SPaR-FTR: An Efficient Algorithm for Mining
Sequential Patterns-Based Rules

José Kadir Febrer-Hernandez!' ™), Raudel Herndndez-Leén!,
José Hernandez-Palancar!, and Claudia Feregrino-Uribe?

! Centro de Aplicaciones de Tecnologias de Avanzada (CENATAV),
Ta # 21406 E/ 214 and 216, Rpto. Siboney, C.P. 12200 Playa, La Habana, Cuba
{jfebrer,rhernandez, jpalancar}@cenatav.co.cu
2 Instituto Nacional de Astrofisica, Optica y Electrénica (INAOE),
Luis Enrique Erro No. 1, Sta. Maria Tonantzintla,
CP:72840 Puebla, Mexico

cferegrino@ccc.inaoep.mx

Abstract. In this paper, we propose a novel algorithm for mining
Sequential Patterns-based Rules, called SPaR-FTR. This algorithm
introduces a new efficient strategy to generate the set of sequential rules
based on the interesting rules of size three. The experimental results show
that the SPaR-FTR algorithm has better performance than the main
algorithms reported to discover frequent sequences, all they adapted to
mine this kind of sequential rules.

Keywords: Data mining - Sequential patterns - Rule mining

1 Introduction

An important part of the Sequential Patterns-based Classification (SPaC) is
the process of mining the set of classification rules, called SPaRs (Sequential
Patterns-based Rules). These rules are mined from a class-transaction dataset,
where a SPaR describes an implicative co-occurring relationship between a
sequence « and a class c.

It is very common to confuse sequences of items with itemsets. In itemsets,
an item can occur at most once but in a sequence, an itemset can occur multiple
times. Additionally, in itemset mining, (abc) = (cba) but in sequence mining,
((ab)) # (¢ (ab)).

Sequential Patterns-based Classification has been used in different tasks, for
example: text classification [1], document-specific keyphrase extraction [2], text
segmentation [3,4], web document classification [5,6], determination of DNA
splice junction types [7], e-learning [8], automatic image annotation [9], among
others.

In SPaC, it is assumed that a set of items I = {i1, 42, ..., i;}, a set of classes
C, and a set of transactions T' are given, where each transaction t € T' consists
of a sequence (a1 @z ... ay), so that a; C I, and a class ¢ € C. The Support of

© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 643-650, 2015.
DOI: 10.1007/978-3-319-25751-8_77

644 J.K. Febrer-Herndndez et al.

a sequence «, denoted as Sup(«), is the fraction of transactions in 7' containing
a (see Eq. 1).

7o
Sup(a) = —— (1)
T
where T, is the set of transactions in T containing « (see Def. 1) and | - | is
the cardinality operator.

Definition 1. Let a = (a1 ag ... a) and 8 = (81 B2 ... Bm) be sequences, we
will say that « is contained in 3 if there exists integers 1 < j1 < jo < ... < jn <M
such that ay C B, aa C Bj,, vy an C By, with §;, € B.

A SPaR is an implication of the form a = ¢ where « is a sequence and ¢ € C.
The size of a SPaR is defined as its cardinality, a SPaR containing & itemsets
(including the class) is called a k-SPaR. The rule a = ¢ is held in T with certain
Support and Confidence (see Egs. 2 and 3). If both Support and Confidence
values of a SPaR 7 : @ = ¢ are greater than to the user-specified thresholds, r is
declared to be an interesting SPaR.

Sup(a = ¢) = Sup(a ® {(c)) (2)
where ® is the concatenation operator (see Def. 2).
Sup(a = ¢)
Sup(a)

Definition 2. Let « = (@1 ag ... o) and 8 = (01 Ba ... Bm), we will call the
sequence {1 g ... @ 1 B2 ... Bm) the concatenation of o and B, and we will
use the operator @ to indicate it.

Confla=c) = (3)

In this paper, we introduce an efficient strategy to generate the set of SPaRs
based on the interesting rules of size three. The rest of the paper is organized as
follows. The next section describes the related work. Our proposal are presented
in Section three. In the fourth section the experimental results are shown. Finally,
the conclusions and future works are given in section five.

