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Abstract. One of the first steps in a myriad of Visual Recognition and
Computer Vision algorithms is the detection of keypoints. Despite the
large number of works proposing image keypoint detectors, only a few
methodologies are able to efficiently use both visual and geometrical
information. In this paper we introduce KVD (Keypoints from Visual
and Depth Data), a novel keypoint detector which is scale invariant and
combines intensity and geometrical data. We present results from several
experiments that show high repeatability scores of our methodology for
rotations, translations and scale changes and also presents robustness in
the absence of either visual or geometric information.
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1 Introduction

Over the years, the task of selecting a set of points of interest in images has
been omnipresent in a large number of Visual Recognition and Computer Vision
methodologies. A careful choice of points in images may avoid the inclusion
of noisy pixels and enables the identification of regions that are rich in infor-
mation, aiding an effective description of such regions. Additionally, the use of
an image subset enables the tackling of cluttered backgrounds and occlusions
in object recognition [7,3] and scene understanding applications. Moreover, the
ever growing volume of data, which includes high resolution images, RGB-D data
and the massive image repositories available in the web, makes the development
of keypoint detectors crucial for a large number of image processing techniques.

In a common image representation pipeline for matching and classification
tasks, before computing feature vectors for pixels, these pixels must be selected
by a detector algorithm. Thus, while a descriptor algorithm is concerned with
providing a discriminative identification for a keypoint by analyzing its vicinity,
a detector is designed for finding informative image patches.

As stated, the detection of a set of points of interest, henceforth referred to
as keypoints, consists in looking for points located in discriminative regions of

This work is supported by grants from CNPq, CAPES and FAPEMIG.

c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 341–349, 2015.
DOI: 10.1007/978-3-319-25751-8 41



342 L.O. Vasconcelos et al.

Fig. 1. The extraction and fusion of visual and geometrical features of KVD detector.

the image, that will account for good repeatability, which in turn may lead to
smaller ambiguity. There is a vast body of literature on image keypoint detectors,
of which [7,4,12,13] are well known representatives.

Broadly speaking, the main task of a keypoint detector is to assign a saliency
score to each pixel of an image. This score is then used to select a (usually
smaller) subset of pixels that presents the following properties: i) Repeatability;
ii) Distinctiveness; iii) Locality and iv) Accurately localizable.

The main contribution of this paper is a scale invariant keypoint detector
called KVD (Keypoints from Visual and Depth Data), which efficiently com-
bines intensity and depth. Our method produces the best performing detector
by combining visual and geometrical data, and presents a good performance and
graceful degradation even in the absence of either one of them.

Related Work. Since the seminal paper of Morevec [10], where he presented
one of the first corner detectors, a large number of keypoint detectors have been
proposed. Harris detector [4], Harris-Laplacian [8], SIFT [7], SURF [1] are some
of the most popular detectors for images.

A recent approach that has become popular in keypoint selection is based on
machine learning techniques. Rosten and Drummond [12] proposed the FAST
detector, which creates a feature vector that is used by a decision tree to classify
the pixel as a keypoint. The Roten and Drummond’s technique was improved by
Rublee et. al [13]. They presented the ORB detector which uses a scale pyramid
to add scale invariance and measures the cornerness of each keypoint candidate
by computing Harris corner. Another recent methodology also based on machine
learning technique is presented in [5]. The authors proposed a keypoint detection
from depth maps by using Random Forest which is trained to maximize the
repeatability score.

Extracting data from images can usually provide rich information on the
object features. The main drawback is the sensitiveness of these feature to
illumination changes. Geometrical information produced by 3D sensors based
on structured lighting or time of flight, in its turn, is less sensitive to visible
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lighting conditions. Three-dimensional data has been successfully used by algo-
rithms such as NARF [15] and on 3D detectors implementations derived from
2D approaches [14] such as SIFT3D, HARRIS3D and HARRIS6D.

Despite the growing popularity of techniques that combine both visual and
geometric informations to build descriptors [11,17] and their use in recognition
tasks, this fusion is not a common approach for keypoint detection. In this work,
we present a novel keypoint detector, which simultaneously takes into account
both visual and geometrical information to detect keypoints.

We show that using both visual and geometric information at the detection
level improves the quality and performance of higher level visual processes.

2 Methodology

The input for our algorithm is a pair (I,D), which denotes the output of a typical
RGB-D device. For each pixel x, I(x) is the pixel’s intensity, D(x) is depth for
that pixel, P (x) is the corresponding 3D point, and N(x) is its normal vector.

Our technique is built upon a supervised training approach, with a training
step where a decision tree is created to classify points into keypoints and non-
keypoints. There are three steps: the feature vector extraction and fusion, the
model training and the non-maximal suppression.

