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jarbas joaci@yahoo.com.br
3 Departamento de Ciências Biológicas, Faculdade de Ciências E Letras,

Universidade Estadual Paulista, UNESP, Av. Dom Antônio, 2100, Assis, SP
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Abstract. The leaves are an important plant organ and source of infor-
mation for the traditional plant taxonomy. This study proposes a plant
classification approach using the adaxial epidermis tissue, a specific cell
layer that covers the leaf. To accomplish this task, we apply a high
discriminative color texture analysis method based on the Bouligand-
Minkowski fractal dimension. In an experimental comparison, the
success rate obtained by our proposed approach (96.66%) was the high-
est among all the methods used, demonstrating that the Bouligand-
Minkowski method is very suitable to extract discriminant features from
the adaxial epidermis. Thus, this research can significantly contribute
with other studies on plant classification by using computer vision.

Keywords: Adaxial epidermis tissue · Texture analysis · Color · Fractal
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1 Introduction

Traditional plant taxonomy cannot neither explore all possible information
sources from plants (for instance, a leaf) nor extract all their discriminative
attributes, such as contour, color and texture. This explains why, in the last
years, there has been an increasing interest in solving problems from this knowl-
edge field by using computer vision approaches. As examples of promising
researches, we have works that aim to extract attributes from leaf contour and
venation [1], the computation of texture signatures from a leaf surface [2], and
the extraction of thickness measures and texture descriptors from various cell
tissues presented in a leaf cross-section [3].
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Among all the features that can be computed from an image, texture is
surely one of the most discriminative and widely studied. Even though texture
does not possess a definite concept, it is easily recognized by humans. A suitable
definition, yet restricted, is that texture is a model repeated in an exact way or
with small changes over a surface [4]. Being texture a great source of information,
many methods have been developed to extract signatures from it, such as co-
occurrence matrices [5], Gabor filters [6], wavelet descriptors [7], tourist walk
[8], local binary patterns (LBP) [9], gravitational models [10], shortest paths in
graphs [11] etc.

All these mentioned methods were designed for grayscale textures. How-
ever, in recent years, many methods have been developed for color textures
to increase the capacity of extracting discriminant signatures. Generally, such
methods can be classified into three groups: parallel, sequential and integrative
[12]. Parallel approaches consider color and texture as independent phenomena
[13]. Sequential approaches divide the process of extracting signatures into two
steps: first, the color texture is indexed; then, the indexed image is processed as
a grayscale texture [14]. Integrative approaches consider the informative depen-
dency between color and texture [15].

This work aims to contribute to plant taxonomy by applying an integrative
state-of-the-art color texture analysis method to a very discriminative leaf tissue
called adaxial epidermis. We extend the work proposed in [15], which presented
the technique and aimed the classification of synthetic and natural texture. Here
we focus on the application of the technique to a biological problem. Textures
extracted from biological images do not necessarily present a well-defined pat-
tern, specially in the microscopic scale, where the growing and disposal of cells
are influenced by external factors. Thus, this work helps to establish the appli-
cability of this method in biological problems.

Our presentation is organized as follows: Section 2 presents the Bouligand-
Minkowski complexity descriptor. Section 3 describes the process of extract-
ing signatures based on fractal errors. Section 4 presents the evaluated image
database and the performed experiments. Section 5 shows the obtained results
as well as a discussion on them. Finally, Section 6 presents some remarks about
this work.

2 Complexity Analysis of Color Textures

A simple and efficient way to estimate the complexity of a shape or texture
is through fractal dimension. It is a measurement based on the concept of self-
similarity and it describes objects in images in terms of its irregularity and space
occupation [15,16].

Among the methods developed throughout the years, the Bouligand-
Minkowski method is considered one of the most accurate. This method is able
to describe small structural changes in objects due to its great sensitiveness
[4,17]. Firstly proposed for shape analysis, this method was extended to tex-
ture analysis by mapping the pixels of the image I onto a surface S ∈ R3 by
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using the function f : I(x, y) → S(x, y, I(x, y)). Then, each point of the surface
is dilated by a sphere of radius r. This results in its influence volume and the
Bouligand-Minkowski fractal dimension D is estimated as

D = 3 − lim
r→0

log V (r)
log r

, (1)

where
V (r) =

∣
∣
{

s′ ∈ R3|∃s ∈ S : |s − s′| ≤ r
}∣
∣ , (2)

is the influence volume of the surface S dilated using a sphere of radius r.
Usually, we build the surface S from a grayscale image. However, it is possible

to map all color channels of a RGB image as different surfaces sharing the same
space [15]. Let I(x, y) = {R(x, y), G(x, y), B(x, y)} be a RGB color texture. For
each color channel C = {R,G,B}, we are able to compute its respective surface
SC , which can easily be combined to form a single volume SRGB ∈ R3, as shown
in Figure 1. Then, we apply the dilation process over this new volume. The
influence volume computed from SRGB enables us to explore how the channels
are related to each other, thus taking into consideration the correlations among
them and not only the characteristics of a single one.

Fig. 1. From left to right: Original image; Computed surface SRGB (each pixel is
converted to a point in R3; Surface dilated using r = 2 (each point is replaced by a
sphere of radius r = 2); Surface dilated using r = 5 (each point is replaced by a sphere
of radius r = 5).

