
A Shuffled Complex Evolution Algorithm
for the Multidimensional Knapsack Problem

Marcos Daniel Valadão Baroni(B) and Flávio Miguel Varejão

Universidade Federal Do Esṕırito Santo,
Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, Brazil

marcosdaniel.baroni@gmail.com

http://ninfa.inf.ufes.br/

Abstract. This work addresses the application of a population based
evolutionary algorithm called shuffled complex evolution (SCE) in
the multidimensional knapsack problem. The SCE regards a natural
evolution happening simultaneously in independent communities. The
performance of the SCE algorithm is verified through computational
experiments using well-known problems from literature and randomly
generated problem as well. The SCE proved to be very effective in find-
ing good solutions demanding a very small amount of processing time.

Keywords: Multidimensional knapsack problem · Meta-heuristics ·
Artificial intelligence

1 Introduction

The multidimensional knapsack problem (MKP) is a strongly NP-hard com-
binatorial optimization problem which can be viewed as a resource allocation
problem and defined as follows:

maximize
n∑

j=1

pjxj

subject to
n∑

j=1

wijxj � ci i ∈ {1, . . . , m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}.

The problem can be interpreted as a set of n items with profits pj and a set of
m resources with capacities ci. Each item j consumes an amount wij from each
resource i, if selected. The objective is to select a subset of items with maximum
total profit, not exceeding the defined resource capacities. The decision variable
xj indicates if j-th item is selected.

Research supported by Fundação de Amparo à Pesquisa do Esṕırito Santo.

c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 768–775, 2015.
DOI: 10.1007/978-3-319-25751-8 92



A SCE Algorithm for the Multidimensional Knapsack Problem 769

The multidimensional knapsack problem can be applied on budget planning
scenarios and project selections [8], cutting stock problems [7], loading prob-
lems [10], allocation of processors and databases in distributed computer pro-
grams [6].

The problem is a generalization of the well-known knapsack problem (KP)
in which m = 1. However it is a NP-hard problem significantly harder to solve
in practice than the KP. Due its simple definition but challenging difficulty of
solving, the MKP is often used to to verify the efficiency of novel metaheuristics.
A good review for the MKP is given by [5].

In this paper we address the application of a metaheuristic called shuffled
complex evolution (SCE) to the multidimensional knapsack problem. The SCE
is a metaheuristic, proposed by Duan in [3], which combines the ideas of a con-
trolled random search with the concepts of competitive evolution and shuffling.
The SCE algorithm has been successfully used to solve several problems like flow
shop scheduling [11] and project management [4].

The reminder of the paper is organized as follows: Section 2 presents the
shuffled complex evolution algorithm and proposes its application on the MKP.
Section 3 comprises several computational experiments. In section 4 we make
our concluding remarks about the experimental results.

2 The Shuffled Complex Evolution for the MKP

The shuffled complex evolution is a population based evolutionary optimization
algorithm that regards a natural evolution happening simultaneously in inde-
pendent communities. The algorithm works with a population partitioned in N
complexes, each one having M individuals. In the next Subsection the SCE is
explained in more details. In the later Subsection the application of SCE to the
multidimensional knapsack problem is considered.

2.1 The Shuffled Complex Evolution

In the SCE a population of N ∗M individuals is randomly taken from the feasible
solution space. After this initialization the population is sorted by descending
order according to their fitness and the best global solution is identified. The
entire population is then partitioned (shuffled) into N complexes, each containing
M individuals. In this shuffling process the first individual goes to the first
complex, the second individual goes to the second complex, individual N goes
to N -th complex, individual M + 1 goes back to the first complex, etc.

The next step after shuffling the complexes is to evolve each complex through
a given fixed amount of K ′ steps. The individuals in each complex is sorted by
descending order of fitness quality. In each step a subcomplex of P individuals
is selected from the complex using a triangular probability distribution, where
the i-th individual has a probability pi = 2(n+1−i)

n(n+1) of being selected. The use of
triangular distribution is intended to prioritize individuals with better fitness,
supporting the algorithm convergence rate.



