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Preface

The 20th Iberoamerican Congress on Pattern Recognition CIARP 2015 (Congreso
IberoAmericano de Reconocimiento de Patrones) was the 20th edition of a yearly event
organized by scientific associations of Iberoamerican countries in this field.

In this special anniversary edition, as in previous years, the congress received
contributions from many countries beyond Iberoamerica. The papers presented
research results in the areas of pattern recognition, biometrics, image processing,
computer vision, speech recognition, and remote sensing to name a few. The papers
tackle theoretical as well as applied contributions in many fields related to the main
topics of the conference. In this way, CIARP 2015 continued the tradition of an event
that fosters scientific exchange, discussions, and cooperation among researchers.

CIARP 2015 received 185 contributions authored by researchers from 32 countries,
11 of which are Iberoamerican countries. These contributions were reviewed in a
double-blind process and 95 papers were accepted.

Following tradition, CIARP 2015 was a single-track conference in which 40 papers
were selected for oral presentation and 55 were presented in poster sessions. The type
of presentation did not imply quality differences. The poster sessions were organized
by topic to encourage discussions among authors and attendees.

A selection of the accepted papers will be published in a special issue of the IPOL
(Image Processing OnLine) Journal. After the reviewing process an evaluation com-
mittee pre-selected a set of papers in the area of image processing and invited the
authors to submit an extended version to IPOL. To facilitate the production of all the
materials needed to publish the papers in IPOL, these authors were also invited to
attend the Training and Hands-On in Reproducible Research Workshop (THORR
Workshop) that took place during November 13–14 at the Facultad de Ingeniería,
Universidad de la República. This workshop was dedicated to providing the necessary
tools for reproducible research (RR) and training on the IPOL Journal publication
process. Also, a special section of Pattern Recognition Letters has been added to
include two papers by the researchers selected as the IAPR-CIARP 2015 Best Paper
Award and the Aurora Pons-Porrata Award.

The IAPR-CIARP Best Paper Award recognizes outstanding contributions and is
aimed at acknowledging excellence and originality of both theoretical contributions
and practical applications to the field of pattern recognition and data mining. On the
other hand, the CIARP Aurora Pons-Porrata Award is given to a living woman in
recognition to her outstanding contribution to the field of pattern recognition or data
mining.

Beside the presentation of the 95 selected contributions, four keynotes were given
by Professors Magnus Fontes (Lund University, Sweden and Institut Pasteur, France),
Rene Vidal (Johns Hopkins University, USA), Guillermo Sapiro (Duke University,
USA), and Josef Kittler (University of Surrey, UK).



CIARP 2015 was organized by the Uruguayan IAPR Chapter, including members
from Universidad de la República and Universidad Católica del Uruguay, with the
endorsement of the International Association for Pattern Recognition (IAPR) and the
sponsorphip of the following national associations: Argentine Society for Pattern
Recognition (SARP-SADIO), the Special Interest Group of the Brazilian Computer
Society (SIGPR-SBC), the Chilean Association for Pattern Recognition (AChiRP), the
Cuban Association for Pattern Recognition (ACRP), the Mexican Association for
Computer Vision, Neural Computing and Robotics (MACVNR), the Spanish Associ-
ation for Pattern Recognition and Image Analysis (AERFAI), and the Portuguese
Association for Pattern Recognition (APRP).

We acknowledge the work of all members of the Organizing Committee and of the
Program Committee for the rigorous work in the reviewing process. We thank the
partial funding of the Administración del Mercado Eléctrico (ADME), the Agencia
Nacional de Investigación e Innovación (ANII), the French Embassy in Montevideo,
Sonda, Universidad Católica del Uruguay, and CSIC - Universidad de la República.

November 2015 Alvaro Pardo
Josef Kittler
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Abstract. In real-world applications it is common to find data sets
whose records contain missing values. As many data analysis algorithms
are not designed to work with missing data, all variables associated with
such records are generally removed from the analysis. A better alternative
is to employ data imputation techniques to estimate the missing values
using statistical relationships among the variables. In this work, we test
the most common imputation methods used in the literature for filling
missing records in the ADNI (Alzheimer’s Disease Neuroimaging Initia-
tive) data set, which affects about 80% of the patients–making unwise
the removal of most of the data. We measure the imputation error of
the different techniques and then evaluate their impact on classification
performance. We train support vector machine and random forest clas-
sifiers using all the imputed data as opposed to a reduced set of samples
having complete records, for the task of discriminating among different
stages of the Alzheimer’s disease. Our results show the importance of
using imputation procedures to achieve higher accuracy and robustness
in the classification.

Keywords: Missing data · Imputation · Classification · ADNI ·
Alzheimer

1 Introduction

Alzheimer’s disease (AD) is the most common type of dementia in the elderly,
representing about 80% of all dementia patients and the sixth cause of death
in the USA. 26.6 million people worldwide were estimated to suffer from some
degree of dementia in 2006, and 100 million impaired people are expected by
2050 [1]. Unfortunately, no drug treatment reducing the risk of developing AD
or delaying its progression has been discovered so far. The Alzheimer’s Disease
Neuroimaging Initiative1 (ADNI), launched in 2004, contributes to the develop-
ment of biomarkers for the early detection (diagnostic) and tracking (prognostic)
1 http://adni.loni.usc.edu/
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of AD using longitudinal clinical, imaging, genetic and biochemical data from
patients with AD, mild cognitive impairment, and healthy controls. Its major
achievements have been reviewed in [2]. Pattern recognition techniques have
been instrumental in identifying disease patterns. Tasks such as classification,
prediction, feature extraction and selection, multimodal data fusion, dimension-
ality reduction, among others, are at the core of this ongoing multidisciplinary
research initiative. Pattern analysis is, however, hampered by missing data in the
ADNI dataset, i.e. patients with incomplete records, cases where the different
data modalities are partially or fully absent due to several reasons: high mea-
surement cost, equipment failure, unsatisfactory data quality, patients missing
appointments or dropping out of the study, and unwillingness to undergo inva-
sive procedures. The missing data problem can be handled in two ways. Firstly,
all samples having a missing record are removed before any analysis takes place.
This is a reasonable approach when the percentage of removed samples is low so
that a possible bias in the study can be discarded. Secondly, the missing values
can be estimated from the incomplete measured data. This approach is known as
imputation [3] and is recommended when the adopted data analysis techniques
are not designed to work with missing entries. About 80% of the ADNI patients
have missing records. Despite this, such patients are discarded in the vast major-
ity of ADNI studies, which is a disuse of valuable incomplete information. Only
recently, pattern recognition and machine learning techniques that can cope with
missing entries or perform data imputation have been investigated. This article
focuses on the task of patient classification into clinical groups. In particular,
we conduct a comparative study of different imputation techniques and evaluate
their impact on classification performance. We train support vector machine and
random forest classifiers using all the imputed data as opposed to a reduced set
of samples having complete records, for the task of discriminating among dif-
ferent stages of AD. We show the importance of including imputation and data
analysis procedures to achieve more accurate and robust classification results.

In section 2 we provide further background on the classification task for ADNI
patients and briefly describe the imputation and classification methods we used
in this study. Section 3 details the experimental settings on which we tested
the different methods against imputation error and classification performance,
discussing our findings. Final remarks and future work are examined in section 4.

2 Methods

2.1 Classification with Incomplete Data

The ADNI study provides a database of multimodal entries for 819 subjects:
229 participants with normal cognition as healthy controls (HC), 397 with mild
cognitive impairment (MCI), and 193 with mild Alzheimer’s disease. Individuals
with MCI are divided into two groups: those who remained in a stable condition
(sMCI) and those who later progressed to AD (pMCI). It is therefore crucial to
diagnose the patients into these clinical categories correctly in order to choose an
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appropriate treatment and further monitoring the disease. This task is especially
difficult when approximately 80% of the participants have missing observations.

Let X ∈ R
n×p be an incomplete matrix with n samples (subjects) and p

variables (features). X can be seen as two matrices, one containing the observed
data Xo, and the other one representing the missing data to be estimated Xm.
Most classification methods from the literature discard all samples having at
least one missing value. Only a few works that use all the available data exist,
such as [4–7] where direct data imputation is avoided, and [8] where a subset
of the missing data is estimated based on variable and sample selection. It is
then important to investigate the different causes of the missing data to evalu-
ate the utilisation of adequate imputation methods. Little and Rubin [3] define
three missing data mechanisms: i) missing completely at random, MCAR: miss-
ing values are independent of both observed and unobserved data; ii) missing
at random, MAR: given the observed data, missing values are independent of
unobserved data; and iii) missing not at random, MNAR: missing values depend
on the unobserved data. A recent longitudinal study [9] found that missing data
in ADNI are not MCAR, but rather conditional to other features in addition
to cognitive function. Moreover, the authors found evidence of different missing
data mechanisms between different biomarkers and clinical groups.

2.2 Imputation Methods

Efforts to define a taxonomy of imputation methods have been reported in [3,10].
In this work we compare some common techniques used in the literature.

1. Zero. This method consists of imputing missing data with 0 (zero) values.
2. Mean. Missing values filled with the mean of the observed values per variable.
3. Median. Missing values filled with the median of the observed values per vari-

able. The median is more robust against outliers than the mean. It tolerates
up to 50% of outliers [11].

4. Winsorised mean. Provides a more robust estimate for the mean, which is
calculated after replacing a given percentage (α) of the largest and smallest
values with the closest observations to them. We used α = 10%. This method
also controls the effect of outliers.

5. k-nearest neighbours (kNN). Missing values filled with the mean of the k-
nearest observed samples based on the Euclidean distance. We use a modified
cross-validation approach [12] to find the parameter k in the range [1,

√
nobs].

6. Regularised expectation maximisation (RegEM). Proposed by Schneider [13],
this imputation method makes two important assumptions: the data follow
a Normal distribution, and the missing values are generated by a MAR
process. The missing entries are estimated by the linear regression model
xm = μm+(xo−μo)B+e, where xo ∈ R

1×po and xm ∈ R
1×pm are row vectors

of the observed data matrix Xo and the estimated missing data matrix Xm,
respectively; μo and μm are their corresponding means; B ∈ R

po×pm is the
regression coefficients matrix, and e ∈ R

1×pm is a zero-mean random residual
vector with unknown covariance matrix C ∈ R

pm×pm . Initially, the algorithm
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estimates the missing data with the Mean method, followed by i) E-step:
compute the expected mean μ and covariance matrix Σ of X, ii) M-step:
compute the maximum likelihood estimates of the regression parameters B
and C, conditional to the estimates (μ,Σ), and iii) impute missing values
using the regression model. These three steps are iterated until convergence,
i.e., until the estimates (μ,Σ) stabilise. We run Schneider’s implementation2

using the individual ridge regression model.

3 Experimental Results

3.1 Data

In this work, we consider three baseline ADNI modalities: cerebrospinal fluid
(CSF), magnetic resonance imaging (MRI) and positron emission tomography
(PET). The modalities were preprocessed according to [14], with 43 out of 819
subjects excluded for not passing the quality control. The CSF source contains
3 variables that measure the levels of some proteins and amino acids that are
crucially involved in AD. The MRI source provides volumetric features of 83
brain anatomical regions. The PET source (with FDG radiotracer) provides the
average brain function, in terms of the rate of cerebral glucose metabolism,
within the 83 anatomical regions. Hence, each subject consists of 169 features.

3.2 Imputation

In this section we work with the 147 subjects who have complete records: 35 HC,
75 MCI and 37 AD. We synthesise different patterns of missing data, considering
the individual modalities and pairs of them: CSF, MRI, PET, CSF-MRI, CSF-
PET and MRI-PET. For each pattern we removed such features from a given
percentage {10, 20, 30, 40, 50}% of subjects that were chosen randomly. The per-
formance of the different imputation methods is assessed between three clinically
relevant pairs of diagnostic groups: AD/HC, MCI/HC and pMCI/sMCI.

Due to space limitations, Fig. 1 only shows the results for the experiment
AD/HC (72 subjects) with the CSF-PET missing data pattern. 95% confidence
intervals were computed for the Pearson correlation (PC) and the relative error
(RE) over 100 runs. As expected, we observed that the PC of the imputed
variables decreases with the amount of missing data. It is noteworthy that the
PC for the Zero method is the lowest because this technique does not consider
any additional information for estimating the data. Moreover, the RE for each
method seems rather constant. Since it is computed as RE = |xo − xm|/xo,
the Zero method will always produce RE = 1. Filling CSF data produces an
error of about 45% for the Median, Winsorised mean and kNN methods, which
outperform the Mean and EM methods. Filling PET data produces an error of
about 13% for most techniques, except for the Zero method. This low error can
be explained by inspecting the actual PET values. Fig. 2 shows the histograms
2 www.clidyn.ethz.ch/imputation

www.clidyn.ethz.ch/imputation
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Fig. 1. Imputation performance. Pearson correlation (bottom) and relative error (top)
for the imputation of missing values (MV) in CSF (left panels) and PET (right panels)
for the CSF-PET missing data pattern.
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Fig. 2. Mean (left) and standard deviation (right) histograms over all 83 PET variables.

of the mean and standard deviation over all 83 PET variables. These small
quantities indicate that the PET values are bunched up close to the mean. For
this reason, the methods tend to provide estimates around this value even if they
do not directly impute using the mean.
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Table 1. AD/HC multi-modality classification accuracy (acc.), area under the curve
(AUC), sensitivity (sens.), specificity (spec.), and F-measure (F) based on filling miss-
ing data with different imputation methods before training a support vector machine
(SVM) and a random forest (RF) classifiers. Results are expressed as mean (standard
deviation).

Classifier Imputation Acc. (%) AUC (%) Sens. (%) Spec. (%) F (%)

none 83.5 (10.7) 92.4 (8.0) 81.7 (15.7) 86.1 (12.4) 82.2 (12.2)

Zero 88.7 (3.3) 93.9 (3.0) 89.0 (4.7) 88.6 (5.2) 89.5 (3.1)
Mean 86.6 (2.3) 92.2 (2.4) 85.9 (5.6) 87.7 (4.7) 87.7 (2.4)

SVM Median 88.5 (3.7) 93.7 (3.1) 88.3 (3.9) 88.5 (6.7) 89.3 (3.3)
Winsor m. 88.4 (3.4) 94.3 (2.4) 88.6 (4.6) 88.9 (5.5) 89.2 (3.2)
kNN 88.5 (3.0) 93.5 (2.5) 88.3 (3.6) 88.8 (4.7) 89.1 (3.2)
EM 88.1 (4.0) 93.7 (2.8) 87.9 (5.6) 88.3 (4.3) 88.9 (3.8)

none 84.8 (9.0) 93.2 (5.3) 85.9 (13.2) 85.5 (11.3) 84.3(9.6)

Zero 86.2 (3.5) 93.2 (3.1) 87.1 (4.9) 85.4 (5.4) 87.1 (3.2)
Mean 86.6 (2.8) 92.7 (2.5) 87.2 (5.5) 86.1 (5.3) 87.5 (2.7)

RF Median 86.3 (3.5) 93.6 (3.2) 87.2 (3.8) 85.2 (6.7) 87.3 (3.1)
Winsor m. 88.4 (3.1) 94.3 (2.0) 89.1 (4.2) 87.8 (4.1) 89.1 (2.8)
kNN 85.3 (3.3) 92.5 (2.3) 86.5 (4.7) 84.2 (4.8) 85.9 (3.4)
EM 86.3 (4.2) 93.1 (2.6) 87.1 (5.1) 85.6 (5.9) 87.1 (4.0)

Table 2. MCI/HC multi-modality classification results.

Classifier Imputation Acc. (%) AUC (%) Sens. (%) Spec. (%) F (%)

none 69.1 (11.8) 69.5 (14.6) 48.3 (21.5) 74.9 (13.4) 44.3 (22.8)

Zero 70.9 (3.3) 74.4 (11.1) 59.8 (5.6) 76.3 (4.3) 56.6 (5.4)
Mean 71.9 (3.8) 76.1 (12.2) 62.5 (6.8) 76.7 (4.0) 58.8 (6.0)

SVM Median 71.0 (3.9) 76.3 (4.1) 62.4 (6.1) 75.8 (4.9) 59.1 (6.5)
Winsor m. 72.0 (3.6) 77.9 (3.7) 63.4 (5.6) 76.2 (4.6) 59.0 (5.1)
kNN 72.6 (3.8) 78.8 (3.6) 63.3 (6.3) 77.3 (5.6) 58.9 (6.7)
EM 73.1 (4.2) 78.9 (2.8) 62.8 (7.1) 78.6 (5.1) 59.5 (7.3)

none 71.1 (8.3) 75.3 (10.6) 65.0 (21.9) 74.3 (10.2) 42.6 (14.9)

Zero 73.6 (3.2) 78.3 (3.8) 67.1 (8.0) 76.1 (4.2) 56.7 (7.1)
Mean 71.9 (3.3) 77.6 (5.0) 65.0 (8.0) 75.0 (2.8) 56.1 (4.5)

RF Median 71.4 (3.8) 76.5 (4.7) 66.1 (7.3) 73.5 (3.8) 55.7 (6.3)
Winsor m. 72.2 (3.8) 77.5 (3.6) 66.9 (4.2) 74.3 (4.9) 55.5 (6.1)
kNN 73.2 (4.2) 78.6 (4.6) 65.5 (8.0) 76.7 (5.4) 58.5 (6.1)
EM 72.6 (3.7) 77.6 (3.8) 63.2 (7.4) 76.7 (3.9) 56.8 (5.3)

3.3 Classification

We now use all 776 subjects to assess the impact of the different imputation
methods on patient classification. The whole data set has 33% of missing values,
from which 97% correspond to PET values. The remaining 3% are CSF values,
while the MRI source is complete. We consider two experiments: AD/HC with
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395 subjects (185 AD and 210 HC) and MCI/HC with 591 subjects (381 MCI
and 210 HC). In each experiment we used 75% of the data to train two classi-
fiers, namely a ν-Support Vector Machine (ν-SVM) and a Random Forest (RF),
evaluated over 25 runs. The other 25% of the data was used for testing. We
employed the implementations found in the scikit-learn library3. The ν and σ
parameters for ν-SVM and the number of trees and number of features for RF
were tuned using 5-fold CV.

Tables 1 and 2 show the classification results for the experiments AD/HC
and MCI/HC, respectively. We juxtapose both classifiers, SVM and RF, for the
different imputation methods. For completeness, we include the results when the
classifiers are trained solely with the reduced set of subjects having complete
records and thus no imputation is needed. It can be noticed that the classifica-
tion improves considerably when the full data set is used, imputing the missing
values. This clearly provides more information to discriminate among the differ-
ent diagnostic groups. These experiments suggest that the Winsorised mean, the
kNN and the EM methods should be preferred as imputation methods as they
provide more stable performance. The Zero method seems competitive, which
is explained again by the fact that the most of the missing data come from the
PET source which presents low dispersion values close to zero. Both classifiers
present similar performances in each scenario. A remarkable point, is that their
robustness (low variance) is increased in cases with imputation.

4 Conclusions and Future Work

We have seen how imputation techniques allow for the utilisation of additional
information, that would otherwise be discarded, to better distinguish between
different diagnostic groups. The development of biomarkers using more evidence
could result in more accurate diagnosis and prognosis of Alzheimer’s patients.
Our results showed that training classifiers with imputed data is better than con-
structing a predictive model with a reduced number of subjects with complete
records. This is supported by the fact that all imputation techniques increase
both performance metrics and robustness of the classifiers. An apparently unex-
pected finding is that the Zero method is competitive with the other methods,
according to the performance metrics used in this article. It is expected that
more sophisticated methods such as kNN and EM would deliver better results.
However, as we stated before, possibly more relevant than the quality of the
imputation algorithms is the nature of the data, which plays an important role
in the performance as we have seen.

Future work includes studying other imputation and classification techniques,
as well as exploring multi-class extensions and alternative ways of treating the
feature space to handle data-dependent imputation pitfalls. There is interest in
comparing imputation methods with methods that can internally handle the
missing values, as Artificial Neural Networks (ANN) [15] and SVM [16].

3 scikit-learn.org/stable

scikit-learn.org/stable
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Abstract. Genomic prediction is a still growing field, as good predic-
tions can have important economic impact in both, agronomics and
health. In this article, we make a brief review and a comprehensive anal-
ysis of classical predictors used in the area. We propose a strategy to
choose and ensemble of methods and to combine their results, to take
advantage of the complementarity that some predictors have.

Keywords: Parametric · Non parametric · Genomic · Selection ·
Prediction · Fusion

1 Introduction

Beef consumers increasingly demand meat of high and consistent quality. As a
consequence, research has focused on understanding muscle biology to control
quality traits. In the past two decades, molecular genetics has changed dramati-
cally animal production research. Genome sequencing has facilitated the identi-
fication of polymorphisms (here we focus on Single Nucleotide Polymorphisms:
SNPs), that can be used as genetic markers in animal breeding. Genes involved
in the physiological regulation of energy, body weight, triglyceride synthesis and
growth are candidates that may have effects on economically important carcass
and meat quality traits ([7] [6]). On the other hand, such avalanche of informa-
tion has increased in a considerable way the complexity of the analysis, making
obvious that the usual statistical methods may not be enough ([10] [18]). In this
paper we try to predict the carcass weight from genomic information. A review of
the state of the art in genetic prediction shows the interest in performance com-
parison between lineal regression models as Bayesian Ridge regression, Bayesian
Lasso, Bayes A, B and C with non-linear models as Bayesian Regularized Neural
Networks (BRNN), Reproducing Kernel Hilbert Spaces Regresion (RKHS) and
Support Vector Machine Regression (SVR).
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 11–18, 2015.
DOI: 10.1007/978-3-319-25751-8 2
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In [16], the superiority of nonlinear regression methods versus linear ones is
analyzed in the case of wheat genomic prediction. In [11] a comparison between
Best Linear Unbiasd Prediction (BLUP) and SVR shows discrepancy between
prediction accuracies obtained by cross-validation procedures and correlation
ones, beeing more accurate BLUP when a limited set of training samples are
available. In [13], a comparison of five methods to predict genomic breeding val-
ues of dairy bulls from genome-wide SNP markers is done. Fixed regression using
least squares (FRLS), BLUP, bayesian regression (BayesR), partial least squares
regression and SVR are compared in Australian Selection Index and protein
percentage prediction. Although the selected methods have inherent differences
in the underlying assumptions, they show similar performances (except FRLS,
which is not recomended). In [14] methods with large conceptual differences also
reached very similar predictive performances, although re-ranking of methods
was observed depending on the analyzed phenotype. In [19] the effects of feature
selection methods on prediction performance for different methods was observed.
The authors found that feature selection and prediction algorithms should be
carefully selected depending on the phenotypes. A nice review of kernel-based
whole-genome prediction of complex trait is presented by [12]. They concluded
that research involving analysis of raw phenotypes coupled with enviromental
variables needs more attention. In recent works, like [17], the impact of pre-
dictive modes averaging is analyzed. It is proposed to combine several RKHS
models with different t-kernels, but no improvements were found compared with
one kernel models. Although several works compared different approaches for
genomic prediction (born in breeding animal, statistics and machine learning),
they use performance measures, as the prediction error, that are global statistical
averages, which can hide the differences and complementarities between meth-
ods. In particular, these differences are what can make it worth a combination
of methods. In pattern recognition, it is well known that the best scenario is to
combine when individual methods have similar performance but bring diversity,
i.e. different behavior in different individuals [1,2,8,9].

In this paper we study the behavior of a set of known approaches for genomic
prediction of carcass weight in Aberdeen Angus cattle from Uruguay. A com-
parative analysis of the behavior of the different methods in the sample space
is presented. We propose a method to choose a subset of predictors, once their
performances are computed. The proposed analysis aims to provide knowledge
of the specific problematic, but also give elements for a greater understanding
of the similarities and differences between approaches and to know in advance if
it is worthy to use an ensemble of methods.

2 Methodology

Data Set Characterization. The database used comprise several phenotypic
measures [15] from a total of 705 Aberdeen Angus animals of different age-sex
categories. The animals came from ten commercial herds and were slaughtered
in different slaughter houses. The database is complex, due both to the amount
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of data and the diversity thereof. Apart from genotypic variables, it includes
environmental effects such as age, sex and origin. To avoid dealing with fixed
effects, we just considered the individuals of the most numerous herd. The trait
analyzed here is carcass weight. A total of 160 SNPs were selected for genotyping
from the bibliography and public genomic databases. They are located in can-
didate genes that take part in metabolic pathways and physiological processes
related to energy expenditure, triglyceride and fatty acid synthesis, body weight
and growth. After removing SNPs with minor allele frequency lower than 0.05
(to avoid bias of the data), and individuals with more than 20% of missing values
or with no phenotype, there were 79 SNPs and 93 individuals left.

Prediction Methods. In genome-wide association studies the objective is to
predict an individual’s breeding value (here, carcass weight) from its genotype.
The association between genotypes and phenotypes is modeled in a group of
individuals with phenotypic and genetic information (training set). The model
is then used to predict the individual phenotypes in individuals for whom only
information from genetic markers is available.

The basic prediction model, that seeks to minimize the mean square error
(Ordinary Least Squares (OLS)), has prediction coefficients that are unbiased
estimates with variance dependent on the sample size (n), the number of coeffi-
cients prediction (p) and interdependence between the predictor variables. One
way to address “the curse of dimensionality“ (p large in relation to n) of OLS,
which generates high variance and therefore a large mean square error (MSE),
is applying regularization in the regression. This is done adding a penalty term
in the optimization seeking to balance the goodness of the approximation to
the complexity of the model. Ridge Regression (RR) adds an extra term to the
likelihood function that reduces the regression coefficients in an amount which
depends on the variance of the co-variates. The regularization introduces bias,
but reduces the variance of the estimate, reducing potentially MSE estimation
of the prediction coefficients. Other individual cases of regularization are Least
Absolute Shrinkage and Selection Operator (LASSO) in which the penalty is
the absolute value of the coefficients, instead of the squares of them (as in RR),
which introduces sparcity.

In a Bayesian approach, different penalty methods can be introduced chang-
ing the priors from where the regression coefficients are sampled and the likeli-
hood functions. The Bayesian equivalent of RR, BRR (Bayesian Ridge Regres-
sion), allows to deploy G-BLUP (BLUP using a genomic distance’s matrix),
which is one of the most commonly used models in genomic prediction. A set of
methods that share the same likelihood function but differ in the priors, which
suppose different effects of the markers is known as the Bayesian alphabet ([3]).

The problem becomes almost intractable with large p. An alternative strategy
is to use semi-parametric models as proposed by Gianola [4] as RKHS (Repro-
ducing Kernel Hilbert Space), in which the model is determined by the choice
of a kernel which fixes the space in which the regression is performed, and the
parameter that determines shrinkage similar to that used in RR. An alternative
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method to capture additive, dominance and epitasis integrating linear and non-
linear functions are complex neural networks (NN [5]). One of the distinguishing
characteristics of neural networks is the flexibility to capture complex nonlinear
patterns, the drawback are that increasing p with multiple neurons, increases
strongly the computational requirements and tends to overfitting.

Having a set of tools as described previously, we faced the problem of defining
how to use them efficiently, taking full advantage of the benefits and minimizing
weaknesses. To do this we needed to define a set of measures for evaluating the
performance of complementarity and/or the diversity they bring to the set. In
particular, it lead us to investigate the advantages of assembly methods and how
to make the assemble.

Comprehensive Analysis of Diversity of Predictors. As was shown before,
different strategies have been proposed to deal with gene-trait association and
genetic prediction. The studies showed that there is no method that is always
superior to others in all data sets. These works make focus in MSE and they do
not make a deeper comparative analysis about the diversity between the meth-
ods. They hide how the individual strategies work in the data space and if they
have enough diversity between them that it could be worth embeding. Dealing
with complex data sets where the traits have high dependence on enviroment
introduce specific problems that have to be taken with care and different meth-
ods have to be used. We will discuss the relevance that different methods give to
the variables, making focus in similarities and differences. We propose to study
the relation between the genomic array, using its first two principal components
and the error distribution in the sampling space.

Diversity Meassure in Ensamble. For regression ensembles the ”diversity”
can be measured and quantified explicitly. The MSE can be expressed in a bias-
variance-covariance decomposition for the predictors ensembles. In an assemble
of methods, the predictive error depends on the bias and variance of individual
predictors but also on the covariance between individuals (shown in [2]).

The default method for the assembly of regression methods is the average
of the predictions of the different methods. Given that the average error is a
function of the average bias, variances and covariances between methods. An
improvement in performance would be expected against the individual meth-
ods.The optimal assemble choice is the one that balances the trade-off between
these terms to reduce the overall MSE. Given a set of methods with similar per-
formance in terms of individual MSE or correlation between the predicted and
the real values in the training set, the ones that provide smaller covariance, i.e.
are the most diverse, are worth to be ensemble.

Based on the above analysis, it is proposed as a criterion for the ensamble
to seek “diversity” measured by the covariance between methods: (i) Select the
two methods with less covariance, (ii) in an iterative way select the method with
less covariance with respect to the already selected provided that the covariance
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Table 1. Correlation Matrix of Predictors and the real value y: MMR: Multiple Marker
Regression, RR:Ridge Regression, BC: Bayes C, BB2: Bayes B with π = 10−4, RK:
Regression Kernel in Hilbert Spaces, NN: Neural Networks

y MMR RR BC BB2 RK NN

y 1.00 -0.13 0.20 0.15 0.18 0.16 0.19
MMR -0.13 1.00 -0.11 -0.18 -0.20 -0.16 -0.04

RR 0.20 -0.11 1.00 0.88 0.70 0.77 0.76
BC 0.15 -0.18 0.88 1.00 0.92 0.96 0.75

BB2 0.18 -0.20 0.70 0.92 1.00 0.98 0.63
RK 0.16 -0.16 0.77 0.96 0.98 1.00 0.71
NN 0.19 -0.04 0.76 0.75 0.63 0.71 1.00

is lower than a threshold, (iii) weighted average of the indiviual predictions is
given as result.

3 Results

Relationship Between Errors and Genetic Structure. To investigate if the
prediction error was related to the genomic relationship between each individual
and the rest of the population, a Principal Component Analysis of the genomic
matrix of the population was done. PCA is also helpful to investigate if there
is a hidden substructure in the population, which could introduce confounding
effects in our analyisis. We suppose that if the error of a predictor is related with
the genetic composition of the individuals, then individuals with the same type of
errors would cluster together. Although different bayesian approches were used,
in Figure 1 only BayesC is shown because the predictors were highly correlated
(≈ 99%).

No obvious clusterization is observed in Figure 1. From the individual error
point of view, there are some variations on the individual errors between meth-
ods, but in general the error structure remains the same, but for the multi marker
regression. This predictor was negatively correlated with the real values and with
the other predictors in the testing set (Table 1), so it is no longer considered in
the analyisis.

Combining Predictors. Although the differences between the error structure
of the predictors were slight (Fig. 1), the algorithm proposed in 2 was used to
investigate if there was a way of embedding predictors that predicted better than
the predictors individually.

The first chosen predictors were NN and BB2, for having the smallest positive
covariance. Then, the correlation between the mean of those predictors (mNN-
BB2) was computed and as a result of that RK was chosen. The predictor was
computed as m2RK = (2 ∗mNN −BB2 +RK)/3, to avoid underweighting the
first chosen predictors. Then, the correlation between m2RK and the remaining
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Fig. 1. Principal Component Analysis of Genomic Array. Errors in carcass weight
prediction are represented with a color gradient

predictors was computed and RR was chosen. The new predictor m3RR was com-
puted in the same way as the previous one. The correlation between the remaining
predictor BC and the new one was 90%, so BC was not integrated to the predictor.
The correlations of the previous steps were between 70% and 80%.

Three different combinations of the predictors were evaluated: The mean of them,
the weighted mean using the correlations between each predictor (w-mean) and the

Table 2. Mean Squared Error. BRR: Bayesian Ridge Regression (= G-BLUP), BA,
BB, BC and BL: Bayes A, B, C and LASSO, mean was taken over RR, BB2, RK, NN,
m2RK = (mNN+BB2)/2

MMR RR BRR BA BL BC BB BB2 RK NN mean w-mean m2 m2RK m3RR

0.80 0.72 0.58 0.57 0.57 0.60 0.58 0.57 0.57 0.85 0.58 0.58 0.60 0.57 0.59
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Fig. 2. Correlation between the predicted values using the different predictors and the
real value (left) and distribution of the squared errors (right). Results from testing set.

real value and the predictor resulting from the algorithm ( m3RR ). The new estima-
tors have almost the same MSE than the lowest observed value (0.57), and a slightly
better correlation with the real value. The best correlation found between the classical
predictors was the one of the Ridge Regression predictor (Fig. 2), but it has one of
the worst MSE (0.80, Table 2). The new predictor has the best correlation with the
phenotype and almost the lowest MSE.

4 Conclusions

A comprehensive analysis of the performances of the main methods used in genetic
prediction of complex traits of high economic impact was done.

Based on the evaluation of diversity among the indivuduals, an ensemble strategy
was proposed and evaluated. In particular, it was found that bayesian predictors have
low complementarity, while BayesC (or any of the others), Ridge Regression, RKHS
and Neural Networks have the highest degree of complementarity. By comparing several
ways of combining the predictors, obtained by taking diversity into account, we found
that the proposed criteria is consistent.

As it is not possible to know in advance which of the methods would work better,
as they do not require much computation after the predictors are computed, and as the
shown combinations work at least as well as the best predictor, it is worth to combine
the methods.

Further reserch has to be done in order to obtain the best weights for combining
these predictors, without loosing interpretability of the results.
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Posdoc research scholarship. The authors want to thanks Daniel Gianola for sharing
his experience in the genetic prediction field.
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3 Centre for Supercomputing and Scientific Computing,
Universidad Industrial de Santander, Bucaramanga, Colombia

Abstract. The atmosphere is a highly complex fluid system where mul-
tiple intrinsic and extrinsic phenomena superpose at same spatial and
temporal dominions and different scales, making its characterization a
challenging task. Despite the novel methods for pattern recognition and
detection available in the literature, most of climate data analysis and
weather forecast rely on the ability of specialized personnel to visually
detect atmospheric patterns present in climate data plots. This paper
presents a method for classifying low-level wind flow configurations,
namely: confluences, difluences, vortices and saddle points. The method
combines specialized image features to capture the particular structure
of low-level wind flow configurations through a pyramid layout repre-
sentation and a state-of-the-art machine learning classification method.
The method was validated on a set of volumes extracted from climate
simulations and manually annotated by experts. The best results into
the independent test dataset was 0.81 of average accuracy among the
four atmospheric structures.

1 Introduction

The superposition of an intricate set of interactions between air, ocean and land
components and states yields both regular (periodic or quasiperiodic) and chaotic
patterns at different scales for atmospheric relevant variables –i.e. temperature,
pressure, humidity, air velocity, density, chemical composition, etc. The dynamics
of such patterns and their corresponding physical manifestations (cloud coverage,
winds, rain, hail, snow, etc.) configure a continuous from climate (long time and
space atmospheric scales) to weather (in short time scale and local domains).

Behind the specific occurrence of each observable atmospheric pattern, there
are several physical processes converging at different spatial and temporal scales,
determining their distinctive features. Indeed, the relevant structures for both
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 19–26, 2015.
DOI: 10.1007/978-3-319-25751-8 3
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climate and weather description are a compound of several atmospheric variable
configurations present in a particular region at the same time.

Weather forecast is carried out by the coupling of mechanistic models, such as
WRF (Weather Research and Forecasting Model [6]) and statistical processing
of real data. Furthermore, computer simulations and data acquisition (satel-
lite imagery, weather stations, RADAR) are just the first part of the process:
a detailed empirical description from classical meteorological approaches allow
specialists to visually detect atmospheric structures and manually track their
evolution over time to qualitatively describe their dynamics and, then, predict
the most probable scenarios according to each particular spatio-temporal con-
figuration obtained [7]. Then, low level structure characterizations of the atmo-
sphere are implicitly carried out by meteorologists on a daily basis, with the aid
of computer systems that enhance data visualization (isolines, streamlines, data
fusion on scalar and vector fields, etc.).

Moreover, the automatic detection of atmospheric structures, even for low level
configurations (particularly, fluid flow patterns) is a challenging problem, given
the high local and global variability of climatic data, no matter if it comes from
experimental measurements or modeling and simulation results. Recent works are
still exploring new techniques for structure representation and identification [4].

In the data visualization context, the works of Tzeng and Ma [10] and
Gruchalla et al. [3] proposed frameworks for 3D fluid structure extraction and
rendering by detecting regions of interests (ROIs) containing such patterns in the
wavelet domain. Given that low level fluid structures are expected to have quite
regular patterns, Rao et al. [9] presented a region-based detection and extraction
method based in phase portraits, where the salient ROIs are those where the geo-
metrical pattern of the vector field best matches the solution of the differential
equation associated to the analytic structure description. Even the use of such
methods in climate and weather data visualization, state of the art climate data
analysis and weather forecast depends mainly on the ability and experience of the
specialist to detect patterns constituting relevant atmospheric structures.

This work proposes a machine learning approach to support the automatic
detection of such low level patterns, specifically those related to wind dynamics.
The method takes as input a volume, which includes information of atmospheric
variables (temperature, pressure, humidity and air velocity) at a given time in a
particular region; next, different features based on divergence and curl differential
operators are extracted from the volume represented as a spatial pyramid layout
(SPL) and fed to a support vector machine classifier, which has been previously
trained with a set of annotated volumes for four classes: confluence, difluence, vor-
tex and saddle point (as it is shown in Figure 1); finally, the classifier outputs a pre-
diction that indicates the probability of the presence of a particular low-level wind
flow configuration. The method was evaluated over a set of volumes extracted from
climate simulations and manually annotated by expert meteorologists.

The rest of paper is organized as follows: Section 2 explains the details of the
proposed classification method. Section 3 describes the experimental evaluation
–including the dataset description, the experimental setup and results–. Finally,
Section 4 concludes with the main remarks and establishes the future work.
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Fig. 1. Representative instances of confluence, difluence, vortex and saddle point wind
structures in WRF simulated data for northern South America and the Caribbean.
Winds (in m/s) are plotted over this geographical domain and its corresponding latitude
and longitude coordinates (upper map) for a spatial resolution of 40 km.

2 Automatic Classification of Low Level atmospheric
structures

An overview of the method herein proposed is depicted in Figure 2, which starts
from a database of low level atmospheric structures manually annotated by
experts meteorologists. For each annotated sample, an approximation of the
differential operators curl and divergence is applied to capture characteristics of
the wind velocity vector field into three atmospheric feature maps (curl, diver-
gence, negative of divergence). Then, several histogram representations are built
at different resolutions following a SPL. The final concatenation of the resulting
histograms is used to train a machine learning classifier (support vector machine,
SVM, or random forest, RF) to distinguish between four atmospheric structures
(vortex, difluence, confluence and saddle point). The prediction is performed
using the trained classifier over a particular ROI. The details of each step are
presented in the following subsections.

2.1 Approximation of Differential Operators from Wind Velocity
Field

Given ∇ =
(

∂
∂x ,

∂
∂y

)
and v = (u, v), a vector field representing two dimensional

components of winds parallel to Earth surface within an isobaric layer, it is
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Fig. 2. Overall method description for automatic detection of atmospheric structures.

possible to derive expressions for both divergence and curl operators, to support
further design of a fluid flow-based vector field descriptor. A simple discrete
version of a two-dimensional v, is the matrix V = {(u, v)ij}M×N where i =
1, 2, . . . , M is the index pointing to each row and j = 1, 2, . . . , N the index
pointing to each column of the matrix.

Divergence. The divergence of v is defined as ∇ · v = ∂u
∂x + ∂v

∂y for the
two-dimensional case. Since this is an interior product, divergence is a scalar
field. Using the basic centered finite difference approximation to each partial
derivative, the 2D divergence can be estimated as ∇ · v ≈ (ui+1,j−ui−1,j)/2h +
(vi,j+1−vi,j−1)/2h.

Curl. The curl of a vector field determines how much the vectors within the
dominion under study “rotate” around each particular position. In the 2D case,
curl is easily build by taking into account only the rotation on the xy plane.
Then ∇ × v =

(
∂v
∂x − ∂u

∂y

)
z̄, which, therefore, is always perpendicular to that

plane and can be approximated by ∇ × v ≈ (vi+1,j−vi−1,j)/2h − (ui,j+1−ui,j−1)/2h.

2.2 Fluid Flow-Based Feature Descriptor

Taking into account that an atmospheric structure can occur in different spatial
locations and each phenomenon can have different scales, we propose a set of
atmospheric-based feature descriptors able to support translational and scale
invariance by using a SPL representation of the region of interest. Over the
SPL, we extract features from the differential curl and divergence operators,
max-pooling and the histogram of oriented optical flow as explained below.

Spatial Pyramid Layout (SPL) Representation. This representation
allows to capture the atmospheric structures in different spatial locations and
scales. As it is shown in Figure 3, the image is divided in different regions follow-
ing a pyramidal layout organization. The first layer of the pyramid corresponds
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Fig. 3. Fluid flow-based feature descriptors. Histograms are extracted in a pyramid lay-
out from the different feature maps. The resulting 14 histograms are further integrated
in the max-pooling descriptor, which corresponds to a histogram with the maximum
values for all the bins.

to the whole image, the second to a 2×2 division, and the third to a 3×3 division
[5]. The image is represented by a concatenation of the resulting 14 normalized
histograms for divergence, negative-divergence and curl feature maps.

Max-pooling. The max-pooling works to detect atmospheric structure inde-
pendently of its location and scale. Max-pooling applies a maximum operator
among the 14 histograms of all spatial layouts. This pooling function is typically
used for detection tasks exploiting spatial invariances [8].

Histogram of Oriented Optical Flow. As a baseline, we decided to use
histograms of oriented optical flow (HOOF) [2] attempting to detect the patterns
in the wind flow that better describe each phenomena. Additionally, the SPL was
also applied to this image representation.

2.3 Atmospheric Structure Classifier

For automatic prediction of the atmospheric structures, a Support Vector
Machine (SVM) classifier and a Random Forest (RF) classifier were trained. For
addressing the multiclass problem of classifying the atmospheric structures (vor-
tex, difluence, confluence and saddle points), the SVM uses a one-vs-all strategy.
The kernels evaluated for SVM were linear and radial basis function (RBF).

3 Experimental Evaluation

3.1 Atmospheric Structure Dataset Construction

The 4D (3D + time) data used in this study come from WRF regional climate
simulations from the climate change study developed by Armenta and Pabón [1]
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for the period between 1981 and 2010. These simulations were performed at a
spatial resolution of h = 10 km and temporal resolution of 3 hours.

A monthly highest and lowest ocean surface temperature criterion was
applied to focus on May and December data. An Extraction-Transformation
and Load (ETL) process was performed to extract and transform to real units
3D fields for temperature, T , and wind velocity components, U , V and W , and
then store them in raw files. For the region under study (northern South America
and western Caribbean Sea), 27 isobaric slices were extracted, each of 287× 280
uniform surface elements.

An annotation tool was developed specifically for these data. The tool loads
simulation data and renders temperature and wind velocity for slices at different
isobaric levels (up to 27 for each volume). Experts navigate the WRF data
using the annotation software by exploring the 3D volumes along a specific time
period, and are asked to manually segment the ROI containing one structure and
to specify its particular type. The ROI bounding box is then stored in a XML file
along with the corresponding class and related information, such as simulation
time, isobaric level and divergence and rotational computations on the ROI. The
resulting annotated dataset contains 793 annotations, 232 for confluences, 166
for divergences, 177 for saddles and 218 for vortices.

3.2 Experimental Design and Performance Measures

For evaluation purposes, we split the original dataset into two parts for train-
ing and testing. The testing dataset comprises a complete and independent 4D
data from a simulation of a month with region annotations for all four climate
phenomena (vortex = 78, difluence = 47, confluence = 39, saddles = 35). The
training set corresponds to remaining simulation 4D data with annotations from
four months (vortex = 140, difluence = 119, confluence = 193, saddles = 142).
The performance measure used to evaluate the classification was the average
accuracy, i.e. the average of the accuracy per class.

For parameter selection, a stratified 5-fold cross-validation scheme was
applied over the training dataset for each strategy (combinations of features and
classifiers). The same folds distribution was used for all strategies in order to com-
pare them in the same conditions. The parameter combination that obtained the
best performance was used to train a model using the whole training dataset. The
final performance measure was reported over the independent testing dataset for
each strategy for comparison.

The representations evaluated were defined as follows: pyrHOOF (baseline)
by concatenating the HOOF descriptor for each region obtained from SPL, hist-
divcurl is the concatenation of histogram distribution of the three feature maps
of atmospheric operators (curl, divergence and negative divergence), pyrdivcurl
is the histogram concatenation of the three feature maps for each region obtained
from SPL, and maxpooldivcurl is the corresponding histogram obtained by apply-
ing max-pooling over all concatenated histograms from regions obtained from
the SPL.
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3.3 Results

Table 1 shows the classification performance of the proposed method evaluated
in terms of accuracy for the different representations and classification methods.
Notice that these results were obtained from independent data corresponding
to a month of simulation. The best performance measure was achieved by the
complete SPL representation without max-pooling (pyrdivcurl) and using a Sup-
port Vector Machine with an RBF kernel obtaining an average accuracy of 0.81.
In general, the confluence class shows the highest accuracy for the most config-
urations whereas saddle point class have the worst performance. Interestingly
max-pooling applied over SPL does not help because most of the region anno-
tations are centered in the atmospheric structure. However, preliminary work
with larger regions where the atmospheric structure was not at the center, the
max-pooling over SPL obtained the best results. Table 1 also shows that per-
formance achieved using SVM with a linear kernel is very close to the reported
one using SVM with RBF kernel. Furthermore Random Forest classifiers were
trained with 10,000 estimators, indeed during cross validation we could deter-
mine that increasing the number of estimators did not improve our results.

Table 1. Classification performance in test dataset in terms of accuracy.

Feature Classifier Vortex Difluence Confluence Saddle pt Avg. Accuracy

pyrdivcurl SVM-RBF 0.71 0.82 0.92 0.77 0.81

histdivcurl SVM-RBF 0.69 0.87 0.89 0.6 0.765

maxpooldivcurl SVM-RBF 0.69 0.87 0.89 0.6 0.765

pyrHOOF SVM-RBF 0.76 0.87 0.56 0.48 0.672

pyrdivcurl SVM-Linear 0.74 0.8 0.92 0.71 0.797

histdivcurl SVM-Linear 0.75 0.78 0.87 0.6 0.753

maxpooldivcurl SVM-Linear 0.75 0.78 0.87 0.6 0.753

pyrdivcurl RF 0.73 0.8 0.94 0.6 0.771

maxpooldivcurl RF 0.69 0.85 0.92 0.51 0.745

histdivcurl RF 0.69 0.85 0.92 0.45 0.73

pyrHOOF RF 0.62 0.97 0.58 0.34 0.634

4 Concluding Remarks

This paper presents a successful application of a novel method which combines
features based on differential operators and machine learning classifiers to dis-
criminate low level wind structures. The feature maps obtained from approx-
imate differential operators help to highlight the relevant atmospheric struc-
tures. The SPL show the best classification performance since it includes multi–
resolution information, despite the complexity of the structures.
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Future work includes to increase the dataset with more annotations of low
level and new high level atmospheric structures, adding more atmospheric vari-
ables, enhancing the low level structure characterization, as well as to develop a
detection method to efficiently analyze whole 4D volumes.
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para la identificación de estructuras atmosféricas en predicción climatológica” through
Administrative Department of Science, Technology and Innovation of Colombia (Col-
ciencias). We want to thank Diana Dı́az and Darwin Mart́ınez for their valuable hints
and discussions.

References

1. Armenta, G., Pabón, J.: Modeling northern South America and Caribbean climate
using PRECIS and WRF for climate variability and change studies. In: Proceedings
of the CORDEX-LAC1 Workshop - World Climate Research Programme, Lima,
Peru (2013)

2. Chaudhry, R., Ravichandran, A., Hager, G., Vidal, R.: Histograms of oriented opti-
cal flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recog-
nition of human actions. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2009, pp. 1932–1939, June 2009

3. Gruchalla, K., Rast, M., Bradley, E., Clyne, J., Mininni, P.: Visualization-driven
structural and statistical analysis of turbulent flows. In: Adams, N.M., Robardet,
C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 321–332.
Springer, Heidelberg (2009)

4. Holmén, V.: Methods for vortex identification. Master’s thesis, Lund University
(2012)

5. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid
matching for recognizing natural scene categories. In: 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178
(2006)

6. Michalakes, J., Chen, S., Dudhia, J., Hart, L., Klemp, J., Middlecoff, J., Skamarock,
W.: Development of a next generation regional weather research and forecast
model. In: Developments in Teracomputing: Proceedings of the Ninth ECMWF
Workshop on the Use of High Performance Computing in Meteorology, vol. 1, pp.
269–276. World Scientific (2001)

7. Murphy, A.H.: What is a good forecast? an essay on the nature of goodness in
weather forecasting. Weather and Forecasting 8(2), 281–293 (1993)

8. Nagi, J., Ducatelle, F., Di Caro, G., Ciresan, D., Meier, U., Giusti, A., Nagi, F.,
Schmidhuber, J., Gambardella, L.: Max-pooling convolutional neural networks for
vision-based hand gesture recognition. In: 2011 IEEE International Conference on
Signal and Image Processing Applications (ICSIPA), pp. 342–347, November 2011

9. Rao, A.R., Jain, R.C.: Computerized flow field analysis: Oriented texture fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence 14(7), 693–709
(1992)

10. Tzeng, F.Y., Ma, K.L.: Intelligent feature extraction and tracking for visualizing
large-scale 4d flow simulations. In: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing, p. 6. IEEE Computer Society (2005)



Inferring Leaf Blade Development
from Examples
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Abstract. Morphogenesis is the process by which plant tissues are orga-
nized and differentiated to determine the morphological structure of their
organs. Understanding leaf blade morphogenesis is a major unsolved
challenge in plant sciences. Despite the advances, until now there is no
a clear understanding of the physiological mechanisms underlying these
morphological changes. In this work, we present a novel automatic app-
roach to infer the geometrical structure of a leaf blade developmental
model out of samples of sequences of the leaf development. The main
idea is to infer the set of parameters of a non-linear ordinary differen-
tial equation model based on relative elementary rates of growth, which
better adjusts an empirical leaf blade developmental sequence that was
extracted from real images. From the resulting models leaf shape simu-
lations were calculated. These simulations were compared against the 12
real sequences of leaf blade growing. The results show that the proposed
method is able properly infer leaf blade parameters of leaf development
for a variety of leaf shapes, both in simulated and real sequences.

Keywords: Computational ecology · Leaf morphogenesis modeling ·
Leaf morphology · Relative growth rate · Dynamic time warping

1 Introduction

Morphogenesis is the process by which plant tissues are organized and differen-
tiated to determine the morphological structure of their organs [2]. The analysis
and modeling of plant morphogenesis, and in particular leaf morphogenesis, is a
paramount important problem in plant sciences, agriculture, industrial forestry
and ecology [4]. A better comprehension of leaf morphology is fundamental to
understand plant resilience capacity in response to adverse events, such as, global
warming, reductions in the water supply and soil contamination [2,6].

Leaf morphogenesis critically depends on the plant genetic information and
metabolic and hormonal regulation [3]. Nevertheless, this process can be severely
altered by changes in the environmental conditions and in the supply of sub-
strates and minerals [2]. In general, studies in leaf morphogenesis may require

c© Springer International Publishing Switzerland 2015
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large and complex experimental settings, spanning along extensive time peri-
ods [13]. The use of computational models can be a complementary tool suitable
for the study to these dynamics in shorter times. In the recent years several
models have been proposed to simulate leaf development [7]. These models have
shown accurate visual results, however, they are highly dependent of parameters
and may lack of biological interpretability. In this paper, we present a novel com-
putational approach to model leaf growing dynamics out of real sample sequences
of leaf development. The proposed approach automatically extracts parameters
for a model of development, can be used to simulate accurately blade leaf devel-
opment process and provides a set of biologically interpretable parameters.

2 Background and Related Work

Leaf Morphogenesis. The foliar morphogenesis refers to the set of processes
that control the different aspects of the leaf growing [2]. Including, the regulation
of the initial grow, the determination of the foliar symmetry, the shape and the
definition of the leaf in subregions. The foliar shape is mainly determined by two
morphogenetical processes: primary and secondary. The primary one includes the
initiation of the lamina, the specification of their different domains (the mid vein,
the petiole and the leaf base) and the formation of lamina structures, including,
leaflets, lobes and serrations. In the secondary process leaf expansion occurs and
specific tissues complete their differentiation [2].

Computational Description of Leaf Growth. Leaf shape may range from
simple leaves with elliptical shapes to complex compound leaves with fractal
shapes [7]. Because of this large morphological variability understanding of leaf
development is still a major unsolved challenge in computational modeling and
pattern recognition. Geometry of a biological form results from the growth. Foliar
growing can be described in two ways: globally and locally. The first description
is based on the idea that forms of related but different organisms can be obtained
one from another by changing the coordinate system in which these shapes are
expressed. This idea can be computationally implemented by using, for instance,
shape deformation and morphing algorithms. These methods have been adapted
to model blade leaf growth and development of leaf venation networks [9]. This
approach provides consistent visual results, however, it is highly descriptive and
it does not provide a biologically interpretable description of the leaf growing.
Leaf development can also be described locally by considering how small regions
are organized to form more complex objects. In this case, the size and dimen-
sions of the regions can be characterized by using a single number, for example,
a growing rate that describe in any moment in space-time the development prop-
erties of the unit [7]. This kind of description is commonly used by biologists to
study plant development [6].

Geometric modeling of simple leaves was firstly explored by Scholten & Lin-
denmayer [11]. This model specifies the progression of the leaf shape over time.
A similar model was subsequently employed to simulate development of leaf
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venation patterns [9]. In this case, the complete surface of the leaf blade was
propagated across the domain. Branching structures as the ones observed in
compound leaves have been also modeled by using recursive structures, based for
instance in the L-system formalism [7]. Alternative approaches based on phys-
ically based expansion models have been also explored in literature [8]. More
recently, the dynamic of morphogens, which controls rate and direction of the
organ growth, have been also considered to account for serration patterns com-
monly observed in leaf borders [3]. These models provide accurate visual results.
However, their interpretability in biological terms can be limited.

3 Materials and Methods

The proposed approach is illustrated in figure 1. Firstly, an empirical sequence
of the leaf lamina border is extracted out of real samples of the leaf develop-
ment. Following, a local model of the leaf lamina growing is used to simulate
an instance of the leaf growing dynamic, this model is dependent on a set of
parameters θ. A cost function J(θ) that measures the similarity between the
empirical sequence and the simulated sequence is computed. Finally, a Monte
Carlo based optimization algorithm is used to find the optimal set of parameters
θ∗ that minimize the cost function.

Fig. 1. Proposed approach. An empirical sequence of the leaf lamina border is extracted
out of real samples of the leaf development. Following, a local model of the leaf lamina
growing is used to simulate an instance of the leaf growing dynamic depending on a
set of parameters θ. Finally, a cost function J(θ) that measures the similarity between
the empirical sequence and the simulated sequence is computed.

3.1 Leaves Data and Empirical Sequence Extraction

The sequence of leaf development was sampled for 12 plant species. Each
sequence contained 15 different leaf samples organized in an incremental way
according to their developmental stage. For each sample in the sequence, foliar
lamina was acquired at 300 ppp by using desktop scanner (MP250-Canon) [5].
Images were stored in RGB format. Figure 2 shows a sequence of example.
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Fig. 2. Example of a leaf development sequence.

The leaf borders were extracted by using binary thresholding and contour
tracing algorithms [12]. Spurious regions were removed by using morphological
operators. Leaf base for each contour was manually selected. The leaf contours
inside a sequence were reoriented to coincide in their basis by using principal
component analysis (PCA) and rigid transforms [12].

3.2 Leaf Blade Development Model

To simulate the leaf blade development a relative growth rate (RGR) model was
used. RGR is a standardized measurement of growth with the benefit of avoiding,
as far as possible, the inherent differences in scale when comparing contrasting
organisms. In plant studies RGR is an indicator of the plant productivity as
related to environmental stress and disturbance regimes. Applications of RGR
include the study of dry weight, biomass, leaf area, stem volume, basal area and
stem diameter. Relative growth rates are also pre-requisites for quantifying and
modeling allometric relationships in plants [6].

To define RGR we can start with a quantity of interest, for instance, the
leaf width w(t). Given two measures of leaf width in two different times ti and
ti+1, the absolute growth can be defined as Δw = w(ti+1) − w(ti), this quantity
is dependent on both the time difference ti+1 − ti and the initial size w(ti+1).
In order to have a growth description independent of these two quantities, the
absolute growth can be normalized, i.e., Δw

(ti+1−ti)w(ti)
. For instantaneous times,

this quantity is called RGR and can be defined at time t as RGR = w′(t)
w(t) . RGR

is the increase in size of some quantify relative to the size of the quantity present
at the start of a given time interval. Different RGR can be specified depending
on the growing direction. By using RGR, growth rates can be compared among
species and individuals that differ widely in size.

A number of plant growth functions have been proposed in the literature.
They are often combinations of power functions and exponential functions [6].
Most functions of relative growth rate have the advantage that they have fewer
model parameters than the corresponding functions of absolute growth rate.
In this work, we used RGRs proposed by Bilsborough et al [3], which were
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previously used to model leaf blade growth of Arabidopsis Thaliana. In this case,
two relative elementary rates of growth (RERG) depending on both directions
x (lateral) and y (longitudinal) directions are defined as:

RERGx(x, y) =

{
αx(1 − y

Thx
) 0 ≤ y < Thx

0 otherwise
RERGy(x, y) =

{
αy(1 − y

Thy
) 0 ≤ y < Thy

0 otherwise

where αx and αy represent maximum lateral and longitudinal growths, respec-
tively. Thx and Thy the longitudinal extents of lateral and longitudinal growth
inhibition. RERGy(x, y) (RERGx(x, y)) are functions that represents the
increase in leaf lamina width (length) relative to the size of the width (length)
present at the start of a given time interval. Note that these quantities can also be
interpreted also as a vector field of RGR. This vector field provides information
about the displacement of a wall (i, j) between cells i and j in the transversal
direction. This displacement can be obtained from the integration of RERGX

along the x-axis direction dx
dt =

∫ x

0
RERGx(s, y)ds with y is the ordinate of the

center of the wall between cells i and j. A similar expression can be obtained
for displacement for the longitudinal direction, dy

dt =
∫ y

0
RERGy(x, s)ds. These

two integrals can be solved analytically:

dx
dt =

{
αx(1 − y

Thx
)x 0 ≤ y < Thx

0 otherwise
dy
dt =

{
αy(y − y2

2Thy
) 0 ≤ y < Thy

αy
Thy

2 otherwise

These two equations describe the dynamic of the border displacement. By
solving numerically this system a leaf growing instance can be simulated. Note
that by choosing a different set of parameters θ = (αx, Thx, αy, Thy) a different
leaf shape can be obtained. Note that other leaf development models do not
account for the REGs parameters. Therefore, this work is focused on REGs
based growing models.

3.3 Cost Function

Dynamic Time Warping. As cost function we used dynamic time warping
(DTW). This is an algorithm for measuring similarity between two temporal
sequences which may vary in time or speed [10]. Suppose we have two time
series X and Y θ not necessarily of the same length, as follows

X = x1, x2, . . . , xn Y θ = yθ
1 , y

θ
2 , . . . , y

θ
m

here X corresponds to the empirical sequence and Yθ to the sequence of devel-
opment obtained by using the blade development model described in section 3.2.
To align both sequences first a local dissimilarity function d(i, j) between the
empirical blade border xi and the simulated blade border yθ

j is computed. Using
these distances a matrix distance with n×m can be constructed. To find the best
match between these two sequences a warping path can be defined. A warping
path W is a set of elements that defines a mapping between X and Y θ. The
k-th element of W is defined as wk = (i, j)k, therefore W can be written as
W = w1, w2, . . . , wK , max(m,n) ≤ K < n+m+1. The warping path is subject
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to different constraints, namely, boundary conditions, continuity and monotic-
ity. Boundary conditions refers to the fact that W should start and finish in
the diagonally opposite corner cells of the distance matrix, i.e., w1 = (1, 1) and
wK = (n,m). Continuity restricts the allowable steps in the warping path to
adjacent cells (including diagonally adjacent cells), i.e., given w = (a, b) then
wk−1 = (a′, b′) where (a − a′) ≤ 1 and (b − b′) ≤ 1. Monoticity forces the
points in W to be monotonically spaced in time, i.e., given wk = (a, b) then
wk−1 = (a′, b′) where aa′ ≥ 0 and b − b′ ≥ 0. Figure 3 illustrates a path W that
satisfies the above conditions. Given these conditions, we are interested in the
warping that minimizes the following warping costs:

DTW (X,Y θ) = min
{√∑K

k=1 wk/K

}
(1)

the K in the denominator compensate warping paths that may have differ-
ent lengths. An efficient solution to problem 1 can be found by computing the
cumulative distance γ(i, j) between cells i and j. This distance can be defined
recursively as the distance d(i, j) found in the current cell and the minimum of
the cumulative distances of the adjacent elements γ(i, j) = d(xi, y

θ
j )+min{γ(i−

1, j − 1), γ(i − 1, j), γ(i, j − 1)}. This problem can be solved by using dynamic
programming [10], the path W can be reconstructed by using a backtracking
algorithm.

To compute the local dissimilarity function d(i, j) we reparametrized both
curves xi and yθ

j to have 200 points equally spaced by using a linear interpo-
lation. Following we defined the distance as the Frobenious norm between the
corresponding reparametrized point sequences.

Fig. 3. Distance time warping.

Monte Carlo Optimization. In order to find the set of model parameters θ∗
associated to the data the following optimization problem θ∗ = argmin

θ
J(θ) =

argmin
θ

DTW (X,Y θ). Because of the non-linear nature of the blade development

model herein used a Monte Carlo optimization method was used to find the
optimal set of parameters θ∗ [1]. In particular, we used Simulated annealing



Inferring Leaf Blade Development from Examples 33

Fig. 4. Inferred sequences (blue) for an empirical sequences of leaf development (green).

Fig. 5. Distribution plots of the inferred model parameters (αx, Thx, αy, Thy) and the
corresponding error (value of DTW) distribution for each leaf development sequence
considered. Red lines indicate mean and standard deviations.

with 100 iterations. For the optimization, model parameters ranged uniformly
between 0.01 and 0.18 for αx, 100 and 700 for thx, 0.14, 0.25 for αy and 60
and 250 for thy. To probe stability of the proposed method this experiment was
repeated 30 times.

4 Results

Figure 4 shows three simulated sequences for three examples of the leaf devel-
opment process. As observed, the method was able to properly infer the general
developmental structure for the first two sequences. In the third sequence, the
training sequence (green) does not reflect the leaf growing dynamic affecting the
algorithm performance. Figure 5 shows the distribution of the model parameters
estimated for the 12 development sequences (x-axis) for 30 runs. The proposed
strategy provided different and stable parameter estimations for all the param-
eters. Interestingly, sequences 3 (last sequence of figure 4), 7 and 11 where the
training samples do not reflect the leaf growing resulted in a higher approxima-
tion errors.
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5 Conclusions

We have introduced a method to infer the geometrical structure of a leaf blade
developmental model out of samples of sequences of the leaf development out
of real leaf samples. The method is based on a non-linear ordinary differential
equation model of relative elementary rates of growth. Experimental results indi-
cate that the proposed method is able to extract stable parameters that may
properly reconstruct the dynamic of the leaf growing.

Acknowledgments. This work was supported by the projects Platform and Archi-
tecture for the representation and data analytics of Páramo leaves morhpology
(PARAMO) and the Cluster in Convergent Technologies from U. Central.
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Abstract. Several applications demand the segmentation of images in
skin and non-skin regions, such as face recognition, hand gesture detec-
tion, nudity recognition, among others. Human skin detection is still a
challenging task and, although color attribute is a very important clue,
it usually generates high rate of false positives. This work proposes and
analyzes a skin segmentation method improved by texture energy. Exper-
imental results on a challenging public data set demonstrate significant
improvement of the proposed skin segmentation method over color-based
state-of-the-art approaches.

Keywords: Skin segmentation · Texture energy · Superpixels

1 Introduction

Several applications require the detection of human skin regions in digital images,
such as gesture analysis [17], face detection [4,7], nudity detection [12]. Skin
detection can be considered as a binary classification problem, where pixels are
assigned to belong to skin or non-skin class.

Human skin segmentation is challenging since it is sensitive to camera prop-
erties, illumination conditions, individual appearance such as age, gender and
ethnicity, among other factors.

In this work, we propose the use of texture energy to reduce the false positives
found by color-based methods. Skin color detection is combined with a skin texture
probability to generate a final skin probability map. Experiments conducted on
large and challenging data set demonstrate that the proposed method is capable of
improving the skin color segmentation approaches available in the literature.

The text is organized as follows. Section 2 briefly reviews some works related
to skin detection. Section 3 presents the proposed skin segmentation method
based on texture probability. Experiments conducted on public data sets are
discussed in Section 4. Finally, Section 5 concludes the paper with final remarks
and some directions for future work.

2 Background

Research on skin segmentation is vast, such that the most common is to classify
the pixel skin color individually in some color space. Fixed rules over one or
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 35–42, 2015.
DOI: 10.1007/978-3-319-25751-8 5
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more color spaces are the simplest form to define a pixel as skin or non-skin.
Sobottka et al. [14] limit the skin to a subsection of the HSV color space. Kovac
el al. [7] opt for the RGB space, however, with rules concerning the minimum
and maximum values of the channels and their differences. Cheddad et al. [2]
propose a transformation of RGB color to a 1-dimensional error signal, where
simple low and high threshold values define the skin.

Another approach is to fit a parametric model for the distribution of skin and
non-skin color. The most common is to use a single Gaussian [16] or a Gaussian
Mixture Model [18]. Jones et al. [5] propose to model both skin (P (c|skin)) and
non-skin (P (c|¬skin) in order to define the probability of a pixel as skin given
its color (c) to be

P (skin|c) =
P (c|skin)P (skin)

P (c|skin)P (skin) + P (c|¬skin)P (¬skin)
(1)

as stated by the Bayes’ rule.
For a Gaussian Mixture Model, the skin or non-skin prior probability is

established as

P (c|class) =
N∑

i=1

wi
1

(2π)
3
2 |Σi| 12

e
−1

2
(c − μi)τΣ−1

i (c − μi)
(2)

where c is an RGB color vector, class can be skin or non-skin and the contribu-
tion of the i-th Gaussian is determined by a scalar weight wi, mean vector μi,
and diagonal covariance matrix Σi.

The model can also be achieved in a non-parametric way by histogram den-
sity [5], where the prior probabilities are calculated as

P (c|class) =
Hclass(c)

N∑
i=1

(Hclass(i))

(3)

As expected, the color attribute can individually be ambiguous in skin and
non-skin regions, referred to as skin-like regions. Thus, these methods usually
achieve high rate of false positives. There are some approaches to improving
pixel-based methods by adapting the model to particular characteristics of the
image through the analysis of the entire image [7,11] or just a part of it, such
as detecting a face [3] or precise skin blobs [13]. Region-based methods, such as
texture [9], can be applied as a second step and also spatial analysis in the form
of interactive segmentation [6,15].

3 Proposed Method

We propose a method for reducing the rate of false positives in skin detection
caused by skin-like color. Law’s texture energy measure [8] is employed in the
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Input image
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Color map

Filtered image

Texture map

Texture
Gaussian
Models

Final map Final segmentation

Fig. 1. Main stages of the proposed skin detection method.

process, which works on the response of the intensity image to a special fil-
ter mask. The main steps of our skin detection method are illustrated in the
flowchart of Figure 1.

The filters defined by Law [8] are built by the product of two vectors obtained
from a fixed set of 1D masks designed to detect edges, spots, ripple, among
others. A filter is named according to the purpose of the vectors from which it
was produced and its size. For example, an E5S5 mask is a 5× 5 mask produced
by the product of a 1D edge mask and a 1D spot mask. In the following section,
we explore the choice of the filter for the proposed method.

To allow the calculation of energy over a region and prevent that the same
region covers both skin and non-skin, we use the Simple Linear Iterative Clus-
tering (SLIC) [1] technique for segmenting the image into superpixels (atomic
regions, formed by groups of perceptually meaningful pixels). Thus, we calculate
the mean energy of each superpixel in the training and test sets.

The goal of the training stage is to obtain two Gaussian models, one for skin
and another for non-skin texture energy measures. The images are submitted to
superpixels over segmentation and convoluted with a spatial filter. The texture
energy is computed for each superpixel, such that mean and standard devia-
tion are extracted for each class (skin and non-skin), forming the two Gaussian
models. Algorithm 1 summarizes the training stage.

In the test stage, once the energies of an image have been computed through
the same pipeline as in the training step, the skin and non-skin probability
densities for each superpixel are obtained. Then, the skin probability given the
texture energy is computed in a similar manner to Equation 1, as stated in
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Algorithm 1. Proposed Skin Texture Training.
input : List of images L, list of ground-truth pixels G, filter mask f , size of

superpixels sp size.
output: Gaussian Models

1 Xskin ← ∅
2 X¬skin ← ∅
3 for I ∈ L do
4 SPlist ← SLIC(I, sp size) /* SPlist holds the superpixels coordinates */
5 Igray ← rgb2gray(I)
6 If ← Igray ∗ f /* where ∗ denotes a convolution */
7 for x ∈ SP list do

8 EΦ ←
∑

If (x)2

length(SPlist)

9 if I(x) ∈ G then
10 Xskin ← {EΦ}
11 else
12 X¬skin ← {EΦ}

13 Compute μ and σ for Xskin and X¬skin.
14 return μskin, μ¬skin, σskin, σ¬skin

Equation 4

P (skin|EΦ) =
f(EΦ, μskin, σskin)

f(EΦ, μskin, σskin) + f(EΦ, μ¬skin, σ¬skin)
(4)

where EΦ is the energy measure and f(EΦ, μclass, σclass) is the Gaussian prob-
ability density function for the texture energy.

As texture in a face can vary from the rest of the body, the skin probability in
the region close to the nose, around the eyes and mouth will be very low. Thus,
it is necessary to apply a heuristic to avoid this type of problem. In our work,
we perform a postprocessing mechanism, where areas with low probabilities,
surrounded by high probabilities, are filled with the mean of these surroundings
high probabilities. Finally, the result of this process constitutes the skin texture
probability map.

The texture probability map (Tmap) is combined with a color probability
map (Cmap) through an AND operation, as shown in Equation 5

Fmap =
√

Cmap · Tmap (5)

producing the final skin probability map Fmap.
The color probability map can be calculated from any color skin detector,

even binary output methods that produce only probability 0 or 1. At the final
stage, the framework outputs a skin map. Thus, the final segmentation can be
performed by a simple threshold or a more sophisticated strategy.
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4 Experiments

Experiments were conducted on two different data sets to evaluate the proposed
methodology. For training, we used 8963 non-skin images and 4666 skin images
from the Compaq database [5], which contains images acquired from the Internet
in a diverse variety of settings. For evaluation and comparison purposes, we used
the ECU database [10] that was divided into 1000 images for validation and 3000
images for test. This ensures a diversity in terms of background scenes, lighting
conditions, and skin types. Both data sets contain a manually labeled ground-
truth.

The performance of the skin detection method was assessed through a number
of metrics: true positive rate (ηtp - percentage of skin correctly classified as skin);
false positive rate (δfp - percentage of non-skin classified as skin); Fscore (har-
monic mean between ηprec and ηtp) and detection error (δmin = (1− ηtp)+ δfp).
Additionally, ROC (receiver operating characteristics) curves are computed.

In order to select the filter, we used four 1D vectors:

L5 (Level) = [ -1 4 6 4 1 ]
E5 (Edge) = [ -1 -2 0 2 1 ]
S5 (Spot) = [ -1 0 2 0 1 ]
R5 (Ripple) = [ 1 -4 6 -4 1 ]

which generates sixteen 5×5 filters. Each one is convolved with the image; some
filters will be just transposed of others, so they are combined to produce only
one filter with their mean, resulting in nine features.

From the validation set, we evaluate the gain provided by each feature in
relation to the color individually. The filter E5S5/S5E5 produced the best results.

In order to evaluate the proposed method, we selected three widely used skin
detectors with different approaches: Cheddad’s rule [2] (rule based), Histogram
Model [5] (non-parametric) and Gaussian Mixture Model (GMM) [5] (paramet-
ric). The Histogram Model was built with 64 bins per channel in the RGB space.
For the Gaussian Mixture, we used the 16 kernels trained in the original paper
with the same database as used here.

Figure 2 shows comparative ROC curves between the original skin detector
and our improvement. It is possible to observe that the proposed method always
achieves superior results.

Table 1 shows the result values when considering the closest point to the
optimum point (0, 100%) in the ROC curve. For Cheddad’s rule, which is a
binary method, the tables present isolated point values.

For a more detailed comparison, we provide true positive rate values for a
10% false positive rate in Table 2. In other words, this represents how much
of true skin is possible to detect since there is only 10% tolerance for skin-like.
In case of the original Cheddad method, we perform a linear approximation
preserving the same ratio between ηtp and δfp.

It is worth mentioning that our method always results in higher true positive
rates with a considerable advantage over the original approaches.
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Fig. 2. ROC curve illustrating the results on test data set for the original method and
the improvement through our method.

Table 1. Detection results for different methods (ECU data set).

Method
Original Improved

ηtp δfp Fscore δmin ηtp δfp Fscore δmin

(%) (%) (%) (%) (%) (%) (%) (%)

Cheddad 89.33 19.51 64.78 30.18 87.32 16.22 67.38 28.90
Gaussian Mixture 87.55 20.30 63.09 32.76 87.37 17.78 65.64 30.41
Histogram Model 87.21 16.54 66.95 29.33 86.96 14.55 69.17 27.59

Table 2. True positive rates for a fixed value of false positive rate (ECU data set).

Method
ηtp(%), δfp = 10%

Original Improved

Cheddad 46 71
Gaussian Mixture 70 75
Histogram Model 77 81

Figure 3 shows some examples of final segmentation in the tested data set.
The first column presents the original image, the second one shows the ground-
truth,whereastheremainingcolumnsshowthesegmentationresult foreachoriginal
methodontheleftanditscorrespondingimprovedsegmentationresultsontheright.



Human Skin Segmentation Improved by Texture Energy Under Superpixels 41

Source image Ground-
truth

Original Improved

Cheddad
Original Improved

GMM
Original Improved

Histogram

Fig. 3. Examples of skin regions detected through different methods.

5 Conclusions

This work describes a new technique for reducing the high number of false pos-
itives in color-based skin segmentation. It can be applied in conjunction with
any skin segmentation method, while not adding more sensitive parameters to
perform the skin classification.

Experiments conducted on a well-known large test set demonstrated that
the proposed technique can provide a significant improvement on the results
obtained with different color-based skin detection approaches. Furthermore, the
use of texture for skin segmentation is very difficult; although human skin has
a distinguishable texture, this can only be noticeable on high resolution images.
Age, amount of body hair, expression and pose constitute obstacles in finding a
structural pattern for skin.

As directions for future work, we intend to expand the method through multi-
resolution analysis to take the variety in terms of image quality and size into
account. We also plan to propose a better filter, designed specifically for the skin
detection problem.
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Abstract. Gene expression analysis does not end in a list of differentially ex-
pressed (DE) genes, but requires a comprehensive functional analysis (FA) of 
the underlying molecular mechanisms. Gene Set and Singular Enrichment 
Analysis (GSEA and SEA) over Gene Ontology (GO) are the most used FA ap-
proaches. Several statistical methods have been developed and compared in 
terms of computational efficiency and/or appropriateness. However, none of 
them were evaluated from a biological point of view or in terms of consistency 
on information retrieval. In this context, questions regarding “are methods 
comparable?”, “is one of them preferable to the others?”, “how sensitive are 
they to different parameterizations?” All of them are crucial questions to face 
prior choosing a FA tool and they have not been, up to now, fully addressed. 

In this work we evaluate and compare the effect of different methods and pa-
rameters from an information retrieval point of view in both GSEA and SEA 
under GO. Several experiments comparing breast cancer subtypes with known 
different outcome (i.e. Basal-Like vs. Luminal A) were analyzed. We show that 
GSEA could lead to very different results according to the used statistic, model 
and parameters. We also show that GSEA and SEA results are fairly over-
lapped, indeed they complement each other. Also an integrative framework is 
proposed to provide complementary and a stable enrichment information ac-
cording to the analyzed datasets. 

1 Introduction 

The complexity and heterogeneity of diseases such as cancer reveals that the identifi-
cation of differentially expressed genes is not enough to decipher the underlying  
phenomena. A proof of this is the large number of molecular signatures for cancer 
stratification for the same phenotype with few overlapping genes between them [3]. 
However, through Functional Analysis (FA) common functionalities have been re-
ported. Functional analysis allows to identify deregulated pathways, biological 
processes, molecular functions, cellular components, etc. Functional Analysis me-
thods are based on the analysis of gene sets instead of individual ones under the as-
sumption that their coordinated action could be used to infer phenotype association 
[7]. One of the most used gene sets definition is the one provided by the Gene Ontol-
ogy (GO)  consortium (http://geneontology.org), a popular ontology with controlled 
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vocabulary (molecular functions, biological processes and cellular components) 
where several genes are associated to each term. This ontology can be interrogated in 
order to devise which terms might have been affected by the experiment. The most 
common methods used for FA are Singular and Gene Set Enrichment Analysis (SEA 
and GSEA respectively). In essence both methodologies try to answer the same ques-
tion “which are the terms that were affected by the phenotype under consideration?”. 
The main difference between both approaches is that, in SEA, the user should provide 
a list of differentially expressed genes to test the enrichment of all the terms in the 
ontology structure. On the other hand, GSEA methods use all the available genes to 
pursue term enrichment, by means of this it claims to reduce the arbitrariness of se-
lecting a gene list using a “cutoff strategy” [12]. 

For both approaches several algorithms have been developed, where each author 
intends to demonstrate or emphasize the superiority of his algorithm over the rest. 
However, all of the available comparisons rely on the evaluation of statistical perfor-
mance in terms of appropriateness of the distributional assumptions, p-value estima-
tion, etc., instead of the information retrieval. Questions like “what is being evaluated 
in GO when using one method or another?”, “are these results independent from the 
method?”, “are they complementary?”, “are all the method equally useful?” have not 
been addressed yet in a comprehensive manner. Here, we analyze and compare both 
SEA and GSEA methods from an information retrieval point of view. The DAVID 
platform [6] for SEA, and for GSEA both the Subramanian [17] (bGSEA hereafter) 
and the mGSZ [11] were evaluated under different input parameter options. 

2 Methods 

In this section we describe: i) FA algorithms, ii) Enrichment consideration criteria, iii) 
Input data and iv) Consensus analysis. 

2.1 Functional Analysis Algorithms 

Despite the fact that both SEA and GSEA approaches can potentially be used with 
any gene set (GS), here we use the GO terms. Every evaluated method presented as 
output report, at least, the list of enriched/deregulated GS. 

Singular Enrichment Analysis 
The DAVID web platform (http://david.abcc.ncifcrf.gov) is one of the most used 
Bioinformatic tool for SEA. The enrichment provided by DAVID is based on Fisher’s 
exact test using a contingency table of DE (not DE) gene vs. in/out the term. Thus,  
it requires as input, two gene lists: the differentially expressed and the background 
reference.  

Gene set Enrichment Analysis 
One of the most used GSEA's strategies is the one proposed by Subramanian et al. 
[17], which is available at the BROAD Institute website (http://broadinstitute.org). 
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Here, the enrichment score (ES) is calculated from the rank value of all gene members 
in the GS. Thus, bGSEA can be feed with both a pre-ranked gene list (from a suitable 
metric) or the expression matrix in order to rank the genes by means of signal to noise 
ratio. In this work both strategies were compared. Then the ES is calculated using 
equation (1):  , ∑  ∑  ,   ∑       (1) 

where S is any gene set, i is the i-th analyzed gene set, gj is the gene  associated to the 
j-th ranking value rj of the ordered expression matrix, NH = #S, N = #genes, , W is a an integer value and ES(S) = max deviation from 0 of (ES(S,i)) 

In equation (1), W could be set to {0, 1 or 2} thus providing weighted (smoothed) 
versions of the Kolmogorov-Smirnov (KS) statistic. Then, the significance of the ES 
statistic is estimated through a permutation strategy over the gene labels or the sample 
phenotype, and generating a Null distribution of ES to estimate term enrichment  
p-value. The default option for W is 1, however it is the effect of the other available 
options is not clear, although software guideline suggest different parameterizations 
according to data inputs. Here, it was evaluated both permutation strategies as well as 
the set of W values. Another GSEA method compared here is mGSZ which is claimed 
to be one of the most appropriate ones, in terms of statistical significance over ES. The 
method is based on Gene Set Z-scoring function (GSZ) and asymptotic p values using 
sample and (implicitly) gene permutation thus, requiring to evaluate less permutations. 

Ontology Analysis 
The GO structure was used to define the GSs. In DAVID platform the GO structure is 
already included in the database, and as suggested by Fresno et al., we did not limit the 
size of the GSs. On the contrary, the user needs to input the GSs to bGSEA and mGSZ. 
We used the org.Hs.eg.db R library in order to provide the same GO terms. However, 
the default options for bGSEA limits the GS size between 15 and 500 genes, whereas, 
mGSZ only sets the minimum to 6 genes. In order to make a fare comparison, the 
mGSZ approach was evaluated using its default limits and bGSEA ones. 

2.2 Enrichment Consideration Criteria 

A term would be considered as enriched according to each author’s recommendation 
(when available): 
 

SEA: p-value <= 0.05 
bGSEA phenotype permutation: 

Adjusted False Discovery Rate (FDR) p-value <= 0.25 
bGSEA gene  permutation (includes pre-ranked): FDR <= 0.05 
mGSZ: p-value <= 0.01 
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2.3 Input Data 

Given the fact that there is no “gold standard”, the methods were evaluated on six 
freely available Breast Cancer (BC) datasets from Bioconductor repository (Table 1). 
For each dataset, BC identification was carried out using PAM50 algorithm [13] and 
only the resulting 741 subjects from Luminal A and Basal-Like subtypes were se-
lected for further analysis. These subtypes have very different biological underlying 
mechanisms, hence it is a priori expected to have many terms enriched. Then, the raw 
expression matrix of these subjects was built for each dataset. Only the genes with a 
valid Entrez Gene ID were used. 

SEA Input 
It has been demonstrated that different lengths of the background reference (BR) list 
could lead to different results [4]. Here, we evaluate and compare the BR strategies 
proposed by Fresno et al., and used the genome (BRI) and the reliable genes detected 
on the experiment (BRIII). In order to automate the query process, the RDAVID-
WebService R package [5] was used. The number of genes used in BRIII for each 
dataset is shown in Table 1.  

The second input list is the differentially expressed (DE) genes, which was ob-
tained for each dataset using the treat function from limma R library [15]. The treat 
method [8] declares a gene as DE if its fold change is significantly (p value < 0.01 in 
this case) greater to a given fold change (treatLfc). The fold change was chosen in 
order to provide a gene list length about 5% of the BRIII length (Table 1). 

Table 1. Subjects subtype assignation for each dataset 

 #Basal #LumA #Genes treatLfc #DE 

Vdx [9, 20] 91 108 13,091 0.75 611 (4.7%) 

Nki [18, 19] 70 105 13,108 0.2 568 (4.3%) 

Transbig [1] 46 66 13,091 0.6 628 (4.8%) 

Upp [10] 34 69 18,528 0.3 932 (5%) 

Unt [16] 22 40 18,528 0.25 1059 (5.7%) 

Mainz [14] 33 57 13,091 0.45 605 (4.6%) 

#: number of subjects, DE stands for differentially expressed genes and treatLfc 
stands for the absolute log fold-change used in treat function call. 

bGSEA Input 
Typically bGSEA can be fed with the expression matrix and the sample class label. 
However, a one column pre-ranked gene list can also be used. In this case, the treat 
with treatLfc=0 was used to assign the statistical p-value (p) for each gene in the data-
set. Then, the genes were pre-ranked according to 1-p and -log(p) metrics. 
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2.4 Consensus Analysis 

Since no gold standard exists, for SEA and GSEA results, the enrichment overlap 
between the different datasets was used as a surrogate index of appropriateness. An 
enrichment matrix EMxT={eij} was built, where each column (T) holds for a GO term 
and each row (M) for a method per dataset combination.  Then, each cell eij of the 
matrix could be defined as: 1                0         1         

Only the GO terms that were enriched in at least one Mi were kept for consensus 
analysis. A hierarchical clustering approach was applied on E to group similar 
enrichment profiles and a heatmap was constructed for visualization purposes. 

3 Results 

3.1 Overall Analysis 

Result integration for the different datasets allow us to provide inter-study validation 
(i.e., deregulated terms in one dataset might also be deregulated in other datasets) as 
stated by Edelman et al. [2]. A high variability was found between methods as well as 
within each method’s parameterizations. 

The distribution of the number of enriched terms over the different datasets for 
each method is shown in Fig. 1. The figure shows that bGSEA methods (pre-ranked, 
gene (gP) and phenotype permutation (pP)) were very sensitive to the weight “W” of 
equation (1), and also showed very different behavior depending on the method used. 
For instance, pre-ranked methods (1-p or –log(p)) showed almost no enriched terms 
when W>0, but for W=0 many terms were present as expected for the biological set-
ting. Both pre-ranking, by means of 1-p or -log(p), enriched the same terms since they 
provide exactly the same rank order when W=0. 

For phenotype permutation with W=0 almost no enriched terms were found as no-
ticed in the pre-ranked case. On the contrary W=2 generates several terms enriched 
and with very stable results between datasets. In the case of W=1 the median value 
kept similar to the one of W=2, but a greater variability can be observed. Moreover, 
only two terms were enriched in common in all datasets. This method also presents 
the highest extreme value for Nki dataset with 724 and 1058 enriched terms for W=1 
and W=2, respectively. The weight effect is inverse for gene permutation, since W=2 
produces fewer number of enriched terms and shows greater variability across data-
sets than using W=0 and W=1. The case with W=0 produces almost the double (565 
terms) of enriched terms than W=1, however, only 224 of these terms are commonly 
enriched in all datasets. 

The mGSZ method proved to be very sensitive to GS size. When GS size is limited 
to [5, ∞] the number of enriched terms double in median as well as in variance their 
competitor methods. On the other hand, if GS size is limited to [15, 500] the number 
of enriched terms is very stable through the datasets. 
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The SEA presents very stable results across the datasets regardless of the chosen 
reference. Moreover, BRI enriches the same terms as BRIII plus very general (non-
specific)3.2 GSs with large number of genes. 

 

Fig. 1. Boxplots of enrichment count of each method for all datasets. 

3.2 Enrichment Comparison 

The evidence of the former section suggest that some methods are equivalent or do 
not provide valid enrichment information. Hence, we dismissed from analysis hereaf-
ter the following methods: pre-ranked methods with W>0, gP with W=0 and W=2, pP 
with W=0 and W=1, SEA with BRI, and mGSZ with GS size of [15, 500]. Heatmap 
visualization of E matrix is shown in Fig. 2, where dataset and method combinations 
are clustered by rows and GO terms represented in columns. It can be observed that in 
each method Mj some terms were not analyzed (in red) but they were analyzed and 
enriched (yellow) by others. Additionally, high consensus between datasets over each 
method was observed suggesting the appropriateness of the consensus approach 
which supports the biological information retrieval approach. The bGSEA strategy 
shows great enrichment variability (the methods do not cluster together) compared to 
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enriched through all the datasets by bGSEA, but also additional terms that are not 
considered by this method. Given these considerations, the authors propose to use a 
pipeline for meta-functional enrichment of gene expression experiments, which con-
sist in the integration of the results obtained with SEA with BRIII and mGSZ with 
default parameters. The strength of this pipeline relies on complementary approaches 
that enhance the biological interpretation of the analyzed phenotypes. 
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Abstract. The leaves are an important plant organ and source of infor-
mation for the traditional plant taxonomy. This study proposes a plant
classification approach using the adaxial epidermis tissue, a specific cell
layer that covers the leaf. To accomplish this task, we apply a high
discriminative color texture analysis method based on the Bouligand-
Minkowski fractal dimension. In an experimental comparison, the
success rate obtained by our proposed approach (96.66%) was the high-
est among all the methods used, demonstrating that the Bouligand-
Minkowski method is very suitable to extract discriminant features from
the adaxial epidermis. Thus, this research can significantly contribute
with other studies on plant classification by using computer vision.

Keywords: Adaxial epidermis tissue · Texture analysis · Color · Fractal
dimension · Bouligand-Minkowski method

1 Introduction

Traditional plant taxonomy cannot neither explore all possible information
sources from plants (for instance, a leaf) nor extract all their discriminative
attributes, such as contour, color and texture. This explains why, in the last
years, there has been an increasing interest in solving problems from this knowl-
edge field by using computer vision approaches. As examples of promising
researches, we have works that aim to extract attributes from leaf contour and
venation [1], the computation of texture signatures from a leaf surface [2], and
the extraction of thickness measures and texture descriptors from various cell
tissues presented in a leaf cross-section [3].
c© Springer International Publishing Switzerland 2015
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Among all the features that can be computed from an image, texture is
surely one of the most discriminative and widely studied. Even though texture
does not possess a definite concept, it is easily recognized by humans. A suitable
definition, yet restricted, is that texture is a model repeated in an exact way or
with small changes over a surface [4]. Being texture a great source of information,
many methods have been developed to extract signatures from it, such as co-
occurrence matrices [5], Gabor filters [6], wavelet descriptors [7], tourist walk
[8], local binary patterns (LBP) [9], gravitational models [10], shortest paths in
graphs [11] etc.

All these mentioned methods were designed for grayscale textures. How-
ever, in recent years, many methods have been developed for color textures
to increase the capacity of extracting discriminant signatures. Generally, such
methods can be classified into three groups: parallel, sequential and integrative
[12]. Parallel approaches consider color and texture as independent phenomena
[13]. Sequential approaches divide the process of extracting signatures into two
steps: first, the color texture is indexed; then, the indexed image is processed as
a grayscale texture [14]. Integrative approaches consider the informative depen-
dency between color and texture [15].

This work aims to contribute to plant taxonomy by applying an integrative
state-of-the-art color texture analysis method to a very discriminative leaf tissue
called adaxial epidermis. We extend the work proposed in [15], which presented
the technique and aimed the classification of synthetic and natural texture. Here
we focus on the application of the technique to a biological problem. Textures
extracted from biological images do not necessarily present a well-defined pat-
tern, specially in the microscopic scale, where the growing and disposal of cells
are influenced by external factors. Thus, this work helps to establish the appli-
cability of this method in biological problems.

Our presentation is organized as follows: Section 2 presents the Bouligand-
Minkowski complexity descriptor. Section 3 describes the process of extract-
ing signatures based on fractal errors. Section 4 presents the evaluated image
database and the performed experiments. Section 5 shows the obtained results
as well as a discussion on them. Finally, Section 6 presents some remarks about
this work.

2 Complexity Analysis of Color Textures

A simple and efficient way to estimate the complexity of a shape or texture
is through fractal dimension. It is a measurement based on the concept of self-
similarity and it describes objects in images in terms of its irregularity and space
occupation [15,16].

Among the methods developed throughout the years, the Bouligand-
Minkowski method is considered one of the most accurate. This method is able
to describe small structural changes in objects due to its great sensitiveness
[4,17]. Firstly proposed for shape analysis, this method was extended to tex-
ture analysis by mapping the pixels of the image I onto a surface S ∈ R3 by
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using the function f : I(x, y) → S(x, y, I(x, y)). Then, each point of the surface
is dilated by a sphere of radius r. This results in its influence volume and the
Bouligand-Minkowski fractal dimension D is estimated as

D = 3 − lim
r→0

log V (r)
log r

, (1)

where
V (r) =

∣∣{s′ ∈ R3|∃s ∈ S : |s − s′| ≤ r
}∣∣ , (2)

is the influence volume of the surface S dilated using a sphere of radius r.
Usually, we build the surface S from a grayscale image. However, it is possible

to map all color channels of a RGB image as different surfaces sharing the same
space [15]. Let I(x, y) = {R(x, y), G(x, y), B(x, y)} be a RGB color texture. For
each color channel C = {R,G,B}, we are able to compute its respective surface
SC , which can easily be combined to form a single volume SRGB ∈ R3, as shown
in Figure 1. Then, we apply the dilation process over this new volume. The
influence volume computed from SRGB enables us to explore how the channels
are related to each other, thus taking into consideration the correlations among
them and not only the characteristics of a single one.

Fig. 1. From left to right: Original image; Computed surface SRGB (each pixel is
converted to a point in R3; Surface dilated using r = 2 (each point is replaced by a
sphere of radius r = 2); Surface dilated using r = 5 (each point is replaced by a sphere
of radius r = 5).

3 Error-Based Fractal Signature

When we compute the fractal dimension D from its log-log curve, the information
about fine structural changes are lost. The log-log curve presents a great richness
of details and a single value computed through line regression is not able to
fully represent it. To overcome this problem, we propose a feature vector which
describes the error between the computed line regression and the original log-log
curve to represent these curve details.

To compute these descriptors, consider a line with slope a and b its y-intercept
estimated from log-log curve. Notice that D = 3 − a is the estimated fractal
dimension of the image. This line is just an approximation of the real behavior
of the curve. To fully represent its characteristics, we propose a feature vector
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that represents the error ei between the estimated line and the original curve at
a given point i

ei = a × log ri + b − log V (ri), (3)

From this definition, we create a feature vector which consists of n equidistant
radius values selected from the log-log curve, as shown as follows:

ψ(n) = [e1, e2, . . . , en] . (4)

Additional details about the proposed feature vector can be found in the
paper [15].

4 Experiments

To accomplish the adaxial epidermis classification, we used a database composed
of 30 texture windows acquired from eight different plant species. Figure 2 shows
one example for each species in the database. Each texture is 150 pixels height.
The width varies from sample to sample as it is determined by the adaxial
surface epidermis thickness. As this variation in the width could influence the
performance of the method, we adopted a mosaic of 150×150 pixels size produced
by copy and reflection of the texture pattern over y axis, as shown in Figure 3.
Additional details about the plant species considered can be found in [18].

To compute the proposed feature vector, we used r = 8 for the dilation pro-
cess of the Bouligand-Minkowski method. By using this radius value, we were
able to compute a total of n = 77 equidistant points of the log-log curve. How-
ever, not all these points hold relevant discriminative information. In fact, as we
increase the dilation radius, different texture patterns may look similar in terms
of influence volume. The same principle applies to the descriptors computed at
this range of radius values. Thus, we evaluate the behavior of the success rate
as we increase the number of descriptors used (Figure 4). In general, the success
rate increases as the number of descriptors n increases, achieving its maximum
at n = 46. For n > 46, we notice the occurrence of a subtle, but constant,
degradation of the discrimination ability of the proposed feature vector. This is
due to the similarities in the influence volume. We evaluated the computed fea-
ture vectors using Linear Discriminant Analysis (LDA), a supervised statistical
classification method, in a leave-one-out cross-validation scheme [19].

5 Results and Discussion

Table 1 presents the comparison between our proposed approach and other
important color texture analysis methods. The obtained results clearly demon-
strate the superior performance of the error-based fractal signature, as it provides
the highest success rate (96.66%), with a difference of 0.41% when compared to
the second best method. Although it seems a small advantage, it is necessary to
take into account that both methods are very close to 100% of success rate, and,
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Fig. 2. Adaxial epidermis images of the eight species considered.

Fig. 3. Process of building a texture mosaic by copy and reflection.

Fig. 4. Classification accuracy observed for different numbers of descriptors (n).
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in such condition, whatever superior performance is very relevant. This is cor-
roborated by the fact that three methods obtained less than 90.00% of success
rate and Gabor EEE presented a performance 2.91% inferior when compared to
our method. Moreover, we must stress that our approach has a small number of
attributes (46), which is 7, 2% of the total of features used by the second best
method. In this comparison, only LBP + Haralick method has a smaller number
of features. However, this method provides the second worst success rate.

Table 1. Comparison results for different color texture analysis methods.

Methods Descriptors Success rate (%)

Gabor EEE [20] 192 93.75
HRF [21] - 45.42
MultiLayer CCR [22] 640 96.25
LBP + Haralick [14] 10 84.58
MSD [23] 72 85.83
Proposed approach 46 96.66

We expected to compare our results on adaxial epidermis tissue to other
works in literature. However, we were able to find only our three previous papers
related to computer vision applied to this problem. This lack of related works
confirms that this is a very recent and unexplored research topic. In [24], we used
the same eight plant species, but only ten samples per class and Jeffries-Matusita
distance [25] to select attributes provided by different texture analysis methods.
For these reasons, it is not possible to perform a fair comparison between such
paper and our present work. In [3], we adopted the same procedure of the paper
[24] for adaxial epidermis images, but in a different image database, and, there-
fore, we could not use it for comparison as well. We performed a classification
experiment in the same image database (converted into grayscale) used in this
work in [18]. In such paper, the highest success rate is 93.33%, a result 3, 33%
inferior to the success rate obtained by our proposed method. This increased
performance reinforces that the based-error fractal signature is very suitable to
discriminate the adaxial epidermis tissue.

6 Conclusion

In this paper, we addressed the problem of plant classification. To accomplish
this, we computed a feature vector from color texture samples from adaxial epi-
dermis of the plant species evaluated. This feature vector explores the details
in the influence volume curve produced by the dilation of the three RGB color
channels in a single step. Such dilation enables us to incorporate the information
about the relationship between channels to the feature vector, thus improving its
discrimination power. The comparison of these features with other color texture
analysis methods shows that our approach achieves the highest classification
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results. Moreover, it uses fewer descriptors than methods with similar classi-
fication results, corroborating its great ability to discriminate different color
patterns.
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Abstract. An usual way to acquire information about monitored
objects or areas in earth surface is by using remote sensing images. These
images can be obtained by different types of sensors (e.g., active and
passive) and according to the sensor, distinct properties can be observed
from the specified data. Typically, these sensors are specialized to encode
one or few properties from the object (e.g. spectral and spatial proper-
ties), which makes necessary the use of diverse and different sensors to
obtain complementary information. Given the amount of information col-
lected, it is essential to use a suitable technique to combine the different
features. In this work, we propose a new late fusion technique, a majority
voting scheme, which is able to exploit the diversity of different types of
features, extracted from different sensors. The new approach is evaluated
in an urban classification scenario, achieving statistically better results
in comparison with the proposed baselines.

Keywords: Data fusion · Remote sensing · Late fusion · Land-cover

1 Introduction

Over the years, there has been a growing demand for remotely-sensed data. Spe-
cific objects of interest are being monitored with earth observation data, for the
most varied applications. Some examples include ecological science [1], hydrologi-
cal science [2], agriculture [3], military [4], and many other applications. Remote
sensing images (RSIs) have been used as a major source of data, particularly
with respect to the creation of thematic maps. This process is usually modeled
as a supervised classification problem where the system needs to learn the pat-
terns of interest provided by the user and assign a class to the rest of the image
regions. In the last few decades, the technological evolution of sensors has pro-
vided remote sensing analysis with countless distinct information, e.g., spatial,
spectral, temporal, thermal.

Typically, these sensors are designed to be specialists in obtaining one or
few properties from the earth surface. Therefore, it is necessary the utilization
of diverse and different sensors to gather the most complementary information
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25751-8 8



60 E.F. de Andrade Jr. et al.

as possible. In this scenario, it is essential to use a more suitable technique to
combine the different features in a effective way. Mura et al. [5] confirmed the
benefit of the use of data fusion in the challenges associated with RSI analysis
in competitions. They pointed out that it is difficult to conclude which method
has the best performance, since it depends on the foundation of the problem and
the nature of the data used.

In this work, we propose a new late fusion technique, able to exploit the
diversity of these different types of features, extracted from various sensors. Our
approach, called Dynamic Majority Vote, uses different learning techniques on
the extracted features to create base classifiers. Then, it assigns weights to each
classifier according to their ability in identifying individual classes. The weights
are calculated regarding the confusion matrix of a classifier in a validation set.
Our method exploits the specialty of each classifier to solve multiclass problems.

2 Related Work

Despite the recent advances in feature extraction and representation for RSIs,
the combination/fusion of these features, especially when they are extracted by
different sensors, requires the development of new techniques.

In this context, Li et al. [6] developed a classification technique based on
active learning to combine spatial and spectral information. Petitjean et al. [7]
proposed an extraction approach to explore the spatiotemporal characteristics
for classification in RSIs. Yang et al. [8] presented a system for evaluating the
growth of crops using high resolution images from satellites and airplanes.

Ouma et al. [9] and Wang et al. [10] showed approaches that use multi-scale
data to identify land use changes. In Ouma et al. [9], the authors presented
a multi-scale segmentation technique with a neural network (unsupervised) for
analysis of vegetation. Wang et al.[10] in the other hand, proposed an approach
to change detection in urban areas. That method is based on the fusion of charac-
teristics from multiple scales through the average pixel of each scale. The result
is a new image corresponding to the combination of scales.

More recently, Gharbia et al. [11] made an analysis of fusion techniques
images (Intensity-Hue-Saturation (IHS), Brovey Transform (BT), Principle
Component Analysis (PCA)) for remote sensing tasks, at pixel level, showing
that all techniques have limitations when used individually. They encourage the
use of hybrid systems as a solution. Mura et al. [5] analyzed the approaches
used in the past nine years of data fusion competition (Data Fusion Contest).
The approaches are separated into three main categories: the level of informa-
tion/pixels, where the data are combined in the way they were extracted; feature
level, where the data are extracted and used as entries for a classification model;
and the decision level, which uses a combination of different outputs from various
sources, to increase the robustness of final decision (using, e.g., a majority vote).
After investigated the last challenges, Mura et al. confirmed the benefits of the
use of data fusion in the challenges associated with RSI analysis in competitions.
In the majority of cases, the frameworks proposed in the literature are projected
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to deal with a specific scenario or a particular region, using techniques apart of
each domain and object, e.g., roofs are checked with shape features, tree and
vegetation are discriminated using a vegetation index. However, it is very diffi-
cult to conclude what is the best approach, since it depends on the foundation of
the problem, the nature of the data used and the source of information utilized.

The proposed method aim at exploiting multi-sensor data in a more general
way. We propose a framework based on a supervised learning scheme, dealing
with different scenarios, regions and objects, on the creation of thematic maps for
the classification task. For that we propose a new approach, at decision level, to
handle with an amount of decisions from different classifiers, and combine them
for a final decision for each pixel in the thematic map. Contrary to approaches
from the literature, our method uses the kappa index [12] as effectiveness measure
to compare two classifiers. This fact brings some advantages since kappa index
is more robust in dealing with unbalanced training sets.

3 Proposed Method

The proposed method is projected to receive two images from the same place with
different domains as input: an image with very high spatial (V HS) resolution and
another one with hyperspectral (HS) resolution. Our method is developed for a
multiclass mapping scenario. Its main characteristic is to exploit the expertise
of each learning approach over each class in order to find the most specialized
classifiers. The result of this process is a dynamic weight matrix.

Our approach is divided into five main steps: object representation, fea-
ture extraction, training, dynamic weight matrix construction, and predicting.
Figure 1 illustrates the proposed framework. We detail each step next.

Fig. 1. The Proposed Dynamic Weight Matrix (DWM)-based framework

Object Representation. Let YR, the set of labels of regions R, be the input
dataset, Y t

R is the training set. In an experimental scenario, YR = Y t
R ∪Y t′

R , where
Y t′
R is the test set. Let IV HS and IHS be the input images, the first step is to define

the objects to be described by the feature extraction algorithms. For the IV HS

image, we perform a segmentation process over the regions of Y t
R in order to split

the entire image into more spatially homogeneous objects. It allows the codifica-
tion of suitable texture features for each part of the image. Due to the low spa-
tial resolution, we consider the pixel as the unique spatial unit for the IHS image.
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(a) (b)

Fig. 2. (a) V HS input image segmented. (b) HS input image with reflectance values.

Anyway, we are more interested in exploiting the spectral signature of each pixel.
Figure 2 illustrates the object representation phase for each input image.
Feature Extraction. We use the descriptor definition proposed by
Torres et al. [13]. Concerning IV HS image, we have used image descriptors based
on visible color and texture information to encode complementary features. For
the IHS image, we exploit dimensionality reduction/projection properties from
the spectral signature in order to obtain diversity.

Training. Let Y v
R ⊂ Y t

R be a validation set split from the training set. We use the
features extracted by each descriptors over the remaining training samples and
a set of learning methods to create an amount of classifiers (tuples of descrip-
tor/learning method). We use the obtained classifiers to learn the probability
distribution of the training set. Notice that training process requires a mapping
between spatial and spectral resolutions, using an interpolation method, since
IV HS and IHS images are from different domains.