3 Error-Based Fractal Signature

When we compute the fractal dimension D from its log-log curve, the information
about fine structural changes are lost. The log-log curve presents a great richness
of details and a single value computed through line regression is not able to
fully represent it. To overcome this problem, we propose a feature vector which
describes the error between the computed line regression and the original log-log
curve to represent these curve details.

To compute these descriptors, consider a line with slope a and b its y-intercept
estimated from log-log curve. Notice that D = 3 − a is the estimated fractal
dimension of the image. This line is just an approximation of the real behavior
of the curve. To fully represent its characteristics, we propose a feature vector
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that represents the error ei between the estimated line and the original curve at
a given point i

ei = a × log ri + b − log V (ri), (3)

From this definition, we create a feature vector which consists of n equidistant
radius values selected from the log-log curve, as shown as follows:

ψ(n) = [e1, e2, . . . , en] . (4)

Additional details about the proposed feature vector can be found in the
paper [15].

4 Experiments

To accomplish the adaxial epidermis classification, we used a database composed
of 30 texture windows acquired from eight different plant species. Figure 2 shows
one example for each species in the database. Each texture is 150 pixels height.
The width varies from sample to sample as it is determined by the adaxial
surface epidermis thickness. As this variation in the width could influence the
performance of the method, we adopted a mosaic of 150×150 pixels size produced
by copy and reflection of the texture pattern over y axis, as shown in Figure 3.
Additional details about the plant species considered can be found in [18].

To compute the proposed feature vector, we used r = 8 for the dilation pro-
cess of the Bouligand-Minkowski method. By using this radius value, we were
able to compute a total of n = 77 equidistant points of the log-log curve. How-
ever, not all these points hold relevant discriminative information. In fact, as we
increase the dilation radius, different texture patterns may look similar in terms
of influence volume. The same principle applies to the descriptors computed at
this range of radius values. Thus, we evaluate the behavior of the success rate
as we increase the number of descriptors used (Figure 4). In general, the success
rate increases as the number of descriptors n increases, achieving its maximum
at n = 46. For n > 46, we notice the occurrence of a subtle, but constant,
degradation of the discrimination ability of the proposed feature vector. This is
due to the similarities in the influence volume. We evaluated the computed fea-
ture vectors using Linear Discriminant Analysis (LDA), a supervised statistical
classification method, in a leave-one-out cross-validation scheme [19].

5 Results and Discussion

Table 1 presents the comparison between our proposed approach and other
important color texture analysis methods. The obtained results clearly demon-
strate the superior performance of the error-based fractal signature, as it provides
the highest success rate (96.66%), with a difference of 0.41% when compared to
the second best method. Although it seems a small advantage, it is necessary to
take into account that both methods are very close to 100% of success rate, and,
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Fig. 2. Adaxial epidermis images of the eight species considered.

Fig. 3. Process of building a texture mosaic by copy and reflection.

Fig. 4. Classification accuracy observed for different numbers of descriptors (n).
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in such condition, whatever superior performance is very relevant. This is cor-
roborated by the fact that three methods obtained less than 90.00% of success
rate and Gabor EEE presented a performance 2.91% inferior when compared to
our method. Moreover, we must stress that our approach has a small number of
attributes (46), which is 7, 2% of the total of features used by the second best
method. In this comparison, only LBP + Haralick method has a smaller number
of features. However, this method provides the second worst success rate.

Table 1. Comparison results for different color texture analysis methods.

Methods Descriptors Success rate (%)

Gabor EEE [20] 192 93.75
HRF [21] - 45.42
MultiLayer CCR [22] 640 96.25
LBP + Haralick [14] 10 84.58
MSD [23] 72 85.83
Proposed approach 46 96.66

We expected to compare our results on adaxial epidermis tissue to other
works in literature. However, we were able to find only our three previous papers
related to computer vision applied to this problem. This lack of related works
confirms that this is a very recent and unexplored research topic. In [24], we used
the same eight plant species, but only ten samples per class and Jeffries-Matusita
distance [25] to select attributes provided by different texture analysis methods.
For these reasons, it is not possible to perform a fair comparison between such
paper and our present work. In [3], we adopted the same procedure of the paper
[24] for adaxial epidermis images, but in a different image database, and, there-
fore, we could not use it for comparison as well. We performed a classification
experiment in the same image database (converted into grayscale) used in this
work in [18]. In such paper, the highest success rate is 93.33%, a result 3, 33%
inferior to the success rate obtained by our proposed method. This increased
performance reinforces that the based-error fractal signature is very suitable to
discriminate the adaxial epidermis tissue.

6 Conclusion

In this paper, we addressed the problem of plant classification. To accomplish
this, we computed a feature vector from color texture samples from adaxial epi-
dermis of the plant species evaluated. This feature vector explores the details
in the influence volume curve produced by the dilation of the three RGB color
channels in a single step. Such dilation enables us to incorporate the information
about the relationship between channels to the feature vector, thus improving its
discrimination power. The comparison of these features with other color texture
analysis methods shows that our approach achieves the highest classification
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results. Moreover, it uses fewer descriptors than methods with similar classi-
fication results, corroborating its great ability to discriminate different color
patterns.
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