2 Related Work

In the last decades, some works have used sequential patterns to increase the
accuracy of classifiers. In these works, the extracted sequential patterns are con-
sidered to be important features and are used to build the classification model.
However, there are not reported algorithms (with pseudo code or source code
included) that directly compute the set of SPaRs. We assume that this is due to
these algorithms can be obtained from the sequential pattern mining algorithms,
without any algorithmic complications.

In general, most of the sequential pattern mining algorithms can be split
into two main groups: (1) apriori-like algorithms (AprioriAll, AprioriSome and

SPaR-FTR: An Efficient Algorithm for Mining 645

DynamicSome [10], GSP [11], SPIRIT [12]) and (2) pattern-growth based algo-
rithms (PrefixSpan [13], LAPIN [14], PRISM [15]).

In [11], the authors proposed the GSP algorithm, which includes time con-
strains and taxonomies in the mining process. In the experiments, the authors
show that GSP runs 2 to 20 times faster than apriori-like algorithms [10]. Fol-
lowing similar ideas, the use of regular expressions was introduced in the SPIRIT
algorithm [12].

The PrefixSpan algorithm, proposed in [13], is based on recursively con-
structing the patterns by growing on the prefix, and simultaneously, restricting
the search to projected datasets. This way, the search space is reduced at each
step, allowing for better performance in the presence of small support thresholds.

PRISM, the algorithm introduced by Karam Gouda in [15], uses a vertical
approach for enumeration and support counting, based on the novel notion of
primal block encoding, which is based on prime factorization theory.

The LAPIN (LAst Position INduction) algorithm [14] uses an item-last-
position list and a prefix border position set instead of the tree projection or
candidate generate-and-test techniques introduced so far.

Our proposal also stores a list of occurrence positions but unlike LAPIN
that stores the last position of each single item in each transaction, SPaR-FTR
stores for each interesting sequence «, and for each transaction ¢, a list with the
occurrence positions of « in t.

3 SPaR-FTR Algorithm

In this section, we describe the SPaR-FTR, algorithm, which uses the Support
and Confidence measures to evaluate the candidate SPaRs and generates all
candidate SPaRs from the set of interesting 3-SPaRs. Let r : @« = ¢ be an
interesting SPaR and T be a transactional dataset, SPaR-FTR stores for each
t €T, alist L; with the occurrence positions of « in ¢ (see Def. 3).

Definition 3. Let a = (aq ag ... o) and B = (81 B2 ... Bm) be sequences such
that « is contained in B (i.e. exists integers 1 < j1 < jo < ... < jn < m such
that a1 C By, as C By, .., oy C G5,), we will call occurrence position of o in

B (occP(a, B)) to:

— the set of positions of all possible 3;, in 3, if | a |< 2;
— the least position of all possible B;, in 3, if | o |> 2.

In Table 1, five transactions and the occurrence positions of three sequences of
different sizes are shown. Notice that when | @ [> 2 (e.g. (a f b) in transaction 2)
we could also have several 3;, (e.g. (b:4) and (b: 6)) but the proposed strategy
to generate the candidate rules, only require the least of all.

Similar to the reported algorithms for frequent sequence mining [10,13-15], in
a first step, SPaR-FTR computes all the interesting 2-SPaRs using the Support
and Confidence measures to evaluate them. As we mentioned above, SPaR-FTR
stores for each interesting SPaR 7 : a = ¢ (of any size) and for each transaction

646 J.K. Febrer-Herndndez et al.

Table 1. Example of five transactions and the occurrence positions of three sequences
off different sizes.