770 M.D.V. Baroni and F.M. Varejão

After the selection of the subcomplex, its worst individual is identified to
be replaced by a new generated solution. This new solution is generated by
the crossing of the worst individual and an other individual with better fitness.
At first the best individual of the subcomplex is considered for the crossing. If
the new solution is not better than the worst one, the best individual of the
complex is considered for a crossing. If the latter crossing did not result in any
improvement, the best individual of whole population is considered. Finally, if
all the crossing steps couldn’t generate a better individual, the worst individual
of the subcomplex is replaced by a new random solution taken from the feasible
solution space. This last step is important to prevent the algorithm becoming
trapped in local minima. Fig. 1(b) presents the evolving procedure described
above in a flowchart diagram.

After evolving all the N complexes the whole population is again sorted
by descending order of fitness quality and the process continues until a stop
condition is satisfied. Fig. 1(a) shows the SCE algorithm in a flowchart diagram.

2.2 The Shuffled Complex Evolution for the MKP

As it can be noted in its description the SCE is easly applied to any optimization
problem. The only steps needed to be specified is (a) the creation of a new
random solution and (b) the crossing procedure of two solutions. These two
procedures are respectively presented by Algorithm. 1 and Algorithm 2.

Algorithm 1. Generation of a new random solution for the MKP.
1: procedure New random solution
2: v ← shuffle(1, 2, . . . , n)
3: s ← ∅ � empty solution
4: for i ← 1 : n do
5: s ← s ∪ {vi} � adding item
6: if s is not feasible then � checking feasibility
7: s ← s − {vi}
8: end if
9: end for

10: return s
11: end procedure

To construct a new random solution (Algorithm 1) the items are at first
shuffled in random order and stored in a list (line 2). A new empty solution is
then defined (line 3). The algorithm iteratively tries to fill the solution’s knapsack
with the an item taken from the list (lines 4-9). The feasibility of the solution is
then checked: if the item insertion let the solution unfeasible (line 6) its removed
from knapsack (line 7). After trying to place all available items the new solution
is returned.

The crossing procedure (Algorithm 2) takes as input the worst solution
taken from the subcomplex xw = (xw

1 , xw
2 , . . . , xw

n ), the selected better solution



A SCE Algorithm for the Multidimensional Knapsack Problem 771

(a) The SCE algorithm overview. (b) Evolving stage for a single complex.

Fig. 1. Flowchart representing the shuffled complex evolution algorithm.

xb = (xb
1, x

b
2, . . . , x

b
n) and the number c of genes that will be carried from the

better solution. The c parameter will control how similar the worst individual
will be from the given better individual. At first the items are shuffled in ran-
dom order and stored in a list (line 2). Then c randomly chosen genes are carried
from the better individual to the worst individual (line 5). At the end of steps
the feasibility of the solution is checked (line 7) and the solution is repaired if
needed. The repair stage is a greedy procedure that iteratively removes the item
that less decreases the objective function. Finally the fitness of the generated
solution is updated (line 10) and returned (line 11).



772 M.D.V. Baroni and F.M. Varejão

Algorithm 2. Crossing procedure used on SCE algorithm.
1: procedure Crossing(xw : worst individual, xb : better individual, c)
2: v ← shuffle(1, 2, . . . , n)
3: for i ← 1 : c do
4: j ← vi
5: xw

j ← xb
j � gene carriage

6: end for
7: if sw is not feasible then
8: repair sw

9: end if
10: update sw fitness
11: return sw

12: end procedure

3 Computational Experiments

For the computational experiments a batch of tests was driven to find the best
parameters for the problem. Afterwards two main tests was considered: (a) using
the well-known set of problems defined by Chu and Beasley [2] and (b) a large
set of randomly generated instances using uniform distribution.

The set of MKP instances provided by Chu and Beasley was generated using
a procedure suggested by Freville and Plateau [5], which attempts to generate
instances hard to solve. The number of constraints m varies among 5, 10 and
30, and the number of variables n varies among 100, 250 and 500.