Dynamic Weight Matrix Construction. Algorithm 1 outlines the proposed
steps for the construction of the dynamic weight matrix (Wdyn). Let C = {ci ∈
C, 1 < i ≤ |C|, i ∈ N

∗}, be a set of trained classifiers ci over different features
from spatial and spectral domains, and evaluated in the Y v

R . Let MC = {Mi ∈
MC , 1 < i ≤ |C|, i ∈ N

∗}, the set of confusion matrices Mi computed from ci,
be the input of the algorithm. Let L = {li ∈ L, 2 < i ≤ |L|, i ∈ N

∗}, be a
set of all classes li in the problem. For each li, the hits at the class li (hli) are
extracted from MC , and created a list of pairs (hli/ci) sorted by the hli (Line
2), and for every pair (hli/ci) a initial weight is assigned in Wdyn, regarding
with the position j of the pair (hli/ci) in the sorted list (Line 3-4). In Lines 5-6,
the column i of Mi is used to compute: (1) the sparsity S, which indicates the
degree of importance of ci at li, given by the ratio of the highest miss value at
column i (maxmiss) and the sum of all predicts, (hits and misses); and (2) the
uniform misses expected for each class (mexp), given by the the percentage of
misses (pmiss) uniformly distributed to the other classes. Finally, at Lines 7-11
the weights of Wdyn are updated when the kappa index of ci (κci) is greater than
the mean of all classifiers kappa’s index (κ̄). When S is less than mexp, the weight
in Wdyn for ci in li is increased and decreased otherwise, regarding with the ratio
between κci and κ̄. The reweight in the Wdyn aims to explore the specialty of
each classifier in every class, given a gain (or penalty) for those classifiers which
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Algorithm 1. Construction of the Dynamic Weight Matrix.

1 Input: Stack of Confusion Matrices (MC)
2 Initializing: Set Wdyn ← 0, individual κci and mean κ̄ kappa index.
3 for each class li in L do
4 Creating of a sorted list of pairs (hli/ci)
5 for every pair (hli/ci) at position j do
6 Initial weight in Wdyn ← (j + 1.0)/|L|
7 Compute the sparsity S ← maxmiss/(hits + misses)
8 Compute mexp ← pmiss/(|L| − 1)
9 if κci > κ̄ then

10 if S < 2 ∗ mexp then
11 Gain at Wdyn ← (κci/κ̄)*Wdyn

12 else
13 Penalty at Wdyn ← (κ̄/κci)*Wdyn

14 end for
15 end for

show a sparsity (or density) in the predicts by class at the confusion matrix,
regarding to the validation set.

Predicting. Once the Wdyn is built, the same method of segmentation is used
in Y t′

R , and the segmented objects are labeled by the classifiers as regions (spa-
tial tuple) or pixel by pixel (spectral tuple) creating a thematic map for each
classifier. Once more, since the thematic maps from the IHS image have a differ-
ent resolution, we apply the same interpolation method as in training phase, to
map its outcomes to the spatial resolution domain. Finally, the thematic maps
are used as input of the dynamic majority vote technique. We used the weight
of each classifier in their respective predicted classes for each labeled pixel in
thematic maps with the dynamic weight matrix previously built, and taking the
final decision according to the highest final weight class for that pixel in specific.
An example of how to use the Wdyn is showed in Figure 3.

Fig. 3. Given the output of the classifiers in a pixel, the relevance of each prediction is
given by the dynamic weight matrix, and chosen the class with the highest final weight.
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4 Experiments

4.1 Setup

Dataset. We have used the grss dfc 2014 [14]. It is an urban classification sce-
nario with two sensors information: (a) Very High Spatial (VHS) resolution;
and (2) Hyper Spectral (HS) resolution. Measures. We used Overall Accuracy
and Kappa index. For the statistical test of significance, we used paired Stu-
dent t-test (confidence of 95%), with 10 samples for each experiment, since in
a statistical way that will still provide the desired confidence for our experi-
ments. Segmentation. We used the IFT-Watershed [15] with spatial radius 5
and volume threshold equal to 100. Feature Extraction. We used four image
descriptors to encode spatial information [16]: BIC, CCV, GCH, and Unser. To
extract spectral information, we have used four different approaches: (1) the
raw data of HS image (84 Bands), (3) the Fisher Linear Discriminant (FLD)
[17] components, (3) the first 3 principal components of PCA [18], and (4) the
first 4 PCA components. Training. A validation set is split from training set
and trained in a Stratified ShuffleSplit cross validation scheme, using a group
of 6 weak learners: Gaussian Naive Bayes, k-Nearest Neighbors (3, 5 and 10-
Nearest Neighbors), Decision Tree, and a Support Vector Machine with linear
kernel, using the features extracted by each descriptors, resulting in the total of
48 classifiers (24 from each domain). We have used the implementation of those
learning methods available in the Scikit-Learn Python library All learning meth-
ods were used with default parameters which means we did not optimize them
whatsoever. The management of HS data is made using the Spectral Python
(SPy) Library, including the extraction of features from spectral domain. We
used the Nearest-neighbor interpolation to the mapping in training and predict-
ing phases. Baselines. We have implemented a diversity-based fusion framework
as proposed by Faria et al. [19], varying the number of classifiers selected, and
using the majority vote at the meta learning phase. We setup the framework
with 4 different ways: using only the spatial and spectral images, the spatial and
spectral images in parallel and fusioning the results, and combining the spatial
and spectral domains at the construction of the validation matrix. Refer to [19]
for further details about the framework.

4.2 Results and Discussion

The results obtained by the proposed method (Dynamic Majority Vote) against
the baselines, with the confidence intervals (95%), are presented in Figure 4.

The comparison shows a statistical significant difference among our approach
and the baseline proposed at the confidence of 95%, regarding with the t-student
test. Since our method is based on the simple majority vote, a special case where
all weights in the dynamic weight matrix are equal to 1, was already expected
the outperforms results. Our approach has the ability to handle with the issue
of instead give to a classifier a fix weight (when used a weight majority vote),
assign to each classifier a separated weight for each class predicted. In this way
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(a) (b)

Fig. 4. The results of the proposed approach in comparison with the baselines based
on [19], regarding of the accuracy measure in (a) and kappa index in (b).

we exploit these classifiers who have a specialty in some specifics classes, but
would be suppressed by the others classifiers in an equal weight scheme.

Another good point in our approach, is the capacity to deal with information
from different domains, without being unfair in the weighting, just because the
initial weight is assigned without seeing the general performance of the classifier,
but only at the specific class. As a drawback, our method do is not handle with
the binary classification problem (since the analysis of the sparsity of a classifier
with two classes does not make sense), and the initial weight might not be enough
to deal with an amount of bad classifiers.

5 Conclusion

In this paper, we proposed a framework called Dynamic Majority Vote for
remote sensing image classification with data from multiple sensors. Our approach
extracts features from different domains, which are trained with different learn-
ing techniques. This process creates a set of classifiers with different expertise.
Our method assigns a weigh for each classifier according to their expertise in each
specific class. The creation of the final thematic maps consists in classifying each
non-labeled region by fusioning the predicted output of each classifier according
to their weights. We conducted a series of experiments in the grss dfc 2014 [14]
dataset (IEEE GRSS Data Fusion Contest 2014) that demonstrate a significant
improvement in comparison with the proposed baselines. For the future work, we
intend to extend this framework exploring the use of more descriptors, classifiers,
and other late fusions methods. We also plan to test our method with other real
scenarios, such as agriculture and environmental monitoring.
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Abstract. Identifying crops from remote sensing images is a funda-
mental to know and monitor land-use. However, manual identification
is expensive and maybe impracticable given the amount data. Auto-
matic methods, although interesting, are highly dependent on the qual-
ity of extracted features, since encoding the spatial features in an effi-
cient and robust fashion is the key to generating discriminatory models.
Even though many visual descriptors have been proposed or successfully
used to encode spatial features, in some cases, more specific descrip-
tion are needed. Deep learning has achieved very good results in some
tasks, mainly boosted by the feature learning performed which allows
the method to extract specific and adaptable visual features depending
on the data In this paper, we propose two multi-scale methods, based on
deep learning, to identify coffee crops. Specifically, we propose the Cas-
cade Convolutional Neural Networks, or simply CCNN, that identifies
crops considering a hierarchy of networks and, also, propose the Iter-
ative Convolutional Neural Network, called ICNN, which feeds a same
network with data several times. We conducted a systematic evaluation
of the proposed algorithms using a remote sensing dataset. The experi-
ments show that the proposed methods outperform the baseline consis-
tent of state-of-the-art components by a factor that ranges from 3 to 6%,
in terms of average accuracy.

Keywords: Deep learning · Coffee crop · Remote sensing · Feature
learning

1 Introduction

The use of Remote Sensing Images (RSIs) as a source of information is very com-
mon in several areas, such as agrobusiness. A lot of knowledge can be extracted
from these images including geolocation of events (burned forest, for example),
productivity forecast, and crop recognition. In this work, we focus on the latter
task, specifically, we aim at identifying coffee crops in RSIs.

Considering this kind of plantation, the identification of crops is essential to
know and monitor the land-use, helping to define new expansion strategies of
the land or to estimate the feasible production amount. Although interesting,
c© Springer International Publishing Switzerland 2015
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recognizing coffee regions in RSIs is not a trivial task. First, because coffee
usually grows in mountainous regions, which causes shadows and distortions in
the spectral information. Second, the growing of coffee is not a seasonal activity,
and, therefore, in the same region, there may be coffee plantations of different
ages (high intraclass variance).

The identification process, which, in our case, can be described as locate and
classify the crops, is an open problem in the pattern recognition field [5]. The
most common strategy uses a combination of segmentation algorithms, visual
features extraction techniques and machine learning methods. Some works [6]
combine these steps with a multi-scale strategy, resulting in a more robust
method. In all these cases, visual features are extracted from regions of a seg-
mented image using some auxiliary method, such as low-level or mid-level one,
and, then used with some machine learning approach. Although this method
has been successfully applied to RSIs [5], some applications require more spe-
cific descriptors. In this way, the neural networks distinguish from other methods,
since it can learn specific image features depending on the problem.

As introduced, in this paper, we are particularly interested in identifying
coffee crops in RSIs. Therefore, we formulate this task by using a deep learning
strategy, i.e., we propose two multi-scale methods using Convolutional Neu-
ral Network (CNN). First, we propose the Cascade Convolutional Neural
Network, or simply CCNN, which is, in this case, composed of three network
levels that process images with same dimension. Specifically, after every level,
unclassified images are decomposed into smaller patches, which are resized into
a predefined size and given as input to the subsequent level. The resize step
changes the image composition allowing the networks to capture different fea-
tures at each level. Second, we propose the Iterative Convolutional Neural
Network, or just ICNN, which has only one neural network that processes the
input data three times, being equivalent to the the CCNN method. Actually,
after processing the data, unclassified patches are split and resized, going back
again into the same network.

Moreover, we are concerned in design a method robust enough to handle
real world data (even from different locations), so it can be a useful tool for
any activity involving crops recognition around the globe. Thus, the proposed
methods were designed and trained using real data of two entire counties, that
have distinct image characteristics (mountains, etc). Specifically, the experiments
were conducted using one county as training and the other as test.

In practice, we claim the following benefits and contributions over existing
solutions: (i) Our main contribution is two novel algorithms capable of iden-
tify region of interest in real world RSIs using deep learning paradigm, and (ii) a
systematic set of experiments, using real world data reveals that our algorithm
improves upon a baseline composed of state-of-the-art components, by a factor
that ranges from 3% to 6% in terms of average accuracy.

The paper is structured as follows. Related work is presented in Section 2.
Section 3 presents the methodology. Experimental protocol as well as obtained
results are discussed in Section 4. Finally, in Section 5 we conclude the paper
and point promising directions for future work.
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2 Related Work

The development of algorithms for spatial extraction information is a hot
research topic in the remote sensing community [2], which has been mainly
boosted by the recent accessibility of high spatial resolution data provided by new
sensor technologies. Even though many visual descriptors have been proposed
or successfully used for remote sensing image processing [7], some applications
demand more specific description techniques. As an example, very successful
low-level descriptors in computer vision applications do not yield suitable results
for coffee crop classification, as shown in [7]. Anyway, the general conclusion is
that ordinary descriptors can achieve suitable results in most of applications,
but not all. However, higher accuracy rates are yielded by the combination of
complementary descriptors that exploits late fusion learning techniques. Follow-
ing this trend, many approaches have been proposed for combination of spatial
descriptors [9], including several ones using multi-scale strategy [6,7]. In these
approaches, an essential step is extracting the feature at various segmentation
scales, which could be expensive, depending on the strategy, since features would
need to be extracted from each scale, for example.

However, even the combination of visual descriptors may not achieved sat-
isfactory results and more robust features are needed. In this way, deep learn-
ing distinguish from other methods, since it can learn specific image features
depending on the problem. Many works have been proposed to learn spatial fea-
ture descriptors [13]. Moreover, new effective hyperspectral and spatio-spectral
feature descriptors [11] have been developed mainly boosted by the deep learning
growth in recently years.

The proposed methods are very different from others in the literature. First,
the proposed approach is capable of create a thematic map without any use
of auxiliary methods. For the best of our knowledge, there is no other method
capable of doing this. Second, as introduced, accuracy is highly dependent on
the quality of extracted features. Thus, a method that learns adaptable and
specific spatial features based on the images, such as the ones based on deep
learning, could exploits better the feasible information available on the data.
In this work, we experimentally demonstrate the robustness of our approach
by achieving state-of-the-art results in a challenging dataset composed of high
resolution remote sensing images.

3 Methodology

In this section, we present the proposed methods for identification of crops. The
network architecture is presented first in Section 3.1 while the proposed methods
are presented in Section 3.2.

3.1 Network Architecture

To achieve higher discrimination power with deep representations, the final net-
work architecture, presented in Figure 1, is composed of six stacked layers: 3 con-
volutional (followed by max pooling and Local Response Normalization (LRN)),
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Fig. 1. The proposed Convolution Neural Network architecture with six layers.

2 fully-connected and a final classifier layer. All layers are composed of Rectifier
Linear Units (ReLUs). Also, to prevent overfitting, the dropout method [10] was
employed. At the end of the network, a softmax was used as classification layer.
As mentioned, this architecture was used in both proposed methods, being the
base of all the methodology employed in this work, which is presented next.

3.2 Multi-scale Convolutional Neural Network

The first multi-scale method proposed is the Cascade Convolutional Neural
Network model (CCNN), which is a hierarchical model composed of three
levels1, that always process tiles of 64×64 pixels, since this is the required input
size of the proposed network. As mentioned, the same architecture was employed
in all levels but with some differences related to the classification layer and the
training data, depending on the level.

Considering the classification layer, in the first two levels, tiles must be clas-
sified into three possible classes. A threshold approach, based on the number of
coffee pixels of the patch, was employed to select the class of each tile. Thus, a tile
could be: (i) coffee, if a patch has, at least, 90% of coffee pixels, (ii) non-coffee,
if a patch has, at maximum, 10% of coffee pixels, and mixed (or undefined),
otherwise. How the last level must classify the remaining tiles, it has only two
possible classes: coffee, patches with at least, 50% of coffee pixels, and non-coffee,
otherwise. Considering all available training data, the first level network receive
a small amount of patches while the last one is trained with a large amount
of data, since between each level a tile is split and resized into a new patch,
increasing the amount of available training data for the subsequent level.

Figure 2 presents a overview of the CCNN method. The first level network
processes a small amount of tiles and, the ones classified into the mixed class are
split into patches of 32 × 32 pixels, resized, and processed by the second level
network. Once more, unclassified tiles are again split into patches of 16 × 16
pixels and resized. The last level network is responsible to finally classify the
remaining tiles. At the end, a class is associated to each tile and a new image
may be recomposed, showing the regions of interest, in this case, the coffee crops.

1 In this case, only three network levels were used based on a cost-benefit analysis.
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Fig. 2. A overview of the Cascade Convolutional Neural Network model. The subscript
number of the convolutional symbolizes the quantity of data available for training each
level.

The second method proposed is the Iterative Convolutional Neural Net-
work (ICNN), which has only one neural network that processes the input data
three times, being equivalent to the CCNN method. Actually, after processing
the data once, unclassified patches are split and resized, going back again into
the same network. Just like the CCNN, this method uses the architecture pro-
posed in Section 3.1, trained with all tiles split and resized into 64 × 64 pixels
patches. These patches has three possible classes (coffee, non-coffee and mixed)
independent of the iteration. The class of each tile were defined following the
same protocol used in the first two levels of the CCNN method. However, by
doing this, the last iteration, which must classify all remaining tiles into coffee or
non-coffee classes, could classify tiles into a unwanted mixed class. A work around
is to change the class of these tiles to the second class with higher probability.
Thus, we force the last iteration to classify the remaining tiles, as intended.

A overview of the proposed method is presented in Figure 3a. The first itera-
tion process tiles of 64×64 without resize. Unclassified tiles are split into patches
of 32× 32 pixels, resized and processed into the same network. The same occurs
for the last iteration, which split the tiles into patches of 16 × 16 pixels, resized
and processed, for the last time, into the same network.

4 Experimental Evaluation

In this section, we present the experimental setup and results.

4.1 Setup

Dataset. To evaluate the proposed methods, we used a multispectral high-
resolution scene dataset, which is composed of huge scenes taken by the SPOT
sensor in 2005 over two entire counties in the State of Minas Gerais, Brazil:
Guaranésia and Guaxupé. Figure 3 shows some samples of these classes. As
mentioned, this dataset was partitioned into tiles of 64× 64, 32× 32 and 16× 16
pixels, generating, for Guaranésia, 21,600, 86,400 and 345,600 tiles, and, for
Guaxupé, 17,280, 69,120 and 276,480 regions. Although interesting, this dataset
has several challenges, such as: (i) high intraclass variance, caused by different
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Fig. 3. (a): A overview of the Iterative Convolutional Neural Network model. (b)-(d):
Respectively, coffee, non-coffee and mixed samples of the coffee dataset.

crop management techniques, (ii) scenes with different plant ages, since coffee
is an evergreen culture and, (iii) images with spectral distortions caused by
shadows, since Minas Gerais is a mountainous region.

Baselines. As baseline, we consider the most common strategy that uses a
combination of segmentation algorithms, visual features extraction techniques
and machine learning methods. In this case, we have used SLIC [1], which has
achieving good results for remote sensing images [12]. As visual features, BIC [4],
which is the most suitable descriptor to describe coffee crops, as pointed out
by [6], was employed. As machine learning technique, RBF-SVM was used. The
CCNN paradigm was simulated in the baseline by extracting three different
segmentation maps with different granularity.

Experimental Protocol. As introduced, we devised our experiments to evalu-
ate the performance of the proposed methods considering a real world scenario.
Thus, the protocol used consider one county for training and other for testing.
Since there is much more non-coffee areas than coffee ones, the metric used to
evaluate the proposed methods were the average accuracy, which is calculated by
averaging the pixel accuracy for each class. The proposed networks were built
using Caffe framework [8], since it is more suitable due to its simplicity and
support to parallel programming using CUDA. Furthermore, all computational
experiments presented were performed on a 64 bits Intel i7 4,960X machine with
3.6GHz of clock, 64 GB of RAM memory and GeForce GTX980. A drawback
of deep learning strategy is the large number of parameters, which are, in this
case, five different ones: learning rate, weight decay, momentum, maximum iter-
ations and step size (which defines the number of iterations until the learning
is divided by a constant value (gamma) equals to 0.1). Select the best value for



Coffee Crop Recognition Using Multi-scale Convolutional Neural Networks 73

each parameter, as well as the best network architecture, is totally experimen-
tal, which requires a high number of tests and a well-structured protocol. In this
case, the networks and its parameters were adjusted by considering a full set of
experiments guided by [3]. After all the setup experiments, the best values for
the learning rate, weight decay, step size, momentum and max iterations were
0.01, 0.001, 10,000, 0.9 and 30,000, respectively.

4.2 Results and Discussion

For the proposed methods, the processing time, for each county, took around one
hour to be completed. At the end, the CCNN method yielded average accuracy
around 57% and 63%, for Guaxupé and Guaranésia, respectively. Both results
outperforms the baseline by a factor varying from 2 to 6%, in terms of average
accuracy. The ICNN method also outperform the baseline, but was less effective
than the CCNN approach. However, the baseline is more hand-working, since
segments and features need to be extracted first to be, then, used with some
machine learning technique, while the proposed methods learns all at once. Fur-
thermore, it is worth to mention that agricultural scenes is very hard to classify
since the method must to differentiate among different vegetation [6].

Table 1. Results, in terms of average accuracy (%), of the proposed methods and the
baseline for the coffee dataset.

Method Guaranésia Guaxupé

SLIC+BIC+SVM-RBF 57.89 55.86
CCNN 69.33 57.98
ICNN 60.22 56.08

5 Conclusions and Future Work

In this paper, we propose two multi-scale methods based on Convolutional Neural
Networks to identifying coffee crops from remote sensing images, considering a
real world scenario. Experimental results show that the CCNN method is more
effective and robust than all others, achieving state-of-the-art, in terms of average
accuracy, for coffee crop identification, considering two entire counties. As future
work, we intend to evaluate new datasets and applications. We also consider to
use some different strategies, such as fine-tuning.
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Abstract. Nuclear pleomorphism is an early breast cancer (BCa) indi-
cator that assesses any nuclear size, shape or chromatin appearance varia-
tions. Research involving the ranking by several experts shows that kappa
coefficient ranges from 0.3(low) to 0.5 (moderate)[12]. In this work, an
automatic grading approach for nuclear pleomorphism is proposed. First,
a large nuclei sample is characterized by a multi-scale descriptor that is
then assigned to the most similar atom of a previously learned dictio-
nary. An occurrence histogram represents then any Field of View (FoV)
in terms of the occurrence of the descriptors with respect to the learned
atoms of the dictionary. Finally, a SVM classifier assigns a full pleomor-
phism grading, between 1 and 3, using the previous histogram. The strat-
egy was evaluated extracting 134 FoV (×20), graded by a pathologist,
from 14 BCa slides of ’The Cancer Genome Atlas’ (TCGA) database.The
obtained precision and recall measures were 0.67 and 0.67.

Keywords: Breast cancer · Histopathology · Biomedical · Nuclear
pleomorphism

1 Introduction

Worldwide breast cancer(Bca) is a major cause of women death. In 2012, approx-
imately 522.000 deaths and 1.677.000 new Bca cases were reported [5]. Bca is fre-
quently diagnosed after a suspicious breast mass is found in radiologic studies, by
extracting a tissue sample using a fine needle. This sample is analyzed and infor-
mation about the type of tumor, aggressiveness and receptor status is obtained.
The cancer aggressiveness is determined by using one of the available scoring
systems. The World Health Organization and the College of American Patholo-
gists endorse the Notthingham grading system. This system assigns and corre-
lates the scores of three features, namely nuclear pleomorphism, mitotic count
and tubule formation [4]. This classification provides prognostic and diagnostic
information. Both, the biological variability and the pathologist expertise deter-
mine the accuracy and reliability of the evaluation performed when assigning the
c© Springer International Publishing Switzerland 2015
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three aforementioned features. There exist many studies reporting low or moder-
ated grading reproducibility: mitotic counts with κ from 0.45 to 0.64 or tubule
formation with κ between 0.57 and 0.83. In nuclear pleomorphism, the index
agreement (κ) has been reported to be between 0.3 (low) and 0.5(medium), a
very low figure for an important feature in terms of the prognosis [12]. Nuclear
pleomorphism serves as an indicator of the cancer evolution and is part of the
Nottingham prognostic index [7,8]. Some authors suggest that nuclear morphom-
etry may improve the grading task, but manual quantification is time consum-
ing and impractical in routine diagnostic workflow [14,17]. The expert made a
quantitative and qualitative judgment with the epithelial cells, features to be
evaluated are: size of nuclei, size of nucleoli, density of chromatin, thickness of
nuclear membrane, regularity of nuclear contour, anisonucleosis, then a nuclear
pleomorphism grading is give, score ranges from 1 to 3 , in the figure 1 examples
the histological images of nuclear pleomorphism are show.

Fig. 1. Nuclear pleomorphism scores. Left: Nuclear atypia grade 1. Center:, grade 2,
Right: grade 3

In this paper, an automatic methodology for nuclear pleomorphism grad-
ing of breast cancer images is proposed. Unlike other approaches, the proposed
method is not based on histomorphometry information such as area, roundness,
or texture. Instead, a nuclei detector, a bag of features (BoF) and a multi-scale
descriptor are used to characterize the differences among the three nuclear atypia
grades. The method is able to learn from a whole FoV, not requiring individ-
ual cell annotations. Finally, the BoF representation is used to train a bank of
support vector machines (SVM) that assign a pleomorphism grade to a test FoV.

This paper is organized as follows: In Section 2, a brief review of techniques for
nuclear atypia (pleomorphism) characterization is presented. Section 3 describes
the proposed method. Results of the proposed methodology in the nuclear atypia
scoring are presented in Section 4. Finally, we present conclusions and future
work on the characterization and feature extraction of nuclear pleomorphism in
Section 5.

2 Previous Work

Several algorithms have been proposed to assess nuclear pleomorphism in breast
cancer. Automatic nuclear shape and size related measurements are commonly
used. Cossato et al. [2] proposed a pleomorphism grading method that starts by
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detecting nuclei candidates (related to hematoxylin dye) using a color deconvo-
lution algorithm. Then a 2D difference of gaussians (DoG) is applied to improve
nuclei detection. Each nucleus is segmented by applying an active contour algo-
rithm and outliers are discarded by using some statistical measurements. Mor-
phometric features (such as nuclear area, shape, and texture) are computed for
each segmentation and then used as an input to a SVM classifier to grading each
nucleus between ”benign” and ”malignant” classes, obtaining a classification per-
formance of 81%. Dalle et al.[3] proposed a similar approach for nuclear pleomor-
phism grading, but measurements of nucleus roundness(perimeter and area) and
texture were included as features. After computing these features, a multivariate
gaussian model is estimated for each grading score (only atypia grades 2 and 3 were
used). Test images are graded by computing the likelihood of the nuclei grade at a
particular magnification frame. After classifying each nucleus, an overall reported
accuracy error of 7.8% for the classification task. Veta et al.[18] propose a nuclei
segmentation for nuclear pleomorphism method, using a color unmixing process
and only the hematoxylin channel was used. Afterward, the nuclear contours are
found by a fast radial symmetry transform, followed by a post-processing method
to remove regions with not nuclei. Finally the overlapping regions are eliminated.
The sensitivity reported by the method was 0.853.

3 Methodology

An overview of the proposed method is presented in figure 2

Fig. 2. Diagram of the proposed approach

The first step to detect nuclei candidates is the colour deconvolution in the
H&E image[10]. Then, maximally stable extreme regions (MSER) are used to
identify blobs[11]. Morphological operations, namely opening and closing, are
applied to improve the nuclei detection. A discriminant multi-scale histopathol-
ogy descriptor [15], centered at each nucleus candidate, is then computed.
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The set of selected nuclei descriptors constitutes a dictionary of visual words
comprised of samples at different pathological evolution (grading range from 1
to 3 in the nuclear pleomorphism nothingam grading system). The dictionary of
visual words is a partition of the space, spanned by the set of collected descrip-
tors or dictionary atoms. Any point of that space may then be represented by a
frequential distribution of the basis defined by the partition. The resultant his-
tograms are used to train a bank of binary classifiers or support vector machines
(SVM), using the annotated labels associated to the pathological grade of each
atom in the dictionary. A new FoV is scored by identifying nuclei candidates
that are represented in terms of the dictionary of multiscale nuclei descriptors.

3.1 Candidate Detection Using MSER Descriptors

First, the hematoxylin stain is estimated by using a color deconvolution app-
roach [10]. The process starts by mapping the usual RGB color image to the
Optical density space (Od) using equation 1

Od = −log(I); Od = V S → S = V −1Od (1)

Where I is the RGB color space, Od is the computed optical density and
V, S are matrices of the stain vectors and their saturation, respectively. In the
optical density space, the hematoxylin and eosin estimations are modeled by a
linear generative model, where two sources are computed.

The hematoxylin contribution map is used in the nuclei detection and the
subsequent processing. Nuclei candidates are found by detecting Maximally Sta-
ble Extreme Regions (MSER) [11] defined as those areas that change very lit-
tle after applying multiple thresholds. Finally two morphological operators are
applied, opening to remove small objects and closing to fill small holes and gaps
in the image.

3.2 Multi-scale Feature Extraction

The characterization of each nucleus candidate was performed by analyzing mul-
tiple scales of a pyramidal representation [15]. A nucleus is simply represented
by a series of different scales around the nucleus center, i.e., given a point X,
a nucleus center, a window of a given size is extracted. In this work a windows
size of 16 × 16 pixels was selected. Afterwards, patches with the same size at
lower resolution are obtained by dyadically subsampling the original image after
a blurring operation between each scale. These patches are then concatenated
for obtaining the feature vector, as depicted in Figure 3.

After collecting a large number of descriptors (equal to the number of nuclei
detected in the training set), the space is partitioned with a k-means algorithm
[9] using the k-atoms of the dictionary (k was set to 1600 visual words). This
dictionary is created with random samples for each grade. The dictionary is thus
used to represent each nucleus from any breast cancer at a high magnification
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Fig. 3. Multi-Scale Feature Extraction

(× 40), by choosing the most similar atom to a particular nucleus candidate.
Then, a feature vector is built by computing a histogram of occurrences, for
which each bin stands for each atom of the dictionary. A SVM classifier (with
a chi square kernel) is then trained to assign a nuclear pleomorphism grade for
a new FoV. SVM classifier with chi square kernel has been extensively used on
BoF applications [16].

4 Experimental Setup

4.1 Breast Cancer Dataset

The dataset is comnposed of fourteen(14) breast cancer slides from the TCGA
database [13]. The TCGA provides clinical information and the cases were eval-
uated by different experts since images are provided by 27 different institu-
tions. The associated Nottingham grading to each evaluation is provided (tubule
formation, mitotic count, nuclear pleomorphism). Additionally, for each of the
database samples, high magnification FoV (× 20) were selected and graded by
an independent expert pathologist. A total of 134 high magnification frames
(around 10 FoV per slide) were digitized and the associated nuclear pleomor-
phism grading was recorded. The Figure 4 shows an example of the dataset: a
whole breast cancer Virtual Slide, the manually selected high magnification FoV
and the grading assigned by the pathologist.

4.2 Evaluation and Dictionary Setup

The evaluation was carried out using a leave one out scheme, i.e., for a total of
14 cases, 13 were used for training and the remaining one for testing. In this
experimentation, the dictionary was initialized by randomly sampling 18 FoV
per each grade. After the learning process, the dictionary contains 1600 atoms
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Fig. 4. Breast Cancer Dataset

with 768 dimensions (size patch × scales : 16 × 16 × 3). The SVM classifier
was trained by using the multi-scale features extracted from 90 random training
images (30 for each grade).

5 Results

The nuclei candidates were processed by extracting three (3) scale levels on a
patch size of 16×16 pixels. Only the hematoxylin contribution map was used. A
set of dictionaries for descriptors of each grade is built and then concatenated.
Afterwards a bank of three (3) SVM classifiers was trained. The evaluation was
performed as described in section 3.2. The precision, recall and F-measure results
with standard deviation (SD) are shown in table 1.

Table 1. Results of Proposed Method. Mean ± standard deviation figures for the
precision, recall and f-measure of the nuclear atypia grades are presented.

grade 1 grade 2 grade 3 Mean

Precision 0.74 ± 0.04 0.58 ± 0.06 0.69 ± 0.03 0.67 ± 0.03

Recall 0.55 ± 0.09 0.62 ± 0.03 0.85 ± 0.04 0.67 ± 0.04

F-measure 0.63 ± 0.06 0.60 ± 0.04 0.76 ± 0.02 0.66 ± 0.04

Atypical grade three (3) obtained larger F-measures. The nuclei related with
these grading shows a significant deviation from the shape and size of grade two
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(2) and one(1), that is adequately assessed by the proposed method, the inter-
mediate class grade two(2) have the low f-measure.

The Cohen’s kappa coefficient (agreement between 2 rater) [1] and the Fleiss’
kappa coefficient (multiple rater)[6] were also used to obtain a statistical measure
of the agreement between a pathologist, TCGA record diagnosis and the pro-
posed method. The Cohen’s kappa coefficient between the TCGA’s reported
grading and our pathologist was κ = 0.43(moderate agreement). The kappa
coefficient between the proposed method and TCGA diagnosis was κ = 0.51
(moderate agreement) while the agreement of the proposed method with our
pathologist corresponds to κ = 0.31(fair agreement). Finally, the Fleiss’ Kappa
was used to establish an agreement among the three raters: the pathologist, the
TCGA record and the proposed method. The obtained value was κ = 0.46 which
amounts to a moderate agreement.

6 Conclusion

In this work an automatic method for a complete grading of nuclear pleomor-
phism in breast cancer images, in accordance to the Nothingham grading system,
was proposed. The method does not use morphometric information from manu-
ally segmented cells, but builds up a visual dictionary of nuclei that implicitly
captures differences in nuclei size and shape, among the different nuclear atypia
grades. The descriptor also includes the neighborhood of the nuclei at subse-
quent lower scales, including context information of the nuclei that is known
to be important. Performance measures show that the method is suitable for
automatic pleomorphism grading of microscopical FoV.

Future work includes the improvement of candidate nuclei detection and the
use of nuclei density information to improve the grading task. Another important
topic is the exploration of this representation in the analysis of another potential
or recognized diagnostic/prognostic indicators.
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Abstract. Non-technical loss detection represents a very high cost to
power supply companies. Finding classifiers that can deal with this prob-
lem is not easy as they have to face a high imbalance scenario with
noisy data. In this paper we propose to use Optimal F-measure Classi-
fier (OFC) and Linear F-measure Classifier (LFC), two novel algorithms
that are designed to work in problems with unbalanced classes. We com-
pare both algorithm performances with other previously used methods
to solve automatic fraud detection problem.

Keywords: Class imbalance · One class SVM · F-measure · Recall ·
Precision · Fraud detection · Level set method

1 Introduction

Improving non-technical loss detection is a huge challenge for electrical companies.
In Uruguay the national electric power utility (henceforth call UTE) addresses
the problem by manually monitoring a group of customers. A group of experts
inspects the monthly consumption curve of each customer and indicates those
with some kind of suspicious behavior. This set of customers, initially classified
as suspects are then analyzed taking into account other factors (such as fraud his-
tory, electrical energy meter type, etc.). Finally a subset of customers is selected to
be inspected by an UTE’s employee, who confirms (or not) the irregularity (illus-
trated in Figure 1). The procedure described before has major drawbacks, mainly,
the number of customers that can be manually controlled is small compared with
the total number of customers (around 500.000 only in Montevideo).

Several pattern recognition approaches have addressed the detection of non-
technical losses, both supervised, unsupervised or recently semi-supervised as
shown in [36]. Leon et al. review the main research works found in the area
between 1990 and 2008 [23]. Here we present a brief review that builds on this
work and wide it with new contributions published between 2008 and 2014.
Several of these approaches consider unsupervised classification using different
techniques such as fuzzy clustering [2], neural networks [25,35], among oth-
ers. Monedero et al. use regression based on the correlation between time and
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 83–91, 2015.
DOI: 10.1007/978-3-319-25751-8 11
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Fig. 1. Scheme of the manual procedure to detect fraudulent customers.

monthly consumption, looking for significant drops in consumption [26]. Then
they go through a second stage where suspicious customers are discarded if their
consumptions vary according to the moment or the year’s season. Only major
customers were inspected and 38% were detected as fraudulent. Similar results
(40%) were obtained in [14] using a decision tree classifier and customers who
had been inspected in the past year. In [9] and [37] SVM is used. In the latter,
Modified Genetic Algorithm is employed to find the best parameters of SVM.
In [38], is compared the methods Back-Propagation Neural Network (BPNN),
Online-sequential Extreme Learning Machine (OS-ELM) and SVM. Biscarri et
al. [5] seek for outliers, Leon et al. [23] use Generalized Rule Induction and Di
Martino et al. [10] combine CS-SVM , One class SVM, C4.5, and OPF classifiers
using various features derived from the consumption. In [34] it is compared the
feature sets selected when using different classifiers with two different labelling
strategies. Different kinds of features are used among this works, for examples,
consumption [5,37], contracted power and consumed ratio [15], Wavelet trans-
formation of the monthly consumption [20], amount of inspections made to each
client in one period and average power of the area where the customer resides
[2], among others.

This application has to deal with the class imbalance problem, where it is
costly to misclassify samples from the minority class and there is a high over-
lapping between classes.

In almost all the approaches that deal with an imbalanced problem, the
idea is to adapt the classifiers that have good accuracy in balanced domains.
Many solutions have been proposed to deal with this problem [16,18]: changing
class distributions [7,8,21], incorporating costs in decision making [3,4], and
using alternative performance metrics instead of accuracy [17] in the learning
process with standard algorithms. In [24] a comparative analysis of the two
former methodologies is done, showing that both have similar performance and
that they could be improved by hybrid procedures that combine the best of both
methodologies. In [12] and [11] a different approach to this problem is proposed:
designing a classifier based on an optimal decision rule that maximizes the F-
measure [33] instead of the accuracy. In contrast with common approaches, this
algorithm does not need to change original distributions or arbitrarily assign
misclassification costs in the algorithm to find an appropriate decision rule.
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In this work we propose to study and compare the following classifiers:
Optimal F-measure (OFC) and Linear F-measure (LFC) with some classical
approaches as presented in [10] applied to non-technical losses detection. In
Section 2 theory is presented. In Section 3 we present non-technical loss problem
and the data set used. In Section 4 experimental results are shown and in the
last section we share conclusions and future work.

2 Classifiers for Unbalanced Problems

In this section we are going to introduce a brief descriptions of OFC and LFC
classifiers. These classifiers were designed to face imbalance problems by look-
ing for maximizing the F-measure value. Since high value of F-measure (Fβ)
ensures that both Recall and Precision are reasonably high, which is a desir-
able property since it indicates reasonable values of both true positive and false
positive rates.This is relevant to non-technical loss detection problem since it
has great imbalance between normal and fraud/suspicious classes and where,
ideally, we want to detect all frauds with a minimum number of inspections to
normal clients.

The goal of the OFC is to find class frontiers that guarantee maximum F-
measure. The algorithm assumes that there are two classes, one called the neg-
ative class (ω−), that represents the majority class, usually associated to the
normal scenario (no suspicious, nor fraud), and the other called the positive
class (ω+) that represents the minority class (suspicious or fraud). Let us recall
some related well known definitions:

Accuracy: A = TP+TN
TP+TN+FP+FN Recall: R =

TP

TP + FN

Precision: P = TP
TP+FP F-measure: Fβ =

(1 + β2)R P
β2P + R

Where, TP (true positive) is the number of x ∈ ω+ correctly classified, TN (true
negative) the number of x ∈ ω− correctly classified, FP (false positive) and FN
(false negative) the number of x ∈ ω− and x ∈ ω+ misclassified respectively.

As we stated before, Precision and Recall are two important measures to
evaluate the performance of a given classifier in an imbalance scenario. The
Recall indicates the True Positive Rate, while the Precision indicates the Positive
Predictive Value. The F-measure combines them with a parameter β ∈ [0,+∞).
With β = 1, Fβ is the harmonic mean between Recall and Precision, meanwhile
with β � 1 or β � 1, the Fβ approaches the Recall or the Precision respectively.

It can be seen that maximizing F-measure is equivalent to minimizing the
quantity:

ε =
β2FN + FP

TP
. (1)
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The quantities FN , FP , and TP can be expressed as:

FN = P

∫

Ω−
f+(x)dx, FP = N

∫

Ω+

f−(x)dx and TP = P

∫

Ω+

f+(x)dx

where P and N are the number of positive and negative classes in the training
database, and f+(x) and f−(x) are the probability distribution functions of the
positive and negative class respectively.

Therefore, the task of training a classifier u : Ω → R, that maximizes the
F-measure (and minimizes ε) can be approached as finding the regions Ω+(u) =
{x : u(x) ≥ 0} and Ω−(u) = {x : u(x) < 0} that minimize:

ε(u) =
β2

∫
Ω−(u)

f+(x)dx +
∫

Ω+(u)
f−(x)dx∫

Ω+(u)
f+(x)dx

. (2)

OFC looks for the classifier u that minimize ε(u) solving the optimization prob-
lem using a gradient descent flow, inspired by the level-set method [30]. A com-
plete description of this classifier can be found in [12]. On the other hand, LFC
proposes a way to get the regions Ω+ and Ω− that minimize energy ε thresholds
for each dimension in an iterative way. A rectangular partition of the space is
found by considering independently probability distributions in each dimension.
Following this procedure in all the dimensions, one at a time, a set of hyper-
rectangles are defined. The main difference between OFC and LFC, is that in
the case of OFC, decision boundaries can have any arbitrary shape while in the
case of LFC they are always parallel to input feature space coordinates axes.
Although OFC is a more general approach and fewer hypothesis are assumed,
LFC has the advantage of been very fast and its implementation is very simple
and straightforward. For this reasons, in this work both strategies are considered
and compared for the case of automatic fraud detection. A complete description
of LFC algorithm can be found in [11].

Finally, as was done in previous analysis, One-Class Support Vector Machine
(O-SVM) [19], Cost-Sensitive Support Vector Machine (CS-SVM) [19], Optimum
Path Forest (OPF) [32], and a decision tree proposed by Roos Quinlan, C4.5 [31]
are also considered and compared with OFC and LFC approaches.

It should be noted briefly that Optimum Path Forest (OPF) was proposed
by [32] to be applied to the problem of fraud detection in electricity consumption,
showing good results. It consists in creating a graph with the training dataset,
associating a cost to each path between two elements, based on the similarity
between the elements of the path. This method assumes that the cost between
elements of the same class is lower than those belonging to different classes.
Next, a representative is chosen for each class, called prototypes. A new element
is classified as the class that has lower cost with the corresponding prototype.
Since OPF is very sensitive to class imbalance, we change class distribution of
the training dataset by under-sampling the majority class.

The decision tree proposed by Ross Quinlan: C4.5 it is widely utilized since
it is a very simple method that obtains good results. However, it is very unstable
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Table 1. Fraud detection.

Description Recall Precision Fmeasure

(%) (%) (%)[β = 1]

OPF 36 34 35

Tree (C4.5) 33 37 35

O-SVM 71 31 44

CS-SVM 74 33 46

LFC 75 32 45

OFC 77 34 47

and highly dependent on the training set. Thus, a later stage of AdaBoost was
implemented, accomplishing more robust results. Just as with the OPF it was
needed a resamplig stage to manage the dependency of the C4.5 with the class
distribution.

Related to cost-sensitive learning (CS-SVM) and one-class classifier (O-
SVM), in the former different costs were assigned to the misclassification of
the elements of each class, in order to tackle the unbalanced problem while the
second one considers the minority class as the outliers.

3 Experimental Results

In this work we used a data set of 456 industrial profiles obtained from the UTE’s
database. Each profile is represented by the customers monthly consumption in
the last 36 months, with inspection results labels: fraud or not fraud. A pre-
processing and normalization step is performed in order to normalizes the data
and to avoid peaks from billing errors. A feature set was proposed taking into
account UTE’s technician expertize in fraud detection by manual inspection and
recent papers on non-technical loss detection [1], [28], [29]. Some of them are:

– Consumption ratio for the 3, 6 and 12 months and the average consumption.
– Difference in wavelet coefficients from the last and previous years.
– Euclidean distance of each customer to the mean customer, where the mean

customer is calculated by taking the mean for each month consumption for
all the customers.

– Module of the Fourier coefficients of the total consumption.
– Difference in Fourier coefficients from the last and previous years.
– Variance of the consumption curve.
– Slope of the straight line that fits the consumption curve.

It is well known that finding a small set of relevant features can improve
the final classification performance [6]; this is the reason why we implemented a
feature selection stage. We used two types of evaluation methods: filter and wrap-
per. Filters methods look for subsets of features with low correlation between
them and high correlation with the labels, while wrapper methods evaluate the
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performance of a given classifier for the given subset of features. In the wrap-
per methods, we used as performance measure the F-measure. The evaluations
were performed using 10 fold cross validation over the training set. As search-
ing method, we used Bestfirst [27], since we obtained a good balance between
performance and computational costs.

In order to confront the class imbalance problem in O-SVM, CS-SVM, C4.5
and OPF, the strategies of changing class distribution by re-sampling [22] were
used.

Table 1 shows the results obtained by the different classifiers using 10-fold
cross validation.

In spite of the fact that in this work we used a more complicated and challeng-
ing dataset than that analyzed in [13], results are consistent with the reported
in [13] if we compare the performance between the classifiers. CS-SVM outper-
forms O-SVM, C4.5 and OPF, while the novel approaches included in the present
work show one of the highest results with very promising performances. OFC
approach outperforms LCF as expected but, LFC also seems to be a reasonably
option to face automatic fraud detection problem for instance performing similar
to the best state of the art algorithm, with computational efficiency. A deeper
interpretation of the results, taking into consideration the specific problem of
non-technical losses detection, shows that all algorithms obtained a similar value
in the rate of fraud detected (TP) per number of inspections (TP + FP). How-
ever it can be seen that the OPF and C4.5 get that performance in an operating
point which corresponds to a high threshold, where it is detected a low fraud-
ulent registrations percentage, while C-SVM, OFC and LFC are working in an
operating point where a high percentage is detected. Working in a more demand-
ing operation point (detecting not only the obvious fraud but those which are
more difficult, those similar to normal records) without deteriorating the pre-
cision, reaffirms the assessment that the new proposed algorithms have a very
good performance and that the use the F-measure as the objective measure to
be optimized is suitable for the problem of non-technical losses.

4 Conclusions and Future Work

We propose to use two novel algorithms specially design to deal with class imbal-
ance problems to non-technical loss detection. We compare these algorithms
performance with previous strategies used to solve this problem. Performance
evaluation shows that OFC and LFC can achieve similar performance to the state
of art such as SVM and outperforms C4.5 and OPF classifiers. In future work,
we propose to extend OFC and LFC algorithms to semisupervised approach and
study the impact of applying them to the non-technical losses detection.
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Abstract. A multimodal approach for percussion music transcription
from audio and video recordings is proposed in this work. It is part of
an ongoing research effort for the development of tools for computer-
aided analysis of Candombe drumming, a popular afro-rooted rhythm
from Uruguay. Several signal processing techniques are applied to auto-
matically extract meaningful information from each source. This involves
detecting certain relevant objects in the scene from the video stream. The
location of events is obtained from the audio signal and this information
is used to drive the processing of both modalities. Then, the detected
events are classified by combining the information from each source in a
feature-level fusion scheme. The experiments conducted yield promising
results that show the advantages of the proposed method.

Keywords: Multimodal signal processing · Machine learning applica-
tions · Music transcription · Percussion music · Sound classification

1 Introduction

Although music is mainly associated with an acoustic signal, it is inherently a
multimodal phenomenon in which other sources of information are involved, for
instance visual (images, videos, sheet music) and textual (lyrics, tags). In the
recent decades this has lead to research on multimodal music processing, in which
signal processing and machine learning techniques are applied for automatically
establishing semantic relationships between different music sources [12]. This has
several applications, such as sheet music to audio synchronization or lyrics to
audio alignment [12], audiovisual musical instrument recognition [11] and cross-
modal correlation for music video analysis [6]. Even thought the problem of
music transcription has received a lot of attention [10], most existing research
focus on audio signals. Among the few works that take multimodal information
into account, drum transcription is tackled in [7] using audio and video.

In this work, a multimodal approach for percussion music transcription is
proposed. It is tailored to the analysis of audio and video recordings of Candombe
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drumming performances, with the aim of determining the location of sound
events and their classification into a set of different stroke types. A comparison
between the performance attained by monomodal classifiers (i.e. audio or video)
and the multimodal approach is considered, so as to evaluate the impact of
including different sources of information. The ultimate goal of this research is
to contribute with automatic software tools for computer-aided music studies.

Candombe drumming is the essential component of an afro-rooted tradition
which has evolved for almost two centuries and is at present one of the most
characteristic features of Uruguayan popular culture [1]. The rhythm is played
marching on the street by groups of drums of which there are three different
types: chico, repique and piano [4]. The drumhead is hit with one hand and
with a stick in the other, producing different types of sound. The stick is also
used to hit the shell of the drum which is made of wood.

The rest of this paper is organized as follows. Next section outlines the pro-
posed multimodal approach for percussion transcription. Then, Section 3 intro-
duces the datasets used for developing and evaluating the system. Section 4 is
devoted to explaining the signal processing techniques applied to the audio and
video streams. The feature selection techniques and the classification scheme
adopted are described in Section 5. Experiments and results are presented in
Section 6. Finally, the paper ends with some concluding remarks.

2 Proposed Multimodal Approach

The information coming from the different modalities can be integrated in var-
ious ways, for instance by combining the outputs of monomodal classifiers (i.e.
decision-level fusion) or by considering the features from each mode into an
unified set for classification (i.e. feature-level fusion). In this work, high-level
information obtained from one modality is used to drive the processing of both
modalities, which as noted in [3] can be a better strategy than merely relying
on direct feature-level or decision-level fusion. This is based on the fact that the
location of events can be obtained quite reliably using the audio signal alone
(known as onset detection [2]), whereas the classification of the type of stroke
can be better attained by exploiting the information from both modalities. This
is illustrated in Figure 1, where a stroke performed with the stick is shown. The
detection of events relies on the Spectral Flux (see Sec. 4.1) of the audio signal
and exhibits a clear maximum, while the position of the stick extracted from the
video shows a corresponding minimum indicating a stick stroke.

The proposed system is depicted in the diagram of Figure 2. Onset detection
guides the feature extraction in both modalities. In order to obtain meaningful
information from the video, relevant objects in the scene have to be segmented,
namely the stick, the drumhead and the hand. After extracting features from
each modality, a feature selection stage is introduced separately, which proved
to be more effective than a single selection over the whole feature set. Finally,
detected events are classified by combining the information from both modalities
in a feature-level fusion scheme.
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Fig. 1. Example of multimodal information extracted. Event detection is based on the
audio signal, but classification exploits information from both modalities.
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Fig. 2. Block diagram of the proposed multimodal transcription system. The symbol
+ represents the fusion of the features from each modality into an unified set.

3 Datasets

Two recording session were conducted in order to generate the data for this
research. High-quality equipment was used for recording audio. Since the per-
formances involve very fast movements, video acquisition was carried out at
high-speed rates (120 and 240 fps). Four percussionists took part in the first
session, and each of them recorded two improvised performances of the repique
drum. In the second session, several different configurations of solo drums and
ensembles were recorded, performed by five renowned Candombe players.

Recordings from the first dataset were manually labeled by an expert, indi-
cating the location of the strokes and their corresponding type. This data was
used for training and evaluating the classification system. Recordings of the sec-
ond session were mainly used for developing the object segmentation and feature
extraction algorithms.

The following six different stroke classes were considered for a repique perfor-
mance: wood, in which the stick hits the wooden shell of the drum; hand, when
the bare hand hits the drumhead; stick, that corresponds to a single hit of the
drumhead with the stick; bounce, in which the stick hits the drumhead several
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times in a short time interval; rimshot, with the stick hitting tangentially to the
drumhead; and flam, which consists of two single strokes played almost together
by alternating the hand and stick (in any order).

4 Signal Processing

4.1 Audio Signal Processing

Onsets Detection. The first step in the proposed system is to automatically
find the location of sound events. A typical approach is adopted in this work,
namely the Spectral Flux, which emphasizes changes in the energy content of the
audio signal in different frequency bands [2]. The Short-Time Fourier Transform
of the signal is calculated and mapped to the MEL scale (approximately linear
in log frequency) for sequential 20 -ms duration windows in hops of 10 ms. The
resulting sequences are time-differentiated (via first-order difference), half-wave
rectified, and summed along the MEL sub-bands. Finally, a global threshold
of 10% of the maximum value is applied to the obtained detection function to
determine the location of onsets.

Audio Features. The type of sound, i.e. the timbre, is mainly related to the
energy distribution along its spectrum. Therefore, two different sets of features
commonly used for describing spectral timbre of audio signals were adopted. In
addition, two features were proposed to capture the behaviour of strokes which
involve several events in a short time interval. A temporal window of 90 ms
centered at the detected onset is considered for computing each type of feature.

Spectral Shape Features. A feature set commonly used for general-purpose
musical instruments classification was considered, comprising several measures
describing the shape of the spectral energy distribution, namely: spectral cen-
troid, spectral spread, spectral skewness, spectral kurtosis, spectral decrease,
spectral slope and spectral crest [10].

Mel-frequency Cepstral Coefficients. (MFCC) These are the most widespread
features in speech and music processing for describing spectral timbre. A filter
bank of 160 bands is applied to the signal frame, whose center frequencies are
equally-spaced according to the MEL scale. Then an FFT is calculated and the
log-power on each band is computed. The elements of these vectors are highly
correlated so a Discrete Cosine Transform is applied and the 40 lowest order
coefficients are retained.

Spectral Flux Features. The bounce and flam strokes involve several events in
a short time interval. Therefore, the number of Spectral Flux peaks and the
amplitude difference between the first and second peak (set to zero if no second
peak exist) are also computed to capture the behaviour of these type of strokes.
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4.2 Video Signal Processing

In order to analyze a video recording and to extract features for describing the
performance, it is necessary to automatically detect the most important objects
that appear in the scene. These are the drumhead, the stick and the hand of
the performer. The scene was slightly prepared to simplify the detection and the
evaluation process, but taking care not to alter the sound of the drums or disturb
the performer. The stick and the contour of the drumhead were painted to ease
their segmentation. Besides, in the second recording session some fiducial paper
markers were pasted to the drum and the body of the performer for evaluation
purposes. This can be seen in Fig. 3(a), which shows a video frame that is used
for illustrating the objects segmentation and detection process hereafter.

Objects Segmentation and Detection

Drumhead Detection. While the drumhead is a circle, it becomes an ellipse in
the image due to the camera perspective projection. Detecting ellipses in images
is a classical problem [13] usually tackled in two steps: (a) edge detection on
the image and (b) estimation of the ellipse that best fits the obtained edges. As
mentioned before, the drumhead contour was painted, so the first step is achieved
by color filtering the image. The fitting of the best ellipse was performed based
on [5], using the OpenCV implementatin. Color filtering and ellipse fitting for
drumhead detection are shown in Fig. 3(b) and Fig. 3(c), respectively.

Stick Detection. The detection of the stick is also carried out in a two-step way.
Only relying in color filtering turned out to be insufficient for segmenting the
stick due to the lighting conditions. Since the stick is one of the fast moving
objects in the scene, a background subtraction algorithm [14] was used together
with the color cue to point out pixel candidates. Then, the stick is identified from
the filtered pixels by a line segment detector [8], also implemented in OpenCV.
To assure a continuous detection of the stick, coherence is imposed by restricting
the segment detection in a frame to a window determined by the movement in
previous frames. The moving objects mask is depicted in Fig. 3(d) and the
detected stick in Fig. 3(e).

Hand Detection. The detection of the hand that hits the drum is addressed by
segmenting the main skin blob above the drumhead. Skin segmentation cannot
be accomplished by a simple thresholding of the color space, because there are
other regions with similar chromaticity, such as the wooden floor and the drum.
To overcome this difficulty, a permissive color filtering is followed by a tree clas-
sifier which recognizes skin pixels in the YCbCr color space. Once the skin pixels
are identified, some morphological operations are applied, and the bounding box
of the largest blob within a certain region above the previously detected drum-
head is selected. Kalman filtering of the detections is also applied to impose
temporal coherence. The hand detection process is illustrated in Fig. 3: output
of the color filter (f), skin detection based on tree classifier (g), mask above the
drumhead (h), and the bounding box of the hand blob (i).
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Fig. 3. Objects detection for a video frame (a). Drumhead: color filter (b) and ellipse
fitting (c). Stick: moving objects mask (d) and linear segments detection (e). Hand
blob: color filter (f), skin detection (g), mask above drumhead (h), bounding box (i).

Video Features. Based on the position of the drumhead, the stick and the hand
blob, several features are devised to describe the type of movement of these
objects during an audio event. Features are computed within a time window
centered at the onset, as shown in Fig. 1. The extracted features for both the
stick and hand blob are: the normalized distance to the drumhead, the maximum
and minimum value of vertical speed, the zero crossings of vertical speed, and
the first ten coefficients of the Discrete Cosine Transform of the vertical position.

5 Multimodal Classification

Feature Selection. Feature selection was carried out within each modality
independently, before the feature-level fusion of both sets. This turned out to be
more effective than a single selection over the whole feature set. To do that, a
correlation-based feature selection method was adopted [9], considering 10-fold
cross-validation (CV). For the audio modality 37 features where selected out of
49, and for the video modality 14 out of 30, for a complete set of 51 features.

Classification. Based on the performance attained by different classification
techniques in preliminary tests, a Support Vector Machine (SVM) with a Radial
Basis Function (RBF) kernel was selected for the implemented system. Optimal
values for parameters C and γ were grid-searched in a CV scheme.
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6 Experiments and Results

The database of labeled repique performances was used for stroke classification
experiments. There are two recordings for each of the four performers, for a total
of 4132 strokes. To test the generalization ability of the system, three perform-
ers were considered for training (6 recordings) and one for testing (2 record-
ings). This was repeated in a CV scheme in which each performer is considered
once for testing. As shown in Table 1, the multimodal approach outperforms the
monomodal systems in each fold of the CV. Besides, the advantage is also notice-
able for each type of stroke, which is presented in Table 2-left. Notice that the
poor classification rate attained by the audio modality for performer 1 (Table 1),
resulting from a different tuning of the drum, is effectively compensated in the
multimodal method. In addition, confusion matrix of the multimodal approach
is shown in Table 2-right. The most troublesome stroke was flam, probably influ-
enced by the short number of instances of this type in the database.

Table 1. Percentage of correctly classified instances in each fold of the CV.

train data test data multimodal audio video

performers 1, 2, 3 performer 4 89.5 83.7 74.3
performers 1, 3, 4 performer 2 95.9 88.2 77.7
performers 1, 2, 4 performer 3 91.2 87.6 75.8
performers 2, 3, 4 performer 1 92.7 60.1 88.0

Table 2. Percentage of correctly classified instances for each type of stroke (left) and
confusion matrix for the multimodal approach (right), averaged over all the CV folds.

stroke multimodal audio video

wood 98.2 97.2 91.2
hand 99.2 86.6 98.9
stick 89.9 71.3 74.8

bounce 76.2 71.8 27.0
rimshot 93.7 83.9 57.8

flam 45.9 6.2 23.5

a b c d e f ← classified as

556 0 0 0 10 0 a wood
1 1468 2 5 3 2 b hand
0 44 1019 49 20 2 c stick
0 2 76 224 1 4 d bounce
1 4 23 4 524 3 e rimshot
0 13 5 24 4 39 f flam

7 Concluding Remarks

A multimodal approach for percussion music transcription was presented, which
focuses on the analysis of audio and video recordings of Candombe drumming.
This work is part of an ongoing interdisciplinary research effort for the develop-
ment of tools for computer-aided music analysis. Recording sessions were con-
ducted in order to generate the data for this research. Due to the fast movements
involved in real performances, high video frame rates are mandatory. This gen-
erates huge amounts of data, calling for automatic analysis methods. To that
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end, several signal processing techniques are applied for automatically extract-
ing meaningful information from audio and video recordings.

In the proposed approach, multimodality is exploited two-fold: (a) onsets
detected on the audio source are used to drive the processing of both modali-
ties, and (b) classification of the detected events is performed by combining the
information from audio and video in a feature-level fusion scheme. Results show
that the method is able to improve the performance attained by each modality
on its own, which will be further explored in future research.
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Abstract. Motivated by practical problems related to ongoing research
on Candombe drumming (a popular afro-rooted rhythm from Uruguay),
this paper proposes an approach for recognizing drum sounds in audio
signals that models for sound classification the same audio spectral fea-
tures employed in onset detection. Among the reported experiments
involving recordings of real performances, one aims at finding the pre-
dominant Candombe drum heard in an audio file, while the other
attempts to identify those temporal segments within a performance when
a given sound pattern is played. The attained results are promising and
suggest many ideas for future research.

Keywords: Audio signal processing · Machine learning applica-
tions · Musical instrument recognition · Percussion music · Candombe
drumming

1 Introduction

The extraction of musically meaningful content information via automatic anal-
ysis of audio recordings has become an important research field in audio sig-
nal processing. It encompasses a wide scope of applications, ranging from
computer-aided musicology to automatic music transcription and recommen-
dation. Research on automatic music transcription has concentrated mainly on
pitched instruments, and only in the past decade percussion instruments have
gained interest, most of the work focusing on the standard pop/rock drum kit [4].
The striking of a drum membrane produces a very short waveform that can be
modeled as an impulsive function with broad-band spectrum [5], whose accu-
rate characterization and analysis is a challenging problem in signal processing.
In this context, the goal of automatic transcription is to determine the type of
percussion instrument played (instrument recognition) and the temporal loca-
tion of the event. Even if the problem of isolated sound classification is widely
studied [7], the performance of available methods largely decreases when simul-
taneous sounds and real performances are considered [11].
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Existing approaches for percussion transcription can be roughly divided into
two types [4]. Most of the proposed solutions apply a pattern recognition app-
roach to sound events. Firstly the audio signal is segmented into meaningful
events, either by detecting onsets or by building a pulse grid. Then, audio fea-
tures are computed for each segment, usually to describe spectral content and its
temporal evolution [4,7]. Finally, the segments are classified using pattern recog-
nition methods. The other usual approach is based on segregating the audio
input into streams which supposedly contain events from a single percussion
sound class, by means of signal separation techniques [6]. After that, a class
is assigned and an onset detection procedure is applied to each stream. Other
distinctions can be made, such as if the classification is supervised or not, and
whether it takes high-level musicological information into account [4].

In this paper, automatic percussion instrument recognition addresses audio
files in which a predominant instrument suffers the interference from some others,
aiming to determine the prevailing one. This type of audio file could be either the
result of a signal separation technique as previously described, or coming from a
microphone placed close to an instrument when a poly-instrument performance
is recorded. The latter situation is common practice in some music productions
or musicological field studies [10], and is the case of the dataset considered in
the reported experiments.

The present work is part of an interdisciplinary collaboration that pursues the
development of automatic tools for computer-aided analysis and transcription
of Candombe drumming, one of the most defining traits of popular culture in
Uruguay. Part of a tradition that has its roots in the culture brought by the
African slaves in the 18th century, it evolved during a long historical process
and is nowadays practiced by thousands of people and influenced various genres
of popular music [1]. The rhythm is produced by groups of people marching
in the streets playing drums [3]. There are three drum sizes (see Fig. 1) with
respective registers: chico (small/high), piano (big/low) and repique (medium).
The minimal ensemble of drums must have at least one of each type. All the
drums are played with one hand hitting the drumhead bare and the other holding
a stick. The stick is also used to hit the wooden shell of the drum, producing
a sound called madera, when playing the clave pattern. This pattern serves as
a mean of temporal organization and synchronization, and is played by all the
drums before the rhythm patterns are initiated, and also by the repique drum
in between phrases. A repique performance can also include occasional madera
sounds as part of the repertoire of strokes used when improvising.

Two types of experiments are conducted in this work, one aiming to recognize
the predominant Candombe drum in an audio file, and the other attempting
to identify those temporal segments of a repique performance when the clave
pattern is played. The classification is addressed by modeling the same audio
features used for onset detection.

The remaining of the document is organized as follows. The dataset of audio
recordings is introduced in the next section. Then, Section 3 is devoted to the
extraction of audio features. The clustering and classification methods applied
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are described in Sections 4 and 5 respectively. Experiments and results are pre-
sented in Section 6. The paper ends with some critical discussion of the present
work and ideas for future research.

2 Datasets

A training dataset containing isolated sounds of Candombe drums was compiled
and annotated for this work. To this end, a studio recording session was con-
ducted in which five percussionists played in turns one among a set of three
drums (one of each type) called drums-1 hereafter. Automatic onset detection
was performed over each audio track, and the resulting events were manually
checked and labeled as of a certain sound type. A different class was attributed
to each drum type (i.e. chico, repique, piano) besides an additional one to madera
strokes (which sound very similar for all drums). Recording each type of drum
separately greatly simplified the manual labeling process, since once madera
sounds had been identified and labeled in a given track, all remaining events
could be assigned to its (known) drum type. Finally, a training dataset of 2000
patterns was built through a stratified random sampling (i.e., 500 of each class).

Fig. 1. Testing dataset recording session. Drums on the left are also used for training
(drums-1), while drums on the right belong to the set used only for testing (drums-2).

Another dataset of real performances of drum ensembles was used for test-
ing. This data was collected in other recording session, in which five renowned
Candombe drummers took part, playing in groups of three to five. Two of these
configurations are depicted in Fig. 1. Audio recordings were done using spot
microphones close to each drum.1 This provides synchronized audio tracks in
which a certain drum is predominant, whilst there is interference from the other
drums. Complete performances of variable lengths were recorded, approximately
from two to four minutes each. The same set of drums, drums-1, used for record-
ing the training samples was used in all three-player performances. Another set
of drums, called drums-2, was involved in the four- and five-player recordings.
This setup allows for two different types of experiment regarding the generaliza-
tion ability of the classification system: one in which training and testing drums
1 Except for the chico drum in ensembles of five players due to equipment constraints.
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are the same, but recording conditions (e.g. room acoustics, microphones) and
performance configuration (e.g. drum tuning, percussionist) change; and another
in which the instruments are also changed.

3 Extraction of Audio Features

In order to find the occurrence of sound events in recorded audio, usually
one implements a detection function that emphasizes note onsets by detecting
changes in some signal properties, such as the energy content in different fre-
quency bands [2]. This work adopts a typical approach, the Spectral Flux: first,
the Short-Time Fourier Transform of the signal is computed for sequential 80 -ms
duration windows in hops of 20 ms, and mapped to the MEL scale (approximately
linear in log frequency); the resulting sequences are time-differentiated (via first-
order difference) and half-wave rectified. To produce the detection function the
obtained feature values are summed along all MEL sub-bands. Any peak above
20% of the maximum value in this function is taken as a true onset.

For drum sound classification, this work adopts the same spectral features,
specifically the vector containing the first 40 MEL bands (corresponding to fre-
quencies up to 1000 Hz). This value was chosen based on some feature selection
experiments.

4 Clustering for Data Exploration

In order to explore the training data, a clustering analysis using the K-means
algorithm [8] was carried out. The distance measure for the analysis should reflect
the similarity in shape between two spectral feature profiles, and turned out to be
a key issue since several measures considered were not appropriate. The Pearson
correlation PearsonCorr(x, y), computed as the inner product of two sequences
x and y normalized to zero mean and unit standard deviation, can be seen as
a shift-invariant cosine similarity. By treating the data points as the correlated
sequences, their distances can be measured as D(x, y) = 1−PearsonCorr(x, y) ∈
[0, 2]. The component-wise mean of its points is the centroid of each cluster.

The results of this clustering analysis applied to the training data when set-
ting the number of clusters K=4 is presented in Fig. 2. The confusion matrix of
a cluster-to-class evaluation (top left part) shows that madera and chico classes
are correctly grouped, while piano and repique exhibit a higher rate of misclas-
sification. A three-dimensional representation computed with Multidimensional
Scaling (MDS) using the same distance measure is included (right part) for data
visualization, and highlights the overlapping of classes. In particular, repique is
the most troublesome class, which is not surprising since this is the drum of
medium size and register, and thus expected to overlap the other drums’ spec-
tra. This issue is confirmed by the cluster centroids (bottom left part), whose
shape is consistent with the spectral content of each sound class. The centroid
of the piano drum class has a clear predominance at low frequencies, whereas
the centroid of the madera class is dominant at high frequencies. At medium
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Fig. 2. Clustering analysis of the training data. Confusion matrix of a cluster-to-class
evaluation and cluster centroids (left). Three-dimensional MDS representation (right).

frequencies, the centroid of the repique class exhibits a maximum towards the
lower range, while the centroid of the chico class has higher frequency content.

5 Classification Methods

Results of the clustering analysis motivated the idea of testing a very simple
classifier based on the obtained centroids: each centroid was considered as a single
class prototype in a 1-NN classifier, using the previously introduced Pearson
correlation distance. Such a classification scheme can simplify the process of
building the training database, since unsupervised clustering can substitute for
manual labeling. Furthermore, data coming from different sources, for instance
different sets of drums or recording conditions, may be clustered independently
so as to better describe classes with more than a single prototype. A k-NN
and an RBF-SVM using the same distance measure were also implemented for
comparison. SVM parameters were grid-searched in a cross-validation scheme.

6 Experiments and Results

6.1 Predominant Drum Recognition

The predominant drum recognition of a given audio track is tackled in a straight-
forward manner. First, the Spectral Flux feature is computed, followed by onsets
detection, and classification of each detected event into one of the four defined
classes. The proportion of onsets in each class gives an indication of the predom-
inant instrument in the audio file. A simple but effective strategy was adopted
to improve the detection of the repique drum, already identified in the training
phase as the most difficult one. Considering that in a real performance, after
the rhythm patterns have been initiated (i.e. after the first few seconds), madera
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Fig. 3. Results of predominant drum recognition for the three-drum recordings using
a 1-NN classifier of training dataset K-means centroids ( chico, repique, piano).
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Fig. 4. Predominant drum recognition for drums-2 set ( chico, repique, piano).

sounds are played only by the repique drum, the onsets in the madera class were
included in the repique drum class before computing the proportions.

In the first experiment setup all three-drum performances were considered.
There are 9 recordings of 3 tracks, totaling 75 minutes and 27 audio files. Note
that in this case, the same set of drums of the training samples (drums-1) was
used. The estimated proportion of onsets for each audio file is shown in Fig. 3,
for the 1-NN classifier based on the K-means centroid prototypes. It can be seen
that the majority class always indicates the predominant drum. Similar results
were obtained with k-NN and RBF-SVM, as shown in the next experiments.

The other set of drums (drums-2), not used for training, was employed in
another experiment. There are 6 different drums, 3 piano and 3 repique (no
chico). A track was processed for each drum, totaling 22 minutes of audio. Clas-
sification results are presented in Fig. 4 for a 1-NN of centroid prototypes, a
5-NN, and an RBF-SVM. Although the majority class always reveals the correct
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drum type, there is a noticeable difference in the disparity among classes w.r.t.
the previous experiment. This seems to disclose some lack of generalization abil-
ity to handle different sets of drums. However, it has to be taken into account
that these recordings involve more than three drums, which reduces the distance
between performers (as seen in Fig. 1) and therefore increases the interference
(e.g. chico in the piano tracks for five-player recordings). Differences among
classifiers are marginal, and results are very similar for different choices of k-NN
neighbors.

6.2 Detection of Clave Pattern Sections

A similar approach was followed for detecting those sections when a repique drum
plays the clave pattern. Five performances in which two repique drums take part
were chosen for this experiment, totaling 10 tracks and 33 minutes of audio.
A clave pattern lasts for a whole musical bar; therefore, the recordings were
manually labeled indicating all bar locations as well as which of them contained
the clave pattern. The onsets in each track were detected and classified. Then,
the proportion of madera onsets to the total detected events within each bar
was computed as an indication of the presence of the clave pattern. A two-state
classification was performed according to a threshold computed using Otsu’s
method [9]. Finally, to avoid spurious transitions, an hysteresis post-processing
was implemented in which a change of state is validated only if it is confirmed by
the following two points of the sequence. The segmentation process is illustrated
in Fig. 5-left for two of the audio tracks. The performance error attained by the
three classifier schemes for each audio track, computed as the percentage of bars
in which annotation and classification are different, is presented in Fig. 5-right.
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Fig. 5. Detection of clave pattern for two repique tracks of the same performance (left)
and classification error for each track of the dataset (right). For each waveform plot: in
the upper part, the proportion of madera onsets detected within each bar is depicted
along with the Otsu threshold; in the lower part, vertical lines indicate the labeled
bars, while horizontal thick lines show classification and ground-truth labels.
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7 Discussion and Future Research

In this work an approach for predominant drum recognition in audio signals
based on modeling onset spectral features was described. It is motivated by
practical applications related to ongoing research on Candombe drumming from
audio recordings. The reported experiments yielded promising results, even for
the 1-NN classifier of centroid prototypes. To this regard, the Pearson correlation
measure–which captures the similarity in shape between two spectral profiles–
plays an essential role, which will be further assessed in future work.

Automatically detecting clave patterns from audio recordings, as proposed in
this work, is a valuable tool for studying performance in musicological research.
For instance, the interaction of two repique drums playing together is clearly
visible in Fig. 5. Sections in which a performer plays the clave pattern show an
almost perfect anti-symmetry between the two tracks. Besides, there exist several
variations of the clave pattern that deserve a thorough study. To do that, the
automatic detection of clave sections in a recording could allow dealing with
large audio collections. In addition, clave pattern serves as a mean of temporal
synchronization and can be exploited by automatic rhythm analysis algorithms.
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Abstract. This paper explores the combination of known signal pro-
cessing techniques to analyze electroencephalography (EEG) data for
the classification of a set of basic human emotions. An Emotiv EPOC
headset with 16 electrodes was used to measure EEG data from a popu-
lation of 24 subjects who were presented an audiovisual stimuli designed
to evoke 4 emotions (rage, fear, fun and neutral). Raw data was prepro-
cessed to eliminate noise, interference and physiologic artifacts. Discrete
Wavelet Transform (DWT) was used to extract its main characteristics
and define relevant features. Classification was performed using different
algorithms and results compared. The best results were obtained when
using meta-learning techniques with classification errors at 5 %. Final
conclusions and future work are discussed.

Keywords: Electroencephalography · Discrete Wavelet Transform ·
Human emotion classification

1 Introduction

Recently, scientific development has been enhanced by the application of the
interaction between different research paradigms to help understand complex
phenomena in a field of study. For example, the use of neuroscience techniques
to model human behavior in different areas [1]. Usually, research on emotion anal-
ysis is based on facial expressions and voice analysis (discourse). [6]. However,
there are ways to alter those tests by masking real emotions or faking emotions
in an interview. To avoid this issue there has been growing interest in the use of
physiological data such us the EEG [2]. Ekman [5] and Winton [6] found the first
evidences of physiological signal changes in relation to a small set of emotions.
Cacioppo [4] identified patterns within the physiological signals with statistical
significance to emotional changes on humans. An EEG system records electrical
signals on the scalp generated by brain activity [9]. These signals are voltage
variations due to ionic currents caused by neuronal activity in the brain [8].
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EEG signals are usually separated by its frequency content in 5 types. Delta
signals with frequencies up to 4 Hz and larger amplitude (250 to 325 μV ). Theta
signals in the range between 4 an 8 Hz. Alpha signals cover the range between 8
and 14 Hz and characterize relax and alert states. Beta waves, with a frequency
range between 14 and 32 Hz is related to motor activity. Gamma waves are the
fastest, with a frequency range in between 32 and 100 Hz [8]. With so many
interactions between neurons in the brain plus muscular activity and outside
interference, these signals have a relatively low signal to noise ratio. To gather
useful information from EEG data needs special equipment but also specific sig-
nal processing techniques [3,7,15,22]. On the other hand, it is a non invasive
technique with a simple setup, relatively low cost and temporal high resolution
potential that makes it ideal for engineering and clinical applications. There are
commercial products that use EEG data for different applications such as games,
rehabilitation [11] but mostly there is not detailed information on how they do
it, making it difficult to use on research. This work makes use of a medium
range commercial platform to gather EEG data from a designed experiment on
24 subjects and presents a signal processing strategy applying wavelet theory
and meta-learning techniques to classify four basic human emotions.

The paper is organized as follows: section 2 explains the methodology used,
equipment, population and experiment protocol. Section 3 describes the signal
processing techniques employed to classify the emotions present in the data.
Results are presented in section 4. Finally, conclusions and future work are pre-
sented in section 5.

2 Methodology

2.1 Population

EEG signals were recorded from 24 subjects between 22 and 39 years of age, 16
male and 8 women. None of them had any history of physical or mental illnesses
nor were taking any drugs or medication that could affect EEG data. All subjects
were informed of the scope and objectives of the test and signed an informed
agreement with a detailed explanation of the test. Besides, any subject could
leave the experiment at any time if desired.

2.2 Experimental Setup

EEG data was measured and recorded using an Emotiv EPOC headset with
16 channels, although two of them were used as reference [10]. Ag/AgCl elec-
trodes were placed on the subject’s scalp using the international 10-20 standard
convention [9]. Sampling time selected was 128 Hz. The headset is connected
to a PC which receives the time sequences corresponding to each channel. The
sequences are preprocessed in the device with 2 notch filters at 50 and 60 Hz to
eliminate power line interference and a passband filter of 0.16-45 Hz bandwidth.
The device also gives a measure of the contact quality on each channel. Data
was discarded if contact quality on a given channel was no good.
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2.3 Test Protocol

The subjects were sat in front of a PC running the Psychopy [12] application with
the headset correctly placed. A sequence of 12 audiovisual clips was presented
to the subjects to elicit 4 emotions: rage, fear, fun and neutral (or absence
of emotion), with 3 clips per emotion. The clips were selected from FilmStim
[13], a free stimuli database. Each clip, taken from a commercial film, has been
validated to elicit a specific emotion, even for spanish speakers [14,18]. The
order of clips in the sequence is such that consecutive clips can not evoke the
same emotion. In between clips a short survey with 3 SAM images [19] is given
for relaxation and in order to neutralize the effects of one clip on the next.
Three 12-sequence audiovisual protocols were generated using the same 12 clips
in different order, randomly selecting one for each subject. The experimental
process is summarized in Fig. 1. The whole test took between 30 to 45 minutes
to complete for all subjects.

Fig. 1. Test protocol presented to each subject: a sequence of 12 audiovisual clips to
elicit a specific emotion alternated with a survey of 3 SAM images.

3 Data Classification Process

3.1 Preprocessing

EEG raw signal is contaminated with noise and artifacts of external and physio-
logic origin. Emotiv EPOCH acquires and filters the raw data with notch filters
in 50 and 60 Hz to eliminate interference from the power line and a passband
filter with 0.16-45 Hz bandwidth [10]. There are still non desired artifacts in the
channel signal as shown in Fig. 2.

First, the EEG raw data obtained from Emotiv for each subject is segmented
in time in 12 pieces corresponding to each clip. To further eliminate artifacts such
as eye and eyebrow movements and neck muscle activity the clean rawdata()
wrapper function from the Artifacts Subspace Reconstruction (ASR) extension
to the EEGLAB Matlab Toolbox was applied [20]. Normalization of the filtered
data was performed before extracting the main features to use for classification.

3.2 Feature Extraction

Preprocessed data is still too big and complex to be able to discriminate emotions
from them directly. A set of relevant features needs to be extracted to minimize
classification mistakes. Because EEG data is a strongly non-stationary signal
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Fig. 2. Raw data from all 14 active headset channels showing ocular artifacts (red
oval).

a multi-resolution analysis method using a Wavelet Transform is selected to
compress the data without losing too much information from it as proposed in
[17,21,22]. DWT uses a mother wave Ψ(t) to generate the basis for decomposition
of the time sequences recorded from EEG signals. Three mother waves were
selected, two from the Daubechies family (db4, db8) and one from the Symlet
(sym8) because they provided acceptable time-frequency resolution [23,24]. The
basis is generated using two integer parameters j and k, the scale and translation
indexes, giving the wavelets

Ψj,k(t) = Ψ(2jt − k), j = 1, . . . , n k = 1, . . . , N, (1)

with N the number of samples and n the number of decomposition levels. Since
the sampling frequency is 128 Hz, n = 14 decomposition levels were used to have
sufficient discrimination for the 5 types of EEG waves. Each EEG preprocessed
sampled data per subject, channel and clip s(t) can be expressed in terms of the
wavelets as

s(t) =
N∑

k=1

n∑
j=1

dj(k).Ψj,k(t). (2)

The coefficients dj(k) were computed using the Quadrature Mirror Filter Bank
[22]. Based on the coefficients dj(k) the following features were computed:

1. Power. The power of the signal for each frequency decomposition level j.

Pj =
1
N

N∑
k=1

|dj(k)|2, j = 1, . . . , n. (3)
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2. Variance. A measure of the variation of the coefficients of the signal for
each frequency decomposition level j.

Vj =
1
N

N∑
k=1

(dj(k) − d̄j)2, j = 1, . . . , n. (4)

with d̄j the mean value of the coefficients dj(k) of the signal for a level of
decomposition j over all k.

3. Entropy.

H = −
n∑

j=1

pj log(pj) (5)

pj =
Ej

ET
, j = 1, . . . , n, (6)

with Ej the energy in the jth frequency band and ET the total energy.

In summary, for each EEG channel and clip, 2n + 1 features are generated.

3.3 Classification Process

Pattern classification algorithms associate each element, i.e. each set of feature
values characterizing the current emotion of a subject, with one of the 4 emotions
analyzed. In this work a comparison of the best classifiers used for a similar prob-
lem in previous works was carried out [16,21]. Those were: K-nearest neighbors
(KNN), AdaBoost and Random Committee. KNN is a nonparametric classifier
where a decision for an individual value is taken by looking at which classes its K
nearest neighbors are and voting. It is robust to outliers. K values between 2 and
8 were tried to find the optimum (K=3). AdaBoost is a supervised learning algo-
rithm that combines weak classifiers to generate a strong classifier. It is robust
to overfitting but sensible to outliers [25,26]. The best results were reached when
using the kernel called J48 [28]. RandomCommittee is a technique within the
framework of metalearning algorithms. It takes existing classifier systems and
generates an ensemble of instances of classifiers using random parameters that
are embedded in the base classifiers selected. The classification is made by either
voting or averaging the results of the ensemble of classifiers generated.In this
work the best results were obtained when using RandomForest as the base clas-
sifier and averaging their results [27]. Classification was performed using the tool
WEKA [29], using 10-fold cross validation and pattern testing with 10 percent
fresh data.

4 Results

The tables below show the results as percentage of correct classification and
ROC area for each class, and total percentage of correct classification for the
three classifiers selected.
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Table 1. Classification accuracy when using KNN method with k=3.

db4 db8 sym8
% ROC % ROC % ROC

Correct Classification (%) 79.9 73.4 59.4

Fear 70.0 0.900 63.8 0.820 44.7 0.734
Rage 80.0 0.819 74.1 0.846 45.8 0.704
Fun 77.4 0.924 64.7 0.845 58.3 0.805
Neutral 98.1 0.992 96.2 0.991 98.2 0.994

Weighted Average 81.0 0.909 74.3 0.874 60.2 0.807

Table 2. Classification accuracy using Random Committee with Random Forest kernel.

db4 db8 sym8
% ROC % ROC % ROC

Correct Classification (%) 94.3 91.8 84.6

Fear 87.5 0.989 83.1 0.978 73.3 0.949
Rage 96.5 0.993 91.5 0.992 89.4 0.939
Fun 94.8 0.990 88.3 0.983 83.0 0.947
Neutral 100 1.00 98.3 1.00 98.0 0.999

Weighted Average 94.5 0.975 92.1 0.960 85.5 0.958

Table 3. Individual Classification Accuracy when using AdaBoostM1 with kernel J48.

db4 db8 sym8
% ROC % ROC % ROC

Correct Classification (%) 87.3 82.4 77.9

Fear 89.5 0.956 76.6 0.932 73.3 0.899
Rage 83.3 0.986 83.6 0.980 69.5 0.899
Fun 81.8 0.974 76.6 0.944 75.8 0.951
Neutral 96.4 0.985 94.5 0.987 98.2 0.995

Weighted Average 87.8 0.975 82.6 0.960 78.2 0.935

Table 4. Confusion matrix for Random Committee for db4 feature set.

Fear Rage Fun Neutral

Fear 64 0 2 0
Rage 6 53 0 0
Fun 5 0 55 0

Neutral 0 2 0 57
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For the three types of wavelets selected the Random Committee classifier
obtained the best results. Within each classifier, the wavelet of type Daubechies
with 4 vanishing moments (db4) outperform the others, reaching 94.3 % of over-
all correct classification percentage for the Random Committee classifier. ROC
values are mostly acceptable at around 90 % in all cases and higher than 97 %
for the best results. Finally, the best classifier reached 87.5 % classification accu-
racy on the test set. Looking at the emotions themselves, the neutral emotion
was the easiest to discriminate for any classifier throughout. On the other hand,
the Fear emotion seems to dominate over Rage and Fun according to Table 4.

5 Conclusions

This work presents a system to record, analyze EEG signals and classify basic
human emotions. An experiment was conducted using 24 subjects with a val-
idated database of audiovisual clips to induce rage, fear, fun or neutral emo-
tions. Even though the hardware only allowed to sense 16 channels compare to
research devices with 64 up to 256 electrodes, by an adequate signal processing
using DWT and relevant features, the overall percentage of errors achieved was
around 5 % when using meta-learning techniques. Some of the mistakes between
classes might be due to a smaller train set or the clips themselves that were
in some cases too long and with mixed feelings to clearly represent the emo-
tion assigned even though the dataset has been validated internationally. The
study allowed to see the impact in classification of the selection of features, algo-
rithms for eliminating artifact in the signals and wavelets selected. The results
are promising to consider an EEG system like this one a relatively low cost new
complex sensor device for research into other bioengineering areas. From a prac-
tical point of view, the use of shorter clips should be better to have less dispersion
in the data. Also, to have more subjects will improve the statistics. Future work
includes the use of other techniques to improve the elimination of artifacts such
as independent component analysis, to reduce the dimensionality of the problem
in the feature space and the application of this sensor in neuromarketing and
rehabilitation engineering.
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Abstract. Detecting changes in aerial images acquired from a scene
at different times, possibly with different cameras and at different view
points, is a crucial step for many image processing and computer vision
applications, such as remote sensing, visual surveillance and civil infras-
tructure. In this paper, we propose a novel approach to automatically
detect changes based on local descriptors and a non-parametric image
block modeling. Differently from most approaches, which are pixel-based,
our approach combines contextual information and kernel density esti-
mation to model the image regions to identify changes. The experimen-
tal results show the effectiveness of the proposed approach compared
to other methods in the literature, demonstrating the robustness of
our algorithm. The results also demonstrate that the approach can be
employed to generate a summary containing mostly frames presenting
significant changes.

Keywords: Change detection · Non-parametric modeling · Aerial
images

1 Introduction

The detection of changes in a scene plays a central rule in a myriad of applica-
tions, such as disaster management, urban growth, security, burned areas and
surveillance to name a few. In addition, detecting structural changes is useful to
gather information from the environment, which might present economic impact.

The most common procedure applied to detect changes is to use human
operators to watch videos from a monitoring camera and identify changes in
images from the scene. However, in general, video monitoring performed by
humans is error prone due to lack of attention in repetitive long tasks. Therefore,
automated monitoring is a solution to reduce human error and can be used as a
filter to locate video segments that should be further analyzed by operators.

The basic task of change detection in images is to locate the pixels from a ref-
erence image that are different from other images [9], referred to as test images.
Significant changes may include object removal, movement of objects and shape
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variation of the scene structures. Changes in image pixels can also be generated
by viewpoint change, noise, illumination changes, nonuniform attenuation, atmo-
spheric absorption, swaying trees, rippling water or flickering monitors. Although
such effects produce changes in the pixel intensity, they must be ignored by the
change detection method, which makes it a hard problem to handle.

In general, two main goals are pursued by change detection systems: (i) loca-
tion of changes through a mask, referred to as change mask and (ii) identification
of frames where changes occur without the creation of change masks. While in
former, the exact location of the changes is of interest, in the latter, the user is
interested in finding the frames that the changes happened, in which a further
analysis will be performed. This work focuses on the latter goal to being able to
create a shortlist containing frames with high likelihood of presenting changes.

Several approaches focusing on background subtraction and remote sensing
techniques have been applied to change detection. In general, the background
subtraction performance is highly dependent on building and maintaining a back-
ground model. Most of these techniques are pixel-based and they assume inde-
pendence among pixels. In remote sensing methods, the change detection perfor-
mance depends on the trade-off between the spatial and spectral resolution [1].

In this paper, we propose a novel approach to identify, from a set of images,
which ones present significant differences when compared to a reference image.
Our method extracts local feature descriptors from image blocks and estimates
the likelihood of a change by using a non-parametric modeling based on Kernel
Density Estimation (KDE) [5]. KDE is a statistically-sound method that esti-
mates a continuous distribution from a finite set of points. Unlike background
subtraction and remote sensing methods, our technique does not require a com-
plex learning stage (i.e., it just stores samples). Additionally, our method requires
a few number of samples (single example from the reference image), being there-
fore, capable of detecting changes by using only two images (the reference image
and a test images), which is hard to perform with parametric approaches due to
the lack of samples to estimate parameters.

In the experiments, we compare our method with techniques widely used for
change detection. According to the results, the proposed approach outperforms
several other methods found in the literature [2,3,10,11,18], mainly due to the
fact that our approach is more robust to illumination changes, frequent on aerial
images taken at different times. The results also demonstrate that our method is
able to filter the video segments generating a video summary containing mostly
frames presenting significant changes.

2 Related Work

Over the past years, a large number of change detection techniques have been
proposed, mostly based on background subtraction and remote sensing tech-
niques [9]. However, there are still several limitations in change detection tech-
niques since it is hard to separate significant (e.g., object removal, structural
changes) from insignificant changes (e.g., noise, illumination changes).
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Background subtraction methods consist in learning the background model
by using several reference images. In the test phase, all pixels are classified
as foreground or background. The foreground pixels indicate changes [8]. Such
methods can divided into parametric and non-parametric.

Parametric methods assume that each pixel can be modeled as a random
process that can be approximated by some parametric distribution [12]. Regard-
ing non-parametric approaches, the background is modeled by a probability
density function (PDF) estimated for each pixel. The main characteristic of
these methods is the strong dependence on the data. Although such approaches
are capable of adapting to sudden changes, they require to store the pixels.
Elgammal et al. [4] presented a non-parametric kernel density estimation to per-
form the background subtraction. St-Charles et al. [11] proposed an approach
based on the adaptation and integration of Local Binary Similarity Pattern
(LBSP) features in a non-parametric background model that is then automati-
cally tuned using pixel feedback. The major improvement is related to internal
threshold that makes the binary descriptors much more robust to illumination
variation.

Similar to background subtraction methods, remote sensing techniques for
change detection also requires a learning stage to model the reference image [15].
However, unlike the background subtraction methods, the remote sensing
approaches are based on feature extraction, which reduces errors due to pix-
els noise and small changes in the reference image.

Celik [2] computes the difference between the test image and the reference
image by combining PCA and K-means. The change is detected by partitioning
the feature vector space into two clusters. The algorithm assigns each pixel to
one of the two clusters based on the Euclidean distance between the pixel feature
vector and mean feature vector of clusters. To reduce the effect caused by noise
in [2], Cheng et al. [3] proposed the use of the fraction Fourier transform (FRFT).
Zheng et al. [17] also employ a technique based on a clustering. They apply image
subtraction the log ratio operator to generate two types of change maps. Then,
a simple combination uses the maps obtained by the mean filter and the median
filter to improve the final change map.

Rodrigues et al. [10] investigate the sensibility of pixel to noise and the influ-
ence of monotonic transformation in change detection methods. They proposed
a solution that is neither based on background subtraction nor on remote sensing
techniques, but a combination of super-pixel extraction, hierarchical clustering
and segment matching. The drawback of their approach is its sensibility to vari-
ations in lighting and camera displacement.

In spite of the significant progress in solving the change detection problem,
the aforementioned techniques are highly limited by the large variability of irrel-
evant changes. Virtually, all described approaches require a learning stage and
present high computational cost. Moreover, these techniques do not work prop-
erly whenever the background scene suddenly changes or there are not enough
samples to estimate the background model. Therefore, they are unfeasible when
it is provided only a single reference image.



A Non-parametric Approach to Detect Changes in Aerial Images 119

Fig. 1. Steps of the proposed change detection method. When a reference and a test
image are presented to the system, we first perform the radiometric normalization and
extract the features to estimate the likelihood of changes.

3 Proposed Approach

Let the reference image and the test image be two registered aerial images
acquired from the same geographical area at times t1 and t2, respectively, we
detect changes in the scene by analyzing the image characteristics and output
a score indicating whether there are changes between the two images. As illus-
trated in Figure 1, the proposed approach in this work is composed of the three
main steps: (i) radiometric correction, (ii) feature extraction, and (iii) change
detection. These steps are described in details in the following sections.

3.1 Radiometric Correction

The goal of radiometric correction is to remove or compensate for illumination
changes. We employ the Self-Quotiente Image (SQI) [14], a popular method used
for synthesizing an illumination normalized image from a single image. The SQI
normalization is defined by a smoothed image S(x, y) of a image I(x, y) as

Q(x, y) =
I(x, y)
S(x, y)

=
I(x, y)

F (x, y) ∗ I(x, y)
, (1)

where F (x, y) is a low-pass filter and ∗ is the convolution operator.

3.2 Feature Extraction

We use in our method two different local feature descriptors to provide high
robustness to lighting changes: the Local Binary Patterns (LBP) [7] and the
Local Ternary Patterns (LTP) [13]. These features are invariant to monotonic
changes and are extremely fast to compute.

The LBP descriptor for a pixel C = (xc, yc) is computed by thresholding
the gray value of N sampling pixels defined by the indicator function s(x1, x2).
The indicator function returns 1 when the intensity value of pixel x1 is greater
than x2 and 0 otherwise. By considering gc the intensity of the center pixel
and gp (p = 0, . . . , N − 1) the corresponding intensity of a pixel value of N
sampling points, the final feature vector is given by summing the thresholded
values weighted by powers of two.
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The major drawback of LBP descriptor is its sensibility to noise, since the
operator thresholds at exactly the central pixel gc. To overcome this limitation,
Tan and Triggs [13] proposed to relax the intensity of the central pixel by using
a slack of width equals to ±t. The feature is computed as

LTP (gp, gc, t) =

⎧
⎪⎨
⎪⎩

1, gp ≥ gc + t

0, |gp − gc| < t

−1, gp ≥ gc − t

. (2)

A coding scheme is used to split the ternary pattern in negative and positive
LBP. Here, t is a parameter that makes the LBP more resistant to noise. In this
work we use t = 5, defined experimentally.

After computing the LBP or LTP (positive and negative) codes for each pixel,
the vector descriptor is represented by a 256-bin normalized histogram (in our
tests we use N = 8 and t = 5).

3.3 Change Detection

We use a non-parametric approach to estimate the probability density function,
since only one sample is available (the reference image) to learn the background
model. Given a set reference image blocks B = {b1, b2, . . . , bN}, the density
estimate at a new test image block bt is given by

f̂ (bt) =
1
N

N∑
i=1

Kh(bt, bi) =
1

Nh

N∑
i=1

K(
bt − bi

h
), (3)

where h is the bandwidth, N is the number of samples in the reference image,
bi is a block in reference image and bt is a block in test image. We used the
Gaussian kernel for density estimation. Then, for each block histogram, the
density estimate is found.

To evaluate the kernel summations in linear time, we use FigTree [6], which
provides an efficient computation of probabilities by KDE by combining the
Improved Fast Gaussian Transform (IFGT) [16] with a kd-tree on cluster cen-
ters for neighbor searching in multiple dimensions. This method accelerates the
Gaussian kernel summation and reduces the computational complexity of the
evaluation of the sum of N Gaussians at M points in d dimensions from O(MN)
to O(M + N).

4 Experimental Results

To evaluate the effectiveness of the proposed approach, we conduct several exper-
iments considering synthetic and non-synthetic datasets. First, we evaluate the
feature extraction using a synthetic dataset (Section 4.1). We then evaluate dif-
ferent setups for the proposed method (Section 4.2). Finally, in Section 4.3, we
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compare the results with other methods regarding the accuracy and the ability
of generating a summary with relevant frames, i.e., frames presenting changes.

We evaluate our approach using the area under the curve (AUC) obtained
from the operating characteristic (ROC) curve computed based on the true pos-
itive rate and the false positive rate, in which a test image is considered a false
positive when the amount of changes is larger than a threshold (used to generate
the ROC curve). Due to the lack of space, only the AUC values are shown.

To evaluate parameters of our method, we consider a synthetic dataset, in
which from a single aerial image, we generated a set of 60 new images by applying
several transformations simulating common effects in a capture system: Gaus-
sian noise (with σ = 0.01), small translations (up to 5 pixels), blur, contrast
and brightness changes. Moreover, on 30 of those images, we manually inserted
artificial changes. The main purpose of this test set is to validate our algorithm
on a controlled environment and also for tunning some of the main parameters.
It is important to note that this dataset considers only one image as reference
and the remaining as test images.

To compare our approach to other methods in the literature, we use a non-
synthetic dataset composed of 26 aerial images acquired from PETROBRAS
over oil pipes in the southern part of Brazil. Each with their own registered
reference image, where in 13 of those have some change and on the other 13 do
not contain changes.

4.1 Feature Extraction

To detect changes, our method divides the image into m block regions, from
which local feature descriptors are extracted. Moreover, we add the coordinates
of the blocks to the descriptors. This includes spatial information to the feature
histograms. Six different block size were considered (8×8, 16×16, 32×32, 64×64,
92×92 and 128×128). According to the results obtained in the synthetic dataset,
the block size 64 × 64 achieved the best results. Therefore, this block size will
be used in the comparisons using non-synthetic dataset.

Three different descriptors were considered: LBP, LTP negative and LTP
positive. We use LTP negative as the feature descriptor for the evaluation since
it achieved the best results in the synthetic dataset (AUC=0.96), compared to
the LTP positive (AUC=0.95) and LBP (AUC=0.90).

4.2 Evaluation of the Proposed Approach

In this section, we evaluate three setups for the proposed method. The first
employs a simple nearest neighbor (NN ) search, which is perhaps the most
intuitive approach to change detection; the second employs a local KDE (FigTree
Local), in which each image block is modeled by a single KDE; and the third
setup employs a global KDE (FigTree Global) considering a single KDE model
for the entire image but adding the block coordinates to the feature vector. The
last two setups use the FigTree to optimize the search.
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Approach AUC values

Zivkovic [18] 0.50
PCA-kmeans [2] 0.50
FRFT [3] 0.52
MLEW [10] 0.52
LBPSP [11] 0.55
NN 0.70
FigTree Local 0.72
FigTree Global 0.88
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Fig. 2. Results comparing the proposed approach to other methods. (a) AUC achieved
considering the non-synthetic dataset (the best results are closer to one); (b) precision
as a function of the number of frames selected to show that our approach is able to
create a summary containing relevant frames (i.e., frames presenting changes).

The last three rows of Table in Figure 2(a) depict the results achieved by
each setup. According to the results, all three approaches achieved good results
compared to the remaining methods. The small difference between the NN and
FigTree Local is due the normalization performed by the KDE. They have nearly
the same results, however, the complexity computational of NN is greater than
the FigTree Local as discussed in Section 1. This makes the computation for
large scale problems prohibitively expensive for NN. Finally, when a single KDE
model is considered (FigTree Global), the results improved significantly, achiev-
ing AUC=0.88, compared with AUC=0.72 using FigTree Local. The global app-
roach allows the contribution of nearby blocks, different from the FigTree Local
and NN, which consider each block independently. The contribution of nearby
blocks is essential to suppress acquisition noise and small errors in image regis-
tration, achieving therefore, more accurate results.

We also evaluated the multivariate Gaussian distribution to model the blocks.
However, due to the nature of our problem, in which only a reference is avail-
able, the employment of a parametric model is not appropriate since the lack of
samples does not allow a proper parameter estimation.

4.3 Comparisons

In this section, we compare the proposed approach using the non-synthetic
dataset with five change detection techniques: Zivkovic [18], LBPSP [11],
MLEW [10], PCA-Kmeans [2] and FRFT [3]. According to the results shown
in Table of Figure 2(a), the background subtraction approaches (e.g, Zivkovic
and LBPSP) do not work properly due to the lack of samples to estimate the
background model. Therefore, they are unfeasible when it is provided only a
single reference image. In addition, PCA-Kmeans, FRFT and MLEW achieved
poor results due to their lack of robustness to the strong influence of illumination
variation. On the other hand, the proposed approach (FigTree Global) achieved
very accurate results due to its robustness to illumination changes and noises.
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The achieved results demonstrate the importance of developing a method
robust to illumination changes by performing radiometric correction and using
robust feature descriptors. Otherwise, changes due to illumination, common in
aerial taken at different times, might be considered as relevant changes, which
should not be the case.

Figure 2(b) shows the accuracy measured by AUC as a function of the per-
centage of frames selected. According to the results achieved by the FigTree
Global, it is possible to capture 58% of the changes, showing only for 30% of the
frames (by displaying 40%, we were able to show 78% of the changes), which are
the best results compared to the other approaches. Therefore, the employment
of an automatic system can be used as a filter to provide a shortlist with frames
that should be further analyzed. This would help the operators in the decision
making process regarding actions to be executed.

5 Conclusions

In this paper, we described a combination of radiometric correction and a
non-parametric strategy to estimate a probability density function by ker-
nel approaches. The proposed approach uses radiometric correction, features
description and Figtree. When compared to baseline techniques, the proposed
approach achieved the highest AUC values, demonstrating to be a promising
technique to be employed in change detection tasks when a single reference
image is provided.

Acknowledgments. The authors would like to thank CNPq, CAPES, FAPEMIG and
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Abstract. In this work, a new fingerprint identification algorithm for
latent and non-latent impressions based on indexing techniques is pre-
sented. This proposal uses a minutia triplet state-of-the-art representa-
tion, which has proven to be very tolerant to distortions. Also, a novel
strategy to partition the indexes is implemented, in the retrieving stage.
This strategy allows to use the algorithm in both contexts, criminal and
non-criminal. The experimental results show that in latent identification
this approach has a 91.08% of hit rate at penetration rate of 20%, on
NIST27 database using a large background of 267000 rolled impressions.
Meanwhile in non-latent identification at the same penetration rate, the
algorithm reaches a hit rate of 97.8% on NIST4 database and a 100%
of hit rate on FVC2004 DB1A database. These accuracy values were
reached with a high efficiency.

Keywords: Fingerprint indexing · Index partition · Polygonal hull

1 Introduction

Biometrics is the science of identifying people from particular physical features
such as voice, fingerprints, iris texture or facial structure. One of the techniques
used by biometric systems is the comparison of fingerprints due its uniqueness.
Depending on the context of implementation of fingerprint recognition systems,
two general classes of problems can be distinguished: verification (1 vs 1) and
identification (1 vs many). A first approach to the identification of a person,
could be to compare the given fingerprint with every one stored in the database.
However, the size of current fingerprint databases is in the order of millions of
impressions, so this approach is impracticable and some techniques to reduce
the search space are needed, e.g., indexing techniques. The methods based on
indexing techniques return a list sorted by relevance of potential candidates to
match with a given query. An additional complexity is presented when the query
is performed using a latent fingerprint. These impressions are taken from crime
scenes and generally the images have very bad quality.

In the literature, diverse approaches of indexing algorithms can be found.
The differences between these methods are mainly in the selection of the fea-
tures and in the indexing and retrieving stages. One of the most used features
c© Springer International Publishing Switzerland 2015
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selection strategies is based on choosing triplets of minutiae [1–5] or other more
complex geometric structures [6]. Other algorithms extract features directly from
ridges [7], from a neighborhood around the each minutia [8,9] or from orienta-
tion maps extracted from every fingerprint [10]. On the other hand, there are
few works about latent fingerprint indexing algorithms. Among them, the most
relevant is an approach introduced by Paulino et al. [11]. In this work, a fusion of
many features of level 1 and 2, like MCC [8], singular points and ridge periods,
is performed in order to build a candidates list. Also, there is a proposal in the
literature [12] that can be used for latent and non-latent impressions and uses
polygons matching.

In the present work, a minutia based indexing algorithm is introduced. This
proposal uses a previously defined representation of fingerprints [3] based on
minutia triplets, which is very tolerant to distortions. There are many differences
of our approach regarding the algorithm proposed in [3], among them is the use
of other combination of characteristics and a novel strategy to partition the
features and indexes. The partition strategy proposed by us allows to search
latent and non-latent impressions on the same fingerprint database.

This work is organized as follows. In Section 2 the used representation and
features are described. Also, the index construction and partition is defined. The
Section 3 is dedicated to the indexing and retrieving stages using the primary
and secondary indexes. In Section 4 experiments performed on public databases
that validate our proposal are shown. Finally, Section 5 contains the conclusions.

2 Indexes Generation

In order to perform a proper identification, from each fingerprint some indexes
representing characteristic information must be extracted. These indexes are
conformed by features extracted from the used representation and in posteriors
stages they can be used for finding correspondences.

2.1 Fingerprint Representation

The minutia is the most common feature used in fingerprint recognition algo-
rithms. Minutiae are singularities in the ridges pattern, which are commonly
used by experts for performing manual comparisons. In latent fingerprint case
an expert manually marks the minutae. In this way, some indexing approaches
use minutia triplets in order to represent impressions [1–5]. In this work, is used
one of these representations, which has proven to be very effective for situations
in which some minutiae are not located correctly [3]. This approach defines an
expanded triplets set R = {t1, t2, · · · , tn} in which the vertexes of each triplet
are conformed by minutiae.

The number of triplets of R is linear with respect to the number of minu-
tiae [3]. This is very desirable since the sets R will be used as a representation
for fingerprints in indexing tasks. This property also has the advantage that the
identification errors by false acceptance are reduced in comparison with other
approaches that use all possible triplets [2] or only a Delaunay triangulation [1].
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2.2 Features Used

In the present work, a study of the different features that can be extracted from
a triplet of minutiae present on the state-of-the-art, was conducted. As result,
the better features for fingerprint recognition in both cases, civil and criminal,
were identified. In order to generate indexes, from each ti ∈ R, where pi(xi, yi),
pj(xj , yj) and pk(xk, yk) are the points of ti , the following features are extracted
attending to their robustness:

– st: Triangle sign, where st = 0 if xi(yj − yk) + xj(yk − yi) + xk(yi − yj) < 0;
otherwise st = 1.

– θi, θj and θk: Normalized difference of directions of minutiae represented by
pi, pj and pk, with respect to their opposite side on ti.

– L1 and L2: Normalized heights of the triplets. Heights of the smallest and
the largest side of each ti with respect to the opposite point in the triplet

– ri, rj and rk: Ridge counters.
– ρi, ρj and ρk: Relative position of pi, pj and pk regarding a reference point.