Tid Sequence (b) (af) (af b)
1 (a b) (b:2)

2 (cd a ef b cd aby (b:4), (b:6) (£:3) (b:4)
3 (af f) (£2)

4 (af ef bf) (b:3) (£:2), (£:3) (b:3)
5 (b) (b:1)

t € T, a list with the occurrence positions of « in ¢. Later, in a second step,
SPaR-FTR obtains the set of 3-SPaRs (see Alg. 1) by combining the 2-SPaRs
belonging to the same class. Unlike the reported algorithms mentioned above,
which generates the k-SPaRs either by combining the interesting (k — 1)-SPaRs
with a common k — 2 prefix or using a depth first search strategy, SPaR-FTR
computes the k-SPaRs (k > 3) by combining the interesting (k — 1)-SPaRs and
the interesting 3-SPaRs obtained in the second step (see Alg. 2).

Algorithm 1. Pseudo code for computing the interesting 3-SPaRs.

Input: Transactional dataset T, Support threshold minSup and Confidence
threshold minConf.
Output: Set of interesting 3-SPaRs.

L, «— {twolnterestingSPaR(T)}

=

2 L2 — @
3 foreach c € C do
4 foreach (r1: (i) = ¢) € L1 and (r2 : (j) = ¢) € L1 do
5 foreach t € T do
6 if Jop1 > op2 (op1 € occP({j),t) and op2 € occP({i),t)) then
7 r3 — (1) ® (j) = ¢
8 Computes support Sup and confidence Conf of r3
9 if (rs.Sup > minSup) and (r3.Conf > minConf) then
10 ‘ Ly — Ly U{rs}
11 end
12 end
13 end
14 end
15 end

16 return Lo

The main differences between algorithms 1 and 2 are in lines 4 and 6. In line
4 of Algorithm 1, the 2-SPaRs of the same class are combined to generate the
candidate 3-SPaRs while in Algorithm 2, the (k — 1)-SPaRs are combined with

SPaR-FTR: An Efficient Algorithm for Mining 647

Algorithm 2. Pseudo code for computing the interesting k-SPaRs

Input: Set of interesting (k — 1)-SPaRs, set of interesting 3-SPaRs, Support
threshold minSup and Confidence threshold minConf.
Output: Set of interesting k-SPaRs.

1 L; «— (k—1)-SPaRs

2 Lo «— 3-SPaRs

3 Ly 0

4 foreach c € C do

5 foreach (r1 : (1 ... ag—1) = ¢) € L1 and (r2 : {(ax—1 B) = ¢) € Lz do
6 foreach t € T' do

7 if Jop1 (op1 € occP({ax—1 B),t) and op1 > occP({a1 ... ak—1),t))

then

8 r3 — (a1 ... ag—1) ® (B) = ¢

9 Computes support Sup and confidence Conf of r3
10 if (rs.Sup > minSup) and (r3.Conf > minConf) then
11 ‘ Ly — LyU {rs}
12 end
13 end
14 end
15 end
16 end

17 return L3

the 3-SPaRs to generate the candidate k-SPaRs. In case of line 6, the difference
is a direct consequence of the definition of occurrence position (see Def. 3 in this
section.

4 Experimental Results

In this section, we present the results of our experimental comparison between
SPaR-FTR and the main sequence mining algorithms reported in the literature
(GSP [10], PrefixSpan [13], LAPIN [14] and PRISM [15]), all them adapted to
compute the interesting SPaRs. All codes (implemented in ANSI C standard)
were provided by their authors and adapted by us to compute the interesting
SPaRs.

The experiments were conducted using several document collections, three
in our case: AFP (http://trec.nist.gov), TDT (hitp: // www.nist.gov) and Reuter
(http: // kdd.ics.uci.edu). The characteristics of these datasets are shown in Table
2. Our tests were performed on a PC with an Intel Core 2 Quad at 2.50 GHz
CPU with 4 GB DDR3 RAM, running on Windows 7 system.

In the same way as in other works [10], for all used datasets, sentences are
distinguished and ordered in each document. This means that the document is

http://trec.nist.gov
http://www.nist.gov
http://kdd.ics.uci.edu

648 J.K. Febrer-Herndndez et al.

Table 2. Tested datasets characteristics.