The wij were integer numbers drawn from the discrete uniform distribution
U(0, 1000). The capacity coefficient ci were set using bi = α

∑n
j=1 wij where α

is a tightness ratio and varies among 0.25, 0.5 and 0.75. For each combination of
(m,n, α) parameters, 10 random problems was generated, totaling 270 problems.
The profit pj of the items were correlated to wij and generated as follows:

pj =
m∑

i=1

wij

m
+ 500qj j = 1, . . . , n

The second set of instances is composed by problems generated using a similar
setup. The only differences is that the profit pj is also drawn from a discrete
uniform distribution U(0, 1000). For each combination of (m,n, α) parameter,
600 random problems was generated, totaling 16200 problems.

All the experiments was run on a Intel Core i5-3570 CPU @3.40GHz com-
puter with 4GB of RAM. The SCE algorithm for MKP was implemented in C
programming language. For the set of random instance all best known solution
was found by the solver SCIP 3.0.1 running for at least 10 minutes. SCIP [1] is an
open-source integer programming solver which implements the branch-and-cut
algorithm [9].

After a previous test batch parameters for SCE was defined as shown in
Table 1 and used in all executions of SCE.



A SCE Algorithm for the Multidimensional Knapsack Problem 773

Table 1. Parameters used in SCE algorithm.

Parameter Value Description

N 20 # of complexes
M 20 # of individuals in each complex
P 5 # of individuals in each subcomplex
K 300 # of algorithm iterations
K′ 20 # of iterations used in the complex evolving process
c n/5 # of genes carried from parent in crossing process

Table 2 shows the performance of the SCE on the Chu-Beasley set of instance.
Each instance in the set was executed 10 times on SCE. The SCE t column shows
the average execution time of SCE. The gap column shows the average ratio of
the solution found by SCE and the best known solution of each instance. It can
be observed that the SCE has a fast convergence speed, achieving high quality
solutions in few seconds.

Fig. 2. Convergence process of SCE for MKP for a problem with n = 500, m = 30 and
t = 0.50.

The fast convergence speed of SCE for MKP can be noticed in Fig. 2. The
figure shows for each iterations step, the quality of best solution found for the
first 100 iterations. The problem instance used was taken from the second set of
problem (random instances). The best known solution was found with 600s of
execution on SCIP solver and the execution of the SCE algorithm expended 1.1
seconds.



774 M.D.V. Baroni and F.M. Varejão

Table 2. SCE performance on Chu-
Beasley problems.

n m α SCE t (s) gap (%)

100 5 0.25 0.79 96.5

0.5 0.81 97.4

0.75 0.83 98.9

10 0.25 0.75 95.7

0.5 0.93 96.7

0.75 0.89 98.5

30 0.25 1.01 95.4

0.5 1.07 96.4

0.75 0.99 98.2

average gap 97.1

n m α SCE t (s) gap (%)

250 5 0.25 1.72 93.2

0.5 1.75 94.9

0.75 1.78 97.6

10 0.25 1.84 93.1

0.5 1.84 94.6

0.75 1.81 97.2

30 0.25 2.21 93.2

0.5 2.21 94.2

0.75 2.31 96.6

average gap 95.0

n m α SCE t (s) gap (%)

500 5 0.25 3.16 91.4

0.5 3.18 93.4

0.75 3.34 96.4

10 0.25 3.39 91.7

0.5 3.37 93.1

0.75 3.44 96.2

30 0.25 3.83 91.4

0.5 3.90 92.6

0.75 3.99 96.0

average gap 93.6

Table 3. SCE performance on the random
generated problems.

n m α SCIP t (s) SCE t (s) gap (%)

100 10 0.25 0.93 0.41 98.3

0.50 0.28 0.39 99.3

0.75 0.09 0.37 99.8

20 0.25 3.15 0.41 98.2

0.50 0.71 0.40 99.3

0.75 0.16 0.37 99.8

30 0.25 7.26 0.42 98.3

0.50 1.47 0.42 99.3

0.75 0.25 0.38 99.8

average gap 99.1

n m α SCIP t (s) SCE t (s) gap (%)