Feature Extraction. The first step of the detection process creates a feature
vector for every keypoint candidate. Figure 1 depicts the feature vector construc-
tion. Given an image pixel coordinates c ∈ R

2, we consider its vicinity as the
image patches that contain the circles centred at c with radii varying in r ∈ S.
Each circle is defined by the function B(r, c) which we denote as Br(c):

Br(c) : R3 → {p1,p2, ...,pn}. (1)

The Br(c) function outputs all pixels pi lying in the Bresenham’s circle with
radius equals to r. Thus, the vicinity considered consists of the concatenation of
all vectors Br(c),∀r ∈ S. We define the vicinity of a central pixel c as:

Vc = {Br1(c), Br2(c), . . . , Br|S|(c)}, ∀ri ∈ S. (2)

Whereas in this work, we used S = {3, 5, 7, 9}. Thus, we compute visual
features using fast intensity difference tests [12]. For each pixel p ∈ Vc and a
given threshold tv we evaluate:

τv(c,pi) =

⎧
⎪⎨

⎪⎩

2 if I(pi) − I(c) < −tv

1 if I(pi) − I(c) ≥ tv

0 otherwise.
(3)

We embed geometric cues into the feature vector computed by the function τv
to increase robustness both to illumination changes and to the lack of texture in
the scenes. The geometric feature extraction τg(.) function is based on two invari-
ant geometric measurements: i) the normal displacement, and ii) the surface’s
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convexity. The normal displacement test evaluates if the dot product between
the normals N(c) and N(xi) is smaller than a given displacement threshold tg,
and the convexity test computes the local curvature indicator, κ as:

κ(c,pi) = 〈P (c) − P (pi), N(c) − N(pi)〉, (4)

where 〈.〉 is the dot product, and P (c) is the 3D spatial point associated with
pixel c and depth D(c). The κ function captures the convexity of geometric
features and also unambiguously characterizes the dot product between surface
normals. Thus, the geometrical features are computed as:

τg(c,pi) =

⎧
⎪⎨

⎪⎩

2 if 〈N(pi), N(c)〉 < tg ∧ κ(c,pi) > 0
1 if 〈N(pi), N(c)〉 < tg ∧ κ(c,pi) < 0
0 otherwise.

(5)

Scale invariance is endowed to our detector by using the geometry information
available in the depth map to weigh the influence of each circle. We analyze the
geometrical vicinity encompassed by each Bresenham’s circle Br(c) in the 3D
scene by computing the minimum Euclidean distance:

dr = min
pi

|P (c) − P (pi)|,∀pi ∈ Br(c), (6)

where P (c) and P (pi) are the 3D points corresponding to the central pixel c
and the pixels composing the Bresenham’s circle pi ∈ Br(c). The distance dr is
weighted by the Gaussian

wr = exp
(

− (μ − dr)2

σ2

)

(7)

in order to penalize circles which its estimated radii in the 3D scene are distant
from μ = 0.02 meters. We then build a feature vector from a Bresenham’s circle
of radius r centered at c as a row vector vr =

[
f1 . . . f|Br(c)|

]
where:

fi(c, r) = wr ∗ (τv(c,pi,r) + τg(c,pi,r)), (8)

where pi,r is the ith element of the Bresenham’s circle Br(c). The final feature
vector F is generated by concatenating all the feature vectors vr as, in this work:

F =
[
v3 v5 v7 v9

]
. (9)

Decision Tree Training. In the training step, we create a keypoint model by
training a decision tree using the ID3 algorithm [2]. We generated a training set
by extracting a total of 160, 144 points from the RGB-D Berkeley 3-D Object
Dataset (B3DO) [6]. This dataset is composed of a large number of real world
scenes with several different objects, geometry and visual data.

We used 66% points to train, and the remaining points (54, 449) to test the
quality of the final decision tree. Both sets were equally divided into positive and
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negative samples. In order to define positive labels for keypoints, we computed
the curvature of several, manually selected, keypoints. We have found the value
of 0.09 based on the average of these curvatures. Thus, all points with curvature
larger than 0.09 were labeled as a positive sample for the keypoint class. To take
into account texture features, we added keypoints detected by ORB as positive
examples. The classification accuracy obtained in the test was equal to 0.91.

Non-maximal Suppression. In the last step of our methodology we perform
a non-maximal suppression. We compute a response value Rp(c, r) based on the
feature values of each circle. For each radius r ∈ S,

Rp(c, r) = max
X∈{Xrc1 ,Xrc2}

1
|X|

∑

xi∈X

Dv(c,xi) + λDg(c,xi), (10)

where Dv(c,x) = |I(x) − I(c)| gives the visual response and Dg(c,x) = 1 −
〈N(x), N(c)〉 provides the geometrical response. The factor λ is used to define
the contribution of the geometrical information in the final response. The set
Xrck = {pi : pi ∈ Br(c) ∧ (τv(c,pi) = k ∨ τg(c,pi) = k)} is composed of
all pixels which bin has value k.