The order of the minutiae in a triplet is given by the sides length of the trian-
gle that they describe. The features were obtained from the minutiae extracted
with VeriFinger 4.2. In the performed studies, was observed that the min-max
heights regarding each triangle side although are not easy to calculate, provide
a very stable feature. Also, was concluded that the relative position regarding a
reference point avoids false correspondences between impressions.

2.3 Index Generation and Partition

Since in this work is introduced an algorithm that can be used with latent and
non-latent impressions, and the features may have different identification value
in correspondence with this fact, a partition of the index function is proposed, in
Primary (PIi) and Secondary (SIi) indexes, as can see in Table 1. In this way,
PIi is used in the presence of both, latent and non-latent impressions.

Table 1. Binary representation of triplet features used.

Index part Feature Size (bits)

st 1

Primary θi, θjandθk 3 + 3 + 3 = 9

L1andL2 3 + 3 = 6

Secondary
ri, rj and rk 6 + 6 + 6 = 18

ρi, ρj and ρk 3 + 3 + 3 = 9

The indexes are constructed by concatenating the binary representation of
each involved feature. In Table 1 the amount of bits necessary for representing
the used features based on the higher value that each one can reach is shown.
As can be deduced from this, each index can be stored in a very compact way.
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3 Indexing and Retrieving Processes

In this section, a detailed description of the process of identification is made.
For this, a very efficient technique that uses the previously defined primary and
secondary indexes is used.

3.1 Indexing

This process is made in preprocessing time, when a fingerprint with an assigned
ID is inserted in the database. The first step is the construction of its expanded
triplets set R. Then, from each one of these triplet ti ∈ R, all the mentioned
features are extracted and from these, PIi and SIi are made up. With this
information, a tuple (PIi, SIi, ID, ti(p1p2p3)) is built from each ti. Finally, every
one of these tuples is inserted in an index table H, using PIi as primary index.
In this way, H will contain information about all the triplets generated from
every fingerprint inserted in the database. It is important to note that H allows
to store more than one element under the same key (primary index). In our case,
this is very desirable since some triplets may generate the same primary index.
However, these triplets may have different secondary index and ID.

3.2 Retrieving

In this stage, a similarity value is computed between the query fingerprint and
every impression stored. Then, the candidates list is made up by the elements
from the database that archive a similarity value higher than 0, ordered in
decreasing way. In order to perform this operation, the expanded triplets set
Rq is computed from the query. In this way the primary and secondary indexes
PIiq and SIiq from each tiq ∈ Rq are computed. Then, a query is performed on
the index table H using all the PIiq as keys. If we are not in the presence of a
latent impression, those elements stored in H that have a secondary index differ-
ent than SIiq are discarded. On the contrary, if the query is a latent impression,
then this second level filtering is not used. As we can see, this strategy allows us
to solve both cases in a very efficient manner.

As result of the previously described operation, n tuples with an associated
identifier IDi and with the form Rti = {t1, . . . , tk} can be obtained. These
tuples are made up from the elements retrieved from H, grouping those triplets
that contain the same ID. After this process, a triplets matching strategy very
similar to one already defined in the literature can be used for matching the sets
Rq and Rti [13]. The correlation tuples between two triplets tq(p1q, p2q, p3q) and
tt(p1t, p2t, p3t) are defined as cti = (αi, piqpjq, pitpjt) with i, j ∈ {1, 2, 3}, were αi

represents the normalized difference between the i-th interior angles of tq and tt,
and piqpjq, pitpjt are segments of the triangles represented by the triplets. The
process followed to obtain the value of αi, is very similar to that presented by
Chikkerur et al. [9], to obtain the similarity between an edge that connects two
minutiae of an impression and one edge joining two minutiae of other fingerprint.
In this way, the set T (Rq, Rti) = {ct1, ct2, . . . , ctn} represents the union of all
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the correlation tuples of every corresponding triangle between Ri and Rj . In the
following step, a reduced set Tr(Rq, Rti) = {ct1, ct2, . . . , ctr} is used. This set
contains only the correlation tuples whose value of αi are equal to the statistic
mode in T (Rq, Rti), for the values of αi of every cti. The main goal of this process
is to check the rotation histogram for finding the most probable value of relative
rotation between the involved feature models and use only the correlation tuples
that are consequent with this.

With the reduced set Tr(Rq, Rti) a similarity graph Gs = 〈V,E,L, s, l〉 is
made up where s : E → � is a similarity function that assign a value to every
edge, l : mi

2 → L is a labeling function given two vertexes and L is a set of
vertex labels. s is a similarity function that represents in fuzzy terms the grade
of closeness between the two segments piqpjq and pitpjt that originated a edge in
Gs. In this way, a graph that represents matches between triplet sets Rq and Rti

is constructed and weighted with a similarity function. The graph Gs may be
not connected. More details of the construction of Gs can be found in a previous
work found in the literature [13].

In order to find the spanning tree of every connected components of Gs with
the higher value of similarity in their edges, the Kruskal algorithm is applied
to Gs. This is a well know method to find a minimum (or maximum in our
case) spanning forest of disconnected graphs. Let {F1, F2, . . . , Fn} be the set of
spanning trees returned by the Kruskal algorithm, sorted in descending order by
the amount of edges. A strategy to merge F1 and F2 is implemented by trying to
add a virtual edge ev between then. This virtual edge must complain with some
geometric restrictions. If this process is successful then F1 = F1 ∪ F2 ∪ {ev}, F2

is eliminated and Fi = Fi−1,∀ i, 3 < i < n. This process is repeated while F1

and F2 can be merged.
The similarity value between the triplets sets Rq and Rti is given by the

following expression:

similarity(Rq, Rti) =
sim × |V |

min(|Rq|, |Rti|) (1)

where |V | is the number of vertexes in the similarity graph Gs, |Rq| and |Rti| are
the cardinalities of Rq and Rti respectively, and sim is the sum of the weights
of every edge of F1. Finally, with the process described, a similarity score can
be generated between the representation of the query Rq and every impression
previously stored in the database that shares correspondences with the query.
The final candidates list can be obtained by sorting these impressions by the
computed score. In Fig. 1 the flow of the algorithm is shown. As can be seen, the
use of primary and secondary indexes provides a great flexibility to this proposal.
It is important to note that this work uses an efficient consolidation strategy that
does not compromise the response times and that is similar to the used in [13].
This does not mean that we use a matching algorithm, because comparisons 1:1
are not performed, so the results shown are based on an indexing scheme.
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Fig. 1. Flow of the fingerprint identification process.

4 Experimental Evaluation

In this section, an evaluation of the accuracy of our proposal is performed, com-
pared with other state-of-the-art algorithms. For this, the most common mea-
sure to evaluate the accuracy of indexing algorithms was used, i.e., the trade
off between penetration rate (PR) and Correct Index Power (CIP). The exper-
iments were executed on a PC with a microprocessor i7, 1.7 Ghz and 8 Gb of
RAM.

4.1 Latent Case

The NIST Special Database 27 was used to test the accuracy of our proposal.
This database contains 258 latent fingerprints from crime scenes and their match-
ing rolled impressions mates. For each latent fingerprint there are four sets of
minutiae that have been validated by a professional team of latent examiners.
From these, only the set of manually marked minutiae called ideal was used.
Also, a large background database of 267000 rolled impressions obtained from
NIST databases and a private database of our country was used, in order to
fairly compare our results with others works [11,12]. As can be seen in Fig. 2,
our proposal outperforms other approaches for almost all values of penetration
rate. In particular, we can see that the better results of our algorithm compared
to other methods, are reached for a penetration value of 1%. In criminal cases,
the searches are performed on the whole database and the decisions are made
by human experts. That is why it is important that the searched candidate is
included on the firsts positions of the returned candidates list. In latent case this
approach was able to perform approximately 50000 comparisons per second.
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Fig. 2. Experiments performed in the NIST 27 database.

4.2 Non-latent Case

Two well-known databases were used for testing the accuracy of our approach.
The first one is FVC2004 DB1 that contains 800 fingerprints (100 fingers and
8 impressions per finger). The second one was the NIST Special Database 4,
composed by 4000 rolled impressions (2000 fingers and 2 impressions per finger).
The Figures 3(a) and 3(b) show that in general the approach results are very
good, and in particular are better than the others proposals for the first values
of penetration rate. The algorithm was able to perform 1.5 millions comparisons
per second, for this test we used a variation of the same background database
employed in latent case.
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Fig. 3. Experiments performed in different databases.

5 Conclusions

The proposed indexing algorithm introduces a very efficient strategy to identify
latent and non-latent fingerprints, implementing two search levels based on the
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use of a primary index and a secondary index, allowing the searching of latent
and non-latent impressions on the same fingerprint database, due to this, it is
possible to use the same algorithm for civilian and forensic applications. The
features used for index generation and fingerprint representation have a great
robustness in the presence of noise. Our method outperforms some of the best
approaches in state-of-the-art, reaching a good hit rate at low values of the
penetration rate. This is a very desirable characteristic for identification systems
since minimizes the response time and was one of our goals in the development of
this work. The proposed approach performs 50000 and 1.5 millions comparisons
per second for latent and non-latent cases respectively. The cited approaches do
not report execution times, so comparisons were not performed.
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Abstract. In forensic voice comparison, it is strongly recommended to
follow the Bayesian paradigm to present a forensic evidence to the court.
In this paradigm, the strength of the forensic evidence is summarized
by a likelihood ratio (LR). But in the real world, to base only on the
LR without looking to its degree of reliability does not allow experts to
have a good judgement. This work is mainly motivated by the need to
quantify this reliability. In this concept, we think that the presence of
speaker specific information and its homogeneity between the two signals
to compare should be evaluated. This paper is dedicated to the latter,
the homogeneity. We propose an information theory based homogeneity
measure which determines whether a voice comparison is feasible or not.

Keywords: Forensic voice comparison · Reliability · Homogeneity ·
Speaker recognition

1 Introduction

In forensic comparison, it is strongly recommended to present the forensic evi-
dence to the court following the Bayesian paradigm [1]: Speaker recognition (SR)
systems should calculate for a given trial a likelihood ratio (LR) which represents
the degree of support for the prosecutor hypothesis (the two speech extracts are
pronounced by the same speaker) rather than the defender hypothesis (the two
speech extracts are pronounced by different speakers). Theoretically, a good LR
is assumed to contain by itself all the needed information including reliability:
in good conditions, the LR should be far from 1 to support comfortably one
of the two hypothesis (big LR values, about 1010 support H0 and low values,
about 10−10 support H1) while in bad conditions the LR is close to one and
consequently, it does not allow a good discrimination between the two hypothe-
sis. But in the real world, forensic processes are working only with an empirical
estimation of LRs that could be far from theoretical ones. In this case, LRs
are unable to embed reliability information furthermore as there is no concrete
evaluation of the disagreement between theoretical and empirical LR. It is par-
ticularly true for SR systems which are working as black boxes: They calculate
c© Springer International Publishing Switzerland 2015
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a sort of score in all situations without verifying if there is enough reliable infor-
mation present in the two records. Then, those scores will be calibrated (i.e.
normalized) to be viewed as a LR [2][3]. So, it could be misleading to the court
if experts report only the LR and not its degree of reliability. Presently, these
issues of validity and reliability are of great concern in forensic science [4] [5]
[6] [7] [8] [9]. To cope with this problem, it is interesting to define a confidence
measure (CM) that indicates the reliability of a system output. Several solu-
tions were proposed in [6] [7] [8] [9][10] [11] where the CM is estimated for each
trial from both system decision score and the two speech extracts of a given
voice comparison, SA-SB. An alternative consists in studying the losses in LR
quality which are related to: (i) A lack of discriminative information (as shown
in [12]) in SA and/or SB . (ii) Sufficient discriminative information are available
but the system is unable to output a meaningful (LR) due for example to the
mismatch between elements used to build the system (UBM, total variability
matrix, PLDA,...) and the pair of voice records SA-SB [13][14]. In brief, the loss
could be divided into two origins. Our interest concerns the case (i) detailed
before.

The final objective of our work is to define a “Feasibility measure” (FM) able
to measure the presence of speaker discriminant cues and the homogeneity of
this information between the pair of voice records SA-SB . So, this measure is
estimated only from the two in-interest voice records. If it is obvious that the
presence of speaker specific information inside SA and SB is mandatory, it is not
sufficient: examples tied with the same class of cues should be included in both
speech recordings in order to be useful.

In this paper, we address more specifically the problem of the evaluation of
the homogeneity of two speech signals in terms of information classes, at the
acoustic level. We propose an information theory-based homogeneity criterion
able to quantify this homogeneity.

This paper is structured as follows. Section 2 presents our new homogeneity
measure and details the algorithm to compute it. Section 3 describes the LIA
baseline system and presents experiments and results. Then, section 4 presents
the conclusion and proposes some extends of the current work.

2 Information Theory Based Homogeneity Measure

In this section, we define an information theory (IT) based homogeneity measure
denoted HM(). Its objective is to calculate the amount of acoustic information
that appertains to the same class between the two voice records.The set of acous-
tic frames gathered from the two files SA and SB is decomposed into acoustic
classes thanks to a Gaussian Mixture Model (GMM) clustering. Then the homo-
geneity is first estimated in terms of bits as the amount of information embedded
by the respective “number of acoustic frames” of SA and SB linked to a given
acoustic class. Each acoustic class is represented by the corresponding Gaussian
component of the GMM model. The occupation vector could be seen as the
number of acoustic frames of a given recording belonging to each class m. It is
noted: [γgm

(s)]Mm=1.
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Given a Gaussian gm and two posterior probability vectors of the two voice
records SA and SB , [γgm

(A)]Mm=1 and [γgm
(B)]Mm=1, we define also:

– χA ∪ χB ={x1A, ...., xNA} ∪ {x1B , ...., xNB} the full data set of SA and SB

with cardinality N=NA +NB

– γ(m) and ω(m) are respectively the occupation and the prior of Gaussian m

where ω(m) = γ(m)
∑M

k=1 γ(k)
= γ(m)

N

– γA(m) (respectively γB(m) ) is the partial occupations of the mth component
due to the voice records SA (respectively SB).

– pm is the probability of the Bernoulli distribution of the mth bit (due to the
mth component), B(pm). pm=γA(m)

γ(m) , pm = 1 − pm = γB(m)
γ(m) .

– H(pm) the entropy of the mth Gaussian (the unit is bits) given by: H(pm) =
−pmlog2(pm) − pmlog2(pm).

The class entropy, H(pm), has some interesting properties in the context of an
homogeneity measure:

* H(pm) belongs to [0, 1].
* H(pm) = 0 if pm = 0 or pm = 1. It means that when the repartition of the

example of a given class m is completely unbalanced between SA and SB,
H(pm) is zero (i.e. H(pm) goes to zero when pm is close to 0 or 1).

* H(pm) = 1 when pm = 0.5. H(pm) is maximal when the examples belong-
ing to a given class are perfectly balanced between between SA and SB

(i.e. H(pm) goes to the maximum value 1 when the repartition goes to the
balanced one).

With these theoretical properties, H(pm) is definitively a good candidate
in order to build a homogeneity measure. Two measures based on H(pm) are
proposed hereafter. The first measure is a normalized version. It ignores the
size of the frame sets (i.e. the duration of the recordings) when the second ones
’non-normalized’ takes this aspect into account.

The normalized HM denoted “HMBEE” is calculated as shown in Equation 1.
It measures the Bit Entropy Expectation (BEE) with respect to the multinomial
distribution defined by GMM’s priors {ω(m)}M

i=1.

HMBEE =
M∑

m=1

γ(m)
N

H(pm) =
M∑

m=1

ωmH(pm) (1)

By definition HMBEE contains the percentage of the data-homogeneity between
SA and SB . It does not take into account the quantity of the homogeneous
information between the two speech extracts. To integrate this information, a
Non-normalized Homogeneity Measure (NHM) is proposed. NHM calculates the
quantity of homogeneous information between the two voice records as shown in
Equation 2. The amount of information is defined in term of number of acoustic
frames. NHM measures the BEE with respect of the quantity of information
present in each acoustic class {γ(m)}M

i=1.
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NHMBEE =
M∑

m=1

(γA(m) + γB(m))H(pm) =
M∑

m=1

γ(m)H(pm) (2)

As mentioned before, a GMM presenting the different acoustic classes is
mandatory to estimate both homogeneity measure. So, it will be reasonable to
estimate HM using different representation of the acoustic space. Several avenues
are explored in this paper. First, we use a GMM trained only on the two speech
signals. The major advantage of this representation is its independence toward
the system. Nevertheless, the amount of data involved in the two signals is not
always quite sufficient to build stable acoustic classes. An alternative consists in
to use a stable representation of the acoustic space, UBM. As it is learnt on a
very large data set and its high ability to model the whole acoustic space, the
estimation quality of the UBM could be higher than the GMM A-B (learnt only
on the two speech recordings).

3 Experiments and Results

In order to evaluate the homogeneity measures presented in section 2, we propose
several experiments based on NIST SRE framework.

3.1 Baseline LIA System

In all experiments, we use as baseline the LIA SpkDet system presented in [15].
This system is developed using the ALIZE/SpkDet open-source toolkit [16]. It
uses I-vector approach [17].

Acoustic features are composed of 19 MFCC parameters, its derivatives, and
11 second order derivatives (the frequency window is restricted to 300-3400 Hz).
A normalization file-based process is applied, so that the distribution of each
cepstral coefficient is 0-mean and 1-variance for a given utterance.

The Universal Background Model (UBM) is trained on Fisher database on
about 10 millions of speech frames. It has 512 components whose variance param-
eters are floored to 50% of the global variance (0.5). The total variability matrix
T is trained using 15660 sessions from 1147 speakers (using NIST SRE 2004,
2005, 2006 and Switchboard data). Speaker models are derived by Bayesian
adaptation of the Gaussian component means, with a relevance factor of 14.
The same database is used to estimate the inter-session matrix W in the I-vector
space. The dimension of the I-Vectors in the total factor space is 400.

For scoring, PLDA scoring model [18] is applied. The speaker verification
score given two I-vectors wA and wB is the likelihood ratio described by:

score = log
P (wA, wB |Hp)
P (wA, wB |Hd)

(3)

where the hypothesis Hp states that inputs wA and wB are from the same speaker
and the hypothesis Hd states they are from different speakers.
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3.2 Experimental Protocol

All the experiments presented in this work are performed based upon the NIST-
SRE 2008 campaign, all trials (det 1), “short2-short3”, restricted to male speak-
ers only (referred to as 2008 protocol). This protocol is composed by 39433
tests (8290 target tests, the rest are impostor trials). The utterances contain 2.5
minutes of speech in average.

As seen in section 2, for each trial the set of acoustic frames is clustered
thanks to a GMM. This GMM has 512 components and is trained by EM/ML
(with a variance flooring ≈ 0).

3.3 Evaluation Process of the Homogeneity Measure

In order to evaluate the proposed homogeneity measures, we apply it on all the
trials of our evaluation set and sort the set accordingly. We are expecting that
lowest values of homogeneity are correlated with the lowest performance of the
speaker recognition system, as well as the opposite behaviour for high values.
To compute the speaker recognition performance, we select the log-likelihood-
ratio cost (Cllr), largely used in forensic voice comparison because it is based
on likelihood ratios and not on hard decisions like, for example, equal error rate
(EER) [6,19]. Cllr has the meaning of a cost or a loss: lower the Cllr is, better
is the performance. In order to withdraw the impact of calibration mistakes, we
use the minimum value of the Cllr, noted Cmin

llr . If a Cllr could be computed for
a given trial, it makes sense to average the values on a reasonably large set of
trials. So, we apply a 1500 trials sliding window, with a step of 1000, on the trials
sorted by homogeneity values. On each window, we compute the averaged Cmin

llr

to be compared with the HM value (computed here as the median value on the
window). To work on such number of trials allows also to compute the percentage
of false rejection (FR) and false acceptance (FA). FR and FA are computed using
a threshold estimated onto the whole test set and tuned to correspond at the
EER. The Cmin

llr baseline system computed on all trials is equal to 0.2241.

3.4 Evaluation of Homogeneity Measures

- GMM A-B. In this subsection, we use a GMM learnt on the pair of speech
signals (GMM A-B). From Figure 1, it can be seen that HMBEE value does
not have a remarkable impact on Cmin

llr . It is confirmed by a not significant low
correlation with Cmin

llr , evaluated to a R2 equal to -0.39 (p=0.16). It seems that
to focus only on BEE, ignoring the involved quantity of examples does not allow
to build an homogeneity measure with the desired characteristics.

Experimental results obtained using NHMBEE are reported in Figure 2. The
shape of the curve is interesting with Cmin

llr varying from 0.309 to 0.122, indi-
cating a high correlation between NHMBEE and Cmin

llr (R2 = -0.942, p <0.01).
Moreover, it seems that NHMBEE brings new information compared to the sys-
tem outputs. The result is confirmed with a lower R2 of 0.55 (to be compared
with a R2 equal to 0.73 in the case of HMBEE). Further experiments have been
done using NHMBEE only.
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Fig. 1. HMBEE behaviour, estimated
with GMM-AB.

Fig. 2. NHMBEE behaviour, estimated
with GMM-AB.

- UBM Model. In Figure 3, we present the results obtained using NHMBEE

like the previous one but here, we use directly the UBM in order to cluster the
acoustic frames of the pair of speech recordings. With a Cmin

llr varying between
0.3 and 0.089 and its high correlation with NHMBEE , evaluated to R2 equal to
-0.950 (p < 0.01), this variant seems to outperform the previous one.

Fig. 3. NHMBEE behaviour, estimated
with UBM.

Fig. 4. NHM behaviour using GMM A-
B initialized with UBM.

Two more experiences are realized. In Figure 4, we report results when the
GMM A-B is now initialized with the UBM (case A), and in Figure 5, we use the
UBM mean-adapted (using MAP) by the two speech recordings SA and SB (case
B). In both cases, NHM is highly correlated with the SR system performance,
Cmin

llr (A: R2 = -0.963, p < 0.01 ; B: R2 = -0.973, p < 0.01). Moreover, it seems to
be more dependent to the system output compared to the previous one in which
we use only the UBM (case A: R2 = 0.57, p<0.01; case B: R2 = 0.37, p<0.01;
UBM R2 = 0.29, p<0.01). We notice that using the mean-adapted UBM model
to estimate NHMBEE adds more stability to Cmin

llr variation. It can be explained
by the fact that adapted UBM model preserves the good modeling of the whole
acoustic space and at the same time, takes into account the characteristics of
a given trial. Whereas in case A, it is clear that using a GMM A-B with UBM
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initialization is very close to the case in which we use GMM A-B (without
initialization). This result is clear when we see the big similarity between the
two NHM behavioural curve (Figure 4 and 2).

Fig. 5. NHM behaviour estimated using the UBM adapted by SA and SB .

4 Discussion and Conclusions

In this paper, we have proposed an IT-based data Homogeneity Measure denoted
NHMBEE where the quantity of homogeneous examples presented in both speech
extracts is taken into account. NHMBEE belongs to the Bit Entropy Expectation
(BEE) computed on a Gaussian Mixture Model view of the couple of speech
recordings which composes a given voice comparison trial. A first variant from
this measure uses GMM as a model trained by the pair of recordings. It showed
interesting properties with a nice relation between the homogeneity values and
the Cmin

llr , varying from (HM=4689,Cmin
llr =0.309) to (HM=7579, Cmin

llr =0.1227).
A second variant of NHMBEE uses directly the UBM model in order to cluster
the pair of speech recordings (without training or adaptation of the UBM).
This version has a similar behaviour than the previous one but outperformed
it with a behavioural curve moving from (HM=6341, Cmin

llr =0.3) to (HM=8762,
Cmin

llr =0.089). In the same direction, the use of a UBM mean-adapted by the pair
of recordings adds more stability to the Cmin

llr , varying quite consistently from
(HM=5953,Cmin

llr =0.31) to (HM=8490, Cmin
llr =0.09). This result shows that the

way to cluster the pair of speech recordings is important. Moreover, the different
variant of NHMBEE showed a low correlation with the scores issued by the
speaker recognition system. The behavioural curves of NHMBEE and this low
correlation encourage us strongly to conclude that NHMBEE is a good candidate
in order to measure the data homogeneity between a pair of speech recordings,
in the view of voice comparison reliability.

This work will firstly extended by working on other representation of acoustic
classes in order to estimate NHMBEE . In addition to this point, the behaviour
of our measures depending on the session variability factors should be explored
more deeply. Finally, as expressed in the introduction, data homogeneity is a
mandatory first step for a voice comparison feasibility measure and we expect
to explore this new avenue.
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Abstract. Fingerprint recognition systems, as any other biometric sys-
tem, can be subject to attacks, which are usually carried out using arti-
ficial fingerprints. Several approaches to discriminate between live and
fake fingerprint images have been presented to address this issue. These
methods usually rely on the analysis of individual features extracted from
the fingerprint images. Such features represent different and complemen-
tary views of the object in analysis, and their fusion is likely to improve
the classification accuracy. However, very little work in this direction has
been reported in the literature. In this work, we present the results of
a preliminary investigation on multiview analysis for fingerprint liveness
detection. Experimental results show the effectiveness of such approach,
which improves previous results in the literature.

Keywords: Spoofing detection · Multiview approach · SVM · Multi
task learning · Sparse reconstruction

1 Introduction

On September 2014, the new iPhone 6 was unveiled and released on sale. This
device is equipped with a Touch ID fingerprint reader allowing users to unlock
their device and to authenticate for on-line purchases. Two days after that
launch, a group of German hackers showed how to bypass the Touch ID security
system [1]. This is just one of the many possible examples of the vulnerability of
fingerprint recognition systems, which is a severe issue due to the integration of
such devices into a number of forensic, commercial and military applications [2].
The typical scenario depicts an adversary trying to gain unauthorized access by
using the biometric traits of a person legitimately enrolled into the system. In
the case of fingerprint recognition systems, these attacks are usually carried out
using spoof artifacts, i.e. duplicated artificial fingerprints. Artificial fingerprints
can be created filling a mold, obtained from a live or a latent fingerprint, with
materials such as gelatine, silicone or Play-Doh [3]. It has been shown that the
success rate of such spoof attacks can be up to 70% [4].

To address this problem, several methods have been developed to detect the
liveness of a fingerprint image. Software-based approaches distinguish between
live and fake fingerprint relying solely on the digital processing of images acquired
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 143–150, 2015.
DOI: 10.1007/978-3-319-25751-8 18
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from the device, and can be further divided into dynamic and static ones.
Dynamic methods are based on the analysis of certain phenomena like skin
deformation [5] and perspiration [6] on a temporal image sequence. However,
these methods are not general, since their multi-temporal dimension makes them
applicable in a minority of operative conditions. Static methods, on the con-
trary, focus their analysis on a single fingerprint image, which makes them more
general and attractive. These methods can be, again, divided into two main
categories. Holistic methods process the image as a whole to derive some dis-
criminative global characteristics, such as the texture coarseness [7] or several
first and second order statistics (like mean, energy, entropy, variance, skewness
[7] or Gray-Level Co-Occurrence Matrices [8]). However, as shown in [9], their
discriminative power is quite low, while better performance is given by local
methods, which rely on mathematical descriptors summarizing texture features
of small regions surrounding an image point. Global image descriptors can then
be obtained by summing up the local descriptors into a histogram collected from
the whole image or into multiple histograms obtained from image patches.

Several global image descriptors have been experimented in the context of spoof
detection, such as basic [10] and multi-scale [11] Local Binary Pattern (LBP),
Local Phase Quantization (LPQ) [12], Weber Local Descriptor (WLD) [13]
and Binary Statistical Image Features (BSIF) [14]. Recently, Local Contrast
Phase Descriptors (LCPD), a novel global descriptor specifically designed to
deal with the characteristics of fingerprint images, has been proposed in [9].
Local Contrast Phase Descriptors (LCPD) is composed by a spatial-domain
component, derived from WLD, and by a rotation invariant phase component,
derived from LPQ.

All these descriptors provide complementary information or, equivalently,
complementary views of the objects under analysis. Previous studies in the area
of pattern recognition and machine learning have shown that the combination of
features of different nature is usually a powerful method to improve the recogni-
tion accuracy of the final classifier. Despite that, such integration has not been
fully analyzed yet in the context of fingerprint liveness detection. To the best of
our knowledge, the only paper tackling this problem was [13], where the integra-
tion of WLD plus LPQ and LBP plus LPQ were analyzed. To this end, in this
paper we present the preliminary results of an investigation aimed at detecting
the fingerprint liveness by analyzing the integration, at feature level, of different
attributes summarizing individual fingerprint images from different views.

The remainder of the paper is organized as follows. Section 2 outlines our
approach and Section 3 presents and discusses the experimental results. Finally,
conclusions are drawn in Section 4.

2 Multiview Approaches to Fingerprint Liveness
Detection

When tackling this work, our main research questions were the following. Which
are the global descriptors most suited to tell live from fake fingerprints? Which
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are the best combinations of different descriptors and how can they be effec-
tively combined to improve the classification accuracies? As we already stated
in the introduction, in this paper we will provide some preliminary answers to
these questions. These answers are supported by the results of our experiments,
which show the effectiveness of multiview approaches in developing anti-spoofing
software systems.

In the following subsections we will first discuss two possible methods to (i)
integrate, at feature level, different attributes (i.e. feature types) extracted from
fingerprint images, and (ii) to classify them into live and fake fingerprints. Then,
we will describe the set of individual attributes we found most suitable for the
problem in analysis.

2.1 Support Vector Machines (SVM) Based Classification

A simple but effective way of combining multiple representations of the same
sample is to concatenate the characteristic vector of each representation. Denote
y = [y1, . . . , yK ] a test sample described under K tasks, where each task rep-
resents a different view of the sample (i.e. for images, tasks can be colour his-
tograms, edges, local descriptors and so on). Each task yk ∈ R

mk , and each
sample y ∈ R

m, where m =
∑K

k=1 mk.
The samples are then fed to a linear SVM for classification. The choice of

linear SVMs was mainly motivated by the properties of the datasets used in
our experiments and by the good accuracy the linear kernel achieves. Indeed,
linear SVMs tend to be less prone to overfitting, due to the lower complexity
of the separation surface. The dimensionality of the input space is sufficiently
high to ensure that the linear classifier is able to properly separate the classes
(as we will show in the results section). Furthermore, linear SVMs provide huge
benefits in terms of time and memory requirements, since the separation hyper-
plane can be computed offline and scoring reduces to a simple dot-product in
feature space. Finally, SMVs provide a good alternative to feature selection, on
the condition that the regularization coefficient is properly chosen. The main
motivations behind feature selection are the removal of nuisance dimensions and
the reduction of overfitting issues. The presence of the regularization term in the
SVM objective function tends to favour simpler separation surfaces, thus mit-
igating the problems of overfitting, especially in presence of large dimensional
vectors, thus improving the generalization capabilities of the model [15].

2.2 Multi-Task Joint Sparse Reconstruction Classification
(MTJSRC)

Multi-Task Joint Sparse Reconstruction Classification (MTJSRC), introduced
in [16], combines multi-task learning and classification based on sparse repre-
sentation. In brief, sparse coding aims at representing a signal as a linear com-
bination of a set of reference samples enforcing sparsity in the coefficient set.
Multi-task or multi-view learning aims at jointly estimating models from multi-
ple representations of the same data.
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Suppose we have a training set Xk = [Xk
1 , . . . , Xk

J ] for task k, where J is the
number of classes and Xk

j ∈ R
mk×nj , with nj the number of training samples

for class j. Given a test sample y, we can reconstruct each of its representation
modalities yk from the corresponding training set Xk as:

yk =
J∑

j=1

Xk
j wk

j + εk k = 1, . . . , K

where wk
j are the reconstruction coefficients associated to class j and task k

and εk is the residual for the kth modality. Defining wj = [w1
j , . . . , w

K
j ] as the

representation coefficients for the jth class across the different tasks, the multi-
task joint sparse representation can be obtained from the solution of the following
least square regression problem:

min
W

1
2

K∑
k=1

∥∥∥∥∥∥
yk −

J∑
j=1

Xk
j wk

j

∥∥∥∥∥∥

2

2

+ λ

J∑
j=1

‖wj‖2 (1)

where W = [wk
j ]j,k and λ

∑
j ‖wj‖2 is a regularization term.

Model Optimization. In [16], the authors proposed Accelerated Proximal Gra-
dient (APG) for model optimization. A drawback of APG is that, to ensure con-
vergence of the objective function in reasonable time, it requires proper selection
of the gradient step at each iteration. The main issue in the optimization of (1)
is the presence of a non–differentiable regularization term. Several approaches
could be modified to handle this regularizer [17]. In practice, we observed that,
for the task at hand, convergence can be easily achieved through the use of L–
BFGS algorithm [18], provided that the regularizer is replaced by an ε–smoothed

term (for small values of ε):
∑

j ‖wj‖2 ≈ ∑
j

√
‖wj‖22 + ε

Classification. Once the optimal reconstruction coefficients for a test sample y
have been computed, for each task k and each class j it is possible to compute
the reconstruction error ‖yk − Xk

j wk
j ‖2. A straightforward way to assign the

sample label is then to pick the class minimizing the sum of the reconstruction
errors over all the sample modalities:

label = arg min
j

K∑
k=1

θk‖yk − Xk
j wk

j ‖2 (2)

where Θ = {θk} are values weighting the relative relevance of the different
modalities in the final classification choice. Since our classification problem is
binary, it is easy to verify that the label assignment in (2) corresponds to:

label =

{
1 if

∑
k θk

(∥∥yk − Xk
1

∥∥
2

− ∥∥yk − Xk
2

∥∥
2

)
< 0

2 if
∑

k θk
(∥∥yk − Xk

1

∥∥
2

− ∥∥yk − Xk
2

∥∥
2

)
> 0

(3)
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Equation (3) can be interpreted as the fusion of K different systems with asso-
ciated score function:

sk(yk) = −θk
(∥∥yk − Xk

1

∥∥
2

− ∥∥yk − Xk
2

∥∥
2

)
. (4)

where higher (resp., lower) values of (4) tend to favour the hypothesis of sample
belonging to class one (resp., two). We define the scoring function for the fused
systems as:

s(Θ, y) = θ0 +
∑
k

θksk(yk)

where an additional term θ0 is added to act as bias. Given a validation set, the
weights are then estimated by training a Logistic–Regression (LR) classifier. The
advantage of LR–based fusion with respect to the approach in [16] is that it both
allows to improve the discriminative ability of the system, and, instead of simply
providing class membership, it produces outputs which can be interpreted as
log–likelihood ratios between class hypotheses [19]. Moreover, the LR objective
function is convex, and can be easily trained using standard solvers as L–BFGS.

2.3 Feature Extraction

The individual fingerprint images have been characterized with the following
attributes: Histogram of Oriented Gradients (HOG) [20], BSIF, LPQ, WLD and
several variants of the LBP, such as patch-based or rotation invariant LBP [21].

The results of initial experiments, which we do not report for the sake of
brevity, led us to exclude from the list of candidate attributes both HOG and the
various LBP formulations since they were consistently providing lower accuracies
than other candidates. As for the other attributes, we provide in the following a
brief description and pieces of information on their computation.

BSIF are histograms of binary codes computed for each pixel. The pixel code
is obtained by projecting local image patches onto a subspace learnt from natural
images. From the results in [14], it can be deduced that variations of the local
window size actually capture different characteristics of live and fake fingerprint
images. Thus, we experimented different window sizes (from 3x3 to 17x17) as
complementary attributes, each of which has dimension 4.096. LPQ codes are
obtained first computing local phase information on a window surrounding each
pixel, by means of different possible filters, and then extracting the quantized
phase of selected frequency components. Histograms of LPQ codes in image
patches are then computed and concatenated. Each LPQ attribute has size 256.
WLD compute for each pixel the differential excitation (the ratio between the
sum of neighboring pixel intensity and the intensity of the pixel itself) and the
orientation of the pixel gradient. WLD features of the image can be computed
at different image scales and then encoded into a histogram that contains, for
each scale, 960 elements.
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3 Results and Discussion

The accuracies of our liveness detection approach were assessed on LivDet 2011
dataset [3]. This dataset is one of the most used in the literature and, thus, allows
for a comparison with a large number of methods. LivDet 2011 consists of four
datasets of images acquired from different devices (Biometrika, Digital Persona,
Italdata and Sagem). For each device, 2000 live images of different subjects
and 2000 fake images obtained with different materials (such as gelatine, latex,
PlayDoh, silicone and wood glue), were collected. Images were divided into a
training and a test set, each containing an equal number of live and fake images,
with fake images equally distributed among different materials. LivDet 2011
datasets were acquired using a consensual method [3], where the subject actively
cooperated to create a mold of his/her finger, thus obtaining surrogates of better
quality, i.e. more difficult to detect, than those created from latent fingerprints.

Experiments were organized as follows. First, we optimized the parameters
of each method, i.e. the parameter C of the linear SVM and the task weights
for MTJSRC, with a 5-fold cross validation procedure on the training set.
Then, we computed the classification capabilities of both individual and grouped
attributes. A preliminary result, not detailed for the sake of brevity, is that the
individual attributes perform consistently worse than their combination with
other attributes, demonstrating the strength of multiview approaches. As for
grouped attributes, we tested different combinations of the candidate attributes
described in Section 2.3 and, for each candidate attribute, we tested different
parameter settings. We found that the best results were obtained for WLD using
three different image scales (referred in the results as W3), for BSIF using dif-
ferent windows size, 5x5 (B5), 15x15 (B15) and 17x17 (B17), while for LPQ we
obtained similar results computing phase information with either Short Term
Fourier Transform (LS) or Gaussian derivative quadrature filter pairs (LG).

Results are summarized in Table 1 where we report error rates for each
method and dataset and for the attribute groups that obtained the best results;
average error rates over all the datasets are reported as well. The baseline for
benchmarking our results was the method [9], which combines feature selection,
linear SVM and LCPD outperforming previous results in the literature (see [9]).
Bold values in Table 1 are those improving or matching the baseline.

Based on the results, the following remarks can be drawn. We found several
attribute groups improving the baseline, and an optimal average error of 5.2%
was obtained on SVM with the combination is B5+B17+W3+LG, reducing of
8.8% the error rates of [9]. In general, SVM performs better than MTJSRC.
However, this result deserves a closer look to the data, as Italdata accuracies
stand out for being definitely higher than the average. In particular, MTJSRC
appears to be severely penalized by the performances on this dataset. Indeed, the
accuracies of the two methods on the other datasets are definitely comparable
(their average difference being 0.4% in favour of SVM). Specifically, if we consider
the last three groups in Table 1. i.e. those combining multiple BSIF features,
their average accuracies over Biometrika, Digital Persona and Sagem dataset
improve the corresponding accuracies of the baseline of 36.2% and 28.6% for,



On Multiview Analysis for Fingerprint Liveness Detection 149

Table 1. Performance comparision on LivDet 2011.

Feat. chaining + linear SVM MTJSRC
Feature set Biom DigP IData Sag Avg Biom DigP IData Sag Avg
B5 + W3 5.7 3.5 9.3 3.7 5.6 8.7 4.5 18.6 3.9 8.9
B5 + W3 + LG 5.6 3.4 9.0 3.7 5.4 6.2 4.3 18.8 4.1 8.3
B5 + B15 + W3 + LF 3.7 1.8 13.0 2.8 5.3 4.5 2.0 18.2 2.4 6.8
B5 + B15 + W3 + LG 3.8 1.7 13.3 2.8 5.4 4.6 2.2 17.9 2.5 6.8
B5 + B17 + W3 + LG 4.7 2.0 11.4 2.7 5.2 4.3 2.5 19.1 2.6 7.1
Baseline(LCPD) [9] 4.9 4.2 11.0 2.7 5.7 4.9 4.2 11.0 2.7 5.7

respectively, SVM and MTJSRC. These last partial result seems also to suggest
that performance is mainly related to the design of the feature set rather than
to the choice of the classifier itself.

Hence, how can this behaviour on Italadata be interpreted? Actually, similar
problems were reported in the literature ([14], [9]), and a possible explanation is
that Italdata images seem to be more clear and less natural than those obtained
with other sensors. The somewhat contradictory behaviour of this dataset in our
experiments supports this conjecture. For SVM, groups scoring well on Italdata
performed badly on other datasets, and the other way around. As for MTJSRC,
we found that optimal λ values of the regularizer in (1) for Italdata penalized
the other dataset accuracies and, again, the opposite.

Concluding, we think that, overall, our preliminary results highlights the
benefits of tackling the fingerprint liveness detection problem with multiview
approaches.

4 Conclusion and Future Work

We presented the initial results of our investigation on the application of a mul-
tiview approach to the problem of fingerprint liveness detection. This approach
combines in various ways different and complementary representation modalities
of the samples under analysis. Experimental results show the strength of such
approach, which is capable of improving, on the same data, previous results in
the literature. These preliminary outcomes are promising but, at the same time,
highlight the fact that further studies are sorely needed to fully understand the
different factors involved in the problem, which will be the objective of our future
work.
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Abstract. To choose the best features to model the signatures is one
of the most challenging problems in online signature verification. In this
paper, the idea is to evaluate whether it would be possible to combine
different feature sets selected by different criteria in such a way that their
main characteristics could be properly exploited and the verification per-
formance could be improved with respect to the case of using each set
individually. In particular, the combination of an automatically selected
feature set, a feature set inspired by the ones used by Forensic Hand-
writing Experts (FHEs), and a set of global features is proposed. Two
different fusion strategies are used to perform the combination, namely, a
decision level fusion scheme and a pre-classification scheme. Experimen-
tal results show that the proposed feature combination approaches result
not only in improvements regarding the verification error rates but also
the simplicity, flexibility and interpretability of the verification system.

Keywords: Online signature verification · Forensic handwriting
examination · Information fusion

1 Introduction

Automatic signature verification is an important research area in the field of
biometrics [1], being the most popular method for identity verification. Signa-
tures are recognized as a legal means of identity verification by financial and
administrative institutions, and people is familiar with their use in everyday life.

Two categories of signature verification systems can be distinguished, namely,
offline (only the image of the signature is available), and online (dynamic infor-
mation acquired during the signing process is available). The interest in the
online approach has increased in recent years due to the widespread use of elec-
tronic pen-input devices in many daily applications. In addition, it is reasonable
to expect that the incorporation of dynamic information would make signa-
tures more difficult to forge. Nevertheless, there are certain applications that
demand the use of the offline approach. For example, Forensic Handwriting
Experts (FHEs) only have the signature image available in their daily work,
although in the future it might occur that FHEs will also have to deal with
online signatures.
c© Springer International Publishing Switzerland 2015
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In online systems, the signature is parameterized by discrete time functions,
such as pen coordinates, velocity and pressure, among others. Researchers have
long argued about their effectiveness for verification purposes, and the conflicting
results make the discussion still open [2], [3]. To decide which features extract
from the available time functions is also an important design step. Local (com-
puted for each point in the time sequence) and global (computed from the whole
signature) features can be considered [4], [5].

In this paper, the idea is to evaluate whether it would be possible to com-
bine different online feature sets selected by different criteria taking advantage
of their main characteristics in order to improve the verification performance
with respect to the case of using them individually. The combination of three
feature sets that have already proved to have interesting qualities, resulting not
only in good verification performances, but also providing different advantages
to the verification systems, is then proposed. In particular, an automatically
selected feature set, a set of features relevant to FHEs, and a global feature
set are combined and the discriminative power of the resulting combination is
evaluated. The advantages of using each of these feature sets will be highlighted
along this paper. Two different strategies are proposed for the combination of the
feature sets. One is based on a decision level fusion strategy and the other one
on a pre-classification approach. A well known state-of-the-art classifier, namely,
Random Forest (RF), is used to perform the verification experiments. The ver-
ification performance of the proposed combination approaches is evaluated for
two different signature styles of a publicly available database, namely, Western
(Dutch) and Chinese.

2 Feature Selection

Typically, the measured data consists of three discrete time functions: pen coor-
dinates x and y, and pressure p. Several extended time functions are usually
computed from them [5], [6]. In this paper, the velocity magnitude vT and direc-
tion θ, the total acceleration aT and the log-radius curvature ρ are computed.
The first and second order time derivatives of these functions are also computed.
The different features are then extracted from the above mentioned time func-
tions, as described in the following Subsections.

2.1 Global Features

In [7], a set of widely used global features corresponding to the better ranked
ones in [5] and [4] is used. These global features (hereafter referred to as GF) will
be the ones considered in this paper (for both, Dutch and Chinese signatures),
and they are: signature total time duration T , pen down duration Tpd, positive x
velocity duration Tvx, average pressure P̄ , maximum pressure PM and the time
of maximum pressure TPM

. To include global features to the combination would
simplify and improve the interpretability of the system since they are simple,
intuitive and easily to compute and compare.
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2.2 Time Function Based Features

A wavelet approximation of the time functions is proposed to model them. The
Discrete Wavelet Transform (DWT) decomposes the signal at different resolution
levels, splitting it in low (approximation) and high (details) frequency compo-
nents. The idea is to use the DWT approximation coefficients to represent the
time functions. In particular, the widely used db4 wavelet is employed. Resam-
pling of the time functions, previous to the DWT decomposition, is needed in
order to have a fixed-length feature vector.

Automatically Selected Time Function Based Features. In [8], an auto-
matic feature selection based on the variable importance provided by the RF
algorithm is performed from the original set of time functions listed at the
beginning of Section 2. The automatically selected features are: x, aT , y, vT ,
p, dp, ρ, dx, θ, dy, d2x, d2y and dvT for the Dutch data, and y, x, p, vT , aT , dy,
dx, d2y, θ, ρ, dp, d2x, dθ, d2p, dvT , dρ and d2θ for the Chinese data. Here, df
and d2f denote de first and second order time derivatives of the corresponding
time function f , respectively. Note that different features are selected for each
signature style, then to include these features to the combination will improve
its flexibility and capability to adapt to each type of signature. These feature
sets will be referred to as ASF.

FHE Based Features. Although FHEs work with the static image of the signa-
ture, they can infer some dynamic properties from it. FHEs consider velocity and
curvature as distinctive features, since in natural handwriting the stroke velocity
is determined by its curvature, while in a forgery process this would not be the
case. The pen pressure is not useful for them since it is strongly dependant on
external factors such as the writing material and surface, although the pressure
fluctuations are highly individualistic to the writer. In this paper, the set of fea-
tures presented in [8], hereafter referred to as TFFHE, is considered as the one
relevant to FHEs: vT , θ, ρ and dp. To include these features to the combination
would make it meaningful for FHEs, then the system could be integrated into
toolkits that could be useful for them. This could contribute towards bridging
the gap between the FHE and the Pattern Recognition (PR) communities. The
TFFHE features have been selected based on FHE criteria for Latin scripts.
Since information about FHE criteria for Chinese scripts was not available for
the authors, the same TFFHE set is used for both signature styles.

3 Feature Combination Approaches

Two different combination strategies are proposed. One of them is based on
a decision level fusion (DLF) approach, while the other is based on a pre-
classification (PC) of the signatures so that gross forgeries can be early detected
and discarded. They are described in Subsections 3.1 and 3.2, respectively.
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3.1 Decision Level Fusion

Traditionally, three main approaches for information fusion can be distinguished,
namely, feature, classifier or decision level fusion. In the feature level case, the fea-
ture vectors coming from different sources are concatenated to obtain a combined
feature vector which is then used in the classification task. In the classifier level
approach, a composite classifier is generated by combining the individual classi-
fiers used to process the different signals involved. Finally, in the decision level
approach, a final decision is obtained by combining the probability/likelihood
scores from the separate classifiers processing the different signals.

In this paper, classifier level fusion is not possible due to the particular clas-
sifier being used (RF). Regarding a fusion at feature level, it is clear that since
the ASF feature set contains the TFFHE set, feature level fusion of these two
sets would not make sense. Two separate experiments fusing GF features with
ASF features on one hand, and fusing GF features with TFFHE features on
the other, were carried out. The verification results obtained (not shown here)
did not improve the ones corresponding to the case of using the ASF and the
TFFHE feature sets individually.

Based on the above comments, only DLF is considered in this paper. Three
independent RF classifiers are fed by each type of features (GF, ASF and
TFFHE) and the final decision is computed as a combination of the likelihood
scores associated which each classifier based on the widely used weighted geo-
metrical combination rule, that is:

Pfused = P β
GF P γ

ASF P
(1−β−γ)
TFFHE , (1)

where Pfused is the likelihood score for the combined scheme, PGF , PASF and
PTFFHE are the likelihood scores for the classifiers based on GF, ASF and
TFFHE features, respectively, and 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1 are user defined
parameters weighting the individual likelihood scores.

3.2 Pre-classification

It would be reasonable to expect that for gross forgeries some features such as
global features and the ones based on the FHE criteria, would present a wide
variability. This leads to the idea of using GF and TFFHE features for pre-
classification in order to quickly recognize and discard gross forgeries.

In this paper, a multivariate version of the univariate PC approach introduced
in [9] is proposed. The decision rule is shown in Fig. 1 (right), where gtest denotes
the feature vector corresponding to the test signature, ḡtrain and Σtrain are the
feature vector sample mean and sample covariance over the genuine training
set, respectively, and α is a coefficient defining the threshold. The decision rule
means that signatures whose feature vectors lie outside the hyperellipsoid define
as (gtest−ḡtrain)T Σ−1

train(gtest−ḡtrain) = α2, are considered as forgeries. Figure 1
(left) illustrates this, for the case of a two-dimensional feature vector. Coefficient
α2 is computed as:
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α2 = max
A

max
Ai

{
(gtest − ḡtrain)T Σ−1

train(gtest − ḡtrain)
}

, (2)

where A is the set of all the authors in the Training Set and Ai denotes the i-th
author in the same set.

Fig. 1. Left: Distribution of the global feature vectors for the genuine (+) and forged
(o) signatures of an author in the database. A bounding ellipsoid ((red) solid line) as
defined above, and an enlarged ellipsoid ((red) dashed line) as defined in Section 5, are
also represented. In this case, the feature vector is composed by T and TPD. Right:
Decision rule.

In this paper, two different experiments employing the PC approach are
proposed. One of them, referred to as PC-GF, uses GF features for PC while
the subsequent classification stage is performed based on a DLF between two
RF classifiers fed by ASF and TFFHE features, respectively. The other one,
referred to as PC-FHE, uses TFFHE features for PC while for the subsequent
classification stage employs a DLF between two RF classifiers fed by ASF and
GF features, respectively.

4 Evaluation Protocol

The SigComp2011 Dataset [10] is used for the experiments. Since it contains
Dutch and Chinese signatures, the influence of the cultural origin of the signa-
tures in the verification performance can be evaluated, which is crucial in order
for the system to be widely accepted. Each dataset is divided into a Training
and a Testing Set. Skilled forgeries (simulated signatures in which forgers are
allowed to practice the reference signature for as long as they deem it necessary)
are available. The measured data are: pen coordinates x and y, and pressure p.

To evaluate the performance, the Equal Error Rate (EER) and the cost of
the log-likelihood ratios (Ĉllr and Ĉmin

llr ) are computed. A smaller value of Ĉmin
llr

(minimal possible value of Ĉllr) indicates a better performance of the system.
The use of log-likelihood ratios has been recommended by the experts in the
lastest main conferences of the area since they allow FHEs to give an opinion on
the strength of the evidence.

The optimization of the tunning parameters of the proposed verification
systems is performed over the Training Set, while the Testing Set is used for
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independent testing purposes. To obtain statistically significant results, a 5-fold
cross-validation (5-fold CV) is performed over the Testing Set to estimate the
verification errors. Forgeries are not usually available in real applications during
the training phase, then only genuine signatures are used for training purposes.

4.1 Decision Level Fusion Approach

For each instance of the 5-fold CV, a signature of a particular writer from one
of the testing sets in the 5-fold CV is fed to the system. The GF, ASF and
TFFHE features are computed. Then, three RF classifiers are trained using GF,
ASF and TFFHE features, respectively. Each classifier is trained by a genuine
class consisting of the current writer’s genuine class in the training set of the
5-fold CV, and a forged class consisting of the genuine signatures of all the
remaining writers in the same set. The result of the verification process is then
the combination of the outputs of these three RF classifiers computed as in (1).

4.2 Pre-classification Approach

For each instance of the 5-fold CV, a signature of a particular writer from one
of the testing sets in the 5-fold CV is fed to the system. The GF (for the PC-
GF) or the TFFHE (for the PC-FHE) features are computed to construct gtest.
Then, the distance between gtest and ḡtrain (sample mean computed over the
current writer’s genuine signatures available in the training set of the 5-fold CV)
is computed. If this distance is larger than the threshold (α2), the signature is
declared to be a forgery. If this is not the case, the signature is subjected to
the subsequent classification stage, where two RF classifiers are trained, one of
them with the ASF features and the other one with the TFFHE (for the PC-
GF) or the GF (for the PC-FHE). Each RF classifier is trained as described in
Subsection 4.1. A DLF is performed over the two RF classifier outputs, giving
the final output of this classification stage. Then, the result of the verification
process is either the result of the PC (the input signature is declared to be a
forgery), or the one of the DLF of the two RF classifiers. Note that, in case the
result is given by the PC, the verification process is simplified and speeded up.

5 Results and Discussion

The tuning parameters are optimized over the corresponding Training Sets. For
both approaches, the number of trees and randomly selected splitting variables in
the RF classifiers were set to 500 and

√
P (being P the feature vector dimension),

respectively. The time functions were resampled to a normalized length of 256.
Regarding the resolution level, a better approximation accuracy is obtained using
a lower resolution level, at the cost of increasing the amount of the modeling
DWT coefficients. To increase the amount of DWT coefficients to model each
time function is not a limitation when using the TFFHE features since the
feature vector contains only four features, although it will significantly increase



Online Signature Verification: Feature Combination 157

the feature vector dimension in the case of using the ASF features. Then, the
DWT resolution level was set to 2 when computing the TFFHE features, and to
3 in the case of the ASF ones.

For the PC approach, parameter α is computed resorting to (2) over the
Training Sets. Experiments carried out over these sets showed that such a com-
putation of α leads to several genuine signatures lying outside the defined hyper-
ellipsoid and so wrongly classified as forgeries. This is probably due to the fact
that α is always computed over a separate subset of genuine signatures used
exclusively for training purposes, without taking into account the forgeries which
are also available in the Training Sets. The experiments also showed that it is
possible to enlarge the hyper-ellipsoid in such a way that less genuine signatures
lie outside it. This is illustrated in Fig. 1, where an enlarged ellipsoid contain-
ing the original one has been plotted in (red) dashed line. Then, better results
can be obtained by redefining the decision threshold multiplying α2 by a factor
λ > 1. The parameter λ was also optimized over the Training Sets, being set to
λ = 5 for both PC approaches (PC-GF and PC-FHE), and both datasets. For
the DLF approach, the parameters β and γ are optimized by minimizing Ĉmin

llr

over the Training Sets, being set to βDutch = 0.2 and γDutch = 0.5 for Dutch
data, and βChinese = 0.1 and γChinese = 0.8 for Chinese data.

The verification results obtained when using the PC-GF approach are shown
in the first row of Table 1, for the Dutch (left) and Chinese (right) datasets,
respectively, while the ones corresponding to the PC-FHE approach are not
good and it does not make sense to include them in Table 1. The verification
results corresponding to the case of using the DLF approach are presented in
the second row of Table 1. The best verification results for the case of using
each feature set individually correspond to the case of using the ASF features,
and they are shown in the third row of Table 1. In addition, state-of-the-art
results corresponding to the best commercial and non-commercial systems in the
SigComp2011 Competition reported over the same datasets [10], are included in
the last two rows of Table 1 (information about the EER was not given).

Table 1. Verification results for the Dutch (left) and Chinese (right) Datasets

Dutch Dataset Chinese Dataset

EER Ĉllr Ĉmin
llr EER Ĉllr Ĉmin

llr

PC-GF 3.55 0.172 0.133 5.1 0.194 0.162

DLF 6.95 0.261 0.228 7.31 0.268 0.218

ASF 6.58 0.243 0.205 7.455 0.296 0.248

Comm. − 0.259 0.123 − 0.413 0.218

Non-comm. − 0.493 0.237 − 0.565 0.351

It can be observed that the PC-GF approach obtains better verification
results than the DLF one, for both datasets. In addition, the PC-GF approach
outperforms the ASF one (for both datasets), while the DLF approach out-
performs the ASF one only for the Chinese data. Note also that the proposed
combinations obtain results comparable to the best ones in the state-of-the-art,
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being even better than the non-commercial systems. Moreover, in the case of
the Chinese data, results are better than the ones corresponding to the commer-
cial system, which is particularly promising since Chinese signatures are usually
more complex than Western ones.

Based on the above discussion, the best combination strategy is the PC-
GF approach, that is to use GF features for PC and to perform DLF with the
remaining information (ASF and TFFHE features).

Finally, the obtained verification results (shown in Table 1) allow to answer
the question in the title of the paper for the positive.

6 Conclusions

The feasibility of combining different feature sets selected by different criteria
so that their main characteristics could be properly exploited was evaluated.
The experimental results show that the best combination strategy is to use GF
for PC and to perform DLF with the additional information (ASF and TFFHE
features). The results obtained in this case outperforms the ones obtained when
using the feature sets individually. In addition, they are comparable to the best
results reported in the state-of-the-art. In particular, for Chinese signatures, they
are even better than the best result in the state-of-the-art. This is a promising
result since this data is usually more difficult to deal with and, for this reason,
it is considered more challenging. Finally, since the best combination scheme is
based on a PC, the resulting verification process is simplified and speeded up.
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Advanced Technologies Application Center (CENATAV), Havana, Cuba
{amunoz,agago,jpalancar}@cenatav.co.cu

Abstract. In the present work, a new representation of fingerprints in
form of geometric graph, is proposed. This representation is obtained
by fusing two previously defined approaches found in the literature and
proves to be very tolerant to occlusions and distortions in the minu-
tiae. Also, a novel matching fingerprint algorithm that uses geometric
graphs was introduced. The mentioned algorithm applies frequent geo-
metric subgraph mining in order to match fingerprint representations for
computing a final similarity score. The introduced proposal reports very
promising accuracy values and it applies a new approach allowing many
future improvements.

Keywords: Fingerprint matching · Graph mining · Delaunay
triangulation · Geometric similarity

1 Introduction

Biometrics can be seen as the automatic use of physical or behavioural charac-
teristics to identify or verify the identity of a person. One of the most commonly
used techniques in biometric systems is the comparison of fingerprints. The ridge
patterns found in fingers and other parts of the human body are unique, pro-
viding enough information to distinguish a specific person from the rest. Also,
these patterns can be extracted in a simple manner, which makes the use of
fingerprints a very reliable technique.The goal of fingerprint recognition is to
determine if two impressions were generated by the same finger or not, and it
is a very treated topic in literature. However, even when there are some very
effective solutions, this problem can not be considered entirely solved. In fact,
the design of more accurate and efficient algorithms is still a topic of interest.

Most fingerprint recognition algorithms use minutiae in order to represent
characteristic information. Minutiae are singularities in the ridge patterns, which
are classified as bifurcations and terminations. A bifurcation is a point in which
a ridge bifurcates, while a termination represents the termination of a ridge.
Another very used feature is the direction of minutiae. This characteristic is
defined as the angle formed between the horizontal axis and the tangent of the
ridge associated to the minutiae, in counter clock wise. Even when there are
some features extraction methods that report good results [1], they can fail
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under occlusion conditions. In this work, minutiae and their directions are used
in order to define a fingerprint representation as a geometric graph. Thus, the
fusion of two previously defined representations is used. The introduced matching
algorithm uses frequent geometric subgraphs between the representation of two
impressions, and it states coherence geometric criterion for calculating a similar-
ity score. This approach represents a new perspective for fingerprint matching
presenting very promising results. The rest of this work is organized as follows.
The Section 2, introduces some theoretical formulations necessary for the under-
standing of the work. Section 3 is dedicated to the definition of the fingerprints
representation. Section 4 introduces the algorithm for finding matches between
the representations of two impressions. Finally, the experimental results that
validate our proposal are shown in Section 5 and the final conclusions are given
in Section 6.

2 Introduction to Geometric Graphs

Undirected geometric graphs are used as base for modeling fingerprints in this
work. This kind of graph and their properties are defined as follows:

Definition 1 (Label domain). Let LV and LE be label sets, where LV is a
set of vertex labels and LE represents a sets of edge labels, the label domain of
every label is denoted by L = LV ∪ LE.

Definition 2 (Geometric graph). A geometric graph in L is a 5-tuple, G =
(V,E, I, J,K) where V is a set of vertexes, E ⊆ {{u, v} | u, v ∈ V, u �= v} is a
set of edges (the edge {u, v} connects the vertexes u and v), I : V → LV is a
function that assigns labels to vertexes, J : E → LE is a function that assigns
labels to edges, and finally K : V → R2 is a function that assigns coordinates to
vertexes, R represents the set of real numbers, and K(u) �= K(v) for each u �= v.

Definition 3 (Topological isomorphism). Let G1 = (V1, E1, I1, J1,K1) and
G2 = (V2, E2, I2, J2,K2) be two geometric graphs, G1 is a topological subgraph
of G2 if V1 ⊆ V2, E1 ⊆ E2, ∀u ∈ V1, I1(u) = I2(u), and ∀e ∈ E1, J1(e) = J2(e).
ALso, f is a topological isomorphism between G1 and G2 if f : V1 → V2 is a bijec-
tive function where ∀u ∈ V1, I1(u) = I2(f(u)), and ∀{u, v} ∈ E1, {f(u), f(v)} ∈
E2 ∧ J1({u, v}) = J2({f(u), f(v)}).

When a topological isomorphism exists between G1 and G2, we can say that G1

and G2 are topologically isomorphic.
In the geometric context, two graphs may be geometrically similar having

different vertex coordinates. An example of this can be seen in Figure 1(a). This
situation takes place when one of the graphs is rotated, moved or scaled with
respect to the other. That is why it is necessary to take in consideration the
best geometric transformation for matching the two involved graphs, obtaining
a geometric isomorphism. Let G1 = (V1, E1, I1, J1,K1) and G2 = (V2, E2, I2,
J2,K2) be two topologically isomorphic geometric graphs. Let f be a topological
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isomorphism between G1 and G2. A geometric transformation in R2 is defined
as a function T : R2 → R2 which can be characterized by a scale factor λ, a
rotation angle ω, and a traslation (tx, ty).

On the other hand, the error of a geometric transformation can be computed
using the following expression:

ε(T ) =

∑
v∈V1

‖K1(v) − T (K2(f(v)))‖
‖V1‖ . (1)

Let G1 = (V1, E1, I1, J1,K1) and G2 = (V2, E2, I2, J2,K2) be two topologically
isomorphic geometric graphs with n vertexes. Let f be an isomorphism between
G1 and G2. The geometric transformation T associated to G1 and G2 is defined
as the transformation that minimizes the error ε(T ). Using this measure, the
concept of geometric isomorphism can be defined.

Definition 4 (Isomorphism τ-tolerant). Let T be the transformation asso-
ciated to the topologically isomorphic geometric graphs G1 and G2. We can say
that G1 and G2 are isomorphic τ -tolerant if ε(T ) < τ .

In this case, the geometric similarity between two graphs G1 and G2 τ -tolerant
can be defined with the following expression:

φ(G1, G2) =
1
nτ

∑
v∈V1

‖K1(v) − T (K2(f(v)))‖. (2)

In this way, given two geometric graphs G1 = (V1, E1, I1, J1,K1) and G2 =
(V2, E2, I2, J2,K2), G1 is a geometric subgraph of G2 if some topological sub-
graph of G2 is isomorphic τ -tolerant with G1.

In Figure 1(b), an example of a geometric transformation T associated to
two graphs, can be seen. The distances between the corresponding vertexes are
pointed with arrows. If the average value of these distances is higher than the
tolerance threshold τ , the graphs are not isomorphic τ -tolerant. In the illustrated
case, the first edge of each graph was used to compute T .

G'1

G'2

v1

v2

v3

v4

v5 u1

u3

u4

u5

u2

(a)

v3

v5

v4
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u4
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Fig. 1. Transformation applied to isomorphic τ -tolerant geometric graphs.
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Definition 5 (Support set). Let D = {G1, G2, . . . , G|D|} be a collection of
geometric graphs and let δ be a predefined frequency threshold. The support set
of a graph g is defined as the set Gi ∈ D composed by the graphs where g is
geometric subgraph. The notations Δ(g,D) and σ(g,D) = |Δ(g,D)| are used for
referring the support set and the frequency of g in D, respectively. A graph g is
frequent in a collection D if σ(g,D) ≥ δ.

Definition 6 (Geometric occurrence). Let g and G be two geometric graphs,
such that g is a geometric subgraph of G, the topological subgraph g′ of G, iso-
morphic τ -tolerant with g is called geometric occurrence of g in G. If there is
more than one subgraph g′ fulfilling this condition, the geometric occurrence will
be the one that maximizes the expression φ(g, g′).

Definition 7 (Frequency set). Let g be a frequent geometric subgraph in a
collection D, and let Δ(g,D) = {G1, . . . , GN} be its support set. The frequency
set of g is defined as Γ (g,D) = {g′

1, . . . , g
′
N}, where g′

i is the geometric occurrence
of g in Gi.

There are some algorithms finding every frequent geometric subgraph in a given
collection [2,3]. Using these approaches, the construction of the frequency set of
each occurrence is a simple process. One of the novelties presented in this work
is the use of one of these algorithms in fingerprint matching.

3 Fingerprints Representation

In the present work, a fingerprint representation based on the fusion of two
previously proposed approaches is introduced. Thus, there are some aspects that
need to be mentioned. From a geometric point of view, a triangulation of a
set of points P = {p1, · · · , pn} in R2 is a planar subdivision of the plane in
triangles �pipjpk. The vertexes of these triangles are made up by points of
P . A triangulation is considered of Delaunay, and is denoted as TD(P ), if the
circumcircle of every triangle contains no points of P [4].

This triangulation is unique for a specific set P , if there is no circumcircle
with more than three points of P at its border. This characteristic makes TD(P )
very useful in the field of fingerprints recognition. There are some algorithms that
use TD(P ) computed from the coordinates of the minutiae, for representing the
impressions [5]. These representations have some problems since TD(P ) can
suffer great structural changes when minutiae are slightly displaced or when
some of them are missing. Both situations are common in the feature extraction
step, mostly because of the skin elasticity or the occlusions of some fingerprints
parts. In order to deal with the minutiae displacement, Muñoz-Briseño et al. [6]
proposed a representation based on Delaunay triangulations of order k.

Definition 8 (Delaunay triangulation of order k). Let P = {p1, · · · , pn}
be a set of points in R2, for pl, pm, pn ∈ P , �plpmpn is a Delaunay triangle
of order k is its circumcircle contains at most k points of P . Subsequently, a
triangulation of P is of Delaunay of order k, and is denoted as TDk(P ), if every
one of its triangles is of order k.
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The representation proposed on the previously mentioned work is made up by
the set of triangles:

ETk(P ) = TD0(P ) ∪ TDk(P ) (3)

Similarly, Gago-Alonso et al. [7] proposed a representation, denoted as R, that
avoids the problems found when a minutia is not detected. Using the Delaunay
triangulation of order k, in this work we propose a generalized variant as follows.

Definition 9 (Polygonal hull of order k). Let P = {p1, · · · , pn} be a set of
points on R2, and let TDk(P ) be the Delaunay triangulation of order k of P . Let
pi ∈ P , the set Ni denotes the points adjacent to pi in TDk(P ). The polygonal
hull of order k is defined as the Delaunay triangulation of order k of Ni, and is
denoted as Hki.

The final triangle set used in this work is given by the following expression:

Rk(P ) = ETk(P ) ∪ Hk1(P ) ∪ . . . ∪ Hkn(P ) (4)

Figure 2 shows that a Delaunay triangulation can suffer major structural changes
when a point p is not present 2(b) or when its slightly displaced 2(c). How-
ever, the proposed triangles set 2(d) preserves many edges in both situations. In
this context, this implies that our approach can find correspondences between
fingerprints of a same finger, even if some of them have some missing or dis-
placed minutiae. In this way, the set Rk(P ) is robust to displacement and
absence of minutiae. The defined representation also preserves the linearity of
the amount of triangles with respect to the number of minutiae in the impres-
sions. In order to use a geometric subgraph mining algorithm, the associated

p

(a) Delaunay
triangulation

(b) Without p

p

(c) With p
displaced

p

(d) Proposed
representation

Fig. 2. Triangles sets.

graph GR = (VR, ER, IR, JR,KR) of Rk(P ) is defined, where VR represents the
points of P , ER is composed by every edge contained in the triangles of Rk(P )
(every edge is represented only once, even if appears in more than one triangle),
IR : V → {0, 1} is the function that assigns labels to the vertexes (the values of
these labels depend on the minutiae type that each vertex represents, bifurcation
or termination) and JR : E → {0, . . . , 360} is the function that assigns labels to
the edges (computed by subtracting the directions of the minutiae that define
each edge). With the impressions represented as geometric graphs, the mining
method that is the base of the matching algorithm can be applied.
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4 Fingerprint Matching

Let GR1 = (VR1, ER1, IR1, JR1,KR1) and GR2 = (VR2, ER2, IR2, JR2,KR2) be
the graphs that represent two fingerprints. The goal of applying a matching
algorithm to GR1 and GR2 is to determine if the impressions belong to the
same finger, by computing similarity score. For this, the proposal introduced
uses a geometric graph mining algorithm found on the literature [3]. This algo-
rithm will be referred as FreqGeom(D, δ). The idea is to extract correspon-
dences between GR1 and GR2 using their common geometric subgraphs. The
input of FreqGeom(D, δ) is set by a collection D = {GR1, GR2} in which the
mining is performed, and a support. In our case δ = 2, since the matching oper-
ation involves only two graphs. The output of FreqGeom(D, δ) is a set of fre-
quent geometric subgraphs F = {g1, . . . , gn}, and their respective frequency sets
{Γ1, . . . , Γn}. Using F , correspondences between the representations are found.

Let gi = (Vi, Ei, Ii, Ji,Ki) be a geometric subgraph such that gi ∈ F .
The frequency set of gi is conformed in this context by only two graphs
Γi(gi,D) = {g′

i1, g
′
i2}, since |D| = 2. Using this information, a similarity tuple

can be obtained for each frequent geometric subgraphs found, with the form
si = 〈simi, Ti〉 where Ti is the geometric transformation associated to g′

i1 and
g′
i2, and simi is given by the following expression:

simi = (| Vi | + | Ei |) × φ(g′
i1, g

′
i2) (5)

The number of edges and vertexes have a great influence in the similarity value
previously defined, since bigger correspondences should have more weight. Let
S = {s1, . . . , sn} be the set of similarity tuples obtained from the frequent geo-
metric subgraphs F = {g1, . . . , gn} in D; with the goal of computing the final
similarity between GR1 and GR2, an overlapped clustering of n clusters Pj of S,
is performed, where:

Pj = {sk | dt(Tj , Tk) < ε ∀ sk ∈ S, 1 ≤ j, k ≤ M}, (6)

dt(Tj , Tk) = Gs(|λj − λk|) + Gs(d2(txj , tyj , txk, tyk)) + Gs(|ωj − ωk|), (7)

In this case, d2(txj , tyj , txk, tyk) represents the euclidean distance between the
translation components of the involved geometric transformations and Gs is the
gaussian function:

Gs(t) = e
t2

2d2 (8)

This process creates n subsets Pj of S, where each Pj in conformed by the closest
sk to each sj , using the distance function dt(Tj , Tk). Finally, the similarity of
the two representations is given by:

simFinal(GR1, GR2) =
∑
si∈Pj

simi. (9)

where Pj is the subset of S with the higher cardinality. This algorithm is based
on the idea that if some frequent geometric subgraphs are found between two
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Fig. 3. Frequent geometric subgraphs found between two fingerprints of a same finger.

representations of fingerprints, they must have very similar associated geometric
transformations. In Figure 3 an example of a relatively large common subgraph
found using the mining algorithm can be seen.

5 Experimental Evaluation

In the first performed experiment, our proposal was compared with one of the
best state-of-the-art approaches, Minutia Cylinder Code (MCC) [8]. For this,
False Match Rate (FMR) and False Non-Match Rate (FMR) curves were com-
puted with different similarity thresholds values in the FVC2006 DB2 database,
with ε = 2. As can be seen in Figure 4(a), the EER reported by MCC (1.46) is
slightly smaller than the obtained with our algorithm (1.90). However, the val-
ues of FMR and FNMR of MCC increase more abruptly. This fact makes more
difficult the reduction of one measure without affecting the other greatly. Also,
Cumulative Match Curves (CMC) were computed by using the last 11 impres-
sions of each finger of the FVC2006 DB2 as queries. Since the accuracy of the
fingerprint identification algorithms is affected by the number of possible finger-
print candidates, the comparison dataset was established with the remaining 140
fingerprints of the FVC2006 DB2 and with 31258 rolled impressions contained

(a) FMR and FNMR curves (b) CMC curves

Fig. 4. Experimental evaluation.
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in the datasets NIST 27, NIST 4 and NIST 14. In Figure 4(b) the CMC curves
of our proposal are shown, using different values for ε and representations. The
reported accuracy is higher than 96,8% and 98,4% with ε = 2, in the positions
1 and 20, respectively. As can be seen, the best results are reached using the
proposed representation Rk. These results are very promising since only minu-
tiae information was used. Also, the mining methods provide many possibilities
than can be exploited in the future. Each matching was performed in 28 milisec-
onds as average, in a PC with a microprocessor i7, 1.7 Ghz and 8 Gb of RAM.
These values are lower than the average execution time of the 10 best algorithms
reported on FVC2006 competition (53 miliseconds).

6 Conclusions

In this work, a new representation of fingerprints based on the fusion of two pre-
vious works, was proposed. The result of this fusion is a labeled geometric graph
that is able to eliminate most of the noise generated by the absence of minutiae
or the distortions found in the fingerprints. Also, a novel matching algorithm
between these representations was defined, by using frequent subgraphs mining.
In a consolidation step, a coherence criteria between the resulting subgraphs was
applied in order to compute the final similarity. The proposed method shows the
usefulness of the data mining, specifically the geometric subgraphs mining, in
the field of biometrics. Future works are focused on improving FreqGeom in
order to use other benefits of using graphs in fingerprint matching algorithms.
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Abstract. In this work we present a method for selecting instances for
a writer identification system underpinned on the dissimilarity repre-
sentation and a holistic representation based on texture. The proposed
method is based on a genetic algorithm that surpasses the limitations
imposed by large training sets by selecting writers instead of instances.
To show the efficiency of the proposed method, we have performed exper-
iments on three different databases (BFL, IAM, and Firemaker) where
we can observe not only a reduction of about 50% in the number of writ-
ers necessary to build the dissimilarity model but also a gain in terms of
identification rate. Comparing the writer selection with the traditional
instance selection, we could observe that both strategies produce similar
results but the former converges about three times faster.

1 Introduction

The concept of dissimilarity [9] has been used successfully to deal with sev-
eral pattern recognition problems. In the case of writer identification [2] and
signature verification [1], the dissimilarity-based classifiers using a dichotomy
transformation have been proved a good alternative since i) they can deal with
a large number of classes by reducing any pattern recognition problem to a 2-
class pattern, ii) the ability of using disjoint sets for training and testing, and
iii) the model is scalable in the sense that we do not need to train it each time
a new class (writer) is enrolled into the system. In this approach the feature
vectors are extracted from both questioned and reference samples and then the
dissimilarity feature vectors are computed. In ideal conditions, if both samples
come from the same writer (genuine), then all the components of such a vector
should be close to 0, otherwise (forgery), the components should be far from 0.
Figure 1 illustrates this transformation.

The difference vectors plotted in Figure 1b compose then the training set T
that will be used to train the 2-class classifier. As pointed out in the literature
[6], in practice, T contains useless information for the classification task (that
is, superfluous instances which can be noisy or redundant) therefore a process
to discard them from T is needed. This process is known as instance selection
[6] or prototype selection [5].
c© Springer International Publishing Switzerland 2015
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Similarly to feature selection, instance selection algorithms can also be clas-
sified into two categories based on whether or not instance selection is per-
formed independently of the learning algorithm used to construct the classifier.
If instance selection is done independently of the learning algorithm, the tech-
nique is said to follow a filter approach. Otherwise, it is said to follow a wrap-
per approach. The literature shows that the wrapper approach produce better
results, however, it involves the computational overhead of evaluating candidate
instance subsets by executing a given learning algorithm on the database using
each instance subset under consideration.

The literature shows different strategies for wrapping a classifier into the
instance selection process. Several of them formulate the problem as a search
problem using different algorithms, such as Tabu Search [11], Sequential Floating
Search [7], and Genetic Algorithms [3]. In the case of Genetic Algorithms, the
straightforward approach consists in using a binary coded chromosome where the
size of the chromosome is the number of instances available for training. This
strategy produce good results but it shows its limits as the number of instances
available for training gets larger.

In this work we deal with instance selection for writer identification using
the dissimilarity representation. To overcome the limitations imposed by large
training sets, we proposed selecting writers instead of instances. In other words,
if a given writer is not selected, all his instances are removed from the training
set. In the proposed method, the selection takes place before the dichotomy
transformation, therefore only the instances of the selected writers are used to
build the dissimilarity space.

To assess the proposed method we have used the writer identification system
described in [2]. In this system the handwriting is first transformed into a texture
and then different descriptors are used to generate the vectors in the feature
space. Then, it applies the dichotomy transformation to create the dissimilarity
representation where a SVM classifier is trained to discriminate between positive
(writer) and negative (not writer) classes. Through a set of comprehensive set
of experiments on three different databases, using a classifier trained with two
textural descriptors (LBP and LPQ), we show that the proposed writer selection
method is able to reduce considerably the number of writers necessary to build
the dissimilarity model, in about 50%, while improving the identification rates.
We also show that the performance of the selection mechanism is related to
the number of references available for training and testing. Results show that
when few references are available, which is true in most of real problems, the
writer selection process appears to be more relevant. Finally, we compare the
proposed approach with instance selection and show that it converges much
faster producing similar results.

2 The Writer Identification System

As stated before, the method introduced in [2] was used to assess the proposed
method. For the sake of clarity we reproduce it in this section. Given a queried
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Fig. 1. The dichotomy transformation: (a) three classes in the feature space and (b)
two classes in the dissimilarity space

handwritten document and a reference handwritten document, the aim is to
determine whether or not the two documents were produced by the same writer.
Let V and Q be two vectors in the feature space, labeled lV and lQ respectively.
Let Z be the dissimilarity feature vector resulting from the dichotomy transfor-
mation Z = |V − Q|, where | · | is the absolute value. This dissimilarity feature
vector has the same dimensionality as V and Q.

In the dissimilarity space, there are two classes that are independent of the
number of writers: the within class (+) and the between class (−). The dissimi-
larity vector Z is assigned the label lZ ,

lZ =
{

+ if lV = lQ,
− otherwise (1)

Figure 1 illustrates this transformation. Suppose there are three writers,
{ω1, ω2, ω3}, and each one of them provides some samples. The feature extraction
process extracts a vector from each sample, and these are shown in Figure 1a.
Then, a dichotomy transformation takes place and computes the dissimilarity
between the features of each pair of samples to form vectors. The distribution of
such vectors, which we call dissimilarity feature vectors, are shown in Figure 1b.

We can see in Figure 1 that the dichotomy transformation affects the geom-
etry of the distribution. In the feature space, multiple boundaries are needed to
separate all the writers. In the dissimilarity space, by contrast, only one bound-
ary is necessary, since the problem is reduced to a 2-class classification problem.
The number of samples in the dissimilarity space is larger, because these samples
are made up of every pair of feature vectors. We can also see in Figure 1 that, if
both samples come from the same writer (genuine), then all the components of
such a vector should be close to 0, otherwise they come from different writers (a
forgery), in which case the components should be far from 0. This is true under
favorable conditions. However, as in any other feature representation, the dissim-
ilarity feature vector can be affected by intra-writer variability. This variability
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could generate values that are far from zero, even when the dissimilarity between
the samples produced by the same writer is measured.

As mentioned earlier, one advantage of this approach is that even writers
whose specimens were not used for training can be identified by the system.
This characteristic is quite attractive, since it obviates the need to train a new
model every time a new writer is introduced. In our experiments, we emphasize
this feature by using disjoint sets of writers for training and testing.

The framework underpinning the identification system works as follows. Ini-
tially, a handwritten document is converted to a texture image. Then, the texture
is split into n equal parts, Ri(i = 1, 2, . . . , n), which are sent to the feature extrac-
tion module. The resulting feature vectors, Vi, are stored in a database. When
a queried handwritten document is presented to the system, it is also converted
to a texture and split into m equal parts, Si(i = 1, 2, . . . ,m). These m textures
undergo the same feature extraction process, and so creating the feature vectors
Qi. Then, the dissimilarity feature vectors Zi = |V i − Qi| are computed and
sent to the SVM classifier, which yields a decision on each dissimilarity feature
vector. The final decision, is based on combining these partial decisions, and is
obtained by means of a fusion rule.

The dissimilarity framework requires the classifiers to discriminate between
genuine (positive) and forgeries (negative). To generate the positive samples
to train the SVM classifier, we computed the dissimilarity vectors among the
R genuine samples (references) of each writer which resulted in

(
R
2

)
different

combinations. The same number of negative samples is generated by computing
the dissimilarity between one reference of one writer against one reference of
other writers picked at random. In this work we assess the impact of the number
of references per writer in the writer selection process.

2.1 Feature Extraction

In order to generate the texture, the document is binarized and scanned top-
down and left-right to detect all the connected components of the image. The
bounding box of the remaining components is then used to extract the original
components of the gray level image. The components in gray levels are then
aligned with the new image using the center of mass of the bounding box. This
algorithm, described in details in [2], compacts the handwriting generating tex-
ture images. Then, the texture is segmented into nine 256×256 blocks. Figure 2
shows two examples of the handwriting texture produced by two different writers.

Fig. 2. Examples of handwriting textures from two different writers.



172 D. Bertolini et al.

After creating the textural fragments, the next step consists in dealing with
representation. The literature shows us a long story of research in texture rep-
resentation but recent works have shown that Local Binary Pattern (LBP) and
Local Phase Quantization (LPQ) appear to be a very interesting alternatives
to represent texture. They have been successfully applied to different problems
achieving promising results. Besides, they are quite easy to implement. In this
work, we have used the traditional LBP configuration, i.e., LBPu2

8,2 with 59 com-
ponents and the 256 dimensional feature vector produced by the LPQ.

3 The Writer Selection Method

The selection mechanism is based on a Genetic Algorithm (GA) with bit rep-
resentation, one-point crossover, bit-flip mutation, stochastic uniform selection,
and elitism which is implemented using a generational procedure. The following
parameter setting were employed: population size: 20, number of generations:
100, probability of crossover: 0.8, and probability of mutation: 0.01. In order to
define the probabilities of crossover and mutation, we have used the one-max
problem, which is probably the most frequently-used test function in research
on genetic algorithms because of its simplicity. This function measures the fit-
ness of an individual as the number of bits set to one on the chromosome. The
population size was determined through experimentation.

Let A = W1,W2, . . . , Wn be the pool of n writers and B a chromosome of
size n of the population. The relationship between A and B is straightforward,
i.e., the gene i of the chromosome B is represented by the writer Wi from A.
Thus, if a chromosome has all bits selected, all writers of A will be used to train
the classifier.

In this work we have adopted a wrapper approach where each solution created
by the genetic algorithm is a SVM classifier trained on the training set (TR) using
5-fold cross validation. It uses a Gaussian kernel and the parameters C and γ are
determined through a grid search. After training, the solution is assessed on the
validation set (VAL#1) where we compute the Equal Error Rate (EER), which
is given by Equation 2

Equal Error Rate =
FP + FN

TP + TN + FP + FN
(2)

where FP, FN, TP, and TN stand for False Positive, False Negative, True Posi-
tive, and True Negative, respectively. The minimisation of the ERR is the mea-
sure of fitness of the genetic algorithm.

During the search the performance of the classifier on VAL#1 may continue
to improve, but its performance on a independent validation set will only improve
to a point, where the classifier start to overfit VAL#1. To avoid this overfitting,
a second validation set (VAL#2) is used to monitor and stop the evolutionary
algorithm. Finally the solution the minimises the ERR on VAL#2 is evaluated
in the the independent testing set (TS).
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4 Experimental Results

In order to build a reliable experimental protocol to assess the proposed selection
method we have performed the same experiments on the three aforementioned
databases using two different textural descriptors, LBP and LPQ. As described
in Section 2, the dissimilarity-based system uses a certain number of references
for training (R) and testing (S). To produce a final decision, the system com-
bines all partial decisions produced on S using a fusion rule. Based on previous
experiments [2], the fusion rule that provides the best results is the Sum rule.

To show the reproducibility of the proposed strategy, three databases were
considered in this work, the Brazilian Forensic Letter (BFL) database (Fre-
itas et al. [4]), the IAM database (Marti and Bunke, [8]), and the Firemaker
database [10]. To meet the requirements of the proposed method, all databases
were divided into four independent partitions, i.e., training (TR), validation
1 (VAL#1), validation 2 (VAL#2), and testing (TS). The BFL database was
divided into four subsets: 25, 60, 60, and 115 writers for TR, VAL#1, VAL#2,
and TS, respectively. Each writer is represented by 9 blocks of texture (256 ×
256 pixels). The IAM database was divided into four subsets: 50, 125, 125, and
240 writers for TR, VAL#1, VAL#2, and TS, respectively. Each writer is repre-
sented by 9 blocks of 256 × 128 pixels. Finally, the Firemaker dataset was divided
into four subsets: 20, 45, 45, and 90 writers for TR, VAL#1, VAL#2, and TS,
respectively. Each writer is represented by 9 blocks of texture of 256×256 pixels.

Our previous experiments also show that the best results were achieved when
the number of references available for training and testing are maximised, i.e.,
R,S = 9. One aspect we analyse in these experiments is the impact of the number
of references in the writer selection process. To that end, we have performed the
experiments using R,S = [3, 5, 9]. All experiments were performed three times
so the identification rates are the average of three runs. The four partitions of
the databases were randomly generated for each experiment.

Table 1 compares the identification rates on the BFL database. It shows that
the proposed method is able to reduce in about 50% the number of writers in
all scenarios. In the case of the classifier trained with LBP using few references
(R,S=3), besides reducing the number of writers the writer selection method also
brought an important gain in terms of performance, about 5 percentage points.

In the second experiment we have applied the same protocol in a bigger
database, the IAM. Table 2 shows the results for IAM database where we can
observe a similar behavior, i.e., reduction of the number of writers in about 50%
and improvement in terms of identification rate.

In the third experiments we have considered the Firemaker database, which
contains different handwriting styles such as upper-case and copied text and also
forgeries. The results for the Firemaker database are reported in Table 3 and
follows the same pattern exhibited by the experiments on BFL database. The
number of writers was reduced in about 50% and the performance was improved
when few references were available.

A final experiment was performed to compare the results of the proposed
method with the traditional instance selection approach. In this case we have
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Table 1. Results on the BFL database

Ref. With Writer Selection Without Writer Selection
R,S % σ # of writers σ % # of writers

3 95.1 0.01 9.6 2.3 89.5 25
LBP 5 95.7 0.02 12 1.0 94.7 25

9 98.0 0.01 14 4.3 99.8 25

3 95.5 0.01 11.3 0.6 96.5 25
LPQ 5 98.3 0.01 13 3.5 99.1 25

9 99.4 0.01 14 1.0 99.0 25

Table 2. Results on the IAM database

Ref. With Writer Selection Without Writer Selection
R,S % σ # of writers σ % # of writers

3 68.2 0.03 26 2.6 60.0 50
LBP 5 76.5 0.02 25.6 1.38 74.0 50

9 91.3 0.01 28.6 1.1 91.0 50

3 77.5 0.08 26.3 1.1 75.0 50
LPQ 5 81.8 0.02 22 1.7 77.0 50

9 93.1 0.01 27.3 1.15 92.0 50

used the BFL database for R = 9 and the LPQ-based classifier. The size of the
chromosome is the number of instances available per writer. Considering the 25
writers times 9 references, the size of the chromosome is 225.

The consequence of dealing with a large search space is a higher compu-
tational overhead. Table 4 shows that writer and instance selection arrives to
very similar solution, in terms of performance and number of instances, but the
proposed strategy uses a considerably reduced amount of time.

Table 3. Results on the Firemaker database

Ref. With Writer Selection Without Writer Selection
R,S % σ # of writers σ % # of writers

3 96.7 0.02 10.3 1.5 94.4 20
LBP 5 91.9 0.01 9.3 1.5 91.1 20

9 96.7 0.01 12.3 0.5 97.7 20

3 98.1 0.01 8.6 0.5 96.6 20
LPQ 5 98.9 0.01 11.6 4.9 96.6 20

9 97.8 0.02 10.3 1.5 98.8 20

Table 4. Instance versus writer selection on the BFL database for R = 9 and LPQ

Method Rec. Rate (%) writers instances time (seconds)

Writer Selection 99.4 14 117 84021
Instance Selection 99.4 25 113 215680
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5 Conclusion

In this paper we have discussed a method for selecting instances for a writer iden-
tification system underpinned on the dissimilarity representation and a holistic
representation based on texture. The proposed method is based on a genetic algo-
rithm that surpasses the limitations imposed by large training sets by selecting
writers instead of instances.

Our experiments on different databases show that the proposed method is able
to reduce in about 50% the number of writers necessary to build the dissimilar-
ity model while improving the identification rates. Comparing the writer selection
with the traditional instance selection, we could observe that both strategies pro-
duce similar results but the former converges about three times faster.
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Abstract. In this work we describe a novel one-shot face recognition
setup. Instead of using a 3D scanner to reconstruct the face, we acquire
a single photo of the face of a person while a rectangular pattern is been
projected over it. Using this unique image, it is possible to extract 3D
low-level geometrical features without the explicit 3D reconstruction. To
handle expression variations and occlusions that may occur (e.g. wearing
a scarf or a bonnet), we extract information just from the eyes-forehead
and nose regions which tend to be less influenced by facial expressions.
Once features are extracted, SVM hyper-planes are obtained from each
subject on the database (one vs all approach), then new instances can
be classified according to its distance to each of those hyper-planes. The
advantage of our method with respect to other ones published in the liter-
ature, is that we do not need and explicit 3D reconstruction. Experiments
with the Texas 3D Database and with new acquired data are presented,
which shows the potential of the presented framework to handle different
illumination conditions, pose and facial expressions.

Keywords: 3D face recognition · Differential 3D reconstruction

1 Introduction

Face recognition is one of the most popular and challenging problems in the field
of pattern recognition and computer vision [1]. It has many applications such
as security control and prevention, medical and biometrical analysis or gesture
understanding. In the last decade, lot of research included three-dimensional
(3D) face information to improve recognition rates and make the methods more
robust to pose, gesture and illumination variations [3]. Bronstein et al. [4] used
3D facial scanners and achieved a robust recognition framework by modeling
facial expressions as surface isometries, and constructing an expression-invariant
face representation using the canonical forms approach. The work of Chang
et al. [7] was one of the first that combined scores obtained from matching
multiple overlapping regions around the nose. A similar method was proposed by
Faltemier et al. [11] where 28 different regions around the face were selected and
a score-based fusion approach was followed. Kakadiaris et al. [15] presented a 3D
deformable model approach where the face was parametrized by the annotated
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face model (AFM). Mahoor et al. [18] used the principal curvature to represent
the face image as a 3D binary image, then Hausdorff distance and iterative closest
points (ICP) [2] were used for matching. More recently, Li et al. [17] used facial
curves to form a rejection classifier and produce a facial deformation mapping
from which adaptively select different face regions for matching. In Y. Zhang
et al. [20] each 3D facial surface was mapped onto a 2D lattice that represents
local 3D geometrical or textural properties, then traditional 2D face recognition
techniques were applied. Lei et al. [16] presented a 3D face recognition approach
based on low-level geometric features collected from the eyes-forehead and nose
regions, and Support Vector Machine (SVM) algorithm was used to separate
different subjects’ representation.

In the present work instead of using a 3D scanner we acquire a standard color
photo of the face while a rectangular pattern is been projected. We show that
from this unique image, it is possible to extract low-level geometrical features
without the explicit 3D reconstruction, as well as texture information. To handle
expressions variations and occlusions that may occur by wearing a scarf or a bon-
net, we extract information just from the eyes-forehead and nose regions which
tend to be less influenced by facial expressions, as discussed by Lei et al. [16].

The rest of this work is organized as follows. Section 2 starts with a general
description of the proposed framework and then some important specific steps
are detailed. Section 3 presents some experimental results, firstly using the Texas
3D Face Recognition Database [12], and secondly, using our own database where
all the steps of the proposed framework are involved. In section 4 we present the
conclusions and discuss some future work.

2 Description of the Proposed Method

We will start by presenting an overview of the proposed framework, highlighting
the main steps and properties. After that, some important individual steps will
be described in detail.

The main steps of the proposed technique can be identified as: (i) acquisition;
(ii) extraction of geometric and texture information; (iii) localization of the eyes
and nose position; (iv) extraction of features from the rigid and semi-rigid regions
of the face, and finally; (v) train/classify.

Once the texture and the 3D geometrical information is retrieved, we perform
a curvature analysis to localize the nose tip and eyes corners.

From the corners of the eyes and nose tip position, we extract two different
areas of the face. The first is a rectangular region that contains both eyes, and the
second one is a trapezoidal region that contains the nose. As it was demonstrated
in several works, these are the portions of the face more rigid and less affected
by facial expressions (see e.g. [3,16] and reference therein).

The next step consists on defining features using the information available
in the selected portions of the face. We analyze features computed from the
geometrical 3D information and from the texture information. Then using a
training dataset we define boundaries in the m-dimensional feature space using
the Support Vector Machine (SVM) algorithm.
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Figure 1 illustrates the main steps of the proposed framework and the kind
of data processed at each step. Before presenting the experimental results, addi-
tional explanations and details of some key steps are covered in the following
subsections.

Fig. 1. Illustration of the main steps of the proposed framework. Note: due to image
resolution some artifacts can appear, the full images, the code and a demo can be found
at authors’ web page.

2.1 Nose and Eyes Localization

To achieve a robust localization of the eyes and nose regions, we follow the
procedure presented in [9] to estimate those candidate pixels. In our previous
work [9] we address the problem of detecting the position of the nose and the
eyes using face gradient information. Once candidates points for the nose and
eyes are obtained, we remove those false positive nose and eyes detections by
follow 2 basic steps. Firstly we estimate from the training set (in which eyes and
nose position was manually marked) the likelihood distribution for the distance
between the eyes and the distance between each eye and the nose (this step is
performed once and in the training step). Secondly, we keep from all the nose
and eyes candidates (obtained by curvature inspection) those who present inter-
distances with higher likelihood.

2.2 Feature Extraction

Two different regions of the face will be considered for local feature extraction
(as illustrated in Fig. 1). The first patch (named PatchA) corresponds to the
regions around eyes and the second one (PatchB) corresponds to the region
around the nose. The region of the nose, is the portion of the face less distorted
by facial expressions, thus is called the rigid region. The area of the eyes is called
semi-rigid region [16], and finally, the rest of the face is much more affected due
to facial expression, and therefor was not considered in the present work.
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Following the approach of [8], we calculate the partial derivatives Dx and Dy

of the face depth (D); Dx,y are directly obtained (from the acquired image) by
measuring the deformation of the projected pattern. Then, using these partial
derivative, over the PathA we have to calculate the directional derivatives Dv and
Dv⊥ , where v is a direction parallel to the largest side of PatchA. Analogously
Du and Du⊥ are calculated over PatchB, where u is a direction parallel to the
largest side of PatchB. Histograms for these quantities are computed to construct
the 3D low level features descriptor, in addition, the LBP description over the
Texture image is also taken into account.

2.3 Training and Classifying

The last step of the proposed framework consists on training a classifier for
each subject we want to recognize. We decide to use Support Vector Machine
(SVM) because it shows to be an efficient and robust algorithm for the sake of
face recognition[16]. Recall that for a binary classification problem, where we
assume that are known m training samples xk ∈ R

N (k = 1..m), with labels
yk ∈ {−1, 1}, SVM finds the hyper-plane with largest margin by solving the
optimization problem:

min
ω,b,ξ

(
1
2
ωT ω + C

∑
i

ξi

)

s.t. yi (ωT xi + b) ≥ 1 − ξi, ξi ≥ 0.

(1)

The parameter C is a penalty parameter of the error term and must be set; ω is
a vector orthogonal to the hyper-plane, b is a constant that sets the location of
the hyper-plane and ξi are auxiliary variables that allow to handle non separable
problems. Depending on the problem, we may replace the constraint yi (ωT xi +
b) ≥ 1 − ξi, ξi ≥ 0 by yi (ωT φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0 (Kernel SVM) which
allows us to find the hyper-plane in a higher dimensional space. Once the SVM
hyper-plane is obtained, one can classify new instances according to its positions
with respect to the hyper-plane, i.e. by measuring the signed distance defined
as:

d(x) =
ωT x + b

‖ω‖ . (2)

For a detailed explanation of the SVM algorithm we refer the reader to [5,10,
14,19].

As in the work of Y. Lei et all. [16] we opted by a one versus all approach.
That means, that for each subject in the database, we will solve a two class
problem in which we try to separate those feature vectors that belong to a given
subject (named positive class) from the rest of the feature vectors (negative
class). To find each hyper-plane, we used the implementation of SVM given in
[6] and we tried both linear SVM and Kernel-SVM [with a Radial Basis Function
kernel (SVM-RBF)]. The cost parameter of SVM algorithm (C) and the kernel
parameter (γ) (when the kernel was considered) were estimated performing 5-
fold cross validation.
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Table 1. Accuracy (percentage) over Train and Test Sets. The superscript (A or B)
recalls the patch from which features were extracted. Recall that the patch A cor-
responds to the region of the eyes while patch B corresponds to the region of the
nose. The first two columns shows the results obtained just considering the geometri-
cal information (represent by histograms of depth partial derivatives values). The last
three columns shows the accuracy obtained by considering all the features extracted
from the path A, patch B and the union of these, respectively.

(Acc %) DA
v DB

u LBPA
(Tex.) LBPB

(Tex.) All feat. All feat. All feat.

DA
v⊥ DB

u⊥ PatchA PatchB

Train 99.3 ± 0.4 98.4 ± 0.5 77.0 ± 4.2 51.6 ± 3.6 99.8 ± 0.2 99.4 ± 0.3 100± 0.0
Test 91.9 ± 1.7 93.6 ± 1.3 64.9 ± 3.8 44.3 ± 3.8 95.2 ± 0.8 95.1 ± 1.8 99.4± 0.2

3 Experiments and Evaluation

In this section, we perform two different set of experiments; firstly, experiments
with the Texas 3D Face Recognition Database [12,13], and secondly, experiments
with acquired images where the whole framework is tested.

3.1 Evaluation over the Texas 3D Face Recognition Database

This database contains 1149 pairs of high resolution, pose normalized, prepro-
cessed, and perfectly aligned color and range images of 118 subjects. Addition-
ally, it includes the locations of 25 manually marked anthropometric facial fidu-
cial points. From those 25 fiducial points, just three are used (the nose tip and
the corner of the eyes).

Texas database was split in two sets: one used for training (estimating SVM
hyper-plane parameters) and the other was reserved for evaluation. Train and
test sets contain (each) 486 samples obtained from scans of 25 different subjects.
Once the 25 hyper-planes were obtained, the signed distance to each hyper-plane
is measured for all the samples in train and test datasets. To each pair of range
and color images, the assigned class is the one associated to the hyper-plane that
has the higher distance to the respective feature vector.

Results are summarized in Table 1 for different subsets of features. As we can
see the area of the nose is the more robust region of the face for the sake of 3D face
recognition when we have expression variations. This fact is in agreement with
recent research in this field (see e.g. [7,11,16,17]). Furthermore, the geometrical
information seems to be more effective than the texture analysis, this is an
expectable result as texture is easily affected, e.g. by illumination conditions or
gestures. The best results were achieve by the fusion of all the features.

3.2 Evaluation of the Entire System

In a second series of experiments our own one-shot database was used. This
database was generated by illuminating the subjects with structured light, as
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described in section 2. Images were collected over different days, and therefore,
illumination conditions, pose and face expressions present significant variations.

The database contains pictures of approximately 120 different subjects, and
in most cases there was available only one picture for each person. As the main
objective of this second series of experiment is to evaluate the robustness of the
proposed framework under different pose and facial expressions, we will focus on
the two class problem where multiples images of one of the authors play the role
of the positive class and the rest of the subjects represents the negative class.

As training set we used 219 images, with multiples images of the target sub-
ject (positive class) and the rest of images from different subjects representing
the negative class. The test set is composed of 48 new negative instances (new
pictures of people that were not present in the training set) plus 46 new positive
instances (pictures of the target subject). In this test dataset, a wide range of
facial expressions and pose variations are included as well as some pictures of
the subjects with the face partially occluded (i.e. wearing a scarf or a bonnet as
illustrated in Fig. 2). Figure 2 shows red/green histograms obtained by measur-
ing the signed distance to the hyper-plane of each negative/positive sample on
the test set.

Fig. 2. Number of test instances versus its signed distance to SVM hyperplane. Red
and green histograms were obtained by considering the negative and positive samples
respectively. Under the histogram, some examples of positive samples are shown. The
dashed lines shows the particular distance obtained for each of the example images.

By considering the signed distance of each test sample to the hyper-plane, one
can classify each sample as positive if the signed distance [Eq. 2] is higher than
certain threshold and negative in the other case. Figure 3 shows the Precision
(portion of the samples labeled as positive that actually belong to the positive
class), Recall (portion of samples of the positive class correctly classified) and
the Precision-Recall curve for different threshold values.

A larger database is required to perform more exhaustive experiments (e.g. by
repeating the previous two-class experiment for several subjects) before extract-
ing quantitative conclusions. Despite this, some interesting aspects of the pro-
posed technique can be addressed. Firstly, the proposed approach shows to be
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Fig. 3. Left: Recall and Precision for different threshold values. Right: Precision-Recall
curve obtained varying the threshold value used for classification. The colored dashed
lines shows the lines of constant F-measure (which represents the geometrical mean
between Recall and Precision).

robust to facial expression (even exaggerated ones). Secondly, also promising
results were achieved when the areas of the face (other than the nose or fore-
head) were occluded (e.g. by a scarf or bonnet), which shows that the approach
is also robust to some intentional variations that a subject may produce such as
variations of facial hair (e.g. shave his beard off).

4 Conclusions

A novel one-shot 2D+3D face recognition approach was presented. Instead of
using a 3D scanner, we acquire a single photo of the face while a rectangular
pattern is been projected over it; from this unique image, it is possible to extract
low-level geometrical features without the explicit 3D reconstruction as well as
texture information. Also as the projected pattern is static, the proposed method
can be applied to dynamic scenes and can be trivially extended to video face
analysis. On the other hand, the proposed framework is likely limited to indoor
scenarios, and requires a set of images of the subjects we want to be able to
identify (for the negative class one single image of many different subjects is
enough) as a SVM algorithm must be trained.

Experiments shows the potential of the proposed framework to handle pose
and facial expression variations, while requiring very low hardware requirements
(as we just need e.g. a rectangular static pattern, a lens, and a led light source).

Acknowledgments. The authors thank PEDECIBA, CSIC and ANII for their finan-
cial support.
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Abstract. Feature extraction is one of the fundamental steps of any
biometric recognition system. The biometric iris recognition is not an
exception. In the last 30 years a lot of algorithms have been proposed
seeking a better description of the texture image of the human iris. The
problem still remains into find features that are robust to the different
conditions in which the iris images are captured. This paper proposes a
new iris texture description based on ordinal co-occurrence matrix fea-
tures for iris recognition scheme that increases the recognition accuracy.
The novelty of this work is the new strategy in applying robust feature
extraction method for texture description in iris recognition. The experi-
ments with the Casia-Interval, Casia-Thousands and Ubiris-v1 databases
show that our scheme increases the recognition accuracy and it is robust
to different condition of image capture.

Keywords: Feature extraction · Ordinal measures · Iris recognition

1 Introduction

The human iris has been proved to be a good and high-confident biometric
characteristic for the person verification and identification due to its reliability,
stability and uniqueness. One of the important tasks in iris recognition process
is feature extraction from iris texture patterns. Analyzed the variety and large
number of techniques found in the literature can say that has been a hot topic.
However, the overall performances of such methods can be reduced in non-ideal
conditions, such as non-voluntary on-the-move, or non-collaborative setups[1].

For iris feature extraction there are reported methods that perform signal
processing in both: (1) spatial domain, using mathematical operators such as
Laplacian of Gaussian filters [2] and (2) frequency domain, using transformed
as Gabor [3,4] and Wavelets [5,6]. Another group uses statistical processing

c© Springer International Publishing Switzerland 2015
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techniques such as LBP [7], Co-Occurrence [8]. The combined methods such as
[9,10] make use of the feature fusion obtained from several individual methods.

In 2009 Sun and Tan [11] proposed Ordinal Measures (OMs) for iris recog-
nition. Unlike traditional approaches that use quantitative values to represent
features, OMs focus on qualitative values. These qualitative values may rep-
resent the results of ordinal comparisons between, for example, two groups of
image regions, taken some intra and inter region parameters. The shape of the
region, location of the region, average intensity values of pixels of the region,
spatial configuration of the region, the region filtering (using different filters as
Gabor, Wavelet, etc.); may be taken as parameters.