250 10 0.25 58.20 1.10 97.2

0.50 8.51 1.04 98.9

0.75 0.51 0.90 99.7

20 0.25 227.94 1.11 97.6

0.50 43.69 1.02 99.0

0.75 1.59 0.90 99.8

30 0.25 270.48 1.20 97.7

0.50 88.73 1.09 99.0

0.75 2.90 0.94 99.8

average gap 98.7

n m α SCIP t (s) SCE t (s) gap (%)

500 10 0.25 278.85 2.23 96.1

0.50 177.32 2.14 98.4

0.75 8.47 1.87 99.6

20 0.25 284.11 2.30 96.7

0.50 275.68 2.16 98.6

0.75 33.67 1.90 99.7

30 0.25 283.78 2.50 96.9

0.50 283.54 2.32 98.7

0.75 71.66 1.96 99.7

average gap 98.3



A SCE Algorithm for the Multidimensional Knapsack Problem 775

4 Conclusions and Future Remarks

In this work we addressed the application of the shuffled complex evolution
(SCE) to the multidimensional knapsack problem and investigated it perfor-
mance through several computational experiments.

The SCE algorithm, which combines the ideas of a controlled random search
with the concepts of competitive evolution proved to be very effective in finding
good solution for hard instances of MKP, demanding a very small amount of
processing time to reach high quality solutions for MKP.

Future work includes the investigation of different crossing procedures and
the use of local search in the process of evolving complexes.

References

1. Achterberg, T.: Scip: Solving constraint integer programs. Mathematical Pro-
gramming Computation 1(1), 1–41 (2009). http://mpc.zib.de/index.php/MPC/
article/view/4

2. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knap-
sack problem. Journal of Heuristics 4(1), 63–86 (1998). http://dx.doi.org/10.1023/
A:1009642405419

3. Duan, Q., Sorooshian, S., Gupta, V.: Effective and efficient global optimization
for conceptual rainfall-runoff models. Water Resources Research 28(4), 1015–1031
(1992)

4. Elbeltagi, E., Hegazy, T., Grierson, D.: A modified shuffled frog-leaping optimiza-
tion algorithm: applications to project management. Structure and Infrastructure
Engineering 3(1), 53–60 (2007)

5. Freville, A., Plateau, G.: An efficient preprocessing procedure for the multidimen-
sional 0–1 knapsack problem. Discrete Applied Mathematics 49(1), 189–212 (1994)

6. Gavish, B., Pirkul, H.: Allocation of data bases and processors in a distributed
computing system (1982)

7. Gilmore, P.C., Gomory, R.E.: The Theory and Computation of Knapsack Func-
tions. Operations Research 14, 1045–1074 (1966)

8. McMillan, C., Plaine, D.: Resource allocation via 0–1 programming. Decision Sci-
ences 4, 119–132 (1973)

9. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Review 33(1), 60–100 (1991)

10. Shih, W.: A Branch and Bound Method for the Multiconstraint Zero-One Knapsack
Problem. Journal of The Operational Research Society 30, 369–378 (1979)

11. Zhao, F., Zhang, J., Wang, J., Zhang, C.: A shuffled complex evolution algo-
rithm with opposition-based learning for a permutation flow shop scheduling prob-
lem. International Journal of Computer Integrated Manufacturing (ahead-of-print),
1–16 (2014)

http://mpc.zib.de/index.php/MPC/article/view/4
http://mpc.zib.de/index.php/MPC/article/view/4
http://dx.doi.org/10.1023/A:1009642405419
http://dx.doi.org/10.1023/A:1009642405419

	A Shuffled Complex Evolution Algorithm for the Multidimensional Knapsack Problem
	1 Introduction
	2 The Shuffled Complex Evolution for the MKP
	2.1 The Shuffled Complex Evolution
	2.2 The Shuffled Complex Evolution for the MKP

	3 Computational Experiments
	4 Conclusions and Future Remarks
	References