Dataset #instances #classes

AFP 711 22
TDT 2978 92
Reuter 21578 115

considered as being an ordered list of sentences. Each sentence is considered
as being an unordered set of words. If we compare the market basket analysis
problem with our approach, then a document plays the role of a client, the
sentences from a document play the role of all the transactions for this client,
the position of the sentence within the document plays the role of the date,
and the set of words from a sentence plays the role of a list of bought items.
Therefore, we represented the document as a sequence of itemsets where each
one corresponds with the set of words of each sentence.

70 140
—=0-—GSP_C —-0--GSP_C
60 ’ﬁi 120 =
~-L-- PrefixSpan_C e ~-0--- PrefixSpan_C
50 4 100
5 -=2-- LAPIN_C A 3 --4-- LAPIN_C
40 T9—
& —O— PRISM_C 0,{ i ,707 3 80 O~ PRISM_C s
£ 30 =srarrR = g 60 e
£ aR- AT £ —¢— SPaR-FTR T
2 Z > D)

support (%) support (%)
(a) AFP. (b) TDT.

160
140
120

100
80 ~—O——PRISM_C

P =
60 -=—=—SPaR-FIR //,;;E’ /07
40 4 ° X

20 +

—=0—-=GSP_C
=-0--- PrefixSpan_C Pes

-=A-- LAPIN_C

time (sec.)

support (%)

(C) Reuter.

Fig. 1. Runtime comparison using AFP, TDT and Reuter document collections.

In order to evaluate the performance of the SPaR-FTR algorithm, we process
the three document collections with different support thresholds. In general,
document collections are very sparse (with low transaction overlapping degree).
Therefore, low Support thresholds are required, mainly in Reuter collection,
where there are 21578 transactions and 115 classes.

In figures 1(a), 1(b) and 1(c), we show the result of all evaluated algorithms
using different Support thresholds and a Confidence threshold set to 0.5. We do

SPaR-FTR: An Efficient Algorithm for Mining 649

not test different Confidence values because the volume of the SPaRs depends
on the Support threshold and we are evaluating the efficiency of our algorithm
to generate the set of SPaRs. Notice that we add the characters “_C” to the
name of the algorithms to specify that they are the adaptation of the original
sequence mining algorithms mentioned above.

In the three experiments, the SPaR-FTR algorithm shows the best perfor-
mance of all evaluated algorithms. The main reason of this result is that the
candidates generation strategy, introduced in SPaR-FTR, generates less can-
didate rules than the other algorithms. As another experiment, we count the
number of candidate SPaRs generated for each evaluated algorithm. In Table 3,
we show the approximate results, in thousands, obtained on Reuter collection.

Table 3. Approximate number of candidate SPaRs, in thousands, obtained on Reuter
collection.

Support thresholds (%)

Algorithms 10 5 1 0.05
GSP.C 25.3 46.2 80.9 112.3
PrefixSpan_C 23.9 41.1 73.6 104.2
LAPIN_C 21.3 37.4 68.7 97.5
PRISM_C 19.3 34.6 64.6 91.2
SPaR-FTR 16.2 28.8 52.1 71.9

Notice that SPaR-FTR generates 15 % less candidate rules (for all Support
thresholds) than PRISM_C algorithm, which has the second better performance.
Therefore, based on our experiments we can conclude that SPaR-FTR has good
scalability with respect to the number of transactions and with respect to the
decreasing of the Support threshold.

5 Conclusions

In this paper, we have proposed a novel algorithm for mining Sequential Patterns-
based Rules, called SPaR-FTR, which introduces a new efficient strategy to
generate the set of SPaRs based on the interesting rules of size three. The exper-
imental results show that the SPaR-FTR algorithm has better performance than
the main algorithms reported to discover frequent sequences, all they adapted
to mine this kind of sequential rules.

As future work, we are going to study the problem of producing SPaRs with
multiple labels, it means rules with multiple classes in the consequent. This kind
of rules could be useful for problems where some documents can belong to more
than one topic.