Tan, Zhang et al. [9] proposed an integrated scheme (OMs and color his-
togram for iris texture, texton representation and semantic label for eye pat-
terns) to match visible light iris images in uncontrolled situations. Zhang, Sun
et al. [12] used bandpass geometric information and lowpass ordinal features to
address deformed iris image matching problem. Recently Rahulkar and Holambe
[13] presented the directional ordinal measures scheme using their previous pro-
posed filter new class of triplet half-band checkerboard shaped filter bank.

Motivated by the (promising) results obtained OMs and their flexibility for
biometric recognition, in this work we propose and explore the use of ordinal
co-occurrence matrix [14] to represent the features of iris texture. The flowchart
of this method is shown in Fig. 1. Normalized iris images are taken as input.
In feature extraction step normalized iris image is divided into regions. In each
region, pixels are labeled based on ordinal comparisons. Then matrices of co
occurrence of pairs of label pixel, with specific orientation and distance, are
obtained as iris pattern texture features.

Fig. 1. A general description of proposed algorithm.

The remainder of this paper is organized as follows. Section 2 presents
the proposed feature extraction method based on ordinal co-ocurrence matrix.
Section 3 presents the principles of the experimental design. Section 4 presents
a discussion of the experimental evaluation, and Section 5 gives the conclusion
and future of this work.
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2 Iris Recognition Process Based on Ordinal
Co-ocurrence Matrix Features

A new feature extraction method based on ordinal measure concept and using
the ordinal co-ocurrence matrix [14] is proposed to describe the texture of iris
patterns. Iris recognition process consists on the general steps (image capture,
eye localization, segmentation, noise detection, normalization, feature extraction
and matching). Nevertheless, these steps present some peculiarities when Ordinal
Co-ocurrence Matrix Features (OCMF) is used in feature extraction stage, see
Fig. 1. The main OCMF steps are explained in the followings subsection.

2.1 Region Selection

Normalized iris image T is divided into a set of overlapping regions Rp. T =
{Rp|p = 1, 2, 3, ..., P}, where P is the number of regions in T . The regions
are overlapped based on a certain value d of displacement between the central
pixels cp of each region. This operation permits the local computation of texture
features (see Fig. 2). Local ordinal co-occurrence matrices are then computed
over these regions. Taking in to account the rectangular shape of the normalized
iris images, we consider subregions to be rectangle blocks of size n × m.

Fig. 2. Region selection.

2.2 Iris Ordinal Labeling

Based on the flexibility of ordinal measures, the selected regions should be labeled
in order to retain the ordinal information of each region. The basic idea is to
establish a labeling of the region following some criteria of comparison based
only on ordinal relations. As in [14], the goal of this step is to represent the
ordinal information of the local iris region in a compact manner allowing the
efficient feature construction.

Two labels (0, 1) are used to represent the values to be considered in the
next step and another label (−1) for values that are not going to be consider,
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following the next idea: first the mean intensity value Vm of the pixels in the
region Rp and standard deviation Sd are calculated. Then intensity value of each
pixel Vj is compared with the Vm and Sd, for ordinal labeling, by the following
rule (Eq.1):

Lb =

⎧
⎨
⎩

0 if (Vm − Sd) ≤ Vj < Vm,
1 if Vm ≤ Vj ≤ (Vm + Sd),

−1 if Vj > (Vm + Sd) or Vj < (Vm − Sd).
(1)

As shown in Eq.1 the pixels which intensity value is out of range Vm ± Sd

are considered as noise pixel. With this strategy is possible extenuate some
illumination problem in images taken in uncontrolled environment.

2.3 Split in to Subregions

In order to accelerate the process of feature extraction, each region Rp is subdi-
vided into N subregions Sri, Rp = {Sri|r = 1, ..., N}. The regions are divided
into rectangular shapes considering the size of each region. The most represen-
tative label value of each sub-region is taken as the value of the sub-region.

2.4 Iris Local Ordinal Co-occurrence Matrix

Iris local ordinal co-occurrence matrices can capture the co-occurrence of ordi-
nal relations between label pixel in the representative values of the subregion in
the normalized iris image. The columns of the matrices contain the occurrences
detected in different directions o. Rows contain the occurrences at different dis-
tances d. The number of obtained ordinal matrices will depends on the number
of used labels.

The proposed method utilize a binary labeling (0, 1), then the possible pat-
terns combinations, to be consider, between two label pixels are: 00, 01, 10, 11.
For each pattern one co-occurrence matrix is obtained. In total, four matrices
representing the local characteristics of possible texture patterns.

Each co-occurrence matrix have a size of No ×Nd, where No, represents the
number of orientations between pixels to be compared and Nd, represents the dis-
tance. The orientations used are: 2350, 2700, 3150, 3600 degrees. With this strat-
egy are not compared twice a couple of pixels, because will always be compared
the central pixel with the neighbors pixels at the bottom and right. Further,
when the distance is greater than 1 adjacent pixels to the left of each orientation
are considered to be compared(see Fig. 3).

2.5 Feature Construction and Normalization

The co-occurrence matrices obtained in each subregion are taken as features.
Then to represent the features we built a feature vector, where each position
contains the four co-occurrence matrices obtained in the previous stage.
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Fig. 3. Orientations and distances between pixels to be compared in each subregion.

3 Experimental Design

The main experimental scheme consisted in comparing the proposed approach
with five (Daugman1 and Masek, Ma, Monro2 and OMs [11] two-lobe filters)
different feature extraction methods in the verification task.

The protocol adopted for the experiments, compares the probe data with all
labeled templates in the gallery. This sort of matching is also referred as 1:N
matching. The evaluation of accuracy was assessed by the degree of influence
on verification accuracy, estimated by Equal Error Rate(EER) and decidability
index (d′) [3]. The Equal Error Rate (EER) is the location on ROC curve, where
the False Reject Rate (FRR) and False Accept Rate (FAR) are the same. The
(d′) combines the mean and standard deviation of the intra-class and inter-class
measurement distributions.

The matching process between two normalized iris images is performed by
comparing the correspondent matrices between each subregion of images. Matri-
ces are compared using Euclidean distance and the result of each comparison is
summed. The final score will be the sum of scores obtained from the comparison
of each local regions.

3.1 Iris Databases

The proposed method was evaluated on three iris databases: CASIA-Interval,
CASIA-Thousand and UBIRIS-V1.

CASIA-Interval3, all iris images were collected under near infrared illumina-
tion with high quality, 320× 280 pixel resolution and contains 2639 images from
395 subjects. For the experiments we used the whole database.

CASIA-Thousand3 , contains 20,000 iris images from 1,000 subjects, collected
using IKEMB-100 camera. The main sources of intra-class variations in CASIA-

1 OSIRIS v4.1,http://svnext.it-sudparis.eu/svnview2-eph/ref syst/
2 USIT - University of Salzburg Iris Toolkit v1.0, http://www.wavelab.at/sources/
3 CASIA-Interval and CASIA-Thousands, http://biometrics.idealtest.org/

http://svnext.it-sudparis.eu/svnview2-eph/ref_syst/
 http://www.wavelab.at/sources/
http://biometrics.idealtest.org/ 
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Thousand are eyeglasses and specular reflections. For the experiments we used
a subset composed by 3,960 images from the all subjects.

UBIRIS-v1 [15], database is comprised of 1,877 images collected from 241
subjects. This database incorporates images with several noise factors, simu-
lating less constrained image acquisition environments. For the experiments we
used a subset composed by 1,207 images from all the subjects.

All databases were segmented and normalized using OSIRIS1. Subsets images
in (UBIRIS-v1 and Thousand) were chosen based on the quality of the result of
this previous step.

4 Experimental Results

This section show the results obtained by the experimental design oriented to
explore the capacity of the proposed feature extraction method to increase the
recognition rates independently of the image quality.

Table 1 report the results of the recognition accuracy in EER at ≤ 0.01%
FAR and (d′) on three databases. Fig. 4 show ROC curves.

Table 1. Experimental results on three iris image databases

Database Interval Thousand UBIRIS v1
Method EER(%) d′ EER(%) d′ EER(%) d′

Daugman 10.13 2.38 12.27 1.97 7.01 3.04

Masek 7.43 2.73 10.80 2.11 7.76 3.01

Ma 17.60 1.81 13.90 1.83 9.57 2.74

Monro 21.11 1.53 21.03 1.39 12.02 2.14

OMs 7.45 2.79 12.77 2.00 7.44 3.20

OCMF 5.5 3.18 15.2 1.76 6.95 3.12

The ROC curves in Fig. 4 show that, the OCMF marked improvement over
five compared methods in Interval (top left), slightly perform better than Daug-
man in UBIRIS (down) and similar performance in Thousands (top right).

The experimental results, as shown in Table 1, indicate that the proposed
OCMF allows and reduces the EER and increase the (d′). From the five evaluated
feature extraction methods is possible to see that the proposed OCMF method
obtains a better performance for two databases (Interval and UBIRIS-v1).

However on Thousands database this behavior is different, though OCMF
maintains a similar level of accuracy than the rest of the algorithms outperform-
ing only one of them (Monro) on the value of ERR. This fact could be caused by
the presence of eyeglasses and specular reflections in this database. This behavior
can also be produced by an incorrect selection of quantity and region distribution
in the OCMF representation. This problem should be addressed in our future
researches.
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Fig. 4. ROC curves for Interval (top left), Thousand (top right) and UBIRIS-v1
(down).

From the results in the UBIRIS-v1 database containing iris images taken in
the visible spectrum, under less controlled conditions than the images of Inter-
val databases, the performance of our method outperforms the rest of the ana-
lyzed algorithms. It can also be possible to foresee that it would be a promising
technique to address the problem of identification by iris in less cooperative
environments and different types of iris sensors.

5 Conclusions and Future Work

In this paper we have presented a new feature extraction method for texture
iris representation based on the Ordinal Co-occurrence Matrix Features. The
characteristics obtained are invariant to monotonic gray-level changes in the
pixel values, therefore can be applied to the iris images which may be obtained,
for example, under different illumination conditions.
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Experiments conducted on three databases and compared with five state-
of-the-art feature extraction algorithms demonstrate the ability of the proposed
representation to address the problem of robust feature extraction of iris allowing
the recognition of people with greater accuracy.

Some aspects must still be researched to achieve a better performance of the
proposed representation. The correct selection of sizes and the number of regions
based on the characteristics of the sensor and images taken by it is an area that
requires more research and experimentation.
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Abstract. Authentication is the verification of the identity of a person to access 
a resource or perform an activity. Authentication based on keystroke dynamics 
biometrics validates a legitimate user, comparing his typing on keyboard with 
his stored template. An important group of factors influences the capture of the 
raw data generated by the user’s typing. These Confounding Factors have been 
addressed in the literature from different approaches, and most of these studies 
agree that their influence affects the reliability of Keystroke Dynamics. In this 
research, a taxonomy of Confounding Factors is proposed, and several mitiga-
tion actions are discussed to face them. 

Keywords: Keystroke dynamic · Authentication · Behavioral biometric ·  
Confounding factors 

1 Introduction 

Authentication in computer security is the process of linking a user with their identity. 
The basis of authentication process is the knowledge that the system must have about 
authorized users, and the validation of this information. This validation is performed 
based on (i) What secret a user knows (e.g., password), (ii) What a user has (e.g., a 
token); (iii) Who is he/she (e.g., biometric traits), or (iv) Where he/she is (e.g., con-
nected from a particular network)[1]. 

In 1975, Spillane [2] suggested the user authentication based on the user’s typing 
behavior and Gaines, et al. in [3], were the first to study the possibilities of Keystroke 
Dynamics (KD) for this purpose. After that, KD has been the focus of multiple re-
search works, some of them dedicated to the negative influence of several factors in 
experiment results and practical systems [4-6].  

The present paper discusses KD and its relationship with those negative factors. A 
taxonomy to facilitate their study is proposed. The existence and poor understanding 
of these factors, their impact on KD Authentication Systems (KDAS) reliability, and 
the possibility of their exploitation by impostors, for example, to generate synthetic 
forgery attacks, were the main motivations to do this work. 

According to this, and to accomplish our aim, it is necessary to know the bases of 
KD briefly. Thus, this paper was organized as follow: KD systems are described in 
the next section 2. In section 3, the proposed taxonomy, and an explication about 
abovementioned factors are discussed. At the same time, mitigation actions that may 
be applied in experimental and real scenarios are proposed. Finally, the conclusions of 
the study are presented. 
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2 Keystroke Dynamics in Brief 

KDAS compare user’s templates with keystroke samples. In function of that, the user 
may type fixed text when a predefined text is required or free text when restrictions 
about content or length of text are not necessary. KDAS are used in a static manner, 
for example, at the beginning of a session, or in a dynamic (continuous) way while the 
user's session lasts.  

Five recommended components to be used in KDAS are described in [7]. That is, 
(a) Data acquisition: Original data are captured and processed. (b) Features extraction: 
Raw data acquired are processed and users’ profiles are conformed, which contain 
extracted user’s traits. (c) Classification and matching: Selected criteria are applied to 
categorize data. (d) Decision: User’s data are compared using selected algorithms 
(classification or matching). Finally, (e) Adaptation: Although an enrolled user have 
been correctly recognized by the system, is recommended that the user re-enroll to 
add new information and update stored user profile.  

According to the literature, the features distinctive of the user’s typing behavior, 
but not only, are: (1) the pressure that is exerted on each key; (2) the position adopted 
by hands when user types; (3) functional relationship between fingers and keys; (4) 
the sound generated by keystroke; (5) the vibration generated by keystroke; (6) the 
sequence used to perform an action; (7) quantity of errors committed when writing 
and methods to correct them; (8) the use of special keys; (9) keystroke speed (total 
typing); (10) time interval that remains on a pressed a key, and (11) time interval 
between pressing a key and then another. 

The first five features require special devices to be gathered (cameras, pressure 
sensor, motion sensor or microphone). The rest only needs the keyboard. Most public 
research is focused on the use of time intervals, viz. 9, 10 and 11. Of these, the two 
latest features have attracted more interest. For example, in [7] was reported that the 
90 percent of the studied works used features based on timing, and only 5 percent of 
them were focused on pressure. According to literature, all mentioned characteristics 
are present while users are typing (universality), which helps distinguish one user 
from another (uniqueness), and they permit to recognize a person for long periods of 
time (permanence) [1]. 

Whereas the user types, a sequence of two consecutive events take place: a) Key-
Down, when he/she presses the key, and b) Key-Up, when the same key is released. 
While a keystroke occurs, the KDAS must capture the key's identification (or key’s 
name), Key-Down's timestamp and Key-Up's timestamp. Knowing these data, it is 
possible to calculate how long it takes the user to press two keys (digraph), three keys 
(three graphs), or several consecutive keys (n-graph), and a posteriori, it is possible to 
extract features, and obtain the user’s templates. 

2.1 Keystroke Dynamics Classification 

Classification methods for KD have been treated in the literature through different  
approximations, using classic statistical methods, machine learning, with emphasizing 
in neural networks, pattern recognition techniques, and hybrid approaches. In [1, 7-10] 
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surveys of these methods are presented. From analysis of these studies, two issues stick 
out, the variability in the design of experiments and the insufficient amount of public 
data sets, making it too complex the execution of performance analysis and comparison 
of algorithms [5]. This complexity increases due to the influence of a group of  
confounding factors (CF), which are ignored by most of researches when designing 
experiments, when creating the users' templates database, and worse, when a KDAS is 
applied in real scenarios. Section 3 is dedicated to explaining CF. 

2.2 Evaluation Metrics 

To evaluate the performance of a KDAS in experimental scenarios [1], four metrics 
are applied. (i) False Rejection Rate (FRR): percentage of genuine users rejected. (ii) 
False Acceptance Rate (FAR): percentage of impostors accepted. (iii) Equal Error 
Rate (EER): Point on the ROC curve where FRR is equal to FAR, and (iv) Half-Total 
Error Rate (HTER), which is defined as the mean of both error rates FAR and 
FRR[11], that is, HTER = (FAR + FRR) / 2. 

For systems with very high security needs, it is desired to reduce the value of FAR 
to the minimum possible [11, 12]. In contrast, if the system needs standard security, 
but emphasizing in user’s acceptation, similar and small values of FAR and FRR are 
preferred. In addition, selecting the adequate performance metric depend on how you 
design the authentication system. For example, if the intention is to develop a conti-
nuous authentication system, it is necessary to collect continuous or periodically the 
user’s keystrokes, and, on this basis, both ANIA (Average Number of Impostor Ac-
tions) as ANGA (Average Number of Genuine Actions) could be most appropriated 
to evaluate the system performance than the aforementioned metrics [13]. 

3 Confounding Factors (CF), Background and Related Works 

The CF in KDAS are internal or external elements that affect in some way the value 
of data captured at system's stages, causing error rates unexpected variability, and 
misinterpretation of outcomes.  

Problems associated with the inability to repeat experiments, or variability in the 
results of applying the same classifier to different data sets, are described in the litera-
ture as probable effects of CF. For example, Maxion, in an excellent analysis [14], 
which explains different CF that according to his criteria had disturbed KD experi-
ments conducted up to that time. Maxion’s article has two antecedents. First, [15], 
where the dependence of the KDAS of the internal clock of the computers, and the 
participation of the operating systems in this dependence are demonstrated. And 
second, [4], where authors measured the effects of 5 factors over the KDAS’s data 
capture mechanism, and demonstrated how one of them, the Operating System load 
(I\O load specifically), had affected that process. In that paper, the analyzed factors 
were included in Environmental class. In contrast, in our work, the same factors are 
classified into the Technical factors class because, in our opinion, this class does not 
influence the way of the user's typing, as Environmental factors do. See Figure 1. 
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Lee et al. [16], referred that keystroke-based authentication systems show much 
higher error rates than others behavioral biometric systems because of the influence of 
several factors, between them, types of keyboard, physical status of user, etc. On the 
other hand, in [17], authors identified six factors that, in their view, “might influence the 
error rates of keystroke-dynamics detectors”. These are, the algorithm, training amount, 
feature set, updating, impostor practice and typist-too-typist variation; some of them 
included in Table 1 and grouped as part of the Experimental and System Design class. 

3.1 Confounding Factors Taxonomy  

According outcomes from review of current papers about KD, what stands out is the 
fact that the authors correctly identify most of the Confounding Factors, but assuming 
that those factors are inherent to the environment where the experiment has been ap-
plied or the behavior and characteristics of users. Without going to judge the validity 
of this approach, the premise in this paper is that by mixing the origin of the CF, it is 
more complicated to determine how to minimize its effects on experimental and real 
scenarios. Then, in the light of our knowledge, and according to the reviewed litera-
ture, there are at least four sources of CF (see Table 1): 

1. Technical Type: For KDAS, it is very important the precision of raw data cap-
tured. As it was aforementioned in section 2, the majority of research works about 
KDAS have focused on features based on time intervals. The captures of these pe-
riods between keystrokes depend on the computer’s hardware, Operating System, 
keyboard and application used in keystrokes acquisition. In [15] and [18], authors 
reported the incidence of these factors in their measurements, which showed signif-
icant variations of error rates, while Villani, et al. in [19] demonstrated the impor-
tance of using the same keyboard in experiments 

In order to identify in practice this kind of factors (see Figure 1), it is necessary 
to understand that they do not affect the way of the user types, but the data value 
captured by the sensor, which can be considered as the union of the keyboard, the 
computer hardware, the Operating System and the final application. Knowing how 
each factor affects the samples, it allows us, from the design phase, to consider 
how to mitigate their influence, for example, by removing the affected data sam-
ples, and include automated controls to detect inappropriate sensors. 

Another important characteristic of Technical Factors is their influence over all 
users involved in tests. That is, no matter who is the user, his keystroke timing 
measures will be affected by the combination of the computer’s hardware, Operat-
ing System, keyboard and the application used in keystrokes acquisition.   

2. Environmental Type: This class includes every elements belonging to the location 
where the experiment takes place or where the final application will run, and that 
they may affect the way the user types: the illumination, keyboard position in relation 
to the user, room temperature, possibility of interruptions (e.g., colleagues, phone 
calls), and others. Some authors refer to these CF, but no revised article demonstrates 
the existence of a relation between them and the error rate variability[20]. On the 
above, it is logical and obvious to think that the environment influences on the mood 
of the user, and this, in turn, affects his way of typing. See Figure 1.  
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Table 1. Confounding factors taxonomy 

Confounding Factor Description Type  Factor 

Technical 
 

Operating System (OS) [11, 15] Data from keyboard events are recorded 
running system-calls.  

Keyboard [11, 19] Keyboard type: shape, language, keys’ 
positions (ZERTY, QWERTY…), tech-
nical characteristics (interface), defective 
device. 

OS load IO load, multithread, etc.  
RAM and µprocessor [18] Amount of RAM, type of µprocessor 
Level of data capture For instance: driver or application level 
Computer E.g., Laptop or Desktop 

Environment 
Lighting Low light 
Keyboard position Position of keyboard to user 
Interruptions Colleges, phones, etc. 

Behavioral [21] 

Transients Physical tiredness, emotions, 
stress, drowsiness   Impact on the way of user’s typing 

Permanents User experience  
User age, soft biometric [22] 

Experimental 
and system 

Design 
                 

Design 

Text Type Fix (structured) or Free (unstructured) text 
Length How many characters   

Monitored Continuous While user types 
Periodic Time windows 

Task Copy from dictated or reading 

Database 
Type Public or private 
Size How many samples per user? 

Detectors 
Classifier and metrics Statistical, Machine Learning…  
Feature Set Dimension 

Metrics  Performance metrics to continuous or 
static authentication 

Subjects 
(users & 
impostors) 

Subjects number Class number 
Number of attempts and time 
between them. 

Impact on user experience 

Training amount More training, less error rate  

3. Behavioral Type: This kind of factor includes mood, fatigue, and others. In [23] 
these factors are named Transient factors, but the user experience is not a temporal 
element, neither the user age, and both affect the way the user types. In [24], the re-
lation between emotional states and the variations in the rhythm of fingering if 
proved, and in [21], was demonstrated how the user’s emotional states affect for 
short time his/her typing rhythm.  

4. Experimental Type: These factors are discussed in most of the reviewed papers, 
but very few of them deal with this topic in the necessary depth, despite their im-
portance. All experiments designed and carried out with the required quality must 
ensure repeatability, reproducibility and validity. Under those principles, Maxion 
in [14] proposed to take into account a set of environmental factors (including into 
this denomination our Technical class) and behavioral factors in the design of ex-
periments, due to the demonstrated influence of these factors on experimental out-
comes. Before that, Killourhy and Maxion [5] showed the drawbacks to trying to 
compare the experimental results published until that moment, precisely due to the 
influence of several factors described in our taxonomy inside the current class. 
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Fig. 1. Influence of Confounding Factors over users and data collection process 

3.2 About Mitigations Actions 

In general, the correct design of the experiments ensuring their repetition, reproduc-
tion and their validity should be the first step in any debate about how to mitigate the 
influence of CF in KDAS. And second, but not less important, it is essential to under-
stand that CF are probable sources of error, and though their most significant impact 
is perceived in the assessment of the results, it is practically impossible to recognize 
their presence without knowledge about their existence.  

On this basis, it is necessary to establish as the requirements for the execution of 
the experiments and developing of an application of KD-based authentication, the use 
of specific hardware and software (e.g., computer, keyboard, memory RAM, Operat-
ing System). In addition, it is essential to include automatic controls to ensure com-
pliance with these requirements inclusive until level code. 

For further analysis the following works are recommended: [5], where the authors, 
Killourhy and Maxion, presented some of the ways to mitigate the influence of Experi-
mental CF; and [25], where Deng and Yu Zhong proposed the application of the Identi-
ty Vector (i-vector) method. This is a new approach taken from the voice biometric 
domain, and they demonstrated how much it could help to mitigate CF actions. The own 
Killourhy, in [6], proposed a much more comprehensive approach to face CF.   

To mitigate the influence of technical factors, it must first understood that they act 
like a monolithic sensor, affecting each other, while causing changes in the readings 
of the keyboard event times. Therefore, it can be understood to be the same influence 
for all users, which is true, but it is not all the time, because it depends on all the va-
riables involved. For example, the characteristics of the microprocessor and RAM are 
constants whose influence varies according to the load of operating system tasks. And 
so on, a similar analysis can be performed to all components of such factors.  

Then, it is possible to adjust the operating system timer (for example, to 1 millise-
cond) at the enrollment stage, or use the same trick to the continuous authentication 
while the user types. To implement both ideas, it is recommended to study carefully 
its negative effects, and take into account the differences between laptops and desktop 
computers[26].  

Environmental 
factors 

Technical  
factors 

Experimental 
Factors 

 Error rate variability 
 False outcomes  
 KD reliability 

Data collected 

Behavioral 
factors  

User’s way of 
type  

Legend:  
        All users are affected of different way 

        All users suffers the same affectation 
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4 Conclusions 

Keystroke dynamics is a cost effective mechanism for security and authentications 
systems. Its development has been marked by the negative effect of several factors, 
which cause false experimental outcome and error rate variability, wounding the KD 
reliability. 

In this work, a taxonomy of Confounding Factors is proposed. This classification 
was obtained from the analysis of current and public papers, which are focused on 
KDAS particularities, and their relation with CF. In addition, this work aims to facili-
tate the study of CF sources, and to contribute with other researchers to improve the 
design of experiments and final applications for KDAS. 
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Abstract. The iris is considered as the most unique phenotype feature
visible in a person’s face and has been explored in the last three decades.
Outstanding approaches are known for iris recognition task when the
image is acquired in a well controlled environment. However, the problem
is still challenging in a noncooperative environment. Having this context
in mind, and from a learning representation perspective, in this paper, we
propose the use of denoising autoencoders networks to create descriptors
to iris recognition. We extract features from six regions of the iris and also
use a specific scheme in the literature that employ a set of thresholds for
iris acceptance / rejection. We perform experiments on two well-know
databases, by comparing our descriptor with 2D Gabor and Wavelet
representations of implementations of us. In both data sets, the proposed
descriptor outperforms these features, and presents comparable results
with the best performing method in a NICE contest.

Keywords: Learning representation · Denoising autoencoders · Neural
networks · Iris recognition · Noncooperative environment

1 Introduction

Modalities acquired from the eye are considered as the most unique phenotype
feature visible in a person’s face [4]. It is composed of particular and random
textures for each individual, which are even different for each eye of the same
person, which increases its uniqueness (possibility of 1 among 1072 individuals),
making even difficult to fraud. In constrained environments, in short distances,
and smaller databases, there are currently efficient and effective methods for
correct (or almost perfect) iris identification [3,1]. Nonetheless the main question
is how to identify it on adverse conditions in natural environments.

Thus a major problem in using iris for person identification is in its recogni-
tion on noncooperative environment where the images could be acquired at an
uncontrolled distance, moving people, and use of some accessories such as lenses
and glasses, among others. Difficulties also increases when the system runs on a
large dataset, with degraded images by light reflections and other noise, where
a misidentification may cause great damages.

c© Springer International Publishing Switzerland 2015
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In general, an iris recognition system is divided in six main steps such as:
image acquisition; iris segmentation; normalization; feature extraction; represen-
tation of features; and classification. How to represent the information presented
in the iris image (feature extraction step), specifically on degraded ones, are often
discussed and investigated in works related to iris recognition in noncooperative
environments.

Proença & Alexandre [12] divide the iris into two independent blocks, one
composed of four sub-regions and the other composed of two sub-regions.
Although the sub-regions of the same block are independent (non-overlapping),
there is overlap among the sub-regions of distinct blocks. The rationale for this
division is the robustness to noisy environments and loss of biometric signature.
From these sub-regions, six dissimilarity values extracted using a 2D Gabor
descriptor are obtained and then fused by means of a classification rule, which
is also employed in our work and involves an ordered set of optimized thresholds
obtained to minimize the false rejection (false negative) and false acceptance
(false positive) rates.

Szewczyk et al. [14] initially segmented the iris image and then pre-processed,
using the following steps: blue channel removal; conversion to monochrome
images; histogram equalization; and removal of reflections, eyelashes, and occlu-
sions caused by eyelid. They also analyze and choose the best Wavelet function
for iris feature extraction.

Other works in the literature coping with iris images in noncooperative envi-
ronment are focused on effectiveness comparison of different strategies. In [5],
the features extracted from the LoG-Gabor filters, Haar wavelet, Discrete Cosine
Transform (DCT), and Fast Fourier Transform (FFT) are compared. Marsico et.
al. [7] combine two techniques, Linear Binary Patterns (LBP), which produces
a local texture description, and Discriminable Textons (BLOBs), which high-
lights uniqueness of the texture (furrows, crypts and spots), and verify that the
resulting method increases the final recognition performance.

Despite the large number of techniques presented in the literature for iris
recognition in noncooperative environments, here we propose the use of Denois-
ing Autoencoder Neural Network (DAeNN) to extract features following the
classification scheme proposed in [12]. To the best of our knowledge the DAeNN
technique for iris feature extraction has been used here for the first time.
The rationale to use DAeNN in the noncooperative scenario is it capability
to deal with noise, and it is the main contribution to the literature of our
work and brings promising results as stated below. To validate our proposal the
databases CASIA-IrisV4 database [2] and UBIRIS.v2 [11] are used. The CASIA-
IrisV4 database is very popular among iris recognition methods and UBIRIS.v2
database includes images captured in unconstrained conditions. By comparing
our descriptor with 2D Gabor [12,16] and Wavelet [14] representations of imple-
mentations of us, in both data sets, the proposed descriptor outperforms these
features, and presents comparable results with the best performing method in a
NICE contest [10].
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Fig. 1. Denoising Autoencoder for Iris Recognition problem.

2 Proposed Descriptor

In this section, we present the proposed descriptor for iris recognition based
on denoising autoencoder representations. The steps of segmentation, normal-
ization, and partition are straightforward and identical to the ones proposed
in [12] and due to space constraints are omitted. Although the classification step
used here is also similar to [12], a small modification in it is made and then it
presented.

2.1 Feature Extraction

A denoising autoencoder network is employed for each iris partitions as Fig. 1
illustrates. Then, six independent biometric signatures are created, each one
corresponding to a specific iris region. It is worth mentioning that we used the
same autoencoder network topology to all partitions.

Autoencoder Neural Network. The Autoencoder is an unsupervised feature
learning technique. Autoencoder can be considered as a neural network aiming to
learn an identity function by setting the output equal to the input, with the less
possible amount of error. During this process, the inputs are encoded (mapped)
to a new representation, i.e., the hidden layer

h(x) = f(Wx + b), (1)

where h(x) is the hidden layer (the computation result), f is called activation
function, x the input values, and W and b parameters are the weight matrix and
the bias vector, respectively. The decoder portion of the network maps back the
output of h(x) to Y , i.e.,

Y (h(x)) = f(Wy(h(x)) + by), (2)



Denoising Autoencoder for Iris Recognition in Noncooperative Environments 203

where Y is the autoencoder output, and it should be considered as a prediction
of X. While conceptually simple, the autoencoder technique has been shown
to achieve state-of-the-art results in several classification problems [15,8,9], spe-
cially when deep/stacked architectures are employed.

The autoencoder architecture used here consists in one input layer, one out-
put layer and one hidden layer. The layers are composed of artificial neurons
in which each layer is fully-connected to each other. Each connection from the
hidden layer is a weighted output of input neurons (an iris image) and its con-
nections to the output layer should reproduce its own input.

The learning process of a neural network consists of obtaining the suitable
weights for the connections by means of a training algorithm. Here we used a
well-know backpropagation algorithm. The inner hidden layer outputs are the
new feature vector (descriptor), and it can be calculated according to

hw,b(x) = f(WTx) = f(γWixi + b). (3)

An approach to make the autoencoder more robust is to use a denoising
algorithm [15]. The denoising algorithm consists in training the autoencoder
with a corrupted version of the training images as input. According to Vincent
et al. [15], the denoising phase is specially important to increase generalisation
power of the network, by making it less vulnerable to input noise and other
artefacts. Thus, this is the rationale to use autoencoder as feature extraction
in noncooperative environment iris recognition, where the iris is often noisy or
have some parts obfuscated.

2.2 Classification

Initially, dissimilarities between two images, for all six sub-regions Di =
HD(I1i , I2i ), are calculated in which i = 1, ..., N (N = 6 is the number of sub-
regions), I1i the sub-region i of the image 1, I2i the sub-region i of the image 2.

The Euclidean Distance (ED) is used to compute the dissimilarity between
images. Given two feature vectors sets A = {a1, . . . , aN} and B = {b1, . . . , bN}
the Euclidean Distance is given by

ED(A,B) =

√√√√ N∑
i=1

(ai − bi)2 (4)

Given the sets of dissimilarities Di = [D1, ...,DN ] and the thresholds Ti =
[T1, ..., TN ], explained later, the next step is to count the number of Dj ∈ D that
are less or equal to Ti:

C(D,Ti) =
N∑
j=1

Π{Dj≤Ti}, (5)

where, Π{.} is the indicator function.
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The images I1 and I2 are classified as corresponding to the same iris if:

∃i : C(D,Ti) ≥ i, i = 1, . . . , N. (6)

3 Experiments

In this section, we describe the experiments performed in order to validate
the proposed method. Initially, we describe details of the iris images and their
databases and then the results of the experiments performed are presented. The
evaluation of the proposed descriptor employs the use of the Equal Error Rate
(ERR) which in turn is defined as the point in which the False Acceptance Rate
(FAR) is equal to the False Rejection Rate (FRR) [12,3]. Finally, a brief discus-
sion of the results is made.

3.1 Databases

The CASIA-IrisV4 database [2] is one of the most popular database for iris
recognition evaluation. CASIA-Iris.v4 contains a total of 54,601 iris images from
more than 1,800 natural individuals and 1,000 virtual individuals. The iris images
of this database have low noise influence due to its acquisition protocol, where
images are acquired in a very constrained and controlled environment.

In the UBIRIS.v2 [11] database, the images were captured in unconstrained
conditions, such as at different distances, in motion and in the visible wavelength,
which allow images with more realistic noise factors. The UBIRIS.v2 contains
11,102 iris images from more than 261 individuals.

In our experiments, 800 images of 80 subjects (10 images per individual) of
UBIRIS database are used. Same amount of images are considered for CASIA
database. Worth mentioning that, for both databases, we randomly select the
individuals as done in previous works [12,14,13], which difficults a fair comparison
between published works. However, we propose to let available our selection of
individuals and also all the source code used in a webpage once the paper is
accepted to publication to allow further comparisons.

For both databases, images from 40 individuals were used in the training
phase for estimating the classifying thresholds, lefting 400 images of the other
40 individuals for testing/evaluation.

3.2 Results

In the followings, we report the results of our experiments. Initially, we evaluate
the results obtained by using the Denoising Autoencoder descriptors and, by
varying some parameters of the network and the increments used to obtain the
classification thresholds. Finally, we took the parameters that obtained the best
results for each descriptors and evaluated it on smaller thresholds values.



Denoising Autoencoder for Iris Recognition in Noncooperative Environments 205

We stressed that we follows the same evaluation protocol used in previous
works on literature to report the results here [12,14,13]. In that sense, we estimate
the classification thresholds in the training set, and in the evaluation/testing set
all images of each individuals are taken as query image in a scheme similar to
leave-one-out.

As several other works in the literature, we use the equal error rate (EER)
as our effectiveness measure of analysis.

Autoencoder. In single layer denoising autoencoder neural network, several
parameters should be adjusted such as: the number of neurons in the layer; the
learning rate; the number of training epochs; and the percentage of corruption
noise applied on input of network. For this experiment we keep the normalized
input image with a fixed sized of 16 × 128 pixels, and only one hidden layer,
as an initial guess. Thus, a gridsearch is applied in order to find the remaining
parameters that will produce the best results for the training phase. We vary
the number of neurons in each hidden layer in 6 possibilites [15 20 30 40 50
100]. The network learning rate and the percent of corruption noise both vary
in the range [0.3-0.1] with a step of 0.1. The number of training epochs used
during trainig was [3000 6000]. The gridsearch figures was proposed based on
empirical experimentation previously conducted. From the EER values we have
obtained, we observed that the higher the number of epochs for training, the
better values DAeNN produced. Also, we observed that for CASIA-IrisV4, less
input noise level produced best results while UBIRIS.v2 database required higher
noise level.

We selected the parameters that have achieved the lowest EER, 0.42%
for CASIA V4 and 14.94% for UBIRIS V2. It is worth noticing that best
NICE:II participant report EER of approximately 12% on a database similar
to UBIRIS V2. We have also run the same methodology on two widely used

Table 1. Results comparison in CASIA

Method
Input EER (%)

incr. 0.025

Proposed descritpor 16× 128 0.42
2D Gabor based [12] 16× 128 2.55
Wavelet based [14] 16× 128 3.84

Table 2. Results comparison in UBIRIS

Method
Input EER (%)

incr. 0.025

Proposed descriptor 16× 128 14.94
2D Gabor based [12] 16× 128 23.14

Wavelet [14] 16× 128 18.48
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Fig. 2. The ROC curve obtained by the proposed method in the UBIRIS database
considering an increment value of 0.025 in the classification threshold step. Autoencoder
(AE) parameters: 30 neurons on hidden layer; noise level of 30%; learning rate of 0.1.
Mother wavelet used: rbio3.1.

feature extraction techniques for the iris recognition problem: 2D Gabor [12,16]
and Wavelet [14,6]. Methods based on 2D Gabor descriptor embedded com-
mercial of-the-shelf systems for iris recognition and according to [14] wavelet
transform is one of the most relevant tool for extract features for iris recogni-
tion. Fig. 2 illustrates ROC curves for our proposed descriptor and for the others
in comparison. The superiority of our proposal is remarkable.

3.3 Discussion

Results presented on Tables 1 and 2 show that DAeNN can be a promising
tool for the iris recognition problem, specially in noncooperative environments.
Experiments show that for UBIRIS V2 database, 30% of corruption on training
images during the DAeNN training phase produces the best results.

4 Conclusion

In this work we addressed the problem of iris image representation in noncoop-
erative environment using the denoising autoencoder technique. We performed
experiments on two databases (UBIRIS and CASIA), and the proposed descrip-
tor outperforms popular feature extraction methods, such as 2D Gabor [12,16]
and Wavelet transform [14]. The proposed descriptor also showed comparable
results, in terms of EER, with the best performing method in a NICE.II con-
test [10], even on UBIRIS database. Our result suggest that denoising autoen-
coder can be a promising tool for iris representation. As future work we plan
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to investigate stacked (deep) autoencoders architectures aiming to improve iris
recognition effectiveness in noncooperative environments.

Acknowledgment. The authors would like to thank to UFOP, CAPES, and CNPq

(grant #307010/2014-7).

References

1. Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris bio-
metrics: A survey. Comp. Vision and Image Understanding 110(2), 281–307 (2008)

2. Chinese Academy of Sciences (CASIA): CASIA Iris Image Database. http://
biometrics.idealtest.org/findTotalDbByMode.do?mode=Iris (accessed April 2015)

3. Daugman, J.: New methods in iris recognition. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics 37(5), 1167–1175 (2007)

4. Daugman, J.: High confidence visual recognition of persons by a test of statistical
independence. IEEE TPAMI (1993)

5. Kumar, A., Passi, A.: Comparison and combination of iris matchers for reliable
personal authentication. Pattern Recognition 43, 1016–1026 (2009)

6. Li, P., Ma, H.: Iris recognition in non-ideal imaging conditions. Pattern Recognition
Letters (2011)

7. Marsico, M.D., Nappi, M., Riccio, D.: Noisy iris recognition integrated scheme.
Pattern Recognition Letters (2011)

8. Mohamed, A.R., Sainath, T.N., Dahl, G., Ramabhadran, B., Hinton, G.E., Picheny,
M.A.: Deep belief networks using discriminative features for phone recognition. In:
IEEE ICASSP, pp. 5060–5063 (2011)

9. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, vol. 2, p. 5 (2011)

10. Proenca, H., Alexandre, L.: Toward covert iris biometric recognition: Experimental
results from the nice contests. IEEE TIFS 7(2), 798–808 (2012)
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Abstract. Fingerprint is the most widely used biometric trait. Many
factors may cause the quality degradation of fingerprint impressions:
users, sensors and environmental facts. Most of the fingerprint-based bio-
metric systems need an accurate prediction of fingerprint quality. A fin-
gerprint quality measure can be used in enrollment or recognition stages,
for improving the AFIS performances. In this work, a new fingerprint
image quality estimation method guided by how experts classify finger-
print images quality is presented. By using six features, a continuous
quality value is calculated. Experiments were performed in a well-known
database. The proposed approach performance was evaluated by mea-
suring its impact on the recognition stage and comparing it with the
NFIQ quality algorithm. The Verifinger 4.2 was used as matching algo-
rithm. The results shown that the proposed approach has a very good
performance.

Keywords: Fingerprint ·Quality estimation ·Orientation map · Coher-
ence value · Ridge frequency

1 Introduction

Biometrics is the study of measurable biological characteristics for automatic
authentication purposes. Some of these human characteristics are fingerprints,
palms, facial patterns, eye retinas and irises, voice patterns, hands, gait, etc.
Currently, fingerprints are one of the most used biometric trait, in both, civilian
and forensic applications. Fingerprints can be classified into three types depend-
ing on the acquisition methodology: rolled, plain and latent impressions. Rolled
and plain fingerprint impressions are acquired with the supervision of an expert.
Rolled impressions are obtained by rolling the finger from one side to the other
to obtain the entire fingerprint pattern, while plain impressions are captured by
pressing down the finger on a flat surface, without rolling it [7]. It is expected
that these two kind of impressions have good quality due to their acquisition way.
This is different for latent fingerprints, that are lifted from surfaces of objects
touched by a person in a crime scene. Normally, latent impressions are partial
fingerprints and have poor quality.

c© Springer International Publishing Switzerland 2015
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Automatic Fingerprint Identification Systems (AFIS) can be used in criminal
investigations, attendance system, access control and others. Its performances
are highly influenced by the quality of the enrolled fingerprints in the database
and also by the quality of the query fingerprint. Experts must be involved in
the process of acquiring reference fingerprints (database), for recapturing fin-
gerprints in cases where poor quality is noted [3]. But, this process still needs
automatic improvements, either to not storing corrupt information in databases
or for knowing how reliable the features extracted from fingerprints can be. That
is why, an algorithm that correctly estimate a quality value from fingerprint non-
latent images is needed.

In this work, a new method for estimating a fingerprint quality value is
presented. In section 2 a review of features used in other works of fingerprint
quality assessment is given. In section 3, features and a general background of the
proposed method are discussed. The new method performance is evaluated and
its results are compared with another fingerprint quality algorithm in section 4.
Finally, conclusions and future works are presented.

2 Related Work

A lot of approaches have been proposed in order to obtain a fingerprint
image quality value. This value can be used in both enrollment and recogni-
tion/identification stages depending on user needs. A comparative study of some
of the more important works is presented by Alonso-Fernandez et al. [1]. Most
of the algorithms found on the literature are based on the extraction of local
or global features. An overall quality value is calculated using a combination of
these features. Other works address the quality assessment task as a classification
problem.

Some features used for quality assessment are based on pixel intensities like
Local Clarity Score (LCS) [4], low contrast map [10], gray intensity mean, gray
intensity standard deviation [2][8][12], uniformity, smoothness, inhomogenity
[2][12] and texture features [13]. Other features are extracted from the spec-
tral domain like power spectrum and the response of Butterworth band-pass
filters using Fast Fourier Transform [8], or global spectrum and relative spec-
tral density [9]. Also, features characterizing the wavelength and amplitude are
extracted from the wave representation of the ridges [2]. On the other hand,
features based on the orientation field are also used. Examples of this are ori-
entation certainty level (OCL) [6], Local Orientation Quality Score (LOQS) [4],
direction map, low flow map, high curve map [10], orientation coherence [12],
relative spectral orientation continuity [9], orientation certainty and consistency
[2] and ridge-line smoothness [11]. Also, penalty due to the backgrounds noise
and the quality of the core point position are features used [12]. Recently, minu-
tiae features have been used to obtain a quality measure. Examples of them
are the minutiae extractability [11], the number of total minutiae found and a
quality minutia histogram [10]. Eight other features based on minutiae number
and DFT of their three components have been previously used [13]. Another
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approach, computes a quality value based on unreasonable minutiae structures
detected from the minutiae Delaunay triangulation [14].

Some approaches compute a quality value for each analysed block [2][6][8][10]
and in a final step an overall quality value is obtained by combining the blocks
classification results. In other cases a combination of the features values is used
to estimate the final quality measure [12].

There are cases in which classifiers are used to generate a quality class. In
a previous work, a neural network was used to classify a 11-dimensional feature
vector extracted, into one of the quality levels defined (poor (5), fair (4), good
(3), very good (2), and excellent (1)) [10]. In another proposal, a hierarchical
k-means clustering algorithm was utilized to classify the fingerprint image in
one of four classes (good, dry, normal or wet) [8]. Also, a genetic algorithm was
proposed in another work to computed the quality image metric [13].

3 Proposed Fingerprint Quality Features

The fingerprint quality must be a measure of its efficiency in aiding recogni-
tion to a person [3]. In order to obtain a reliable quality value for fingerprint
images, both, local and global characteristics of the biometric sample should
be examined. The proposed quality estimation is inspired by how experts work.
They take into account two principal features to classify the fingerprint quality:
completeness of the three ridges systems (marginal, nuclear and basilar) and con-
sistency (clarity) of the ridges pattern. A fingerprint impression has high quality
when it has a clear ridge pattern and their three ridges systems are complete. To
automatically describe these two characteristics, six features describing them are
extracted. First, the region of interest (ROI) is detected using a segmentation
method implemented by our investigation group, and a mask is obtained. Then,
the minimum rectangle containing the ROI is located. A preprocessing step is
applied to the image where a median filter and a normalization are performed to
remove small noises in the ROI. The orientation map from the ROI is calculated
with the gradients of the fingerprint image [5]. Using the fingerprint image, its
ROI mask, and the orientation map, features that characterize the ridges sys-
tems completeness and the ridges pattern clarity are extracted. These features
are invariant to the image texture, due to the high relation of texture with the
enrollment step. Finally, an overall fingerprint image quality is estimated.

3.1 Ridges Pattern Clarity Features

One of the main features extracted from fingerprints is the orientation map. It
describes the general flow direction of fingerprint ridges. The orientation map Φ
is a matrix where each element Φij denotes the average orientation of the ridges
in a neighbourhood of pixel (i, j) [7]. A very common way for calculating the
ridge orientation is the computation of the square gradients Gxx(i, j), Gyy(i, j),
Gxy(i, j) for pixel (i, j) [5].
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A measure defined for indicating the behaviour of the local strength of the
directional field is the coherence of its orientation vectors ΩΦ defined in the
equation 1 [5].

ΩΦ(i, j) =

√
(Gxx(i, j) − Gyy(i, j))2 + 4Gxy(i, j)2

Gxx(i, j) + Gyy()i, j
. (1)

This is why, the coherence is used for separating orientation in good or bad.
A binary coherence map GΩΦ

is computed, where GΩΦ
(i, j) takes value 1 (good

coherence) if the coherence of the pixel (i, j) is equal or higher than a threshold
ξ and 0 (bad coherence) otherwise, as follow:

GΩΦ
(i, j) =

{
1 if ΩΦ(i, j) ≥ ξ,
0 otherwise. (2)

Using this, three features are defined in order to describe the ridges pattern
in the fingerprint:
Orientation Strength. Because of the shape of fingerprint ridges, orientation
changes must be continuous and smooth. In this work is used the amount of
pixels with good coherence for calculating a value between 0 and 1. This value
describes the continuity and smoothness of the orientation map of a fingerprint
impression, as follow:

Sgos =
|Pgos|
|PROI | , (3)

where Pgos is the set of pixels (i, j) where GΩΦ
(i, j) has value 1, PROI is the set

of pixels present in the ROI, |Pgos| and |PROI | are the cardinality of each set.
While better is the quality of the fingerprint, closer to 1 is Pgos.
Orientation Strength in Center Area. Singular points and fingerprint Henry
classification are features commonly used by recognition algorithms. For their
reliable extraction the center area of the fingerprint must have very good quality.
Therefore, a proportion of pixels with bad orientation strength around the center
area is presented:

Sbosc =
|Pbosc|

(w ∗ 2 + 1)2
, (4)

where w is the block size used for choosing the pixels that will be analysed,
Pbosc is the set of pixels with bad coherence present in the neighbourhood with
window size w around the ROI center and |Pbosc| is its cardinality. Sbosc moves
between 0 and 1 and it is inversely proportional to the fingerprint quality.
Ridge Frequency. The ridge frequency is a popular feature extracted from
fingerprints and it has been used for enhancement recognition algorithms. This
feature describes the ridge distribution in a block. For describing the ridge distri-
bution in the entire fingerprint, a proportion of blocks with good ridge frequency
with respect to all analysed blocks is proposed:

Sgrf =
|Pgrf |

Tb
, (5)
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where |Pgrf | is the set of blocks where its ridge frequency is between two thresh-
olds f1 and f2 experimentally chosen, |Pgrf | is its cardinality and Tb is the total
analysed blocks with an empirically estimated size.

3.2 Ridges Systems Completeness Features

In dactyloscopy, experts separate the fingerprint in three ridge systems: marginal,
nuclear and basilar as can be seen in figure 1. In this work, the completeness of
these ridges systems is used to classify the fingerprint image quality.

Fig. 1. Example of the three ridge systems of a fingerprint: marginal(blue, upper area),
nuclear (red, central area) and basilar (green, bottom area).

The completeness of the ridges systems gives an idea of how much of the
fingerprint is captured in the impression. The region of interest is the area that
will be analysed, so a set of three features were defined to describe its size:
Region of Interest. The ROI is the region chosen for being processed in later
steps of the biometric systems (feature extraction and matching). Its size is
highly important for obtaining an accurate performance on these stages. With
the aim of describing it, the proportion of the amount of pixels belonging to
ROI with respect to the number of pixels present in the minimum rectangle
containing this region is calculated:

Sroi =
|PROI |

width ∗ height
, (6)

where PROI is the set of pixels present in the ROI, |PROI | is its cardinality and
width and height are the size of the minimum rectangle containing ROI.

Attempting to represent the amount of information that can be extracted
from a fingerprint image, two other features are used:
Horizontal Ridge Count. The number of ridges crossing the horizontal line
to the central pixel (Shrc) of ROI, and
Vertical Ridge Count. The ridges count crossing the vertical line to the central
pixel (Svrc) of ROI.
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3.3 Overall Quality Estimation Function

With the aim of calculating the continuous quality metric proposed, first a Gaus-
sian function (equation 7) is applied to each feature for obtaining a fuzzy value
of belonging to a high quality fingerprint,

Gf (x) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if δmin � x � δmax,

α1e
− (x−μ1)2

2σ2
1 x < δmin,

α2e
− (x−μ2)2

2σ2
2 otherwise,

(7)

where α1, α2, μ1, μ2, σ1 and σ2 are the parameters of the Gaussian function.
So as to describe the ridges pattern clarity (QRPC) and the ridges systems

completeness (QRSC), one dominant feature is chosen for each of these global
characteristics by the following equations:

QRPC = min(Gf (Sgos), Gf (Sbosc), Gf (Sgrf )), (8)

QRSC = min(Gf (Sroi), Gf (Shrc), Gf (Svrc)). (9)

Then, the final quality value is calculated by merging QRPC and QRSC as
shown below:

Qf = QRPC ∗ QRSC . (10)

4 Experimental Results

The fingerprint quality value is a measure of the biometric sample usability for
both, enrollment and recognition stages. An accurate estimation of fingerprint
quality is extremely important for improving fingerprint-based biometric sys-
tems, because the false non-matches can be reduced. To validate the proposed
metric, the experiments measure its impact on the matching stage using the Ver-
ifinger 4.2 matching algorithm. Five different matching accuracy measures are
used for obtaining the impact of the new fingerprint quality assessment method.
Its performance is compared with NFIQ quality method. Experiments were con-
ducted on a well-know public database, FVC2004 DB1-A which contains 100
fingers and 800 images.

In order to perform a comparison with NFIQ algorithm the proposed con-
tinuous quality value is quantified in five quality levels: 1, 2, 3, 4, 5, where 1 is
the best quality and 5 is the worst quality. The matching accuracy measures are
computed by eliminating the comparisons where at least one fingerprint image
with bad quality (3, 4, or 5) is involved. A good performance of a quality assess-
ment method should reduce error rates. The methodology used for the matching
algorithm is the same proposed by the FVC competitions. Table 1 present a
comparison of the three possible scenarios.

In table 1 it is shown that the matching algorithm performance is improved
when both quality assessment algorithms are used. It can be clearly seen that the
results of the proposed algorithm outperform the results of NFIQ method, even
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Table 1. Comparison of the Verifinger algorithm performance, performance of the
Verifinger algorithm using NFIQ method and the proposed quality assessment method.

FVC 2004 db1A
Normal NFIQ Qf

EER 0.0968 0.0826 0.0782

OP(0.001) 0.1854 0.1633 0.1505

FMR100 0.1504 0.1332 0.1191

FMR10 0.0889 0.0810 0.0782

ZeroFMR 0.2311 0.2003 0.1922

Table 2. Amount of impressions for each quality levels defined by NFIQ and the
proposed approach.

Quality Levels 1 2 3 4 5

NFIQ 512 208 70 4 6

Qf 484 246 39 25 11

Fig. 2. Example of a fingerprint image with NFIQ quality value of 1 (best quality)
where the quality value generated by the new proposal is 5 (worst quality).

when the amount of images of higher quality levels is lower with the proposed
approach than with NFIQ method as indicated in table 2.

An example of a fingerprint image where NFIQ gives the best posible quality
and the proposed approach classifies it in the worst quality level can be seen
in figure 2. This occurs because the zone of the fingerprint in the impression
presents good quality, and has an acceptable amount of minutiae, but it can be
clearly seen that its size is not acceptable for a fingerprint with good quality.

5 Conclusions and Future Work

In this work, a new method for fingerprint image quality assessment based on
ridge characteristics, that can perform a continuous classification is presented.
Six features that correctly describe the fingerprint quality are proposed. Its per-
formance is evaluated in the recognition stage, using the Verifinger 4.2 matching
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algorithm. From the experiments carried out it can be concluded that the pro-
posed method can attain accurate quality values for fingerprints and it outper-
forms the NFIQ results. The function used for obtained the final quality value
is quite simple, nevertheless the proposed method achieved very good results.
Consequently, a more sophisticated function to calculate the final quality value
is being studied. Moreover, some of these features can be used for describing
palm impressions quality.
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Abstract. Global food demand is increasing every year and it is needed
to respond to this demand. In addition, some crops such as corn, which
is the most produced grain in the world, is used as food, feed, bio-energy
and other industrial purposes. Thus, it is needed the development of
new technologies that make possible to produce more from less land. In
particular, the corn crop is sensitive to its spatial arrangement and any
variation in plant distribution pattern can lead to reduction in corn pro-
duction. Nowadays, the uniformity of the plant spacing is checked man-
ually by agronomists in order to predict possible production losses. In
this context, this work proposes an automatic approach for measuring the
spacing between corn plants in the early stages of growth. The proposed
approach is based on computer vision techniques in order to evaluate the
automatic inter-plant spacing measurement from images in a simple and
efficient way, allowing its use on devices with low computational power
such as smart phones and tablets. An image dataset was built as an
additional contribution of this work containing 2186 corn plants in two
conditions: tillage after the application of herbicide (TH) with 1387 corn
plants and conventional tillage (CT) with 799 corn plants. The dataset is
available at url: http://github.com/Brilhador/cornspacing. The experi-
mental results achieve 90% of precision and 92% of sensitivity in corn
plant identification. Regarding the automatic measurement of the inter-
plant spacing, the results showed no significant differences from the same
measurements taken manually, indicating the effectiveness of the pro-
posed approach in two distinct types of planting.

Keywords: Computer vision · Inter-plant spacing · Pattern recogni-
tion · Precision agriculture · Image processing

1 Introduction

The world population is increasing every year and it is needed to improve
the global food production in order to be able to feed the world. In this way
the precision agriculture techniques can maximize food production, minimize
environmental impact and reduce cost.
c© Springer International Publishing Switzerland 2015
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In particular, the corn crop is the most produced grain in the world, being
used as food, feed and industrial utilities such as ethanol production [3]. It is
a major component of livestock feed. The United States produces 40.2% of the
world’s harvest and other top producing countries include China (31.0%) and
Brazil (9.5%). However, the corn production has its own peculiarities including
the sensitivity to its spatial arrangement, which is defined as the geometric area
available for planting each of the corn plants, i.e., its distribution pattern [21].

Indeed, the plants compete for natural resources such as water, light and
nutrients. The uniformity of inter-plant spacing decreases this competition [16].
Some works address the plant spacing variability (PSV) on corn grain yield,
which is defined by the standard deviation of consecutive plant-to-plant spacings
within rows [12]. It was reported a reduction of about 2.5 bushels per acre
for each centimeter increased in the standard deviation of plant spacing[12].
Similar effects was reported, achieving a reduction of 3.4 bushels per acre for
every inch increase in standard deviation [4], which points out the PSV as an
important factor in grain production. In general, the PSV is evaluated manually
with a tape measure positioned along the row of plants, while the spacings are
stored numerically in a notebook or as an audio recorder. Manual methods are
exhaustive, time consuming and subject to human error.

The spatial arrangement of plants has been analyzed by many researchers as
well as its influence on grain production. In this context there are some works
that address this important issue. For instance, in [18] it was adopted three
morphological features to distinguish between weeds and corn plants. In [17] it
was used the shape and the area of the corn plants to measure the population of
plants and the space between them. In [19] it was applied morphological features,
color and the center of the planting row to measure the spacing between plants.
Recent works [10,11] present approaches based on 3D sensors in order to measure
corn plants in later stages. However, these techniques requires a very specific
hardware/machine in order to capture and/or analyze the images.

This work address the PSV issue presenting a simple and effective approach
for measuring the spacing between plants in two different situations of plant-
ing (Sec. 2). More specifically, it was adopted only shape descriptors in order
to identify the corn plant and its stem and as a result, to evaluate the auto-
matic inter-plant spacing measurement from images in a simple and efficient
way. Besides, the proposed approach can be used on devices with low computa-
tional power such as smart phones and tablets.

2 Image Dataset

After an exhaustive search from image dataset of corn crops, it was identified
that this matter is still little explored by the scientific community. Thus, an
image dataset was built as an additional contribution of this work, which is
available at url: http://github.com/brilhador/cornspacing.

The image dataset is composed by corn plants, which were acquired through
a mobile device considering panoramic images. The image acquisition process

http://github.com/brilhador/cornspacing
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Fig. 1. The image acquisition process.

(Fig. 1) was performed by a person carried a camera at an average height of 1
meter from the ground. The initial starting point for the acquisition was deter-
mined randomly and from there it traveled approximately 3 meters capturing
the images of corn plants building a panoramic image.

Currently, the image dataset contains 188 panoramic images of corn planting
with 24-bit color depth with an average resolution of 3000 x 600 pixels in JPG
image format. The image acquisition was performed in a real situation of plant-
ing, as a result, the stored images present highly lighting variation and different
spacing between corn plants.

The images were acquired in two distinct situations: tillage after the appli-
cation of herbicide (TH) and conventional tillage (CT). In CT images the soil
goes through a mechanical preparation of plowing and harrowing. On the other
hand, the TH images there is no mechanical preparation of the soil, in which
the ground remains covered with waste from various cultures used in succession
or rotation [6]. The elimination of crop residues and weeds are carried out by
applying herbicide. These two classes of images are presented in Fig. 4.

The corn plants have phenotypic features related to their growth stages,
commonly defined as V (n), where n is the number of leaves fully developed in
the plant [15]. This variation of the plant growth modifies the shape of its canopy.
The image dataset comprises these phenotypic variations, with images between
V (2) and V (3) stages in CT condition and V (3) and V (4) in TH condition.
These stages were chosen as they provide better uniformity between plants in
the planting row. The V (1) stage presents the initial plant development and
some of them remain in a germination process, i.e., buried in the ground.

Another important issue is that the image dataset was built with panoramic
images containing corn plants in early stages of development, which turns pos-
sible to identify problems in inter-plant spacing at early stages of the plant
development, as a result, enables the rapid intervention of the producer avoiding
losses in corn crop. Therefore, the proposed image dataset presents real condi-
tions of the plant development in order to provide a suitable benchmark, not
only for this work, but for other related works.
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2.1 Corn Plants Identification

In order to produce an image dataset that can be used in the validation process,
it was necessary to identify plants and their stems in all images.

The superpixel technique was adopted in order to assist this process, in which
an image is divided into multiple groups of pixels. More specifically, the simple
linear iterative clustering (SLIC) [1] superpixel method was adopted in face of
its computational efficiency. The cluster belonging to the plant and to the stem
were selected with manual assistance in order to produce a curated identification.
Figure 2 shows the corn plant identification using the SLIC method. Figures 2(a)
and (c) show the plant area (external rectangle) and the plant stem (internal
rectangle). Figures 2(b) and (d) show the plant identification and its parts.

(a) (b) (c) (d)

Fig. 2. Figures (a) and (c) show the plant identification, the external rectangle (blue)
is the area of the plant. The internal rectangle (yellow) is the stem of the plant. Figures
(b) and (d) is the plant identification by superpixel method, all identified pixels belongs
to the plant and the yellow pixels is the stem.

As a result, it were identified 2186 corn plants, in which are distributed as
following: 1387 in TH condition and 799 in CT condition. The plant and its stem
identification were stored in XML (eXtensible Markup Language) files in order
to be used in the classification process.

3 Proposed Approach

The main goal of this work is to address the PSV on corn grain yield through an
automatic approach to measure the inter-plant spacing in a simple and efficient
way. The schematic flowchart of the proposed approach is presented in Figure 3.

After the image acquisition, it was preprocessed by an average filter in order
to reduce the reflections on the leaf surface caused by the sunlight. The next
step was the image segmentation, in which the goal is to segment the regions of
interest (corn plants) from its background (solo and other crop residues).

It is commonly known that vegetation index is a suitable way to improve the
image segmentation from its background (soil, rocks and other residues) when
the images contain some vegetation. Various vegetation indices were tested in a
recent work [9], in which the CIVE (color index of vegetation extraction) shows
better results in images with highly lighting variation, achieving more than 90%
of accuracy in average. Thus, it was adopted in the proposed approach. The
CIVE [8] starts by rescaling the RGB colors individually in the range [0,1].
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Fig. 3. Flowchart of the proposed approach.

After that, a second rescaling is performed in order to each color band (RGB)
gets a relative value, i.e., the fraction of each intensity in relation to the sum of
the three bands. This rescaling process is frequently adopted in the agricultural
images [7]. As a third step the CIVE index is applied, as a result a grayscale image
is produced (Fig. 4 (c) and (d)). In the proposed approach grayscale images were
segmented by the Otsu threshold method [13]. However, the acquired images
have numerous environmental conditions resulting in noisy segmentation in most
of the cases. In order to reduce the noise while preserving the correctly segmented
plants it was performed a morphological opening operation[5]. Figures 4 (e) and
(f) show the resulting images.

(a) Image example of TH class. (b) Image example of CT class.

(c) Grayscale image for TH class. (d) Grayscale image for CT class.

(e) Segmented image for TH class. (f) Segmented image for CT class.

Fig. 4. (a) and (b) are raw images from proposed dataset. (c) and (d) are grayscale
images after performing CIVE. (e) and (f) are binary images after performing threshold.
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The correct corn plant classification is crucial for extracting the spacing
between plants, because a classification error could lead to a false detection
of the planting row. In this way, the first step was to extract some features
of each connected component (CC) in the image. It is commonly known that
shape features is a relevant information for plants classification [2,5]. Thus, it
was adopted the perimeter, defined as the number of pixels belonging to the CC
contour. The standard deviation from all perimeters of each image is also taken
into account and used as a threshold to eliminate relative small CC, reducing
the computational cost of the next steps.

Considering the CC that remain in the image are extracted two features: area
and compactness. These CC undergo a new step, in which the regions with less
than 0.4 compactness of corn plants are considered and the others are discarded
[19]. Then there is a step that attempts to identify the duplicity and triplicity
of plants in a segmented area. In this step is extracted the median of the CC
areas in the image. If the area of each CC is greater than the median, the CC is
divided. This division is recursively applied until that the area of the resulting
CC is less than the median.

The plant stem definition is essential for the extraction of the inter-plant
spacing with higher accuracy. It was adopted the convex hull, which is commonly
adopted for object recognition [14,22]. More specifically, the stem of the corn
plant is extracted by identifying the more deeply convex defect, as a result it is
found the pixel belonging to the contour with greater distance from the convex
hull. Thus, this pixel is used to identify its opposite pixel and then to estimate
the average between them as the stem coordinates.

The spatial coordinates of the plant stem are stored and optionally is allowed
to the user perform manual corrections to add or remove new plants and move
stem coordinates that are outside of its location, ensuring the measurement of
distances closer to reality. After this, the inter-plant spacing is measured.

Fig. 5. Classification results.
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4 Results and Discussions

This section presents the experimental results in order to evaluate the proposed
approach regarding the inter-plant spacing. The experiments were performed
addressing two important issues: (1) The automatic corn plants identification;
(2) The automatic measurement of the inter-plant spacing.

The automatic corn plants identification was performed considering its area
and stem individually (Sec. 2.1) for TH and CT images (Sec. 2). Thus, it were
produced six classes: the area for TH images (THA);the stem for TH images
(THL);the area for CT images (CTA);the stem for CT images (CTL);the area
for CT and TH images (TA); and the stem for CT and TH images (TL).

Figure 5 presents the results by considering the precision and sensitivity mea-
sures [20]. It is possible to observe that TA achieve 92% of sensitivity and 91%
of precision for plant classification. For TL were obtained 80% e 78%, respec-
tively. The sensitivity was 96% for CTA and 90% for THA with a precision of
87% e 93% respectively. These results were coherent and expected because the
area of the plant is larger than its stem. Moreover, the precision for the stem
identification was higher in the images in CT condition, achieving 84% (CTA)
and 83% (CTL). On the other hand, the results for TH condition were lower
than the previous, obtaining 61% (THA) and 59% (THL), which affects par-
tially the inter-plant spacing measurement, since the corn plants were identified
with more than 87% of precision and sensitivity in average. This result was due
to the stage of maturity of the plants between classes. The CT condition presents
corn plants with stages between V (2) and V (3), in which the leaves has a deeper
convex defect, while in TH condition contains corn plants with V (3) and V (4),
in which this defect can be covered by another branch of the leaf.

The experiments for automatic measurement of the inter-plant spacing were
performed comparing the measurements from a manual tape and the measure-
ments inferred by the proposed approach. The obtained differences in average
were 1.4 cm for images in CT condition and 1.33 cm for images in TH condition
with standard deviations of 0.96 cm and 0.99 cm respectively, presenting very
close results. In summary, the results indicate the suitability of the proposed
approach for the automatic corn plant identification and the automatic mea-
surement of its inter-plant spacing. Furthermore, the proposed approach present
a faster and reliable method than manual analysis for PSV measurement.

5 Conclusions

This work presented an objective approach for the automatic measurement of
the inter-plant spacing. An image dataset was built as an additional contribution
of this work containing 2186 corn plants in two conditions: tillage after the
application of herbicide (TH) with 1387 corn plants and conventional tillage
(CT) with 799 corn plants. In addition, both cases present phenotypic variations
caused by different stages of plant development.

The experimental results achieve 87% of precision and 96% of sensitivity for
CT and 93% of precision and 90% of sensitivity for TH, when considering the
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automatic corn plants identification. The stem identification achieve 84% of pre-
cision when considering the area of the plant and 83% when considering only its
stem for CT images. On the other hand, the results for TH images were lower
than the previous, obtaining 61% of precision considering the area and 59%
considering only the stem, which affects partially the inter-plant spacing mea-
surement, since the corn plants were identified with more than 87% of accuracy
and sensitivity in average. Regarding automatic measurement of the inter-plant
spacing, the presented results are very close to the manual measurements. In
summary, the results indicate the suitability of the proposed approach as an
auxiliary tool in preventing grain losses due to variations in spacing between
plants caused by the poor performance of planters or low seed quality.

Future work includes to test other strategies for image segmentation and to
explore more image features as shape and texture in order to improve the pro-
posed approach, in particular regarding the precision of the stem identification.
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Abstract. The camera calibration problem consists in estimating
intrinsic and extrinsic parameters. It can be solved by computing a 3x3
matrix enclosing such parameters - the fundamental matrix -, which can
be obtained from a set of corresponding points. Nevertheless, in prac-
tice, corresponding points may be falsely matched or badly located, due
to occlusion and ambiguity. Moreover, if the set of corresponding points
does not include information on existing scene depth, the estimated fun-
damental matrix may not be able to correctly recover the epipolar geome-
try. In this paper, an EA-based method for accurately selecting estimated
corresponding points is introduced. It considers geometric issues that
were ignored in previous EA-based approaches. Two selection operators
were evaluated and obtained similar results. Additionally, a mutation
operator is designed to tackle bad located points by shifting disparity
vectors. An inter-technique comparison is performed against a standard
camera calibration method. The qualitative evaluation is conducted by
analysing obtained epipolar lines, regarding expected appearance, based
on a-priori knowledge of camera systems during the capturing process.
The quantitative evaluation of the proposed method is based on residu-
als. Experimental results shown the proposed method is able to correctly
reconstruct the epipolar geometry.

Keywords: Camera calibration · Corresponding points · Evolutionary
algorithms · Inverse problems · Fundamental matrix

1 Introduction

The camera calibration problem has applications in diverse fields [11,15]. It is
related to the estimation of intrinsic and extrinsic camera parameters. Intrinsic
parameters characterise inherent optical properties of a camera, including the
focal length, the image centre, the image scaling factors and the lens distortion
coefficients. Extrinsic camera parameters indicate position and orientation of
the camera in relation to the world coordinate system. Intrinsic and extrinsic
camera parameters define the projection of a 3D scene into a 2D image plane,
by a camera system.
c© Springer International Publishing Switzerland 2015
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Camera calibration can be performed in either a semi-automatic or an auto-
matic way. The former - called photogrammetric calibration - requires of cali-
bration patterns, which have to be accurately known [5]. Moreover, calibration
patterns or apparatus have to be used [12]. The latter - called self-calibration -
is supported by the epipolar geometry [8]. The epipolar geometry is the intrinsic
projective geometry between any two views. The epipolar geometry is encapsu-
lated in the fundamental matrix, F. A set of corresponding points can be used for
computing the fundamental matrix. Corresponding points are formed by project-
ing a 3D point into two slightly different image planes. Thus, if these projections
are accurately known, the 3D position of a point can be recovered by triangula-
tion. However, in practice, corresponding points may be inaccurately estimated.
In fact, recovering the intrinsic and the extrinsic parameters is an inverse and
ill-posed problem. Moreover, if a set of corresponding points does not include
information of existing scene depth, the estimated fundamental matrix may not
be able to correctly recover the epipolar geometry due to the inverse nature of
the problem.

The camera calibration problem has been addressed using Evolutionary Algo-
rithms (EA) and Genetic Algorithms (GA) by several authors [1,6,10,13,17].
The most similar approaches to the presented method are [2,7]. These works
represent a chromosome as a set of stereo matching pairs. In [2], a minimal set
of matching points is pursued, and there is no guarantee that a single chromo-
some properly contains information of existing scene depth. Also, there is no
clear insight about how the mutation operator works. A chromosome of variable
length is used in [7] due to the considered crossover operator. Thus, multiples
strategies are required to compute the Fundamental matrix, according to the
chromosome’s length.

In this paper, the calibration problem is turned into finding an accurately
estimated set of corresponding points. Consequently, an EA is used for accurately
selecting estimated corresponding points and then estimating the fundamental
matrix.

2 Problem Statement

The calibration problem is an ill-posed problem. Thus, small perturbations in
the input corresponding points may produce arbitrary large variations in the
estimated fundamental matrix. Corresponding points are projections such that:

Definition 1. For a given pair of stereo images, let m be a point, with coor-
dinates [u, v, 1]T , in the right image, and let m′ be a point, with coordinates
[u′, v′, 1]T , in the left image. Points m and m′ are corresponding points iff they
are projections of a scene point M .

There is a set of constraints commonly used for estimating corresponding
points in order to cope with the ill-posedness, for instance: Similarity: the
matching points have to have similar appearance. Uniqueness: a given feature
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point from one image can match no more than one feature point from the other
image. Continuity: disparity of a matching point should vary smoothly almost
everywhere over an image. Ordering: if mi ↔ m′

i and mj ↔ m′
j and if mi is to

the left of mj then m′
i should also be to the left of m′

j and vice versa. That is,
the ordering of points is preserved across images.

Taking into account the inverse and the ill-posed nature of the calibration
problem, there is a set of criteria that the estimated corresponding points has
to fulfil in order to stabilise the solution.

Definition 2. Let S = {(m1,m
′
1) , (m2,m

′
2) , · · · , (mi,m

′
i) , · · · , (mn,m′

n)} be
an accurately estimated set of corresponding points, subject to:

1. The points (mi,m
′
i) have to be projections of scene points Mi, ∀ i = 1, · · · , n.

2. The [ui, vi]T and [ui′ , v
′
i]
T coordinates have to correspond to an accurate

localisation of mi and m′
i, ∀ i = 1, · · · , n.

3. The cardinality of S has to be in relation to existing scene depth.

The calibration problem can be turned into finding an accurately estimated
set of corresponding points. Moreover, the extrinsic and the intrinsic parame-
ters do not depend on the scene content, in the direct problem. However, in
the inverse problem, a set corresponding points belonging to existing scene
depth may compensate the lack of information about scene depth. The prob-
lem addressed in this paper consists in finding a set S which fulfils the above
criteria.

3 An EA-Based Fundamental Matrix Estimation

The EA-based method is briefly described as threefold: 1. estimating a set S+ of
corresponding points, 2. S+ evolution by EA, and 3. calculating the fundamental
matrix.

3.1 Estimating a Set S+ of Corresponding Points

1. Feature points extraction: Feature points are extracted using Shi-
Tomasi [14].

2. Matching feature points: Matching of feature points is performed using
the block-matching algorithm with Normalised Cross Correlation (NCC) and
two different window sizes: −5 × 5 and 7 × 7−. Each point in the reference
image is correlated to every point in a 2D search-window in the target image
and the bidirectional constraint is enforced during the calculation. A set of
matching points is obtained.

3. Filtering matching points: Outliers, in the initial set of matching points,
are removed by RANSAC, and the distance between a point and its epipolar
line is used as a criterion to decide whether or not there is an outlier. Then,
the ordering constraint is verified on the remaining matching points. That
is, the order of feature points is preserved across images. A filtered set of
matching points is obtained.
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4. Clustering filtered matching points: Filtered matching points are clus-
tered based on estimated disparities, in order to take into account the exist-
ing scene depth. The k -means algorithm is used to cluster filtering matching
points, using the subtractive clustering method, available in MATLAB, to
determine the number of clusters κ. As a result, a set S+ is formed, where
S+ =

{(
mj ,m

′
j , k

)}
, j = 1, · · · , nc, and k = 1, · · · , κ.

3.2 S+ Evolution by EA

1. Configuration of initial population: The initial population is built by
sampling with replacement q matching points from each cluster in S+. Chro-
mosome codification is formulated as follows:

θ = ((m1,m
′
1), . . . , (mj ,m

′
j), . . . , (mp,m

′
p)), (1)

where θ is a chromosome and p is the size of the chromosome with p=q×κ.
A chromosome only contains a matching pair of points once.

2. Chromosome expression and fitness evaluation: The fitness function
enforces the epipolar and the smoothness constraints. The fitness function
is given by:

g(θ) =
p∑

i=1

d(mi, Fm′
i) + d(m′

i, Fmi) + Ci. (2)

The epipolar constraint requires the calculation of the fundamental matrix,
F , which is estimated using the set of matching points in S+. The smoothness
constraint is reflected in the term Ci, by summing absolute differences among
the disparity di – where di = [mi − m′

i] – and disparities belonging to the
same cluster of (mi,m

′
i):

Ci =
q∑

j=1

‖di − dj‖1 ∀ i �= j; dj =
[
(uj − u′

j), (vj − v′
j)

]
. (3)

The objective function is given by,

θ = argmin g(θl). (4)

3. Elitist preservation: A number η of the best fitted population individuals
is preserved and kept unchanged among consecutive generations.

4. Selection: Two selection methods are considered – the proportional roulette
wheel and the tournament – to perform parents selection for crossover.

5. Crossover: A single point crossover operator exchanges matching points
between parents, by combining information associated to the existing scene
depth.

6. Mutation: Mutation is applied in an informed manner. The matching point
with the largest distances to its epipolar line is mutated. Given a pair of
matching points, a point is randomly selected from the pair. A number among
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0 to 7 is randomly chosen in order to determine the direction ω towards the
selected point is moved. The new localisation of the selected point is within
an 8-neighbourhood, as it is shown as follows:

m∗
j = mj + δomega, (5)

where ω is a mutation offset, such as:

The uniqueness constraint is verified after a mutation in order to enforce its
fulfilment. In case of degeneration of a chromosome, it is discarded.

7. Validation: The validation consists in verifying that each chromosome does
not contain a matching point two or more times. If a repetition is found, the
chromosome is discarded. The validation is conducted on the initial popula-
tion and after the mutation.

8. Population replacement: The population is replaced by introducing new
generated chromosomes, and elitist chromosomes are kept.

9. Stop criterion: The stop criterion is based on the first occurrence of the
convergence principle, over the elitist population, and a maximum number
of generations. If the population of the best fitted remains unchanged over a
period of τ generations, it is assumed that convergence is reached. In practice
τ is taken as a fixed number, and the number of maximum generations is
fixed large. The elite population is the set S∗.

3.3 Fundamental Matrix Estimation

The estimation of the fundamental matrix has the elite population S∗ as the
input to a non-homogeneous linear equation system that is solved using a pre-
conditioned LMedS and SVD based on the Rank-Nullity Theorem.

4 Experimental Evaluation

The performance of the proposed method was evaluated using the following sets
of stereo images: Lab – which were acquired during the conducted research – and
Corridor [3], Raglan [3] and Kapel [4] – which are available in public repositories.
Matlab was used as programming tool. The Video Processing Toolbox was used
for performing RANSAC and guided sampling. The scripts for corner detection
and matching of Peter Kovesi were used [9]. Obtained results are compared to
the calibration method proposed by Zhang and Kanade [18], which is based on
the bucketing technique and the LMedS estimator [16]. The EA parameters are:
η = 10, τ = 5, Gmax = 20, Pcrossover = 0.7, and Pmutation = 0.15.

Initially, the two selection operators were evaluated using as criteria the resid-
uals – calculated as the distance among points and its epipolar lines – and the
execution time. Experiments are repeated 10 times using the set S+.
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Table 1. Comparison of the two selection methods.

Average residuals

Selection Method Lab Corridor Raglan Kapel

Tournament 3.34× 10−7 3.19× 10−8 5.01× 10−8 1.42× 10−7

Roulette 4.84× 10−9 8.45× 10−9 2.12× 10−9 1.43× 10−8

Table 2. Comparison of the two selection methods.

Average execution times in seconds

Selection Method Lab Corridor Raglan Kapel

Tournament 6.02× 100 4.62× 100 7.43× 100 3.32× 10+1

Roulette 8.30× 100 3.67× 100 7.67× 100 3.72× 10+1

Table 3. Performance evaluation of the proposed method and the bucketing technique
plus LMedS [18].

Average residuals

Method Lab Corridor Raglan Kapel

Proposal 2.11× 10−6 1.32× 10−9 1.63× 10−10 6.10× 10−9

Bucketing plus LMedS 1.87× 10−4 1.60× 10−5 1.21× 10−4 1.83× 10−4

Tables 1 and 2 show that the proportional roulette wheel yielded smaller
residuals than the tournament and they shown similar execution times. The
proportional roulette wheel is used as the selection operator of the proposed
method.

(a) Lab
(b) Corridor

(c) Raglan
(d) Kapel

Fig. 1. Points superimposed on epipolar lines: using the EA-based method at the left
and using the bucketing technique plus LMedS at the right.
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Performance evaluation of the proposed method is based on residuals. Resid-
ual values obtained using the proposed EA-based method are lower than residual
values obtained using the bucketing technique plus LMedS [18]. However, com-
puting elapsed times took longer for calculating the EA-based method. Table 3
shows average residual values of 20 trials.

Regarding the epipolar geometry in Figure 1, the Lab, the Raglan and the
Kapel are stereo images for which the motion between views is approximately a
translation parallel to the x-axis, with no rotation. Although, matching points
lie on corresponding epipolar lines, the epipolar geometry is not correctly recov-
ered for the Raglan and the Kapel datasets. In the corridor dataset, one image
plane is behind the other. Consequently, the epipole is a fixed point at the same
coordinate in both images. The epipolar geometry is recovered.

5 Final Remarks

The proportional roulette wheel is a selection operator simple and easy to imple-
ment. It was chosen for being used in the proposed method based on obtained
residuals and execution times.

Existing scene depth has to be considered in order not only to avoid degener-
ate configurations, but also to introduce information to tackle the inverse nature
of the problem. In the proposed approach, existing scene depth is taken into
account by the means of selecting matching points from clusters.

The proposed EA-based method tackles bad located matching points by
introducing a specifically designed mutation operator, capable of shifting dis-
parity vectors. It is also capable of removing false correspondences by a filtering
step.

Quantitative experimental evaluation shown that the proposed method
reconstructs the epipolar geometry with lower residuals than the bucketing tech-
nique plus LMedS [18]. Qualitative evaluation shown a better reconstruction of
epipolar geometry by the EA-based method. Future work is focused on optimis-
ing consumption of computational resources.
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Abstract. In this paper an evaluation of RGB-D descriptors in the
context of Object Recognition and Object Tracking is presented. Spin-
images, CSHOT and ECV context descriptors were used for detecting
objects in point clouds. Empirical evaluation over a dataset with ground
truth shows that shape is the most important cue for RGB-D descrip-
tors. However, texture helps discrimination when objects are large or
have little structure.
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1 Introduction

The study of feature descriptors has been one of the main areas of research
in image processing and computer vision for many years. Nowadays, the intro-
duction of new low-cost sensors capable of capturing 3D scene information, has
generated attention to descriptors that combine color and depth.

Traditionally, 2D descriptors capture, for example, color, texture or shape
information from the image. RGB and depth sensors (RGB-D), such as the
Kinect, allow the extraction of color and depth information of the scene. With
this data, 3D descriptors can be used to model the geometry and color appear-
ance of objects. The combination of color and depth allows for more discrimina-
tive power, making this an interesting area of research.

In this work, 3D point clouds are used instead of RGB and depth images
independently. Working directly with 3D point clouds is a recent trend in com-
puter vision; traditionally applications build polygonal meshes and then discard
point cloud data. Here we evaluate different RGB-D descriptors in terms of their
performance in two important applications: object recognition and tracking.

There are many works about 3D and RGB-D descriptors [7,11,3,4,9] (to name a
few) but generally they do not assess their performance in particular applications.
The analysis of their impact on the results of two applications, such as Object
Recognition and Tracking, is very important and provides new cues and method-
ologies to understad which descriptors perform better in real applications.
c© Springer International Publishing Switzerland 2015
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In order to quantitatively analyze object recognition and tracking we make
use of a dataset with ground truth [8]. This is a large dataset, thus, first we
analyze object recognition with three different descriptors and then the best
descriptor is used in the tracking application.

This work is organized as follows. In Section 2 we describe RGB-D sensors
and point clouds, then in Section 2.1 we talk about 3D descriptors and the data-
sets used. After that, in Section 4 and 5 discuss object recognition and tracking
contributions respectively. Finally, in Section 6 we present a discussion of the
presented work along with the conclusions.

2 RGB-D Sensors and Point Clouds

RGB-D sensors are composed of an RGB camera that captures color information
of the scene, and a depth sensor which provides information about the distance
from the camera to the objects in the scene.

There are different implementations for this kind of sensors to choose from,
each one having its own unique sets of characteristics: image quality, frame rate,
depth range. One that has gained popularity in recent years is the Kinect by
Microsoft which provides RGB-D images with a default resolution of 640x480
pixels at rate of 30 fps.

Depth information used in conjunction with color information (RGB) allows
3D scene reconstruction. The calibration parameters for the RGB-D sensor can
be used to estimate each pixel’s position in the 3D scene, forming what is called
a point cloud, where each point contains depth and color information.

2.1 Evaluated RGB-D Descriptors

In this work, we use local descriptors for object recognition because they are more
robust to noise, clutter and occlusion, typical problems that arise when working
with real RGB-D data. We use three histogram-based descriptors: CSHOT [11],
Spin-Images [7] and ECV context descriptors [4], each one capturing information
about the underlying surface in a different way. The selection of the previous
descriptors takes into account the results presented in [1], where the author con-
cludes that CSHOT and histogram-based descriptors are well suited for object
recognition.

All descriptors are built for a set of selected input points but they use the
entire point cloud to create them.

CSHOT (Color Signatures of Histograms of Orientations) [11]. The
SHOT descriptor, first defines a robust local reference frame that is unique and
unambiguous, built upon a local sign disambiguation method for the problem of
normal estimation. At each input point a 3D grid is superimposed defining 3D
volumes where local histograms are computed. Each local histogram accumulates
into bins the angles (cosines) between the reference frame and the normal at each
point. The Color SHOT (CSHOT) descriptor is an enhanced version of SHOT
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that also accumulates in a histogram the absolute color difference between points
and then is chained together to the SHOT descriptor itself.

Spin-Images [7]. A Spin-Image (SI) is a cumulative 2D histogram which is
computed on each oriented point (3D position plus surface normal) over a given
set of points over the model’s surface mesh or point cloud. At each input point a
2D histogram is built binning neighboring points that are projected on a plane
(image) passing through the point’s normal. Each bin is defined as a ring product
of spinning that plane.

ECV Context Descriptors [4]. Early Cognitive Vision (ECV) systems were
first developed with the aim to understand how human visual and cognitive sys-
tems work. Image pixels are classified as belonging to either an edge or a texture
region and accompanied with an appearance and geometry-based description
of their spatial neighborhood. At each input point all point-pair relations are
considered, estimating geometric (cosine between orientations) and appearance
(color gradients) relations and then binning them into histograms. The geome-
try part, the 3D position and orientation, is used, where the orientation are the
direction along the edge or the normal vector to the local surface.

3 Dataset

Along this work we used sequences of RGB-D images with ground truth infor-
mation with the goal of testing the studied methods and creating a reference
to compare and assess the performance of the RGB-D descriptors under eval-
uation. We took scenes of a database from Kevin Lai et al. [8] where objects
and scenes databases were created. Since our work is focused on real world
scenarios, we took 3 annotated scenes from the dataset containing 10 different
objects. Figure 1 shows the sequences employed for the results. For the objects
we construct 3D models from their partial views acquired in a turning table, see
Figure 2 for some of them. Note that we discard the flashlight due the impossi-
bility of building the 3D model from its views.

4 Object Recognition

An object recognition system has the purpose of finding objects in images or
point clouds. From now on, we will call model to the point cloud which has the
object to be searched, and scene to the point cloud in which we wish to find it.

We divide our object recognition pipeline in the following steps: 1. Keypoint
Extraction, 2. Descriptor Generation and 3. Matching. An overview of the steps
of the employed procedure to recognize objects is shown in Figure 3a.

1. Keypoint Extraction: a subset of points from the original set is extracted.
Keypoints are interesting points which are repeatable, there is a high chance
that the same point is found in the same scene with different data-acquiring
methods. Also, since they are distinctive, they are very useful for achieving
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Sequence: desk 1

Sequence: desk 2

Sequence: table 1

Fig. 1. Example frames taken from the sequences of the dataset.

bowl 2 2 cap 1 4 cereal box 4 1 coffe mug 1 soda can 6

Fig. 2. Object models built from partial views.

an effective recognition. This point selection can be done using a keypoint
detector, or by simply subsampling the points and using the resulting sub-
sampled set as keypoints. In this work, we use subsampling every 1 cm for
the model and the scene.

2. Descriptor Generation: for each keypoint in the model and the scene,
RGB-D descriptors are computed, representing object’s information in a
distinctive and meaningful way. In our work, we use SI, CSHOT and ECV,
described in Section 2.1.

3. Matching: descriptors computed for the model and the scene are compared
in order to establish associations between them. A match between a pair
of descriptors can translate into a match between the corresponding points.
Point matches can then be used to determine the roto-translation needed
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to align the model with its instance in the scene. To find a match, vector
distances are used, such as L1 and L2 norms.

For the matching stage, we compare all pair of descriptors using L1 norm
and then we impose a threshold over the ratio between the first and the second
nearest match.

5 Tracking

Several ways of tracking objects in 3D images are known. In [10] the well known
Iterative Closest Point (ICP) is used for this goal, originally proposed in [12,2].
Then, they improve the obtained results using edge information taken during
the training phase. In [5] a frame by frame object tracking is proposed based on
edge detection.

A video tracking system can be divided into three main different stages (see
Figure 3b):

1. Training: consists in obtaining a model or representation of the object to
follow.

2. Object Detection: using the object model obtained in the previous stage,
the main goal is to detect the object in a video frame and report its position
in a previously defined coordinate system. It is used as a starting point in
the video tracking system and when frame by frame tracking fails.

3. Tracking: using the object location in the previous frame, the goal is to
track the object frame to frame. This is the most important stage because
it is used in most of the video frames. The efficiency of this method will
determine the system efficiency.

We use this pipeline because it allows us to test different methods for each
stage without much effort and is a modular way of treating the tracking problem.

We choose different methods for each of the proposed stages. First, we
reconstruct a complete 3D model of the object to track merging several views
of it taken from different angles and all around of it, using an ICP based
method. Reconstructions obtained using this method are then improved manu-
ally. Figure 2 shows an example of some of the constructed models in the dataset.

Once the model is built, we use the method explained in Section 4 to detect it
in the first frame of the scene. Once a matching between the model and the scene
is found, we use a KD-Tree to filter the nearest object points from the scene’s
point cloud. The points obtained by this filter are then used as the model to
track in the next stage. This is done to increase robustness in tracking.

The most important features of the tracking stage are efficiency and robust-
ness. The selected method needs to be computationally efficient because the
system needs to be fast. Thus, it has to be robust because otherwise we will
need to use the object detection method and that would be time consuming,
losing the overall efficiency.
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(a) (b)

Fig. 3. Diagrams showing: (a) object recognition method, (b) tracking method.

Fig. 4. Frame by frame overlapping analysis. Object: coffee mug 5. Scene: desk 1. The
object to track shows up at frame 24.

In order to have an efficient method to track objects frame by frame it is
natural to think of an ICP based method. To apply this method, we take the
result from the object recognition stage and take a bounding box twice as big as
the detected one. Then apply ICP between this two point clouds. If there is no
match, we go back to the previous stage and apply object detection. Otherwise,
if a match is found, we filter scene points using a KD-Tree as mentioned before
and continue tracking.

In Figure 4, we show an analysis frame by frame of tracked object. We extract
the object’s bounding box and then compute the overlap between the ground
truth bounding box. In order to measure the quality of the computed object
area of our method we use a formula taken from [6]. This measure punishes
reported areas smaller than or bigger than the ground truth area. We show how
our method obtains a mean percentage overlapping of 62.34% in this example.
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6 Discussion

Object recognition and tracking are two applications that heavily depend on
finding good representations for the object models to recognize and track. In
[1], the author presents a study of several RGB-D descriptors over the RGB-D
object dataset, finding that CSHOT is the best option for object recognition. In
this work we show that SI outperforms CSHOT, which was excluded from their
analysis. As we can see in Table 1, SI outperforms CSHOT and ECV in 10 out
of 12 cases.

Results show that SI describe the shape of objects in a better way than
CSHOT and ECV in spite of having only shape information, mainly due to the
characteristic of the objects present in the dataset. Mostly they are small and
have low texture, i.e. just one or two colors.

We also carried out several tests varying parameters and methods and show
that subsampling is faster than using Harris detector over point clouds. Also,
reducing descriptor support and normal radius decreases computational time
but increases the time spent on matching correspondences.

Note that the ground truth provides only the bounding box information, so
the results are not extremely precise.

In order to achieve a successful tracking over frames, an initial good pose of
the object model is required.

Our tracking application achieves low false positives values (see Table 1)
resulting in a very robust method. Depth information complements RGB and
improves the overall tracking system accuracy. This shows the potential of using
RGB-D descriptors in computer vision applications.

Object size influences both recognition and tracking. On one hand, when
the object to be tracked is near the sensor the tracking accuracy increases.

Table 1. Columns three to five show the object recognition accuracy for three different
descriptors SI (Spin-Images), CSHOT and ECV. Last columns show the tracking results
(Tracking Accuracy) and false positive rate (% FP).

Recognition Tracking

Object Scene SI CSHOT ECV Accuracy % FP

cap 4 desk 1 93.90 81.71 80.89 97.73 0.00
coffee mug 5 desk 1 93.18 93.18 87.12 19.51 40.24
soda can 6 desk 1 91.67 78.33 50.00 58.33 0.00
bowl 3 desk 2 73.13 73.13 59.38 66.88 3.13
soda can 4 desk 2 66.03 53.85 27.88 19.87 30.13
bowl 2 table 1 89.91 86.24 65.14 36.90 0.00
cap 1 table 1 95.26 59.48 50.86 55.83 3.07
cap 4 table 1 70.62 68.04 47.42 76.61 0.00
cereal box 4 table 1 81.09 91.18 54.58 70.93 2.33
coffee mug 1 table 1 44.05 44.05 54.76 48.97 5.15
coffee mug 4 table 1 68.10 65.03 43.56 53.36 0.00
soda can 4 table 1 46.15 49.45 34.07 32.97 9.89
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On the other, when the object appears small in the captured image it contains
less points to be used for recognition and tracking; less points translates into less
discriminative power.

Besides the analysis of the computational performance was not the main focus
of this work we found that working with point clouds acquired from commercial
RGB-D sensors is mandatory to tune methods and theirs parameters to deal
with the noise present in RGB and specially in depth data.

7 Conclusions

Based on our empirical evaluation we showed that shape it is the most important
cue for recognizing and tracking 3D objects. Texture plays an important role
when objects are large or have simple structure.

In particular, objects from the RGB-D database [8] tend to have very low
texture, just one or two colors, making it necessary to have a descriptor that
focuses more on the shape of the objects. Our results showed that SI perform
better than CSHOT and ECV in spite of having only shape information.

Also, we observed that RGB-D descriptors that work well with object recog-
nition not necessary perform in the same way in a tracking application.

In order to achieve robust tracking we saw that a good initial pose is required
and a good object model for the detection phase.
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Abstract. As in many other computer vision applications, the large
amount of data is an inherent problem in video gesture recognition. A
challenging task is to maintain a suitable trade-off between time and
accuracy aiming a solution meeting certain requirements and constraints.
In this paper, we propose a simple and fast gesture recognition approach
that extracts meaningful and discriminative descriptors from hand ges-
ture videos. Experiments conducted on the Sheffield Kinect Gestures
(SKIG) data set show that our method achieves competitive accuracies,
while processing frames at frequencies higher than those required for
real-time applications.

Keywords: Gesture recognition · Image classification · Motion shapes ·
Feature descriptor · Video cameras

1 Introduction

The automatic gesture recognition field is associated with communication
between humans and computers. Gesture, however, can be considered a broad
concept, once it may involve hand, head, body, leg, or eye movements, facial
expressions, blinks and winks [11]. Each application has different demands and
challenges.

Arm and body gestures have received attention [3,13] to allow the devel-
opment of intelligent interfaces for devices equipped with cameras, which are
becoming increasingly popular. Stereo camera devices, such as Microsoft’s Kinect
that provides RGB-D images, have made this task easier, encouraging research
in the area [8].

Some methods search for exploring RGB-D images to their maximum by
fusing information on both images. The work described in [10] learns the fea-
ture extraction pipeline with graph-based genetic programming (RGGP). The
method developed in [4] uses hierarchical feature extraction to compute a similar-
ity measure between gestures and apply it on distance-based classifiers. In [14],
the authors apply incremental training to 3DHOF and GHOG features [6] in
order to enhance classification accuracy and enable it to online learning.
c© Springer International Publishing Switzerland 2015
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Other methods use only depth data, under the principle that the actor’s
geometry – in this case, carrying some 3D information – is enough to learn
the gestures. This is the case of the work proposed in [5]. Local descriptors are
extracted from each pixel of the depth map volume (a 4-dimensional shape),
encoding low-level information, such as first and second derivatives, gradients
and curvatures. Covariance matrices are used as descriptors, as they carry feature
variations and are low-dimensional.

Furthermore, conventional monocular vision algorithms can be applied to
stereo vision data sets, ignoring depth data. In [2], the authors apply imprecise
hidden Markov models (IHMM) to time series. Distance metrics on mixture pairs
are used to measure the dissimilarity between two video sequences.

This paper extends upon the method described in [1,12] to a new domain:
gesture recognition. The method has shown good results on human action recog-
nition data sets. It uses depth data to produce shape signatures based on extreme
point positions with enough discrimination power to achieve accuracy compara-
ble to state-of-the-art methods, while consuming very little processing time to
perform it. Furthermore, our approach contributes with a suitable cost-benefit
ratio in terms of time and precision.

This paper is organized as follows. Section 2 explains our gesture recognition
methodology. Section 3 presents the results obtained applying it to the SKIG
public data set and details the computational environment and the used param-
eters. Section 4 concludes the paper and include some directions for future work.

2 Proposed Method

Our methodology is composed of the stages illustrated in Fig. 1, extending the
approaches developed in [1,12]. Each stage of the pipeline, marked with a letter
from (a) to (e), is explained as follows.

First, motion segmentation is applied to the original videos. Ideally, this
stage should output a set of silhouettes, however, it often results in unintelligible

Fig. 1. Diagram illustrating the main stages of the proposed methodology.
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broken shapes in real scenarios. This is why we call them motion shapes, such
that errors and missegmentations are accepted.

To fix some of the resulting artifacts, morphological operations are applied [7].
First, a morphological closing with a 3 × 3 structuring element is used to join
broken parts. Then, an area opening is applied to remove small and/or noisy
objects that usually result from small changes in lighting, background movement
and noise. The threshold area was experimentally chosen as 1/360 of the total
image area.

After the aforementioned steps, the Cumulative Motion Shapes (CMS) [12]
are computed (Fig. 1(a)). CMSs are constructed by means of sliding windows
on the temporal dimension of the video volume. For each time window, the
processed motion shapes are joined. This is performed as a union set, so that
the CMS for the k-th frame of a video sequence is given as

CMSk =
k⋃

i=k−n

Si, (1)

where n is the size of the sliding window and Si is the motion shape of the i-th
frame. Fig. 2 illustrates this process. Images from Fig. 2(a) to Fig. 2(d) show
the result of the discussed morphological operations on foreground masks. The
arms are hollow since frame difference was used to extract them. Fig. 2(e) shows
the constructed CMS from these other frames.

The purpose of CMS is to add temporal motion information, while keeping
the representation simple and without raising dimensionality. The CMS can join
broken parts of segmented foreground, creating a meaningful shape. It makes
silhouette-based methods more robust to problems found in the segmentation
process.

The next step, corresponding to Fig. 1(b), consists of excluding faulty frames.
Dealing with noise is a difficult task: although some artefacts can be treated with
morphological operations, meaningless information is still obtained. A frame is
discarded if it fits into one of these criteria: (i) if there is little movement or no
movement at all; a threshold is defined to filter small portions of movement; and
(ii) if the bounding boxes touch the borders of the frame; this usually indicates

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4 (e) CMS

Fig. 2. CMS construction: (a)-(d) Examples of extracted foreground from the cross
action from SKIG [10] data set; (e) CMS from joining previous images.
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1

2

3

DY=4

3 DX=4

(a) Bounding box subdivi-
sion

(b) Interest points (c) Descriptor construction

Fig. 3. (a) Control points are defined as equally spaced points along the bounding
box. The number of control point divisions in the x and y axes are denoted DX and
DY , respectively; (b) characterization of the interest points by the nearest distances
to the CMS contour for each control point – this example has 20 interest points; (c)
construction of the descriptor from the normalized coordinates of the interest points.

that only a part of the person is visible, and partial information would undermine
the training.

Interest points are selected, in step (c) (Fig. 1), as prominent parts of the
CMS. These points are found through control points over the bounding box
shape, that is, the smallest rectangle that comprises the entire shape, as shown
in Fig. 3(a). Control points are equally spaced along the bounding box sides. For
each control point, the nearest point to the CMS contour is selected as an interest
point, as Fig. 3(b) illustrates. The number of key points can be parameterized.

The descriptor construction (Fig. 1(d)) is performed as follows (Fig. 3(c)):

1. the centroid of the shape is determined as the center of the bounding box;
2. the centroid is assigned as the origin and a coordinate system is created and

normalized in relation to the borders of the box, so that the values range
from −1 to 1;

3. each point is positioned in the new coordinate system;
4. the final descriptor vector is obtained by concatenating the coordinates of

all interest points.

Every video frame generates one CMS – except for the first and last frames,
when sliding window positions are empty, and for the discarded frames from
step (b). This results in multiple descriptor vectors for each video, each one
corresponding to a time window. Therefore, actions are learned by starting from
any part of its cycle.

When a classifier is trained, its inputs correspond to several self-sufficing
descriptors for each video, as shown in Fig. 1, step (e). Similarly to classify an
unknown sequence, multiple predictions are fed to a voting process: the most
voted class is chosen. To avoid overpopulating classifiers, a parameterized num-
ber of equally spaced samples are selected.
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3 Experiments

In this section, we evaluate our method on a public gesture data set and present
the results, as well as implementation details such as software libraries and
parameters.

The experiments were conducted on the Sheffield KInect Gesture (SKIG)
data set [10], which consists of 10 action categories, performed by 6 actors, on
3 hand poses, 3 backgrounds and 2 illumination conditions. This results in 1080
videos. Each video sequence is available as a set of RBG color images and depth
maps. The images were acquired with the Microsoft Kinect sensor.

The gestures present in the data set include: circle (clockwise), triangle (anti-
clockwise), up-down, right-left, wave, “Z”, cross, come here, turn-around and
pat. These gestures are illustrated in Figure 4, where color images with arrows
to assist understanding are shown on the top row and depth maps on the bottom
row.

Fig. 4. Samples from each gesture class of SKIG data set. Color images (with arrows
indicating the gesture) on the top row and depth maps on the bottom row. Extracted
from [10].

The feature extraction module was written in C/C++ programming language
using OpenCV (library version 2.4.9). The classification module was written in
Python 2.7.6 using the SciKit-Learn package (version 0.15.2), which includes
implementation for several classification machines and cross-validation function-
alities.

According to the experimental protocol described in [10], we performed a
3-fold cross-validation set up. The data was evaluated through two classification
machines: Support Vector Machines (SVM) and K-nearest neighbors (K-NN).

Table 1 shows the feature extraction speed (in frames per second - FPS), the
average classification time for a single video (in milliseconds) and the accuracy
rates for SVM and K-NN (in percentage). It can be seen that the feature extrac-
tion time is very low, allowing for the method to work in real case scenarios,
where computational time is an important factor. Time measures correspond
to an average of runs. The experiments were conducted in a 2.4GHz Intel i7
processor using no parallelism resources.

Our method achieves 93.52% accuracy using only depth map images, surpass-
ing the baseline results of 76.1% on the depth images, and 88.7% on a color/depth
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Table 1. Accuracy rates (in percentage), average feature extraction speed (in frames
per second) and average classification time (in milliseconds) for SKIG data set. All
time measurements were obtained from an average on five runs.

Approach Measurements Results

Proposed
Feature extraction speed (FPS) 354.37

Classification time (ms)
SVM 20.80
KNN 12.70

Accuracy rate (%)
SVM 93.52
KNN 91.30

RGGP [10]
Accuracy rate (%)

Depth only 76.1
RGB-D fusion 88.7

Hierarchical model [4]
Accuracy rate (%)

Depth only 91.3
RGB-D fusion 91.9

IHMM [2] Accuracy rate (%) RGB only 92.8

ABACOC [14] Accuracy rate (%) RGB-D fusion 97.5

fusion classification. Although state-of-the-art methods overcome this rate, our
contribution results in a proper balance between computational time and accu-
racy. This correct classification rate, not far behind the best available values, is
achieved while taking an average of 2.82 milliseconds to process a single frame.

Additional experiments were conducted in order to search for optimum quan-
tity of interest points. It was decided to set it to 64, with 16 along each side of
the bounding box. As each point contributes with 2-dimensional coordinates, the
descriptor size is 128. To reduce it, extracting the most discriminative dimen-
sions, principal component analysis (PCA) [9] is applied to the data, keeping
50 dimensions. This value was able to keep the dimensionality low, while still
keeping the descriptor discriminative.

Furthermore, since it was observed that the use of many frames would add
confusion and redundancy to the classification process, thirty equally spaced
samples were taken from each video. This value was also determined empirically.

The sliding window size is the most decisive descriptor parameter. Short
gestures require small windows, whereas longer gestures require larger windows.
A grid search showed that the best window size for SKIG data set is 25 frames.

Parameter grid searches were run for both SVM and K-NN classifiers. The
best results using SVM were on RBF kernels for C and Gamma equal to 100
and 0.1, respectively. These parameters were consistently the best configuration,
even changing the number of interest points and number of sample frames. The
behavior for the K-NN parameter was not so constant, where its value for the
best run was 5.

Figure 5 shows the confusion matrix of the SVM best result, as shown in
Table 1. The cell with the highest misclassification is the Pat action, predicted
as Up-Down. They are similar actions, both involving hand movements up and
down.
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Fig. 5. Confusion matrix for the best result (accuracy of 93.52%) using SVM classifier.

