.208 0.615

13 (4000034) (52, 33, 20, 39) 1.24E-57(267.21) 0.27 0.600

14 (0400034) (52, 46, 20, 26) 7.32E-31(143.30) 0.18 0.400

15 (4000334) (16, 8, 0, 24) – 0.50 0.369

16 (4403334) (0, 0, 0, 4) – 1.00 0.062

Table 10 shows examples of the contingency tables of D = 1 (a) and D = 4
(b), and their χ2 by the SLR method, and suggests the following knowledge:

(1) With regard to the if-then rules of D = 1 (see (a)),the frequencies of
C(1) = 1, C(2) = 1, C(4) = 1 and C(6) = 1 are distinctively high, which
is statistically confirmed by their p-values. Accordingly, the if-then rules of
D = 1 are supposed to be constructed by the combinations of the set of
{C(1) = 1, C(2) = 1, C(4) = 1 and C(6) = 1} as shown in the knowledge
obtained in 4.2.

(2) In the same way, the if-then rules of D = 4 are supposed to be constructed
by the combinations of the set of {C(1) = 4, C(2) = 4, C(4) = 3, C(5) =
3 and C(6) = 3} (see (b)).

Table 11 shows the trying rules (Rule 1-9 for D = 1, Rule 10-16 for D = 4)
based on the knowledge obtained above (1) and (2). Here Rule 15 and 16 do not
have p-values since they do not satisfy the test condition np̂(j, k) ≥ 5 (for D = 4,
n ≥ 5

0.04 = 125). Rule 1 and Rule 2 can be selected as one of the proper rules of
D = 1 since their p-values are extremely high and their indexes of accuracy and
coverage are in good condition compared to the other trying rules. To express
those rules by use of the original notation in Table 7, if person=2

∨
safety=low
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then class=unacc, is obtained with the coverage=(576+576−192)/1210 ≈ 0.793
and accuracy=1.0.

In the same way, the rule that if buying=low
∧

safety=high then class=vgood
(Rule 13) is thought to be proper since the p-value is the best and the indexes of
accuracy and coverage are moderate among the trying rules for D = 4 although
the number of sample data for D = 4 is small compared to that for D = 1. Both
rules estimated coincide with our common sense and the validity and usefulness
of the SGR and SLR method have been experimentally confirmed through the
use of an open dataset.

6 Conclusions

The Rough Sets theory has been used for inducing if-then rules from the decision
table and clarifying the structure of rating and/or knowledge hidden behind the
dataset. The first step in inducing the rules is to find reducts of the condition
attributes. This paper retested the conventional reduct methods LEM1 [2] and
DMM [3] by a simulation experiment after summarizing the conventional rough
sets theory and pointed out their problems. Then, this paper proposed a new
reduct method to overcome the problems of the conventional method from the
view of STRIM [8–11]. Specifically, the SGR and SLR methods were proposed
and their validity and usefulness were confirmed by a simulation experiment and
application to an open dataset of UCI for machine learning. The SLR method
should be recognized to be particularly useful for not only reducts of condition
attributes but also inducing if-then rules.
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