References

1. Buddeewong, S., Kreesuradej, W.: A new association rule-based text classifier algo-
rithm. In: Proceedings of the 17th IEEE International Conference on Tools with
Artificial Intelligence, pp. 684-685 (2005)

650

10.

11.

12.

13.

14.

15.

16.

17.

J.K. Febrer-Herndndez et al.

Xei, F., Wu, X., Zhu, X.: Document-specific keyphrase extraction using sequential
patterns with wildcards. In: Proceedings of the IEEE 14th International Conference
on Data Mining (2014)

Cesario, E., Folino, F., Locane, A., Manco, G., Ortale, R.: Boosting text segmen-
tation via progressive classification. Knowl. Inf. Syst. 15(3), 285-320 (2008)
Garcia-Hernandez, R.A., Martinez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A fast
algorithm to find all the maximal frequent sequences in a text. In: Sanfeliu, A.,
Martinez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol.
3287, pp. 478-486. Springer, Heidelberg (2004)

Shettar, R.: Sequential Pattern Mining from Web Log Data. International Journal
of Engineering Science and Advanced Technology 2, 204-208 (2012)

Haleem, H., Kumar, P., Beg, S.: Novel frequent sequential patterns based proba-
bilistic model for effective classification of web documents. In: 2014 International
Conference on Computer and Communication Technology (ICCCT), pp. 361-371
(2014)

Berzal, F., Cubero, J.C., Sdnchez, D., Serrano, J.M.: ART: A Hybrid Classification
Model. Mach. Learn. 54(1), 67-92 (2004)

Faghihi, U., Fournier-Viger, P., Nkambou, R., Poirier, P.: A generic episodic learn-
ing model implemented in a cognitive agent by means of temporal pattern mining.
In: Chien, B.-C., Hong, T.-P., Chen, S.-M., Ali, M. (eds.) IEA/AIE 2009. LNCS,
vol. 5579, pp. 545-555. Springer, Heidelberg (2009)

Teredesai, A.M., Ahmad, M.A., Kanodia, J., Gaborski, R.S.: CoMMA: A Frame-
work for Integrated Multimedia Mining Using Multi-relational Associations.
Knowl. Inf. Syst. 10(2), 135-162 (2006)

Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering, pp. 3-14 (1995)

Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: Proceedings in the 5th International Conference Extend-
ing Database Technology, pp. 3-17 (1996)

Garofalakis, M., Rastogi, R., Shim, K.: SPIRIT: Sequential pattern mining with
regular expression constraints. In: Proceedings of the 25th International Conference
on Very Large Data Bases, pp. 223-234 (1999)

Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal U., Hsu, M.:
PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern
growth. In: Proceedings of the 17th International Conference on Data Engineering,
pp. 215-224 (2001)

Yang, Z., Wang, Y., Kitsuregawa, M.: LAPIN: effective sequential pattern mining
algorithms by last position induction for dense databases. In: Kotagiri, R., Radha
Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol.
4443, pp. 1020-1023. Springer, Heidelberg (2007)

Gouda, K., Hassaan, M., Zaki, M.J.: Prism: An effective approach for frequent
sequence mining via prime-block encoding. J. Comput. Syst. Sci. 76(1), 88-102
(2010)

Yu, X., Li, M., Lee, D.G., Kim, K.D., Ryu, K.H.: Application of closed gap-
constrained sequential pattern mining in web log data. In: Zeng, D. (ed.) Advances
in Control and Communication, LNEE, vol. 137, pp. 649-656. Springer, Heidelberg
(2012)

Liao, V., Chen, M.: An efficient sequential pattern mining algorithm for motifs
with gap constraints. In: Proceedings of the 2012 ITEEE International Conference
on Bioinformatics and Biomedicine (BIBM) (2012)

	SPaR-FTR: An Efficient Algorithm for Mining Sequential Patterns-Based Rules
	1 Introduction
	2 Related Work
	3 SPaR-FTR Algorithm
	4 Experimental Results
	5 Conclusions
	References