4 Conclusions

This work describes and evaluates a gesture recognition method. The descriptor,
originally constructed to represent entire human shapes for action detection [12],
demonstrated to be effective on hand movements.

The proposed gesture recognition method shares some common characteris-
tics with other domains, for instance, object detection and activity recognition.
Its feature vector has low dimensionality and can be computed in real time.
Furthermore, it has enough discriminative power to be competitive with state-
of-the-art methods in terms of accuracy.

The most challenging task for shape-based methods is the foreground seg-
mentation. This is mitigated by grouping several frames into one sliding window,
which we refer to as cumulative motion shapes (CMS). It is particularly easier
for gesture recognition, since it is often done in closed scenes, with one per-
son interacting with the machine. The Kinect sensor also facilitates the task by
making depth maps and people detection available.

Experiments showed that the method achieved 93.52% accuracy on SKIG
public dataset, while extracting descriptor vectors at an average of 354.37 FPS.
These results represent an alternative on the trade-off problem between accuracy
and processing time.

Training a classifier with several descriptors for each video allows for the
method to detect a gesture in any of its stage, instead of having to wait for it to
complete a sequence of states or for an initial pose.
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Most of the action data sets evaluated on [12] took window sizes of 12 or less.
The best window size found for SKIG data set is 25. This occurs since the time
periods for the gestures are relatively long.

As directions for future work, we intend to apply our method to other gesture
data sets. Our method employs only flat shapes extracted from depth images.
It would be possible to merge it with descriptors from the RBG images. Fur-
thermore, the application of different classification approaches could improve
the method accuracy, such as sequences of clustered key poses or probabilistic
techniques.
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Abstract. Facial expression has an important role in human interac-
tion and non-verbal communication. Hence more and more applications,
which automatically detect facial expressions, start to be pervasive in
various fields, such as education, entertainment, psychology, human-
computer interaction, behavior monitoring, just to cite a few. In this
paper, we present a new approach for facial expression recognition using a
so-called deep conspicuous neural network. The proposed method builds
a conspicuous map of region faces, training it via a deep network. Exper-
imental results achieved an average accuracy of 90% over the extended
Cohn-Kanade data set for seven basic expressions, demonstrating the
best performance against four state-of-the-art methods.

Keywords: Conspicuity · Facial expression · Deep learning

1 Introduction

Non-verbal language can be highlighted as one of the first forms of human
communication, and consequently a source of countless studies in science. Par-
ticularly, facial expression is one of the most powerful, immediate and natural
non-verbal ways that humans can use to transmit their emotions and intentions
[2]. Also, face is able to express emotions so soon as a person can speak or
perceive his/her feelings [5].

Adopting Charles Darwin’s starting premise [1], which stated that the mam-
mals understand and show their emotions from a set of facial expressions, Ekman
and Friesen [4] initially suggested that there exist six primary emotions plus neu-
tral (e.g, happy, sadness, fear, disgust, surprise and anger), with each one of them
having singular and universal facial expressions and characteristics; later, they
have also included contempt as a primary expression [8].

In contrast with facial expression recognition, emotion recognition is a pure
interpretation of the expression, and it frequently demands a comprehension of a
given situation, along with the evaluation of all contextual information surround-
ing [3]. With that in mind, some research areas, such as affective computing, try
to give to computers the ability to recognize and feel emotions. In the near
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 255–262, 2015.
DOI: 10.1007/978-3-319-25751-8 31
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future, it may be possible to give more particular, natural and proper guidance
to end-users in the human-computer interaction [6].

Nowadays, starting from facial expression detection to ultimately accom-
plish emotion recognition, some works have been achieving high accuracy. Chew
et al. [9] explored a person-independent system using constrained local mod-
els (CLM) to highlight the face shape and recognize facial expression by using
local binary pattern (LBP) descriptor with an SVM classifier. Lee and Chel-
lappa [10] introduced a framework for facial motion modeling; they represented
the faces as a sparse localized motion dictionaries obtained by a motion flow
estimation, which were then classified by an nearest neighborhood (NN) clas-
sifier. Nie, Wang and Ji [11] have dealt with facial expression recognition by
means of a type of classification problem over multi-dimensional sequence data;
they extracted spatio-temporal patterns in high-dimensional motion data using
an improved restricted Boltzmann machine (RBM), where pairwise potential
energy functions were used; the main goal was to break the assumption of the
input data dependence by means of a standard RBM model. Shojaeilangari et
al. [12] introduced a histogram of local phase and local orientation of gradients
achieved from a sequence of face images, as a descriptor of facial expressions.

Differently from the other works, we propose a method that combine con-
spicuous maps representation (addressed in Section 2.1), and a deep learning
approach to classify that conspicuous regions, as described in Section 2.2. The
conspicuous maps highlight the most salient areas of the face, avoiding the clas-
sification of unnecessary areas of the face that does not influence on the facial
expression (e.g., ears, top of the head and hairs). The convolutional neural net-
work (CNN) helps to learn different high-level features (over the eyes, mouth
and nose). This is so, since the deep net can locally sharing weights at high
layers providing a greater abstraction power. To assess the performance of the
proposed method, the extended Cohn-Kanade (CK+) data set [17] was used
as a referential comparison. Over that data set, our method achieved the best
performance when compared against four state-of-the-art works [9] [10] [11] [12],
reaching an average accuracy of 90%, considering all the expressions.

This paper is structured as follows: In Section 2, our proposed method is
described. Section 3 presents the experimental results. Finally, Section 4 draws
the conclusions, as well as, suggestions for future works.

2 On Deeply Learning Facial Expressions

2.1 Conspicuity Maps

An object is more usually noticed in a scene based on their behavioral relevance.
In case of the facial expressions, the regions that are capable to draw more
visual attention are in the t-region of the face (eyes and nose), which ultimately
highlight most of the facial movements to be analyzed. To detect the salient
regions of the face, similarly to the way to achieve the intense maps in [18],
the input image I is progressively downsampled using a Gaussian pyramid [19],
which consists of low-pass filtering and sub-sampling versions of the input image,
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in eight octaves σ. From the Gaussian pyramid, each feature is computed by a set
of linear “center-surround” differences, denoted as �, and they are implemented
in the model, as the difference between fine and coarse scales, whose center is a
pixel at scale c ∈ {2, 3, 4}, and the surrounding is the corresponding pixel at
scale s = c+ δ, where δ ∈ {3, 4}. The referred differences are computed in a set
of six maps, given by

I(c, s) =| I(c) � I(s) | . (1)

The conspicuity map I is obtained by a cross-scale addition, “
⊕

”, which
works by reducing each map to scale 4 and point-by-point addition, according

I =
4⊕

c=2

c+4⊕
s=c+3

N (I(c, s)) . (2)

A normalizing operator N (.) is used to globally promotes maps where a small
number of strong peaks of activity – conspicuous locations – is presented, while
globally suppresses maps, which contain numerous comparable peak responses.
The normalizing operation consists of: (i) Normalizing the values in the map to
a fixed range [0..M], in order to eliminate modality-dependent amplitude differ-
ences; (ii) finding the location of the map’s global maximum M and computing
the average m of all its other local maxima; and (iii) globally multiplying the
map by (M − m2). After that, a fixed threshold defined empirically is applied
in the map in order to create a binary mask; this binary image finally highlight
the salient regions (refer to Fig. 1 for visual examples of the method steps).

Fig. 1. Generation of the conspicuity regions. Left to right: First image is the original
image after alignment, cropping and color normalization. Second image is the generated
conspicuity map of the face. Third image is the thresholded image and, finally, the
fourth image is the image only with the most salient facial regions.

2.2 Deep Learning

Deep learning can be described as a learning experience at various levels of
representation, corresponding to different levels of abstractions. To consider a
neural network deep, it is necessary that the input of the deep network pass
through several non-linearity filters before being output.
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Fig. 2. General architecture of the proposed method. Left to right: Conspicuous map
representation and the architecture of the deep CNN.

In this paper, we focus on combining a strategy of a salience map and a deep
convolution network. The proposed method is based on a coarse-to-fine approach,
by considering the conspicuous maps, the three convolution layers followed by
max pooling, two hidden layers fully connected and one output layer, also fully
connected, with eight possible outputs, as illustrated on Fig. 2.

Some important aspects of the network architecture have been taken into
consideration. First, predicting an expression valence from large input regions is a
high-level task. So, because deeper structures help to form high-level information,
our convolution networks should be deep, as well. Second, since deep structures
tend to be very hard to train, and to obtain performance improvement, the
network should locally share weights of neurons. On the other hand, globally
sharing weights does not work well on images with fixed spatial layout, such as
faces; once eyes and mouth may share low-level features, they are very different
at high-level. This way, for networks whose inputs contain different semantic
regions, locally sharing weights at high layers is usually more effective for learning
different high-level features. The idea of locally sharing weights was originally
proposed by Huang, Lee and Learned-Miller [16].

Considering the proposed architecture, the input layer of the deep neural
network is denoted by a vector of size hxw where h and w is, respectively, the
height and width of the input image I (h,w). Also, the input is 2D since color
information is not used. Convolutionals layers are denoted by C (f, s), where f
is the number of the square convolution kernels, or filters, and s is the size of
the filters. Each map in the convolutional layer is evenly divided into p by q
regions, and weights are locally shared in each region. Pooling layer is denoted
as P(ds). The parameter ds is the size of the square pooling regions, which are
not overlapped. The fully connected layers are denoted as F (n), where n is the
number of nodes at the current layer.

2.3 Deep Conpiscuous Neural Net

Before training the convolutional neural network with the data set images, all
images were pre-processed. The preprocessing module in Fig. 1 illustrates all
steps described below
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1. First all the faces images were aligned and cropped to 380x380 pixel wide.
2. Second image normalization was made with a contrast filter and grey-level

transformation for those images that were not already in grey-level, yet.
3. Finally, the salient regions of face are obtained by computing conspicuity

maps, described in Section 2.1, over each training image.

After the preprocessing phase, the images with salient regions are used to
train the deep neural network, and for training validation a stratified K-Folds
cross, where the number of folds is equals to 3, is used.

In our work, we evaluate two different deep neural network architectures:
(i) The first one is so-called Deep conspicuous network (DCN), built on three
convolutional layers and two fully connected layers; each convolutional layer is
followed by a 2x2 max-pooling layer; starting with 32 convolutional filters, this
number is doubled with every convolutional layer, which has 3x3 and 2x2 filters.
The fully connected hidden layers have 500 units and a output layer is a full
connected layer with eight possible outputs (one for each detected expression plus
neutral). Figure 2 depicts an overview of our system using the DCN approach. (ii)
The second architecture evolved from this first one, and it was coined as dropout
DDCN (DDCN); in that second architecture, we increased the number of units
of the fully connected hidden layers from 500 to 1000 units; also the learning rate
and momentum overtime were changed during the training, after Sutskever et al.
[14]; dropout layers were added between the existing layers, assigning dropout
probabilities to each one of them. Dropout is a popular regularization technique
introduced by Hinton et al. [15] to reduce the overfitting on large neural networks.

3 Experimental Results

To assess the performance of the proposed method, we have performed experi-
ments for emotion recognition over the widely adopted CK+ data set [17]. The
CK+ facial expression data set is an extension of the original Cohn-Kanade
Database [13] and consists in image sequences (frontal view) of 123 students of
different ages, gender and ethnicity, performing each one the seven basic facial
expressions: Anger – An, Contempt – Co, Disgust – Di, Fear – Fe, Happy – Ha,
Sad – Sa and Surprise – Su, plus the Ne – Neutral one. The neutral expression
is obtained on the first image of each facial expression sequence and a total of
593 image sequences or 10792 separated images were generated. All images the
image were considered, following the same protocol suggested in [17], and fol-
lowed by all compared works. In the experiments, the CK+ data set was split
into random train and test subsets. Four state-of-the-art methods were used to
compare the performance of our detector.

According Fig. 3, DCN achieved the following results: Neutral - 93%; Angry
94%; Contempt 82%; Disgust 85%; Fear 92%; Happy 90%; Sadness 96%; Surprise
91%, while, DDCN performance was: Neutral - 93%, Angry 94%; Contempt 88%;
Disgust 78%; Fear 92%; Happy 92%; Sadness 97%; Surprise 90%. If keep neutral
expressions out, the average accuracy of all the expressions is 90%, which is 2%
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(a) (b)

Fig. 3. Confusion matrix of the two trained deep conspicuity facial expression archi-
tectures, Fig. (a) represents the DCN architecture, and Fig. (b) represents the DDCN
architecture. The analyzed expressions were Neutral – Ne, Anger – An, Contempt –
Co, Fear – Fe, Happiness – Ha, Sadness – Sa and Surprise – Su.

Table 1. Classification accuracy (%) of our method and the other four state-of-art
approaches, ordered by the average performance. A bold number indicates the best
performance method.

Approach An Co Di Fe Ha Sa Su Avg.

DCN 94 82 85 92 90 96 91 90
DDCN 94 88 78 92 92 97 89 90
Nie, Wang and Ji [11] 97 72 89 84 100 78 97 88
Shojaeilangari et al. [12] 90 – 96 66 100 78 98 88
Lee and Chellappa [10] 84 81 89 63 91 80 93 83
Chew et al. [9] 70 52 92 72 94 45 93 74

better than the best state-of-the-art method studied. In Table 1, the comparison
of our model with some recent approaches are summarized. Our method reaches
the best accuracy on three expressions (contempt, fear and sadness) among all
the methods listed. Although our model did not achieve the best accuracy for
all expressions, it does not fall behind very much the other detectors.
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4 Conclusion

In this paper, we presented a new approach for facial expression recognition
called deep conspicuous neural network. The proposed method achieved the best
average accuracy of 90% on the CK+ data set, considering seven basic emotions,
against four state-of-the-art methods. Our method relied on a salient conspicuous
maps classified by a deep neural network.

For that proposed map, we created two model architectures, denoted as DCN
and DDCN. Although the average performance of both architecture were the
same, it is noteworthy that better results in four expressions (contempt, fear,
happy, sadness) were achieved, proving the improvement of DDCN over the
DCN. For future work, we are working on a pre-training approach to initialize
our network with better epochs, layers and weights. Also, we are exploring the
use of concatenated deep network structures that will automatically segment the
most conspicuous regions of the face.
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Abstract. In recent years, emotion recognition based on facial expres-
sions has received increasing attention by the scientific community in sev-
eral knowledge domains, such as emotional analysis, pattern recognition,
behavior prediction, interpersonal relations, human-computer interac-
tions, among others. This work describes an emotion recognition system
based on facial expressions robust to occlusions. Initially, the occluded
facial expression to be recognized is reconstructed through Robust Prin-
cipal Component Analysis (RPCA). Then, a fiducial point detection is
performed to extract facial expression features, represented by Gabor
wavelets and geometric features. The feature vector space is reduced
using Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA). Finally, K-nearest neighbor algorithm (K-NN) and Sup-
port Vector Machine (SVM) classifiers are used to recognize the expres-
sions. Three public data sets are used to evaluate our results. The geo-
metric representation achieved high accuracy rates for occluded and non-
occluded faces compared to approaches available in the literature.

Keywords: Facial expression · Emotion recognition · Occlusion · Fidu-
cial landmarks

1 Introduction

In recent years, human emotion has been studied in various knowledge fields.
Emotion is a physiological reaction or subjective experience of human beings,
which can be expressed as facial expressions, body movement, voice intonation,
cardiac rhythm, among other forms [13]. However, facial expressions are a uni-
versal and non-verbal communication mode that shows emotions in all human
beings, which allow to communicate emotional information in an easier, simple
and natural way. A facial expression consists of one or more facial muscula-
ture movements, which is functionally the same for adults and newborns. Facial
expressions are independent on culture, gender and age. Furthermore, there is
strong evidence of universal facial expressions for seven emotions: anger, con-
tempt, disgust, fear, happiness, sadness and surprise [3].
c© Springer International Publishing Switzerland 2015
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Research has recently been conducted to develop robust devices that can
help to understand emotions and moods of human beings. Furthermore, investi-
gations are carried out to apply these devices in the development of automated
tools for behavioral research, airport security, video surveillance systems, aggres-
sion detector for CCTV, on-board emotion detector for drivers. Therefore, facial
expression recognition plays an important role for affective computing research.

Facial expression recognition can be categorized into two major approaches:
frame-based and sequence-based. The former recognizes facial expressions from
a single image frame, whereas the latter is based on recognition over an image
sequence, taking into account temporal information [13], such as skin color
changes, facial muscle movement, head movement, among other factors.

Automatic facial expression recognition systems usually involve three main
stages: facial detection, facial expression feature extraction and representation,
and expression recognition. A persistent problem on developing facial expression
recognition systems is that most of them are based on image collections that do
not reflect real and natural scenes. Besides, the majority of them do not deal
with occlusions caused by sunglasses, hats, scarves, beard, etc. The omission of
these factors during the training stage could affect facial expression recognition
accuracy.

In this paper, we propose a novel and effective methodology for facial expres-
sion recognition robust to occlusions. The approach is composed of five stages.
The first one consists on performing the occluded facial expression reconstruc-
tion using the Dual Algorithm, which is based on RPCA principles [4]. The
second step resides on detecting the facial fiducial points automatically. The
third phase consists on extracting two types of features: Gabor wavelets and
geometric representations. The next step performs a feature reduction through
PCA and LDA. The latter phase aims to recognize occluded facial expressions
using K-NN and SVM classifiers.

Our approach achieved high recognition accuracy rates for occluded and non-
occluded images on three data sets, using a geometric representation. The results
obtained with the proposed method were compared against other approaches
available in the literature. A Gabor representation proposed showed to work
better with non-occluded faces. Furthermore, the proposed feature extraction
methods did not demand high computational resources.

The remainder of the paper is organized as follows. Section 2 presents the
methodology proposed in this work, describing the preprocessing, the facial
expression reconstruction, the facial feature extraction and the feature reduction
stage. Section 3 describes and discusses the experiments and results. Section 4
concludes the paper with final remarks and directions for future work.

2 Methodology

The proposed methodology for facial expression recognition with occlusions is
composed of five main steps: preprocessing, facial expression reconstruction,
facial feature extraction, feature reduction and classification. These stages are
described as follows.
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The image preprocessing stage is crucial to the expression recognition task,
whose main purpose is to obtain occluded facial expression images with aligned
faces, uniform size and shape, and randomized occluded facial regions. This pre-
processing procedure consists in the following seven steps: (1) automatic detec-
tion of fiducial points through Chehra Face and Eyes Tracking Software [2]; (2)
extraction of eye coordinate features; (3) rotation of the images to align the eye
coordinates; (4) scaling of the images proportionally to the minimum distance d
between the eyes; (5) cropping of the face region using an appropriate bounding
rectangle; (6) conversion of the color images to gray-scale; (7) addition of ran-
domized black rectangles to occlude facial regions, including left eye, right eye,
two eyes, bottom left side of the face, bottom right side of the face or bottom
side of the face, as illustrated in Figure 1.

Fig. 1. Cropped images with occluded facial regions from the MUG data set.

PCA is widely used as a tool for reducing high-dimensional feature subspaces.
However, PCA does not work well with grossly corrupted observations, such as
variations of facial expressions, occluded faces, image noise, illumination prob-
lems, etc. Instead, RPCA [4] performs robustly with missing data and outliers.
RPCA is an extension of the classical PCA procedure and it has been shown to
perform better, among other approaches, for the reconstruction of occluded facial
expressions [6] and to contribute in achieving better facial expression recognition
accuracy [10].

Several experiments conducted over the training set demonstrated the RPCA
algorithm to be effective for facial expression reconstruction using 150 iterations
and a parameter regularization λ = 1√

max (m,n)
[5], where m and n are the size

of matrix D.
After performing the facial expression reconstruction, we project all samples

of the testing set onto the space created by RPCA. Thereafter, we fill all occluded
facial regions set from the reconstructed faces for both training and testing
sets. Hence, we perform the contrast-limited adaptive histogram equalization
(CLAHE) over the reconstructed facial regions to enhance the image contrast to
facilitate of facial fiducial points detection. Figure 2 shows the process.

Two types of facial features, Gabor wavelet and geometric representation,
are extracted for facial expression recognition.

After performing experiments with different sets of Gabor wavelet kernels,
we decide to use 20 Gabor wavelet kernels at five scales (v = {0, 1, 2, 3, 4}) and
four orientations (μ = {1, 2, 3, 4}), with σ = kmax = π, and f =

√
2. This

combination provides a proper recognition accuracy rate.
This set of kernels is used for convolving a facial image region of 15×15 pixels

around the location of 22 facial fiducial points: six points for the corners and
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(a) (b) (c) (d) (e)

Fig. 2. (a) Cropped images without occlusions from the Cohn-Kanade database, (b)
faces with occluded regions; (c) reconstructed faces; (d) filling the occluded facial
regions from (c); (e) facial fiducial points detected.

middle of the eyebrows; eight points for the corners and middle of the borders
of the eyes; four points for the superior and inferior side of the nose; and four
points for the left, right, superior and inferior border of the mouth. Figure 3(a)
shows the location of these 22 points.

Each convolved image region is divided into 9 (3×3) equivalent blocks of 5×5
pixels, as shown in Figure 3(d), and two measures are calculated from each one:
mean and standard deviation [14]. The Gabor wavelet representation is basically
the concatenation of the two measures calculated from each block of 5×5 pixels
for all the regions around the location of the selected fiducial points, resulting
in a feature vector of length 2×9×20×22=7920. Figure 3 illustrates the process.

As suggested in [11], the geometric representation uses eight 2D facial fiducial
points: two points for the middle of the eyebrows (1-2); two points for eye’s inner
corner (3-4); and four points for the left, right, superior and inferior border of
the mouth (5-8). Figure 4 shows the localization of the eight facial points.

We calculated the mean μ and standard deviation σ of the set of facial
selected points per each class. Each x- and y-coordinates are projected to a [0, 1]

(a) (b) (c) (d)

Fig. 3. (a) 22 facial fiducial points of a cropped image from the JAFFE database, (b)
the 20 convolution results of Gabor wavelets of the region around the location of the
outer corner of the eyebrow; (c) the convolution results at orientation µ and scale v;
(d) the convolution result is divided into 9 sub-blocks.
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Fig. 4. (a) Eight 2D facial fiducial points detected of a cropped image from the Cohn-
Kanade database; (b) the six distances calculated from the eight selected facial points.
Adapted from [11].

interval, considering the upper left corner as the origin. These points form a fea-
ture vector of length 16. This feature vector is normalized as f ′

l = [(fi−μi)/2σi]+1
2 ,

where f ′
l is the normalization form of fi, the ith (i = 1, . . . , 16) feature across

the training data [11].
The geometric representation helps to describe the position of the facial

points to each other. Thereby, six distances are calculated from the selected
points, as shown in Figure 4 (b). These distances are normalized according to
face width. For further consideration, the two distances d1 and d2 are the average
values of the mirrored distances of each side of the face. The two distances d5
and d6 are calculated using the intersection point of the line between the points
of the superior and inferior borders of the mouth, and the line between the left
and right corner of the mouth. Hence, the set of selected points and distances
calculated form a vector of 22 features.

Two approaches for feature reduction, i.e., PCA and LDA, are used sequen-
tially. Thereby, we apply this procedure individually for the texture feature vec-
tor and the geometric feature vector. Hence, we used SVM and KNN classifica-
tion techniques for comparing the recognition rates.

3 Experimental Results

The proposed methodology has been tested on three facial expression data sets:
the Cohn-Kanade (CK+) [8] data set, the Japanese Female Facial Expression
(JAFFE) [9] data set and the MUG Facial Expression data set [1].

The CK data set is available in two versions, such that we used the second one
(CK+) that contains 593 sequential images of posed and non-posed expressions
from 123 subjects, labeled as one of seven facial expressions, i.e., anger, contempt,
disgust, fear, happy, sadness and surprise. Each image sequence incorporates the
onset with a neutral facial expression to peak a facial expression. The CK+ data
set also includes some metadata as 68 facial landmarks [8].

The JAFFE data set contains 213 images of seven facial expressions, i.e.,
anger, disgust, fear, happiness, neutral, sadness and surprise, performed by 10
Japanese female models [9].



268 J.Y.R. Cornejo et al.

The MUG data set consists of two parts, where we used the static image col-
lection of 86 subjects performing seven facial expressions as the JAFFE database,
without occlusions. The MUG data set also contains 80 facial points [1].

Initially, for each data set, we randomly choose 80% of samples of each class
for the training set and the remaining 20% for the testing set. Then, 50% of the
training set samples of each class were occluded and a similar procedure was
applied to the testing set. We set 20 different randomized collections of occluded
and non-occluded data to perform experiments for each of the three data sets.

From these image collections, we performed experiments using Gabor
wavelet and geometric representation following four methods: PCA+K-NN,
PCA+LDA+K-NN, PCA+SVM and PCA+LDA+SVM. The results are shown
in Tables 1 and 2, whose values represent the average facial expression recogni-
tion accuracy rate from performing 20 experiments with different collections. It
is relevant to clarify that RPCA is always applied independently of the feature
reduction and classification methods applied.

Table 1. Average accuracy, in percentage, for non-occluded facial images using Gabor
wavelet and geometric representation.

Method Gabor Representation Geometric Representation

CK+ JAFFE MUG CK+ JAFFE MUG

PCA + K-NN 59.71 86.20 79.06 36.20 43.93 61.16
PCA + LDA + K-NN 92.76 95.36 91.84 99.78 99.17 99.94
PCA + SVM 86.12 93.21 85.95 95.75 93.34 93.80
PCA + LDA + SVM 94.03 95.12 91.33 97.47 96.91 99.24

Table 2. Average accuracy, in percentage, for occluded facial images using Gabor
wavelet and geometric representation.

Method Gabor Representation Geometric Representation

CK+ JAFFE MUG CK+ JAFFE MUG

PCA + K-NN 50.17 48.58 55.76 36.65 32.62 43.49
PCA + LDA + K-NN 84.63 82.51 81.21 98.73 98.21 99.43
PCA + SVM 76.87 73.48 67.76 95.30 88.69 92.92
PCA + LDA + SVM 85.68 82.86 81.02 97.47 95.95 98.67

From our experiments, it is possible to see that the PCA+LDA approach
achieves better recognition accuracy than just using PCA. Also, we can observe
that the geometric representation reaches higher facial expression recognition
accuracy among occluded and non-occluded image collections compared with
Gabor wavelet representation. From Tables 1 and 2, we can notice that a recog-
nition accuracy of non-occluded collections is much better than among occluded
image collections using a Gabor wavelet representation due to the difficulty on
recovering the occlusion images. We can also see that an accuracy rate of non-
occluded collections is slightly better than among occluded image collections
using a geometric representation.
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We compared our methods to others available in the literature that apply ran-
dom partial occlusions over the faces for both training and testing phases. Table 3
summarizes the best results achieved by our method on each data set, as well
as a comparison against other state-of-the-art approaches available in the litera-
ture. There are few similar works that consider occlusions on the training stage,
then it can be seen that the proposed method - Geometric+PCA+LDA+K-NN
- obtains the best results for CK+ and JAFFE datasets, not only for occluded
images, even for non-occluded images. Table 3 is sorted in descending order by
occluded recognition accuracy rate.

Table 3. Accuracy rates, in percentage, for non-occluded images and for comparable
methods that work with random partial occlusions on the faces in both training and
testing phases.

Data Set Approach Strategy Non-Occlusion Occlusion

CK+
Ours Geometric+PCA+LDA+K-NN 99.78 98.73
Ours Gabor+PCA+LDA+SVM 94.03 85.68
Liu et al. [7] Maximum Likelihood Estima-

tion Sparse Representation
94.29 85.24

JAFFE
Ours Geometric+PCA+LDA+K-NN 99.17 98.21
Liu et al. [7] Maximum Likelihood Estima-

tion Sparse Representation
93.42 86.73

Ours Gabor+PCA+LDA+SVM 95.12 82.86
Zhang et al. [12] Gabor template and SVM 81.20 48.80

MUG
Ours Geometric+PCA+LDA+K-NN 99.94 99.43
Ours Gabor+PCA+LDA+K-NN 91.84 81.21

4 Conclusions and Future Work

Using RPCA to perform occluded facial expression reconstruction task allowed to
obtain a better accuracy for facial fiducial point detection. Experimental results
have shown that geometric representation for facial expression recognition can
achieve robustness to occluded and non-occluded faces. A normalized geometric
representation for facial expression recognition has proven to be independent on
gender, race and age. Furthermore, it has also been shown that discriminant
feature selection techniques, such as PCA and LDA, can contribute to increase
recognition accuracy significantly.

Despite the fact that the Gabor wavelet representation did not provide a
high accuracy for occluded facial expression recognition, the achieved accuracy
is superior and competitive compared to other similar works. Also, an accuracy
rate achieved for facial expression recognition without occlusions is competitive
as well as other similar works. Furthermore, Gabor wavelet representation does
not demand high computational resources to generate a feature vector, because
of the convolution of small regions around few facial fiducial points.
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In order to achieve better accuracy using a Gabor wavelet representation, new
facial fiducial point set and facial reconstruction algorithm improvements will
be explored. Also, there is a need to research the development of an automatic
occlusion detector for facial expression recognition systems robust to occlusions.
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Abstract. In the present work we propose a method for detecting the
nose and eyes position when we observe a scene that contains a face.
The main goal of the proposed technique is that it capable of bypassing
the 3D explicit mapping of the face and instead take advantage of the
information available in the Depth gradient map of the face. To this end
we will introduce a simple false positive rejection approach restricting
the distance between the eyes, and between the eyes and the nose. The
main idea is to use nose candidates to estimate those regions where
is expected to find the eyes, and vice versa. Experiments with Texas
database are presented and the proposed approach is testes when data
presents different power of noise and when faces are in different positions
with respect to the camera.

Keywords: Landmark detection · Differential 3d reconstruction · Nose
tip detection · Eyes detection

1 Introduction

One of the most popular and challenging problems in the field of pattern recog-
nition and computer vision consists is the analysis and recognition of human
faces[1]. It has many applications such as security control and prevention, med-
ical and biometrical analysis or gesture understanding. In the last decade, lot of
research included three-dimensional (3D) face information to improve recogni-
tion rates and make the methods more robust to pose, gesture and illumination
variations[3]. See e.g. the work of Chang et al. [6], Faltemier et al. [10], Mahoor
et al. [15], and Li et al. [14]. Most of these approaches, uses features of the face
collected from the eyes forehead and nose regions, and hence they require in a
initial step to find the position of the eyes and nose on the input images. To
achieve a robust localization of the eyes and nose position, we follow a curvature
approach (see e.g.[8] and references therein). This methods is very efficient for
detecting those possible nose and eyes candidates, despite that, it is important
to solve the problem of removing false positive candidates. To solve this issue
we will follow a message passing methodology; the main idea behind it is to use
nose candidates to estimate those regions where is expected to find the eyes, and
vice versa.
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 271–278, 2015.
DOI: 10.1007/978-3-319-25751-8 33
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In order to remove possible false detections many approaches has been pro-
posed; for example, Li and Da [14] fitted a nose template to each nose candidate.
Bronstein et al. [4] impose geometric relations between the candidates (e.g. that
the nose apex is located between the two eyes, above the nose tip and within cer-
tain distance intervals). In the work of Faltemier et al. [10] the nose tip is found
as the highest z value after the face surface is aligned using ICP to a template
face. Chang et al. [6] impose that the eyes regions must present similar y and
z value, and that the nose tip is found starting between the eyes landmark and
moving down (i.e. along the x direction) along the face. Another example is the
work of Colombo et al. [7] in which the idea is to look from all the nose and eyes
candidates, all the possible triangles formed by one nose candidate and two eyes
candidates. Then, each triangle is described by the distances between the three
regions composing it; finally, triangles with abnormal distances are rejected.

While some of the previously describedmethodsmake hypothesis regarding the
position or orientation of the face (i.e. assuming than the nose is down the two eyes),
others are computationally expensive (i.e. requiring ICP registration or checking
all possible combination of nose and eyes triangles). But what these methods have
in common is that they use the explicit three-dimensional representation of the
face, in the present work we aim to bypass the 3D mapping of the face and instead
take advantage of the information available in the Depth gradient map of the face.
To this end we will introduce a simple false positive rejection approach -that do not
need the explicit 3D mapping of the face- and instead restricts the distance (in the
image plane) between the eyes, and between the eyes and the nose.

2 Proposed Approach

2.1 Find Nose and Eyes Candidates

Let S be the surface defined by a twice differentiable real valued function D :
Ω → R, defined on an open set Ω ⊆ R

2:

S = {(x, y, z) | (x, y) ∈ Ω; z ∈ R;D(x, y) = z}. (1)

For every point (x, y,D(x, y)) ∈ S we consider two different curvature measures,
the Mean (H) and the Gaussian (K) curvature defined as [5,7]:

H(x, y) =
(1 + D2

y)Dxx − 2DxDyDxy + (1 + D2
x)Dyy

2
(
1 + D2

x + D2
y

)3/2 , (2)

K(x, y) =
DxxDyy − D2

xy(
1 + D2

x + D2
y

)2 . (3)

Following the procedure described in [9] we compute the first derivatives of
the scene depth. After that, to calculate H(x, y) and K(x, y) it is only necessary
to compute the second order derivatives (Dxx, Dyy and Dxy) e.g. using finite
differences.
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Once the Mean and Gaussian curvatures are computed, it is possible to
classify the different areas of the face according to its shape [2]. Depending
on H and K values, points on the surface are classified. To remove smooth
regions from the areas of interest a thresholding approach was followed[7,11],
and then those points with high absolute value of K and H were isolated.
For those points with K > 0 and H > 0 the eye candidate label was
assigned, while those with K > 0 and H < 0 were selected as nose candi-
dates. Figure 1 illustrates some of the nose and eyes candidates obtained.

Fig. 1. Examples of nose (red dots) and eyes (green dots) candidates point detected.

Fig. 2. Illustration of the steps
followed to remove false positive
detections. The size of each candi-
date point illustrates the likelihood
of that point at each step.

2.2 Remove False Positive Detections

In first place, we estimate the distance
between the eyes and between each eye and
the nose tip using a training set. We approx-
imate each distance distributions by a Gaus-
sian distributions i.e.

dee(u) =
1

σee

√
2π

e
−
(

(u−μee)2

2σ2
ee

)

(4)

dne(u) =
1

σne

√
2π

e
−
(

(u−μne)2

2σ2
ne

)

. (5)

where dee and dne denote the distance
between eyes and the distance between the
nose and each eye, respectively. The mean
and variance parameters (μ and σ2) were esti-
mated by fitting the distributions given by
Eqs. (4) and (5) to the distributions obtained
from a given training set.

Once distance distributions are obtained,
they are used to propagate where it is feasible
to find the nose/eyes considering each of the
others nose and eyes candidates.
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Kne(x, y) = dne

(√
x2 + y2

)
and Kee(x, y) = dee

(√
x2 + y2

)
. (6)

The next step consists in estimating in which areas is more suitable to have
the nose and eyes candidates so we can keep the set of points with higher prob-
ability to be the true ones. For this we follow four basic steps -illustrated in
Fig. 2-:

1. Estimate initial nose-likelihood (N ) and eye-likelihood (E) functions:

N0(x, y) =
1

#e

#e∑
i=1

δxi,yi
∗ Kne(x, y) (7)

E0(x, y) =

(
1

#e

#e∑
i=1

δxi,yi
∗ Kee(x, y)

)
·
⎛
⎝ 1

#n

#n∑
j=1

δxj ,yj
∗ Kne(x, y)

⎞
⎠ (8)

where #e, #n is the number of eyes and nose candidates respectively, δxi,yi

is the Dirac delta function at each nose/eye candidate location (xi, yi); and
Kne/ee the Kernels defined above.

2. Compute the nose-likelihood and eyes-likelihood distributions as,

N (x, y) =
1

#e

#e∑
i=1

E0(xi, yi)δxi,yi
∗ Kne(x, y) (9)

E(x, y) =

(
1

#e

#e∑
i=1

E0(xi, yi)δxi,yi
∗ Kee(x, y)

)

·
⎛
⎝ 1

#n

#n∑
j=1

N0(xi, yi)δxj ,yj
∗ Kne(x, y)

⎞
⎠ .

(10)

This second step is illustrated in the third row of Fig. 2, the size of each
nose/eye candidate point illustrates the value of N0/E0 and the information
of each candidate will be propagated with different weight.

3. Finally, the nose/eyes candidate points with higher N/E are kept as the true
nose/eyes locations.

Figure 3 shows an example of the input image (a), depth gradient field (b-c)
[estimated following [9]], eyes candidate points (display as blue dots) overlapped
to the computed E(x, y) (d), nose candidate points (display as blue dots) over-
lapped to the computed N (x, y) (e), and finally (f) the output nose and eyes
locations obtained .
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Fig. 3. This figure illustrates the nose and eyes detection procedure. (a) Input image.
(b-c) x and y depth partial derivatives obtained by measuring fringes’ deformation.
(d-e) eyes and nose candidates obtained by curvature thresholding (as blue dots) over-
lapped with the estimated functions E(x, y) and N (x, y) respectively. (h) Nose and eyes
located in the image.

3 Experiments and Evaluation

In this section, we perform a set of experiments using the Texas 3D Face Recog-
nition Database [12,13]. This Database contains 1149 pairs of high resolution,
pose normalized, preprocessed, and perfectly aligned color and range images of
118 subjects. Additionally, it includes the locations of manually marked anthro-
pometric facial fiducial points which will be used as ground truth. For the exper-
iments, we split the database in two sets: Train and Test sets. The first one was
used to estimate the parameters, and the test set was used for evaluation once
all the parameters were trained.

Fig. 4. Definition of θ1, θ2
and θ3.

In a first experiment, we want to evaluate the
robustness of the proposed methodology when we have
different power of noise in the input gradient field.
Figure 5 shows the accuracy obtained (over the test
set) for different levels of noise . The noise added to
the input gradient field was Gaussian with zero mean;
as we can see, when the variance of noise distribution
was below the 20% of the maximum of the signal,
the error in both nose and eyes detection was below
the 10%.

In a second experiment, we want to test the robust-
ness of the proposed technique when the faces are
in a non-frontal position with respect to the camera.
We define the angles θ1, θ2 and θ3 as illustrated in
Figure 4. Recall that we are measuring the projected euclidean distance in the
3D space over the image plane, because of this it is expected that for databases
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Fig. 5. Result obtained over the test set varying the power of the noise added to the
input gradient field.

with larger pose variations, Kne and Kee kernels will become wider and hence
more errors should be expected1.

A new dataset was generated by randomly rotating faces (of the Texas
Database) and projecting them back to the image plane. Again this database
was spitted in train and test sets to avoid over fitting. The test set was divided
according to faces’ position, hence we were able to measure the accuracy for dif-
ferent face orientation (i.e. different values of θ1, θ2 and θ3). Figure 6 shows the
accuracy for test sets with faces in different positions. Accuracies on eyes and
nose recognition are displayed for |θi| ∈ [0o, 55o] i = 1..3, the range images below
the x axis illustrates the pose obtained with the corresponding value of θi. As
we can see the proposed approach is independent with respect to the value of θ3
while accurate results can be achieved when we restrict θ1 and θ2 to the interval
[−30o, 30o], for larger values of θ1 and θ2 the performance drops significantly.

1 In this direction we think there is room for interesting future work. For example, an
improvement could be to estimate the distance in the 3D space from the distances
in the image plane plus the information available in the Depth gradient field (Dx

and Dy).
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Fig. 6. Results when varying face position.

4 Conclusions

This work proposes an efficient approach to find the location of the eyes and
nose position using curvature analysis but bypassing the explicit 3D mapping of
the face. In addition a method for removing the false candidates was proposed,
which constrain the inter-distances between the set of candidate point to find
a robust solution. The proposed method was tested in a public database; in
particular the effect of noise in the input gradient field and the position of the
face on system performance was studied. In future work we plan to include depth
gradient information in order to achieve a more robust estimation of the distance
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between candidate point, and hence improve the robustness of the method under
arbitrary rotations of the face. Other interesting line of research is to apply the
proposed framework for tracking some facial landmarks which could be analyzed
e.g. for gesture recognition.
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Abstract. Content-based image retrieval remains an important
research topic in many domains. It can be applied to assist specialists to
improve the efficiency and accuracy of interpreting the images. However,
it presents some intrinsic problems. This occurs due to the semantic inter-
pretation of an image is still far to be reach, because it depends on the
user’s perception about the image. Besides, each user presents different
personal behaviors and experiences, which generates a high subjective
analysis of a given image. To mitigate these problems the paper presents
a novel framework for content-based image retrieval joining relevance
feedback techniques with optimization methods. It is capable to not only
capture the user intention, but also to tune the process through the opti-
mization method according to each user. The experiments demonstrate
the great applicability and efficacy of the proposed framework, which
presented considerable gains of precision regarding similarity queries.

Keywords: Image analysis · CBIR · Relevance feedback · Optimization

1 Introduction

Nowadays there is a continuously growing regarding devices capable of generate
different types of images. On the other hand images are a complex data type
that brings in itself a number of challenges. This fact leads to a huge volume of
images that must be organized and retrieved considering a specific domain [4],
regarding the specialist intention. Thus, the great challenge is to find among a
large volume of images those which are actually relevant to a given context.

In order to perform this retrieval process the images can be searched based
on metadata (i.e. keywords defined for each image). However, this approach is
extremely subjective, tiresome and susceptible to errors. This occurs not only
in the organization step because someone needs to define the keywords for the
images, but also in the search process. Trying to solve these problems, it was
developed content-based image retrieval (CBIR) techniques that automatically
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c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 281–289, 2015.
DOI: 10.1007/978-3-319-25751-8 34



282 R. Rocha et al.

extract visual characteristics from the images to describe them, generating fea-
ture vectors. The main features extracted are based on color, texture and shape.
Thereafter, these features are compared by a measure (i.e. distance function) in
order to calculate the similarity between the images. For instance, given a query
image, it is possible to retrieve the most similar (relevant) according to it, and
solving the problems of the search based on metadata (i.e. text) [4].

On the other hand, CBIR process suffers from the so called semantic gap
problem [11], where the results returned by the low-level features (color, texture
and shape) automatically extracted from the images and compared by a dis-
tance function do not complies with the user (e.g. specialist in a given context)
expectation about the search. It occurs because of the gap between the low-level
features and the high-level interpretation of the user regarding the similarity
between the images.

Hence, to mitigate the semantic gap problem relevance feedback techniques
can be aggregated into the process in order to approximate the user from the
CBIR approach. This type of technique was adapted from the textual retrieval
area to CBIR [11]. Relevance feedback techniques allow the users to label and
define the relevance (irrelevance) degree of the images returned by a given query.
This labeling process performed by the user provides the CBIR to adapt and
adjust the query, taking into account the high-level relevance of the images
according to the user needs. Thus, it is an effective technique for mapping the
high-level semantics to the low-level features.

In order to improve this process performed by the specialist, obtaining more
accurate results, the present paper applies the CBIR approach with the relevance
feedback process, joined with optimization strategies (e.g. particle swarm opti-
mization) to diminish the intrinsic problems of semantic gap in image retrieval.
Besides, using relevance feedback techniques the approach is capable to closer
the user to the CBIR system, capturing the high-level semantics of the specialist,
aiding the process and serving as training for fresh specialists.

Experiments showed that the proposed methodology improves the query pre-
cision up to 99% and at the same time captures the specialist intentions.

The present paper is organized as follows. Section 2 summarizes the concepts
needed to understand our approach. Section 3 presents the methodology applied,
while Section 4 discusses the experiments and results. Finally, Section 5 presents
the conclusions of the present work.

2 Background

2.1 Feature Extraction

An essential key in similarity search is regarding the feature extraction process,
which describes the intrinsic visual features from the images. As aforecited, the
features are automatically extracted from the images and organized in feature
vectors. There are several methods proposed in the literature to extract image
features based on color, texture or shape low-level characteristics.
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Edge statistics are computed on the images Prewitt gradient, and includes
the mean, median, variance, and eight bins histogram of both the magnitude
and the direction components. Other edge features are the total number of edge
pixels (normalized to the size of the image) and the direction homogeneity, which
is measured by the fraction of edge pixels that are in the first two bins of the
direction histogram. Additionally, the edge direction difference is measured as
the difference among direction histogram bins at a certain angle [6].

Zernike Moments are used to represent complex shapes, composed of several
disjoint regions. It represents shape properties of the image without redundancy
of information between moments [7].

2.2 Relevance Feedback

Relevance feedback techniques perform an interactive query modification and
fulfill an important role in CBIR systems, since it is capable to gradually reduce
the semantic gap through user interactions.

Typically, a relevance feedback approach consists of three steps in the CBIR
context: in the first step, it is performed a similarity query and the most sim-
ilar images are retrieved according to a give image query; at the second step,
the users initiate the labeling process, guiding the search, judging the retrieved
images in relevant or irrelevant; finally, in third step, the systems capture the
user’s intention based on the feedback performed in step two and modify the
initial query. Steps two and three are repeated until the user is satisfied with the
retrieved images.

Different methods can be applied to steps 2 and 3 of the relevance feedback
cycle. Considering step 2, the labeling process can consider only relevant (positive
examples) images, or relevant and irrelevant (negative examples) images at the
same time. In step 3, different techniques can be employed such as based on
query point movement (QPM). This type of technique consists in modifying the
query point. To accomplish such task, the Rocchio’s model [10] can be applied,
which approximates the query point from the relevant images and, at the same
time, keeps it away from the irrelevant ones. The Rocchio’s formula is formally
defined by Equation 1.

−→q m = α−→q o + β

⎛
⎜⎝ 1

|Dr|
∑

−→
dj∈Dr

−→
dj

⎞
⎟⎠ − γ

⎛
⎜⎝ 1

|Dnr|
∑

−→
dj∈Dnr

−→
dj

⎞
⎟⎠ (1)

where −→q o is the feature vector of the old query center; |Dr| and |Dnr| are, respec-
tively, the number of relevant and irrelevant images labeled by the user;

−→
dj is

the feature image vector; and α, β and γ are weights used to define the impor-
tance of the factors (i.e. old query center, relevant images, irrelevant images) to
generate the new query center (−→q m). Varying the weights of α, β and γ, the
results can show large difference. However, to the best of our knowledge, there
is no work which focus on the best-suited definition of these weights, according
to a given context and user intention. Usually, the values of such parameters are
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empirically defined without further analysis. The great majority of works focus
on the relevance/irrelevance degree definition for each image or in the image
features re-weighting, and neglects those parameters.

2.3 Evolutionary Algorithms

In the field of artificial intelligence, evolutionary algorithm (EA) is part of a
category called evolutionary computing. The main idea behind this algorithm
is to apply the process of natural evolution as a problem solving paradigm.
An EA uses mechanisms inspired by biological evolution, such as reproduction,
mutation, recombination, and selection.

Genetic algorithm (GA) is one of the most known and most used in the
evolutionary computing. It is started with a set of solutions represented by chro-
mosomes, called population. Solutions from one population are taken and used
to form a new population. This is motivated by a hope, that the new population
will be better than the older one. Solutions which are selected to form new solu-
tions (offspring) are selected according to their fitness - the more suitable they
are the more chances they have to reproduce. This is repeated until some condi-
tion (for example, number of populations or improvement in the best solution)
is satisfied [3].

The Particle Swarm Optimization (PSO) algorithm was created based on
migration process of birds in searching for food. The concept behind the process
is the particle (i.e. each bird), which is a point in the solution space [9]. The basic
idea is to create a group (swarm) of particles that move within a given problem
space, searching the location that best suits your needs, in this case, given by
the fitness function. The specification of this function depends on the problem
to be optimized. Once a problem space is defined, a set of particles is generated
and subsequently their positions and their speeds are adjusted iteratively.

In this optimization algorithm, we have a complete connected set, which
means that all particles share information. Thus, any particle knows the best
position ever visited by any of the swarm. Each particle has a position (2) and
a velocity (3), which are defined by Equations 2 and 3.

xi,d(it + 1) = xi,d(it) + vi,d(it + 1) (2)

vi,d(it + 1) = vi,d(it)
+C1 ∗ Rnd(0, 1) ∗ [pbi,d(it) − xi,d(it)]
+C2 ∗ Rnd(0, 1) ∗ [gbd(it) − xi,d(it)]

(3)

where: i is the index used to identify the particle; d is the particle dimension;
xi,d is the dimension d of the particle i; vi,d is the velocity of the particle i
in the dimension d; it is the iteration number; C1 is a constant acceleration
to the cognitive component (toward the global best solution); Rnd defines a
random value between 0 and 1; pbi,d is the dimension d of the best local particle;
C2 defines a constant acceleration for the social component (toward the best
solution); and gbd is the dimension d of the best global particle.
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3 Proposed Approach

The proposed framework performs content-based image retrieval through rele-
vance feedback optimization. The framework provides the flexibility to incor-
porate not only new types of distances, but also feature extraction methods,
relevance feedback approaches and optimization algorithms.

Query Image User FeedbackVisual Similarity 
Evaluation

Relevant 
Images Offline 

Optimization
StrategyIrrelevant 

Images
Image

Database
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New Optimized 
Query Center
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Fig. 1. Pipeline of the proposed framework.

The main idea of the proposed framework consists in using information from
the user intention about the similarity query to optimize the relevance feedback
process according to it. The great majority of works do not take into account that
the initial parameters (e.g. α, β and γ from Rocchio’s formula) of the relevance
feedback process also needs to evolve according to a given image context and
user intention, and maintain their initial values. This fact not only leads to
considerable losses in query precision, but also degenerates in a very fast pace the
relevance feedback process, trapping the query in less relevant subspaces. In order
to mitigate this problem, our proposed framework allows to apply optimization
strategies to escape from the subspace trapping, according to the user intention.
To do so, we optimize the values of factors α, β and γ from Rocchio’s formula,
according to the image context (i.e. types of image datasets) and the labeling
process accomplished by the user in the relevance feedback approach.

Figure 1 illustrates the pipeline of the current framework instances. Initially,
in step 1, it is executed the offline optimization process to get best Rocchio’s
parameters according to a given dataset. In step 2, the query image is applied to
the similarity search process accomplished in step 3. In steps 4 and 5, the user
evaluates the retrieved images and labeled them as relevant/irrelevant. Finally,
in step 6, the user intention is used as input to recalculate the query center
using pre-processed parameters to weight the Rocchio’s factors. To the best of
our knowledge there are no studies that perform the same approach. In the
present paper, we generate two instances of the proposed framework, applying
the particle swarm optimization (PSO) and genetic algorithm (GA) approaches
(Section 2.3) linked to the definition of the best values to the Rocchio’s factors.

As fitness function for the PSO and GA, it was used the average precision of
a set of performed similarity queries and relevance feedback iteration.

Algorithm 1 describes the pipeline of the fitness calculation, considering the
PSO instance of the proposed framework. Consider G an image dataset, com-
posed by images from different classes, where every image g ∈ G is described by
a feature vector (generated by a given feature extractor e), the proposed method
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randomly selects an equal number of query images per class (line 3), generating
the RandImages set. Afterwards, the initial values (employed in the literature)
of the factors α, β and γ are defined as the dimensions of the particle (i.e. three
dimensions) for the PSO (lines 5 to 7). Given the images from the RandImages
set, each one of them are used as query centers to an initial k-NN query. So, the
retrieved images (retrievedImages set) are labeled in relevant or irrelevant by
the user (i.e. generating the labeledImages set). Then, the query point movement
based on Rocchio’s formula is applied considering the initial values of alpha, beta
and gamma, as well as the labeled images. The result of such process generates
a new query center (newQuery) that is used by the evaluateQuery function to
calculate the precision, obtained by this new query center generated according
to the user intention. Finally, after going through all the selected query images,
the algorithm calculates the average precision of queries and returns the value
as fitness for the PSO algorithm. It is important to highlight that the fitness is
an offline process, fact that does not generate impact on the computational time
of the similarity query.

Algorithm 1. Pipeline of the PSO Fitness Calculation
Require: Image Dataset G, k, distance d, feature extractor e, random query images

per class n
1: function getFitness(particle)
2: // receive IDs of images
3: RandImages ← getQueryImages(G, n)
4: pr ← 0 � initialize precision
5: α ← particle0
6: β ← particle1
7: γ ← particle2
8: for all img i in RandImages do
9: retrievedImages ← k-NN(img, k, d, e)

10: newQuery ← Rocchio(α, β, γ, labeledImages)
11: pr+ = evaluateQuery(newQuery)
12: end for
13: precision ← pr/ count(images)
14: return precision
15: end function

4 Experiments

The experiments were performed using our proposed method in comparison with
the approach widely employed in the literature (i.e. rocchio without factor’s
optimization).

In order to evaluate it, and summarize the results, we applied the mean
average precision measure [1]. The precision is defined as: precision = |RA|

|A| ,
where |RA| is the number of retrieved images that are relevant and |A| is the size
of the answer set [1]. To generate the precision values we performed k-nearest
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neighbor queries using randomly query centers from the dataset, and setting
k = 15. This value of k was considered since large numbers would make the
process not faithful with the common practice employed during daily activities.
To perform the k-NN queries, it was considered the Euclidean distance function
and all features cited in Section 2, joined with the Rocchio’s relevance feedback
(Section 2.2). To the experiments, we consider three relevance feedback cycles.

In order to accomplish a fair comparison between our method and the widely
employed approach in the literature (i.e. empirically weight definition), we per-
formed experiments setting the initial values of α, β and γ as 1.0, 0.5 and 0.25,
respectively, because positive feedback also turns out to be much more valuable
than negative feedback, and the most information retrieval systems set β > γ
[5]. Regarding the parameters of the PSO algorithm (Section 2.3), we defined:
minimum and maximum values for each particle dimension equal to 0 and 1,
respectively; a particle composed of 3 dimensions; maximum velocity equals to
0.5; number of iterations equals to 20; and, finally values of 0.02 to the constants
C1 and C2. For GA, we defined as parameters: maximum number of generations
= 100, population size = 40, minimum and maximum values, for each dimen-
sion, equal to 0 and 1 respectively, convergence rate = 0.9, selection type =
tournament and size of chromosome = 21.

To evaluate the methods, we performed a supervised automated evaluation of
the algorithms. For each query, we considered as relevants, the images retrieved
belonging to the same class of the image query, and irrelevants those belonging
to a different class. The goal of this technique is to simulate the feedback given
by the user through this information. This is a common configuration employed
in the literature to perform a large number of tests over the algorithm under
evaluation.

4.1 Image Dataset Description

For the experiments, we used image datasets containing Regions of Interest
(ROI) extracted from images of Computed Tomography of the Chest, more
specifically containing lung lesions. The dataset LungCT was obtained from
a hospital university [2]. The dataset contains 3264 images of 8-bit depth gray
scale with dimensions of 64 x 64 pixels. The images divided into six distinct
classes, contain abnormal patterns that characterize diffuse lung lesions. The
distribution of the images in each class is: normal - 591 images; consolidation -
452 images; emphysema - 503 images; thickening - 591 images; honeycomb - 531
images; ground-glass - 596 images.

The proposed algorithm was also tested on a public database containing 1000
color images from the Corel database [8], which are from 10 different semantic
categories (cat, bonsai, texture six, primates, mineral, leopard, cards, texture
one, sunset, rockform), each one containing 100 images.
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4.2 Results

Due to space limitations, we present the most representative results obtained
considering the aforecited methods and datasets.

Figure 2 shows the results obtained by the proposed approach compared to
literature baseline (i.e. Rocchio without optimization) using ctLung and Corel
datasets, respectively. The y-axis represents values obtained by MAP and the
x-axis represents the iterations of the relevance feedback process (initial query q
and i-th relevance feedback cycles, where i = 1, ..., 10).

(a) (b)

Fig. 2. Comparison of the baseline Rocchio against the proposed approach. (a) using
lungCT dataset. (b) using Corel dataset.

Analyzing the results of Figure 2, we can see that the instances of the pro-
posed approach (i.e. Rocchio PSO and GA) when compared with the approach of
the literature (i.e. Rocchio) showed precision gain in all feedback cycles. The pro-
posed approach reached precision gains of up to 23% for Rocchio PSO and 39%
for Rocchio GA in the tenth cycle (i10). Besides, the proposed approach presents
better performance regarding the query saturation, also leading to higher preci-
sions in the final relevance feedback cycles.

5 Conclusions

In this paper, we presented a novel framework for content-based image retrieval
with relevance feedback joined with optimization methods. The framework allows
the combination of a set of distance functions, feature extractors and relevance
feedback techniques, which are optimized by different strategies. Thus, miti-
gating the intrinsic problems of the CBIR process, capturing the user intention
about a given similarity query and optimizing the relevance feedback component
through the optimization strategies.

From the experiments, we can argue that the proposed framework instances
(Rocchio PSO and Rocchio GA, as optimization strategies) were capable to
improve in a great extent the precision of the similarity queries, reaching gains
of up to 39% when compared with the literature approach, and at the same time
capturing the user’s intention.
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Abstract. This paper addresses the problem of content-based image
retrieval in a large-scale setting. Recently several graph-based image
retrieval systems to fuse different representations have been proposed
with excellent results, however most of them use at least one representa-
tion based on local descriptors that does not scale very well with the num-
ber the images, hurting time and memory requirements as the database
grows. This motivated us to investigate the possibility to retain the
performance of local descriptor methods while using only global descrip-
tions of the image. Thus, we propose a graph-based query fusion app-
roach -where we combine several representations based on aggregating
local descriptors such as Fisher Vectors- using distance and neighbor-
hood information to evaluate the individual importance of each element
in every query. Performance is analyzed in different time and memory
constrained scenarios. Experiments are performed on 3 public datasets:
the UKBench, Holidays and MIRFLICKR-1M, obtaining state of the art
performance.

Keywords: Fisher vector · Graph fusion · Large scale image retrieval ·
Global descriptors

1 Introduction

Content-based image retrieval (CBIR) is an important area of research in Mul-
timedia, since it is linked to numerous image applications, especially web and
mobile image search. Given a query image, the problem consists in finding the
most similar images in a database. The image presentation that has received the
most attention corresponds to the Bag of Words (BoW) representation [12]. Still
it has an important limitation regarding the amount of images it can handle at
a time due to its time response and memory usage, becoming impractical when
working with a 100M image database (a database with 100 million images).

To overcome the database size limitation, the Fisher Vector (FV) and Vector
of Locally Aggregated Descriptors (VLAD) were proposed [7] as a global image
c© Springer International Publishing Switzerland 2015
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descriptor being able to leverage the advantages of powerful local descriptors
like RootSIFT. A global descriptor usually implies that the memory usage per
image is fixed and is represented by a dense vector. Dense vectors can have their
dimension reduced by powerful methods, such as Principal Component Analysis
(PCA) and Optimized Product Quantization (OPQ) [2].

To improve the performance of image retrieval systems, global descriptors
have been combined with local descriptors representations [17]. Some of these
systems achieve State of the Art performance, but the presence of local descrip-
tors representations makes them unsuitable to very large scale image retrieval.
Only a few works have used exclusively combination of global descriptors [3,8]
and none of them, in our knowledge, have explored the query results fusion area.

Therefore in this work we propose a new unsupervised method to combine
query results using only Fisher Vectors as image representations with the objec-
tive of meeting a low memory requirement and to enhance the performance
achieved by the use of global descriptors.

The rest of the paper is organized as follows. Section 2 reviews relevant work
regarding fusion methods using global descriptors. In Section 3 our proposal
is detailed and its experimental results are discussed in Section 4. Concluding
remarks are given in Section 5.

2 Related Work

2.1 Feature Combination

To build a large scale image retrieval system it is important that a compact image
representation is used in addition to the descriptors fusion, such as BoW, FVs
or GIST [3,8,17]. In particular, in the work of Zhang et al. [17] a graph method
is employed to combine the individual ranking list from a BoW, a GIST and a
global color representation. Only a few works have explored the combination of
exclusively global descriptors for large-scale image retrieval [3,8]. Gordo et al. [3]
proposed to use category-level labels of image classification datasets to learn
sub-spaces to reduce the dimension of two concatenated Fisher Vectors based on
SIFT and statistical color features respectively. On the other hand, Mardones et
al. [8] used three concatenated Fisher Vectors based only on SIFT descriptors,
but varying the sampling method used to obtain them, demostrating that the
use of different sampling methods is an important way to introduce diversity
in the representations. Both works achieved an important boost in performance
compared to results obtained with the individual Fisher Vectors employed.

2.2 Graph Based Methods in Image Retrieval

Utilizing graphs is a natural way to introduce the neighborhood relationships
when using several representations as noted in several works [11,17]. The closest
inspiring works to ours, regarding the fusion method, include [11] and [17]. Qin et
al. work [11] introduced a simple, albeit effective, method based on the analysis of
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the K-reciprocal nearest neighbor structure in the image space with the objective
of re-ranking the retrieval images. Zhang et al. [17] proposed an unsupervised
graph fusion method, capable of combining any type of image representations,
relying only on a set of ranking list obtained, by exploiting the neighborhood
structure. In contrast, since we use only Fisher Vectors we concentrate on how to
leverage the use of similar representations - as they have comparable distances
- and their neighborhood structures to obtain a new ranking list.

3 Proposed Approach

3.1 Individual Image Representations

As previously stated, Fisher Vectors (FVs) are the selected global descriptors
to represent the images in this work. This is a method that aggregates local
descriptors of an image to build a vectorial representation of it by comparing
the image descriptors with a general probabilistic distribution model of them. To
model the distribution of the local descriptors a Gaussian Mixture Model (GMM)
is used [7] and the Fisher Vector of an image is the derivative of the likelihood of
this image descriptors distribution with respect to the learnt GMM parameters.
The FV’s part corresponding to the GMM mean and variance parameters will be
referred to as the mean and variance component of the Fisher Vector respectively.

3.2 Basic Definitions

In the next subsections a few definitions will be shared. To avoid redundancy or
confusion, they will be written here. Most of the notation is similar to the one
in [17] for consistency.

Denote q and d as the query image and a database image respectively, and i as
either of them. Given a distance function dist(·, ·) between images representation
vectors, the rank list corresponds to the sorted list of candidate relevant images
by the distances between the query image and every database image. Since this
list can be very large depending on the number of database images, normally a
short rank list - called shortlist - of the first L images of the rank list will be
used. Now it is possible to define the K nearest neighbours (NN) of an image i
as NK(i), where this corresponds to the top-K candidates obtained using i as
the query. Finally we define the reciprocal neighbour relation between to images
i and i′ as:

RK(i, i′) = i ∈ NK(i′) ∧ i′ ∈ NK(i). (1)

3.3 Preprocessing Steps for Ranking Reordering and Similarity
Computing

Every representation share a common space -being all of them Fisher Vectors-
though their distances are not directly comparable since they are based on dif-
ferent descriptors. To take advantage of this, it is important to normalize the
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distances list in some way. To do this, the influence of arbitrary long distances
is limited by using the query adaptive criterion Ca to transform the distances
into similarities [6]. Ca works by replacing the distance of a query and an image
by the difference between the distance of the k-th NN match of the query and
this distance (or 0 if the difference is negative). This has the effect of aligning
the rank-distance curves by a translation using as a reference the distance to the
k-th NN match. However, the highest similarity is not bounded, so every non-
zero value is divided by the highest similarity. This will be called bounded query
adaptive criterion Cba. CL

ba(q, d) will be used to transform the distances between
the query and its L-nearest-neighbors (rank shortlist elements) into similarities.

An additional step taken before the graph construction is the use of the
maximum reciprocal rank (MRR) algorithm [1]. The objective is to increase the
number of reciprocal neighbors in the ranking’s first positions, thus determining
a higher quality shortlist. Using this method, a new ranking list is build inserting
first the reciprocal neighbors according to the worst ranking position between
the rank of the query in the specific neighbor rank shortlist and the rank of
the neighbor the query rank shortlist. When no further reciprocal neighbors are
found, the non-recriprocal neighbors are added in the same order of the original
ranking list. For further details refer to [1].

3.4 Graph Construction and Fusion

For each representation, a weight undirected graph G = (V,E,w) centered at
the query q is initialized, where the nodes are the images. The graph will be
constructed using nodes from levels 0, 1 and 2. Each level indicates a set of
conditions to select the nodes to add to the graph and the weight of its edge and
K is a user defined parameter (in Section 4.4 it will be discussed further):

– Level 0. The only level 0 node is the query.
– Level 1. Every K-nearest neighbor d of the query that satisfies RK(q, d) is

linked by an edge (q, d) ∈ E to the query. The weight associated with this
edge is CK

ba(q, d).
– Level 2. Each K-nearest neighbor i of the level 1 nodes is added to the

graph, linked to its respective level 1 node. The attached edge weight is
computed using the extended Jaccard similarity coefficient J̄(d, i) [1] between
the neighborhoods of the level 1 image d and the level 2 image i,

Using J̄ , instead of the regular Jaccard similarity coefficient J , has the advan-
tage of taking into account the rank of the neighbors, therefore if the K parameter
is high and there is only a strong connection between a few nodes in the first
rank positions (important nodes probably), the similarity coefficient will be still
high making the method more stable respect to the K parameter.

To design the conditions of every level, a vast amount of possible configura-
tions were tested, combining the use of shared neighborhood measurement (J or
J̄), reciprocal neighbors criterion (RK(i, i′)) and similarity measures (Cba). The
first two are strong indicators of the quality of the result, as it has been exten-
sively studied in several works [1,11,17]. The similarity plays a fundamental role
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when there exists a substancial similarity difference between the first images
in the rank and the rest, giving a strong indicator of being a relevant image.
Several strategies for the graph construction had similar results. The common
factor observed was the combination of adding reciprocal neighbors as the level
1 nodes and using the similarities as their weights. Then adding a second layer
of neighbors of the level 1 nodes with or without any condition and using their
“neighborhood score” (J̄) as their weights.

After obtaining a graph for every m-th representation Gm = (V m, Em, wm),
they are fused as described in [17]: the final graph G = (V,E,w) with V =
∪mV m, E = ∪mEm and w(i, i′) =

∑
m wm(i, i′) for every existing edge. To

obtain the final rank list from the graph, the Ranking by Maximizing Weighted
Density is used [17].

4 Experiments

4.1 Databases and Evaluation Protocol

The following two public benchmarks are employed. INRIA Holidays [5] consists
of 1,491 images of 500 scenes and objects. Each scene / object has a query
image and the accuracy is measured as the Mean Average Precision (MAP).
The University of Kentucky Benchmark (UKB) [9] consists of 10,200 images of
2,550 objects. Each image is used alternatively as a query to search within the
10,200 images (including itself) and the performance is measured as 4×recall@4
(called Kentucky Score, KS or N-S sometimes) averaged over the 10,200 queries.
Therefore, the score goes from zero to four on this dataset.

Ten thousand images of the MIRFLICKR-1M dataset [4] are used to learn
the GMM parameters and the PCA matrices of the different Fisher Vector repre-
sentations, the rest are used as distractor images for the large-scale experiments.

4.2 Implementation Details

Several ROI detectors and descriptors will be employed to introduce diversity on
the different Fisher Vectors. The base algorithm -independently of the detector
and descriptor used- follows the same guidelines and parameters used in [7].

Features. Two types of descriptors are used in this work: 128-dimensional Root-
SIFT descriptors and Color descriptors [3]. Four sampling methods are employed
to extract descriptors in most experiments: 3 scales dense sampling (D3), Hessian
affine (HA), Hessian Laplace and Perdoch’s Hessian affine variation (HAP) inter-
est point detectors [15] [10]. RootSIFT is used with every sampling method, while
the Color descriptor is used only with the dense sampling method. In the rest
of the section we will loosely refer to the Fisher Vectors based on the RootSIFT
descriptors sampled with the previously mentioned methods as HA, HL, HAP,
D3M and D3V (M and V stand for mean and variance components respectively)
and ColorM and ColorV as the Fisher Vectors based on the Color descriptors.
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4.3 Scenarios to Consider

There are two principal scenarios of interest to evaluate the performance of the
proposed method. The first one focuses on performance, sacrificing response time
and memory usage, while the second focuses on balancing the three aspects. All
the times reported were measured when processing with an Intel Core i5 2500S
(using a single thread).

Performance Scenario (PS). As time is not a primary concern, 640x480
images are used for every representation. The FVs are just reduced to 1024
dimensions using PCA. Table 1 shows that the query time and the memory
usage per image are not excellent, but sufficient depending on the application.
The performance is better than the obtained in the next scenario.

Balanced Scenario (BS). A combination of 320x240 and 640x480 images is
used. Every FV has its dimension reduced to 32 bytes using PCA and OPQ.
In Table 1 it can be seen that this configuration reduces the response time
to less than a second and, more important, the memory requirements to 792
bytes and 660 bytes on Holidays and UKBench respectively (each uses different
representation mixtures). Given the low memory usage of this scenario, it will
also be used for the large-scale experiments in Section 4.5.

4.4 Test Datasets Results

On Holidays and UKB the results are encouraging in both scenarios as seen in
Table 1. In the performance scenario, the MAP and KS (on Holidays and UKB
respectively) increase respect to their best individual representations (D3V and
HA respectively) is 18.6% and 0.46 respectively. These results improve over the
State of the Art in both datasets when considering methods based only on global
descriptors, to the best of our knowledge, and are among the State of the Art in
general, as seen in Table 2.

In the balanced scenario the improvement of MAP and KS is equally impor-
tant over the best individual representations (D3V and ColorV), being 14.9%
and 0.54 respectively. These results are close in both datasets to the best in the
State of the Art. However the memory usage is much lower compared to the best
performing methods, as it is possible to see in Table 2.

It is important to mention that the fine-tuning of the K parameter does not
make a sustancial difference, but it should be adjusted depending on the expected
number of relevant nearest neighbors. For example, the difference from using
K=4 to K=15 results in a loss of MAP and KS of 2.4% and 0.08 respectively. In
comparison, if Jaccard is used instead of J̄ , the loss increases to 3.3% and 0.15.

The use of MRR and Cba also enhanced significantly the performance of the
system. On Holidays and UKB, the improvement was of 2.8% and 0.05 KS.

4.5 Large-Scale Experiments

An important point of the proposal is its ability to scale due to the relatively small
memory usage per image. Equally important is the performance stability as more
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Table 1. Holidays and UKB Results. Mean average precision (Kentucky Score for
UKB), memory usage per image and total query time (including feature extraction).

Scenario
Holidays UKB

MAP Memory Query Time KS Memory Query Time

Performance 86.0% 29 KB 1853 ms 3.85 29 KB 1875 ms
Balanced 80.2% 792 B 768 ms 3.75 660 B 777 ms
Balanced + 1M 76.9% 792 B 950 ms 3.70 660 B 918 ms

Table 2. Comparison with the State of the Art. Results from Holidays, UKB and
average memory per image, if available.

[16] [14] [13] [17] [11] [3] Ours PS Ours BS

Holidays, MAP 80.2% 84.1% 88.0% 84.6% - 78.3% 86.0% 80.2%

UKB, KS - - - 3.83 3.67 3.36 3.85 3.75

Memory 8192 B ≈143 KB - ≈20.2 KB - 1024 B ≈29 KB 660-792 B

images are being integrated in the database. In Table 1 it can be observed that
the total decrease of MAP and KS - with MIRFLICKR-1M’s distractor images -
is 3.5% and 0.05 respectively. This shows that the proposed system is very robust
to the number of images in the database. We believe that this robustness is due to
the relevant neighbor consistency across the different representations, e.g. if a rank
list is modified due to the insertion of a new image, there are several other rank lists
that are not modified, being robust to insertions. Furthermore, a new insertion in
the rank shortlist only implies that two image representations are within a short
distance, but not a neighborhood similarity. In additional experiments it was seen
that the decrease in precision was more significant with the insertion of the first
50K images, but after that is was much slower.

5 Conclusions

In this paper, a query fusion method for Fisher Vectors based on different fea-
tures is presented. Multiple RootSIFT and Color features are extracted from
the image using multiple sampling methods and a Fisher Vector is computed for
each of them. Using the ranking and distance lists from every representation a
graph is constructed weighting its edges considering a distance similarity mea-
sure and the neighborhood structure. Finally every graph is fused and a ranking
list is obtained. Using this proposal, it is shown that by the use of solely global
descriptors, State of the Art performance is achievable, while maintaining a fixed
low memory usage per image.
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Abstract. In this work we present an experimental evaluation of the
exponential family Fisher vector (eFV) encoding applied to the prob-
lem of visual plant identification. We evaluate the performance of this
model together with a variety of local image descriptors on four differ-
ent datasets and compare the results with other methods proposed in
the literature. Experiments show that the eFV achieves a performance
that compares favorably with other state-of-the-art approaches on this
problem.

Keywords: Plant identificacion · Exponential family fisher vectors ·
Image classification

1 Introduction

In recent years there has been an increasing interest in the problem of plant
species classification in images [3,7,12,18]. This is motivated, among other rea-
sons, by an increase in the number of endangered species due to climate change,
shifts in the agricultural production (higher deforestation rates) and poor urban
planing.

In this paper we address the problem of leaf image classification which con-
sists on predicting the species of a plant based on images of its leaves. The prob-
lem is very challenging and it is a very difficult task even for trained experts
and botanists [5]. The difficulty arises from the large number of species that has
to be taken into account, large degrees of intra-class variability and high visual
similarities between classes [18].

Here we evaluate a recently proposed image representation known as the
exponential family Fisher vector (eFV) [17]. This model is a generalization of
the Gaussian Fisher vector [16] (FV) to a broader class of distributions known as
the exponential family. This model has the advantage that it allow us to consider
local feature spaces other than Rn, e.g. binary or even the space of symmetric
positive definite (SPD) matrices.

c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 298–305, 2015.
DOI: 10.1007/978-3-319-25751-8 36



Fisher Vectors for Leaf Image Classification: An Experimental Evaluation 299

2 Related Work

There exists a large body of work on the leaf image classification problem. Most
of it has been focused on the design of different pre-processing [22,23] and feature
extraction techniques [12,20] as well as classification algorithms [8,18] designed
specifically for this problem. If we consider the feature extraction stage, methods
can be grouped into two main categories: those using global image features and
those based on local descriptors. Next, we provide some examples for the global
and local feature approach, respectively.

In [22,23] the authors propose to use shape and texture global features
obtained after a segmentation step for the classification of leaves images. In
[12] a system using geometric descriptors, multi-scale distance matrix, invari-
ant moments and a new set of global descriptors is proposed. The computation
of such descriptors requires a contour extraction step which –according to the
authors– accounts for one of its main limitation. In [18] the authors propose a
semi-automatic approach based on global features that requires the user to mark
the base and apex of the leaf. The method presented in [3] is based on a set of
global descriptors which are not rotations invariant. In this case, the images have
to be aligned before computing the descriptors.

In the case of the methods based on local descriptors, Hsiao et al. [8] proposed
a system based on sparse coding of SIFT descriptors. A similar method but
using a combination of local features is presented in [14]. In [1], the authors
propose the use of different local descriptors (SURF, Fourier, Rotation Invariant,
LBP) encoded with FV to classify images of leaves on a natural background. In
[13] the authors use different local descriptors (4 versions of SIFT and a self-
similarity descriptor) augmented to take into account the neighborhood structure
in feature space. The set of augmented features is encoded with a Gaussian FV.
In [4] a FV over SIFT and color moments are combined with a Convolutional
Neural Networks (CNN) and a pre-processing step in order to choose the most
representative bounding box from the image.

In this work we evaluate the performance of the recently proposed eFV model
[17] using a variety of local descriptors that, by its non-Euclidean nature, are not
commonly adopted in the literature, namely: raw binary features and covariance
patch descriptors. Experiments are performed on four different datasets and
results compared against the state-of-the-art.

3 Method Description

Following a common pipeline in FV-based image classification, our approach
consists of the following steps: dense feature extraction, eFV signature compu-
tation and linear classification. A diagram of the pipeline is shown in figure 1.
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Fig. 1. Block diagram of the proposed system.

3.1 Local Descriptor Extraction

Descriptors are extracted densely on a regular grid with the same step in both
directions. To account for variations in scale, local descriptors are extracted from
a resolution pyramid of 5 levels and a scale factor of 1√

2
[17].

In this work, we consider the following types of descriptors: SIFT, binarized
SIFT (BinSIFT), BRIEF, LBP and a variation of the patch covariance features
(COV) described in [19]. For SIFT and BinSIFT, we reduce its dimensionality
to 80 by PCA.

3.2 Exponential Family Fisher Vector

The FV[16] encodes an image as a gradient vector that characterizes the dis-
tribution of a set of low-level descriptors with respect to the parameters of a
probabilistic generative model which in case of the traditional FV, corresponds
to a mixture of multivariate Gaussian pdfs with diagonal covariances. The eFV
generalizes the FV by considering mixtures of a more general class of distribu-
tions known as the exponential family. This allow the model to deal with input
spaces other than RD in a principled manner. Next, we provide a brief overview
of the eFV representation. More details can be found in [17].

Let X = {X1, ...,XN}, Xi ∈ RD, a set of low-level descriptors extracted
from image I. We model its generation process as a mixture distribution of the
form:

P (X|λ) =
N∏
i=1

K∑
k=1

wkp(Xi|ηk), wk > 0 ∀k,
K∑

k=1

wk = 1 (1)

with λ = {wk, ηk : k = 1, ...,K} and

p(X|ηk) = h(X)exp(〈ηk,T(X)〉 − ψ(ηk)) (2)

is a member of the exponential family. Here, T (X) is the vector of sufficient
statistics, ψ(ηk) is known as partition function and h(X) is a normalizer which
is independent of ηk. Given P (X|λ), the eFV of I is computed as the normalized
gradient w.r.t λ of the log-likelihood of X as:
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Table 1. Descriptors and corresponding distribution used for enconding.

Descriptor Input Domain Distribution T (X) ψ(η) h(X)

SIFT RD Gaussian (x1, x
2
1, . . . , xD, x2

D) − 1
4
ηT
1 η−1

2 η1 − 1
2
log| − 2η2| 1

BRIEF, BinSIFT, LBP {0, 1}D Bernoulli X
∑D

j=1 log(1 + eηj ) 1

COV D × D SPD Wishart X log Γp

(
n
2

)− n
2

log |η| |η|(n−D−1)/2

g(X) � Lλ∇λ log P (X|λ) =
N∑

i=1

Lλ∇λ log

(
K∑

k=1

wkp(Xi|ηk)

)
(3)

Lλ is a normalizer obtained from the Cholesky decomposition of the inverse
of the Fisher information matrix of P (·|λ).

Table 1 show, for each local descriptor we consider in the experiments, the
corresponding exponential family distribution and the most relevant terms used
for eFV encoding.

3.3 Classifier

For classification we rely on linear SVMs trained on the primal with Stochastic
Gradient Descent (SGD) [16,17].

4 Experiments

We performed experiments on four different publicly available datasets and com-
pared the results obtained by our method with different algorithms found in the
literature.

4.1 Datasets

We ran experiments on the following datasets: Flavia [21], Foliage [10], Plant-
CLEF2012 [6] and PlantCLEF2013 [5].

Flavia contains 1907 images of leaves from 32 classes of trees, with a minimun
of 50 samples per class and a maximun of 72. The normal procedure of evaluation
is to leave 10 samples of each class for test and train on the rest.

Foliage contains 120 samples for each of 60 species of trees. The recommended
procedure of evaluation is to take 100 samples for training and 20 for testing for
each class.

PlantCLEF2012 consists of 11572 images of 126 species of trees divided in
three types, scan, scan-like and photograph.

PlantCLEF2013 contains 26077 images of 250 tree species of two types, sheet
as background and natural background. The NaturalBackground images are
divided into 5 types, images of entire plant, flower, fruit, leaf and stem.
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Table 2. eFV configurations and short names.

Acronym Descriptor PCA Exponential Mixture Model

BRIEF-BMM-eFV BRIEF No Bernoulli

SIFT-PCA-GMM-eFV 1 SIFT Yes Gaussian

COV-WMM-eFV Covariance No Wishart

LBP-BMM-eFV LBP No Bernoulli

BinSIFT-BMM-eFV BinSIFT Yes Bernoulli

4.2 Experimental Configuration

In all our experiments we compute eFV signatures using mixture models with
256 components. These models were fitted using a set of 1M descriptors ran-
domly sampled from the training set. Table 2 shows a summary of the different
configurations and its acronym for further reference.

Furthermore, we propose the use of the results obtained using the descriptores
based on CNN proposed in [15] as a baseline for comparison. In that work, the
authors show that features obtained from CNN nets should be used as the first
candidate in most visual recognition tasks. These descriptors were computed
such as the output of the 7th layer (fc7) of the convolutional neural network
available in [9] and then classified with an SVM. This baseline is referred in the
following as CNN+SVM.

4.3 Results

Table 3 shows the accuracy of different configurations of the proposed method
on the Flavia and Foliage datasets together with recent results available in the
literature. The accuracy is obtained as the percent of well classified samples.

As can be seen from table 3 the best accuracy of eFV are obtained with
SIFT and COV descriptors, and their accuracy on Flavia and Foliage is above
the obtained with recent proposed methods in the literature. In the Foliage
dataset the baseline CNN+SVM has the best accuracy.

In tables 4 and 5, we compare the results of our algorithm with the best
results on the PlantCLEF2012 and PlantCLEF2013 challenges. The score is
computed using the scripts provided with the datasets. Top performing results
are highlighted in bold. For these two datasets we only show the accuracy for
SIFT and COV descriptors.

In PlantCLEF2012 dataset (table 4) the enconding of SIFT descriptors with
eFV shows the best performance for Scan-like, Photos and Average, and the base-
line system CNN+SVM, shows the best performance for Scan type of images.

For the dataset PlantCLEF2013, the best performance for SheetAsBack-
ground images is obtained with the method proposed in [22] but this method
fails for the NaturalBackground images as can be seen in table 5. The cause of

1 This configuration is the traditional FV[16].
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Table 3. Accuracy of different configurations of eFV and results in the literature on
datasets Flavia and Foliage

Method Acc. Flavia Acc. Foliage

CNN+SVM 99.06 99.33

SIFT-PCA-GMM-eFV 99.06 98.75

COV-WMM-eFV 99.38 98.25

LBP-BMM-eFV 95.62 93.25

BinSIFT-BMM-eFV 89.06 94.33

BRIEF-BMM-eFV 74.06 67.83

GLC [12] 93.00 -

SC [8] 95.47 -

CS [18] 97.00 -

GLS [11] 97.19 95.00

ICM [20] 97.82 -

Table 4. Classification results on PlantCLEF2012 for the 3 types of images and on
average.

Method Scan Scan-like Photos Average

CNN+SVM 0.65 0.51 0.40 0.52

SIFT-PCA-GMM-eFV 0.62 0.74 0.44 0.60

COV-WMM-eFV 0.48 0.43 0.24 0.38

SABANCI OKAN [23] 0.58 0.55 0.22 0.16

INRIA [2] 0.39 0.59 0.21 0.40

LSIS DYNI [14] 0.41 0.42 0.32 0.42

this behavior is a preprocessing segmentation step which is inapplicable for Nat-
uralBackground images. For this type of images, one of the best performance
is achieved with the method presented in [13] based in a complex scheme of
late-fusion of 4 versions of SIFT and self-similarity encoded with a polynomial
embedding of descriptors encoded with FV. Also, the last method uses metadata
information of the test set, in particular the type of NaturalBackground image,
in constrast to ours. Again, the baseline CNN+SVM has the best performance
for one type of images.

Table 5. Classification results on PlantCLEF2013 for the 2 types of images.

Method SheetAsBackground NaturalBackground

CNN+SVM 0.56 0.40

SIFT-PCA-GMM-eFV 0.59 0.37

COV-WMM-eFV 0.36 0.18

SABANCI OKAN [22] 0.61 0.18

NlabUTokio [13] 0.50 0.39
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5 Conclusions

We presented an empirical evaluation of different eFV configurations applied
to the problem of plant identification. We performed experiments in different
publicly available datasets and compared our results against other state-of-the-
art approaches. The results in some experiments are better than the state of
the art and in most of the cases the best eFV configuration is SIFT descriptors
encoded with GMM based eFV. But the baseline using CNN and SVM performs
also very well and this performance can be explained by the discriminative power
of these descriptors.

The advantages of the proposed method are that it does not need a prepro-
cessing step for the leaf contour extraction because it is based on local descrip-
tors, it allows the use of different descriptors in an unified framework, it is not
based in handcrafted or ad-hoc descriptors and it is simpler than some of the
existing algorithms. Furthermore, unlike other methods it can be applied on
images of leaves with a simple background or with complex background as we
demonstrated on the experiments.
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Abstract. Image classification and image clustering are two important
tasks related to image analysis. In this work a two-level hierarchical
model for both tasks using a hierarchical combination of image descrip-
tors is presented. The construction of a latent semantic representation
for images is also presented and its impact on the results of both tasks for
the two-level hierarchical model is evaluated. Experiments have shown
the superior performance attained by the hierarchical combination of
descriptors when compared to the simple concatenation of them or to
the use of single descriptors. The hierarchical combination of a latent
semantic representation has presented results similar to the other hier-
archical combinations, using only a small fraction of the time and space
needed by others, which is interesting specially for those with restrictions
of computer power and/or storage space.

Keywords: Hierarchical combination of descriptors · Image classifica-
tion · Image clustering · Semantic visual vocabulary

1 Introduction

Due to the rapid development of computers and networks, the storage and trans-
mission of a large number of images become possible. Thus, nowadays images
are widely used. With the increasing use of systems for image retrieval, there
is a need to provide efficient mechanisms for storage, indexing, and recovery of
this type of media. Content-based image retrieval (CBIR) is regarded as one of
the most effective way of accessing visual data [7]. Most of CBIR systems ana-
lyze image information by using low level features, such as color, texture, shape,
among others, and index each image based on its feature vectors (or descriptors).

The early studies on CBIR have only used a single feature approach. However,
it is hard to attain satisfactory results by using a single feature, since images
contain various visual characteristics. Thus, CBIR systems have started using a
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combination of visual features. In [6], a method based on the integration of color
and texture was proposed yielding on higher retrieval accuracy. In [1], a com-
bination of global and local descriptors through genetic programming was used
to outperform the use of single descriptors. Finally, in [2] a novel coding scheme
by combining global and local descriptors was proposed, which are applied to
improve robustness and to explore the latent structure of the codebook.

In this work, we propose a two-level hierarchical model for image classification
and image clustering using a hierarchical combination of descriptors. Moreover,
we also evaluated the construction of a latent semantic representation and its
impact on both tasks. To the best of our knowledge, there is no other app-
roach in the literature which was designed to solve both tasks at the same time.
Experiments have shown the superior performance attained by the hierarchical
combination of descriptors when compared to a simple concatenation of them or
to the use of single descriptors. The hierarchical combination of semantic rep-
resentations has presented results similar to the other combinations, spending
only a small fraction of the time and space needed by others (which is interesting
when restrictions of computer power and/or storage space exist).

2 Image Representations

Both the effectiveness and the efficiency of an image processing system are depen-
dent on descriptors (or visual features). A feature extraction algorithm can pro-
duce either a single feature vector or a set of feature vectors. In the former case,
a single feature vector must capture the entire information of the visual content
(named global descriptor). In the latter case, a set of feature vectors (or local
descriptors) is associated with the image visual content.

In order to be able to efficiently deal with a large number of local descrip-
tors, an important task is the construction of a visual dictionary, or codebook.
Afterwards, the codebook can be used to create a mid-level image descriptor –
named Bag-of-Words (BoW) – to describe any image using two steps: coding
(i.e., assignment of descriptors to visual words) and pooling (i.e., generation
of an image representation). The BoW is simple to build, however it may suffer
from two issues: polysemy – a single visual word may represent different contents;
and synonymy – several visual words may characterize the same content.

To cope with these problems, the adoption of latent space models have been
proposed to capture co-occurrence information. The analysis of visual word co-
occurrence can be considered using similar approaches. Here, Latent Semantic
Analysis (LSA) [3] model is used for producing a low-rank approximation of
the word-image occurrence matrix. Let A be the occurrence matrix whose rows
correspond to t terms (or visual words) and columns correspond to d documents
(or images). By selecting the k largest singular values (obtained using sigular
value decomposition – SVD), a rank-k approximation of A is given by

A ≈ Ak = UkΣkV
T
k . (1)

The column vectors of Uk and Vk span the concept space of terms and the
concept space of documents, respectively.
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In this work, similar to [4], the traditional approach (used in LSA) of repre-
senting documents through rows of Vk was not used. Instead of that, a semantic
visual vocabulary is generated by finding clusters of the synonym terms in the
term-concept space (Uk). To do that, K-Means clustering is used to divide the
set of t terms into n clusters. Afterwards, each cluster representative can be
seen as a distinct semantic term (i.e., semantic visual word), and they form
a semantic visual vocabulary. Using the nearest neighbor search, each original
term is related to one of the semantic words for generating a semantic map.
And, finally, that semantic map is used to produce a semantic description of
the original document, i.e., entries of synonym terms are merged generating a
new occurrence matrix AS in which rows correspond to n semantic visual words.
Here, a semantic description of each image is obtained by adding the values of
the original BoW vector related to synonym terms.

3 Two-level Hierarchical Model

In this work, we propose a two-level hierarchical model for image classification
and clustering using a hierarchical combination of image descriptors. The model
consists of two distinct levels of index structures: the upper level – called category
level – is responsible for representing the image categories and for pointing to
the index structures belonging to the lower level – named object level – where
the information is actually stored.

Content-based image retrieval systems are based on two main operations:
the construction of the database from a given set of images (and the insertion
of new images) and the retrieval of images for a given query.

3.1 Image Indexing

In the proposed model, each image is described by a pair of descriptors (dc, do),
in which dc is used at the category level – class descriptor – while do is adopted
at the object level – object descriptor. This allows any combination of image
descriptors, even one that consists of two identical image descriptors. The index-
ing process is described in the following.

The process begins with the indexing of the class descriptor of the image
to be indexed at the category level. To do that, a nearest neighbor search at
the category level is made using the image class descriptor. The answer of that
search allows to determine the image category (i.e., where the class descriptor
should be inserted). If no class descriptor has been inserted before, the image
class descriptor is considered the first representative of a group and the first
category should be created. Each time that a new category is created, a new
reference is generated for another index structure at the object level, where the
corresponding object descriptor should be inserted. The criterion used to create
a new class is based on the distance between the new class descriptor and its
nearest neighbor at the category level. If the distance between them is lower than
the threshold r (known as category radius), the image is considered to belong
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to the same class of its nearest neighbor and its object descriptor is inserted in
the same index structure used for storing its nearest neighbor. Otherwise, if the
distance between them is greater than the threshold r, a new category should be
created, and so on. It is worth to mention that the number of groups is directly
related to the value of category radius r (i.e., lesser the value of r, greater the
number of categories generated at the end of the process).

The category level is also responsible for pointing to the index structure where
the object descriptors of all the images belonging to the same group are stored.
So, after indexing the class descriptor of the new image at the category level,
the corresponding object descriptor (together with a pointer to the new image)
should always be inserted into the associated index structure at the object level,
according to the group selected (or created) at the category level. Those steps
are repeated for each new image that has to be inserted in the database, until
the hierarchical structure is fully created.

3.2 Image Retrieval

For a given query image q, a pair of descriptors should be generated (similar to
the indexing procedure). Thus, considering that the query image q is represented
by a pair of descriptors (qc, qo), in which qc is the query class descriptor and qo
is the query object descriptor, the retrieval process is described in the following.

First, a nearest neighbor search is made at the category level using the query
class descriptor qc. The answer to that search indicates the group that may
contain images that are similar to the query, thus given also a reference to the
lower-level index structure. Using that reference, a K-nearest neighbors search,
using the query object descriptor qo, is made in the lower-level index structure;
and, the K-nearest neighbors found are returned as result. One should notice
that the search results are approximate, even if an exact access method is used.

4 Experiments

In this section, we present the results of experiments made to assess the
performance of the proposed hierarchical model. During experiments, the
FGComp20131 dataset was used. It is a 5-domain subset of the ILSVRC2013
(Imagenet Large Scale Visual Recognition Challenge2) and contains 75,533
images (49,052 for training and 28,481 for test). The index structure used at
both levels was the Slim-tree (which is an exact metric access method).

The global descriptor GIST and the mid-level descriptor BoW were used
to describe the visual content. The descriptor BoW (with hard assignment and
sum pooling) was built from local image descriptors Compact Color SIFT –
hereafter called BAG. Most of the works using the GIST descriptor resize the
image in a preliminary stage to a size of 32×32 pixels. After resizing, color GIST

1 https://sites.google.com/site/fgcomp2013/
2 http://www.image-net.org/challenges/LSVRC/2013/

https://sites.google.com/site/fgcomp2013/
http://www.image-net.org/challenges/LSVRC/2013/
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Table 1. Descriptors sets and combinations used in the evaluation procedure.

(a) Descriptors sets

Descriptors Set Based on k # Dimensions

GIST 960 GIST – 960
GIST 05-100 GIST 5 100
GIST 25-100 GIST 25 100
GIST 50-100 GIST 50 100
GIST 100-100 GIST 100 100
BAG 960 BAG – 960
BAG 05-100 BAG 5 100
BAG 25-100 BAG 25 100
BAG 50-100 BAG 50 100
BAG 100-100 BAG 100 100

(b) Tested combinations

Combination Categ.Level Desc. Obj.Level Desc.

GB 960 GIST 960 BAG 960
GG 960 GIST 960 GIST 960
BB 960 BAG 960 BAG 960
BG 960 BAG 960 GIST 960

GB 05-100 GIST 05-100 BAG 05-100
GG 05-100 GIST 05-100 GIST 05-100
BB 05-100 BAG 05-100 BAG 05-100
BG 05-100 BAG 05-100 GIST 05-100

GB 25-100 GIST 25-100 BAG 25-100
GG 25-100 GIST 25-100 GIST 25-100
BB 25-100 BAG 25-100 BAG 25-100
BG 25-100 BAG 25-100 GIST 25-100

GB 50-100 GIST 50-100 BAG 50-100
GG 50-100 GIST 50-100 GIST 50-100
BB 50-100 BAG 50-100 BAG 50-100
BG 50-100 BAG 50-100 GIST 50-100

GB 100-100 GIST 100-100 BAG 100-100
GG 100-100 GIST 100-100 GIST 100-100
BB 100-100 BAG 100-100 BAG 100-100
BG 100-100 BAG 100-100 GIST 100-100

descriptor is calculated for each image using an implementation3 that produces
a 960-dimensional feature vector. For BAG, the visual vocabulary size is also set
to 960. Besides, the image dataset was also described using different semantic
vocabularies: the number of concepts k was set to 5, 25, 50, or 100; and the size
of semantic visual vocabulary n was set to 100. Table 1(a) shows information
about all the sets of descriptors, while Table 1(b) presents the combinations used
in the experiments. In order to refer to all combinations that use GIST at the
category level and BAG at the object level, hereafter we will use GB (similarly,
GG, BB, and BG will be used for other combinations).

Both tasks (image classification and clustering) are evaluated in our experi-
ments. For image classification, a 5-nearest neighbor (5-NN) classifier was evalu-
ated with different radius values. We also implement three others 5-NN classifiers
based on the retrieval results of a single Slim-tree, so called: ST, STB and STG.
The former, ST, was constructed using an extended descriptor obtained from
the concatenation of GIST 960 and BAG 960, while the others, STB and STG,
were constructed using only BAG 960 and GIST 960, respectively. The F-Score
(i.e., an harmonic mean of precision and recall) was used to assess the image
classification results. For evaluating image clustering, we adopt pair counting
(or concordance) approach [5], which allows us to compute F-Score. Finally, we
have also applied a K-Means clustering algorithm in order to compare to the
clustering results obtained by the proposed hierarchical model. In this case, we
set the number of clusters to the same number of groups generated during the
construction of the corresponding two-level hierarchical structure and used the
same descriptor adopted at category level.

Table 2 presents the number of clusters and F-Score values for image classi-
fication and image clustering – both using the two-level hierarchical model; and
the F-Score values obtained by K-Means clustering algorithm The results are

3 http://lear.inrialpes.fr/software

http://lear.inrialpes.fr/software
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Table 2. F-Score values for image classification and image clustering experiments.

(a) GIST

Cat.
Rad.

#
Clust.

GB GG KM
with
GIST

Class. Clust. Class. Clust.
GB 960 GG 960

1.00 41651 0.886 0.000 0.886 0.000 0.000
1.30 17176 0.860 0.006 0.863 0.006 0.001
1.50 5813 0.836 0.040 0.847 0.040 0.002
1.65 2529 0.818 0.067 0.834 0.067 0.004
1.85 978 0.793 0.266 0.843 0.266 0.007
2.05 406 0.779 0.563 0.859 0.563 0.015
2.25 198 0.859 0.600 0.870 0.600 0.027
2.50 82 0.761 0.553 0.883 0.553 0.061
2.65 45 0.760 0.526 0.885 0.526 0.101
2.80 24 0.759 0.526 0.887 0.526 0.176
2.90 21 0.759 0.522 0.885 0.522 0.202
3.00 16 0.759 0.522 0.886 0.522 0.238
3.10 10 0.760 0.521 0.887 0.521 0.298
3.20 8 0.760 0.521 0.887 0.521 0.335

GB 05-100 GG 05-100

1.00 48250 0.811 0.000 0.811 0.000 0.000
2.25 7176 0.788 0.010 0.778 0.010 0.001
3.00 1274 0.781 0.075 0.777 0.075 0.004
4.65 99 0.787 0.559 0.812 0.559 0.045
5.65 35 0.780 0.586 0.825 0.586 0.111

GB 25-100 GG 25-100

1.00 48626 0.868 0.000 0.868 0.000 0.000
2.25 36373 0.862 0.000 0.862 0.000 0.000
3.00 8666 0.827 0.007 0.823 0.007 0.001
4.65 167 0.805 0.286 0.826 0.286 0.028
5.65 36 0.791 0.527 0.851 0.303 0.121

GB 50-100 GG 50-100

1.00 48630 0.860 0.000 0.860 0.000 0.000
2.25 37447 0.859 0.000 0.859 0.000 0.000
3.00 9465 0.826 0.007 0.824 0.007 0.001
4.65 172 0.796 0.231 0.827 0.231 0.027
5.65 32 0.789 0.527 0.848 0.527 0.128

GB 100-100 GG 100-100

1.00 48628 0.855 0.000 0.855 0.000 0.000
2.25 36285 0.852 0.000 0.853 0.000 0.000
3.00 8304 0.815 0.005 0.814 0.005 0.001
4.65 147 0.786 0.192 0.822 0.192 0.031
5.65 27 0.785 0.505 0.841 0.505 0.144

(b) BAG

Cat.
Rad.

(×103)

#
Clust.

BB BG KM
with
BAG

Class. Clust. Class. Clust.
BB 960 BG 960

0.05 42706 0.747 0.014 0.769 0.014 0.000
0.10 22263 0.736 0.155 0.798 0.155 0.000
0.15 10983 0.743 0.610 0.832 0.610 0.001
0.25 4412 0.750 0.534 0.869 0.534 0.002
0.35 1741 0.751 0.563 0.877 0.563 0.004
1.00 163 0.758 0.523 0.886 0.523 0.046
5.00 11 0.760 0.521 0.887 0.521 0.424
10.00 5 0.760 0.521 0.887 0.521 0.590
15.00 3 0.760 0.521 0.887 0.521 0.527
22.50 3 0.760 0.521 0.887 0.521 0.527

BB 05-100 BG 05-100

0.10 20936 0.751 0.108 0.789 0.108 0.000
0.35 2010 0.766 0.527 0.829 0.527 0.003
5.00 20 0.776 0.520 0.834 0.520 0.281
10.00 6 0.776 0.521 0.834 0.521 0.476
18.50 3 0.776 0.521 0.834 0.521 0.587

BB 25-100 BG 25-100

0.10 23881 0.764 0.033 0.799 0.033 0.000
0.35 2512 0.867 0.546 0.867 0.546 0.002
5.00 20 0.796 0.520 0.873 0.520 0.267
10.00 6 0.796 0.521 0.873 0.521 0.484
18.50 3 0.796 0.521 0.874 0.521 0.575

BB 50-100 BG 50-100

0.10 23864 0.758 0.043 0.792 0.043 0.000
0.35 2604 0.782 0.536 0.859 0.536 0.002
5.00 18 0.792 0.520 0.866 0.520 0.303
10.00 4 0.792 0.521 0.866 0.521 0.597
18.50 3 0.792 0.521 0.866 0.521 0.570

BB 100-100 BG 100-100

0.10 23480 0.741 0.026 0.779 0.026 0.000
0.35 2586 0.766 0.521 0.848 0.521 0.002
5.00 20 0.776 0.520 0.863 0.520 0.262
10.00 4 0.776 0.521 0.863 0.521 0.601
18.50 3 0.777 0.521 0.863 0.521 0.581

presented for all 20 combinations and for different values of category radius r.
It is also worth to mention that the F-Score values for image classifiers based on
structures ST, STB and STG were 0.7505, 0.7599 and 0.8874, respectively, while
the best result for K-Means using GIST – called KMG – was 0.335; and the best
result for K-Means using BAG – called KMB – was 0.601.

For image classification task, the results of the proposed model were very
close to the best F-Score (0.8874) obtained by the structure STG, but in con-
trast to STG our method also solves the image clustering task. The best results
were obtained by GG 960 (0.887). The combinations of semantic descriptions
represent good alternatives for scenarios with restrictions on computer power
and/or on storage space, since they were more economical (≈ one tenth, in our
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Fig. 1. Harmonic mean of F-Scores for GB 960, GG 960, BB 960 e BG 960.

experiments), but they were able to obtain quite competitive results. For image
clustering task, KMG was worst than all the results obtained by GB/GG combi-
nations. For BB/BG combinations, KMB was superior in some cases, especially
for scenarios with a small number of categories. But, the best clustering results
(0.610) obtained by BB 960 and BG 960 were greater than KMB .

Again, the proposed model is able to deal with both tasks (image classifi-
cation and clustering). So, in order to evaluate which combination is better in
both tasks at the same time, the harmonic mean of the F-Score for classification
and for clustering was calculated considering each combination. The harmonic
mean for GG 960 was 0.710 for a radius of 2.25; and for BG 960 it was 0.686
for radius of 350 (see Fig. 1). Most of the combinations presented a stable result
for the harmonic mean greater than 0.6 (for radius values above 2.00 for GB
and GG and for radius above 350 for BB and BG). The results of the proposed
model are directly related to the radius values. For GB 960 and GG 960, the
best results were associated with a radius values greater than 2.05; while for BB
960 and BG 960, the best results were related to radius values greater than 150.
For combinations of semantic descriptions, best results were obtained for radius
values greater than 4.65 and 350 for GB/GG and for BB/BG, respectively (see
Fig 2). Those results seem to be related to the distribution of distances between
descriptors, since best results are generally associated with radius values which
are greater than 60%∼70% of the actual distances between descriptors. If we
consider the results for classification and for clustering separately, GB 960, GG
960, BB 960 and BG 960 presented a superior performance when compared to
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Fig. 2. Harmonic mean of F-Scores for combinations generated from semantic visual
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combinations of semantic descriptions. However, when the combined perfor-
mance (on both task) is taken into account, the combinations with a reduced
number of dimensions generated using semantic visual vocabularies become
interesting options to be explored – especially for those with severe restrictions
of computer power and/or storage space. Although the construction time for
different combinations are almost stable, the time spent during 5-NN search has
varied from 6 to 183 times greater for GB 960, GG 960, BB 960 and BG 960
when compared to the other combinations with a reduced number of dimensions.

5 Conclusion

Image classification and image clustering are two important tasks related to
image analysis. This work proposes a two-level hierarchical model for solving
both tasks using a hierarchical combination of image descriptors. The construc-
tion of a latent semantic representation for images is presented and its impact
on the results of both tasks for the two-level hierarchical model is evaluated.

Test results have confirmed the superior performance attained by the hier-
archical combination of descriptors when compared to a simple concatenation
of them or to the use of single descriptors. The hierarchical combination of
semantic representations has presented results similar to the other hierarchical
combinations, using only a small fraction of the time and space needed by oth-
ers, which is interesting specially for those with restrictions of computer power
and/or storage space. Future works should investigate the use of different latent
space models for image representation and their impact on the results of the
simultaneous solution for both tasks (image classification and clustering).
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Abstract. Support vector machine is a supervised learning technique
which uses kernels to perform nonlinear separations of data. In this work,
we propose a combination of kernels through genetic programming in
which the individual fitness is obtained by a K-NN classifier using a
kernel-based distance measure. Experiments have shown that our method
KGP-K is much faster than other methods during training, but it is still
able to generate individuals (i.e., kernels) with competitive performance
(in terms of accuracy) to the ones that were produced by other methods.
KGP-K produces reasonable kernels to use in the SVM with no knowl-
edge about the distribution of data, even if they could be more complex
than the ones generated by other methods and, therefore, they need more
time during tests.

Keywords: Genetic programming · Support vector machines · Kernel
combination · Image classification

1 Introduction

Support vector machine (SVM) is a supervised learning technique conceived
by [2] as a binary linear classifier. Given a vector space H and a set of data
such as S = (xi, yi) in which xi ∈ H, yi ∈ ±1, a SVM calculates an optimal
hyperplane that separates the data from two classes.

However, according to [9], such hyperplane might not exist since a single
outlier in the training data can impact negatively on the calculation of the
optimal hyperplane. Therefore, it is desirable that SVM tolerates a certain degree
of error to deal with outliers. In order to cope with this issue, the authors in [2]
introduced slack variables during the calculation of the optimal hyperplane in
order to relax the separation constraints. Since large values of those variables
could lead to trivial solutions, they also proposed the use of a margin weight to
control the size of the margin.