We rank the maximal points by using both absolute difference between inten-
sities and normal surface angles for the pixels in the contiguous set of the Bre-
senham’s circle. The final response of each candidate is defined as the maximum
response among all radii:

Rf(c) = max
r

Rp(c, r),∀r ∈ {3, 5, 7, 9}. (11)

We divide the image into smaller patches with size w×w (in this work, w = 5)
and for each patch we select the pixel with the larger response, Equation 11.

3 Experiments

We compared our approach against standard detectors for two-dimensional
images: SIFT [7] and ORB [13], for geometric data HARRIS3D [14] (a 3D version
of Harris corner detector), SIFT3D 1, and the HARRIS6D [14]. The HARRIS6D
detector, similarly to our methodology, uses both visual and geometrical data to
detect keypoints. In our experiments, we used the RGB-D SLAM Dataset [16].
This dataset contains several RGB-D data of real world sequences and for each
acquisition it provides the ground truth for the camera pose. For our experi-
ments, we used the sequences containing only translation motions (freiburg2 xyz )
and rotation of the camera (freiburg2 rpy).

To evaluate each detector, we applied the repeatability score, which measures
the ability of a detector to find the same set of keypoints on images acquired of
a scene from different view points or different conditions. For details the reader
is referred to [9]. In our experiments, we used the parameter ε = 0.6.

1 available in the Point Cloud Library: www.pointclouds.org

www.pointclouds.org
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Fig. 2. The poor illumination experiment. We captured a total of 104 images of a
cluttered room starting at dusk (on the right three examples of the used images). One
can notice that KVD is the only method which uses visual information, that remains
providing reliable keypoints once the intensity image is nearly lost (C image).

For the parameter settings, to choose a value for tg, we ran the learning and
testing for 15, 30 and 60 degrees using the RGB-D Berkeley 3-D Object Dataset
(B3DO) [6]. We used a fraction of the dataset for validation purposes and the
remaining part for training, the large accuracy was returned by using tg = 15.

Robustness. We performed experiments to evaluate the repeatability for
images acquired with changes in translation, rotation, scale, and illumination.
We used offsets ranging from 0.03 meters to 0.75 meters (horizontal direction)
for translational tests and for scale tests we select a set of frames with the cam-
era moving away from the scene up to 0.35 meters. In the illumination change
experiments we captured a total of 104 images of a cluttered room starting at
dusk (partial illumination) at an interval of one minute between acquisitions.
Figure 2 shows three frames of this sequence.

Figure 3 shows the results of the repeatability tests. Our detector provides
the highest repeatability rate when there are large translational movements (0.8
meters) and large angular rotations (50 degrees). Also in Figure 3 (d),(e) we can
see that only KVD, HARRIS6D and HARRIS3D were still capable to provide
keypoints from heavily corrupted images under illumination changes and noise,
and KVD presented the highest repeatability rate. It is worth noticing that in
the illumination change experiment (Figure 2), KVD was the only method which
uses visual information that was capable of still provide keypoints after the visual
information vanishes (about image 80).

To perform brightness changes, we gradually increased the value of each pixel
by adding an increasingly higher constant β using images from freiburg2 xyz
sequence. To test the robustness to image noise, we used a Gaussian additive
noise with zero mean. In Figure 3 one may readily see that our detector presents
the largest repeatability rate, thanks to the visual and geometric information
fusion of our detection methodology.
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(a) Translational motion (b) Rotational motion
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(c) Scale change (d) Brightness
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Fig. 3. Results for the repeatability experiment. (a) Horizontal translation camera
motion; (b) Rotational movement around the yaw axis; (c) Scale changing; (d) Bright-
ness changing and (e) Gaussian Noise. Our method (KVD) is represented by the blue
curve. One can readily see that KVD, among all methods which uses visual informa-
tion (including HARRIS6D), is the one which continues to identify the most reliable
keypoints even when strongly corrupted intensity images are given as input.



348 L.O. Vasconcelos et al.

Time Performance. The time experiments ran on an Intel Core i7 3.5GHz
(using only one core). Time measurements were averaged over 900 runs and
over all keypoints. Comparing to other detectors which use geometrical data,
KVD was the fastest approach, processing in the order of 106 pixels per second,
taking 0.06 seconds to process an image of size 640 × 480 pixels, while its main
competitor (HARRIS 6D) takes 0.08 seconds to images of the same size.

4 Conclusion

In this paper we proposed KVD, a novel keypoint detector capable of working
with texture and geometrical data. A comparative analysis in terms of robustness
to affine transformations was conducted against the standard detectors in the
literature for appearance and geometric information and our detector presented
the higher repeatability rate.
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