Since SVM is a linear classifier, in order to perform nonlinear separations
of data, kernel functions can be used to transform the given data to a higher
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dimensional feature space in which they are linearly separable. A kernel function
(represented by k(·, ·)) are continuous symmetrical functions. According to [10],
it is difficult to identify if a function is a kernel, thus any function that satis-
fies Mercer’s theorem [6] could be used. Moreover, a closure property for some
operations between kernels could also be explored to generate new kernels [9,10].

Although there are ways of solving efficiently the primal form of the SVM
problem (i.e., the calculation of the optimal hyperplane) [8], most of the litera-
ture addresses the following dual form of the SVM problem, which is considered
more conveniently solvable, as follows

maximize
α∈Rm

W (α) =
m∑

i=1

αi − 1
2

m∑
i,j=1

αiαjyiyjk(xi, xj), (1)

subject to (2)
m∑

i=1

αiyi = 0 (3)

0 ≤ αi ≤ C
m ,∀i = 1, . . . , m (4)

in which W is the vector of hyperplane coefficients, C and ξ are the aforemen-
tioned margin weight and slack variables, respectively, and α is the vector of
dual variables corresponding to each separation constraint. According to [3], the
decision function can be written as

f(x) = sgn

(
m∑

i=1

αiyik(xi, x) + b

)
(5)

in which b is the bias of the separating hyperplane.
In general, the choice of an appropriate kernel is one important design deci-

sion when SVM is used; however, that task is nontrivial. The usual approach is
based on a set of predefined kernels from the literature when there is no knowl-
edge about the distribution of data for a given application. Another way is to
analyze the application data in order to obtain insights about their distribution.
Either ways the usage of SVM gets to be limited.

Evolutionary algorithms (EAs) have presented good results in evolving ker-
nels by making combinations of kernels or searching for kernel parameters in
diverse applications [3,10]. In [10], the authors proposed the combination of
kernels through genetic programming in which the fitness of each individual
(representing a kernel function) is set to the accuracy of a SVM classifier, i.e.,
at each iteration of their evolutionary method – hereafter called KGP, they have
trained and evaluated each kernel function using part of the dataset. However,
in [10] training sets are small and the execution time is neglectable, thus it is not
possible to infer the consequences of using KGP over large (web scale) datasets.

In this work, we also propose the use of genetic programming (GP) to combine
kernels, but, in our GP method, the fitness of each individual is obtained by
a K-Nearest Neighbor (K-NN) classifier using a kernel-based distance measure.
Experiments have shown that our method, so-called KGP-K, is much faster than
KGP during training, but it is still able to generate individuals (i.e., kernels) with
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competitive performance (in term of accuracy) to the ones that were produced
by other methods.

This work is organized as follows. Section 2 discussed genetic programming
and presents its use for kernel combination. Our proposed method is presented in
Section 3. Some experimental results performed on a well known image dataset
are given in Section 4. Finally, in Section 5, some conclusions are drawn and
future works are pointed out.

2 Kernel Genetic Programming

Genetic programming (GP) [4], similar to genetic algorithm (GA), is an evo-
lutionary method based upon the principles of biological evolution. The major
difference between GP and GA is that GP individuals are generally represented
by trees whose size constantly change during execution.

In those, a number of solutions (or individuals) to a given problem are ran-
domly generated, and they together are called a population. The individuals
are made in a way such that two operations – called genetic operators – can be
applied to then: mutation and crossover. In the first, a randomly selected part of
an individual is exchanged by a new one that is randomly generated; in the lat-
ter, randomly selected parts of two different individuals are exchanged between
them. The algorithm runs for a number of iterations (each one is called a gen-
eration). In each generation, the individuals are evaluated in some way (which
is dependent on the application domain). The result of such evaluation is called
fitness and it is used to determine to which individuals the genetic operators will
be applied and which of them are the best from their generation (i.e., the best
solutions to the problem). The algorithm stops when some condition is reached,
such as a certain value of fitness, a maximum number of generations, or both.
Fig. 1(a) shows an example of mutation operator, while Fig. 1(b) illustrates a
crossover operator.

The KGP algorithm proposed in [10] uses GP to generate valid kernels. It
starts with a set of Mercer’s kernels randomly generated and uses the afore-
mentioned closure property to produce new kernels. The operations used are
exponential, addition or multiplication by another kernel and the multiplication
by a real number. Each individual has its fitness set to the accuracy a SVM
classifier that is generated by using the kernel represented by the individual
itself.

3 Proposed Method

Given a training dataset, whose classes are known, and an observation of
unknown class. A K-NN classifier decides the class of the observation based on
the classes of the K nearest neighbors in the training set by using some statistic
such as the mode. In order to generate a K-NN classifier, we only need a distance
measure between the data elements.
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(a) Mutation.

(b) Crossover.

Fig. 1. Examples of genetic operator of GP.

A kernel distance [12] is a distance measure between objects based on a
kernel. Given a definite positive kernel function k and two points p and q, a
kernel distance dk is given by:

dk(p, q) = k(p, p) + k(q, q) − 2k(p, q) (6)

Therefore, the K-NN classifier using the kernel distance dk can be used to
obtain a fitness for each individual during KGP algorithm. Since there is no
off-line learning in the K-NN classifier, its use is expected to be inferior to the
use of SVM in terms of accuracy. But since the calculations of a K-NN classifier
are simpler, it is also expected to be faster. A simplified diagram of the process
can be seen in Fig. 2

4 Experiments and Results

In this section, we present the results of experiments made to assess the per-
formance of the proposed method. During experiments, the FGComp20131

1 https://sites.google.com/site/fgcomp2013/

https://sites.google.com/site/fgcomp2013/
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Fig. 2. KGP

dataset was used. It is a 5-domain subset of the ILSVRC2013 (Imagenet Large
Scale Visual Recognition Challenge2) and contains 75,533 images (49,052 for
training and 28,481 for test).

The global descriptor GIST [7] was used to describe the visual content of the
images xi in H addressing the semantic perception. According to [11], the GIST
can be defined as a feature vector g, in which each component gk is given by

gk =
∑
x,y

wk(x, y) × |I(x, y) ⊗ hk(x, y)|, (7)

in which ⊗ and × denote convolution and multiplication of values related to
the pixels, respectively; I(x, y) is the luminance channel for the input image;
hk(x, y) is a multiscale Gabor filter bank and wk(x, y) is a spatial window which
is used for computing the average energy of each filter in different positions at
the image.

In order to compare our method to [10], we implement it using ECJ [5]. For
individual evaluation, we use both LIBSVM [1], so-called KGP, and our own
implementation of K-NN using kernel distance, so-called KGP-K (which consid-
ers 5 nearest neighbors). In both cases, we have 5 generations and 30 individuals
for GP, with a probability of 0.9 for crossover operation and a probability of 0.1
for mutation. We also take advantage of multicore technology and explore the
parallelization during individual evaluation using 10 threads to do that (which
generates a processor occupancy of almost 90%).

2 http://www.image-net.org/challenges/LSVRC/2013/

http://www.image-net.org/challenges/LSVRC/2013/
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Table 1. Experimental results for train step

Accuracy Time (in min)

average Δ average Δ

KGP 93.86 0.08 2131 211
KGP-K 89.24 0 230 35
Grid 93.69 0 471 0

Random Walk 92.83 0.41 1080 49
Monte Carlo 93.36 0.10 1305 390

We have also compare KGP and KGP-K to: (i) a Grid search of LIBSVM,
which is a strategy to explore multiple combinations of C and γ for the Gaussian
kernel using cross validation and takes the best as the solution; (ii) a Monte
Carlo’s method which generates 150 random kernel combinations and takes the
best one as the solution; and (iii) a Random Walk method using 30 random
combinations of two kernels, followed by a test to choose the best as “current
kernel combination”. In our experiments, due to restriction of time, we have only
three runs for each method in training and test steps (e.g., KGP has taken an
average time of one day and a half during training step).

Table 1 presents the average and standard deviation concerning the train
step, while Table 2 presents the average and standard deviation for the test
step. The experiments were done by using a Core i7 5820k with 16G of memory
running Windows 8.1. It is worth to mention that, during training with KGP and
KGP-K, each kernel (i.e., individual) is evaluated (i.e., has its fitness calculated)
using a 2-fold cross validation over the training data with a SVM classifier and a
K-NN classifier, respectively. At end of the training step, the best kernel should
be tested, and we do that using a 2-fold cross validation over the testing data
with a SVM classifier for both: KGP and KGP-K.

The results of Grid and KGP are very similar. The proposed method KGP-K
is inferior during training but it presents a great improvement during tests. It is
worth to notice that KGP-K spends a very short time in training. Monte Carlo

Table 2. Experimental results for test step

Accuracy Time (in min)

average Δ average Δ

KGP 95.34 0.07 433 107
KGP-K 94.82 0.12 626 47
Grid 95.38 0 246 0

Random Walk 94.74 0.18 989 138
Monte Carlo 95.11 0.15 606 376
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is superior to KGP-K in terms of accuracy but it spends more time than KGP-
K during training. Finally, KGP-K represents a feasible alternative for kernel
evolution in scenarios that training time is an important issue. KGP-K produces
reasonable kernels to use in the SVM with no knowledge about the distribution
of data, but they could be more complex than the ones generated by KGP and,
therefore, they need more time during tests.

5 Conclusion

In this work, we propose the combination of kernels through genetic program-
ming in which the individual fitness is obtained by a K-NN classifier using a
kernel-based distance measure. Experiments have shown that KGP-K is much
faster than KGP during training, but it is still able to generate individuals (i.e.,
kernels) with competitive performance (in term of accuracy) to the ones that
were produced by other methods.

Thus, KGP-K represents a feasible alternative for kernel evolution in scenar-
ios that training time is an important issue. KGP-K produces reasonable kernels
to use in the SVM with no knowledge about the distribution of data, but they
could be more complex than the ones generated by KGP and, therefore, they
need more time during tests.

In future works, we will explore ways to control the individuals during the
evolutionary process to prevent the generation of complex (and time-consuming)
individuals. It will be also interesting to assess the impact on our method of
descriptors with more semantic information about the problem domain.
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Abstract. Complex network is a topic related with a plurality of knowl-
edge from various areas and has been applied with success in all of them.
However, it is a recent area considering its application in image pattern
recognition. There are few works in the literature that use the complex
networks for image characterization following its analysis and classifica-
tion. An image can be interpreted as a complex network wherein each
pixel represents a vertex and the weighted edges are generated accord-
ing to the location and intensity between two pixels. Thus, the present
paper aims to investigate this type of application and explore different
measurements that can be extracted from complex networks to better
characterize an image. One special type of measure that we applied were
those based on motifs, which are employed in several areas. However, to
the best of our knowledge, motifs were never explored in complex net-
works representing images. The results demonstrate that our proposed
methodology presented great potential, reaching up to 89.81% of accu-
racy for the classification of public domain image texture datasets.

Keywords: Complex networks · Motifs · Pattern recognition · Image
processing

1 Introduction

In the last decade, there was a great interest regarding the potential of com-
plex data (e.g. image, videos, among others). In several areas, these types of
data are daily generated, increasing in a great extent their volume. Thus, to
cope with such data deluge, it is important to propose techniques capable to
automatically characterize and classify them. To perform such task, a classical
theory based on complex networks has been emerged as a notable paradigm. For
instance, the use of complex networks to perform image characterization and
recognition is becoming highly relevant [2]. However, there is still a lot to be
explored considering the complex network theory applied to images.

Hence, the present paper proposes a new methodology based on complex
networks to better characterize an image. To do so, we consider an image as a
complex network wherein each pixel represents a vertex and the weighted edges
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 322–330, 2015.
DOI: 10.1007/978-3-319-25751-8 39
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are generated according to the location and intensity between two pixels. Over
the generated complex network, special measures based on motifs were exploited
to describe the images. It is important to highlight that the experiments testify
the notable results achieved by the proposed methodology.

2 Background

The Complex Network theory is a topic related with a diversity of knowledge
from several areas. Besides, it has been applied with success in all of them, due
to its flexibility and generality, allowing the representation of different structures
as a graph [1,3,10,16,17]. The network can be analyzed, classified and modeled
through its topology and measurements [4,7]. The network features can be used
as descriptors to distinguish different patterns, and thereby originating pattern
recognition techniques.

2.1 Complex Networks Measurements

There are several measures in the literature that can be applied to describe an
complex network. The main measures are explained in the present section, where
ei,j is an edge connecting the vertices i and j, and |V | is the total number of
vertices in the network.

– Vertex Degree: the degree of a given vertex i is the number of vertices
connected to it (i.e. its neighbors).

– Average Degree: the average degree (φµ) is the sum from the graph’s
number of edges divided by its number of vertices.

– Histogram of Degrees: the histogram, largely employed as image descrip-
tor to obtain the frequency of a given pixel intensity, can also be applied to
describe a complex network. In this case computes how many vertices exist
in each bin of the connectivity histogram (p(φ)).

– Average Minimum Path: the average minimum path is the average of all
the minimum paths of the network.

– Mean Centrality: the mean centrality is the measurement that indicates
the mean of central vertices, i.e., significant vertex for the minimum paths
of the network.

– Transitivity: the transitivity measures the mean probability of which if the
vertices i and j are connected to the vertex f , they will also be connected
between themselves.

– Number of Communities: considering a graph G(V,E), a community
in this graph is a subgraph G′(V ′, E′) in which the vertices are strongly
connected. There are different ways to measure a subgraph, because there
are different definitions of the community structures. The most accepted
definition requires that all nodes of a community must be connected between
themselves. This obligation leads to the definition of a clique. A clique is the
densest subgraph between three or more vertices, i.e., each graph vertex
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needs to be connected to another vertex, in a way that does not exist other
ones adjacent between them. This definition can be extended to an n-clique,
in which requires that the biggest geodesic distance between two subgraphs
vertices can not be bigger than n. In the definition of 2-clique the vertices
do not need to be all connected between themselves, but can only have an
intermediary vertex between them. The 3-clique can have two intermediary
vertices between them, and so on [4].

– Motifs: the first hypothesis about motifs in complex networks were found
in social networks [22]. Milo et al. [18] expanded the use of motifs in complex
networks to cases of networks based on gene regulation, neurons, food chains,
logic circuits and the world wide web. Motifs are small interconnection pat-
terns that occur in a directed or non-directed graph with a frequency signif-
icantly bigger than the expected in its random version (i.e., in a graph with
the same number of nodes, edges and average degree as the real network,
but the edges are distributed in a random manner) [15]. The significance
degree of a given motif M in the graph G is defined by the Z − score and is
calculated through the Equation 1 [4].

ZscoreM =
nM− < nrand

M >

δrandnM

, (1)

where nM is the number of times that the subgraph M appears in the graph
G; < nrand

M > and δrandnM
are, respectively, the average and the standard

deviation of the number of times that this subgraph (M) appears in the
random network.

2.2 Texture

An image can be described by primitive low level features based on color, tex-
ture and shape patterns[5]. The texture is one of the most important in several
contexts. Texture is an intuitive term and does not possess a precise defini-
tion, being found numerous definitions [12,21]. Besides, the texture recognition
process, made intuitively by humans, commonly requires a high computational
complexity [19].

3 Methodology

The methodology is mainly composed by four steps: (1) modeling image as a
graph; (2) extraction of measures; (3) learning and training; (4) classification
using supervised classification methods. This sequence can be seen in Figure 1.

In the proposed methodology the image is characterized by a complex net-
work, where each pixel is considered a vertex of the network (i.e. graph). To
make the connections between the vertices was adopted the creation of a lattice
adjacency connected by a given radius. In this method all the vertices that rep-
resent the neighbor pixels, which are inside a given radius r, are connected. This
method makes easier the local affinity relation over different regions.
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Fig. 1. Pipeline of the proposed methodology.

Initially it is performed a sweep pixel by pixel over the image, for each pixel
selected it is calculated the Euclidean distance between its neighbors pixels. As
formally defined by Equation 2, if the Euclidean distance between two pixels
p = (i, j) ∈ P and p′ = (i′, j′) ∈ P is not bigger than a given radius r (e.g. r =
5) the two vertices corresponding to the pixels are connected by an edge.

For each edge e ∈ E from the graph G is associated an weight which is
calculated by means of the coordinates from the two pixels that formed the edge
and theirs respective intensities, as seen in Equation 3. Therefore, it is generated
a new graph G = (P,E) that is non-oriented, weighted and without loops.

The weight value of the edges w(e) can assume a big value scale. Therefore,
because this fact it is performed a weight normalization to guarantee that the
weights will be into range 0 and 1, as it is seen in the Equation 4.

It can be noted that each vertex has a similar number of connections and
the graph presents a regular behavior. However a graph with regular behavior is
not considered a complex network, and so it does not has any relevant property
to be extracted [2]. Thus it is necessary to accomplish a behavioral analysis of
the graph. An efficient way to do this task is the analysis of the derived graphs.
We called this analysis as δ transformations. In each transformation is applied
a threshold t in the set of edges E of the graph, in order to select a subset E∗,
E∗ ⊂ E, in which each edge from E∗ must have the weight less or equal to t, as
seen in Equation 5.

E =
{

((i, j), (i′, j′)) ∈ PxP |
√

(i − i′)2 + (j − j′)2 ≤ r
}

(2)

d(e) = (i − i′)2 + (j − j′)2 + (vij − vi′j′)2 ∀ e = {(i, j), (i′, j′)} ∈ E (3)

w(e) =
d(e)

maxPixelIntensity2 + r2
(4)

E∗ = δt(E) = {e ∈ E|w(e) ≤ t} (5)

The threshold t is incremented by a regular interval, obtaining T =
[t1, t2, . . . , tL], where the initial threshold is 0.005, the final is 0.165 and the
increment is 0.005. For each incremented t is obtained a new subgraph from
the original graph. This approach can be interpreted as the acquisition sev-
eral samples of the complex network. Considering the measurements that can
be extracted from the network (see Section 2), a feature vector was generated
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Table 1. Complex network measurements - descriptors.

Measurement Symbol

Mean Centrality biµ
Number of Communities NC

Average Degree φµ

Transitivity C
Average Minimum Path �

Motifs M
Connectivity Histogram p(φ)

for each image. Table 1 shows which measurements were used as descriptors to
compose the feature vectors.

It was used motifs of sizes 3 and 4 and in the connectivity histogram the
value of φ varied from 0 to 20. For each yielded graph by the δ transformations
are extracted the complex network measurements showed in Table 1. The feature
subvector regarding each transformation is composed according to Equation 6.
Then the feature subvectors are concatenated to create the final feature vector.

ψtL = [bi,NC , φμ,C, �,M, p(φ)] (6)

4 Experiments

In this section, we describe the datasets (Section 4.1) and scenarios (Section 4.2)
used in the experiments as well as the results obtained (Section 4.3).

4.1 Datasets

The experiments were conducted on two well-known texture datasets. The first
one is the Brodatz dataset, obtained from [6], which consists of 112 different
textures of size (640x640) pixels. Each texture is partitioned into 25 (128x128)
non-overlapping subimages, such that 2800 images were considered. Figure 2a
displays samples from this dataset.

The second image dataset is referred to the KTH-TIPS, which is an extent
of the CUReT dataset [9]. KTH-TIPS dataset, obtained from [13], consists of
10 texture classes with 81 images per class. Images, 200x200 pixels in size, were
captured at nine scales, viewed under three different illumination directions and
three different poses. Figure 2b displays samples from this dataset.

(a) (b)

Fig. 2. Examples of images from the datasets. (a) Brodatz. (b) KTH-TIPS.
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4.2 Scenarios

For the extraction of the network descriptors from each dataset, we used the
software R [20] with the package iGraph [8]. In order to evaluate the performance
of the proposed methodology, we considered three different scenarios. Initially,
for the first experiment, we have used the learning methods: k-Nearest Neighbors
(kNN), Decision Tree (DT), Näıve Bayes (NB), Support Vector Machines (SVM)
and Multilayer Perceptron (MP). We have used the implementation of those
learning methods available in the WEKA data mining library with the default
parameters, unless stated otherwise [11]. For the kNN method, we used the IBK
algorithm with k = 1. For the Decision Tree method, we used the J48 and
Random Forest (RF) algorithms. For the SVM method, we used the LibSVM
algorithm with a linear kernel configuration. In this paper, we consider a q-fold
cross-validation protocol for all experiments, where q = 10.

Recent researches have shown that the discriminating power of the learning
methods has been affected by irrelevant and redundant information. Therefore,
for the second experiment, in order to identify and remove as much irrelevant
and redundant training information as possible, we perform Correlation-based
feature selection, as proposed in [11]. It was selected 28 features, including mea-
sures of: connectivity histogram, transitivity, average minimum path, subgraphs,
motifs of size 4 similar to Figure 3A and motifs of size 4 similar to Figure 3B.

Fig. 3. Relevant motifs for classification.

From the results obtained in the two previous experiments, it was observed
(Figure 4) the absence of a pattern in the classification from the Brodatz dataset.
It was related to the heterogeneity of some images, due to the pre-processing
method (used to construct the dataset) results in the samples of the same class
whose textures and patterns are completely different. Therefore, the samples
were re-organized using the k-means algorithm [14]. Experiments were conducted
with 100 and 50 clusters. With 100 clusters, the average of samples per class was
27.76. With 50 clusters, the average of samples per class was 55.52.

Fig. 4. Heterogeneous images in the Brodatz dataset.
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Table 2. Average accuracies ± standard deviations on the two datasets obtained by
the classifiers for the first experiment without feature selection.

Dataset IBK J48 NB RF SVM MP

KTH-TIPS 50.61 ± 3.54 59.5 ± 5.73 39.63 ± 3.51 69.01±3.70 ∗ 57.53 ± 3.52

Brodatz 75.14±1.65 67.00 ± 2.75 73.19 ± 2.63 75.28±1.85 64.08 ± 2.79 ∗

Table 3. Average accuracies ± standard deviations on the two datasets obtained by
the classifiers for the first experiment with feature selection.

Dataset IBK J48 NB RF SVM MP

KTH-TIPS 58.02 ± 3.61 63.58 ± 5.05 42.22 ± 5.30 70.62±5.64 49.01 ± 4.75 63.58 ± 4.49

Brodatz 79.93 ± 1.47 70.28 ± 2.30 79.61 ± 2.07 80.76 ± 1.15 ∗ 87.32±2.10

Table 4. Average accuracies ± standard deviation on the Brodatz dataset obtained
by the classifiers for the third experiment, with and without the Feature Selection (FS)
algorithm, using 100 clusters.

Features IBK J48 NB RF SVM MP

Without FS 85.62 ± 1.42 72.11 ± 2.56 86.41±2.16 82.24 ± 1.89 59.15 ± 2.91 26.66 ± 2.17

With FS 85.84 ± 1.34 72.83 ± 2.34 86.09 ± 2.11 83.89 ± 2.36 79.36 ± 1.57 86.27 ± 2.31

Table 5. Average accuracies ± standard deviation on the Brodatz dataset obtained
by the classifiers for the third experiment, with and without the Feature Selection (FS)
algorithm, using 50 clusters.

Features IBK J48 NB RF SVM MP

Without FS 76.33 ± 2.38 89.01 ± 1.88 87.24 ± 2.34 56.59 ± 2.15 51.51 ± 3.01 88.53 ± 2.62

With FS 89.08 ± 1.23 76.98 ± 3.07 88.76 ± 2.05 87.31 ± 1.63 50.79 ± 3.20 89.81 ±2.21

4.3 Results

The results of the three experiments are shown in the Tables 2-5. The fields with
∗ indicate that it was not possible to classify the data with such algorithm, due
to the lack of enough computer resources given the Weka algorithm implemen-
tations. Regarding to the first experiment, one can observe (Table 2) that the
results were underperforming, reaching about 75% of classification accuracy for
the Brodatz dataset and less than 70% for the KTH-TIPS.

The second experiment, using the feature selection (FS) algorithm, presents
better results (see Table 3), due to the identification and removal of noise gen-
erated by irrelevant and redundant features. MP classifier achieves an accuracy
above 87% for Brodatz, and RF classifier achieves above 70% for KTH-TIPS.

Tables 4-5 shows the results from the third experiment, using 100 and 50
clusters, respectively. In general, we obtained gains with the use of the clustering.
The highest gains are highlighted in bold in Tables 4 and 5. With 100 clusters
(Table 4), NB classifier reached 86.41% of accuracy without feature selection
algorithm, obtaining a gain of 13.22% in relation to the results presented without
the clustering (see NB classifier with 73.19% of accuracy in Table 2). With 50
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clusters (Table 5), J48 classifier achieved 89.01% of accuracy without feature
selection algorithm, obtaining a gain of 24.01% compared to the results presented
without the clustering (see J48 classifier with 65.00% of accuracy in Table 2).

5 Conclusion

In this paper, we presented a new methodology to describe images through com-
plex networks measurements. In addition, the motifs, a special type of measure,
were applied resulting in higher accuracies. It is important to highlight that, to
the best of our knowledge, motifs were never explored in complex networks repre-
senting images. The experiments performed show that the proposed methodology
reached up to 89.81% of accuracy for the classification of public domain image
texture datasets, increasing it in a great extent. These results testify the notable
applicability of our methodology to the characterization of images.

Acknowledgments. This work was supported by CNPq, Fund. Araucária and
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Luis Enrique Erro # 1, Tonantzintla, CP 72840 Puebla, Mexico

{lchang,ariasmo,esucar}@ccc.inaoep.mx

Abstract. Bag of Visual Words is one of the most widely used
approaches for representing images for object categorization; however,
it has several drawbacks. In this paper, we propose three properties and
their corresponding quantitative evaluation measures to assess the abil-
ity of a visual word to represent and discriminate an object class. Addi-
tionally, we also introduce two methods for ranking and filtering visual
vocabularies and a soft weighting method for BoW image representation.
Experiments conducted on the Caltech-101 dataset showed the improve-
ment introduced by our proposals, which obtained the best classification
results for the highest compression rates when compared with a state-of-
the-art mutual information based method for feature selection.

Keywords: Bag of visual words · Visual vocabulary · Object catego-
rization · Object recognition

1 Introduction

One of the most widely used approaches for representing images for object cat-
egorization is the Bag of Words (BoW) approach. BoW-based methods have
recently obtained good results and they even attained the best results for sev-
eral classes in the recent PASCAL VOC Challenge 2011 on object classification.

The key idea of BoW approaches is to discretize the entire space of local
features (e.g., SIFT, SURF) extracted from a training set at interest points or
densely sampled in the image. With this aim, clustering is performed over the set
of features extracted from all the images of the training set in order to identify
features that are visually equivalent. Each cluster is interpreted as a visual word,
and all clusters form a so-called visual vocabulary. Later, in order to represent
an image from the training set, each feature extracted from the image is assigned
to a visual word of the visual vocabulary; from which a histogram of occurrences
of each visual word in the image is obtained. When an unseen image arrives, it is
represented using the visual vocabulary and then it is processed by the classifier.
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 331–338, 2015.
DOI: 10.1007/978-3-319-25751-8 40
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One of the main limitations of the BoW approach is that the visual vocabu-
lary is built using features that belong to both the object and the background.
This implies that the noise extracted from the image background is also con-
sidered as part of the object class description. Also, in the BoW representation,
every visual word is used and they contribute in the same way to the histogram
of an image, regardless of their low representative and discriminative power. All
these elements may limit the quality of further classification processes.

Several methods have been proposed in the literature to overcome the limi-
tations of the BoW approach. These include recent works aimed to build more
discriminative and representative visual vocabularies. Authors in [1–3] use the
class labels of images in the vocabulary training stage in order to obtain a more
discriminative vocabulary. Also, since with a typical hard assignment features
that lie near Voronoi boundaries are not well-represented by the visual vocabu-
lary, researchers have explored multiple assignments and soft weighting strategies
to address this problem. E.g., [4,5] proposed methods for multiple assignment
where a feature is matched to k nearest terms in the vocabulary and these terms
are weighted by a scaling function such that the nearest terms obtain a higher
value. The related work that is closest to ours is the recent work of Zhang et
al. [6]. In their paper authors propose a supervised Mutual Information (MI)
based feature selection method. Their algorithm uses MI between each dimen-
sion of the image descriptor and the image class label to compute the dimension
importance. Finally, using the highest importance values, they reduce the image
representation size. Their method achieve higher accuracy than feature compres-
sion methods such as Product Quantization [7] and BPBC [8].

In this paper, we propose three properties to assess the ability of a visual
word to represent and discriminate an object class in the context of the BoW
approach. We define three measures in order to quantitatively evaluate each of
these properties. Besides, we propose two methods for ranking and filtering the
visual vocabulary and a new soft weighting method for representing an image
from this vocabulary. One of the ranking methods is based on a tf.idf weighting
scheme while the other one as well as the soft weighting method are based on
the above mentioned measures. Experiments conducted on the Caltech-101 [9]
dataset showed the improvement introduced by our proposals, which obtained
the best classification results for the highest compression rates when compared
with a state-of-the-art mutual information based method.

The paper is organized as follows: Section 2 introduces the proposed proper-
ties and measures for the evaluation of the representativeness and distinctiveness
of visual words, the methods for ranking and filtering the visual vocabulary as
well as the soft weighting method for image representation. The performance
of our proposed methods on the Caltech-101 dataset and a discussion of the
obtained results are presented in Section 3. Finally, Section 4 concludes the
paper with a summary of our findings and a discussion of future work.
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2 Proposed Method

In this section we propose three properties and their corresponding quantitative
evaluation measures to assess the ability of a visual word to represent and dis-
criminate an object class. Besides, we propose two ranking and filtering methods,
one based on the above mentioned measures and the other one, based on a tf.idf
weighting scheme. Finally, we propose a new soft weighting method for image
representation which is also based on the proposed measures.

2.1 Inter-class Representativeness Measure

A visual word could be comprised of features from different object classes, rep-
resenting visual concepts or parts of objects common to those different classes.
These common parts or concepts do not have necessarily to be equally repre-
sented inside a visual word because, even when similar, object classes should
also have attributes that differentiate them. Therefore, we can say that, in order
to represent an object class the best, a property that a visual word must sat-
isfy is to have a high representativeness of this class. In order to measure the
representativeness of a class cj in visual word k, the measure M1 is proposed:

M1(k, cj) =
fk,cj

nk
, (1)

where fk,cj represents the number of features of class cj in visual word k and nk

is the total number of features in visual word k.

2.2 Intra-class Representativeness Measure

A visual word could be comprised of features from different objects, many of
them probably belonging to the same object class. Even when different, object
instances from the same class should share several visual concepts. Taking this
into account, we can state that a visual word best describes a specific object
class while more balanced are the features from that object class comprising the
visual word, with respect to the number of different training objects belonging to
that class. Therefore, we could say that, in order to represent an object class the
best, a property that a visual word must satisfy is to have a high generalization
or intra-class representativeness over this class.

To measure the intra-class representativeness of a visual word k for a given
object category cj , the measure μ is proposed:

μ(k, cj) =
1

Ocj

Ocj∑
m=1

∣∣∣∣
om,k,cj

fk,cj

− 1
Ocj

∣∣∣∣, (2)

where Ocj is the number of objects (images) of class cj in the training set, om,k,cj

is the number of features extracted from object m of class cj in visual word k,
and fk,cj is the number of features of class cj that belong to visual word k.
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The term 1/Ocj represents the ideal ratio of features of class cj , that guarantees
the best balance, i.e., the case where each object of class cj is equally represented
in visual word k.

The measure μ evaluates how much a given class deviates from its ideal value
of intra-class variability balance. In order to make this value comparable with
other classes and visual words, μ could be normalized using its maximum possible
value, which is

2·Ocj
−2

O2
cj

. Taking into account that μ takes its maximum value in

the worst case of intra-class representativeness, the measure M2 is defined to
take its maximum value in the case of ideal intra-class variability balance and
to be normalized by max(μ(k, cj)):

M2(k, cj) = 1 − Ocj

2 · (Ocj − 1)

Ocj∑
m=1

∣∣∣∣
om,k,cj

sk,cj

− 1
Ocj

∣∣∣∣. (3)

2.3 Inter-class Distinctiveness Measure

M1 and M2 provide, under different perspectives, a quantitative evaluation of
the ability of a visual word to describe a given class. However, we should not
build a vocabulary just by selecting those visual words that best represent each
object class, because this fact does not directly imply that the more representa-
tive words will be able to differentiate well one class from another, as a visual
vocabulary is expected to do. Therefore, we can state that, in order to be used as
part of a visual vocabulary, a desired property of a visual word is that it should
have high values of M1(k, cj) and M2(k, cj) (represents well the object class),
while having low values of M1(k, {cj}C) and M2(k, {cj}C) (misrepresents the
rest of the classes), i.e., it must have high discriminative power.

In order to quantify the distinctiveness of a visual word for a given class, the
measure M3 is proposed. M3 expresses how much the object class that is best
represented by visual word k is separated from the other classes in the M1 and
M2 rankings.

Let ΘM(K, cj) be the set of values of a given measure M for the set of
visual words K = {k1, k2, ..., kN} and the object class cj , sorted in descending
order of the value of M. Let Φ(k, cj) be the position of visual word k ∈ K in
ΘM(K, cj). Let Pk = mincj∈C(Φ(k, cj)) be the best position of visual word k in
the set of all object classes C = {c1, c2, ..., cQ}. Let ck = arg mincj∈C(Φ(k, cj))
be the object class where k has position Pk. Then, the inter-class distinctiveness
(measure M3), of a given visual word k for a given measure M, is defined as:

M3(k,M) =
1

(|C| − 1)(|K| − 1)

∑
cj �=ck

(Φ(k, cj) − Pk). (4)

2.4 On Ranking and Reducing the Size of Visual Vocabularies

In this subsection, we present two methods for ranking and reducing the size
of the visual vocabularies, towards more reliable and compact image represen-
tations. The first one, named MMM, is based on the measures proposed in
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Sections 2.1-2.3. Let ΘM1(K) and ΘM2(K) be the rankings of vocabulary
K, using measures M3(K,M1) and M3(K,M2), respectively. ΘM1(K) and
ΘM2(K) provide a ranking of the vocabulary based on the distinctiveness of
visual words according to inter-class and intra-class variability, respectively.

In order to find a consensus, Θ(K), between both rankings ΘM1(K) and
ΘM2(K), a consensus-based voting method can be used; in our case, we decided
to use the Borda Count algorithm [10] although any other can be used as well.
The Borda Count algorithm obtains a final ranking from multiple rankings over
the same set. Given |K| visual words, a visual word receive |K| points for a
first preference, |K| − 1 points for a second preference, |K| − 2 for a third, and
so on for each ranking independently. Later, individual values for each visual
word are added and a final ranking obtained. From this final ranking a reduced
vocabulary can be obtained by selecting the first N visual words.

The second ranking and filtering method we propose is based on a tf.idf
weighting scheme, named FRM (Frequency-based Ranking Method). Our pro-
posal is based on the definitions introduced in [11]. Traditionally, tf.idf has
been used as a weighting scheme for image representation. However, in our
proposal we use tf.idf for ranking and/or filtering the set of visual words. Let
D = {m1,m2, · · · ,mN} be the image training set from which the visual vocab-
ulary has been built. According to [11], the term frequency and the inverse
document frequency of a visual word vi in an image mj , denoted by tfvi,mj

and
idfvi,mj

, respectively, are defined by the following expressions:

tfvi,mj
= K1·Oij

Oij+K2·
(

1−b+b·
( |{vq|Oqj>0}|

Vavg

)) idfvi,mj
= log

|D|−|Dvi |+0.5

|Dvi |+0.5
, (5)

where K1,K2 and b are constants, Oij is the occurrence of vi in mj , Vavg is the
average number of visual words representing the images of the training set, and
Dvi

is the set of images in which the occurrence of vi is greater than zero.
Taking into account the way in which the histogram of occurrences of the

visual words is built for each image, it will be highly probable that any visual
word occurs in almost all images. This will have a negative influence in the
computation of the idf expression. For solving this issue, we propose to redefine
Dvi

as the set of images in which the occurrence of vi is greater than the average
occurrence of vi in all the images of the training set.

Using the tf expression and the new definition of idf, we can build for each
visual word vi, a vector containing the product of tfvi,mj

and idfvi,mj
, in each

image mj ∈ D. The average of the values contained in this vector, will constitute
the ranking of vi. From this ranking a reduced vocabulary can be obtained by
selecting the first N visual words.

2.5 Soft Weighting for Image Representation

Once the visual vocabulary is built, the images are represented through a his-
togram of the occurrences of the visual words. For building this histogram, the
distinctiveness and representativeness of visual words are not taken into account
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during the histogram construction. Following, we propose a new soft weighting
method for image representation, named SWIR, that tackles the negative effect
that the above mentioned problem have over the histogram of occurrences.

Let Θ(N) be the final raking values of the N selected visual words that
constitute the visual vocabulary, obtained using one of the ranking and filtering
methods proposed in section 2.4. Let assume these values are normalized such
that they are in [0,1]. We will use these values for supporting the presence of
the highly discriminative visual words as well as for penalizing the presence
of those with low descriptive power. With this aim, we first compute a pivot
element, denoted as PΘ(N), as the average raking value of the N visual words.
The contribution weight of a visual word vi, denoted as cwvi

, is computed as
follows:

cwvi
= 1 − PΘ(N) + Θvi

, (6)

where Θvi
is the ranking value of vi in Θ(N).

For obtaining the representation of an image mj , we propose to multiply the
occurrences of the visual words in the histogram of mj by their respective contri-
bution weights. Those visual words having a ranking over PΘ(N) are considered
as more representative and discriminative, and consequently, their presence in
the histogram is rewarded (i.e., it is increased). On the other hand, visual words
with rankings under the pivot are penalized by reducing their presence in the
histogram of occurrences.

3 Experimental Results

The main goal of the experiments we present in this section is to quantitatively
evaluate the improvement introduced by our proposals to the BoW-based image
representation and to compare with the MI-based method proposed in [6], which
obtains the best classification results among the feature selection and compres-
sion methods of image representation for object categorization. The experiments
were conducted on the well-known Caltech-101 [9] dataset. All the experiments
were done on a single thread of a 3.4 GHz Intel i7 processor and 8GB RAM PC.

In the experiments presented here, we used for image representation a BoW-
based schema with PHOW features (dense multi-scale SIFT descriptors) [12] and
spatial histograms as image descriptors. Elkan’s K-means [13] with four different
K values (K= 512, 1024, 2048 and 4096) was used to build the visual vocab-
ularies; these vocabularies constitute the baseline. Later, each of the baseline
vocabularies is ranked using the MI-based method proposed in [6] and our two
proposed ranking methods, MMM and FRM, with and without the new repre-
sentation method, SWIR. Based on these rankings, nine new vocabularies are
obtained by filtering each baseline vocabulary, leaving the 10%, 20%, ..., 90%,
respectively. We tested the obtained visual vocabularies in a classification task,
using a homogeneous kernel map to transform a χ2 Support Vector Machine
(SVM) into a linear one [14]. We follow the experimental setup of [15], namely,
we train on 30 images per class and test on the rest, limiting the number of test
images to 50 per class. The classification accuracy results are reported in Fig. 1.
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Fig. 1. Mean classification accuracy results on the Caltech-101 dataset.

As it can be seen in Fig. 1, for each value of K used in the experiment, our pro-
posals obtain the best classification accuracy results for the highest compression
rates (10, 20%), being MMM the best method. Moreover, for the other filter-
ing sizes our proposals attain comparable and even better results than the MI-
based method. Besides, in almost all values of K the combination of the MMM
and FRM methods with SWIR method gets the highest classification accuracy
results, being the combination between FRM and SWIR the best. Therefore, we
can assert that taking into account the distinctiveness and representativeness of
visual words in the image representation improves the accuracy of the classifier.

4 Conclusions

In this paper we have introduced three properties and their corresponding quan-
titative evaluation measures to assess the ability of a visual word to represent
and discriminate an object class, in the context of the BoW approach. We also
devised two methods for reducing the size of visual vocabularies that allow to
obtain more distinctive and representative visual vocabularies for BoW image
representation. Finally, we introduced a soft weighting method for image repre-
sentation. The experiments conducted over the well-known Caltech-101 dataset
showed that i) using the more discriminative and representative visual words, and
ii) their properties quantitative measures it is possible to obtain more accurate
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and compact visual vocabularies and improved BoW-based image representa-
tions. Future work will focus on defining a method that, based on the proposed
measures, help us to automatically choose the filter size that maximizes the
classification accuracy.
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Abstract. One of the first steps in a myriad of Visual Recognition and
Computer Vision algorithms is the detection of keypoints. Despite the
large number of works proposing image keypoint detectors, only a few
methodologies are able to efficiently use both visual and geometrical
information. In this paper we introduce KVD (Keypoints from Visual
and Depth Data), a novel keypoint detector which is scale invariant and
combines intensity and geometrical data. We present results from several
experiments that show high repeatability scores of our methodology for
rotations, translations and scale changes and also presents robustness in
the absence of either visual or geometric information.

Keywords: Keypoint detector · Local features

1 Introduction

Over the years, the task of selecting a set of points of interest in images has
been omnipresent in a large number of Visual Recognition and Computer Vision
methodologies. A careful choice of points in images may avoid the inclusion
of noisy pixels and enables the identification of regions that are rich in infor-
mation, aiding an effective description of such regions. Additionally, the use of
an image subset enables the tackling of cluttered backgrounds and occlusions
in object recognition [7,3] and scene understanding applications. Moreover, the
ever growing volume of data, which includes high resolution images, RGB-D data
and the massive image repositories available in the web, makes the development
of keypoint detectors crucial for a large number of image processing techniques.

In a common image representation pipeline for matching and classification
tasks, before computing feature vectors for pixels, these pixels must be selected
by a detector algorithm. Thus, while a descriptor algorithm is concerned with
providing a discriminative identification for a keypoint by analyzing its vicinity,
a detector is designed for finding informative image patches.

As stated, the detection of a set of points of interest, henceforth referred to
as keypoints, consists in looking for points located in discriminative regions of
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Fig. 1. The extraction and fusion of visual and geometrical features of KVD detector.

the image, that will account for good repeatability, which in turn may lead to
smaller ambiguity. There is a vast body of literature on image keypoint detectors,
of which [7,4,12,13] are well known representatives.

Broadly speaking, the main task of a keypoint detector is to assign a saliency
score to each pixel of an image. This score is then used to select a (usually
smaller) subset of pixels that presents the following properties: i) Repeatability;
ii) Distinctiveness; iii) Locality and iv) Accurately localizable.

The main contribution of this paper is a scale invariant keypoint detector
called KVD (Keypoints from Visual and Depth Data), which efficiently com-
bines intensity and depth. Our method produces the best performing detector
by combining visual and geometrical data, and presents a good performance and
graceful degradation even in the absence of either one of them.

Related Work. Since the seminal paper of Morevec [10], where he presented
one of the first corner detectors, a large number of keypoint detectors have been
proposed. Harris detector [4], Harris-Laplacian [8], SIFT [7], SURF [1] are some
of the most popular detectors for images.

A recent approach that has become popular in keypoint selection is based on
machine learning techniques. Rosten and Drummond [12] proposed the FAST
detector, which creates a feature vector that is used by a decision tree to classify
the pixel as a keypoint. The Roten and Drummond’s technique was improved by
Rublee et. al [13]. They presented the ORB detector which uses a scale pyramid
to add scale invariance and measures the cornerness of each keypoint candidate
by computing Harris corner. Another recent methodology also based on machine
learning technique is presented in [5]. The authors proposed a keypoint detection
from depth maps by using Random Forest which is trained to maximize the
repeatability score.

Extracting data from images can usually provide rich information on the
object features. The main drawback is the sensitiveness of these feature to
illumination changes. Geometrical information produced by 3D sensors based
on structured lighting or time of flight, in its turn, is less sensitive to visible
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lighting conditions. Three-dimensional data has been successfully used by algo-
rithms such as NARF [15] and on 3D detectors implementations derived from
2D approaches [14] such as SIFT3D, HARRIS3D and HARRIS6D.

Despite the growing popularity of techniques that combine both visual and
geometric informations to build descriptors [11,17] and their use in recognition
tasks, this fusion is not a common approach for keypoint detection. In this work,
we present a novel keypoint detector, which simultaneously takes into account
both visual and geometrical information to detect keypoints.

We show that using both visual and geometric information at the detection
level improves the quality and performance of higher level visual processes.

2 Methodology

The input for our algorithm is a pair (I,D), which denotes the output of a typical
RGB-D device. For each pixel x, I(x) is the pixel’s intensity, D(x) is depth for
that pixel, P (x) is the corresponding 3D point, and N(x) is its normal vector.

Our technique is built upon a supervised training approach, with a training
step where a decision tree is created to classify points into keypoints and non-
keypoints. There are three steps: the feature vector extraction and fusion, the
model training and the non-maximal suppression.

Feature Extraction. The first step of the detection process creates a feature
vector for every keypoint candidate. Figure 1 depicts the feature vector construc-
tion. Given an image pixel coordinates c ∈ R

2, we consider its vicinity as the
image patches that contain the circles centred at c with radii varying in r ∈ S.
Each circle is defined by the function B(r, c) which we denote as Br(c):

Br(c) : R3 → {p1,p2, ...,pn}. (1)

The Br(c) function outputs all pixels pi lying in the Bresenham’s circle with
radius equals to r. Thus, the vicinity considered consists of the concatenation of
all vectors Br(c),∀r ∈ S. We define the vicinity of a central pixel c as:

Vc = {Br1(c), Br2(c), . . . , Br|S|(c)}, ∀ri ∈ S. (2)

Whereas in this work, we used S = {3, 5, 7, 9}. Thus, we compute visual
features using fast intensity difference tests [12]. For each pixel p ∈ Vc and a
given threshold tv we evaluate:

τv(c,pi) =

⎧
⎪⎨
⎪⎩

2 if I(pi) − I(c) < −tv

1 if I(pi) − I(c) ≥ tv

0 otherwise.
(3)

We embed geometric cues into the feature vector computed by the function τv
to increase robustness both to illumination changes and to the lack of texture in
the scenes. The geometric feature extraction τg(.) function is based on two invari-
ant geometric measurements: i) the normal displacement, and ii) the surface’s
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convexity. The normal displacement test evaluates if the dot product between
the normals N(c) and N(xi) is smaller than a given displacement threshold tg,
and the convexity test computes the local curvature indicator, κ as:

κ(c,pi) = 〈P (c) − P (pi), N(c) − N(pi)〉, (4)

where 〈.〉 is the dot product, and P (c) is the 3D spatial point associated with
pixel c and depth D(c). The κ function captures the convexity of geometric
features and also unambiguously characterizes the dot product between surface
normals. Thus, the geometrical features are computed as:

τg(c,pi) =

⎧
⎪⎨
⎪⎩

2 if 〈N(pi), N(c)〉 < tg ∧ κ(c,pi) > 0
1 if 〈N(pi), N(c)〉 < tg ∧ κ(c,pi) < 0
0 otherwise.

(5)

Scale invariance is endowed to our detector by using the geometry information
available in the depth map to weigh the influence of each circle. We analyze the
geometrical vicinity encompassed by each Bresenham’s circle Br(c) in the 3D
scene by computing the minimum Euclidean distance:

dr = min
pi

|P (c) − P (pi)|,∀pi ∈ Br(c), (6)

where P (c) and P (pi) are the 3D points corresponding to the central pixel c
and the pixels composing the Bresenham’s circle pi ∈ Br(c). The distance dr is
weighted by the Gaussian

wr = exp
(

− (μ − dr)2

σ2

)
(7)

in order to penalize circles which its estimated radii in the 3D scene are distant
from μ = 0.02 meters. We then build a feature vector from a Bresenham’s circle
of radius r centered at c as a row vector vr =

[
f1 . . . f|Br(c)|

]
where:

fi(c, r) = wr ∗ (τv(c,pi,r) + τg(c,pi,r)), (8)

where pi,r is the ith element of the Bresenham’s circle Br(c). The final feature
vector F is generated by concatenating all the feature vectors vr as, in this work:

F =
[
v3 v5 v7 v9

]
. (9)

Decision Tree Training. In the training step, we create a keypoint model by
training a decision tree using the ID3 algorithm [2]. We generated a training set
by extracting a total of 160, 144 points from the RGB-D Berkeley 3-D Object
Dataset (B3DO) [6]. This dataset is composed of a large number of real world
scenes with several different objects, geometry and visual data.

We used 66% points to train, and the remaining points (54, 449) to test the
quality of the final decision tree. Both sets were equally divided into positive and
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negative samples. In order to define positive labels for keypoints, we computed
the curvature of several, manually selected, keypoints. We have found the value
of 0.09 based on the average of these curvatures. Thus, all points with curvature
larger than 0.09 were labeled as a positive sample for the keypoint class. To take
into account texture features, we added keypoints detected by ORB as positive
examples. The classification accuracy obtained in the test was equal to 0.91.

Non-maximal Suppression. In the last step of our methodology we perform
a non-maximal suppression. We compute a response value Rp(c, r) based on the
feature values of each circle. For each radius r ∈ S,

Rp(c, r) = max
X∈{Xrc1 ,Xrc2}

1
|X|

∑
xi∈X

Dv(c,xi) + λDg(c,xi), (10)

where Dv(c,x) = |I(x) − I(c)| gives the visual response and Dg(c,x) = 1 −
〈N(x), N(c)〉 provides the geometrical response. The factor λ is used to define
the contribution of the geometrical information in the final response. The set
Xrck = {pi : pi ∈ Br(c) ∧ (τv(c,pi) = k ∨ τg(c,pi) = k)} is composed of
all pixels which bin has value k.

We rank the maximal points by using both absolute difference between inten-
sities and normal surface angles for the pixels in the contiguous set of the Bre-
senham’s circle. The final response of each candidate is defined as the maximum
response among all radii:

Rf(c) = max
r

Rp(c, r),∀r ∈ {3, 5, 7, 9}. (11)

We divide the image into smaller patches with size w×w (in this work, w = 5)
and for each patch we select the pixel with the larger response, Equation 11.

3 Experiments

We compared our approach against standard detectors for two-dimensional
images: SIFT [7] and ORB [13], for geometric data HARRIS3D [14] (a 3D version
of Harris corner detector), SIFT3D 1, and the HARRIS6D [14]. The HARRIS6D
detector, similarly to our methodology, uses both visual and geometrical data to
detect keypoints. In our experiments, we used the RGB-D SLAM Dataset [16].
This dataset contains several RGB-D data of real world sequences and for each
acquisition it provides the ground truth for the camera pose. For our experi-
ments, we used the sequences containing only translation motions (freiburg2 xyz )
and rotation of the camera (freiburg2 rpy).

To evaluate each detector, we applied the repeatability score, which measures
the ability of a detector to find the same set of keypoints on images acquired of
a scene from different view points or different conditions. For details the reader
is referred to [9]. In our experiments, we used the parameter ε = 0.6.

1 available in the Point Cloud Library: www.pointclouds.org

www.pointclouds.org
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Fig. 2. The poor illumination experiment. We captured a total of 104 images of a
cluttered room starting at dusk (on the right three examples of the used images). One
can notice that KVD is the only method which uses visual information, that remains
providing reliable keypoints once the intensity image is nearly lost (C image).

For the parameter settings, to choose a value for tg, we ran the learning and
testing for 15, 30 and 60 degrees using the RGB-D Berkeley 3-D Object Dataset
(B3DO) [6]. We used a fraction of the dataset for validation purposes and the
remaining part for training, the large accuracy was returned by using tg = 15.

Robustness. We performed experiments to evaluate the repeatability for
images acquired with changes in translation, rotation, scale, and illumination.
We used offsets ranging from 0.03 meters to 0.75 meters (horizontal direction)
for translational tests and for scale tests we select a set of frames with the cam-
era moving away from the scene up to 0.35 meters. In the illumination change
experiments we captured a total of 104 images of a cluttered room starting at
dusk (partial illumination) at an interval of one minute between acquisitions.
Figure 2 shows three frames of this sequence.

Figure 3 shows the results of the repeatability tests. Our detector provides
the highest repeatability rate when there are large translational movements (0.8
meters) and large angular rotations (50 degrees). Also in Figure 3 (d),(e) we can
see that only KVD, HARRIS6D and HARRIS3D were still capable to provide
keypoints from heavily corrupted images under illumination changes and noise,
and KVD presented the highest repeatability rate. It is worth noticing that in
the illumination change experiment (Figure 2), KVD was the only method which
uses visual information that was capable of still provide keypoints after the visual
information vanishes (about image 80).

To perform brightness changes, we gradually increased the value of each pixel
by adding an increasingly higher constant β using images from freiburg2 xyz
sequence. To test the robustness to image noise, we used a Gaussian additive
noise with zero mean. In Figure 3 one may readily see that our detector presents
the largest repeatability rate, thanks to the visual and geometric information
fusion of our detection methodology.
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Fig. 3. Results for the repeatability experiment. (a) Horizontal translation camera
motion; (b) Rotational movement around the yaw axis; (c) Scale changing; (d) Bright-
ness changing and (e) Gaussian Noise. Our method (KVD) is represented by the blue
curve. One can readily see that KVD, among all methods which uses visual informa-
tion (including HARRIS6D), is the one which continues to identify the most reliable
keypoints even when strongly corrupted intensity images are given as input.
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Time Performance. The time experiments ran on an Intel Core i7 3.5GHz
(using only one core). Time measurements were averaged over 900 runs and
over all keypoints. Comparing to other detectors which use geometrical data,
KVD was the fastest approach, processing in the order of 106 pixels per second,
taking 0.06 seconds to process an image of size 640 × 480 pixels, while its main
competitor (HARRIS 6D) takes 0.08 seconds to images of the same size.

4 Conclusion

In this paper we proposed KVD, a novel keypoint detector capable of working
with texture and geometrical data. A comparative analysis in terms of robustness
to affine transformations was conducted against the standard detectors in the
literature for appearance and geometric information and our detector presented
the higher repeatability rate.
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Abstract. Multithresholding consists of segmenting a histogram of
image in classes by using thresholds. Many researchers avoid the expo-
nential space problem of possible thresholds combinations of a given cri-
teria function. In this work, we present a polynomial easy-to-implement
dynamic programming algorithm to find the exact optimum thresholds of
three well-known criteria functions for multithresholding: the maximum
of histogram between class-variance (Otsu’s method); the maximum his-
togram entropy (Kapur et al.’s method), and minimum histogram error
(Kittler and Illingworth’s method). The algorithm, that has been used to
optimum quantization, has O((K − 1)L2) time complexity, where K and
L stand for the number of desired classes and the number of gray levels
in the image, respectively. Experiments showed that the exact optimum
thresholds for gray-level image segmentation can be found in less than 160
milliseconds in a Pentium 4-2GHz, in whatever the number of classes.
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1 Introduction

Threshold selection is the simpler image segmentation method [6]. This method
consists of selecting a threshold value in a histogram of image, which separates
the objects from the background. In many applications of image processing and
pattern recognition, the gray-level of pixels belonging to the object are substan-
titally different from those belonging to the background. Hundreds works were
developed based on this assumption [6].

A class of threshold selection methods consists of finding the threshold value
on histogram which optimizes a given function. In the following, we cite three
well-known methods of this class. Otsu [5] proposed to maximize the separability
of the resultant thresholded histogram classes, by using the between-class vari-
ance criterion associated with them. Kapur et al.[1] proposed a method based on
information theory concepts to find a suitable threshold set such that the max-
imum entropy can be obtained by the segmented histogram classes. Based on
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assumption that the probability distributions of gray-level objects in an image
are Gaussianly distributed, Kittler and Illingworth [2] proposed the minimum
error thresholding method. The optimum threshold is the one which minimizes
the error rate of the resultant thresholded histogram classes with the desired
mixtures of Gaussian distributions. In the remainder of this work, due to space
constrain and simplicity, we will only refer to Otsu, Kapur and Kittler methods.

Multiple threshold selection, or simply multithresholding, consisting of seg-
menting a histogram of image in classes by using thresholds. Several threshold
selection methods can be directly extended to multiple threshold selection, such
as the three ones cited earlier. Nevertheless finding the optimum thresholds for
these extended multithresholding methods become computationally very expen-
sive. One need to test all possible thresholds combinations, which increase expo-
nentially as the number of desired classes increase. For instance, to find the seven
optimum thresholds (which segment an image in eight classes) of a given criteria
function of an image with 256 gray levels, we should test 256!/(256−7)! possible
thresholds combinations. If we take a computer that can test 1 billion of thresh-
old combinations by second, it shall take about two years to test all possible
combinations. In Liao et al. [3] and Wu et al. [7]’s works, the time complexity
order of the search algorithm to find the optimum thresholds for Otsu, Kapur
and Kittler methods was decreased. However it still continue exponential.

In this paper, we present a polynomial easy-to-implement dynamic program-
ming algorithm to find the optimum thresholds for these methods, which has
O((K − 1)L2) time complexity, where K and L stand for the number of desired
classes and the number of gray levels in the image, respectively. Note that there
are in the literature faster algorithms than ours [4], O(KL), but their implemen-
tation are not straightforward.

The rest of this paper is organized as follows. Basic definitions are pre-
sented in Section 2. The criteria functions of three multithresholding methods are
described in Section 3. Section 4 presents the polynomial dynamic programming
(DP) algorithm and shows an implementation for it. Experiments concerning the
run time of the algorithm for the three methods and a segmentation example
are shown in Section 5. Finally, conclusions are pointed out in Section 6.

2 Basic Definitions

2.1 Images and Histograms

Let N denote the set of natural numbers. Let X be a subset of points (x, y) ∈ N
2,

such that 0 ≤ x < m, and 0 ≤ y < n, where m and n denote the dimensions of
X. Let |Y | denote the the cardinality of a set Y ⊆ N

2. Note that |X| = m × n.
A mapping I, from X to ZL, where ZL = {0, ..., L − 1}, is called an image. In
applications, L is typically 256. For a point (x, y) ∈ X, l = I(x, y) is called the
level of the point (x, y) on I.

Let Xl be a subset of X, such that for all (x, y) ∈ Xl ⊆ X, we have I(x, y) = l.
Let H(l) be the absolute frequency of level l in image I, i.e. H(l) = |Xl|. Note
that H(l) = 0 if there is no (x, y) ∈ X such that I(x, y) = l. Let Pl denote the
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probability of one pixel having the gray-level l, i.e. Pl = H(l)/(m × n). Note
that

∑L−1
l=0 H(l) = m × n, and

∑L−1
l=0 Pl = 1. The mapping H from the levels of

image I to its absolute frequency levels, i.e. H : ZL → N, is called the histogram
of image I.

2.2 Thresholding

Usually a multithresholding histogram-based method uses K − 1 thresholds (i.e.
T = {t0, t1, ..., tK−2}) to partition the histogram of an image in K classes. That
is, the histogram is partitioned in classes Ck = {H(i)|sk ≤ i ≤ fk} with 0 ≤
k < K, where sk and fk stand for the starting and the final histogram class
boundaries, respectively. They are defined as: sk = 0 if k = 0, and sk = tk−1 + 1
otherwise; fk = L − 1 if k = K − 1, and fk = tk otherwise.

2.3 Histogram Statistics

Now let us present definitions that will help us to describe the thresholding
methods and the DP algorithm. Let I be an image with L levels and let H be
the corresponding histogram. We define the ath-order histogram statistics of the
histogram class H(p, q) as

Sa(p, q) =
∑q

l=p
la × H(l). (1)

By using this definition, let us define the cumulative probability and the
mean of the histogram class H(p, q) as

ω(p, q) =S0(p, q)/(m × n), (2)

μ(p, q) =S1(p, q)/S0(p, q), (3)

respectively.
Let us introduce one more definition, which will help us to simplify fur-

ther explanations, the ath-order histogram statistics error of the histogram class
H(p, q) regarding to the level b, i.e.

Ea(p, q, b) =
∑q

l=p
|l − b|a × H(l). (4)

Finally, we set the H(p, q) histogram class variance as

σ2(p, q) =
(∑q

l=p
|l − μ(p, q)|2 × Pl

)
/ω(p, q)

= E2(p, q, μ(p, q))/S0(p, q). (5)

Equations 1 and 4 (and consequently the other ones defined in this section)
can be computed with O(L2) complexity for all possible 0 ≤ p ≤ q < L if we use
a recursive definition as

α(p, q) =

{
β if p = q,

β + α(p, q − 1) otherwise.
. (6)

where β stands for the last computation at the equation, namely, when l = q.
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3 Thresholding Criterion Functions

In this section, we describe three well-known criteria functions (ψ(T )) of multi-
thresholding methods for gray-level image segmentation: (ψBCV (T )) the between
class variance [5], (ψEnt(T )) the maximum entropy [1], and (ψME(T )) the min-
imum error [2] criteria. These functions can be represented and decomposed as
histogram class factors, i.e. ϕ(sk, fk).

The optimum threshold set T ∗ is obtained as the argument value which
optimizes a given criteria function, i.e.

T ∗ = arg opt
0≤T<L

ψ(T ). (7)

where opt is a extremum operator depending on criteria function. That is, max
for Otsu and Kittler methods, and min for Kapur method.

3.1 The Between-Class Variance

In Otsu’s work [5], three possible discriminant criterion functions based on ratios
of the within-class, the between-class and that of total variance are presented. All
of these are equivalent to each other for the evaluation of the optimum threshold-
ing process. Otsu suggested to maximize the between-class variance because it is
the simplest one for computation. The between-class variance criteria function
can be computed as

ψBCV (T ) =
∑K−1

k=0
ϕ(sk, fk), (8)

where the histogram class factor ϕ(sk, fk) is

ϕ(sk, fk) = ω(sk, fk)[μ(sk, fk) − μ(0, L − 1)]2. (9)

3.2 The Maximum Entropy

In the maximum entropy-based thresholding, the optimum threshold is obtained
by applying information theory. That is, the optimal threshold set (TEnt) is the
one that maximizing the information content of the histogram image. As derived
from Kapur et al.’s work [1], the original gray-level distribution of the image is
divided into a number of classes of probability distributions in the multilevel
thresholding case. Then the entropies associated with these distributions are
computed as

ϕ(sk, fk) = −
fk∑

l=sk

Pl

ω(sk, fk)
log

Pl

ω(sk, fk)
. (10)

And, then the criteria function is defined as

ψEnt(T ) =
∑K−1

k=0
ϕ(sk, fk). (11)
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3.3 The Minimum Error

In the concept of minimum error thresholding, the gray-level histogram of the
image is thought of as an estimate of the probability density function p(l) of
the mixture distribution, comprising the gray-level of several classes (i.e. objects
and background). It is assumed that each of these class distributions p(l|k) of
the mixture follows a normal distribution, with a class standard deviation of σk,
a class mean of μk, and a priori probability of ωk; hence, the histogram can be
approximated as:

p(l) =
K−1∑
k=0

ω(sk, fk)
σ2(sk, fk)

√
2π

exp−(l−μ(sk,fk))
2/2σ2(sk,fk) (12)

The optimum threshold (TME) can be determined by solving an resultant
quadratic equation with respect to l [2]. However, the parameters ω(sk, fk),
μ(sk, fk), and σ2(sk, fk) of the mixture density function p(l) associated with
the image are unknown. In order to overcome the difficulties of estimating the
unknown parameters, Kittler and Illingworth [2] presented a criterion function
ψME(T ), which is given by:

ψME(T ) = 1 + 2
∑K−1

k=0
ϕ(sk, fk) (13)

where
ϕ(sk, fk) = ω(sk, fk)[log (σ(sk, fk)) + log (ω(sk, fk))] (14)

4 Dynamic Programming Algorithm

Thanks to decomposition of the criteria functions in histogram class factors
ϕ(sk, fk) among other mathematical properties we can apply the polynomial
DP algorithm to find the optimum thresholds for image segmentation which is
described in this section. A proof of correctness of the algorithm is not show due
to space constrain.

Let ψ(p, q) be an optimum criteria function conceived on the q +1-first gray-
levels of the histogram of image when segmented by p-first optimum thresholds
(t0, t1, ..., tp−1), which can be written as the sum of the histogram class factors
ϕ’s, i.e.

ψ(p, q) =
∑p

k=0
ϕ(sk, fp,q

k ), (15)

where fp,q
k = q if k = p, and fp,q

k = tk otherwise.
Let us define ψ(p, q) as a recurrence equation as follows. Initially, we are

interested to know the optimum criteria conceived on the q +1-first gray-level of
the histogram of image when no threshold is used to segmented the histogram,
i.e. ψ(0, q). It can be directly computed as the histogram class factor ϕ(0, q), i.e

ψ(0, q) = ϕ(0, q) (16)
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Algorithm 1. Computing ψ(K − 1, L − 1)
Data: ϕ(p, q) - histogram class contribution
Result: ψ - criteria function
Result: DPT - optimum thresholds matrix

1 for q = 0 . . . L − 1 do ψ(0, q) ← ϕ(0, q) ;
2 for p = 1 . . . K − 1 do
3 ψ(p, p) ← ψ(p − 1, p − 1) + ϕ(p, p) ;
4 DPT (p, p) ← p − 1 ;
5 for q = p + 1 . . . L − K + p do
6 ψ(p, q) ← −∞ ;
7 for l = p − 1 . . . q − 1 do
8 if (ψ(p, q) > ψ(p − 1, l) + ϕ(l + 1, q)) then
9 ψ(p, q) ← ψ(p − 1, l) + ϕ(l + 1, q) ;

10 DPT (p, q) ← l ;

Once we have the solution computed up to the level p−1, i.e. ψ(p−1, q), for
all possible q, we are interested in computing the ψ(p, q). It can be computed as
the optimum (e.g. most or least depending on criteria function) term composed
by the optimum criteria function conceived on the l − 1-first gray-levels of the
histogram of image being segmented by p − 1 thresholds (ψ(p − 1, l)) and the
histogram class factor ϕ(l + 1, q), i.e.

ψ(p, q) = opt
p−1≤l<q

(ψ(p − 1, l) + ϕ(l + 1, q)) (17)

for all p ≤ q, with 0 ≤ p < K, and 0 ≤ q < L, and where opt stands for max or
min depending on criteria function.

To recover the thresholds that yield the optimum criteria function, we have
to store the thresholds obtained from the dynamic programming algorithm, for
future backwards searching, as follows

DPT (p, q) =

{
p − 1, if p = q,

arg optp−1≤l<q (ψ(p − 1, l) + ϕ(l + 1, q)) , otherwise,
(18)

for all p ≤ q, with 0 ≤ p < K, and 0 ≤ q < L − 1. From DPT (K − 1, L − 1) we
can find the K − 1 optimum thresholds, i.e. T ∗ = {t∗0, t

∗
1, ..., t

∗
K−2}, as

t∗n−1 = DPT (n,Xn) (19)

where, Xn = L − 1 if n = K − 1, and Xn = t∗n otherwise.
Algorithm 1 shows an implementation for the dynamic programming algo-

rithm. It is composed of two main loops, where the second one is enchained by
other two loops, which gives the cubic time complexity of the algorithm, i.e.
O((K −1)L2). Note that the Algorithm 1 maximize the criteria function. If min-
imizitation is required (as for Kittler method), we have only to modify two lines.
To use +∞ in line 6, and < in the comparison in line 8.
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Fig. 1. From left to right, the classic lena image (512 × 512 pixels), its segmented
images in eight classes (using seven thresholds) by Otsu (61 87 111 131 148 167 191),
Kapur (60 87 112 136 159 180 202) and Kittler (64 89 115 135 149 163 184) methods,
respectively.
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Fig. 2. Run time curves for Otsu, Kapur, and Kittler methods using lena image
(512x512 pixels), by varing K from 1 up to 256.

5 Experiments

In this section, we show an experiment concerning the run time of the dynamic
programming algorithm. We ran the algorithm using as input the classical lena
image (with 512 × 512 pixels) for the three presented multithrehsolding meth-
ods. Fig. 2 shows the run time curves obtained from each method (using the
DP algorithm) by varying the number of desired classes K from 1 up to 256.
We can observe a significant difference among the response time of Kittler and
Otsu methods regarding to Kapur method. This fact is due to an overhead on
consistency verification of histogram class factors, i.e. ϕ, for Kapur method. By
analyzing the upper-bound O((K −1)L2) and the curves shown in Fig. 2, we can
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say that the polynomial dynamic programming algorithm works (sub)linearly
regarding to the number of classes K. In practice, our algorithm segments an
image with 512 × 512 pixels in less than 160 milliseconds on a machine with
architecture Pentium 4 - 2GHz, in whatever the number of classes.

Fig. 1 shows an example of segmentation: image of lena and its segmentation
in eight (8) classes for Otsu, Kapur and Kittler methods. The optimum thresh-
olds are shown in parenthesis. These images were segmented each one in less
than 50 milliseconds in same architecture described above.

6 Conclusion

In this work, we presented and tested a polynomial algorithm to find the exact
optimum threshold for three well-know methods: Otsu [5], Kapur [1], and Kit-
tler [2]. This algorithm can be used to find the optimum thresholds of several
other multithresholding methods. In a forthcoming work, we will establish the
necessary and sufficient conditions which the criterion of a multithresholding
method must respect to be solved by such polynomial algorithm. As future works,
we want to join to the presented dynamic programming algorithm a divide-and-
conquer strategy. This new algorithm to find the optimum thresholds will have
O(KN log N) time complexity.

Acknowledgments. We thank UFPR, UFMG, FAPEMIG, CAPES, and CNPq for
the support.
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Abstract. This paper presents two new strategies that greatly improve
the execution time of the DA3D Algorithm, a new denoising algorithm
with state-of-the-art results. First, the weight map used in DA3D is
implemented as a quad-tree. This greatly reduces the time needed to
search the minimum weight, greatly reducing the overall computation
time. Second, a simple but effective tiling strategy is shown to work in
order to allow the parallel execution of the algorithm. This allows the
implementation of DA3D in a parallel architecture. Both these improve-
ments do not affect the quality of the output.

Keywords: Image denoising · Quad-tree · Parallel processing

1 Introduction

Image denoising is one of the fundamental image restoration challenges [18]. It
consists in estimating an unknown noiseless image y from a noisy observation
x. We consider the classic image degradation model

y = x + n, (1)

where the observation x is contaminated by an additive white Gaussian noise
n of variance σ2. All denoising methods assume some underlying image regu-
larity. Depending on this assumption they can be divided, among others, into
transform-domain and spatial-domain methods.

Transform domain methods work by shrinking (or thresholding) the coeffi-
cients of some transform domain [7,14,25]. The Wiener filter [28] is one of the
first such methods operating on the Fourier transform. Donoho et al. [5] extended
it to the wavelet domain.

Space-domain methods traditionally use a local notion of regularity with
edge-preserving algorithms such as total variation [24], anisotropic diffusion [19],
or the bilateral filter [27]. Nowadays however spatial-domain methods achieve
remarkable results by exploiting the self-similarities of the image [1]. These
patch-based methods are non-local as they denoise by averaging similar patches
c© Springer International Publishing Switzerland 2015
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in the image. Patch-based denoising has developed into attempts to model the
patch space of an image, or of a set of images. These techniques model the patch
as sparse representations on dictionaries [4,6,15,16,29], using Gaussian Scale
Mixtures models [23,29,30], or with non-parametric approaches by sampling
from a huge database of patches [12,13,17,21].

Current state-of-the-art denoising methods such as BM3D [3] and NL-Bayes
[11] take advantage of both space- and transform-domain approaches. They
group similar image patches and jointly denoise them by collaborative filtering
on a transformed domain. In addition, they proceed by applying two denoising
stages, the second stage using the output of the first one as its guide.

Some recently proposed methods use the result of a different algorithm as
their guide for a new denoising step. Combining for instance, nonlocal principles
with spectral decomposition [26], or BM3D with neural networks [2]. This allows
one to mix different denoising principles, thus yielding high quality results [2,26].

DDID [9] is an iterative algorithm that uses a guide image (from a previ-
ous iteration) to determine spatially uniform regions to which Fourier shrinkage
could be applied without introducing ringing artifacts. Several methods [8,10,20]
use a single step of DDID with a guide image produced by a different algorithm.
This yields much better results than the original DDID. Unfortunately, DDID
has a prohibitive computational cost, as it paradoxically denoises a large patch
to recover a single pixel. Moreover, contrary to other methods, aggregation of
these patches doesn’t improve the results since it introduces blur.

More recently, Data-Adaptive Dual Domain Denoising (DA3D) [22] was pre-
sented to address those issues. By using just a small fraction of the patches, it
avoids unnecessary computations in the uniform areas of the image. Moreover,
DA3D uses a more complex estimation of the image shape to reduce staircasing
artifacts. In order to choose the patches to process, DA3D keeps track of the
partial aggregation weights, and iteratively selects the patch with the smaller
weight. The search for this patch can be expensive, especially on large images.
Moreover, since the choice of a patch depends on the previous ones, there is no
straight-forward method to parallelize this algorithm.

Contribution. This paper proposes an effective method to accelerate the search
step of DA3D, and an approach to run the algorithm in a multi-processor envi-
ronment. With these, DA3D can run in reasonable time even on medium-large
images, making it even more interesting for real-world applications.

In order to accelerate the search step, a quadtree is used to store and update
the minimum value. This decreases the complexity of the search from O(n) to
O(log n), where n is the number of pixels in the image.

To allow the execution of the algorithm on a multi-core architecture, it is
noted that the simple strategy of dividing the images in stripes is effective and
yields the same results than the single-process version of the algorithm.

Section 2 recalls the DA3D algorithm. Section 3 tackles the problems of
tracking the minimum weight and of parallel execution. Section 4 shows some
results and section 5 presents the conclusions.
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2 Data-Adaptive Dual Domain Denoising

This section describes the DA3D algorithm, as presented in [22].
To denoise the area around the pixel p from the noisy image y DA3D extracts

a 64×64 pixel block centered in p (denoted y) and the corresponding block g from
the guide image g. An affine model P (q) = 〈α, q〉 + β of the block is estimated
computing a weighted least squares regression

min
P

∑
[y(q) − P (q)]2 · Kreg(q), (2)

with the constraint P (p) = g(p), where the sum is computed over the domain of
y and Kreg is a bilateral weight function

Kreg(q) = exp

(
−|g(q) − g(p)|2

γrrσ2
− |q − p|2

2σ2
sr

)
, (3)

which selects the parts of the block that gets approximated by P . Once esti-
mated, the local plane P is subtracted from the patch, effectively removing
shades and gradients.

The blocks are processed to eliminate discontinuities that may cause artifacts
in the subsequent frequency-domain denoising. To that end, a bilateral weight
function k is derived from the guide g, to identify the pixels of the block belonging
to the same object as the center p.

k(q) = exp

(
−|g(q) − g(p)|2

γrσ2

)
exp

(
−|q − p|2

2σ2
s

)
. (4)

The first term identifies the pixels belonging to the same structure as p, by
selecting the ones with a similar color in the guide, while the second term removes
the periodization discontinuities associated with the Fourier transform.

The weights in k are then used to modify y and g in order to remove their
discontinuities and to obtain ym and gm (see lines 12-13 of Table 1). In this way
the “relevant” part of the blocks (similar to the central pixel) is retained by k,
and its average value is assigned to the rest. The modified block ym is denoised by
shrinkage of its Fourier coefficients using gm as an oracle (lines 14-18 of Table 1).
Then the “modification” of the patches is reverted and the regression plane P
is added back to the block. The shrinkage assumes that the image y contains
additive white Gaussian noise.

For color images, k is computed by using the Euclidean distance, while the
shrinkage is done independently on each channel of the YUV color space.

Since the denoising remains valid for all pixels in the “relevant” part of
the block, the processed blocks are aggregated to form the final result. The
aggregation weights are the squares of the weights (4).

The image blocks to be processed are selected using a greedy approach.
At each iteration a weight map w with the sum of the aggregation weights
is updated. This weight map permits to identify the pixel in the image with the
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Table 1. Pseudo-code for DA3D. Variables in bold denote whole images, while italics
denote single blocks. Multiplication and division are pixel-wise.

lowest aggregation weight, which will be selected as the center of the next block
to process (line 4 of Table 1). The process iterates until the total weight for each
pixel becomes larger than a threshold τ . The total number of processed blocks
depends on the image complexity. The centers of the effectively processed blocks
are concentrated on edges and details.

The parameters σsr, γrr, σs, γr, γf and τ are specific of the algorithm, and
σ is the standard deviation of the noise.

3 Improvements

3.1 Tracking the Minimum Weight

In the implementation of DA3D the authors select the position with the lowest
aggregation weight in w with a simple linear search. This approach shows its
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limit when the size of the image increases. In fact, for every processed block, the
computation needed to find it is of the order of O(n), with n the number of pixels
of the image. Therefore, under the reasonable assumption that the number of
processed blocks is a fraction of the total (from the original article, between 1%
and 20%), and since the denoising of a block is performed in a bounded time,
the complexity of the algorithm is O(n2). This is peculiar, because the algorithm
appears local in its nature.

We propose to use a quad-tree to keep track of the minimum. The weight
map w is in the leaves of the tree, and every node contains the minimum value
of its four children. This can also be interpreted as a multi-scale version of w,
built using a min filter. The space complexity for this data structure is

logn∑
i=0

n

4i
≤ 4

3
n = O(n) (5)

because every “layer” of the tree is 25% smaller than the previous one.
In order to retrieve the position of the minimum value, one has simply to tra-

verse the tree from the root to the leaf, always choosing one of the children with
the minimum value. This guarantees that the chosen pixel is a global minimum
for w, and has time complexity O(log n).

To update the tree, it suffices to update the appropriate leaves, and then
recompute the minima in the upper nodes until the top. Since the aggregation
is done one patch at a time, it is simple to calculate which nodes need to be
updated, thus avoiding to recompute the values for areas in which w has not
changed. The time complexity for this update is O(k), where k is the number of
pixels of the patch that is aggregated. Since k is constant, the aggregation does
not increase the complexity of the algorithm.

One could be tempted to update the values one by one. Although this could
be simpler to implement, it is slower, having a time complexity of O(k log n).
Using this data structure instead, the total complexity of the algorithm becomes
O(n log n), which allows to denoise bigger images.

3.2 Parallel Processing

Since DA3D selects the patches to denoise in a greedy fashion, it is impossible to
know where the next patch will be prior to the aggregation step of the current
one. This makes parallelization more complex than in other denoising algorithms.

In order to denoise a pixel p, the algorithm uses the other pixels inside a
(64 × 64) window, all the pixels needed to denoise p are at a distance of at most
32. This makes the algorithm local, and allows to solve the problem of parallelism
by just splitting the image in tiles. Each tile can be denoised separately, and then
the results can be combined together.

It is clear that the patches chosen in this way will not correspond exactly
with the patches chosen without parallelism. The main difference can be an over-
sampling of the areas near the edges, since the weights from a neighboring tile are
not taken into account. This could result in a slight overhead in the processing time.
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Fig. 1. Sample images, with noisy and denoised version. It is advised to zoom in
on the digital version for more details. The results of the DA3D with the different
improvements are visually identical.

However, the experiments show that the overhead is negligible, and the results
of the simple and parallel versions of the algorithm are identical from a practical
standpoint. With bigger images, the overlap area becomes smaller, therefore the
factor of acceleration should become even closer to the number of processors.

4 Results

We tested the methods of Section 3 on the test images of Figure 1. We selected
this set to be as varied as possible. Dice contains many smooth areas, Trees is
mainly composed of texture and Maggie is a relatively large image, for which
the improvement due to the quad-tree is more noticeable. On those images, we
tested the DA3D algorithm with the suggested improvements, and we timed the
execution on a dual-core laptop. The results are shown in Table 2.

The improvements do not change the output image significantly. The com-
parison of PSNR is shown in Table 3. Notice how the value of PSNR does not
change among the different versions of the algorithm.

5 Conclusion

This paper presented two new strategies to improve the execution time of the
DA3D Algorithm. First, a quad-tree structure was used as the weight map w.
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Table 2. Runtimes for different versions of DA3D. Baseline represents the time of the
original version. Notice how the improvement of the quad-tree is more prominent on
bigger images.

Image Baseline Quad-Tree Parallel (2 cpu) Tree + Parallel

Dice 2.12s 1.51s 1.12s 0.92s
Trees 19.10s 12.78s 10.68s 8.56s
Maggie 28.05s 8.26s 15.03 5.36

Table 3. PSNR values for different versions of DA3D, also compared with Non-local
Bayes[11].

Image NL-Bayes Baseline Quad-Tree Parallel Tree + Par.

Dice 36.17 dB 37.90 dB 37.90 dB 37.90 dB 37.90 dB
Trees 23.49 dB 23.71 dB 23.71 dB 23.71 dB 23.71 dB
Maggie 33.48 dB 34.54 dB 34.54 dB 34.54 dB 34.54 dB

This greatly reduces the time needed to search for the minimum weight, without
affecting the time needed to update the weight map in a significant way. Then,
a tiling strategy is shown to work to allow the parallelization of the code with
minimum overhead.
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Abstract. We propose a Fast Marching based implementation for com-
puting sub-Riemanninan (SR) geodesics in the roto-translation group
SE(2), with a metric depending on a cost induced by the image data. The
key ingredient is a Riemannian approximation of the SR-metric. Then,
a state of the art Fast Marching solver that is able to deal with extreme
anisotropies is used to compute a SR-distance map as the solution of a
corresponding eikonal equation. Subsequent backtracking on the distance
map gives the geodesics. To validate the method, we consider the uni-
form cost case in which exact formulas for SR-geodesics are known and
we show remarkable accuracy of the numerically computed SR-spheres.
We also show a dramatic decrease in computational time with respect
to a previous PDE-based iterative approach. Regarding image analysis
applications, we show the potential of considering these data adaptive
geodesics for a fully automated retinal vessel tree segmentation.

Keywords: Roto-translation group · Sub-riemannian · Fast marching

1 Introduction

In this article we study a curve optimization problem in the space of coupled
positions and orientations R

2×S1, which we identify with roto-translation group
SE(2). We aim to compute the shortest curve γ(t) = (x(t), y(t), θ(t)) ∈ SE(2)
that connects 2 points γ(0) = (x0, y0, θ0) and γ(L) = (x1, y1, θ1) with the restric-
tion that the curve is ”lifted” from a planar curve in the sense that the third
variable θ is given by θ(t) = arg(ẋ(t)+i ẏ(t)), see Fig. 1. This restriction imposes
a so-called sub-Riemannian (through the text we denote sub-Riemannian as SR)

G. Sanguinetti—The research leading to the results of this article has received fund-
ing from the European Research Council under the (FP7/2007-2014-)ERC grant
ag. no. 335555 and from (FP7-PEOPLE-2013-ITN)EU Marie-Curie ag. no. 607643.

c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 366–374, 2015.
DOI: 10.1007/978-3-319-25751-8 44



Sub-Riemannian Fast Marching in SE(2) 367

metric that constrains the tangent vectors to the curve to be contained in a sub-
space of the tangent space at every point. This subspace is a plane, which differs
from point to point, and is the set of all possible tangents to curves in SE(2) that
are lifted from smooth planar curves. A SR-metric is a degenerated Riemannian
metric in which one direction, the one perpendicular to the path in this case, is
prohibited (i.e. it has infinite cost). On top of the SR-metric, we also consider
a smooth external cost, which weights the metric tensor in every location and
allows for data-adaptivity.

Fig. 1. Left: the sub-Riemannian problem in SE(2) can be identified with that of
a car with two controls (giving gas and steering the wheel). Center: the paths are
“lifted” into curves in SE(2) = R

2×S1 with tangent vectors constrained to the plane
spanned by the vector fields X1 and X2 (eq. (1)) associated with the controls. Right:
the SR-spheres (for t = 2, 4 and 6) obtained via the FM-LBR method.

Essentially, the SR-problem in SE(2) is that of a car that can go forward,
backward and rotate (a so-called Reeds-Shepp car) so the possible states of the
car form a 3D manifold given by the position (x, y) and the orientation θ of the
car. Then, admissible trajectories of the car are parametrized by only 2 control
variables associated to the car moving along a straight line (giving gas) and to a
change of direction (turning the steering wheel). The fact that the car cannot step
aside infinitesimally imposes the SR-geometry. Finally, the curve optimization
problem is to find among all possible trajectories between two given states, the
one with minimal SR-length.

In image analysis the SR-geodesics in SE(2) have been proposed in [4] as
candidates for completion of occluded contours. Here, the geometrical structure
is used as a model for the functional architecture of the primary visual cortex.
This model has proven to be valuable in numerous applications [3–6], and it
becomes powerful when combined with the orientation score theory [6] that
allows for an invertible stable transformation between 2D images and functions
on the SE(2) group. The main advantage of considering this space of positions
and orientations is that intersecting curves are automatically disentangled, and
therefore the processing in the extended domain naturally deals with complex
structures such as crossing.

Sub-Riemannian geodesics in the uniform cost case (the same cost for all
the SE(2) elements) were studied by several authors (e.g. [5,12]). Recently, a
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wavefront propagation method for computing SR-geodesics that also deals with
the non-uniform cost case has been proposed in [1]. This method is an exten-
sion to the SR-case of a classical PDE-approach for computing cost-adaptive
geodesics used in computer vision, where the metric tensor is induced by the
image itself. The main idea is to consider propagation of equidistant surfaces
described by level sets of the viscosity solution of an eikonal equation, while
subsequent backtracking gives the geodesics. In order to solve the eikonal equa-
tion, the authors rely on a computationally expensive iterative approach based
on a left-invariant finite-difference discretization of the PDE combined with a
suitable upwind scheme.

Here, again in the spirit of computer vision methods, we aim to compute the
SR-distance map using a Fast Marching method [13]. This technique, closely
related to Dijkstra’s method for computing the shortest paths on networks,
allows for a significant speed up in the computation of the eikonal equation’s vis-
cosity solution. The main difficulty in our case is that classical solvers are unable
to deal with the extreme (degenerated) anisotropy of the SR-metric. Recently,
a modification of the Fast Marching method using lattice basis reduction (FM-
LBR) that solves this problem was introduced in [9] (code available at https://
github.com/Mirebeau/ITKFM). Then, the purpose of this paper is to show how
the SR-curve optimization problem can be numerically solved using the FM-
LBR method. The key aspects to consider are a Riemannian relaxation of the
SR-problem and expressing the resulting metric tensor as a matrix-induced Rie-
mannian metric in a fixed Cartesian frame. We develop these ideas in the Theory
section. Then, two experiments are presented. The first one considers the uni-
form cost case (C = 1) and shows that the FM-LBR based method presented
here outperforms the iterative implementation in [1] in terms of CPU time,
while keeping a similar accuracy. The advantages of considering data-adaptive
SR-geodesics for extracting blood vessels in retinal images are illustrated in the
second experiment.

2 Theory

Problem Formulation. Let g = (x, y, θ) be an element of SE(2) = R
2
�S1.

A natural moving frame of reference in SE(2) is described by the left-invariant
vector fields {X1,X2,X3} spanning the tangent space at each element g:

X1 = cos θ∂x + sin θ∂y, X2 = ∂θ, X3 = − sin θ∂x + cos θ∂y. (1)

The tangents γ̇(t) along curves γ(t) = (x(t), y(t), θ(t)) ∈ SE(2) can be written
as γ̇(t) =

∑3
i=1 ui(t) Xi|γ(t). Only the curves with u3 = 0 are liftings of planar

curves (see fig. 1). Then, the tangents to curves that are liftings of planar curves
are expressed as γ̇(t) = u1(t) X1|γ(t) + u2(t) X2|γ(t) and they span the so-called
distribution Δ = span {X1,X2}. Now, the triplet (SE(2),Δ,G0) defines a sub-
Riemannian manifold with inner product G0 given by:

G0(γ̇, γ̇) = C(γ)2
(
β2|ẋ cos θ+ẏ sin θ|2 + |θ̇|2

)
. (2)

https://github.com/Mirebeau/ITKFM
https://github.com/Mirebeau/ITKFM
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In view of the car example (see Fig. 1), the parameter β > 0 balances between
the cost of giving gas (the X1 direction) and the turning of the wheel (the X2

direction). A smooth function C : SE(2) → [δ, 1], δ > 0 is the given external cost.
In order to keep the notation sober during this paper, we do not indicate the
dependence of G0 on the cost C nor that it also depends on the curve γ. Note that
the subindex 0 in the metric tensor recalls the SR-structure imposed by allowing
null displacement in the X3 direction (i.e. infinite cost for the car to move aside).
This choice of notation will become clear later in the text. Now, optimal paths γ
of the car in our extended position orientation space are solutions of the problem:

W (g) = d0(g, e) = min

⎧
⎨
⎩

T∫

0

‖γ̇(t)‖0 dt

∣∣∣∣∣∣
γ̇ ∈ Δ, γ(0) = e, γ(T ) = g, T ≥ 0

⎫
⎬
⎭ (3)

where e = (0, 0, 0) is the origin, where ‖γ̇(t)‖0 =
√

G0(γ̇(t), γ̇(t)) is the SR-norm
and d0 is the SR-distance on SE(2).

Riemannian Approximation. It is possible to obtain a Riemannian approxi-
mation of the SR-problem by expanding the metric tensor in eq. (2) to:

Gε(γ̇, γ̇) = G0(γ̇, γ̇) + ε−2C(γ)2β2|ẋ sin θ−ẏ cos θ|2, (4)

where ε determines the amount of anisotropy between X3 and Δ. This definition
bridges the SR-case, obtained at the limit ε ↓ 0, with the full Riemannian metric
tensor when ε = 1 (isotropic in the spatial directions X1 and X3). Actually, it
is easy to verify that if C = 1 and β = ε = 1, then G1(γ̇, γ̇) = |ẋ|2 + |ẏ|2 + |θ̇|2.
Also, by replacing G0 with Gε in eq. (3) we can construct a Riemannian norm
‖ · ‖ε and a distance dε satisfying lim

ε↓0
‖ · ‖ε = ‖ · ‖0 and lim

ε↓0
dε = d0.

Fig. 2. Each ellipsoid represents the Tissot’s indicatrix of the metric Gε at different
elements g ∈ SE(2) (for the case C(g)=1 and β=1). The parameter ε in eq. (4) bridges
the Riemannian case with the SR-one. When ε = 1 each direction has the same cost.
At the limit ε ↓ 0, the direction X3 has infinite cost and the distribution Δ appears.

Solution Via the Eikonal Equation. Now we can present the eikonal system
that solves the problem (3) by computing the distance map W (g) as proved in [1].
Following [4], let us introduce some differential operators that will simplify the
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notation of the remaining equations. Let U be a smooth function U : SE(2) → R.
The Riemannian gradient ∇ε, computed as the inverse of the metric tensor Gε

acting on the derivative, is given by:

∇εU := G−1
ε dU = C−2β−2(X1U)X1 + C−2(X2U)X2 + ε2C−2β−2(X3U)X3. (5)

Then, the norm of the gradient ∇ε is given by:

‖∇εU‖ε =
√

C−2β−2|X1U |2 + C−2|X2U |2 + ε2C−2β−2|X3U |2. (6)

Thus, the eikonal system that characterizes the propagation of equidistant sur-
faces reads as: {‖∇εW (g)‖ε = 1, if g �= e,

W (e) = 0.
(7)

When ε ↓ 0 this system becomes the SR-eikonal system in [1, eq.3] where it was
proved that the unique viscosity solution is indeed the geodesic distance map
from the origin W (g) = dε(g, e). Then, SR-geodesics are the solutions γb(t) of
the following ODE system for backtracking:

{
γ̇b(t) = −∇ε(W (γb(t))), t ∈ [0, T ]
γb(0) = g.

(8)

The Metric Matrix-Representation in the Cartesian Frame. A symmet-
ric matrix Mε representing the anisotropic metric in the frame {∂x, ∂y, ∂θ} can
be obtained by a basis transformation from the varying frame {X1,X2,X3} (see
[4, Sec.2.6]):

Mε =

⎛
⎝

cos θ 0 − sin θ
sin θ 0 cos θ

0 1 0

⎞
⎠

⎛
⎝

C2β2 0 0
0 C2 0
0 0 ε−2C2β2

⎞
⎠

⎛
⎝

cos θ 0 − sin θ
sin θ 0 cos θ

0 1 0

⎞
⎠

T

. (9)

Here the diagonal matrix in the middle encodes the anisotropy between the Xi

directions while the other 2 rotation matrices are the basis transformation. Note
that the columns are the coordinates of the varying frame in the fixed frame,
e.g. X1 = cos θ∂x + sin θ∂y + 0∂θ. Then, the metric tensor can be written as
Gε(γ̇, γ̇) = γ̇(t)Mεγ̇(t) , with γ̇(t) = (ẋ(t), ẏ(t), θ̇(t)). Using this convention, the
eikonal system (7) in the fixed frame can be expressed as:

{∇T W (g)M−1
ε ∇W (g) = 1, if g �= e,

W (e) = 0,
(10)

where ∇ = (∂x, ∂y, ∂θ)T is the usual Euclidean gradient. The same holds for the
backtracking equation (8) which writes:

{
γ̇b(t) = −M−1

ε ∇W (γb(t)), t ∈ [0, T ]
γb(0) = g.

(11)



Sub-Riemannian Fast Marching in SE(2) 371

Note that when approaching the SR-case, the lim
ε↓0

Mε does not exist but the

lim
ε↓0

M−1
ε is well defined in Eq. (11).

Anisotropic Fast Marching. We can now immediately identify Eq. (10) with
[9, eq. 0.1] and then solve the eikonal system via the FM-LBR method. Our
empirical tests show that ε = 0.1, which gives an anisotropy ratio κ = 0.01 (see
[9, eq. 0.5]), is already a good approximation of the SR-case and is the value
used in the following experiments.

3 Experiments and Applications
Validation Via Comparison in Uniform Cost Case. The exact solutions
of the SR-geodesic problem for the case C = 1 are known (see [12] for optimal
synthesis of the problem). Therefore, and similar to what is done in [1], we
consider this case as our golden standard. Here, we want to compare both the
computational time and the accuracy achieved in the calculation of the discrete
SR-distance map W (g), which is the solution of the eikonal system (7) when
ε ↓ 0.

Let us set β = 1 and consider a grid Gs = {(xi, yj , θk) ∈ SE(2)} with uniform
step size s, where xi = is, yj = js, θk = ks, the indices i, j, k ∈ Z such that
|xi| ≤ 2π, |yj | ≤ 2π and −π+s ≤ θk ≤ π. Then we compute the discrete geodesic
distance map W (g) on Gs using the iterative method in [1] and the FM-LBR. In
order to measure the accuracy of the achieved solutions we follow the method
explained in detail in [1]. There, by solving the initial value problem from the
origin e, a set of arc length parametrized SR-geodesics is computed such that
SR-spheres of radius t are densely sampled. Then, the endpoints g = (x, y, θ) of
each geodesic is stored in a list together with its length t. Finally, we define the
max relative error as E∞(t) = max(|W (g) − t|/t) where the max is taken over
all the endpoints g and where the value of W (g) is obtained by bi-linearly inter-
polating the numerical solutions of eq. (7) computed on the grid Gs. The results
and comparisons are presented in Fig. 3. Here we solved the eikonal equation in
increasingly finer grids Gs obtained by setting the step size s = π/n, n ∈ N

+.
Note that the size of Gs is then (2n+1)(2n+1)(n−1). The graph in Fig. 3(left)
shows the comparison of the accuracy achieved in the computation of the SR-
sphere of radius t = 4 when n increases. The behaviour for SR-spheres of dif-
ferent radius is similar. The CPU time is compared in Fig. 3(center). The 3rd
plot illustrates the method for computing the accuracy. The orange surface is
the SR-sphere of radius t = 4 computed with the FM-LBR method on a grid
corresponding to n = 101. The points are the geodesic endpoints, their color
is proportional to the error of the FM-LBR (blue-low, green-medium, red-high
error). The first observation is that even though the iterative method is more
accurate, both methods seem to have the same order of convergence (the slope
in the log-log graphs) when the grid resolution increases. This seems reason-
able as both methods use first order approximations of the derivatives. Also, we
hypothesise that the offset in favour of the iterative method is due to the Rie-
mannian approximation of the SR-metric (i.e. selecting ε = 0.1), but this needs
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further investigation. The second key observation is that the CPU time increases
dramatically with n for the iterative method. Therefore, it is clear that we can
achieve the same accuracy using the FM-LBR but with much less computational
effort, which is of vital importance in the subsequent application.

Fig. 3. Validation via comparison in the uniform cost case. The experiment (illustrated
on the left, see the text) shows that even though the iterative method in [1] is more
accurate we can still achieve with the FM-LBR method better results and with less
CPU effort, just by increasing the grid sampling.

Fig. 4. Tracking of blood vessels in retinal images via cost adaptive SR-geodesics (see
experiment details in [1]). Left: the cost obtained from the image (orange indicates
locations with low cost). Center: Tracking in the full (ε = 1) Riemannian case. Right:
Tracking with the approximated (ε = 0.1) SR-geodesics.

Application to Retinal Vessel Tree Extraction. The analysis of the blood
vessels in images of the retina provides with early biomarkers of diseases such
as diabetes, glaucoma or hypertensive retinopathy [7]. For these studies, it is
important to track the structural vessel tree, a difficult task especially because
of the crossovers and bifurcations of the vessels. Some existing techniques [1,10]
rely on considering an extended (orientation and/or scale) domain to deal with
this issue. Moreover, in [1] promising results were obtained by formulating the
vessel extraction as a SR-curve optimization problem with external cost obtained
through some wavelet-like transformation of the 2D images. In the previous
experiment, we have shown that our proposed FM-LBR based implementation
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computes in practice the same geodesics as the iterative method in [1]. Therefore,
by simply replacing the eikonal equation solver in [1] we can obtain the same
results but with a dramatic decrease of the computational demands (both CPU
time and memory). The example in Fig. 4 shows the advantages of considering
the SR-metric in performing the vessel tree extraction. In this case (a patch of
size 200x200 with 64 orientations considered) the iterative method computed
the distance map in approximately 1 hour while the FM-LBR did the same in
20 seconds. For the experiments details we refer to [1], for more examples see
www.bmia.bmt.tue.nl/people/RDuits/Bekkersexp.zip.

4 Conclusions

Over the last decade, some authors [4–6] have shown the advantages of consider-
ing the roto-translation group embedded with a SR-geometry as a powerful, rich
tool in some image analysis related problems or for the geometrical modelling
of the visual perception. In our opinion, 2 obstacles have prevented this frame-
work to become more popular amongst engineers: the expensive computational
demands involved (resulting of considering the extended orientation space) and
the lack of efficient numerical methods able to deal with the extreme (degener-
ated) anisotropy imposed by the SR-metric. These obstacles are addressed by the
main contribution of this work, which is solving (up to our knowledge for the first
time) the SR-geodesic problem using a Fast Marching based implementation. To
be able to achieve this, we rely on the FM-LBR solver recently introduced in [9]
and show that even when relaxing the SR-restriction by a Riemannian approx-
imation of the metric we achieve excellent numerical convergence, but much
faster than with the approach in [1]. Regarding the retinal imaging application
our promising preliminary studies suggest that it is at least feasible to aim for
a full vessel tree segmentation as the solution of a single optimization prob-
lem, but this requires further investigation. Future work will pursue extension
of this method to the 3D-rototranslation group SE(3) and the applications in
neuroimaging and 3D-vessel segmentation.
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Abstract. Hierarchical image segmentation provides a set of image seg-
mentations at different detail levels in which coarser detail levels can be
produced from merges of regions belonging to finer detail levels. However,
similarity measures adopted by hierarchical image segmentation methods
do not always consider the homogeneity of the combined components. In
this work, we propose a hierarchical graph-based image segmentation
using a new similarity measure based on the variability of the merged
components which is responsible for the re-ranking of the merging order
that was originally established by the minimum spanning tree. Further-
more, we study how the inclusion of this characteristic has influenced
the quality measures. Experiments have shown the superior performance
of the proposed method on three well known image databases, and its
robustness to noise was also demonstrated.

Keywords: Hierarchical image segmentation · Graph-based method ·
Similarity measure · Region-merging criterion

1 Introduction

The process of grouping perceptually similar pixels into regions is known as
image segmentation. A hierarchical image segmentation is a set of image seg-
mentations in which coarser detail levels can be produced from merges of regions
belonging to finer detail levels. Thus, all segmentations at finer levels are nested
with respect to those at coarser levels. Hierarchical methods have also the
interesting property of preserving spatial and neighboring information among
segmented regions. In this work, a hierarchical image segmentation in the frame-
work of edge-weighted graphs is proposed, in which the image is equipped with
an adjacency graph and the edge weight is given by a dissimilarity between two
points of the image.

The use of minimum spanning tree (MST) for image segmentation was intro-
duced in [6]. The method proposed by [4] was responsible to make popular the
graph-based segmentation approach, but it does not provide a hierarchy. Some
optimality properties of hierarchical segmentations have been studied in [3,7].

The authors are grateful to PUC Minas, CNPq, CAPES and FAPEMIG for the
partial financial support of this work.
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Considering that, for a given image, one can tune the parameters of the well-
known method [4] for obtaining a reasonable segmentation of this image. A
framework to transform a non-hierarchical method to a hierarchical one has
been proposed in [5].

The main contribution of this paper is the proposal of a new (dis)similarity
measure based on the variability of the merged components in the context of
graph-based hierarchical segmentation, which is responsible for the re-ranking
of the merging order that was originally established by the MST. Moreover,
similar to [5], instead of iteratively deciding whether two adjacent regions might
be merged, we compute the scales for which the regions must be merged.

According to our experiments, the proposed method is statistically equiva-
lent or better, in terms of paired t-test, than hGB [5]. Furthermore, since it is
a hierarchical approach, the results of our algorithm satisfy both the locality
principle and the causality principle (i.e., the number of regions decreases when
the scale parameter increases, and the contours do not move from one scale to
another).

This work is organized as follows. Section 2 presents the new (dis)similarity
measure. In Section 3, we present our hierarchical method for image segmenta-
tion. Some experimental results performed on three well known image databases
are given in Section 4. Finally, in Section 5, some conclusions are drawn and
future works are pointed out.

2 A New Dissimilarity Measure Based on a Weighted
Observation Scale

Let us remember some definitions of the region-merging criterion used in [4].
The main idea is to measure the evidence for a boundary between two regions by
comparing two quantities: one based on intensity differences across the boundary,
and the other based on intensity differences between neighboring pixels within
each region.

More precisely, two measures are considered: the internal difference Int(X)
of a region X and the difference Diff (X,Y ) between two neighboring regions X
and Y . The internal difference Int(X) of a region X is the highest edge weight
among all the edges linking two vertices of X in the MST, while the difference
Diff (X,Y ) between two neighboring regions X and Y is the smallest edge weight
among all the edges that link X to Y . Thus, for merging two adjacent regions
X and Y , it is necessary to verify the following region merging predicate:

MergePred(X, Y )=

{
true , if Diff (X, Y ) ≤ MInt(X, Y )

false , otherwise
(1)

in which the minimal internal difference MInt(X,Y ) is defined as:

MInt(X, Y ) = min{Int(X) + τa(X), Int(Y ) + τa(Y )} (2)

and the threshold function τa controls the degree to which the difference between
two components must be greater than their internal differences in order to be
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considered as an evidence of a boundary between them. If X is a small com-
ponent, Int(X) may not estimate properly the local characteristics of the data
(in the extreme case, when |X| = 1, we have Int(X) = 0). Therefore, in [4], a
threshold function based on the size (or area) of the component is used, i.e.:

τa(X) =
ka

|X| (3)

with a constant parameter ka.
However, the adoption of this threshold function ignores the variability inside

a region, since only its highest internal value and its area are considered. In order
to cope with this problem, we propose the replacement, in the threshold function,
of the component size by the region weight, i.e.:

τw(X) =
kw

ω(X) + 1
(4)

in which, ω(X) is the sum of weights of all edges linking two vertices of X in
the MST. Then, two regions X and Y should be merged when:

Diff (X, Y ) ≤ min

{

Int(X) +
kw

ω(X) + 1
, Int(Y ) +

kw

ω(Y ) + 1

}

(5)

where kw is a parameter used to prevent the merging of high variability regions
(i.e., larger kw forces lower variability regions to be merged). Moreover, the value
of the region weight ω(X) is implicitly related to its area, since one should expect
that larger regions induce high variability values.

The merging criterion defined by Eq. (5) depends on the scale kw at which
the regions X and Y are observed. So, let us consider the (weighted observation)
scale Sw

Y (X) of X relative to Y as a measure based on the difference between X
and Y , on the internal difference of X and on the region weight ω(X):

Sw
Y (X) = (Diff (X, Y ) − Int(X)) × (ω(X) + 1). (6)

Therefore, the (weighted) scale S(X,Y ) can be defined as:

Sw(X, Y ) = max(Sw
Y (X), Sw

X(Y )). (7)

And, finally, Eq. (5) can be rewritten as:

kw ≥ Sw(X, Y ). (8)

So, two adjacent regions X and Y must be merged at scale kw if their
dissimilarity measure is smaller than or equal to kw. In this work, differently
from [4] in which ka (or kw) was fixed a priori, we want to compute the minimum
value of ka (or kw) for which two adjacent regions should be merged.

3 A Hierarchical Graph Based Image Segmentation

Now, we describe the method hGBw to compute a hierarchy of partitions based
on scales as defined by Eq. (7). Apart of the dissimilarity measure based on
weighted observation scale, it is imporant to note that the method for computing
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Fig. 1. Example of re-ranking for merging order based on weight.

the hierarchy of partitions is similar to the method hGB [5], which has proposed
a hierarchical strategy for the method GB [4].

It is possible to generate a partition Pw
λ of V induced by the connected

components of the graph made from V and the edges whose weights are below
λ, for every spanning tree T based on a set V of image pixels, for every weight
map w : E → N that relates a weight to each edge of T and for every threshold
λ ∈ N. It is well known [3,6] that, for any two values λ1 and λ2 such that λ1 ≥ λ2,
the partitions Pw

λ1
and Pw

λ2
are nested and Pw

λ1
is coarser than Pw

λ2
. Hence, the

set Hw = {Pw
λ | λ ∈ N} is a hierarchy of partitions induced by the weight map

w. A detailed discussion about notions for handling hierarchies could be found
in [3,6,7].

Similar to hGB, the proposed algorithm hGBw does not produce a hierarchy
of partitions, instead it produces a weight map L (weighted observation scales)
from which the desired hierarchy HL can be inferred for a given T . It starts from
a minimum spanning tree T of the edge-weighted graph built from the image.
For every edge e, the new weight map L(e) is initialized to ∞; then, in order
to compute the scale L(e) associated with each edge e of T , the method hGBw
iteratively considers the edges of T in a non-decreasing order of their original
weights w; and for each edge e linking two vertices x and y the following steps
are performed:

(i) Find the region X of Pw
w(e) that contains x.

(ii) Find the region Y of Pw
w(e) that contains y.

(iii) Compute the hierarchical weighted observation scale L(e).

At step (iii), L(e) is calculated from the hierarchical weighted scale S′
Y (X)

of X relative to Y , which is the lowest weighted scale at which some sub-region
of X, namely X∗, will be merged to Y . This can be computed as follows:

(1) Initialize the value of v to ∞.
(2) Decrement the value of v by 1.
(3) Find the region X∗ of PL

v that contains x.
(4) Repeat steps 2 and 3 while Sw

Y (X∗) < v.
(5) Set S′

Y (X) = v.



Re-ranking of the Merging Order for Hierarchical Image Segmentation 379

With the appropriate changes, the same algorithm allows S′
X(Y ) to be com-

puted. Finally, the hierarchical weighted scale L(e) is simply set to:

L(e) = max{S′
Y (X), S′

X(Y )}. (9)

Figure 1 illustrates the result of hGBw on a simple graph. The hierarchical
weighted scales are shown in Fig. 1(c). The whole hierarchy can be depicted as a
dendrogram in Fig. 1(d), whereas two partitions of the hierarchy (at scales 7 and
10) are shown in Fig. 1(e) and Fig. 1(f). Observe the re-ranking of the merging
order that was originally established by the MST, when compared to the result
of hGB in Fig. 1(g) and Fig. 1(h).

4 Experiments

In order to provide a comparative analysis, we take into account the databases
proposed in [1,2,8] and the measures presented in [2]. The database proposed in
[1] is divided into two groups (single and two objects) containing 100 images each
one. Hereafter, the group containg one object is called WI1OBJ and WI2OBJ
for two objects. According to [1], their database was designed to contain a variety
of images with objects that differ from their surroundings by either intensity,
texture, or other low level cues. To avoid potential ambiguities it was selected
images that clearly depict one object or two objects in the foreground.

Another database which is used for comparison is the Berkeley Segmentation
Dataset [2], so-called BSDS500. This database is divided in three folds, train,
val and test, containing 200, 100 and 200 images, respectively. In this work, the
parameters are set according to the best F-measure value computed on train
and val folds. In this database, a semantic segmentation is done, and sometimes,
some images are under-segmented. Each image has 5 to 8 human-marked ground
truths with a high degree of consistency between different human subjects but
a certain variance in the level of details.

Finally, we also used the database proposed in [8], so-called GRABCUT.
This database is originally used for detecting the contours of one object. More-
over, this database contains some images which also are in BSDS500.

The evaluation is based on the F-measure, which is the harmonic mean of
precision and recall and it can be seen as a summary statistic of each method.
In all cases, scores are optimal considering a constant scale parameter for the
whole database (ODS) and a scale parameter varying for each image (OIS) [2].
Furthermore, main goal here is to study the behavior of hGBw when compare
to hGB [5] and GB [4] (which is a non-hierarchical version). To that end, there
are different way to transforming the images into a graph. In this work, we will
consider only two:

– the underlying graph is the one induced by the 8-adjacency pixel relation-
ship with edge weights set to the color gradient computed by the Euclidean
distance in the RGB space, so to identify this kind of graph we will use c
followed by the name of the method (where c stands for color space);
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Fig. 2. Results for each dataset in which color-based and color-position-based graph
creation are used as input of the compared methods. The upper part shows results
with smoothing operation, while the lower part is without smoothing operation.

– the underlying graph is the one induced by the 10 nearest neighbors in
RGBXY space with edge weights set to the Euclidean distance in the
RGBXY space, so to identify this kind of graph we will use cp followed
by the name of the method (where cp stands for color-position space). A
connected graph must be guaranteed, thus the number of nearest neighbors
will be increased to produce a connected graph if needed.
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Fig. 3. An example of segmentation results. In (b), (c) and (d) image segmentations
with 2, 6 and 18 regions, respectively. Top row: threshold function is based on area –
hGB. Bottom row: threshold function is based on weight – hGBw.

Table 1. Comparison our method hGBw and the method hGB [5] according to paired
Student t-test using F-measure and the scale parameter varying for each image (OIS).

Fig. 2(a) shows the results of experiments for each dataset when color-based
and color-position-based graph creation are used with or without smoothing
operation. While hGB and hGBw present similar results that are superior to
GB specially for the color-position-based graph, GB is the only one that seems
to be greatly affected by the smoothing operation.

Fig. 2 also shows the results of experiments designed to assess the robustness
of the compared methods to random impulse noises. From these experiments, we
observe that all methods are affected by the smoothing operation specially for
the color-position-based graph. Again, GB seems to be the most affected one for
higher levels of noise. When color-position-based graph are used, GB presents
17% and 20% of improvement for WI1OBJ and GRABCUT, respectively (see
Fig. 2(d)). For hGB and hGBw, the improvement obtained by the adoption of a
smoothing operation is 10% at most.
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Fig. 3 shows the segmentation results of hGB and hGBw for the same number
of regions. It is worth to mention that regions obtained by hGBw are more
homogenous than than ones generated by hGB specially for a large number of
regions (Fig. 3(d)).

By using the F-measure, hGB and hGBw are quite similar. However accord-
ing to the paired t-test (with a significance level of 0.05) shown in Table 1,
although the proposed method hGBw has presented a similar performance to
hGB in most of the datasets, hGBw presents a superior results for BSDS500
(except when color-position-based graph creation is used with no smoothing
operation).

5 Conclusion

This work proposes a hierarchical graph-based image segmentation using a new
similarity measure based on the variability of the merged components which is
responsible for the re-ranking of the merging order that was originally established
by the MST. Furthermore, we study how the inclusion of this characteristic has
influenced the quality measures.

Experiments have shown the superior performance of the proposed method
on three well known image databases, and its robustness to noise was also demon-
strated. Actually, the proposed method hGBw is statistically equivalent or better
than hGB [5].

For future works, we will study how to automatically choose a good hier-
archical scale, and also, the real influence of filtering in our method. Another
interesting work is related to visualize the hierarchy in terms of salience maps.
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Abstract. In this paper, we present a novel objetive measure for image
fusion based on the codispersion quality index, following the structure
of Piella’s metric. The measure quantifies the maximum local similarity
between two images for many directions using the maximum codisper-
sion quality index. This feature is not commonly assessed by other mea-
sures of similarity between images. To vizualize the performance of the
maximum codispersion quality index we suggested two graphical tools.
The proposed fusion measure is compared to image structural similari-
ty based metrics of the state-of-art. Different experiments performed on
several databases show that our metric is consistent with human visual
evaluation and can be applied to evaluate different image fusion schemes.

Keywords: Image fusion-codispersion coefficient-image quality measure

1 Introduction

Image fusion is the process of combining information from two or more images of
a scene into a single composite image, which is more informative and suitable for
both visual perception and computer processing. Quality assessment of different
image fusion schemes is traditionally carried out by subjective evaluations [5].
Even though this method is reliable, it is expensive and too slow for real world
applications. Therefore, it is of great interest to provide an objective performance
measure able to predict image fusion quality automatically and consistent with
human visual perception. Several objective image quality measures for image
fusion have been proposed and classified into four groups according to their
characteristics: information theory based metrics, image feature based metrics,
human perception inspired fusion metrics, and image structural similarity based

c© Springer International Publishing Switzerland 2015
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metrics [2]. In the context of measures based on image structural similarity,
Piella’s metric [4], Cvejic’s metric [1] and Yang’s metric [9], were developed.

Recently, a new measure of similarity between images, based on the codis-
persion coefficient, was suggested by Ojeda et al. [3], namely, the CQ index.
This measure takes into account the spatial association in a specific direction h
between a degraded image and the original unmodified image. This performance
allows a quantification of how well the important information in the source ima-
ges is represented by the fused image.

In this work, we present a novel quality assessment metric for image fusion
based on a modification of CQ index, in the same way as the universal ima-
ge quality index (Q) is used in Piella’s metric. In adition, motivated by the
structural similarity index (SSIM) map proposed by Wang et al. [8] and the
codispersion map developed by Vallejos et al. [6], we presented two graphical
tools to analize the performance of our quality index.

The rest of the paper is organized as follows: Section 2 gives a brief introduc-
tion of the CQ index, defines the maximum codispersion quality measure and
presents two graphical tools. Section 3 presents an overview of the structural
similarity based metrics for image fusion. Section 4 includes a description of
the proposed metric, whereas Section 5 contains experimental results obtained
by using the proposed metric. Finally, Section 6 presents the conclusion of the
paper.

2 The Image Quality Metric

Let x = {xi,j |1 ≤ i ≤ N, 1 ≤ j ≤ M} and y = {yi,j |1 ≤ i ≤ N, 1 ≤ j ≤ M}, with
N,M ∈ N, the original and test image signals, respectively. The quality index
CQ was introduced by Ojeda et al. [3] and it is defined as follows:

CQ(h) = ρ̂ (h) l(x, y)c(x, y), (1)

where ρ̂ =

∑
s,s+h∈D

asbs

√
V̂x (h) V̂y (h)

, is the sample codispersion coefficient in the direction

h, with s = (i, j), h = (h1, h2), D ⊂ Zd, D finite set, as = x (i + h1, j + h2, ) −
x (i, j), bs = y (i + h1, j + h2, ) − y (i, j), V̂x (h) =

∑
s,s+h∈D

as
2, and V̂y (h) =

∑
s,s+h∈D

bs
2. It is obvious that |ρ̂ (h)| ≤ 1. The codispersion coefficient captures

different levels of spatial similarity between two images by considering different

directions in two-dimensional space. In (1), l(x, y) =
2x̄ȳ

x̄2 + ȳ2
and c(x, y) =

2SxSy

Sx
2Sy

2 , are the luminance and contrast components, respectively, where x̄ and

ȳ are the sample average values of images x and y, Sx, Sy and Sxy are the
deviations of x and y and covariance between x and y, respectively.



A Novel Quality Image Fusion Assessment Based on Maximum Codispersion 385

2.1 Maximum Codispersion Quality Index: CQmax

In this section, a novel measure to quantify similarity between two images is
introduced. This measure is labeled the CQmax index, and it is an intermediate
and necessary step in the definition of our proposal to evaluate image fusion
methods. In each evaluated window w, the CQmax index, is defined as the ma-
ximum value of CQ(h). This implies that CQmax can seek the direction h that
maximizes the CQ in the window w. Note that this direction may not be unique.

CQmax(h|w) = max
{h : p(h) ≥ p0}

ρ̂ (h|w) l(x, y|w)c(x, y|w), (2)

where p (h) is the proportion of the pixels in the image corresponding to the
direction h in the window w and p0 is the threshold.

We propose to use a sliding window approach: starting from the top-left
corner of the two images x, y, a sliding window of a fixed size block by block
over the entire image until bottom-right corner is reached (for more details see
[7]). Finally, CQmax is determined by averaging all CQ local maximum quality
indexes for all the windows w ∈ W

CQmax =
∑

w∈W

CQmax(h|w)
|W | , (3)

with W the family of all windows and |W | is the cardinality of W .

2.2 Graphical Tools: Visual Inspection of CQmax

In order to describe the result of CQmax application, we proposed two graphical
tools: CQmax index map and h direction map. The CQmax index map allows to
visualize locally the information about the quality degradation of the image.
According to this map, the brightness indicates the magnitude of the local
CQmax index, and more brightness means better quality. The h direction map,
depictes the direction h in which CQmax reaches the maximum value considering
the CIELab color space to represent the three components: h norm, h1 and h2. In
this map two different situations may arise. First, CQmax index values achieved
in equal norm directions but different orientation correspond to equal lightness
but different colors in CIELab space. In the second situation, directions with
same orientation but different norm correspond to similar colors with different
lightness. Note that if CQmax is reached in two o more directions, we choose the
lowest norm direction. See Fig. 1.

3 Image Fusion Metrics

In this section, a brief overview of state-of-the-art image structural similarity
fusion metrics is presented.
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3.1 Image Structural Similarity-Based Metrics

Wang’s Metric SSIM : Wang et al. proposed the SSIM index for the co-
rresponding regions in images x and y, defined as [8]

SSIM(x, y) = [l(x, y)]α [c(x, y)]β [s(x, y)]γ

=
(

2x̄ȳ + C1

x̄2 + ȳ2 + C1

)α (
2SxSy + C2

Sx
2 + Sy

2 + C2

)β (
Sxy + C3

SxSy + C3

)γ

, (4)

where x and y are the sample average values of images x and y, Sx, Sy and Sxy are
the sample deviations and the sample covariance, respectively. The parameters α,
β and γ, adjust the realtive importance of the three components. The constants
C1, C2 and C3 are included to avoid instability when denominators are very close
to zero. In order to simplify the expression (4), Wang et al. set α = β = γ = 1
and C3 = C2/2. This results in a specific form of the SSIM index:

SSIM(x, y) =
(2x̄ȳ + C1) (2Sxy + C2)

(x̄2 + ȳ2 + C1)
(
Sx

2 + Sy
2 + C3

) . (5)

A previus version of this approach is known as Q index and is written as [7]

Q(x, y) =
2x̄ȳ

x̄2 + ȳ2

2SxSy

Sx
2 + Sy

2

Sxy

SxSy
=

(4x̄ȳSxy)
(x̄2 + ȳ2)

(
Sx

2 + Sy
2
) . (6)

The following image structural similarity fusion metrics are based on (5) and
(6) measures.

Piella’s Metric QW : Piella and Heijmans proposed three fusion quality me-
trics based on Wang’s Q index [4]. These are:

QS(x, y, f) =
1

|W |
∑

w∈W

[λ (w) Q (x, f |w) + (1 − λ (w)) Q (y, f |w)] , (7)

QW (x, y, f) =
∑

w∈W

c (w) [λ (w) Q (x, f |w) + (1 − λ (w)) Q (y, f |w)] , (8)

QE(x, y, f) = QW (x, y, f) · QW (x′, y′, f ′)α
, (9)

where the weight λ (w) is defined as

λ(w) =
s (x|w)

s (x|w) + s (y|w)
. (10)

where s (x|w) and s (y|w) are the local saliencies of the two input images x
and y within the window w, respectively. In the Piella’s implementation, s (·|w)
is the variance of image within window w and the coefficient c (w) in (8) is

c(w) =
max {s (x|w) , s (y|w)}∑

w′∈W

max {s (x|w′) , s (y|w′)} . In (9), QW (x′, y′, f ′) is the QW calculated

with the edge images x′, y′ and f ′, and α is a parameter that weighs the edge
contribution information.
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Cvejic’s Metric QC : Cvejic et al. defined a performance measure as [1]

QC(x, y, f) =
∑

w∈W

sim (x, y, f |w) ·Q (x, f)+(1 − sim (x, y, f |w)) ·Q (y, f) , (11)

with sim (x, y, f |w) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if
σxf

σxf + σyf
< 0,

σxf

σxf + σyf
, if 0 ≤ σxf

σxf + σyf
≤ 1,

1, if
σxf

σxf + σyf
> 1 .

. The weighting fac-

tor depends on the similarity in spatial domain between the input and fused
image.

Yang’s Metric QY : Yang et al. proposed another way to used SSIM for fusion
assessment [9]:

QY (x, y, f) =

⎧
⎪⎪⎨
⎪⎪⎩

λ (w) SSIM (x, f |w) + (1 − λ (w)) SSIM (y, f |w) ,
if SSIM (x, y|w) ≥ 0.75,

max {SSIM (x, f |w) , SSIM (y, f |w)} ,
if SSIM (x, y|w) < 0.75 .

(12)

the local weight λ (w) is as the definition in (10).

4 Proposed Image Fusion Performance Metric CQM

We use the CQmax index defined in (3) and following the structure of Piella
metric’s, (8), to define the quality index CQM for image fusion as

CQM (x, y, f) =
∑

w∈W

c (w) [λ (w) CQmax(h|w) (x, f) +

(1 − λ (w)) CQmax(h|w) (y, f)] . (13)

The closer the CQM (x, y, f) value to 1, the higher the quality of the fused image.

5 Experimental Results and Analysis

To test the performance of the proposed approach, we have carried out three
experiments. In the first experiment, the CQmax index was tested in different types
of distortions (see Fig. 1) and compared to the results with Q index and the mean
subjective rank (MSR) evaluation obtained from [7] (all images have equal mean
square error (MSE)). Their CQmax maps and h directions maps are presented. In
the second and third experiments, the following image fusion algorithms were eva-
luated, Laplacian Pyramid (LP), Ratio Pyramid (RP), Discrete Wavelet Trans-
form (DWT), and Shift Invariant DWT (SIDWT), the performances of which were



388 S. Pistonesi et al.

subjetively tested and accepted in the literature. For simulation of these methods,
the “Image Fusion Toolbox”, provided by Rockinger, is used (available from:
http://www.metapix.de/toolbox.htm/). For the four image fusion algorithms, for
both, the second and the third experiments, the approximation coefficients of
the two input images averaged and the larger absolute values of the high sub-
bands is selected. In the second experiment we performed a 3-level decomposi-
tion and in the third, a 4-level decomposition was used. For our metric, we set
p0 = 0.75, the minimum proportion of pixels that is necessary to capture spatial
information in different directions, and w window size used was 8 × 8 pixels. For
Piella’s and Cvejic’s metrics we used the same window size and for Yang’s metric,
C1 = C2 = 2 × 10−16 and the w window size used was 7 × 7 pixels1 .

First Experiment: The CQmax exhibits very consistent concordance with the
Q results and with the MSR evaluation. The CQmax index maps (Fig. 1, second
row), show a consistency with perceived quality measurement.

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

 0 1 2 3 4 5

0
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3

4

5

1

-1

-2

-3

-4

h1

h2

(q) (r) (s) (t) (u) (v) (w) (x)

Fig. 1. (a) Original Lena image; image contaminated with: (b) Mean Shift, MSR =
1.59, Q = 0.9894, CQmax = 0.9894; (c) Contrast Stretching, MSR = 1.64, Q = 0.9372,
CQmax = 0.9378; (d) Impulsive Salt Pepper Noise, MSR = 3.32, Q = 0.6494, CQmax =
0.7765; (e) Multiplicative Speckle Noise, MSR = 4.18, Q = 0.4408, CQmax = 0.5249;
(f) Additive Gaussian Noise, MSR = 4.27, Q = 0.3891, CQmax = 0.4859; (g) Blurring,
MSR = 6.32, Q = 0.3461, CQmax = 0.4083 and (h) JPEG Compression, MSR = 6.68,
Q = 0.2876, CQmax = 0.4037; all images have equal MSE; (i) h = (1, 1) direction in a
8 × 8 window size, p (h) = 62/64 ; (j) − (p) CQmax index map (brightness indicates
better quality); (q) Reference of h direction map; (r) − (x) h direction maps.

The Mean Shift distortion, does not change the structure information of
Lena image, therefore it corresponds to a very bright CQmax index map.
By contrast, the JPEG Compression contaminated image CQmax index map
1 The same setting that appears in [1],[4],[9].
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(Fig. 1 (o)) exhibits many areas with dark pixels, showing a poor quality. In
Fig. 1 (q) a black color covering the entire map except from a patch implies
that in h = (1, 0) or h = (0, 1) the index reaches the maximum similarity. In
Fig. 1 (u) and (v), the h direction maps present a similar appearance; they are
predominant shades of fuchsia, indicating that the maximum similarities were
reached, e.g. in h = (3,−1) or h = (4,−1).

Second Experiment: 32 sets of infrared (IR) and visual images (V) from
“TNO UN Camp” database are used as source images (see Fig. 2). The evaluation
results of the metrics for this image set are shown in Fig. 2 (g). In all schemes,
the metrics assign the highest values to LP and SIDWT methods and the lowest
to RP. The Kendall τ rank correlation coefficient reveals that CQM has reaso-
nable agreement with QW (τ = 0.706), QC (τ = 0.771) and QY (τ = 0.770),
respectively. These outcomes are consistent with those obtained by Lui et al. [2].

Third Experiment: “Medical” database including magnetic resonance ima-
ging (MRI) and computed tomography (CT) images, and “Clock” database

(a) (b) (c)

(d) (e) (f)

CQM

QY

QW

QC

(g)

Fig. 2. A image of the “TNO UN Camp” database: (a) IR image and (b) V image;
and (c)− (f) fused image obtained by: LP, RP, DWT and SIDWT methods; (g) fusion
metrics performance according to image fusion methods.

Table 1. Objective evaluations of different image fusion metrics for the fused images
in “Medical” and “Clock” databases.

Metric

Image Methods QW QC QY CQM

“Medical” database

LP 0.8089 0.6247 0.6874 0.8391
RP 0.6319 0.6053 0.6182 0.6903
DWT 0.7314 0.6190 0.6368 0.7718
SIDWT 0.7780 0.6587 0.6692 0.8169

“Clock” database

LP 0.9272 0.8284 0.8816 0.9451
RP 0.7878 0.7564 0.7879 0.8257
DWT 0.9139 0.7919 0.8471 0.9362
SIDWT 0.9217 0.8368 0.8853 0.9413
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containing multi-focus images are used. In both, as it is seen in Table 1, CQM

assigns the highest values to LP and SIDWT methods, followed by DWT and the
worst values correspond to RP method. The proposed measure has a coherent
behavior with the perceptual evaluations.

6 Conclusion

In this paper, we have proposed an objective image fusion performance index
based on maximum codispersion. The amount of information in image features,
carried from the source images to the fused image, is considered as the measure
of fusion algorithm performance. This amount is calculated by means of the ma-
ximum codispersion index, considering different directions which can be visually
inspected through the two graphical tools proposed. Experimental results con-
firm that the novel measure gives good results when evaluating different fusion
schemes, correlates well with the subjective criteria, and shows good agreement
with the state-of-the-art metrics presented, rendering a considerable improve-
ment over them.
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Abstract. In this paper, magnetic resonance image similarity metrics
based on generative model induced spaces are introduced. Particularly,
three generative-based similarities are proposed. Metrics are tested in
an atlas selection task for multi-atlas-based image segmentation of basal
ganglia structure, and compared with the mean square metric, as it is
assessed on the high dimensional image domain. Attained results show
that our proposal provides a suitable atlas selection and improves the
segmentation of the structures of interest.

Keywords: Generative embedding · Fisher score · Magnetic resonance
imaging · Multi-atlas segmentation · Template selection

1 Introduction

Brain magnetic resonance images (MRI) play an important role in the diagno-
sis and treatment of medical diseases. Applications such as disease progression,
brain mapping, and surgery planning require of accurate brain structure seg-
mentation [1]. However, such task is difficult to perform due to the presence
of artifacts and low contrast between the tissues, mainly inside the subcortical
region.

Atlas-based techniques are commonly used for dealing with the above con-
straints, as they allow to include shape and intensity distribution of any structure
as a priori knowledge (atlas). To this end, the atlases are usually non-linearly
mapped to the target image space and finally combined into a single labeling
image using a procedure, known as atlas voting or label fusion. However, as brain
shapes are not unimodal distributed, anatomically non relevant atlases can bias
the achieved segmentation. Moreover, the computational cost linearly increases
with the number of atlases to be registered. To overcome these issues, multi-atlas
approaches have been proposed to properly select and combine the independent
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 391–399, 2015.
DOI: 10.1007/978-3-319-25751-8 47
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contributions of an atlas [2]. In this sense, proper selection of atlases allows to
improve the resulting segmentation, while keeping the number of atlases as low
as possible. Usually, the selection criterion is based on image similarity metrics
[3], as mutual information or mean squares, being computed in a common image
space [2] or in the target image space [4]. However, a large similarity value does
not necessarily imply high quality propagated labels [5]. Moreover, as the met-
rics are computed in the original image space, the intrinsic image morphological
properties may not be highlighted.

Hence, new methodologies have been introduced to find low dimensional
spaces to map the images and assess the similarities. Techniques as manifold
learning [6] and locality preserving projections [7] have been used in this regard.
On the other hand, generative embeddings have proved to be efficient for rep-
resentation and discrimination of high dimensional data structures [8]. These
approaches take advantage of the low dimensional space induced by the genera-
tive model parameters or scores.

In this work, we propose to use the induced metrics from generative models
as image similarity function in the atlas selection in a multi-atlas segmentation
scheme.Ourproposal uses generativemodels to representMRI, so they aremapped
into a more compact and discriminative space highlighting anatomical differences.
In order to compute the image similarities, three probability based approaches are
considered:Likelihood-based,Parameter-based, andFisher score-based.Addition-
ally, as the intensity probability distribution of the image is unknown, Gaussian
and Student’s t mixture models are used to estimate it. Obtained results show that
the similarities in the new representation space achieve a more suitable selection of
atlases improving the segmentation accuracy compared with metrics computed in
the original image space, such as the means square.

2 Materials and Methods

2.1 Multi-atlas Based Segmentation

The input MRI space is described as follows: Let X ={Xn,Ln:n=1, . . . , N} be
a labeled MRI dataset holding N image-segmentation pairs, where Xn={xn

r ∈R:
r∈Ω} is the n-th MR image, the value r indexes all spatial elements (spel),
and Ln={lnr ∈{1, C}:r∈Ω} is the provided image segmentation into C∈N classes.
In the case of 3D-volume analysis, both, Xn and Ln, have dimension
Ω=R

Ta×Ts×Tc , with {Ta, Ts, Tc} being the Axial, Sagittal, and Coronal sizes,
respectively. Thus, the segmentation of each target image is accomplished by
combining the subset holding the most similar labeled atlases of X , which are
selected by a given similarity criterion.

In addition, the majority vote strategy is used to carry out MRI segmen-
tation. This straightforward procedure assigns the most agreed label among
the selected atlases to each spel of the target image. So, let Xq be a target
image and Xq={Xt,Lt:t=1, . . . , T} be a subset of Xq⊂X that holds T≤N
selected atlases, which are ranked by the similarity measure κ{·, ·}, so that
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κ{Xq,Xt}>κ{Xq,Xt+1}. Also, let L̂t be the provided segmentation of the
t-th atlas after carrying out the deformable registration of the target image so
that the matrix L̂t assigns the label l̂tr to each spel r. Afterward, labeling from all
atlases is gathered into a single estimated segmentation matrix L̂q with elements:

l̂qr = arg max
c∈{1,C}

∑
t∈T

δ(l̂tr − c), l̂qr ∈ {1, C}

where δ(·) is the delta Dirac function. So, the image similarity function is crucial
for selecting the closest templates to target images.

2.2 Generative Mixture Models for Extracting Image Features

Provided a set of parameters Θ, the intrinsic MRI features are proposed to
be described by a generative model maximizing the conditional probability,
P (X|Θ). For fitting parameters Θ to a given image X={xr∈R:r∈Ω}, this task
is equivalent to the minimization of the negative log-likelihood cost function,
J=− log P (X|Θ), that under the assumption of independent and identically dis-
tributed spel intensities is written as:

Θ∗ = arg min
Θ

{−
∑

r∈Ω
log P (xr|Θ)} (1)

where P (xr|Θ) is the probability that a pixel has intensity xr, given the model
parameters. Since the MR images may include several structures with differ-
ent intensity ranges, we hypothesize that image features are better described
by mixture models with K components and parameters Θ={θk:k=1, . . . , K}.
Thus, the conditional probability is written as: P (xr|Θ)=

∑
k∈K ωkPk(xr|θk),

subject to:
∑

k∈K ωk=1, where the mixture weight, ωk∈R+, stands for the prior
probability of each spel to belong to the k-th component. Pk(xr|θk) is the class
conditional probability for the k-th component. We will discus the use of the
following functions:

– Gaussian Distribution: Pk(xr|θk)= 1
σk

√
2π

exp{−(xr − μk)2/2σ2
k}, where in

the parameter set θk={ωk, μk, σk}, μk∈R is the mean and σk∈R+ is standard
deviation.

– Students’t Distribution (Γ (·) notates the Gamma function):

Pk(xr|θk)=
Γ ((νk + 1)/2)

Γ (νk/2)
√

πνkσk

(
1 +

1
νk

(
xr − μk

σk

)2
)−(νk+1)/2

Therefore θk={ωk, μk, σk, νk}, with νk∈R+ as the degrees of freedom.

2.3 Generative-Model Based Measures of Pair-Wise Image
Similarity

– Likelihood-based similarity: Due to the log P (Xm|Θn) is the probability that
the image Xm is generated by the model parameters Θn, the following log-
likelihood measure of pairwise similarity is defined [8]:

κ{Xn,Xm} = log P (Xm|Θn) (2)
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– Parameter-based similarity: For better handling of size variant images, each
image is represented by a concatenated parameter vector Θ that results
from the model optimization, making the image characterization be only
dependent on the size of the model parameters instead of the whole image
domain:

κ{Xn,Xm} = f(Θn, Θm) (3)

where f(Θn, Θm) is a similarity function between the vectors Θn and Θm.
– Fisher-score-based similarity: For describing the direction in which the model

parameters should be modified to better fit the data, the gradient of the log-
likelihood in Eq. (1), ∇Θ log P (X|Θ) is used (termed the Fisher score [8])
as follows:

κ{Xn,Xm} = f(∇ΘnJ(Xn|Θn),∇ΘmJ(Xm|Θm)) (4)

where ∇ΘJ(X|Θ)={∂J/∂μk, ∂J/∂σk}K
k=1 for the case of the Gaussian mix-

tures, and ∇ΘJ(X|Θ)={∂J/∂μk, ∂J/∂σk, ∂J/∂νk}K
k=1 for Student’s t mix-

tures.

3 Experimental Set-Up

To evaluate the performance of the proposed measures of similarity between
MRIs, a multi-atlas segmentation scheme is considered so that the atlases are
ranked according to the degree of similarity with a target image. Also, the cor-
responding label images are combined through a majority voting scheme for
estimating the final segmentation. Thus, the evaluation process have the follow-
ing stages: i) Image preprocessing, ii) Generative model optimization, and iii)
Similarity metric evaluation for the Atlas voting.

3.1 MRI Database and Image Preprocessing

The MRI collection used is a subset of the Open Access Series of Imaging Studies
(OASIS) database that was proposed for the MICCAI 2012 Multi-atlas labeling
and Statical Fusion Challenge. The dataset holds T1-Weighted structural MRI
scans from 35 subjects (13 males and 22 females) aging from 18 to 90 years
old. Each 256×256×287 MRI volume has a voxel size of 1×1×1mm. All images
were expertly labeled for 26 structures. Due to our research interest in Parkinson
surgery, only the following structures are considered: hypothalamus, amygdala,
putamen, caudate nucleus, thalamus, and pallidum. Fig. 1 shows a sample image
subject and its segmentation provided.

To measure image similarities within a single common image space, input
MRI set is spatially normalized into the Talairach space using a rigid alignment
to the MNI305 atlas. For the label propagation, every atlas image is also spatially
mapped into the target image spatial coordinates with an elastic deformation
(ANTS toolbox1).
1 http://picsl.upenn.edu/software/ants

http://picsl.upenn.edu/software/ants


Magnetic Resonance Image Selection for Multi-Atlas Segmentation 395

Fig. 1. Left to Right: Axial, Sagittal, Coronal views, and ground-truth segmented
structures.

3.2 Generative Model Optimization

We use the Expectation-Maximization (EM) algorithm to find the parameter set
of the generative mixture models representing an image (see Eq. (1)). Aiming
each mixture to represent the same regions in all images, the EM at each of
them is initialized as follows: i) k-means algorithm is performed over a subset of
randomly taken spels from the input dataset. ii) Those resulting centroids are
used further as seeds for the EM.

The ability of each distribution function considered for describing the input
MRI set is analyzed by incrementing the number of mixtures K=2, . . . , 16 on
the model as seen in Fig. 2 showing the average log-likelihood of the Gaussian
mixture model. Fig. 2a relates the case when the whole image is fit, and Fig. 2b –
when fitting only the region of interest (ROI) corresponding to the basal ganglia
location. As a result, the former GMM fitting becomes more complex due to the
larger amount of structures of the entire image. It is worth noting, for the ganglia
region, that the larger is the number of mixtures, the better the fitting in the
generative process. Nevertheless, the model can be over-fitted for a considerable
number of mixtures.

Fig. 2. Gaussian Mixture Model fitting for several number of mixtures.

For the case of the Student’s t mixture, we evaluate the image fitting by
varying the degrees of freedom, ν=1, . . . , 20. As seen on the top file in Fig. 3, the
results achieved of the ROI modeling show that lower values of ν allow improving
the generative model performance. The whole image modeling seems to have the
same behavior but with worse consistency. Additionally, the bottom file in Fig. 3
show the degrees of freedom obtained from EM for a given number of mixtures.
Thus, ν tends to be more stable when the number of components is increased.
However, it is known that the Student’s t resembles the Gaussian distribution
for large values of ν.
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Fig. 3. Student’s t parameter tuning. Top: Log-likelihood versus the degrees of free-
dom. Bottom: Degrees of freedom versus number of mixtures (subject mean and
standard deviation depicted). Left: Whole image modeling. Right: ROI modeling.

3.3 Validation of Image Similarity in Multi-atlas-Based
Segmentation Tasks

We assess the performance of the proposed similarity approaches within an atlas
selection task, where all structures are segmented using the atlas-voting label
propagation approach in the target image space. Specifically for the (see Eq. (3))
parameter-based and (Eq. (4)) Fisher score-based measures, we make use of the
Gaussian kernel, f(Θn, Θm)=exp(‖Θn − Θm‖22/2σ2

f ), as the similarity function
between feature vectors, where the scale parameter σf∈R+ is tuned using the
maximum dispersion criterion [9]. For the sake of comparison, we also assess as a
similarity metric the voxel-wise Mean Squares (MS) in the image domain space.

Fig. 4 shows the results for multi-atlas segmentation using Gaussian distri-
butions. As seen on the top file in Fig. 4 modeling the whole image, the accuracy
achieved by all image similarities is not affected by the number of components
used to model the input MRI space. However, the Fisher score-based measure
outperforms the others. In turn, the bottom file in the figure Fig. 4 display the
ROI-based modeling performance that improves the one achieved by the whole
image modeling. Particularly, in Fig. 4 the bottom left figure shows that the
larger the number of mixtures the lower the segmentation performance due to
the model over-fitting at each image. Once again, the Fisher score-based selec-
tion outperforms the other strategies; this result may be explained since the
derivatives take into account the degree of agreement between models.

Likewise, we estimate the accuracy using the Student’s t distribution as seen
in the top file in Fig. 5, showing a similar performance to the Gaussian distribu-
tion for the whole image modeling. For the ROI modeling, the parameter-based
and Fisher score-based selection methods achieve the highest accuracy at a larger
number of mixtures.
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Fig. 4. Dice Index versus the number of atlases for all considered image similarities
using Gaussian mixtures. Top: Whole image modeling. Bottom: ROI image model-
ing. Left to Right: Likelihood-based, Parameter-based and Fisher score-based atlas
selection.

Fig. 5. Dice Index versus the number of atlases for all considered image similarities
using Student’s t mixtures. Top: Whole image modeling. Bottom: ROI image model-
ing. Left to Right: Likelihood-based, Parameter-based and Fisher score-based atlas
selection.

4 Discussion

We introduce a new strategy for measuring MRI similarities supporting a multi-
atlas segmentation scheme. The proposal allows computing pairwise similari-
ties in a low dimensional space being induced by a generative model. As a
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result, a new space becomes more discriminative and compact than the orig-
inal spel-wise image representation. For computing the pair-wise image affinity,
three approaches are proposed, namely, Likelihood-based, Parameter-based, and
Fisher score-based similarity. Moreover, two different distributions are asssumed
as components of the mixture model: Gaussian and Student’s t distributions.

The training approach is validated on selecting the most similar atlases to
a target, and then combining them into a single segmentation. For testing,
two strategies of feature extraction are considered: whole image and the ROI.
Obtained results for the basal ganglia location show that the proposed approach
outperforms the segmentation achieved by the baseline spel-wise MS metric.

Regarding the mixture base distributions, it is clear that for the Gaussian
distribution the larger the number of mixtures, the better the fitting for the gen-
erative process. However, for modeling the whole image, the number of required
components tends to be large, due to the whole image holding significantly more
structures than the ROI. Contrarily, for the Student’s t distribution, a better
fitting is achieved as the number of components decrease. Taking into account
that the degrees of freedom parameter, ν, allows to differentiate a Student’s t
from Gaussian like shapes, the tuning of such parameter is more complex than
the location parameter and the scale parameter, at each mixture. This is mainly
because the log-likelihood cost function is not convex. Hence, the parameter
tuning may lead to suboptimal values, which are different to the ones obtained
by exhaustive search, as seen in the Fig. 3. In this sense, we conclude that the
Gaussian distribution is more appropriate for modeling the images.

For the sake of evaluation, all considered image similarities are used as a selec-
tion criterion in the multi-atlas segmentation scheme. According to results in the
right column in Figs. 4 and 5, the likelihood-based similarity approach achieves
the worst accuracy, this is because the similarity measure becomes highly sensi-
tive to poorly estimated or improper models. In the parameter-based approach,
each image is characterized by the vector of estimated parameters, and the sim-
ilarity is measured by comparing vector pairs using a Gaussian kernel function.
Obtained results in the middle columns in Figs. 4 and 5 show that improvement
in accuracy is achieved with respect to likelihood-based similarity. Therefore,
the information captured by the vector of parameters is more discriminative
than the obtained by assessing the likelihood over the images, specially in high
dimensional images. Also, in order to capture the influence of the parameters
on the generative process, the gradient of the log-likelihood cost function with
respect to the parameters is used as feature extraction. As a result this measure
selects a more appropriate subset of atlases than the former introduced measures,
achieving a higher accuracy respect to them, as seen in Figs. 4 and 5. Finally,
aiming to compare the proposals against the conventional similarities, the well
know Mean squares is used. In this case, the new similarities outperform the MS
baseline in the atlas selection task, with the advantage of being only dependent
on the number of parameters in the model, which is considerably smaller than
the number of spels an image.
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As a future work, other image generative models are to be tested (e.g. Markov
Random Fields), where the spatial information is also taken into consideration,
providing more robust estimation to the artifacts present on MR images. Other
methods for model comparison, such as dissimilarities and kernel methods, will
also be included.
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Abstract. Signal level quantization, a fundamental component in dig-
ital sampling of continuous signals such as DPCM, or in near-lossless
predictive-coding based compression schemes of digital data such as
JPEG-LS, often produces visible banding artifacts in regions where the
input signals are very smooth. Traditional techniques for dealing with
this issue include dithering, where the encoder contaminates the input
signal with a noise function (which may be known to the decoder as well)
prior to quantization. We propose an alternate way for avoiding banding
artifacts, where quantization is applied in an interleaved fashion, leaving
a portion of the samples untouched, following a known pseudo-random
Beroulli sequence. Our method, which is sufficiently general to be applied
to other types of media, is demonstrated on a modified version of JPEG-
LS, resulting in a significant reduction in visible artifacts in all cases,
while producing a graceful degradation in compression ratio.

Keywords: Predictive coding · Dithering · Quantization · Near-lossless
compression · Image compression

1 Introduction

Predictive coding is one of the oldest, yet still most popular tools for signal sam-
pling, coding and compression [1,2]. The basic idea is to encode data sequen-
tially so that the value of a new sample is encoded differentially with respect
to a causal prediction computed from previously encoded samples. This helps in
decorrelating the signal, and the prediction errors to be encoded usually exhibit
a distribution that is sharply peaked at 0 [3], for which efficient entropy coding
methods such as Golomb-Rice are available [4,5,6].

The usual method for improving compression rates in predictive coding is
to allow a small distortion in the encoded signal by quantizing the prediction
errors in steps of size Δ = 2δ + 1, where δ is a positive integer [7]. For small
values of δ, this method is often referred to as near-lossless compression, since
the maximum per-sample distortion is guaranteed to be no more than δ.

There is, however, an important drawback of quantization which applies to all
forms of digital representation of signals, including PCM, DPCM, and modern
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Fig. 1. 2D banding effect. This artifact is more evident (and detrimental to the visual
quality) in areas with slowly varying intensity, such as the toy example shown in this
figure. Top to bottom, left to right: undistorted image, proposed method (IQ) with
δ = 4 and no dithering, JPEG-LS with δ = 4, IQ with δ = 4 and p = 0.9 (The
differences in the quantized output between JPEG-LS and IQ are due to a modified
run length coding method in the latter). Note: this figure is best appreciated on a
computer screen.

predictive coding: when the signals being encoded are very smooth, the quanti-
zation error sequence is highly correlated, creating “bands” or “staircases” which
significantly affect the perceived quality of the reconstructed signals (see figures 1
and 3). In the case of predictive coding, this has the additional effect of being
fed back into the predictor itself, creating more complex and perhaps even more
annoying artifacts.

The technique of dithering was originally introduced in [8] precisely for reduc-
ing banding effects due to quantization in digital signal coding. In short, dither-
ing introduces random noise in the signal, so that long sequences of smoothly
varying samples are broken up, thus effectively avoiding the banding associated
to such regions. Since then, dithering has become ubiquitous in all forms of dig-
ital signal coding, an enourmous body of work has been written on the subject,
with several variants proposed (see [9] for a review for the case of digital images).

More closely related to our work, is the concept of deterministic dithering,
where the “noise” to be added is a function known both to the encoder and the
decoder. This idea was first proposed in the context of sampling theory in [10],
using deterministic pseudo-random noise sequences to contaminate the input sig-
nal. The contaminated signal is then sampled and quantized (non-predictively)
to one bit per sample. Under certain conditions on the dithering sequence and
the sampling rate, the method is shown to reconstruct a wide range of signals.
This idea was later extended in [11] to non-pseudo-random dithering functions
such as sinusoids, again in a non-predictive sampling context.

As with the preceding cases, our motivation lies in the removal of banding
artifacts due to quantization. However, contrary to all of the above methods,
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we break the bands by allowing a pseudo-randomly chosen set of samples to be
encoded losslessly. In this way, not only bands are removed, but the quantization
error feedback that produces them is effectively broken often and, more impor-
tantly, at random positions, thus avoiding the formation of banding patterns
typical of near-lossless predictive coding.

We apply this technique to a simplified version of the JPEG-LS standard [6],
with clearly positive results in terms of overall mean squared error (MSE) and
visual quality, both perceived subjectively, and as given by the Structural SIM-
iliarity (SSIM) image quality index [12], at the cost of a small (and predictable)
increase in file size (measured in average bits per pixel – BPP). Moreover, the
technique allows one to vary the amount of dithering, thus allowing the user to
select different trade-offs between visual quality and compressibility.

2 Background

2.1 Predictive Coding

Let xn
1 denote a sequence of n data samples to be encoded, where xj

i is the sub-
sequence from i to j; the sub-index may be omitted when i = 1. Coding of a new
sample xj is done by first computing a prediction of its value in terms of past
samples, x̂j = f(xj−1), and then encoding (using some sort of Entropy coding)
the prediction error ej = xj − x̂j . Since both the encoder and the decoder have
access to the same information, the above procedure can be replicated at the
decoder, so that only errors need to be transmitted.

Usual predictors include adaptive linear functions, f(xj−1) =
∑p

k=1 akxj−k,
for some p ≥ 1, and simple fixed predictors such as the constant (x̂j = xj−1), and
linear (x̂j = 2xj−1 −xj−2) ones. The latter two are popular in “low complexity”
compression algorithms such as JPEG-LS, as they require very little hardware
resources. In order to compensate for the simplicity and fixed nature of these
predictors, an adaptive component is usually included in the form of a bias
correction term bj = 1

j−1

∑j−1
i=0 ei. In this way, the final error ej = êj + bj , where

êj is the output of the fixed predictor, has an empirical distribution centered
at 0, which results in compression gains. As fixed predictors tend to exhibit
different biases depending on the local shape of the sequence, bias correction is
often made context dependent, where by context we mean some function of the
past few samples which captures the shape of the signal near the sample being
encoded.

2.2 Near-Lossless Coding

In this setting, prediction errors are quantized in steps of size Δ = 2δ + 1, for
a maximum absolute per-sample distortion of δ between the original signal xn

and the one reconstructed at the decoder, which we denote by yn. The quantized
error ẽj is obtained from ej via,

ẽj = q(ej) = sign(ej)
[ |ej | + δ

1 + 2δ

]
,
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Fig. 2. Interleaved quantization encod-
ing/decoding scheme. Here f stands for
the predictor, q for the quantization block,
q−1 for the inverse quantization block,
q−1(êj) = 2δêj , and z for a delay block,
whose output is its input delayed by one
time step for j > 1, and 0 for j ≤ 1 (time
indexes are ommited for simplicity).

Fig. 3. Banding effect on lossy predic-
tive coding of 1D signals, and the effect of
dithering. Here xj = j − 1, x̂j = xj−1, and
δ = 3. The last curve, shown in cyan, cor-
responds to a pseudo-random interleaved
quantization of the prediction errors with
a quantization probability of p = 0.7.

where [·] denotes rounding to nearest integer. However, since both decoder and
encoder must have the same data available when processing the j-th sample, on
both sides the prediction x̂j must be now based on the reconstructed samples
yn−1, x̂j = f(yj−1), and not on the original ones, xk−1. Therefore quantization
affects not only the transmitted errors, but also the prediction itself. In regions
of the input signal where |xj − xj−1| � δ for many consecutive samples, the
corresponding regions in the reconstructed signal yn will be “flattened out”, as
small consecutive errors will be quantized to 0. To illustrate the above situation,
consider the simple zero order predictor x̂j = f(yj−1) = yj−1. In this case, the
unquantized error will be ej = xj − x̂j = xj − yj−1. Now, if ej = xj − yj−1 < δ
we have that ẽj = 0, in which case yj = yj−1. This error feedback loop goes on
until |x̂j −xj | ≥ δ, at which point a jump of size Δ will occur. This is illustrated
in Figure 3, along with the proposed method, to be discussed next.

3 Interleaved Quantization

We propose a simple modification to the lossy scheme presented in Section 2.2
where only a fraction 0 ≤ p < 1 of the prediction error samples are quantized.
As can be seen in Figure 3 (cyan line), this is enough to break the staircase (1D
banding) effect observed when no dithering is performed.

There are many possible ways to define the locations where quantization will
occur. The algorithm that we present here, coined interleaved quantization (IQ)
chooses such locations by generating a pseudo-random Bernoulli sequence wn

where wj ∈ {0, 1}, with P (wj = 1) = p, and then quantizes the errors ej at those
locations j for which the corresponding wj = 1. Although not truly random,
the sequence wn is sufficiently irregular to avoid generating visible artifacts in
yn. The key point here is that, given a fixed pseudo-random number generator,
and a fixed seed, both the coder and the decoder know the exact places where
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quantization is, or is not, performed, without the need for encoding such places
explicitly. Other forms of interleaving are also possible. For example, the value
of δ applied to each sample could be drawn uniformly between 0 and δmax . A
block diagram of the above procedure is presented in Figure 2.

A simplified analysis, which leaves the (positive) effect of “breaking the stair-
cases” observed above aside, reveals that, for an IQ scheme with probability p,
the output of the encoder can be seen as an interleaved coding of two sources: one
corresponding to a lossy signal, and other to a lossless one. Therefore, if Llossy

is the codelength obtained for a given case with the fully lossy scheme (p = 1),
and Llossless is the one obtained in the lossless case, the resulting code length for
the IQ scheme Liq should be close to pLlossy + (1 − p)Llossless. Also ignoring the
“staircase breaking effect”, and with similar arguments, the distortion Diq in the
image reconstructed by IQ should be close to pDlossy + (1 − p)Dlossless. As will
be shown in Section 4, these simplified results are indeed quite accurate. In this
way, p serves as an additional parameter to select a particular rate-distortion
trade-off.

Fig. 4. Sample grayscale results. Here we show a grayscale version of the “kodim03”
image from the Kodak dataset. The above pictures correspond to the near-lossless
compression of kodim03 for δ = 10 and no interleaved quantization p = 1.0 (0.86 bpp),
and its absolute error with respect to the original undistorted image. The bottom row
shows the same image, and its error, when compressed using interleaved quantization
with p = 0.9 (0.96 bpp). In this case, the artifacts are dramatically reduced at a slight
bitrate increase of 0.1 bpp.
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We applied the IQ idea to a simplified version of JPEG-LS which we will
refer to as “IQ” in the sequel. Its main difference with JPEG-LS lies in the way
that it switches to run coding mode, which in IQ is analogous to the lossless
case, whereas JPEG-LS takes into account quantization (a reasonably complete
description of JPEG-LS is not possible given the space constraints; please refer
to [6] for technical details on its definition). As JPEG-LS uses a very simple,
fixed (2D) predictor together with a context-dependent bias correction term,
the effect of quantization fits well within the simplified analysis of Figure 3, as
the results below show.

4 Results and Discussion

The primary purpose of our algorithm is to improve upon the visual artifacts
produced by current near-lossless prediction-based image coding techniques. Fig-
ures 4 and Figure 5 are examples for which such artifacts are clearly visible, even
for small target distortions, on a very low dynamic range medium such as paper
or even an ordinary computer monitor. It is important to underline that such
effects are much more noticeable, at even smaller target distortions, on current
commercial displays aimed at consumers in general. For a numerical evaluation
of our method, we applied the IQ algorithm to a grayscale version of the “Kodak
dataset”1,2. In Figure 6 we report these results in terms of the traditional Rate-
Distortion curve, based on mean squared error (MSE), and on a Rate-Quality

Fig. 5. Color example. Without quantization (left column) the banding effect is already
noticeable for δ = 5, is clearly visible for δ = 10. Leaving only 10% unquantized already
improves the visual quality significantly, as can be seen on the right column. Note: this
example is best appreciated on a computer screen.

1 Publicly available at http://r0k.us/graphics/kodak/
2 Additional examples, as well as the source code, are available at http://iie.fing.edu.

uy/∼nacho/demos/iq/.

http://r0k.us/graphics/kodak/
http://iie.fing.edu.uy/~{ }nacho/demos/iq/
http://iie.fing.edu.uy/~{ }nacho/demos/iq/
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I I

Fig. 6. Summary of results. Left: Rate-Distortion curves in terms of MSE for JPEG,
JPEG-LS and IQ in the near-lossless region. Right: Rate-SSIM curves for the same
algorithm. In both cases, the IQ curve is plotted for various values of the quantization
probability p, each dot corresponding to a value of δ, starting with δ = 0 (lossless,
that is, MSE= 0 on the left, and SSIM= 1.0 on the right), in increments of 1. In the
first case, the Rate-Distortion curves for IQ are above the JPEG-LS one for p < 1.0,
meaning that the process of interleaving does not provide advantages over JPEG-LS
in terms of quadratic Rate-Distortion. (It remains, however, below that of JPEG, for
values of δ < 4.) In the second case, where lower-right is better, IQ improves over
JPEG-LS in the very low distortion region (δ ≤ 3).Note: this is a color graph.

curve, with the “quality” given by the Structural SIMiliary index [12]. In both
cases, we compare our results against the classic (lossy, and not predictive, but
transform-based) JPEG [13], and JPEG-LS [6], focusing on the near-lossless
region (δ ≤ 5).

As can be seen in Figure 6(left), from a traditional quadratic Rate-Distortion
(R-D) perspective, the proposed interleaved quantization does not offer any
advantages over JPEG-LS; it essentially coincides (as expected) with JPEG-LS
for p = 1, and moves upwards (this is worse) as p decreases. Also as expected,
both give better R-D tradeoffs than JPEG in the low-distortion region shown. In
terms of the Rate-SSIM curve shown in Figure 6(right), however, IQ improves
over JPEG-LS in the very low distortion region, with several configurations lying
below and to the right of the JPEG-LS curve (that is, higher SSIM at the same
bitrate). At some point (here, below 3.00bpp), also as expected, both IQ and
JPEG-LS lose by a significant margin to the classic JPEG algorithm, which is
optimized for non-near lossy operation. Although these numerical results may
seem dissapointing, we argue that the gain in terms of visual quality, as evidenced
in figures 4 and 5, is much larger. Also, it is important to bear in mind that one
of the advantages of near-lossless compression lies in its guaranteed maximum
distortion, something which may be advantageous, from a legal standpoint, over
traditional methods such as JPEG (example, medical imaging for diagnosis).
In this sense, our method retains such advantages, while producing less visual
artifacts, and at a small decrease in compression rate.
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Abstract. In this paper a new algorithm to perform edge detection
based on a bootstrap approach is presented. This approach uses the esti-
mated spatial conditional distribution of the pixels conditioned by their
neighbors. The proposed algorithm approximates the original image by
adjusting local 2D autoregressive models to different blocks of the image.
The residuals are used in order to generate resampled images by using
bootstrap techniques. The proposed algorithm applied to synthetic and
real images generates as a result, a binary image, in which the detected
edges can be observed.

Keywords: Spatial autoregressive models · Image procesing · Edge
detection · Segmentation · Sieve bootstrap

1 Introduction

During the last decades, edge detection and image segmentation, have been two
of the topics that have drawn more attention in the area of computer vision and
other related areas. For example, in the topic of medical imaging, it is known
that the features that determine the presence or absence of a disease, do not
appear in the whole image, instead they appear in local regions of it [7]. Edge
detection allows to locate and identify sharp discontinuities of an image. These
discontinuities are due to abrupt changes in the pixel intensity which character-
izes boundaries of objects in a scene. Due to this reason, edges give boundaries
between different regions of an image, which can be used to identify objects
with segmentation methods [1]. Many techniques for edge detection have been
proposed, based in the compute of gradient by the first and second derivatives
[1,4]. There are many edge detection operators available that identify vertical,
horizontal, corner and step edges. The operators based in the first derivative
are the Sobel, Prewitt and Robert, and the the main operators based on the
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second derivative are Zero Crossing, Laplacian of Gaussian (LoG) and Canny
edge detector. These methods do not use an explicit spatial relation from the
neighboord like the correlation information.

The two-dimensional autoregressive models are one way to represent the
gray/intensity images based on the spatial linear relation of the pixels. Recently
a segmentation and edge detection method based on an AR-2D models have been
proposed [6]. The algorithm consists in locally fitting a two-dimensional autore-
gressive model to the original image. The image is divided into square region and
an AR-2D model is fitted to each of these regions catching the linear relation in
the image. For that, the residual image contains the non-linear relation present
in the image. This makes that abrupt transitions between regions/object of the
image and the areas with different textures are noticed. This algorithm high-
lights the location of the edges of the original image, but does not differentiate
them in a unique way from the different areas, instead what it does, it uses the
gray-scale transitions, which do not specify where one region ends and where the
other starts. This is necessary in applications like image segmentation [9].

In this paper we focus our attention on edge detection of images based on
the spatial information obtained by the estimation of the empirical conditional
spatial distribution of the pixels of the image by means of the use of a AR-
2D sieve bootstrap approach. This bootstrap approach is similar to the AR-1D
sieve bootstrap in time series [2], with the difference that the index set, instead
of being R|Z, corresponds to Z

2 and an order relation can be defined.
The paper is presented as follows: In the next section we present an overview

of the spatial AR processes. In Section 3 we describe our proposal. In Section 4
we show some simulation and real data results. In the last section we present
some concluding remarks.

2 State of the Art

Spatial Linear Models

In all the following, all the random fields are indexed over Z
d, with d ≥ 2,

and Z
d is endowed with the usual partial order, that is for s = (s1, . . . , sd), u =

(u1, . . . , ud) in Z
d, we write s ≤ u if for all i = 1, . . . d, si ≤ ui. For a, b ∈ Z

d, such
that a ≤ b and a �= b, the following indexing subsets in Z

d, will be considered:

S[a, b] = {x ∈ Z
d|a ≤ x ≤ b}, S〈a, b] = S[a, b]\{a}, (1)

S[a,∞] = {x ∈ Z
d|a ≤ x}, S = 〈a,∞] = S[a,∞]\{a}, (2)

Let (Xs)s∈Zd be a real valued square integrable random field. The random field
(Xs) is said to be stationary or weakly stationary if

E(Xs) = μX , ∀s ∈ Z
d, (3)

γ(u, v) = E[(Xu − E(Xu)(Xv − E(Xv))] = γ(u + h, v + h), ∀ u, v, h ∈ Z
d(4)

It is strictly stationary, if for all h ∈ Z
d, (Xj)j∈S and (Xj+h)j∈S have the same

joint distributions.
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We say that a random field (Xs)s∈Zd is linear if for any s,

Xs =
∑
j∈Zd

ψjεs−j (5)

with
∑ |ψj | < ∞ and where (εs)s∈Zd denotes a family of independent and iden-

tically distributed (i.i.d) centered random variables with variance σ2 > 0.
Following [8], we say that a random field (Xs)s∈Zd is a spatial ARMA(p, q)

with parameters p, q ∈ Z
d, if it is weakly stationary and satisfies the following

equation
Xs −

∑
j∈S〈0,p]

φjXs−j = εs +
∑

k∈S〈0,q]

θkεs−k (6)

where (φj)j∈S〈0,p] and (θk)k∈S〈0,q] denotes respectively the autoregressive and
the moving-average parameters with φ0 = θ0 = 1. Notice that, if p = 0, the
sum over S〈0, p] is supposed to be zero, and the process is called a spatial
autoregressive AR(p) random field. In the same sense, if q = 0 the process is
called an MA(q) random field.

The ARMA random field is called causal if it has the following unilateral
expansion

Xs =
∑

j∈S[a,∞]

ψjεs−j , (7)

with
∑

j∈S[a,∞]

|ψj | < ∞.

Let φ(z) = 1 − ∑
j∈S〈0,p] φjz

j and θ(z) = 1 +
∑

j∈S〈0,q] θjz
j where z =

(z1, . . . , zd).
Then, a sufficient condition [8] for the random field to be causal is that the

autoregressive polynomial φ(z) has no zeros in the closure of the open disc Dd

in C
d.

The first study of this class of models was studied by Whittle in 1954 [11].
There exist several prediction windows that can be considered in the definition
of a spatial ARMA process. A complete treatment of prediction windows and
examples can be found in [3].

Spatial ARMA 2-dimensional

The 2D ARMA process is defined by the equation [5] with s = (i, j) ∈ Z
2

Φ(B1, B2)X(i, j) = Θ(B1, B2)ε(i, j), (8)

where the two dimensional backward operators Φ(B1, B2) and Θ(B1, B2) are
given by

Φ(B1, B2) =
∑

k

∑
l

φ(k, l)Bk
1Bl

2,

Θ(B1, B2) =
∑

k

∑
l

θ(k, l)Bk
1Bl

2,
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with B1X(i, j) = X(i − 1, j) and B2X(i, j) = X(i, j − 1) and ε(i, j) are inde-
pendent random variables with E[ε(i, j)] = 0 and V ar[ε(i, j)] = σ2.

As in the time series case, there are conditions on the 2-dimensional polyno-
mials to be stationary and to have invertibility. For stationarity, it is enough to
assume that the complex valued polynomial Φ(z1, z2) is not zero for any z1 and
z2, which simultaneously satisfies |z1| < 1 and |z2| < 1.

As in the one-dimensional case, if Φ(B1, B2) = 1, then the process is called
moving average, and if Θ(B1, B2) = 1, the process is called autoregresive.

Sieve Bootstrap

Sieve bootstrap is a bootstrap method to generate trajectories from the original
time series maintaining its probabilistic structure. The sieve bootstrap method
is based on resampling with replacement from the residuals obtained from esti-
mating the stochastic process observed. It is important to highlight that the
method is based on the approximation of an infinite dimensional or non para-
metric model by means of a sequence of finite dimensional parametric models,
due that the model converges to infinity as n → ∞ [2]. The sieve bootstrap
method is based on the Wold theorem, which establishes that if we decompose
a stationary stochastic process {Xs}s∈Zd , and we take the stochastic part, it
can be represented as a stochastic mean average stationary process {Xs}s∈Zd of
order infinity or general linear model

Xs − μX =
∞∑

j=0

ψjεs−j , ψ0 = 1, s ∈ Z
2, (9)

where {εs}s∈Z2 is a i.i.d. process with E[εs] = 0 and
∑∞

j=0 ψ2
j < ∞. This general

linear representation plus some assumptions allows us to use the sieve method
in linear and mean average autoregressive models.

If the observed process supports the linear general representation (9) and it
is invertible, we can represent {Xs}s∈Z2 as a one-side infinite-order autorgressive
process

Xs − μX =
∞∑

j=0

φj(Xs−j − μX) + εs, φ0 = 1, s ∈ Z
2, (10)

with
∑∞

j=0 φ2
j < ∞. With this representation, it can be used as a AR-sieve

approximation with AR(p) models.

Sieve Bootstrap Confidence Intervals. The sieve bootstrap confidence
intervals are built from the empirical quantiles obtained from the B bootstrap
observations X∗

S+h. These observations, h steps ahead, are part of the B boot-
strap trajectories generated by means of the sieve bootstrap algorithm for pre-
diction intervals, with which we estimate the conditional distribution of XS+h,
given the known observations.
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3 Proposed Method

In this paper we propose an edge detection algorithm for images which is based in
the spatial relation estimated by means of an AR-2D sieve bootstrap approach.
This algorithm consists in two main steps; The first consists in the estimation of
the empirical conditional distribution of a pixel and the second step discriminates
if a pixel is or not an edge pixel. Based on the imposed restriction that the
real intensity pixel must be inside of a prediction interval if it shares a similar
correlation structure with its neighborhood. Because of this, it is expected that
a pixel belonging to a rough transition between two regions of the image (as the
edges), should be outside the prediction interval.

The algorithm proposed is an extension of the algorithm proposed in [6]
(Algorithm 1), which is the following and will be denoted as Algorithm 2.

Algorithm 1

1: Split image I in square blocks of dimesion k × k.
2: Compute the autoregressive coeficient by least square estimators

φ̂1, φ̂2, . . . φ̂p or φ̂0,1, φ̂1,0, . . . φ̂1,1 of the two dimensional autoregressive model
to each block.

3: Compute the residual image by means of the difference between the original
image I and the estimated image Î.
The proposed algorithm is as follows:

Algorithm 2. Edge Detection

1: Use Algorithm 1.
2: Center the estimated residuals by means of

ν̃s =

(
ν̂s − 1

N − p

N∑
s=p+1

ν̂s

)
, (11)

where s is the spatial coordinate s = (i, j) of the residual pixel computed
and N is the number of pixels in each block.

3: Generate a resample {ν∗
s }T

s=1
from F̂ν̃,N (y) of each block.

4: Generate a bootstrap sample of each block with

X∗
i,j = φ̂1,0X

∗
i−1,j + φ̂0,1X

∗
i,j−1 + φ̂1,1X

∗
i−1,j−1 + ε∗

i,j , (12)

where X∗
i,j = Xi,j for i, j ≤ 1.

5: Generate a bootstrap prediction of the pixels in each block by means of

X∗
i,j = φ̂1,0X

∗
i−1,j + φ̂0,1X

∗
i,j−1 + φ̂1,1X

∗
i−1,j−1 + ε∗

i,j , (13)

where X∗
i,j = Xi,j ∀i, j ∈ S.

6: Repeat Steps 3 to 5, B times for each block.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Original image, (b) Sobel edge detector, (c) Prewitt edge detector, (d) LoG
edge detector, (e) Canny edge detector and (f) Image result of Algorithm 2.

7: Obtain a prediction interval of (1 − α)100% for the real value of the pixel
Xi,j using F̂ ∗

Xi,j
.

[
−

√
H∗

(1−α),
√

H∗
(1−α)

]
, h = 1, · · · , s, (14)

where H∗
(1−α) is the quantile 1 − α of F̂ ∗

Xi,j

8: Determine if the real value of the pixel Xi,j belongs to the interval.
9: If Xi,j does not belong to the interval, the pixel is considered as an edge.

4 Simulated and Real Image Results

In this section we present two experiments that illustrate the performance of the
proposed algorithm for edge detection and other proposals widely studied in the
literature like the follow operators: Sobel, Prewitt, LoG and Canny, which are
based in the first and second estimate derivatives.

We consider simulated and real images of size 512 × 512, which were taken
from the USC-SIPI image database http://sipi.usc.edu/database/. The order
of the AR-2D model was p = 3. The number of bootstrap samples used in
the experiment was B = 300. The sizes of the blocks was of 64 × 64, 128 ×
128, 256 × 256 and 512 × 512. The selection of an especific pair of α of the
(1 − α)100% prediction intervals and size of blocks depended for each image,
where was considered aspects like continuity of the edges and number of point
misclassified.

http://sipi.usc.edu/database/
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Original image, (b) Sobel edge detector, (c) Prewitt edge detector, (d) LoG
edge detector, (e) Canny edge detector and (f) Image result of Algorithm 2.

In Figure 1 we can see the results of the diferent edge detection approaches
applied to a synthetic image composed of many regions with different constant
levels of gray intensity and shape of the boundaries. The approaches based in
the first derivative did not detect all the boundaries and presented some discon-
tinuitues (Figure 1(b) and 1(c)), which was partially solved by second deriva-
tive based approaches (Figure 1(d) and 1(e)). The LoG method (Figure 1(d))
presented spurious edges. The Canny approach (Figure 1(e)) presented discon-
tinuities in some boundaries. Finally, the Boostrap approach (Figure 1(f)), out-
performs all the clasic approaches, because it detected all the boundaries of the
regions without discontinuities. The parameters of the Bootstrap approach were
α = 0.05 and a block size of 512 × 512.

In Figure 2 the results applied to the real image are presented. We can
observe that all the clasic approaches obtained similar results, but with some
differences related to the continuity of some boundaries and the presence of
spurious edges, specifically in the Canny approach (Figure 2(e)). The parameters
of the Bootstrap approach (Figure 2(f)), were α = 0.05 and a block size of 256×
256. The Bootstrap approach presents a good identification of the real edges,
but it also shows the presence of many pixels inside of the regions missclasified
as edges. Despite this, the Bootstrap approach seems to follow detect most of
the real edges.

The results of the proposed method on both simulated and real images look
promising, and the edges are clearly distinguishable.
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5 Conclusions

In this paper we have introduced a new algorithm to perform edge detection
based on a Bootstrap approach. This approach uses the spatial conditional dis-
tribution, estimated for each pixel, in order to obtain prediction intervals for
them. This allows to classify as edges, pixels whose gray intensity are not within
the intervals, i.e. those pixels that seem distant from the probabilistic structure
of their neighbors, which is assumed to be similar inside a specific region.

The conditional Bootstrap estimation of the distribution of the pixels in a gray
level image could open a new line of research in image analysis processing, which
could be used not only in better edge detection algorithms, but also in segmenta-
tion algorithms or as a feature in more complex image analysis techniques.

As future work, it is planned to improve the current algorithm applying the
propagation of the AR-2D process not only from the top-left corner of the image,
but also from the other three corners. We assume that merging the information
from 4 different directions could improve the edge detection of more types of
edges, i.e. diagonal and lines placed in different layouts. We plan also to propose
an extension of the algorithm to color or multi-spectral images.

We also consider future work, the robustification of the algorithm in order
to work with contaminated images with additive and innovative noise based on
the approach in AR-1D models presented in [10]. The latter work showed good
results with innovative and additive noises, so we think it could be useful for
this approach.
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Abstract. Fast global shift estimation is a critical preprocessing step on
many high level tasks such as remote sensing or medical imaging. In this
work we deal with a simple question: should we use an iterative technique
to perform shift estimation or should we use a multiscale approach. Based
on the obtained results, both methodologies proved to lose accuracy as
the noise increases, however this accuracy loss increases with the shift
magnitude. The conclusion is that a multiscale strategy should be used
when the shift magnitude is higher than approximately a fifth of a pixel.

Keywords: Shift estimation · Multiscale · Iterative

1 Introduction

Given two images shifted by some unknown displacement v, the problem of shift
estimation is to compute this displacement. Problems such as low SNR condi-
tions, lack of image structure and quantization errors make this task non trivial.
Several issues appear as well when seeking for accurate subpixel shifts. Neverthe-
less, precise and real-time shift estimation methods are required in many fields,
such as remote sensing [4,11,15] or medical imaging [6,16].

As mentioned in [17], there are mainly four types of shift estimation methods
that achieve subpixel accuracy: correlation interpolation, intensity interpolation,
differential methods and phase correlation.

Correlation interpolation methods achieve subpixel accuracy by fitting an
interpolation surface to the samples of a discrete correlation function, and then,
the maximum of this surface is searched. This methodology not only implies
calculating the discrete correlation between images, which is a resource con-
suming task, but also to interpolate it. A more straightforward way to achieve
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subpixel accuracy is to interpolate selected parts of the input images to create a
much denser grid. Then, the task is to match these grids between images, which
requires knowing beforehand which part of the input images to interpolate and
then match, something which is not always available.

To date, there are mainly two fast and accurate shift estimation methods
from which several branches have emerged. The first one is based on the phase
correlation technique [3,5,12], in which the displacement is estimated using the
cross-power spectrum between both images. This technique, although able to
obtain quite accurate results, requires at least the computation of the DFT for
both input images, a task that could be prohibitive depending on the context.

On the other hand, differential methods are normally faster than Fourier-
based methods, since they do not require computing the DFT. By using a dif-
ferential technique, the difference between two frames is related with the spatial
intensity gradient of the first image. Given I1(x, y) and I2(x, y), and denoting
the components of the translation between both images by vx and vy, we have

I2(x, y) = I1(x − vx, y − vy). (1)

Using the first order Taylor expansion yields

I1(x, y) − I2(x, y) � vx
∂I1(x, y)

∂x
+ vy

∂I1(x, y)
∂y

(2)

which is a formula known under the name of optical flow equation [6]. Since the
higher terms of the Taylor approximation were removed, this relation performs
well only when the translation is small, in particular when it is less than one pixel.
The unknown shift v is estimated by minimizing the error in this equation. This
can be done by minimizing the L2 norm. Using linear least squares is a classical
solution, introduced by Lucas-Kanade [7], and has linear complexity.

This estimator, however, ignores the higher terms of the Taylor development
and the fact that the underlying input images have noise, which biases the results.
A complete study on this bias was performed by Robinson and Milanfar [13],
followed by Pham et al. [9]. In these works, an explicit formula for the Lucas-
Kanade estimator bias was derived. However, these authors address the bias in
two completely different ways.

Robinson and Milanfar tried to reduce the influence of the estimator’s bias
by designing a gradient estimation filter (i.e. antisymmetric) which minimized
its bias derivation in the Fourier domain based on the selection of pre-filters and
on the prior knowledge of the image spectrum and some constraint about the
shift [14]. Surprisingly, this article proposed to minimize the estimator bias by
attacking the approximation error in the data model due to the linear signal
approximation performed by the Taylor development, while completely ignoring
the noise. In fact, low Signal-to-Noise Ratio situations are discarded since they
claim that in many image registration applications, the effective SNR falls into a
high SNR regime. For this reason, they achieve poor results on images with SNR
lower than 20dB. Furthermore, none of these previous approaches work under
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aliased situations or badly sampled images, which are possible (yet undesired)
in computer vision problems.

Pham et al., on the other hand, derived a complete 2D gradient-based shift
estimation bias in the spatial domain. However, instead of dealing with it explic-
itly, they note the linear dependence between the estimator’s bias with both the
shift magnitude and the noise. They also remark that the bias due to the noise
is proportional to the shift magnitude as well. Thus, they propose to reduce the
bias by iteratively computing the shift and resampling the second image onto the
first. Based on their results, with only three iterations they are able to obtain
an almost unbiased estimator. This iterative scheme was actually proposed by
Lucas and Kanade in [7], and further refined in Baker et al. [1] in a complete
study of the Lucas-Kanade estimator. However, this iterative scheme involves
performing interpolation, which becomes an expensive computation.

A different iterative scheme, such as in Thevenaz et al. [16], consists in com-
puting the image pyramid and to perform shift estimation on each level sepa-
rately. Beginning by the coarser level, the estimated shift is then used to resample
the second image on the next finer scale. Although this technique requires the
construction of the pyramid, it can allow itself to use more complex interpolation
techniques on lower scales due to its reduced cost. Most importantly, the shift
estimation performed on each scale could also be made iterative, a price that
can be payed when working on coarser scales.

Objective. Both iterative techniques (direct and multiscale) succeed in reducing
the bias when enough iterations are applied. However, it is not straightforward,
based on the shift magnitude and on the noise conditions of the input images,
to estimate which methodology achieves better results on each condition. For
example, if the shift magnitude is above one pixel, the multiscale approach
will definitely be necessary. Furthermore, under noisy conditions, working on
a coarser scale permits to reduce the noise influence, however less pixels (and
thus equations) will be available to perform shift estimation.

In this article we evaluate both methodologies by varying the noise, the
shift to estimate, the derivative kernels used, the amount of iterations and the
underlying interpolation method in order to understand how each methodology
performs. What is more, we answer the question of deciding between applying a
multiscale approach or sticking to the original solution.

The rest of this paper is organized as follows. In section 2 both methodologies
are explained in detail. In section 3 we evaluate each of them, under all possible
conditions, and based on this we draw conclusions on section 4.

2 Methods

2.1 Iterative Lucas-Kanade Shift Estimation Method

The Lucas-Kanade algorithm is based on the optical flow equation:

It(x, y) � ∇I1(x, y)v. (3)
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where ∇I1(x, y) =
[

∂I1(x,y)
∂x , ∂I1(x,y)

∂y

]
and v =

[
vx

vy

]
is the unknown shift. Then,

to estimate the global optical flow between both grayscale images I1 and I2,
the Lucas-Kanade algorithm assumes a constant flow for the whole image, thus
implying a unique translation vector v for every pixel. This assumption leads to
the construction of an overdetermined system of equations, Av = b, where A is
composed of spatial intensity derivatives and b has temporal derivatives

A =

⎛
⎜⎝

∂I1
∂x (p1) ∂I1

∂y (p1)
...

...
∂I1
∂x (pn) ∂I1

∂y (pn)

⎞
⎟⎠ v =

(
vx

vy

)
b = −

⎛
⎜⎝

∂I1
∂t (p1)

...
∂I1
∂t (pn)

⎞
⎟⎠ (4)

and pi with i = 1 . . . n represents the ith pixel and n the number of pixels.
To solve this system, (vx, vy) is obtained by performing the linear least squares
method, using the Moore-Penrose pseudo-inverse. Let Ix, Iy and It denote ∂I1

∂x ,
∂I1
∂y and ∂I1

∂t respectively, the following linear system has to be solved

ATAv = ATb (5)

where ATA =
[ ∑

I2x
∑

IxIy∑
IxIy

∑
I2y

]
is the second moment matrix, and ATb =

[∑
ItIx∑
ItIy

]
is a spatio-temporal gradient correlation term. To solve this system,

the matrix ATA must be invertible in which case the solution is (ATA)−1ATb.
It is not a coincidence that the results of the method depend on the inversion

of this second moment matrix since the determinant of this matrix is crucial
for determining the limits on the estimation performance [9]. A study on this
matrix before performing the shift estimation can be used to discard ill-posed
cases. This happens for example when the gradient occurs on its majority on
a single direction and therefore we are dealing with a potentially unsolvable
situation, commonly known as the aperture problem. Last but not least, since
the Taylor development is centered at 0, this method performs well only when
the translation is small, i.e., shifts larger than 1 would not be correctly estimated.

Lucas and Kanade also suggest iterating the method to obtain better results
and converge to the true displacement value. This algorithm is easily understood
in the following lines:
1 i ← 0; I2(0) ← I2; w ← 0
2 while i ≤ k and |v(i − 1) − v(i − 2)| ≥ min do
3 v(i) ← findshift(I1, I2(i))
4 w ← w + v(i)
5 I2(i + 1) ← Resample(I2, −w)
6 i ← i + 1

where findshift uses Eq. (5) to solve for v(i) and Resample performs interpo-
lation on the input images, which is a costly operation. In particular, if an inap-
propriate interpolation algorithm is used, it could lead to poor results, implying
a non-negligible computational cost.
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On the other hand, it was proved in Pham et al. [9] that this iterative
method is able to significantly reduce the bias, provided an appropriate resam-
pling method is used. Due to this reason, very poor results are obtained when
dealing with highly aliased images, as shown in [10] when a single iteration out-
performs the multi-iteration method. Nevertheless, with a correct resampling
and with a sufficient number of iterations, this method is the only capable, to
our best knowledge, of practically removing the bias.

2.2 Multiscale Lucas Kanade Shift Estimation Method

By building a pyramid representation of the input images, Eq. (5) can be applied
on each scale to estimate the shift between images, and this estimated shift can in
turn be used to resample the second image on the following level of the pyramid.
In our case, a dyadic Gaussian pyramid approximation was used [2]. We also
evaluated using an exact dyadic Gaussian pyramid [8], filtering with σ = 1.4
before subsampling, however the results were similar. Starting from the coarse
image at scale n > 1, the method is summarized in the following lines:

1 I1...n
1 ← ComputeImagePyramid(I1, n) // Burt &Adelson’s Gaussian Pyramid [2],

2 I1...n
2 ← ComputeImagePyramid(I2, n) // i.e., impyramid function from Matlab

3 i ← n; w ← 0
4 while i > 0 do
5 v(i) ← findshift(Ii

1, I
i
2)

6 w ← w ∗ 2 + v(i) ∗ 2

7 Ii−1
2 ← Resample(Ii−1

2 , −w)
8 i ← i − 1

9 v(i) = findshift(I1
1 , I1

2 )

3 Results

Both methodologies described in sections 2.1 and 2.2 were evaluated extensively
under different noise conditions, shifts and gradient estimators. To show the most
representative results, four SNR conditions were evaluated: noiseless, low noise
(σ = 5), medium noise (σ = 25) and high noise (σ = 50). Each table is organized
in groups of four lines corresponding to each of these four noise configurations.
Also, the four most significative shifts in terms of results are shown: a big shift
(0.5,−0.9), a medium shift (0.2,−0.2), a small shift (0.024, 0.052) and no shift.

The performance of each algorithm under each condition was evaluated by
simulating shifted images obtained from a high resolution satellite image of
10000 × 10000 pixels. For each noise and shift, 100 experiments were averaged,
and each experiment was performed by shifting the large image using Fourier
interpolation and taking a 50 × 50 subimage from a random position away from
the edges to avoid ringing artifacts followed by adding white Gaussian noise and
evaluating all the methods (Fig. 1). The results shown were later validated using
the Cramer-Rao bound (verifying that both var(v̂x) and var(v̂y) are lower than
0.01) so that the averaged values contain only valid shift estimations.
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Fig. 1. Two problems: a noisy and an almost unidimensional gradient situation

Table 1. Estimation error (in pixels) per shift of every method using 2 iterations and
bicubic interpolation from valid estimations. For each shift and estimation method,
four SNR conditions were tested. The first three columns are for the iterative method
(IT) while the last three are for the multiscale approach (MS) with a single iteration per
scale. In each case, three gradient estimation methods were used: backward difference
and Gaussian derivative with σ = 1 and with σ = 0.3 respectively.

Shift (px) Noise IT2G1 IT2G2 IT2G3 MS2G1 MS2G2 MS2G3

(0.5000,-0.9000)

σ = 0 0.0514 0.0818 0.0472 0.0387 0.1600 0.0316
σ = 75 0.1375 0.1053 0.1103 0.0744 0.1808 0.0582
σ = 150 0.2875 0.1414 0.2305 0.1267 0.2130 0.1009
σ = 300 0.4927 0.2327 0.4292 0.2319 0.2872 0.1909

(0.0000,0.0000)

σ = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ = 75 0.0114 0.0188 0.0132 0.0164 0.0188 0.0175
σ = 150 0.0168 0.0330 0.0219 0.0300 0.0326 0.0313
σ = 300 0.0191 0.0539 0.0307 0.0527 0.0549 0.0573

(0.2000,-0.2000)

σ = 0 0.0115 0.0117 0.0154 0.0115 0.0360 0.0159
σ = 75 0.0249 0.0267 0.0223 0.0192 0.0470 0.0225
σ = 150 0.0652 0.0424 0.0487 0.0360 0.0591 0.0358
σ = 300 0.1295 0.0765 0.1103 0.0738 0.0899 0.0694

(0.0240,0.0520)

σ = 0 0.0040 0.0019 0.0052 0.0039 0.0073 0.0054
σ = 75 0.0122 0.0181 0.0138 0.0156 0.0189 0.0166
σ = 150 0.0198 0.0326 0.0231 0.0296 0.0326 0.0311
σ = 300 0.0300 0.0543 0.0354 0.0547 0.0564 0.0581

Avg.

σ = 0 0.0167 0.0238 0.0170 0.0135 0.0508 0.0132
σ = 75 0.0465 0.0422 0.0399 0.0314 0.0664 0.0287
σ = 150 0.0973 0.0624 0.0811 0.0556 0.0843 0.0498
σ = 300 0.1678 0.1043 0.1514 0.1033 0.1221 0.0939

In tables 1 and 2 results are shown for 2 iterations and bicubic interpolation
and for 3 iterations with spline interpolation respectively. From these results
several conclusions can be drawn. First, as expected, the multiscale method is
much more robust when the shift magnitude is high. In fact, even at a shift
of (0.2,-0.2) it is recommendable to use the multiscale method instead of the
standard iterative version. Second, when no shift or a small shift is present, the
non-multiscale methods achieve much better accuracies. Apparently, the multi-
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Table 2. Estimation error (in pixels) per shift of every method using 3 iterations
and spline interpolation from valid estimations. Table configuration is the same as in
Table 1.

Shift (px) Noise IT3G1 IT3G2 IT3G3 MS3G1 MS3G2 MS3G3

(0.5000,-0.9000)

σ = 0 0.0156 0.0238 0.0065 0.0114 0.1007 0.0086
σ = 75 0.0646 0.0437 0.0437 0.0293 0.1194 0.0251
σ = 150 0.1869 0.0727 0.1326 0.0533 0.1488 0.0497
σ = 300 0.4092 0.1480 0.3337 0.1093 0.2143 0.1001

(0.0000,0.0000)

σ = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ = 75 0.0116 0.0199 0.0133 0.0261 0.0330 0.0260
σ = 150 0.0194 0.0357 0.0246 0.0468 0.0547 0.0467
σ = 300 0.0250 0.0621 0.0391 0.0980 0.1065 0.1001

(0.2000,-0.2000)

σ = 0 0.0027 0.0045 0.0043 0.0206 0.0205 0.0235
σ = 75 0.0201 0.0229 0.0182 0.0304 0.0430 0.0334
σ = 150 0.0475 0.0395 0.0373 0.0483 0.0593 0.0489
σ = 300 0.1096 0.0718 0.0913 0.0982 0.1195 0.0977

(0.0240,0.0520)

σ = 0 0.0007 0.0009 0.0013 0.0068 0.0041 0.0080
σ = 75 0.0120 0.0188 0.0132 0.0219 0.0283 0.0225
σ = 150 0.0207 0.0348 0.0248 0.0471 0.0548 0.0464
σ = 300 0.0313 0.0622 0.0412 0.1011 0.1056 0.1001

Avg.

σ = 0 0.0047 0.0073 0.0030 0.0097 0.0313 0.0100
σ = 75 0.0271 0.0263 0.0221 0.0269 0.0559 0.0268
σ = 150 0.0686 0.0457 0.0548 0.0489 0.0794 0.0479
σ = 300 0.1438 0.0860 0.1263 0.1017 0.1365 0.0995

scale algorithms are not suited for such small shifts since their poor performance
on lower scales results in less accurate results. This result contradicts several
state-of-the-art methods and is worth remarking. Third, regarding the amount
of iterations/scales to use, in presence of high noise, performing more iterations
in the original scale or using more scales in the multiscale approach gives worse
results in terms of accuracy. When dealing with a noisy situation, the resampling
operation proved to be negative for the shift estimation algorithm. This result is
more accentuated for the multiscale approach. Finally, the multiscale algorithm
proved to be a better contender when dealing with noise in general, although
this factor is greatly influenced by the shift magnitude. However, except when
the shift magnitude is lower than a fifth of a pixel, its use is recommended.
Moreover, its computational cost is lower than the iterative counterpart since
the resampling is performed on lower resolution images.

4 Conclusions

In this paper we dealt with a simple question never answered in the community:
should we use a multiscale strategy to perform gradient based shift estimation or
should we directly attack the problem by simply iterating in the original scale.
The answer of this question was shown to depend heavily on the shift magnitude
more than the SNR of the images. Under small shift magnitudes, performing a
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multiscale strategy achieves poorer results, in particular due to the lack of dis-
placement on the lower scales that makes the method less accurate. However,
when dealing with shifts higher than one fifth of a pixel, the multiscale strat-
egy showed strong improvements over traditional iterative Lucas-Kanade shift
estimation. Last but not least, in situations under low SNR, we concluded that
performing fewer iterations or using fewer scales achieves improved accuracy,
and this result is even more remarked in the multiscale approach. As a future
work, experimentation is planned on a larger dataset of images with different
characteristics, and by testing several other interpolation methods for image
resampling when iterating the algorithm.
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Abstract. Due the limited battery life and wireless network band-
width limitations, compact and fast (but also accurate) representations
of image features are important for multimedia applications running on
mobile devices. The main purpose of this work is to analyze the behavior
of techniques for image feature extraction on mobile devices by consid-
ering the triple trade-off problem regarding effectiveness, efficiency, and
compactness. We perform an extensive comparative study of state-of-
the-art binary descriptors with bag of visual words. We employ a dense
sampling strategy to select points for low-level feature extraction and
implement four bag of visual words representations which use hard or soft
assignments and two most commonly used pooling strategies: average
and maximum. These mid-level representations are analyzed with and
without lossless and lossy compression techniques. Experimental evalu-
ation point out ORB and BRIEF descriptors with soft assignment and
maximum pooling as the best representation in terms of effectiveness,
efficiency, and compactness.

1 Introduction

In 2014, the number of smartphone users worldwide achieved around 1.75 billion.
Recent forecasts indicate that the growth of smart mobile devices usage should
increase even more the next years [1]. Many challenges and opportunities have
emerged concerning image/video processing tasks, such as annotation, catego-
rization, detection and retrieval. The challenges in image processing in mobile
devices include constraints such as memory and computing resources which may
be very limited [2]. Due the limited battery life of mobile devices, energy usage
is also a critical issue [2]. Regarding feature extraction from images, those con-
straints configure a trade-off among effectiveness, efficiency and compactness.

In this work, we deal with the feature extraction triple trade-off problem
in mobile devices by evaluating low-cost feature representations. We concentrate
our efforts in three main fronts: (1) binary low-level descriptor selection; (2) mid-
level representations; and (3) feasibility analysis of data compression techniques.
Binary descriptors are interesting options because they provide effective and
compact representation [3]. Mid-level representations based on Bag of Visual
Words (BoVW, or just BoW) are also good alternative since they provide suitable
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 424–431, 2015.
DOI: 10.1007/978-3-319-25751-8 51
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representation for the amount of local features extracted. Finally, we analyze the
use of well-known compression algorithms to reduce as most as possible the size
of the final feature representation. To study low-cost representations for image
feature extraction on mobile devices, we have adopted a content-based image
retrieval (CBIR) application protocol.

Content-Based Image Retrieval (CBIR) applications on mobile devices have
been typically modeled using a client-server architecture [2]. Girod et al. [2]
present a low latency interactive visual search system. They use interest point
detection, compressed histogram of gradients (CHoG) descriptor and a mid-level
representation. However, due to the complexity of spatial sub-block assignment
scheme, the extraction of the CHOG is not fast enough. In addition, the quality
of features is also influenced by the detection of interest points, which does
not receive much attention by the CHOG. In [3], lossless compression of binary
image features is proposed to be used in a mobile CBIR enviroment. The coding
solution exploits the redundancy between descriptors of an image by sorting
the descriptors and applying differential pulse coded modulation (DPCM) and
arithmetic coding. They do not use mid-level representation, just apply lossless
compression on binary features before sending them to a server side. Each binary
descriptor is computed from a patch around a detected keypoint. They propose
a lossless predictive coding scheme for binary features.

Our work differs from the literature in several aspects. First, to the best of our
knowledge, there is no works in the literature that evaluate (or use) low-cost mid-
level representation based on dense sampling in mobile applications and it has
been shown that dense sampling is more accurate than interest point detection
to compute bag-of-visual-word features [4]. Second, there is no work that evalu-
ates the state-of-the-art binary descriptor called BinBoost [6] for image feature
extraction on mobile devices. Finally, we evaluate many compression techniques
and different assignment/pooling strategies to obtain compact representations.

2 Evaluation Methodology

We aim at evaluating binary low-level descriptors in different mid-level repre-
sentations to find the most suitable setups in terms of effectiveness, efficiency,
and compactness. As mentioned earlier, we have adopted a CBIR process which
is composed by offline and online phases.

In the Offline phase, after extracting local feature vectors from the image
dataset, the feature space is quantized and each region corresponds to a visual
word. We use the codebook to create bag-of-word representations for all images
in the database. Whereas, in the Online phase, given a query image, its local
feature vectors are computed and then assigned to the visual words in the dictio-
nary. Finally, the local assignment vectors are summarized by a pooling strategy,
which creates the bag-of-visual-words representation. A compression step may
be processed to reduce the feature vector size.

In the similarity search, a distance function (Euclidean) is used as similarity
measure to rank the database images.
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2.1 Low-Level Feature Extraction

Five well-known binary descriptors are used to encode low-level local properties:
(1) BRIEF [7]; (2) ORB [8]; (3) BRISK [9]; (4) FREAK descriptor [10]; and (5)
BinBoost descriptor [6]. We used a dense sampling (6 pixels, as in [5]) strategy
to select points for low-level feature extraction.

2.2 Mid-Level Representation

We evaluated two codeword assignment strategies with two different pooling
approaches (average and maximum). To summarize, we use Hard assignment
where the local feature descriptors of the image are matched with visual words
of the vocabulary (the nearest one). A histogram of the visual descriptors is
populated by the corresponding bins. We also use Soft assignment. In this case,
instead of assigning a descriptor to a single corresponding visual word, we assign
it to k bins in a soft manner. More specifically, for every descriptor, we add
a quantity q to the bins of the k top nearest visual words. This quantity q is
the Gaussian kernel (Radial Basis Function) distance of the descriptor and the
visual word.

2.3 Data Compression

Data compression is classified into two categories: lossless and lossy.
In this paper, we have used two approaches of lossless compression: Huffman

Encoding and Error Enconding + Huffman. The first one, (Huffman encoding)
is based on frequency of occurrence for each possible value of common symbols
which are generally represented using fewer bits than less common symbols. We
use the variation of Huffman called byte-oriented Huffman Code [11] where a
sequence of bytes is assigned to bin values of a BoW representation. In the
second approach, we use Error Enconding witch is the difference between bin
values. The first bin is the maximum error and have their own value. In this
paper, we applied this technique to try get repeated differences of bin values
and get a better compression using Huffman encoding.

Two approaches of lossy compression were tested in the Bag of Words
using Soft-Assignment with Maximum Pooling approach (BoW Soft-MAX). In
Soft-MAX Truncated, instead of sending float values, all numbers expressed in
floating-point were truncated and transformed in integer values. As a result, we
use the approach Soft-MAX using Ranges. In this lossy compression, we created
fixed features vectors with values in ranges of 5 or 10 or 15 or 20 or 25 or 30. We
choose values after looking for the minimum and maximum in all values of the
features of Soft-MAX. The idea is activate a bin if the value of the Soft-MAX
Truncated is next to the central point in the range.

3 Experimental Setup

The experiments were conducted in two public available image datasets: Caltech-
101 [12] and The PASCAL VOC 2007 [13]. Caltech-101 dataset contains
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9,144 images. The complete dataset size is 138.6 MB. The PASCAL VOC 2007
dataset consists of 9,963 images. It has multiple objects per image. The complete
PASCAL VOC 2007 size is 875.5 MB.

We used the P@10 metric (a well known and widely used metric of informa-
tion retrieval) to evaluate effectiveness. This measure is called precision at N
or P@N . The efficiency was evaluated by computing the feature extraction and
representation time, in seconds. Finally, we have used the representation size (in
bytes) and the Compression Ratio (CR) as measures for evaluating the compact-
ness. In this aspect, our baseline is the size of all images in the datasets. Thus,
we always divide images size per image representation size. If CR is high, the
compression ratio is better because the resulting image representation is smaller.

4 Results and Discussion

In this section, we present the experimental results and the discussion. Our
analysis is organized in three main parts. Section 4.1 presents the effectiveness
evaluation, Section 4.2 presents the efficiency evaluation of each representation
approach and Section 4.3 evaluates different compression techniques.

4.1 Effectiveness Evaluation

Table 1 (a) and (b) show the P@10 for each binary descriptor with four different
BoW-based mid-level representations. Regarding the Caltech 101 dataset, the
Soft-Assignment with Max Pooling (Soft-MAX) achieved the best results for all
tested descriptors. For the VOC Pascal 2007 dataset, Soft-MAX achieved high
P@10 values for BinBoost, BRIEF and ORB descriptors. Soft-AVG and Hard-
AVG mid-level representation also yield very high results for some descriptors.

Although, in the Caltech 101 dataset, FREAK descriptor with Hard-MAX
has similar P@10 as in FREAK with Soft-AVG or Soft-MAX, all mid-level repre-
sentations with FREAK descriptor yields low precision (P@10) comparing with
the other binary descriptors.

Table 1. P@10 for each descriptor with different mid-level representations (H = Hard,
S = Soft, BB = BinBoost, BF = BRIEF, BK = BRISK, FK = FREAK, OB = ORB).
P@10 reported with a confidence of 95%.

(a) Caltech 101

S-AVG S-MAX H-MAX H-AVG
BB 15.8 ± 0.3 24.4 ± 0.4 17.6 ± 0.3 23.0 ± 0.4
BF 16.0 ± 0.3 26.3 ± 0.4 18.2 ± 0.3 18.6 ± 0.3
BK 19.7 ± 0.3 26.7 ± 0.4 18.1 ± 0.3 20.0 ± 0.3
FK 18.5 ± 0.3 18.5 ± 0.3 18.5 ± 0.3 17.2 ± 0.3
OB 14.1 ± 0.2 26.2 ± 0.4 17.1 ± 0.3 17.7 ± 0.3

(b) Pascal VOC 2007

S-AVG S-MAX H-MAX H-AVG
40.2 ± 0.2 44.9 ± 0.2 42.4 ± 0.2 43.6 ± 0.2
39.8 ± 0.2 44.6 ± 0.2 39.6 ± 0.2 44.6 ± 0.2
43.3 ± 0.2 42.0 ± 0.2 39.0 ± 0.2 42.2 ± 0.2
41.1 ± 0.2 37.7 ± 0.2 37.9 ± 0.2 41.1 ± 0.2
39.7 ± 0.9 45.7 ± 0.2 38.8 ± 0.2 42.3 ± 0.2
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4.2 Efficiency Evaluation

Figure 1(a) presents the computational time required for each descriptor to
extract features for all images in Caltech 101 and Pascal VOC 2007 combined.
According to the results, while BinBoost and BRISK are the most expensive
descriptors, BRIEF, FREAK and ORB can be considered good choices since
they are very fast. For this experiment, we extracted each descriptor five times
per image and the results are reported with a confidence of 95% (α=0.05).

(a) (b)

Fig. 1. (a) Time (in seconds) spent for feature extraction of all images of Caltech 101
and VOC 2007 using different descriptors. (b) Size (MB) of the Images, Features and
ORB’ Mid-Level Representations in the datasets Caltech 101 and Pascal VOC 2007.

To evaluate each descriptor in both effectiveness and efficiency aspects, we
present the scatter plot in Figure 2, which shows the relation between P@10
and time in seconds (in log scale) for the best descriptors in the Caltech 101
(Figure 2(a)) and VOC 2007 (Figure 2(b)) datasets. In this scenario, the most
suitable representations are “BRIEF + Soft-MAX” and “ORB + Soft-MAX”
for Caltech 101 and “ORB + Soft-MAX”, “BRIEF + Soft-MAX”, and “BRIEF
+ Hard-AVG” for VOC 2007.

4.3 Compactness Evaluation

In this section, we evaluate the feature representation compactness aiming at
finding the most suitable descriptors concerning their feature vector size. As it
can be seen in Figure 1(b), it is better to transfer mid-level representation to
be processed in the server side instead of images or low-level features because
mid-level representation are more compact.

Lossless Compression: Figures 3(a) and 3(b) present the relation between
P@10 and Compression Ratio (CR) for the most suitable feature representations
in the Caltech 101 and Pascal VOC 2007 datasets, respectively.
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(a) Caltech 101 dataset (b) Pascal VOC 2007 dataset

Fig. 2. Relation of Accuracy (P@10) versus Time in seconds (log scale) for the most
accurate descriptors (See Table 1).

According to the results “BRIEF + Soft-MAX” and “ORB + Soft-MAX”
can be considered the most suitable approaches for the Caltech 101 dataset. For
the Pascal VOC 2007 dataset, the best ones are “ORB + Soft-MAX”, “BRIEF
+ Soft-MAX”, “BRIEF + Hard-AVG” and “BRIEF + Hard-AVG + Huffman”.
BinBoost and BRISK are time consuming and have been discarded.

(a) Caltech 101 dataset (b) Pascal VOC 2007 dataset

Fig. 3. Relation between P@10 and Compression Ratio (CR) for the most suitable
feature representations in Table 1 and/or using lossless compression.

Lossy Compression: Figure 4(a) and 4(b) present the relation between
P@10 and Compression Ratio (CR) for the Lossy compression of Soft-MAX
representation in the Caltech 101 and Pascal VOC 2007 datasets, respectively.

In the Caltech 101 dataset, we have included the best Soft-MAX represen-
tation to compare its performance with the compact ones. In the Pascal VOC
2007 dataset, we also have included the “BRIEF + Hard-AVG” and “BRIEF +
Hard-AVG + Huffman”. In both datasets, “ORB + Soft-MAX” and “BRIEF +
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Soft-MAX” have better P@10 compared with the lossy compression of Soft-MAX
representations.

It is worth to observe that Soft-MAX Truncated achieves similar P@10 com-
pared with raw Soft-MAX, but it is more compact (transformation of interger
to float values). For example, the precision (P@10) of “ORB + Soft-MAX” is
45,6471% (≈ 45.65%) with CR = 21.41 and the “ORB Soft-MAX Truncated”
is 45.6492% (≈ 45.65%) with CR = 85.83. In this case, the highest CR values
were observed with the “ORB Soft-MAX Truncated” approach, which are more
compact (See Table 2).

Even though the compression approaches that use ranges (lossy compression)
are extremely compact, they produce low precision rates, which invalidates their
use.

Table 2. Compression Ratio (CR) of “BRIEF + Soft-MAX”, “BRIEF + Soft-MAX
Truncated”, “ORB + Soft-MAX” and “ORB + Soft-MAX Truncated” in the datasets
Caltech 101 and Pascal VOC 2007.

Caltech 101 Pascal VOC 2007

BRIEF + Soft-MAX 3.69 21.3
BRIEF + Soft-MAX Truncated 14.9 85

ORB + Soft-MAX 3.75 21.41
ORB + Soft-MAX Truncated 15.07 85.83

(a) Caltech 101 dataset (b) Pascal VOC 2007 dataset

Fig. 4. Relation between P@10 and Compression Ratio (CR) for the lossy compression
of Soft-MAX representation. The best representations in Figure 3 have been included
only for comparison.

5 Conclusions and Future Work

In this paper, we conducted extensive evaluation of low-cost mid-level represen-
tation approaches by exploiting binary local descriptors in the context of feature
extraction on mobile devices. The experimental results pointed out that the most
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suitable representations in terms of effectiveness, efficiency, and compactness are
ORB and BRIEF descriptors with Soft assignment and MAX pooling. In addi-
tion, even though the BinBoost is an accurate descriptor, it produces a larger
feature vector and together with BRISK descriptor spends much more time to
extract features. Another good alternative to have an acceptable accuracy rate
gaining a better compression ratio is to use the descriptors ORB or BRIEF with
Soft-MAX Truncated instead of Soft-MAX. As future work, we intend to inves-
tigate the use of algorithms for detection of interest points. We also plan to use
more datasets and more mid-level representations and test the impact of using
different distance metrics on the final CBIR ranking.
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Abstract. In exemplar based texture synthesis methods one of the
major difficulties is to synthesize correctly the wide diversity of tex-
ture images. So far the proposed methods tend to have satisfying results
for specific texture classes and fail for others. Statistics-based algorithms
present good results when synthesizing textures that have few geometric
structures and are able to preserve a complex statistical model of the
sample texture. On the other hand, non-parametric patch-based meth-
ods have the ability to reproduce faithfully highly structured textures
but lack a mechanism to preserve its global statistics. Furthermore, they
are strongly dependent on a patch size that is decided manually. In this
paper we propose a multiscale approach able to combine advantages of
both strategies and avoid some of their drawbacks. The texture is mod-
eled at each scale as a spatially variable Gaussian vector in the patch
space, which allows to fix a patch size fairly independent of the texture.

Keywords: Texture synthesis · Locally gaussian · Multiscale · Patch
size

1 Introduction

Exemplar based texture synthesis is a well known problem that has many appli-
cations in computer graphics, computer vision and image processing, for exam-
ple for fast scene generation, inpainting, and texture restoration. It is defined as
the process of generating from an input texture sample a perceptually equivalent
larger one. Texture synthesis algorithms are generally divided into two categories,
the statistics-based [5,7,13] and the non-parametric patch-based [1–3,10–12,17].
The first category models a given texture sample by estimating statistical param-
eters that characterize the underlying stochastic process. Although these meth-
ods can faithfully reproduce some of the global statistics of the sample and
synthesize micro and pseudo-periodic textures, they generally do not yield high
quality visual results for more structured ones, in particular when the sam-
ple is small and contains large objects. The second category rearranges local
neighbourhoods of the input sample in a consistent way. These methods provide
efficient algorithms able to reproduce highly structured textures. Even though
they yield visual satisfactory results, they often turn into practising verbatim
copies of large parts of the input sample.
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 435–443, 2015.
DOI: 10.1007/978-3-319-25751-8 52
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Statistics-based methods are generally done in two steps: analysis and syn-
thesis. The analysis step consists in identifying a set of global statistics from the
input texture and the synthesis process generates an image satisfying the esti-
mated set of statistics. These methods were inspired from Julesz [9], who discov-
ered that many texture pairs having the same second-order statistics would not
be preattentively discerned by humans. The success of Julesz first model can be
checked in [5] where the authors propose to synthesize textures by randomizing
the Fourier phase of the sample image while maintaining its Fourier modulus,
thus preserving the second order statistics of the sample. These statistics are
enough to synthesize micro-textures that can be characterized by their Fourier
modulus but they fail for more structured ones as can be seen in [6]. Heeger
and Bergen [7] initiated more sophisticated statistics-based methods describing
the input sample by the histograms of its wavelet coefficients. A new texture is
then created by enforcing these statistics on a white noise image. The results
are satisfying for a small class of textures. Indeed the proposed statistics miss
important correlations between scales and orientations, as can be verified in
[8]. In [13] Portilla and Simoncelli extended [7] by estimating autocorrelations,
cross-correlations and statistical moments of the wavelet coefficients of the tex-
ture sample. Compared to the previous statistical attempts, convincing results
are observable on a very wide range of textures. Although this method represents
the state of the art for psychophysically and statistically founded algorithms, the
results nevertheless often present blur and phantoms effects.

Non-parametric patch-based methods were initialized by Efros and Leung [3]
who extended to images Shannon’s Markov random field model initially devised
to simulate text. The synthesized texture is constructed pixelwise. For each new
pixel, a patch centered at the pixel is compared to all patches with the same
size in the input sample. The nearest matches help predict the pixel value in the
reconstructed image. Several works [1,17] have extended and accelerated this
method. Still these pixelwise algorithms are not always satisfactory. They are
known to grow “garbage” when the compared patches are too small, or may lead
to verbatim copies of significant parts of the input sample for large patches as
can be verified in [4]. To overcome these drawbacks more recent methods stitch
together entire patches instead of performing a synthesis pixel by pixel. The
question then is how to blend a new patch in the existing texture. In [12] this
is done by a smooth transition. Efros and Freeman [2] refined this process by
stitching each new patch along a minimum cost path across its overlapping zone
with the texture under construction. Kwatra et al. in [11] extended the stitching
procedure of [2] by a graph cut approach redefining the edges of the patches. In
[10] the authors propose to synthesize a texture image by sequentially improving
the quality of the synthesis by minimizing a patch-based energy function. These
non-parametric patch-based approaches often present satisfactory visual results.
However, the risk remains of copying verbatim large parts of the input sample.
Furthermore, a fidelity to the global statistics of the initial sample is not guar-
anteed, in particular when the texture sample is not stationary. See [18] for an
extensive overview of the different neighbourhood-based methods.
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More recently methods such as [15,16] combine patch-based and statistics-
based methods to overcome the previous drawbacks. In [15] the author proposes
to use a patch-based approach where all the patches of the synthesized image are
created from a sparse dictionary learnt on the input sample. In [16] Tartavel et al.
extend the work in [15] by minimizing an energy that involves a sparse dictionary
of patches combined with constraints on the sample’s Fourier spectrum. With the
same motivation of avoiding verbatim-copies of the input sample and providing
a statistical model of it, in [14] the authors proposed an algorithm that involves
a local multivariate Gaussian texture model in the patch space.

Macro-textures show information at different scales that cannot be captured
with a unique patch size. This motivates the extension of patch-based methods
to a multiscale framework in the spirit of [1,16]. In this way the method is more
robust to the patch size and avoids the blending step of patch-based approaches.

The rest of this paper is structured as follows. In Section 2 the multiscale
approach is presented. In Section 3 two experiments are shown. The first one
presents multiscale results and explores the impact of the scale interval on their
efficiency. The second experiment shows how to combine two different synthesis
methods: the multiscale locally Gaussian and the Portilla-Simoncelli statistical
method [13]. Conclusions are presented in Section 4.

2 A Multiscale Algorithm

Macro textures have the particularity to present details at different scales: a
coarse one containing the global structure and finer ones containing the details.
On the one hand small patch sizes may capture the finer details of the input,
yet if an algorithm is based only on them, the resulting texture will lack global
coherence. On the other hand big patch sizes tend to a better respect of the
global configuration but risk of a “copy-paste” effect. Furthermore, it becomes
impossible to model the variability of large patches by curse of dimensionality:
a texture sample will generally not contain enough patch samples. This is for
example apparent in [14]. Multiscale approaches instead permit to contemplate
several patch sizes within one synthesis (capture the different level of details).

In this section the potential of a multiscale approach is illustrated by improv-
ing the method in [14]. This approach can be summarized in a few sentences. The
method begins by a synthesis in the coarsest scale (k = K − 1) using [14] where
the quilting step is replaced by a simple average of the overlapping patches.
For the remaining scales (k = K − 2, . . . , 0) a synthesis is performed by using
the result of the previous scale (k + 1) and the input of corresponding resolu-
tion. At each scale the synthesis is done patch by patch in a raster-scan order.
Each new patch, added to the synthesized image, overlaps part of the previously
synthesized patch and is the combination of a low resolution patch and a high
resolution one sampled from a multivariate Gaussian distribution. The Gaussian
distribution of the high frequencies of a given patch is estimated from the high
frequencies of its m nearest neighbours in the corresponding scale input image.
The synthesis result of the finer scale is the desired output image.
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Notations

– u0 : Ω → R: input texture image. Ω = IM × IN of size M × N where Ic is
the discrete interval [0, . . . , c − 1]

– w0 : Ωr → R: output texture image. Ωr = IrM × IrN of size rM × rN
– r: ratio (size of output image w0)/(size of input image u0)
– n × n: patch size
– m: number of nearest neighbours used to learn the Gaussian distribution
– K: number of scales (maximum factor of zoom out is K − 1)
– uk : Ωk → R: zoom out of u0 by a factor 2k. Ωk = I2−kM × I2−kN of size

2−kM × 2−kN for k = 1 . . . K − 1
– wk : Ωk

r → R: synthesized texture at scale k. Ωk
r = Ir2−kM × Ir2−kN of size

r2−kM × r2−kN for k = 0 . . . K − 1
– vk : Ωk

r → R: zoom in of wk+1 by a factor 2 for k = 0 . . . K − 2
– Gσ: Gaussian kernel centered of standard deviation σ
– Luk

: Ωk → R: low resolution of uk. Luk
= uk ∗ Gσ, k = 0 . . . K − 2

– Lwk
: Ωk

r → R: low resolution of wk. Lwk
= wk ∗ Gσ, k = 0 . . . K − 2

– Hwk
: Ωk

r → R: high resolution of wk. Hwk
= wk − wk ∗ Gσ, k = 0 . . . K − 2

– p
(x,y)
u : square patch of size n × n from an image u of size M × N at position

(x, y). p
(x,y)
u = {u ((x, y) + (i, j)) , (i, j) ∈ [0, . . . , n − 1]2}, (x, y) ∈ Vu =

IM−n+1 × IN−n+1

– Zout
2 (u): zoom out by a factor 2 of image u performed as a smooth frequency

cutoff followed by a sub-sample of factor 2
– Z in

2 (u): zoom in by a factor 2 of image u performed by a zero padding of the
discrete Fourier transform of u

Distance Between Patches

To estimate the parameters of the Gaussian distribution of the patch being
processed, denoted by p

(x′,y′)
wk , the set U of m nearest patches in uk to p

(x′,y′)
wk is

considered. These patches are those minimizing the distance to p
(x′,y′)
wk defined

in (1) for k = K − 1 and in (2) for the remaining scales k = K − 2, . . . , 0.
The size of patch overlap is fixed to half the patch size n/2. Depending on the

stage of the synthesis three different cases of overlap can be observed: vertical
(first row of raster-scan)(VO), horizontal (first column of raster-scan)(HO) and
L-shape (everywhere else)(LO). The overlap area of a patch p

(x,y)
u is denoted as

Op
(x,y)
u = {u ((x, y) + (i, j)) , (i, j) ∈ O} where

O =

⎧
⎪⎨
⎪⎩

[0, . . . , n − 1] × [
0, . . . , n

2 − 1
]

if VO[
0, . . . , n

2 − 1
] × [0, . . . , n − 1] if HO[

0, . . . , n
2 − 1

] × [0, . . . , n − 1] ∪ [
n
2 , . . . , n − 1

] × [
0, . . . , n

2 − 1
]

if LO

When k = K − 1 the m nearest neighbours in uK−1 to the patch p
(x′,y′)
wK−1 are

those minimizing the L2 distance restricted to the overlap area (1).
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d(p(x,y)
uK−1

, p(x
′,y′)

wK−1
)2 =

1
|O|

∑
(i,j)∈O

(uK−1(x + i, y + j) − wK−1(x′ + i, y′ + j))2

(1)
When k = K − 2, . . . , 0 the nearest neighbours in uk to the patch p

(x′,y′)
wk are

those minimizing a distance (2) similar to (1) with an additional term taking into
account the low resolution vk (the synthesis result of the previous scale k + 1).
Is is important to notice that when comparing Op

(x,y)
uk and Op

(x′,y′)
wk the low and

the high resolution must be considered jointly, they are not independent.

d(p(x,y)
uk

, p(x
′,y′)

wk
)2 =

1
|O|

∑
(i,j)∈O

(uk(x + i, y + j) − wk(x′ + i, y′ + j))2

+
1
n2

n−1∑
i,j=0

(Luk
(x + i, y + j) − vk(x′ + i, y′ + j))2 (2)

The Gaussian Model and the Blending Process

Every patch p
(x′,y′)
wk in wk for k = 0, . . . , K − 1 is sampled from a multivariate

Gaussian distribution in the spirit of [14]. The parameters (μ,Σ) of the distri-
bution of p

(x′,y′)
wk are estimated on the set U = {p

(x1,y1)
uk , . . . , p

(xm,ym)
uk } as in (3).

Here p
(xi,yi)
uk , for i = 1, . . . , m, are the m nearest patches to p

(x′,y′)
wk in uk for the

distances in (1) and (2).

μ =
1
m

m∑
i=1

q(xi,yi)
uk

, Σ =
1
m

QQt (3)

In (3) q
(xi,yi)
uk is the patch p

(xi,yi)
uk in vector form and Q is the matrix whose

columns are (q(xi,yi)
uk − μ), i = 1, . . . , m. Sampling a patch p̃ ∼ G(μ,Σ) comes

down to sampling m independent normal variables as can be seen in (4).

q̃ =
1
m

QtQWDq′ + μ (4)

Here q̃ is the vector form of p̃, q′ ∼ G(0, Im), W is a matrix whose columns are
the eigenvectors of QtQ and D is a diagonal matrix with its eigenvalues.

The blending process consists in simply averaging the values across the over-
lap area as in (5). This step is applied only for the synthesis at scale k = K − 1.

wk(x′ + i, y + j′) =

{
1
2

(
p̃(i, j) + p

(x′,y′)
wK−1

)
if (i, j) ∈ O

p̃(i, j) if (i, j) ∈ I2n − O
(5)
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Synthesizing Patches at Scales k = K − 2, . . . , 0

At each scale k a patch p
(x′,y′)
wk is synthesized as the combination of a low reso-

lution patch with a high resolution one. It can be decomposed as follows

p(x
′,y′)

wk
= p

(x′,y′)
wk∗Gσ

+ (p(x
′,y′)

wk
− p

(x′,y′)
wk∗Gσ

) = p(x
′,y′)

vk
+ (p(x

′,y′)
wk

− p(x
′,y′)

vk
)

= p
(x′,y′)
Lwk

+ p
(x′,y′)
Hwk

.

The set U define the Gaussian distribution of p
(x′,y′)
Lwk

∼ G(μL, ΣL) and p
(x′,y′)
Hwk

∼
G(μH , ΣH) and therefore the distribution of the patch p

(x′,y′)
wk ∼ G(μ,Σ) where

μ = μH + μL and Σ = ΣL + ΣH + E(p(x
′,y′)

Lwk
(p(x

′,y′)
Hwk

)t) + E(p(x
′,y′)

Hwk
(p(x

′,y′)
Lwk

)t).

Instead of sampling p
(x′,y′)
Lwk

from its Gaussian distribution, p
(x′,y′)
vk ∼ G(μL, ΣL)

is kept to conserve the low resolution synthesis from the previous scale. The high
frequency patch p

(x′,y′)
Hwk

is sampled form G(μH , ΣH) and then added to p
(x′,y′)
vk .

In this way the correlations between high and low resolution pixels are respected,
using the low resolution synthesis vk as initialization.

3 Experiments

All the texture examples in Figures 1 and 2 can be found at http://dev.ipol.im/
∼lraad/ciarp 2015/. The experiments shown in Figure 1 compare the multiscale
method using one, two and three scales. This is performed for micro- and macro-
textures. For all the experiments the side patch size is fixed to n = 20 and the
number of nearest neighbours to m = 20. Figure 1 shows that using a single scale
is not enough to reproduce faithfully the global structure of the input example.
Naturally to achieve satisfying synthesis results for K = 1 a bigger patch size
should be considered. Still this would lead to limitations on the Gaussian model
[14]. A fix patch size was sufficient to achieve satisfying results on all examples
shown. Another positive aspect of using smaller patches is that one can find
more reliable examples in the input sample to build the multivariate Gaussian
distributions. Finally complex quilting steps like those used in [2,10,11] is no
longer necessary. It can be replaced by an average of the values along the overlap
zone for the synthesis of the coarsest scale. This is possible since at k = K−1 the
images are smoother and an average is then well suited. In general it is enough
to average the overlapping parts only at the coarser scales.

In Figure 1 the experiments show that for the three different cases (K =
1, 2, 3) the Gaussian synthesis entails a slight blur. To recover these fine details
at scale k = 0 an additional step can be applied to the multiscale synthesis result.
The output image w0 is combined to Portilla and Simoncelli’s method [13]. In [13]
the synthesis image is initialized with a white noise. For this experiment Portilla
and Simoncelli’s method is initialized with the result of the multiscale method
instead of a random noise. In Figure 2 the result of the multiscale approach

http://dev.ipol.im/~lraad/ciarp_2015/
http://dev.ipol.im/~lraad/ciarp_2015/
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is compared to the results of combining the algorithms and to those of [13].
They show that the granularity of the input texture is globally recovered. The
resulting texture respects the global statistics of the input imposed by [13] while
maintaining the structures that are lost if the method is initialized with a white
noise. Some of the example images in Figures 1 and 2 were provided from [13].

u0 K = 1 K = 2 K = 3 u0 K = 1 K = 2 K = 3

Fig. 1. Synthesis results for K = 1, 2, 3 scales. The parameters were fixed to n = 20
and m = 20. It is recommended to zoom in the images by a factor 400% to evaluate
texture details.

u0 Ours Ours+[13] [13] u0 Ours Ours+[13] [13]

Fig. 2. Comparison of several texture synthesis algorithms: ours, ours combined to [13]
and [13]. The parameters were fixed to n = 20, m = 20 and K = 3. It is recommended
to zoom in the images by a factor 400% to evaluate texture details.
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4 Conclusion

In this paper a multiscale approach of the locally Gaussian texture synthesis
algorithm [14] was proposed. A first synthesis is performed at the coarsest scale
to generate the global structure of the synthesized image. For the remaining
scales the corresponding finer details are added on the low resolution result of
the previous scale and so on until the finer scale is reached. The experiments
showed that a single patch size can be used for different type of textures achieving
satisfying visual results. A second observation is that due to the use of Gaussian
models the synthesis results lose some resolution compared to the input sample.
To recover its granularity the multiscale algorithm was combined with Portilla
and Simoncelli’s method [13]. The results showed that this combination is able
to preserve the strong geometric structures and at the same time respect the
global statistics of the sample that are imposed with [13].
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15. Peyré, G.: Sparse modeling of textures. Journal of Mathematical Imaging and
Vision 34(1), 17–31 (2009)
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Abstract. In recognition of online handwritten mathematical expres-
sions, symbol segmentation and classification and recognition of relations
among symbols is managed through a parsing technique. Most parsing
techniques follow a bottom-up approach and adapt grammars typically
used to parse strings. However, in contrast to top-down approaches, pure
bottom-up approaches do not exploit grammar information to avoid pars-
ing of invalid subexpressions. Moreover, modeling math expressions by
string grammars makes difficult to extend it to include new structures.
We propose a new parsing technique that models mathematical expres-
sions as languages generated by graph grammars, and parses expressions
following a top-down approach. The method is general in the sense that
it can be easily extended to parse other multidimensional languages, as
chemical expressions, or diagrams. We evaluate the method using the
(publicly available) CROHME-2013 dataset.

Keywords: Mathematical expression recognition · Graph grammar ·
Top-down parsing · Bottom-up parsing

1 Introduction

An online handwritten mathematical expression consists of a sequence of strokes,
usually collected using a touch screen device. For example, in Figure 1, the
expression is composed of five strokes, that is (str1, . . . , str5), where stri is the
ith stroke, considering the input order. Recognition of online handwritten math-
ematical expressions involves three processes: (1) symbol segmentation, (2) sym-
bol classification and (3) structural analysis. The first process groups strokes that
form a same symbol; the second identifies which mathematical symbol represents
each group of strokes and the third identifies relations between symbols – as the
superscript relation between symbols “a” and “b” in the expression “abc”.

The recognition process is usually handled by a parsing technique [1,2,8,10].
In these techniques, a grammar defines the mathematical language (valid sym-
bols and structures) to be recognized and a parse algorithm determines the
structure of the expression, in accordance with the grammar. Reasons to use
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Fig. 1. Online handwritten mathematical expression composed of five strokes:
(str1, . . . , str5).

parsing techniques include: (1) they generate an structured result that can be
further processed, (2) the grammar represents our understanding or model of
the object to be recognized and (3) missing information can be completed using
syntactic or contextual information [3]. For example, in an expression “(1+1)”,
if all symbols but the closing parenthesis are already recognized, a parse algo-
rithm can determine that the missing symbol is actually a closing parenthesis.
Contextual information is useful when dealing with handwritten expressions as
ambiguous recognition cases can be generated.

Parsing techniques have been successfully applied in recognition of strings,
where symbols or words are arranged horizontally (there is only one relation
type between symbols). Those approaches generate a parse tree as result; and
according to how the parse tree is built, the techniques can be divided into two
types: top-down and bottom-up. Top-down techniques determine first high level
structures (subexpressions), then low level structures (symbols). The bottom-up
approaches perform the inverse process. According to the literature, top-down
techniques or bottom-up techniques with a top-down component are needed to
build powerful parsers [3]. A main advantage of the top-down components is
the fact that it avoids to parse some subexpressions that do not generate valid
parsing results [3,5].

Most grammars used to represent mathematical expressions are based on
grammars to parse strings [1,5,8,10]. However, as these grammars were originally
designed to represent only horizontal relations between symbols, it is difficult to
extend the model to represent languages with multiple relation types. About the
parse algorithms, most approaches follow a pure bottom-up parsing; for instance,
different adaptations of the CYK algorithm can be seen in [1,8,10].

Graph grammars [7] can provide a more natural model to represent mathe-
matical expressions: sentences (mathematical expressions) can be represented as
labeled graphs, where vertices represent (terminal) symbols and edges represent
relations among symbols. As arbitrary relations can be expressed as edges, the
model provides a flexible representation, so that it is easy to extend a particular
grammar to define new structures. On the other hand, if no strong constraints
are imposed, a similar parsing technique can be used to recognize other multidi-
mensional languages, as handwritten chemical expressions and diagrams. How-
ever, the general representation of graph grammars can generate a considerable
increase on the computational cost of the parse algorithm. As an example, a
tentative to use graph grammars for mathematical expressions recognition can
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be found in [2], where the authors proposed a bottom-up parse algorithm; but
even with a small grammar, time out failure was a problem.

In this work, we introduce a new parsing technique for recognition of online
handwritten mathematical expressions. We propose a graph grammar model
to represent mathematical expressions and compare this approach with gram-
mars used in other approaches (Section 2.1). To cope with the complexity
problem, we process input strokes so that symbol and relation hypotheses are
pre-calculated and used to limit the subexpressions evaluated by the parse algo-
rithm (Section 2.2). The proposed parse algorithm follows a top-down approach
and can be extended to parse other multidimensional languages. To evaluate the
proposed method, we used the CROHME-2013 dataset [6] (Section 3).

2 Top-Down Graph Grammar Parsing Method

The proposed method consists of three components: a context-free graph
grammar, a symbol hypotheses relational graph (SHRG) and a top-down parse
algorithm. The graph grammar defines the valid mathematical symbols, subex-
pressions and relations among them. The SHRG defines the groups of strokes
that will be evaluated to determine if they can be interpreted as a symbol or
subexpression. Finally, the top-down parse algorithm uses the grammar to deter-
mine valid interpretations of all subexpressions and symbols given by the SHRG.

2.1 Context-Free Graph Grammar

A graph grammar is defined by a tuple M = (N,T, I,R), where N is a set
of non-terminal symbols (or non-terminals); T is a set of terminal symbols (or
terminals), such that N ∩ T = ∅; I is an initial or start graph and R is a set of
production or rewriting rules [7]. Figure 2 shows a graph grammar example.

Fig. 2. Graph Grammar example: N={ME, TRM, OP, CHAR}, T = {+,-, <, >, a,
. . . ,z, A, . . . , Z, 0, . . . , 9}. I corresponds to the left hand side graph of rule r-1 and R
= {r-1, . . ., r-73}.
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We denote a rule as r = (A,B) to indicate a replacement of a graph A by
a graph B. In addition, we call A the left hand side (LHS) grammar graph of
r (A = LHS(r)), and B the right hand side (RHS) graph of r (B = RHS(r)).
Both, A and B, are digraphs. As it can be seen in Figure 2, vertices and edges of
the rule graphs are labeled. For a given rule graph G = (V,E), we define vertex
labels by a mapping function α: VG → N ∪ T , and edge labels by a mapping
function β: EG → SR, where SR is a set of mathematical relation labels. In
Figure 2, SR includes the following labels: “sp” (superscript), “sb” (subscript)
and “h” (horizontal).

A context-free graph grammar is a graph grammar such that for each rule
(A,B), A is a single vertex graph – as in the case of Figure 2. To clarify the
further explanations, we assume that a grammar is defined only with two types
of rules: terminal and non-terminal. In a terminal rule the RHS graph is a single
vertex graph , whose vertex is labeled with a terminal symbol – rules from r-7
to r-73 of Figure 2 for instance. A non-terminal rule refers to a rule whose RHS
graph contains one or more vertices, labeled only with non-terminal symbols –
as r-1 of Figure 2. In addition, we will refer to the non-terminal of the start
graph as start symbol.

As mentioned above, most approaches for recognition of mathematical
expressions extend the grammars used for strings. Figure 3 shows a compari-
son of a grammar model proposed in [5] and one used in our approach. The
grammar proposed in [5] defines production rules of the form: A

r→ A1A2 . . . Ak,
where r indicates a relation between adjacent elements in the RHS. As the model
defines a unique relation type between consecutive elements, rules that include
different relation types must be split into several rules (as shown in Figure 3(a)).
Further, when a CYK parse algorithm is used (as in [1,8,10]), the grammar needs
to be transformed to a Chomsky Normal Form, which requires the grammar to
have no more than two elements the RHS. As a result, grammar rules with more
than two elements in the RHS must be split, incrementing the total number
of rules. These restrictions make difficult to extend string grammars to model
multidimensional languages.

(a) (b)

Fig. 3. Integration rule example used in [5] (a) and its corresponding representation
using graph grammar (b). “a” and “b” edge labels indicate above and below relations
respectively.eps
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2.2 Symbol Hypotheses Relational Graph

A symbol hypothesis is a set of strokes that can be interpreted as a terminal
symbol. Each symbol hypothesis is assigned a label set defined by a function
γ : SH → P (L), where SH is a set of symbol hypotheses, L is a set of symbol
labels, and P (L) is the power set of L.

A Symbol hypothesis relational graph is a digraph (V,E), where V is a set
of symbol hypotheses and E is a set of spatial relation hypotheses, defined over
pairs of compatible symbol hypotheses 1. As in the case of symbol hypotheses,
we define a function δ : E → P (SR), where SR is a set of relation labels (as
defined in Section 2.1), and P (SR) is the power set of SR. Figure 4 shows an
example of a SHRG.

Fig. 4. SHRG example. Edge labels indicate relation types: sp = superscript, h =
horizontal.

To compute symbol hypotheses, we built a 3-nearest neighbor graph from a
graph with the bounding box center of the input strokes as vertices and euclidean
distances as edge weights. Then, for each stroke, we generate all combinations
of the stroke with its neighbors. Each combination defines a symbol hypothesis.
For each symbol hypothesis, its corresponding labels are calculated by a neural
network classifier that uses shape context and online features, as defined in [4].

To calculate relation hypotheses, we evaluate all pairs of compatible symbol
hypotheses and use a neural network classifier, with shape features, to determine
the most probable relations. Both symbol and relation classifiers were trained
to reject false symbol and relation hypotheses – by including wrong stroke
combinations and pairs of symbols in the symbols and relations training sets
respectively [4].

It is important to note that, instead of a single label, a symbol and relation
hypothesis may have multiple labels. Thus, this configuration keeps several possi-
ble interpretations to cope with ambiguous recognition cases. The selection of the
most probable labels is based on recognition scores calculated by the classifiers.
Given a hypothesis h (symbol or relation) and a set of probable labels (l1, . . . , lm),
sorted in descending order by their likelihood score, score(li), for i = 1, . . . , m,

1 Two symbol hypotheses shi, shj are compatible if shi ∩ shj = ∅.
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we select k labels, such that:
k∑

i=1

score(li) > tr, where tr is a threshold defined

experimentally.

2.3 Top-Down Parse Algorithm

The proposed algorithm considers that the input to the algorithm is a set of
strokes, denoted as str = {str1, . . . , strn} 2. Given str, a graph grammar M ,
and a SHRG G, the algorithm calculates recursive partitions of str according to
the rules of M , starting from the rules derived by the start symbol of G, until
generating partitions derived by terminal rules. For a given rule r, we consider
only partitions of str derived by minors of G3 that are isomorphic to RHS(r).

Figure 5 illustrates the parsing process of the input expression and SHRG
of Figure 4 and graph grammar of Figure 2. The process starts by determining
partitions of the complete set of strokes (top of the image), according to the
rules derived by the non-terminal ME (the start symbol of the grammar). Two
partition candidates are found, one using rule r-1 and the other using rule r-
2. Each partition is actually a minor graph isomorphic to the RHS graph of
the rule that generates the partition. A graph that defines a partition is called
instantiated graph. The strokes of each vertex of each instantiated graph are
further partitioned using the rules derived by their corresponding non-terminals.
For example, in the instantiated graph derived by rule r-1, the strokes of the
subexpression “pb” are partitioned according to the rules derived by the non-
terminal TRM.

As it is shown in Figure 5, for a given set of strokes str and a non-
terminal NT, several instantiated graphs may be generated. Those results are
recorded in a table denoted as T , where T (str = {str1, . . . , strn}, NT ) =
{(g1, r1), . . . , (gq, rq)}, gi is an instantiated graph and ri is the rule that “gen-
erated” gi. The use of the parse table T is usually used in strings parsing [3] to
calculate parse results only once (memoization).

The partial results recorded in table T define a parse forest– set of different
interpretations of the input. A tree of the parse forest represents a particular
interpretation of the input and is defined by a sequence of partitions calculated
from the start symbol to terminals. For instance, Figure 5 shows a total of 8
interpretations or parse trees and one of those may be composed by the partitions
indicated with red arrows. The tree corresponds to the interpretation “P b4”.

Once the parse forest is built, the final step consists on extracting a tree that
better represents the input, according to a given measure. To do that, we defined
a ranking function p : t → R, where t is a parse tree. Currently, we calculate

2 We denote a set as a braced list of elements, that is set = {element1, . . . , elementn}
and a sequence (ordered set) as a bracketed list of elements, that is sequence =
(element1, . . . , elementn), where elementi is the ith element considering a particular
order.

3 A graph H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges [9].
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Fig. 5. Recursive partitions calculated by the top-down parse algorithm.eps

p(t) with the geometric mean of the relations and classification scores given by
the symbol and relations classifiers to the partitions that compose t.

3 Experimentation

We evaluated the proposed methods using the CROHME 2013 competition
dataset [6]. The dataset includes 101 symbol classes and 6 relation types: super-
script, subscript, horizontal, above (for example, between a fraction bar and
its numerator), below (fraction bar with denominator), and inside (between the
radical symbol and its radicand). Using the training part of the dataset, the
threshold tr, was fixed in 0.98 for the symbol classifier and 0.95 for the relations
classifier.

Table 1 shows our results compared to those of the two best systems (out of
five) that used only the CROHME dataset for training (the systems are identi-
fied by numbers, as in [6]). The used metrics are: recognition rate (percentage of
mathematical expressions correctly recognized), symbol segmentation and sym-
bol and relation recognition rates. The tree rel. metric measures the percentage

Table 1. Comparison of our method with results of CROHME-2013 competition

recognition segmentation classification tree rel.

System rate recall precision recall precision recall precision

IV 23.40 84.97 87.4 73.94 75.77 49.73 51.48
II 19.97 80.70 86.35 66.41 71.06 22.44 27.00

ours 21.61 75.70 83.41 62.63 69.00 44.67 49.73
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of pairs of correctly segmented and classified symbols from the total number
of relations between adjacent symbols. While our system obtained comparable
results in terms of recognition rate, it obtained better results in terms of relations
detection than in symbols detection.

4 Conclusions and Further Work

In this paper, we describe a new parsing technique for recognition of online hand-
written mathematical expressions. The proposed method provides comparable
results to those of the best systems of the CROHME-2013 competition. Results
show that the use of symbol and relation hypotheses to define valid subexpres-
sions is an effective method to reduce the parsing complexity. In addition, the
graph grammar modeling of the proposed method provides a general framework
to parse other multidimensional languages, as chemical expressions, or diagrams.

Future work includes the optimization of the symbol and relation classifica-
tion modules. New features should be explored and evaluated in the context of
the complete system performance.
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1. Álvaro, F., Sánchez, J.A., Bened́ı, J.M.: Recognition of on-line handwritten mathe-
matical expressions using 2d stochastic context-free grammars and hidden markov
models. Pattern Recognition Letters (2012)

2. Celik, M., Yanikoglu, B.: Probabilistic mathematical formula recognition using a
2d context-free graph grammar. In: 2011 International Conference on Document
Analysis and Recognition (ICDAR), pp. 161–166, September 2011

3. Grune, D., Jacobs, C.J.H.: Parsing Techniques: A Practical Guide, 2nd edn.
Springer (2008)

4. Julca-Aguilar, F., Viard-Gaudin, C., Mouchère, H., Medjkoune, S., Hirata, N.:
Mathematical symbol hypothesis recognition with rejection option. In: 14th Inter-
national Conference on Frontiers in Handwriting Recognition (2014)

5. MacLean, S., Labahn, G.: A new approach for recognizing handwritten mathemat-
ics using relational grammars and fuzzy sets. International Journal on Document
Analysis and Recognition (IJDAR) 16(2), 139–163 (2013)

6. Mouchère, H., Viard-Gaudin, C., Garain, U., Kim, D.H., Kim, J.H., Zanibbi, R.:
Icdar 2013 crohme: Competition on recognition of online handwritten mathemati-
cal expressions @ONLINE, April 2013

7. Pflatz, J., Rosenfeld, A.: Web grammars. In: Proc. First International Joint
Conference on Artificial Intelligence, pp. 193–220 (1969)

8. Simistira, F., Katsouros, V., Carayannis, G.: Recognition of online handwritten
mathematical formulas using probabilistic SVMs and stochastic context free gram-
mars. Pattern Recognition Letters 53, 85–92 (2015)
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Abstract. With the widespread proliferation of computers, many
human activities entail the use of automatic image analysis. The basic
features used for image analysis include color, texture, and shape. In
this paper, we propose MHTS (Multiscale Hough Transform Statis-
tics), a multiscale version of the shape description method called HTS
(Hough Transform Statistics). Likewise HTS, MHTS uses statistics from
the Hough Transform to characterize the shape of objects or regions
in digital images. Experiments carried out on MPEG-7 CE-1 (Part B)
shape database show that MHTS is better than the original HTS, and
presents superior precision–recall results than some well-known shape
description methods, such as: Tensor Scale, Multiscale Fractal Dimen-
sion, Fourier, and Contour Salience. Besides, when using the multiscale
separability criterion, MHTS is also superior to Zernike Moments and
Beam Angle Statistics (BAS) methods. The linear complexity of the
HTS algorithm was preserved in this new multiscale version, making
MHTS even more appropriate than BAS method for shape analysis in
high-resolution image retrieval tasks when very large databases are used.

1 Introduction

Shape is one of the basic features used for image analysis, together with color
and texture. According to Costa and Júnior [1], the concept of shape can be
understood as any visual singular entity or an object as a whole defined by a
single set of connected points (either in a discrete or continuous space).

During the process of image analysis, it is of utmost importance to consider
that certain information only makes sense under certain viewing conditions, such
as the scale [2,3]. In shape recognition, which can be part of image analysis, the
scale of observation can be crucial.

However, the choice of the most appropriate scale of observation is not a triv-
ial task, and it is initially impossible to predict the optimal scale representation.
So, one must consider all possible scales, hence the concept of multiscale repre-
sentation, an approach used widely in various applications and signal processing
(including images) [2,3].

c© Springer International Publishing Switzerland 2015
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Multiscale shape description methods can be found in the literature. Some
examples are Multiscale Fractal Dimension [4], Multiscale Fourier Descriptor
[5,6], and Curvature Scale-Space (CSS) [7].

In this paper, we propose MHTS (Multiscale Hough Transform Statistics), a
multiscale version of the shape description method called HTS (Hough Transform
Statistics), proposed by Souza and Marana [8,9]. Experimental results showed
that the MHTS presents better recognition rates than HTS and some other
traditional shape description methods, such as: Tensor Scale (TS) [14], Mul-
tiscale Fractal Dimension (MFD) [4], Fourier [15], Contour Salience (CS) [16]
and Zernike Moments [17]. Furthermore, the MHTS algorithm, likewise HTS,
has complexity Θ(n), being n the number of points of the silhouette, which is
an important requirement for content based image retrieval of high resolution
images from large databases.

2 HTS - Hough Transform Statistics

Souza and Marana [8,9] showed that the use of statistics from the Hough Trans-
form [10] for shape description is worthwhile, since, as shown in Figure 1, the
Hough Transform of silhouettes of objects of the same class are similar, whereas
the silhouettes of objects from different classes are quite different.

Fig. 1. Hough Transforms of two apples and two bones silhouettes from the MPEG-7
CE-1 (Part B) database [12]. One can observe that the Hough Transforms of silhouettes
from the same class are similar, whereas Hough Transforms of silhouettes from distinct
classes are quite different.
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In the first phase of the HTS shape description method, the boundary points
of an object image are extracted. Then, in the second phase, when the Hough
Transform is calculated, each boundary point is mapped on an accumulator
matrix, by means of sinusoidal curves given by the Eq. 1, as proposed in [11],
varying θ from 0◦ to 179◦:

round(ρ) = x × cos(θ) + y × sin(θ) (1)

In the Hough Transform space, following a sinusoidal curve r that represents
a given boundary point p in the image space, it is possible to find the number
h(θ) of all sinusoidal curves that intersect r at position h. By the end of this
process, the calculated histogram h is associated with the boundary point p. The
value h(θ) indicates the number of boundary points that are collinear to p in
the direction θ + 90◦. Based on this, one can observe that boundary points that
belong to straight line segments in the object boundary present histograms with
high values (peaks) at certain positions and a high standard deviation, while in
rounded shapes all boundary points will present equalized histograms. There-
fore, its worthwhile to use the number of intersections and their distribution
(histograms) as a shape descriptor

After associating a histogram to each boundary point, the next step is the
Feature Extraction phase, in which for each boundary point it is calculated the
first and second moments (mean and standard deviation, respectively) from its
associated histogram. Given an initial boundary point (the top leftmost point,
for instance) and by following the boundary clockwise, two 1D functions are built
based on the mean and standard deviation values associated with the boundary
points.

The two 1-D functions, obtained in the previous phase, are sampled in k
equally spaced positions, generating a k-dimensional feature vector in which
each position contains two values, the mean and the standard deviation.

The third, and final phase, is the Matching phase, in which each k-
dimensional vector of a given silhouette is matched against all the features vec-
tors of the database in order to identify an unknown silhouette. The similarity
between two images is given by comparing the query’s image feature vector (X)
with each gallery feature vector (Y), as proposed in [13], by the L1 distance
defined by Eq. 2:

L1(X,Y ) =
k∑

i=1

|X(i)f − Y (i)f | + |X(i)s − Y (i)s| (2)

where k is the size of the feature vectors, f and s are from the first and second
moments, respectively, and X and Y are the normalized feature vectors.

In order to achieve invariance to rotation, the feature vector must be shifted
k times and, after each shift, be compared with the other feature vector. The
similarity will be the minimum distance obtained after the k comparisons.

After calculating the distances between the query feature vector and each
gallery feature vector, the unknown object is classified as belonging to the same
class of the gallery feature vector that results in the minimum L1 distance.
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The three HTS phases are summarized below:

Preprocessing: In this phase, likewise the BAS method [13], given an image
of an unknown object, it is binarized and an edge detection algorithm is
applied in order to segment the boundary of the object. Then, a sequence
of boundary points is obtained by starting from the top leftmost boundary
point and following the boundary clockwise until complete a full turn around
the shape;

Feature Extraction: This phase begins by calculating the Hough Transform
of all boundary points of the shape. Next, for each boundary point p, its
histogram is calculated by taking all the values found in the Hough space
in the positions given by the correspondent sinusoidal curve. Then, the first
and second order moments are computed from the histograms calculated for
each boundary point, generating two 1D moment functions. Finally, the two
1D functions are sampled in equally spaced k points (where k is defined
by the user), generating the feature vector associated with the object being
analyzed;

Matching: The query feature vector X, extracted from the unknown object,
is compared with each gallery feature vector Y using the L1 distance. To
achieve invariance to rotation, likewise the BAS method, the feature vector X
is shifted (rotated) to the left (always copying the values in the first position
to the last) k times. Each new configuration of the shifted query feature
vector is compared with the gallery feature vector Y. The final distance
between the two feature vectors is taken as the minimum distance obtained
for all k comparisons. The unknown object is then classified as belonging to
the same class of the nearest (most similar) object in the database.

3 MHTS - Multiscale Hough Transform Statistics

The basic idea behind a multiscale approach is to create a family of derivate sig-
nals (pictures) whose structures are successively simplified. Lower scales struc-
tures should represent simplifications of the corresponding structures at higher
scales, i.e, they cannot simply be something created by the multiscale method.
Thus, it is possible to analyze the different levels of representation and using
only those that exhibit characteristics of interest.

A major reason for representing information already present in the original
signal in multiples levels is that the successive simplification removes unwanted
details, such as noise or non-significant structures, facilitating the processing of
future tasks. Moreover, by explicitly dealing with the scale parameter, this app-
roach allows the handling of significant image structures which become explicit
in each level. Associated with the fact that the decrease of the scale is related
to reducing the amount of information, this also implies an increase in compu-
tational efficiency.

Regarding the monoscale HTS, the θ and ρ parameters vary from 0o to 179o

and from 0 to maxρ, with increments of Δθ = 1 and Δρ = 1, respectively.
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In the multiscale HTS (MHTS), n Hough Spaces are calculated for n scales,
given by different Δθ and Δρ parameter values ((Δθ = 1,Δρ = 1), (Δθ = 2,Δρ =
2), . . . , (Δθ = n,Δρ = n)). Figure 2 illustrates the Hough Transforms obtained
for n = 5 scales.

Fig. 2. Hough Transforms obtained for n = 5 different scales, given by the parameters
(Δθ = 1,Δρ = 1), (Δθ = 2,Δρ = 2), . . . , (Δθ = 5,Δρ = 5).

In this new multiscale approach, each shape image is represented by n Hough
Transform spaces, one per each scale.

In order to obtain the shape descriptors from this multiscale representation,
the following approach was adopted: the n Hough Transforms had their 1D
functions calculated, sampled, and finally concatenated, thus generating one
single feature vector.

4 Experimental Results

In order to evaluate the performance of the new MHTS shape descriptor, some
experiments were carried out, and the obtained results were compared with
HTS, as well as with some well-referenced shape description methods: Tensor
Scale (TS) [14], Multiscale Fractal Dimension (MFD) [4], Fourier [15], Contour
Salience (CS) [16], Zernike Moments [17], and Beam Angle Statistics (BAS) [13].
The performances were compared using the precision–recall and the multiscale
separability criterion. The precision is the fraction of retrieved instances that
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are relevant, while the recall (or sensitivity) is the fraction of relevant instances
that are retrieved.

MPEG-7 CE-1 (Part B) shape dataset [12] was used in the experiments. This
dataset is composed of 1400 images (divided into 70 classes, each class with 20
images), where the background is black and the silhouette is white.

Figure 3 (left) shows the precision–recall curves of MHTS, with some different
scale combinations. One can notice that using only the first three scales (1,2, and
3) MHTS presented a better result than when all five scales (1, 2, 3, 4, and 5)
were used. This shows that not all scales may be relevant to the image descriptor,
but it is important to analyze them all. When using the first, third and fifth scale
(1, 3, and 5) the result was close to the monoscale HTS version, proving that the
fifth scale may not be relevant for the descriptors construction in this database,
and may even impair the results.

Figure 3 (right) shows the best results obtained for the MHTS method and the
other methods using the MPEG-7 CE-1 (Part B) shape database [12]. Despite of
MHTS presenting, in this experiment, a worse performance in terms of precision-
recall than Zernike Moments and BAS, the MHTS method outperformed all other
shape description methods assessed in this work, including HTS.

For the methods that presented the best performances regarding the
precision-recall curves in the previous experiment we also analyzed their perfor-
mance regarding the search radius versus separability (multiscale separability)
criterion, which has been considered by some authors as a metric to compare
shape description methods [16]. Multiscale separability indicates how clusters of

Fig. 3. (Left)Precision–Recall curves of MHTS method, with three different scale
combinations: {1,2,3,4,5}, {1,2,3}, {1,3,5} and the monoscale HTS. (Right)Precision–
Recall curves of the descriptors for the MPEG-7 CE-1 (Part B) database: BAS (Beam
Angle Statistics), Zernike Moments, MHTS (Multiscale HTS), HTS, Multiscale Fractal
Dimension (MFD), Tensor Scale (TS), Fourier, and Contour Salience (CS).
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Fig. 4. Search radius versus separability (multiscale separability) curves for the MPEG-
7 CE-1 (Part B) database. The MHTS obtained the best performance.

different classes are distributed in the feature space (the more separated the clus-
ters, the better is the descriptor). The higher the multiscale separability curve
obtained by the method, the better its performance is.

The best shape descriptors for the MPEG-7 CE-1 (Part B) dataset [12] in
terms of precision–recall results were: BAS, Zernike, MHTS, and HTS. The mul-
tiscale separability curves of these methods, for the same dataset, are shown
in Figure 4. As one can observe, for this criterion MHTS obtained the best
performance.

5 Conclusion

This paper presents a new shape description method, called MHTS (Multiscale
Hough Transform Statistics), which is based on the HTS method, proposed by
Souza and Marana [8,9]. Experiments carried out on MPEG-7 CE-1 (PartB)
shape dataset [12] show that the MHTS method presents better precision–
recall results than several well-referenced shape description methods described
in the literature, such as: Tensor Scale [14], Multiscale Fractal Dimension [4],
Fourier [15], and Contour Salience [16].

When compared toBeamAngle Statistics (BAS) [13] andZernikeMoments [17]
methods, the MHTS method obtained inferior precision–recall results. However, if
the multiscale separability criterion is adopted, the MHTS method is superior to
these methods, in the MPEG-7 CE-1 (Part B) database [12].

Since the MHTS algorithm has complexity Θ(n) in the feature extraction
and matching phases, it is much faster than BAS, whose complexity is Θ(n2).

Therefore, from the obtained results, we can conclude that for shape recog-
nition based tasks using large images stored in very large databases, which is
more and more common nowadays, the MHTS method can outperform the BAS
descriptor regarding the processing time, while presenting accuracy rates almost
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similar to the BAS method and superior to several other well-known shape
descriptors found in the literature, including HTS (its monoscale version).
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Universidade de São Paulo (USP), São Carlos-SP (2006)

5. Kunttu, L., Lepistöl, L., Rauhama, J., Visa, A.: Multiscale fourier descriptor for
shape classification. In: Proceedings of 12th International Conference on Image
Analysis and Processing, Mantova, Italy, September 17–19, pp. 536–541 (2003)

6. Kunttu, L., Lepistöl, L., Rauhama, J., Visa, A.: Multiscale fourier descriptor for
shape-based image retrieval. In: Proceedings of 17th International Conference on
Pattern Recognition, Cambridge, UK, vol. 2, pp. 765–768 (2004)

7. Mokhtarian, F., Mackworth, A.: Scale-based Description and Recognition of planar
curves and two-dimensional objects. IEEE Transactions on Pattern Analysis and
Machine Intelligence 8, 34–43 (1986)

8. Souza, G.B., Marana, N.: HTS and HTSn: New shape descriptors based on
Hough transform statistics. Computer Vision and Image Understanding 127, 43–56
(2014). Academic Press Inc. Elsevier Science, San Diego

9. Souza, G.B., Marana, N.: HTS: a new shape descriptor based on Hough trans-
form. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 974–977 (2013)

10. Hough, P.V.C.: A method and means for recognizing complex patterns, U.S. Patent
3069654 (1962)

11. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves
in pictures. Commun. ACM 15, 1–15 (1972)

12. Jeannin, S., Bober, M.: Description of core experiments for MPEG-7 motion/shape,
Technical report ISO/IECJTC1/SC29/WG11 MPEG99/N2690 (1999)

13. Arica, N., Vural, F.T.Y.: BAS: a perceptual shape descriptor based on the beam
angle statistics. Pattern Recogn. Lett. 24, 1627–1639 (2003)

14. Miranda, P.A.V., Torres, R.S., Falcão, A.X.: TSD: a shape descriptor based on a
distribution of tensor scale local orientation. In: Brazilian Symposium on Computer
Graphics and Image Processing, pp. 139–146 (2005)

15. Zhang, D., Lu, G.: A comparative study on shape retrieval using Fourier descrip-
tors with different shape signatures. In: International Conference on Intelligent
Multimedia and Distance Education, pp. 1–9 (2001)

16. Torres, R.S., Falcão, A.X.: Contour salience descriptors for effective image retrieval
and analysis. Image and Vision Computing 25, 3–13 (2007)

17. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am.
70, 920–930 (1980)



Inference Strategies for Texture Parameters

Jorge Martinez1, Silvina Pistonesi1, and Ana Georgina Flesia2(B)
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Ing. Medina Allende S/n, Ciudad Universitaria, 5000 Córdoba, Argentina
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Abstract. The Autobinomial model is a commonplace in Bayesian
image analysis since its introduction as a convenient image model. Such
model depends on a set of parameters; their value characterize texture
allowing to perform classification of the whole image into regions with
uniform properties of the model.

This work propose a new estimator of the parameter vector of the
Autobinomial model based on Conditional Least Square minimization
via Real Coded Genetic Modeling and analyze its performance compared
to the classical linear approximation, which exchanges the CLS equation
with a reduced Taylor equation prior to minimization. Our simulation
study shows that the genetic modeling approach gives more accurate
estimations when true data is provided. We also discuss its influence in a
set of classification experiments with multispectral optical imagery, esti-
mating the scalar vector parameter with our estimator and the classical
linear one. Our experiments show promising results, since our approach
is able to distinguish image features that the classical approach does not.

Keywords: Real coded genetic algorithm · Conditional least squares
method · Gibbs Markov random field · Autobinomial model · Parameter
estimation

1 Introduction

The Gibbs Markov Random Field model (GMRF) is a powerful tool for the
extraction of spatial information contained in an image. It provides a conve-
nient and consistent way for modeling context dependence of image pixels. In
many applications of this type of stochastic models, the estimation of parameters
plays an important role. Classical estimators are constructed as solution of opti-
mization problems, obtained with techniques such as Newton Raphson (NR),
Simulated Annealing (SA) and Iterated Conditional methods, among others.

However, optimal estimation of these parameters from one or more realiza-
tions of the GMRF is often difficult in real situations. Metaheuristics approaches
have been widely recognized as efficient approaches for many hard optimization
problems [2]. Genetic Algorithms (GAs) are included in this context. They are
general purpose population based search techniques which mimic the principle
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 460–467, 2015.
DOI: 10.1007/978-3-319-25751-8 55
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of natural selection and natural genetics laid by Charles Darwin. The concept of
GAs was introduced by John Holland in 1975. The approach works by creation
of a population of candidate solutions (chromosomes) which evolve through the
so called genetic operations of selection, crossover and mutation until some stop-
ping criteria are met. Traditionally, candidate points (chromosomes) in genetic
algorithms are represented by binary coded strings; for a survey in the field see
[4] and references therein.

In recent years, real coded genetic algorithms (RCGAs) have been used to
solve continuous optimization problems [7],[8],[1]. In real coded GA (RCGA),
real-valued genes are used instead of the conventional bit-string encoding, i.e. it
treats chromosomes as vectors of real-valued numbers. It then adapts the genetic
operators of the binary coded GA accordingly.

In this paper, we introduce a new estimator of the Autobinomial GMRF
parameters (ABM) solving the Conditional Least Square (CLS) equations with a
RCGA design and study its accuracy under ABM simulation and its performance
in a classification experiment.

The paper is structured as follows. In the next section, we briefly review
the framework of GMRF, Autobinomial Model, CLS equations and define our
RCGA based estimator. In the Experiments section we analyze the accuracy of
our estimate via Monte Carlo simulation of the true ABM, comparing it with a
linear model estimation (LM), Schröder’s approximate solution based on a linear
Taylor approximation to the CLS equations, [11]. We also present a (Landsat 5
TM) classification example, to explore and visualize the power of our estimate
in the image classification context. Conclusions are left to the last section.

2 Image Context Characterization

This section introduces some basic concepts related to the MRF models and a
particular class of MRF that will be used in this paper: Autobinomial. For a
more detailed discussion on the subject we refer to [6].

We model the images as being configurations of a Gibbs field with a certain
neighborhood potential. For a single pixel site xs this approach results in a
conditioned distribution

P (xs/Ns; θ) =
e−H(xs,Ns;θ)

Zs
,

with local energy function H(xs,Ns; θ), parameter vector θ, and Zs a normali-
zation constant, called “partition function of the distribution”. The parameter
vector θ, weighs the contributions of the different cliques in the neighborhood
Ns. In the following we only use a second order homogeneous and isotropic
neighborhood.

Autobinomial Model. The ABM is a discrete Markovian model with energy
function defined as

H (xs,Ns; θ) = ln
(

M

xs

)
+ xsηs (1)
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where M is the maximum grey value and
(
M
xs

)
denote the binomial coefficients.

The quantity

ηs = α + β11
xt + xt∗

M
+ β12

xu + xu∗

M
+ β21

xr + xr∗

M
+ β22

xz + xz∗

M
(2)

reflects the joint influence of the neighbors with the parameter vector θ =
(α, β11, β12, β21, β22)

T , see Fig. 1. The partition function of the distribution is
given by:

Z =
M∑

zs=0

eH(zs,Ns;θ) =
(
1 + e−ηs

)M

Consequently the conditional probability distribution function is written as:

P (xs/Ns; θ) =
(

M

xs

)
ωxs

s (1 − ωs)
M−xs ∀xs = 0, 1, . . . ,M (3)

where ωs = 1
1+e−ηs .

Thus, the random variable Xs modeling the intensity of the image at the
pixel s has a conditional binomial distribution with parameters M and ωs. The
expected value and the variance of Xs are respectively:

E [Xs] = Mωs =
M

1 + e−ηs
V [Xs] = Mωs (1 − ωs) = M

e−ηs

(1 + e−ηs)2
(4)

For η = 0, E [Xs] = M
2 and V [Xs] = M

4 .

Parameter Estimation with the CLS Method. The Conditional Least
Square (CLS) estimator is defined as the argument that minimizes the equation:

θ̂ = arg min
θ

∑
s∈S

(xs − E [Xs])
2
. (5)

From Equation (4), the Equation (5) can be rewritten as:

θ̂ = arg min
θ

∑
s∈S

(
xs − M

1 + e−ηs

)2

. (6)

Thus the vector minimizing the quadratic cost function of Equation (6) is the
Conditional Least Square estimator. This approach attempts to minimize the
error between the observed image and the expected image. Classical solutions are
obtained with solvers as Newton-Raphson and other gradient descent algorithms.
Schröder et al. [11] proposed to exchange this equation with a reduced Taylor
expansion, which leaded to a linear model estimation (LM).

Our Proposal: (RCGA) Based Estimator. In this paper, we propose a
new estimator of the ABM parameter vector as a solution of the CLS equation
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obtained with a real coded genetic algorithm. GA has been frequently used for
parameter estimation in many studies, solving non-convex optimization prob-
lems, like ours. However, the application of GA’s for estimating the parameters
of the ABM has not been explored yet. Over the many options of GA algorithms,
we selected a version with integrated crossover rule and local technique due to
Kaelo and Ali [9]. Our proposal is then outlined in Algorithm 1:

Algorithm 1. RCGA for ABM parameter estimation
Step 1) Initialization. Generate N uniformly distributed random points from the search

region Ω and store the points and their corresponding function values in S.
Step 2) Stopping rule based on the best and the worst point. Find the best and

worst points in S, xl and xh, where the best point xl has the lowest function value
fl and the worst point xh has the highest function value fh. If the stopping
condition (e.g., |fh − fl| ≤ ε) is achieved, then stop.

Step 3) Generation of offsprings: The following rules are repeated until m offsprings are
generated.
– 3.1 Tournament selection using two players: two points are chosen at random from
the set S and the better of the two is taken as a parent for crossover.
– 3.2 Crossover Rule: two offsprings are produced at a time using three parents
x1, x2 and x3 selected using tournament of two players. The first offspring y1 is

created mating the parents by using yi
1 =

xi
1+xi

2
2

+ σi

(
xi
1+xi

2
2

− xi
3

)
, where yi

1

is the ith component of y1, σi is a uniform random number in [0, 1] for each i,
and x3 is the worst parent.
The second offspring y2 is created mating the parents using yi

2 = xi
1 + Fi

(
xi
1 + xi

3

)
,

where Fi are uniform random numbers in [0.4, 1].
– 3.3 Mutation: The offsprings produced in the crossover step are mutated with
probability pm, by applying the non-uniform mutation rule, suggested by
Michalewicz [10].

Step 4) Update S. The worse m points in S are replaced with the m offsprings.
Set k = k + 1. If no point is better than the best point in the previous
generation go to Step 2; else continue to Step 5.

Step 5) Local technique. Select a point y at random from the set S, different from the
current best xl. Find a trial point x̄ using the current best point, xl, in S and a
randomly drawn point y from S, different from xl. The point x̄ then competes with
the current worst point in S. The rule for the local technique is: x̄i =

(
1 + γi

)
xi
l −

γiyi, where x̄i is the ith component of x̄, and γi are uniform random numbers,
say in [-0.5, 1.5], different for each i. The point x̄ is biased towards the best point xl.
If f(x̄) < fh then replace xh and fh by x̄ and f(x̄) in S respectively. Repeat Step 5
lr times. Go to Step 2.

3 Experiments

In all our experiments, the structural parameters of our RCGA estimator were
chosen as follows: the number of chromosomes (parameter N) used was set to
100, the maximum number of allowed generations (parameter T ) was set to
10000, and m = 10 (offsprings). The mutation was performed with probability
pm = 0.001, and the parameter b of the non-uniform mutation rule was set to
b = 5. These are standard suggestions, see [10] for details. The stopping rule
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focuses on the difference between the best and the worst chromosome in the
population in order to decide for termination. The algorithm terminates when
|fh − fl| ≤ ε = 10−4 or the maximum number of generations (T ) was reached.

First Experiment: Monte Carlo Simulation Study. We designed this
experiment to study the accuracy of the proposed estimator (mean square norm
(MSN) of the difference with the true value) and its empirical distribution. The
benchmark estimator for this model is the LM approach of Schröder et al. [11].
Thus, we study the error statistics and empirical distributions of LM as well
over the same database and discuss the diferencies. Our Monte Carlo database
was comprised of 500 synthetic images (128 × 128 sized) with 256 grays le-
vels, generated for each specified vector parameter: (i) θ = (0, 0, 0, 0, 0)T , (ii)
θ = (3, 0, 0, 0,−3)T , (iii) θ = (−2, 1, 1,−0.6,−0.6)T , (iv) θ = (3, 0, 0,−3, 0)T ,
(v) θ = (−2, 1,−0.5,−0.5, 2)T and (vi) θ = (0, 1, 1,−1,−1)T . See Fig. 1.

u*

t*

u

s

z*

r*z

t

r

Fig. 1. From left to right, neighbourhood of the pixel xs and textures under study for
cases (i), (ii), (iii), (iv), (v) and (vi) respectively.

We restricted the parameter domain to be in [−4, 4]5 as suggested by Chen and
Dubes [5], generating the textures with the Gibbs sampler algorithm. We report
the estimators empirical distributions of all cases as boxplots in Fig. 3. For the case
(i), very noisy texture, all parameters equal to zero, both estimators exhibits the
same behavior. In all other cases, RCGA has overall good accuracy, and at least
one parameter has better accuracy than LM. Also, the RCGA estimator shows a
lower or almost equal standard deviation than LM in all cases.

In cases (ii), (iv) and (v), the parameters β21 and β22 which control the
diagonal texture structure were estimated better by RCGA than LM. The SN
empirical distribution for each estimator is reported in Fig. 2. Schröeder et al.
experiments have also shown the problems of the LM estimator to compute
accurately the diagonal parameters.

In the case (iii) the value of the autocorrelation parameter, α, was under-
estimated by LM. In the (vi) case, β21 and β22, were underestimated, and the
parameters that control the vertical and horizontal texture structure, β11 and
β12, were overestimated by LM, see Fig. 3. For each case, according to Mann-
Whitney U Test, statistically significant differences were reported (p < 0.01)
between LM and RCGA in the parameter that determines the orientation of the
texture: β22 case (ii), β21 case (iv), β11 case (v), β21 case (vi) and the same
result was reach in α case (iii).

Second Experiment: Landsat 5 TM Data Classification. In this section
we present an example to analyze the behavior of the RCGA estimator in
the context of supervised texture classification in remote sensing images.
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Fig. 2. From left to right: SN error boxplot of the (ii), (iv) and (v) cases, respectively.
For the others cases, (i), (iii) and (vi), the lower value of MSN was obtained by RCGA:
0.0076, 0.0026, 0.0040 against LM estimator: 0.0077, 0.0028, 0.0041, respectively.
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Fig. 3. Performance of LM and RCGA using CLS criterion. From left to right, top to
bottom, boxplot depict estimations of parameters α, β11, β12, β21, β22 for cases (i) -(vi)
respectively. The horizontal line indicated specified parameter value for each case.

A scene of a Landsat 5 TM image (courtesy of CONAE-Argentina), shown in
Fig. 4, with spatial resolution 30 m, was selected and the ABM assumed a valid
model. We estimated the vector of parameters θ in a selected training area for
each class and employed the outcome as a texture characterization vector in a
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five-dimensional feature space. The image map of classes was obtained labeling
a pixel by estimating the parameter vector in a patch around the image pixel,
tagging the patch with the model with closest parameters (Δθ up to threshold
T ) using the Euclidean norm. For this application were considered four different
window sizes: 9×9, 11×11, 13×13 and 15×15 pixels, and threshold T = k/10,
with k : 1, . . . , 40.

Table 1. Results of classification obtained by LM and RCGA.

Window sizes T Classifier Method OA (%) κ̂ CI of κ (95%)

9× 9 2.5
LM 85.70 0.6175 (0.6077, 0.6274)

RCGA 85.92 0.6266 (0.6170, 0.6364)

11× 11 1.4
LM 83.48 0.5673 (0.5571, 0.5777)

RCGA 84.11 0.5948 (0.5747, 0.5950)

13× 13 0.8
LM 82.38 0.5407 (0.5302, 0.5514)

RCGA 82.40 0.5492 (0.5388, 0.5597)

15× 15 0.8
LM 81.55 0.5133 (0.5024, 0.5244)

RCGA 82.21 0.5308 (0.5273, 0.5488)

Image classification performance was evaluated with Overall Accuracy (OA)
and Kappa statistical measures. For the study, we used Landsat 5 TM (228−88)
data in GeoTIFF format, dated March 3, 2011. The scene selected in experiment
was Bajo de la Quinta, with 190 × 190 pixels. Bajo de la Quinta (“La Quinta
Hollow”) (40◦56′14′′ S and 64◦20′34′′ W) is located in the northern coast of the
San Mat́ıas Gulf, Province of Ŕıo Negro, Argentina. The hollow is covered by a
field of active sand-dunes (approximately 7 km2). A portion of sand-dunes zone
was selected as training area.

Fig. 4. First column: Bajo de la Quinta scene, Landsat 5 TM image and Ground
Truth. Second to Fifth column: Classification map obtained by LM and RCGA, for
9× 9, 11× 11, 13× 13 and 15× 15 windows sized, respectively.

According to the scale established by Landis and Koch the values of Kappa
reveal a level of agreement “substantial” when 9 × 9 window sized is used and
“moderate” on the rest, between the ground truth image and the class maps
obtained by LM and RCGA. All Kappa coefficients were statistically significant
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(p < 0.01), confirming significant concordance between the maps compared.
The behavior of the classifier methods was similar, although the RCGA reaches
slightly higher classification accuracy than LM. Closer look at the class maps
outputs revealed that a portion of the sand dunes next to water was misclassified
by LM while RCGA gives better edge data. Grounds verification were carried
out using the aid of topographic map and the printed satellite imagery showing
the observed site and surrounding area. The maps are shown in Fig. 4.

4 Conclusion

We introduced a new estimator of the ABM parameters using a RC Genetic
Modeling approach to solve the CLS equations. Our simulation experiments
show that our estimator is more accurate than the benchmark estimator in at
least one parameter in all cases, specially on directional parameters, and our
experiment in land classification shows it use feasible in real applications. In
fact, the better use of directional information gives better edge definition to the
classification map.
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Universidade Federal de Uberlândia, Uberlândia, MG, Brazil

{tpribeiro,leandro,arbackes,celiazb}@ufu.br

Abstract. This work presents an automated approach to texture char-
acterization through complex networks. By applying an automatic
threshold selection for network degree map generation, we managed to
achieve significant reduction in the number of descriptors used. The
method is adaptive to any image database, because it is based on the
analysis of the energy value of the degree histogram of the complex net-
works generated particularly from each database. Experiments using the
proposed method for texture classification using databases from litera-
ture show that the proposed method can not only reduce feature vector
size, but in some cases also improve correct classification rates when
compared to other state of the art methods.

Keywords: Texture characterization · Complex networks · Automatic
threshold selection

1 Introduction

Texture is one of many attributes by which an image can be characterized. The
advancement of modern image processing techniques and the richness of infor-
mation provided by texture analysis resulted in the use of the texture attribute
in several different image processing and computer vision tasks: content based
image retrieval (CBIR) [1], image segmentation [2], [3], image synthesis [4], clus-
tering and classification [5,6]. Practical applications can also be found in many
important fields, such as security and event detection [7], medical image analysis
[8] and social behaviour analysis [9], to cite a few examples.

Literature presents a wide range of methods for texture description and clas-
sification. These methods can be divided into four basic categories: statistical
methods [10], geometric properties-based methods, filtering and transform-based
methods (or signal processing-based methods) and model-based methods [11,12].

These methods generate comparable data based upon information extracted
from the visual data. Whether it is statistics, quantified geometric properties
or the resulting data after a transform is applied to the image, the information
c© Springer International Publishing Switzerland 2015
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works as a descriptor for that texture. The key to a good descriptor (i.e., one
that presents good precision for a wide variety of datasets, while also being
robust enough to offer good recall, even against image transformations such as
rotation) is to extract appropriate information from the image. Finding which
features results in a better discrimination of textures from different classes is a
complex problem that has been the topic of extensive research.

Images can be modeled as complex networks for many different applications.
Complex networks, in turn, can be computationally represented by graphs [13].
There are several different methods available for statistical and topological anal-
ysis and characterization of complex networks [14]. Using this process, a texture
can yield information through the use of complex network description metrics,
which works well given that the periodic nature of the texture means they usu-
ally yield networks with relevant and representative statistics and topologies [15].
One category of methods for complex network description is degree histogram
analysis. The histogram offers simple and concise statistics on the complex net-
work, and many features can be derived from it. The work on [13] successfully
uses statistics from the degree histogram of a complex network generated from
an image to characterize textures, showing that the histogram can be a powerful
tool for such tasks. However, the success of the method depends on the appro-
priate choice of parameters; specifically, the quality of the graph generated from
the texture, that is, how discriminating it can be, strongly depends on the choice
of the threshold value that determines connections (or lack thereof) between the
complex network’s nodes. Different thresholds yield very different graphs. Bet-
ter results were achieved when acquiring statistics from networks obtained using
different thresholds and combining the results into a bigger descriptor.

This work presents an improvement on the previous method by greatly reduc-
ing descriptor size by intelligently choosing thresholds to compose the feature
vector. This is done through analysis of statistical measures yielded by the net-
works of different thresholds and using that information to judge the signifi-
cance of threshold values and selected the most relevant ones. Data from similar
thresholds usually have high dependence, which means some of them can be dis-
carded without significantly decreasing the classification results (and sometimes
improving them). Experiments were performed comparing the method to other
state-of-the-art texture analysis methods, on commonly used datasets.

2 Graph Approach for Texture Analysis

2.1 Graph Modelling

In order to analyze a texture using graph properties, we must first model the
texture as a graph which emphasizes some desirable properties related to the
pixels neighborhood. To accomplish that, we modeled the texture as an undi-
rected graph G = (V,E) by associating each image pixel I(x, y), x = 1 . . . M ,
y = 1 . . . N , as a vertex v ∈ V [13]. An edge e ∈ E connects two vertices when
the Euclidean distance between them is no longer than a radius value r:
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E =
{

e = (v, v′) ∈ V × V |
√

(x − x′)2 + (y − y′)2 ≤ r

}
, (1)

where x and y are the coordinates of the pixel I(x, y) associated to the vertex
v. We also associate a weight to each edge e ∈ E. This weight w(e) is defined as

w(e) =
(x − x′)2 + (y − y′)2 + r2 |I(x,y)−I(x′,y′)|

255

r2 + r2
(2)

where I(x, y) = g, g = 0, . . . , 255 is the gray value associated to the image pixel
and r2 + r2 is the maximum weight value. This weight function considers both
pixels distance and difference of intensities in its calculus. Since the pixels inten-
sities present a wider range of values than its position, we decided to normalize
it in function of the radius r to avoid the dominance of this attribute in the
calculus. Notice that we also normalized the weight function according to the
square of the radius r, so that, the 0 ≤ w(e) ≤ 1.

Once we modelled the texture sample as a graph, we are able to compute its
properties. One simple property is the degree of each graph vertex. We define
the degree of a vertex v as:

deg(v) = |{v′ ∈ V |(v, v′) ∈ E}| . (3)

where |A| is the count of the number of items in the set A. From the degree of
each graph vertex, we obtain the histogram degree h(i)

h(i) =
∑
v∈V

δ(deg(v) − i) (4)

where δ(j, i) is the Kronecker’s delta

δ(i) =
{

1, i = 0
0, i �= 0 (5)

and the probability density function p(i)

p(i) =
h(i)∑k
i=0 h(i)

(6)

where k = maxv∈V deg(v) is the maximum degree of the graph G.

2.2 Dynamic Evolution of the Graph

The graph obtained from a texture image is a regular graph. This is because
each vertex is connected to the same number of other vertices of the graph and
this number of vertices is limited by the value of the radius r. Thus, the degree
of its vertices does not hold any desirable information for the characterization
of the graph/texture.
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A interesting tool for investigating a graph behavior comes from the complex
networks theory and its called dynamic evolution[13]. It aims to investigate the
graph properties as a function of time, i.e., it considers that the graph is changing
along the time as well as its properties. This process enables to study how the
properties change and their trajectories, and use them as additional information
to analyze and classify a graph.

Although the graph obtained from a texture does not change along the time,
it is possible to emulate this process by applying a threshold t over the set of
edges E in order to select a subset Et, Et ⊆ E. In this work, we propose to select
edges from e ∈ E to compose Et where the weight of the edge, w(e), is equal to
or smaller than the threshold t:

Et = δt(E) = {e ∈ E|w(e) ≤ t} . (7)

By considering the original set of vertices V , we are able to obtain a new
graph Gt = (V,Et) representing an intermediary stage in the graph evolution.

The degree of a node bears information on how the corresponding pixel relates
to its neighbours. Let Dt be the matrix of degrees of the nodes vx,y ∈ V for a given
t. Every vx,y has a corresponding Dt(x, y) ∈ Dt, where Dt(x, y) = deg(vt(x, y)).
Energy, entropy and contrast are extracted from these degree matrices to compose
the feature vector used to characterize the texture sample

Fig. 1. Stages of the proposed method: (a) Input image; (b) Complex network gener-
ated for each threshold value t and texture sample in the dataset; (c) Average energy
histogram; (d) Thresholds selected; (e) Degree distribution from the texture sample for
each selected threshold; (f) Feature vector composed by energy, entropy and contrast.

3 Automatic Threshold Selection

The work in [13] set the threshold t consisting of an initial threshold tinitial =
0.005, which was gradually increased by a value tincr = 0.015, until it achieved
a maximum threshold tfinal = 0.530. This values were obtained empirically.
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We propose a method to automatically select thresholds for the set t. By
analyzing the empirical thresholds previously proposed, we observed that by
varying the texture databases the results obtained were not the best. Instead of
setting a fixed range for the thresholds, the proposed method selects N thresholds
from the set of thresholds T , which is created by the following parameters:
tinitial = 0.005, tincr = 0.005 and tfinal = 0.950.

Figure 1 illustrates the stages for automatic selection of the thresholds. Ini-
tially we create a complex network for each texture image and threshold t. In
the sequence, we compute the energy for each degree’s histograms and generate
the average energy histogram of all images in the texture database. From this
average histogram we select all the local peaks and valleys. This results in a
new set S of thresholds, S ⊂ T , containing the thresholds t which will be used
to model the texture pattern into a complex network. Then, for each network
generated using a threshold T ∈ S we calculate the energy, entropy and contrast
of its degree’s histograms. This measurements will be concatenated to compose
the feature vector.

4 Experiments and Results

In order to evaluate our automatic threshold selection approach, the image fea-
ture vectors were calculated and used in a texture classification context. We
used three image databases as benchmark: Brodatz texture album [16], with
1776 images in 111 classes; the VisTex color textures [17], with 864 images in 54
classes; and the Columbia-Utrecht Reflectance and Texture database (CUReT)
[18], with 5612 images in 61 classes. Each image sample of any database is
200 × 200 pixels size and it was extracted from a particular texture pattern
without overlapping.

Statistical analysis using linear discriminant analysis (LDA) was performed
to evaluate the accuracy of our proposed approach. LDA is a classification
method which projects data in a linear subspace where inter-classes variance
is larger than intra-classes variance [19]. We also used the leave-one-out cross-
validation strategy with the LDA. In this approach, each sample in the database
is used for validation while the remaining samples are used as a training set
and this test is repeated until all samples in the database have been used for
validation.

Before applying our threshold selection approach, some parameters must be
defined in order to compute the complex networks from a texture sample. To
model the network, we used a radius r = 3, which resulted in a maximum node
vx,y degree of 28.

Table 1. Comparison of the mean and median classification results.

Method
Brodatz Vistex CUReT

Dim. Success rate (%) Dim. Success rate (%) Dim. Success rate (%)
Mean 36 93.30 48 96,88 48 78.90

Median 54 94.14 54 96,64 42 77.08
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In order to efficiently apply our approach on texture analysis we must first
select the best set of thresholds. As previously stated, we propose to evaluate the
variation on the energy of the degree distribution obtained for a set of thresh-
old values to select the most discriminative ones. Thus, for each texture sam-
ple, we compute the energy of the degree distribution for each threshold in a
set of 190 different threshold values defined by the following equation: t(i) =
0.005 + 0.005(i − 1), i = 1, . . . , 190. Then, we compute the average curve from
the curves obtained of all textures. This average curve shows how the energy lev-
els are distributed over the textures in the entire database. To compute this curve,
we evaluated two approaches: mean and median. In the sequence, we selected the
thresholds which correspond to the peaks and valleys of the average curve as the
parameters of the graph descriptors (Section 3). Table 1 show the results achieved
for the two approaches (mean and median) on three different image sets.

We notice that each approach achieves a different number of thresholds for
each image set. This is expected as the average curve represents the variation
of energy levels over the textures. In general, we achieve the best success rate
by using the mean instead of the median. The only exception is in the Brodatz
dataset. However, this result presents the largest difference in the number of
thresholds selected between mean and median.

We also performed a comparison with traditional and state of art texture
analysis methods. Table 2 presents the results yielded for each method. For this
comparison, we considered the mean measurement to compute the average curve
used to select the best thresholds, as shown in Table 2. We must emphasize that
we were not able to implement all compared approaches due to the complexity of
the method or missing information in their respective papers. Thus, for methods
that lack results for one or more datasets, these results correspond to the ones
presented in their respective paper. We also compared our approach with the
traditional implementation of the complex network method, where the thresholds
are manually selected [13].

Table 2. Results yelded for all compared methods.

Method
Number of Success rate (%)
descriptors Brodatz Vistex CUReT

First Order 5 40.20 52.66 57.78
Wavelets 36 70.27 72.11 58.52
LBP 25 89.58 88.89 74.07
Gabor 64 82.49 91.67 80.12
Backes et. al[13] 108 95.27 86.76 84.32
Zhang et. al[20] 100 94.90 ± 0.7 - -
Crosier and Griffin [21] 1,296 - - 98.6 ± 0.2
Perea & Carlsson[22] 215 - - 95.66 ± 0.45
Varma and Zisserman [23] 2,440 - - 97.43
Zhang et al. [24] 6,561 - - 92.44 ± 1.04
Zhang et al. [25] 648 - - 94.44 ± 1.13
Proposed approach 36, 48, 48 93.30 96.88 78.90
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Results indicate that our approach presents a consistent high performance in
all texture datasets. It is able to yield the highest success rate in Vistex dataset
and the third best result in Brodatz dataset. In this case, its results in 1.97%
smaller than the best results, but using less than half the number of descriptors.
The worst performance of our approach is in the CUReT dataset. However,
methods with higher success rate present from 4 to 136 times more descriptors
than our proposed approach.

5 Conclusions

Descriptor size is an important characteristic to consider in a mathematical mod-
elling method, specially in recent times in which lower cost embedded systems
and big data problems have become so relevant. If two descriptors offer similar
classification rates, a method presenting a much smaller feature vector size would
be preferable. A smaller feature vector takes up less storage and memory space
and is generally faster to process and apply a classifier to. The method proposed
in this work yields feature vectors smaller than other state of the art methods,
while keeping on par with those methods’ results in terms of classification rates
over several image databases, as was shown by the experiments performed. This
work also further showcases how complex network measures can be a power-
ful tool in adequately describing texture. In this case, statistical analysis of the
degree histogram yielded information not only on the overall nature of the data,
but also about the thresholds that are the most significant. Through automated
threshold selection, the proposed method can also adapt to the particularities of
each specific set of data through customized threshold selection. The dimension-
ality reduction is therefore based on the complexity of the data. Future work on
this approach could be exploring this relation between the statistical measures
of the degree histogram, used for dimensionality reduction, and what they can
inform about the nature and complexity of the data.

Acknowledgments. André R. Backes gratefully acknowledges the financial support of

CNPq (National Council for Scientific and Technological Development, Brazil) (Grant

#301558/2012-4). Celia A. Zorzo Barcelos gratefully acknowledges the financial sup-

port of CNPq (National Council for Scientific and Technological Development, Brazil)

(Grant #207513/ 2014-7, #475819/2012-8 and #305812/2013-0). The authors grate-

fully acknowledge the financial support of CNPq, FAPEMIG and PROPP-UFU.



Automatic Threshold Selection 475

References

1. Hiremath, P.S., Pujari, J.: Content based image retrieval using color, texture and
shape features. In: International Conference on Advanced Computing and Com-
munications, ADCOM 2007, Guwahati, Assam, pp. 780–784. IEEE (2007)

2. Belongie, S., Carson, C., Greenspan, H., Malik, J.: Color- and texture-based image
segmentation using EM and its application to content-based image retrieval. In:
Sixth International Conference on Computer Vision, Bombay, pp. 675–682. IEEE
(1998)

3. Goncalves, W.N., Bruno, O.M.: Dynamic texture analysis and segmentation using
deterministic partially self-avoiding walks. Expert Systems with Applications
40(11), 4283–4300 (2013)

4. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: The
Proceedings of the Seventh IEEE International Conference on Computer Vision,
vol. 2, pp. 1033–1038 (1999)

5. Serra, G., Grana, C., Manfredi, M., Cucchiara, R.: Covariance of covariance fea-
tures for image classification. In: Proceedings of International Conference on Mul-
timedia Retrieval, ICMR 2014, pp. 411:411–411:414. ACM, New York (2014)

6. Zhao, Y., Jia, W., Hu, R.X., Min, H.: Completed robust local binary pattern for
texture classification. Neurocomputing 106, 68–76 (2013)

7. Ma, Y.M.Y., Cisar, P.: Event detection using local binary pattern based dynamic
textures. In: 2009 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops (2009)

8. Kassner, A., Thornhill, R.E.: Texture analysis: a review of neurologic MR imaging
applications. American Journal of Neuroradiology, AJNR 31(5), 809–816 (2010)

9. Ghidoni, S., Cielniak, G., Menegatti, E.: Texture-based crowd detection and local-
isation. In: Lee, S., Cho, H., Yoon, K.-J., Lee, J. (eds.) Intelligent Autonomous
Systems 12. AISC, vol. 193, pp. 725–736. Springer, Heidelberg (2012)

10. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5),
786–804 (1979)

11. Jain, A., Tuceryan, M.: HandBook of Pattern Recognition and Computer Vision.
In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.), pp. 207–248. World Scientific Pub-
lishing Co. Inc., River Edge (1998)

12. Chetverikov, D., Renaud, P.: A brief survey of dynamic texture description
and recognition. In: International Conference on Computer Recognition Systems,
pp. 17–26 (2005)

13. Backes, A.R., Casanova, D., Bruno, O.M.: Texture analysis and classification: a
complex network-based approach. Information Sciences 219, 168–180 (2013)

14. Costa, L.D.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of
complex networks: a survey of measurements. Advances in Physics 56(1), 78 (2005)

15. Backes, A.R., Casanova, D., Bruno, O.M.: A complex network-based approach for
texture analysis. In: Bloch, I., Cesar Jr, R.M. (eds.) CIARP 2010. LNCS, vol. 6419,
pp. 354–361. Springer, Heidelberg (2010)

16. Brodatz, P.: Textures: a photographic album for artists and designers. Dover pic-
torial archives. Dover Publications (1966)

17. VisTex: Vision Texture Database (2009)
18. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and

texture of real-world surfaces. ACM Trans. Graph. 18(1), 1–34 (1999)
19. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-

Interscience (2000)



476 T.P. Ribeiro et al.

20. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels
for classification of texture and object categories: a comprehensive study. In: Con-
ference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006,
p. 13 (2006)

21. Crosier, M., Griffin, L.D.: Using basic image features for texture classification.
International Journal of Computer Vision 88(3), 447–460 (2010)

22. Perea, J.A., Carlsson, G.: A klein-bottle-based dictionary for texture representa-
tion. International Journal of Computer Vision 107(1), 75–97 (2014)

23. Varma, M., Zisserman, A.: Unifying statistical texture classification frameworks.
Image and Vision Computing 22(14), 1175–1183 (2004)

24. Zhang, J., Liang, J., Zhao, H.: Local energy pattern for texture classification using
self-adaptive quantization thresholds. IEEE Transactions on Image Processing: A
Publication of the IEEE Signal Processing Society 22(1), 31–42 (2013)

25. Zhang, J., Liang, J., Zhang, C., Zhao, H.: Scale invariant texture representation
based on frequency decomposition and gradient orientation. Pattern Recognition
Letters 51, 57–62 (2015)



A RFM Pattern Recognition System Invariant
to Rotation, Scale and Translation

Selene Solorza-Calderón(B) and Jonathan Verdugo-Olachea

Facultad de Ciencias, Universidad Autónoma de Baja California,
Km. 103, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C., México
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Abstract. In this paper a rotation, scale and translation (RST) invari-
ant pattern recognition digital system based on 1D signatures is pro-
posed. The rotation invariance is obtained using the Radon transform,
the scale invariance is achieved by the analytical Fourier-Mellin trans-
form and the translation invariance is realized through the Fourier’s
amplitude spectrum of the image. Once, the RST invariant Radon-
Fourier-Mellin (RFM) image is generated (a 2D RST invariant), the
marginal frequencies of that image are used to build a RST invariant
1D signature. The Latin alphabet letters in Arial font style were used to
test the system. According with the statistical method of bootstrap the
pattern recognition system yields a confidence level at least of 95%.

Keywords: Pattern recognition · Radon-Fourier-Mellin Images · 1D
RST invariant signature · Radon transform · Analytical Fourier-Mellin
transform

1 Introduction

In the pattern recognition field, the feature extraction process to generate a
descriptor invariant to geometric transformations of the object (translation, rota-
tion, scale, noise, illumination and others) is not a trivial problem. Since the first
optical experiments in the middle of last century, the features extraction has been
a subject of interest and a great progress were done since the introduction of
the classical joint transform correlator by Vander Lugt [1], that is the classical
matched filter (CMF). Due to the fact that the CMF filter has low response to
additive Gaussian noise other filters were generated, just as the phase-only filter
(POF), the synthetic discriminant function filter (SDF) and others. In general,
the filters are specialized to solve specific problems, for example the filter could
have an excellent performance in the discrimination step and the signal-to-noise
ratio but low efficiency under non-homogeneous illumination [2]. Although com-
posite filters are being used, the RST invariant image classification problem is
an active field due to its intrinsic complexity[3–7].

Actually, with the great advance in technology, the pattern recognition via
digital images is a very productive area. A lot of methodologies in digital images
c© Springer International Publishing Switzerland 2015
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features extraction based on joint transforms correlators are developed. T.V.
Hoang and S. Tabbone [8] uses the Radon and the 1D Fourier-Mellin transform
to build a 2D RST invariant classifier. However, the classification step is realized
by the use of the 2D cross-correlation of the target and the problem images. On
the other hand, the 2D Fourier-Mellin transform (FMT) are used to design 2D
RST invariant classifiers. Because of the factor 1

r in this transform, generally
the translation invariance is done in the spatial domain using the centroid or
the center of mass of the objects, but removing a small disk around the centroid
or the center of mass to reduce the large effect of the factor 1

r [9]. Ghorbel [10]
propose the analytical Fourier-Mellin transform (AFMT), where the images are
weighted by the factor rσ with σ > 0 to eliminate the influence of 1

r in the FMT.
However, this transform not preserves the rotation and scale invariance. Derrode
[9] propose a normalization of the AFMT by two of the AFMT harmonics to
obtain a RST invariant descriptor together with the Euclidean distance for the
classification mechanism.

In this work a 1D RST invariant Radon-Fourier-Mellin (RFM) digital image
pattern recognition system is designed. Moreover, a methodology to generate
one and only one classifier output plane is proposed, instead of the multiple
classifier output planes obtained with the correlator pattern recognition systems
[5–8]. The work is organized as follows: Section 2 explains the mathematical
foundations of the RST invariant images and the methodology to obtain the
1D signature. Section 3 exposes the procedure to construct the classifier output
plane of 95% confidence level. Finally, conclusions are given in section 5.

2 Digital System Invariant to Rotation, Scale and
Translation

In the Radon-Fourier-Mellin (RFM) digital image pattern recognition, the first
step is obtain the shift invariance. This is achieved using the amplitude spec-
trum A(u, v) of the Fourier transform [12]. Fig. 1 shows the Fourier’s amplitude
spectrums for black and white 257 × 257 pixel images of: the image with the A
Arial font letter without geometric transformations, called I1; the image with
the A Arial font letter with a rotation angle of 315◦ and scaling of −25%, named
I2; the image with the B Arial font letter without geometric transformations,
denominated I3. Also, Fig. 1 shows that A3(x, y) = |F {I3(x, y)} | is different
of A1(x, y) = |F {I1(x, y)} | and A2(x, y) = |F {I2(x, y)} |. Moreover, in Fig.
1 is seen that A2 presents the same rotation angle of I2 and it has a stretch
deformation due to the scale variation.

The next step of the RMF system is the scale invariance, which is given via
the fast analytical Fourier-Mellin transform (AFMT),

M(k, ω) = M{A(eρ, θ)} =
1
2π

∫ ∞

−∞

∫ 2π

0

A(eρ, θ)eρσe−i(kθ+ρω)dθdρ , (1)
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(a) (b) (c) (d) (e) (f)

Fig. 1. Fourier’s amplitude spectrum examples. (a) Image I1: the A Arial font letter
without geometric transformations. (b) Image I2: the A Arial font letter with a rota-
tion angle of 315◦ and scaled −25%. (c) Image I3: the B Arial font letter without
geometric transformations. (d) A1(u, v) = |F {I1(x, y)}|. (e) A2(u, v) = |F {I2(x, y)}|.
(f) A3(u, v) = |F {I3(x, y)}|.

where ρ = ln(r) and σ > 0. Eq. (1) is not an invariant to scale and rotation,
but normalizing the AFMT by its dc-value the amplitude spectrum is a scale
invariance [9], that is

S(k, ω) =
∣∣∣∣

M(k, ω)
M(cx, cy)

∣∣∣∣ , (2)

where (cx, cy) is the central pixel of the image. Fig. 2(d), Fig. 2(e) and Fig.
2(f) present S1(k, ω), S2(k, ω) and S3(k, ω) images, respectively. These are
the normalized analytical Fourier-Mellin amplitude spectrums of A1(eρ, θ)eρσ,
A2(eρ, θ)eρσ and A3(eρ, θ)eρσ (Fig. 2(a), Fig. 2(b) and Fig. 2(c)), respectively.
The images are not rotation invariant yet. Fig. 2(a) and Fig. 2(b) show the
circular shift in the angular variable.

Finally, the rotation invariant is obtained by the Radon transform [8] of the
normalized analytical Fourier-Mellin amplitude spectrum S(k, ω), that is

R(r, θ) = R {S(k, ω)} =
∫ ∞

−∞

∫ ∞

−∞
S(k, ω)δ(r − kcosθ − ωsinθ)dkdω , (3)

where r ∈ (−∞,∞), θ ∈ [0, π) and δ is the Dirac delta function. Fig. 3(a), Fig.
3(b) and Fig. 3(c) show the RFM images invariant to rotation, scale and trans-
lation associated to Fig. 1(a), Fig. 1(b) and Fig. 1(c), respectively. Practically,

(a) (b) (c) (d) (e) (f)

Fig. 2. Normalized analytical Fourier-Mellin spectrum with σ = 0.5. (a) A1(e
ρ, θ)eρσ.

(b) A2(e
ρ, θ)eρσ. (c) A3(e

ρ, θ)eρσ. (d) The S1(k, ω) of Fig. 2(a). (e) The S2(k, ω) of
Fig. 2(b). (f) The S3(k, ω) of Fig. 2(c).
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(a) (b)

(c)

Fig. 3. The Radon transform examples. (a) The R(r, θ) of Fig. 2(d). (b) The R(r, θ)
of Fig. 2(e). (c) The R(r, θ) of Fig. 2(f).

Fig. 3(a) and Fig. 3(b) are equal, the former is obtained from the image with
the A Arial font letter without geometric distortions and the latter is generated
with the A Arial font letter rotated and scaled. Fig. 3(c) is different to the others
two images, this is associated to the B Arial font letter without distortions.

To reduce the computational time cost, the marginal frequencies are used in
the 1D RST invariant signature construction, that is

V (x) =
∑

y

R(x, y) . (4)

3 The Confidence Level

The RST invariant Radon-Fourier-Mellin pattern recognition system was train-
ing using black and white (BW) 257 × 257 pixel digital images with the Latin
alphabet letters in Arial font style, each image was rotated 360◦ with Δθ = 1◦.
Thereafter, each of those images were scaled ±25% with a scale step size of
Δk = ±1%.

The real and imaginary parts of the Fourier transform of the 1D signature
are obtained, just like

RV (u) + iIV (u) = F (u) = F {V (x)} =
∫ ∞

−∞
V (x)e−i2πuxdx , (5)

to determine the signature’s power by
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P
R

=
1

N
R

∑
R2

V , (6)

P
I

=
1

N
I

∑
I2V , (7)

where N
R

and N
I

are the length of the signatures RV and IV , respectively.
A database of target images should be established to train the RFM pattern
recognition system. The P

R
and P

I
of those images are obtained to determine

the 95% confidence interval (CI) by the statistical method of bootstrap using a
replacement constant B = 1, 000 and normal distribution [11]. Fig. 4(a) shows
the output plane for the 26 Arial font letter of the Latin alphabet. Each letter
image was rotated 360◦ (Δθ = 1◦) and then scaled ±25% (Δk = ±1%), therefore
18,360 images for each letter were created. Then, each CI is built from 18,360
values. In Fig. 4(a), the horizontal and vertical axes represent the CI for the
P

R
and P

I
values, respectively. A rectangle area is assigned to each image (Fig.

4(b) displays an amplification zone of the output plane to observe the rectangle
area assigned to some letters). Because those rectangles are not overlapped, the
RFM pattern recognition system has a confidence level at least of 95% in the
digital image classification. Therefore, a one and only one classifier output plane
was used, instead of the multiple classifier output planes (one for each reference
image in the database) for correlator systems[6–8] or distance systems [5,9].
For example, in the case of the latin alphabet letters the correlator systems
[6,7] uses 26 output planes. In [8], the classification step is realized by the use
of the 2D cross-correlation of the target and the problem images. Because the
Radon transform generates a circular shift in the angular variable, 180 2D cross-
correlation values are calculated for each pair of images, employing a lot of
computation time in the classification process. Therefore, the single output plane
methodology reduces the investment computational time considerably.

4 Noise Analysis

To test the performance of the system when images have additive Gaussian noise,
the similarity coefficient was used, it is defined like

SC = 1 − ||ST − STN ||∞
||ST − SFN ||∞ , (8)

where ||x||∞ = max{|x1|, |x2|, . . . , |xn|}, ST is the signature of the image, STN is
the signature of the image with noise and SFN is the signature of the background
image with noise. When ST and STN are similar the ||ST − STN ||∞ → 0, then
SC ≈ 1. On the other hand, when the problem image has to much noise that
it looks like the background image with noise, the ST and SFN are similar and
||ST −SFN ||∞ → 0, thus SC < 0. For the sake of comparison, the performance of
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(a)

(b)

Fig. 4. (a) The classifier output plane. (b) Amplification zone of the classifier output
plane.
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SURF methodology when the images have noise is included, but here the results
are given in terms of the repeatability parameter r,

r =
C (T, PI)

mean(NT , NPI)
, (9)

where C(T, PI) represents the number of the common detected points in the
target T and the problem image PI; NT and NPI are the number of points
detected in T and PI, respectively. Fig. 5 presents the graphs of the mean of the
SC response for the RFM system and the repeatability analysis (r values) for
the SURF algorithm. The images were altered with additive Gaussian noise of
media zero and variance from zero to 0.3, using 40 images per sample. In Fig. 5
is shown that RFM system has a better response under this kind of noise than
the SURF methodology.

Fig. 5. The RFM and SURF pattern recognition systems performance when images
have additive Gaussian noise with variance σ from 0 to 0.3 and step size of Δσ = 0.025.

5 Conclusions

This work presents a RFM pattern recognition system using a 1D signature
invariant to rotation, scale and translation (RST) based on the analytical
Fourier-Mellin and Radon transforms. The system presents a confidence level
at least of 95% in the pattern recognition of rotated, scaled and translated black
and white images with the Latin alphabet letters in Arial font style. Moreover,
this RST invariant Radon-Fourier-Mellin methodology generates a single clas-
sifier output plane to reduce the computational cost time of the classification
procedure.
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Abstract. The texture is an important property of images, and it has
been widely used to image characterization and classification. In this
paper, we propose a novel method for texture analysis based on Com-
plex Network theory. Basically, we show how to build networks from
images, and then construct a vocabulary of visual words with Bag-Of-
Visual-Words method. To build the vocabulary, the degree and strength
of each vertex are extracted from the networks. The feature vector is
composed by the visual word occurrence, unlike most traditional Com-
plex Network works that extract global statistical measures of vertices.
We show through experiments in four databases the effectiveness of our
approach, which has overcome traditional texture analysis methods.

Keywords: Texture analysis · Complex networks · Bag-Of-Visual-
Words

1 Introduction

When we look at images, an important characteristic that can be noted is its
texture. Although texture can be easily interpreted by humans, designing an
automatic tool to perform the same role is a difficult and challenging task.
Despite the importance for images, there is no concise definition in literature
to the term texture [18]. Nevertheless, it can be described as a repeating pattern
of intensity levels in a region of the image.

Through the years, many methods to texture analysis have been proposed in
the literature. They can be divided into the following categories: spectral analysis
[1,15], statistical analysis [12,13] and complexity analysis [17]. Regardless of the
approach, the goal of a texture analysis method is to extract relevant features
that present both local and global information of the pixels, ensuring that the
whole pattern is correctly represented. In this context, Complex Networks theory
(CN) is a strong approach with such properties, and recently some works on
texture analysis based on CN has emerged [3,6,10,11]. However, previous works
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extract global measurements from the CN, which in some cases, is not effectively
in texture analysis. Moreover, CN is still underexplored in images because CN
theory itself is a new area that has emerged in the past decade.

This work presents a new method to texture analysis based on CN theory.
The main idea is to build networks from images, and then apply the Bag-Of-
Visual-Words (BOVW) method over them. Instead of extracting global statisti-
cal measures from CN, like previous works, measurements of each vertex based
on its degree and strength are extracted. This information is used to build a
vocabulary of visual words with BOVW, and the feature vector is composed by
the visual word occurrence in the image. Results on four datasets have shown
the effectiveness of the proposed method.

The next sections of this paper describe every step to represent a texture
with CN and BOVW. In Section 2, a brief review of CN theory is presented.
Section 3 presents the proposed method to build networks from textures and
characterize them using BOVW. In Section 4, the parameters of the proposed
method are evaluated, and a comparison with traditional texture methods is
performed. Finally in Section 5, a brief conclusion of the work and future works.

2 Complex Network Theory

The CN theory is an intersection between graph theory and statistical mecha-
nisms, which emerge from physics. The popularity of CN rise from its flexibility
to model and represent many problems, resulting in a wide range of applica-
tions [8]. Works using CN usually have two main steps: modeling the problem as
networks and extracting measurements from them. To build a CN, a weighted
and undirected graph C = (V,E) is defined, where V = {v1, ..., vn} is a set of
vertices and E = {evi,vj

} a set of edges.
To characterize the structure of CN, recent works focused in exploring topo-

logical features [4,7]. Usually, most of the traditional works use information of
vertex properties, such as degree and strength. The vertex degree is the num-
ber of its connections, and the vertex strength is the sum of its edges. Most
of the works focuses in the analysis of vertices degree and strength, evaluating
statistical measures of global distribution, such as the average vertex degree.

3 Proposed Method

3.1 Texture Representation with Complex Networks

The first step of the proposed method is to model an image I with w×h pixels and
gray levels between 0 and 255 as a network G = {V,E}, where V = {v1, ..., vw∗h}
is the set of vertices such that each vertex corresponds to one pixel and E =
{evi,vj

} is the set of edges. Two vertices vi and vj are connected if the Euclidean
distance of their corresponding pixels pi and pj is smaller than a radius r. The
edge weight is given by the pixel distance multiplied by the difference between
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their intensities. This allows us to include spatial and intensity information into
the connections. So, an edge connecting two vertices vi and vj is defined by:

evi,vj
=

{
1
r |I(vi) − I(vj)|d(vi, vj), if d(vi, vj) ≤ r

∅, otherwise (1)

where I(vi) and I(vj) are the gray level intensity of the pixels corresponding to
the vertices vi and vj , respectively, and d(vi, vj) is the Euclidean distance. The
multiplication by 1

r is a normalization factor that keeps the edge weight between
0 and 255 for any radius r.

Initially, the network has the same number of connections, presenting a regu-
lar topology. In order to transform the regular network, a function Gt,r = C(G, t)
is applied over the original network, where edges that have weight greater than
t is discarded. A new t-scaled network Gt,r is obtained using radius r to con-
nect vertices, where its edges were redefined according to the threshold t. The
threshold affects directly the topology, and can result in networks with dense
or sparse connections. Fig. 1 illustrates two networks transformed with different
thresholds. It can be observed that vertices with similar gray level intensities are
connected, and the threshold controls the level of similarity.

Fig. 1. Networks Gt1,r and Gt2,r transformed using two thresholds t1 < t2. The net-
work was built from an image with 10x8 pixels, using radius r =

√
2. (a) t1. (b) t2

3.2 Vertex Measurements

Given a network Gt,r, the degree and strength of each vertex vi can be calculated
as:

kt,r(vi) =
∑
vj

{
1, if evi,vj

∈ E
0, otherwise (2)

st,r(vi) =
∑
vj

{
evi,vj

, if evi,vj
∈ E

0, otherwise (3)

To characterize different properties of the network topology, to each vertex vi
a vector of measurements is extracted using a set of thresholds T = {t1, . . . , tnt}
and radiuses R = {r1, . . . , rnr}:

ψ(vi) = [kt1,r1 , st1,r1 , ..., ktnt,rnr , stnt,rnr ] (4)
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This allows evaluating the evolution of the network since its creation (little
thresholds) to its stabilization (high thresholds). To define these sets, first it
is found the range of threshold [t1, tnt] and then, this range is divided into nt
intervals. In order to find the range of thresholds, it is estimated the mean μ
and standard deviation σ of edges of networks built from training images P
(Equation 5 and 6).

μ =
1

|P | ∗ |E|
∑
I∈P

∑
vi∈VI

evi,vj , ∀j (5)

σ =
1

(|P | ∗ |E|) − 1

∑
I∈P

∑
vi∈VI

(evi,vj
− μ)2, ∀j (6)

With the distribution μ and σ, the initial and the final thresholds are defined
by t1 = max(3, μ − 3σ) and tnt = min(255, μ + 3σ). The initial threshold is
limited to prevent that networks have enough connections and the final threshold
is limited to the maximum possible weight. The parameters μ and σ model the
distribution of the edges weight, and according to the Gaussian properties, the
initial and final thresholds ensure a cover of 99.8% of the network edges. To the
set of radiuses, it is used R = {1,

√
2,

√
8,

√
18,

√
32,

√
50}, that is those which

covers a different square regions.

3.3 Bag-Of-Visual-Words of Complex Networks

The BOVW [9] method came originally from the Bag-Of-Words method applied
to document categorization. Its main idea is to represent documents with a
histogram of words occurrence along the text. In BOVW, the same idea is used,
but instead of words literally, features of pixels are used. Therefore, a visual
word represents a region of pixels with similar properties. To train these visual
words, several features of the image can be extracted, and then it is performed
a clustering (usually with K-Means) to build the vocabulary of visual words.

In the context of CN, the image features are the vertex vectors ψ(vi) described
in the previous section. To build the vocabulary, K-Means is performed in a set
D = [ψ(vi)] ∀ vi composed by vertex vectors of each image of the training
set P . The algorithm is initialized randomly and performs a clustering based
on the Euclidean distance of the vectors, returning C = {c1, ..., ck} centroids
corresponding to each visual word. With the centroids, it is possible to assign a
visual word to each vertex by its Euclidean distance:

w(vj) = arg
k

min
i=1

dist(ψ(vj), ci) (7)

where arg min returns an index between 1 and k. Fig. 2 shows a sample of the
assignment of visual words in three different textures.

The feature vector used in the classification is composed by the visual words
occurrence h(wi) (Equation 8). With these measurements, the proposed method
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Fig. 2. Samples of visual words assignment on three different textures. It was used
k = 50, and each color represent a different visual word, according to the scale 1 to 50.

combines both local (information of each vertex) and global (occurrence of visual
words) information of the texture.

ϕ = [h(w1), . . . , h(wk)] (8)

4 Experiments and Results

In this section, we perform an analysis of each parameter and also a comparison
with traditional texture analysis methods. In the classification, the K-Nearest
Neighbors classifier (KNN) is used, with the 10-fold cross-validation. We have
chosen a simple classifier rather than a sophisticated one in order to highlight
the importance of texture descriptors.

In the experiments, four traditional databases were used in order to ensure
a large variety of images and evaluate the invariance to scale, illumination, etc.
The four databases are: Brodatz [5] with 111 classes with 10 samples of 200x200
pixels, Vistex [16] with 54 classes with 16 samples of 128x128 pixels, Usptex [2]
with 191 classes with 12 samples of 128x128 pixels and KTH - Tips [14] with 11
classes with 432 samples of varied dimensions.

4.1 Parameter Analysis

As previously discussed, the three main parameters of the proposed method
are the set of thresholds T = {t1, ..., tnt}, radiuses R = {r1, ..., rnr} and num-
ber of visual words k. Three configurations were evaluated, using 10 thresh-
olds and different radius sets. We have defined empirically the set P , the num-
ber of visual words k and nt. It was evaluated other numbers of thresholds,
but that does not critically affect the results, and nt = 10 was fixed as stan-
dard. Fig. 3 (A) presents the accuracy rate for three configurations using dif-
ferent number of visual words k in the Vistex database. The first configura-
tion R = {1,

√
2,

√
8} achieved good accuracy rates, but the second one, using

R = {1,
√

2,
√

8,
√

18}, has improved the results. The third configuration, which
is composed by R = {1,

√
2,

√
8,

√
18,

√
32}, decreased the accuracy rate. There-

fore, the second configuration is defined as standard, where the number of fea-
tures used to each vertex is 80 (nt * nr * number of measures = 10 ∗ 4 ∗ 2).
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Fig. 3. (A) Results on Vistex database using three radius configurations and nt = 10
thresholds. (B) Classification results in each database using Configuration 2.

Although we have found the best parameters on Vistex database, this con-
figuration was used in all four databases and showed the best results. Due to
the wide variety of these databases, we believe that this configuration presents
satisfactory results for a large range of images. Fig. 3 (B) shows the results of
classification in all databases with k ranging from 100 to 1000. It is important to
notice that the best results were achieved using k between 700 and 1000. How-
ever, using k = 100 the proposed method overcomes all the compared methods
in Vistex and Usptex databases (see Table 1 in the next sub-section).

4.2 Comparison with Traditional Methods

We have compared the proposed method with the following traditional methods:
Fourier Descriptors [1], Gabor Filters [15], Co-occurrence Matrix [13], Dense
SIFT with BOVW [9], Local Binary Patterns-Variance (LBPV) [12] and Local
Fractal Dimension [17]. To each method, the parameters used are those that
present the best result. Table 1 shows the accuracy rate and the number of
features to each method in all databases. For the proposed method, we show the
results using 100 visual words and the number of visual words that provided the
best result.

On Brodatz database, the best results were achieved by the proposed method
with 96.85% against 94.05% of Dense SIFT and Local Fractal dimension. Using
100 visual words, the proposed method reached 93.51%, the same performance of
LBPV. In the Vistex database, the proposed method overcomes LBPV using 100
visual words, with 93.40% against 91.32% and provided its best result of 95.83%
using 800 visual words. The Usptex database proved to be the most difficult to
the methods, in general, due to its large amount of classes. In this database, the
proposed method presented the best performance that has overcome LBPV with
86.34% against 78.01% that is a difference of almost 9%. Finally, in the KTH
- Tips database, the proposed method also achieved the best result, reaching
94.00% with 1000 visual words against 93.77% of the Local fractal dimension.
This result shows that the proposed method is robust against many variations
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Table 1. Results achieved by texture analysis methods in each database. Each column
presents the number of features, the accuracy rate and standard deviation (in brackets).

Method Brodatz Vistex Usptex KTH - Tips

Fourier
99 features 63 features 63 features 63 features

70.72%(±3.85) 72.09%(±4.89) 49.78(±3.13) 80.09(±1.82)

C. Matrix
40 features 40 features 40 features 40 features

86.49(±2.69) 87.74(±2.72) 63.73(±2.71) 86.36(±1.12)

Gabor
40 features 40 features 40 features 40 features

89.01 (±1.52) 86.11 (±1.75) 73.62 (±2.68) 93.29(±1.04)

L. Fractal
5550 features 2700 features 9550 features 550 features
94.05 (±2.69) 80.08 (±5.07) 30.28 (±1.85) 93.77(±0.77)

Dense SIFT
500 features 300 features 300 features 500 features
94.05(±2.13) 75.92(±2.85) 53.23(±3.37) 89.84(±1.18)

LBPV
54 features 54 features 54 features 54 features

93.51(±1.89) 91.32(±2.27) 78.01(±2.68) 91.58(±1.32)

P. Method
100 features 100 features 100 features 100 features

93.51%(±2.43) 93.40%(±1.56) 80.76%(±2.48) 91.01%(±1.37)

P. Method
800 features 800 features 700 features 1000 features

96.85%(±2.05) 95.83%(±0.98) 86.34%(±1.92) 94.00%(±1.61)

present in KTH - Tips database, such as changes in scale, color, illumination
and even dimension of the images.

As the results show, the proposed method has overcome traditional texture
analysis methods including the Dense SIFT with BOVW. These experiments
ensure that the method has good invariance and generalization power, keeping
excellent results in the four databases. This method shows that the combination
between CN and BOVW provides a high level of texture discrimination.

5 Conclusion

In this work, a novel method to texture analysis was proposed. Using two
approaches (Complex Networks and Bag-Of-Visual-Words), it was possible to
extract texture descriptors based on the degree and strength of each vertex. CN
theory allows to representing texture as networks, and BOVW build a vocab-
ulary of visual words based on CN topology properties. Results show that the
proposed method overcomes traditional methods in four widely used databases.

As future works, we intend to extract information only to relevant vertices,
instead of the whole network. This will ensure an improvement in the computa-
tional cost, and can result in a reduction in the number of visual words.
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10. Gonçalves, W.N., Machado, B.B., Bruno, O.M.: A complex network approach for
dynamic texture recognition. Neurocomputing, 211–220 (2015)
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Abstract. Image segmentation is one of the first steps in any process
concerning digital image analysis and its accuracy will go on to determine
the quality of this analysis. A classic model used in image segmentation
is the Mumford-Shah functional, which includes both the information
to pertaining the region and the length of its borders. In this work, by
using the concept of loss in Bregman Information a functional is defined
which is a generalization of the Mumford-Shah functional, once it is
obtained from the proposed function by means of the Squared Euclidean
distance as a measure of similarity. The algorithm is constructed by using
a fusion criterion, which minimizes the loss in Bregman Information. It
is shown that the proposed hierarchical segmentation method general-
izes the algorithm which minimizes the piecewise constant Mumford-
Shah functional. The results obtained through use of the Generalized
I-Divergence, Itakura-Saito and Squared Euclidean distance, show that
the algorithm attained a good performance.

Keywords: Hierarchical segmentation · Mumford-Shah functional ·
Fusion region

1 Introduction

The segmentation of images is one of the first steps in any process concerning
digital image analysis and its accuracy determines the quality of this analysis.
The main goal of segmentation is to subdivide an image into homogeneous groups
called regions. Homogeneity can be measured in terms of color, texture, motion,
depth, etc. For the purpose of this study, it is measured through the similarity
of the gray levels. Thus, the regions are formed by pixels, connected or not, and
which are grouped by a criterion that determines the similarity or dissimilarity
of their values, thereby generating a single partition [1].

Determining how image segmentation should be performed is not an easy
task to solve, since the level of detail to which it is accomplished will depend
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on the observer along with the complexity of the problem to be solved.
The representation of all possible regions pertaining to the image is called Hier-
archical Partition H of the image. Image segmentation is obtained from the H
Hierarchy constructed by selecting a partition from the set. This approach allows
regions to be selected at different scales or sections of the image, [4].

A classic model used in segmentation of an image I is the Mumford- Shah
functional, [6]. The segmentation procedure that uses this variational model
partitions I into Xi sets obtained by the agglomeration of regions, considering
both the information of the region and the length of its boundaries.

In this paper, the authors propose the use of the concept of Bregman Infor-
mation, presented by Banerjee et al. [2] as an alternative to the construction of
the hierarchy H. The proposed method is a development of the minimization
algorithm in discrete form the Mumford-Shah functional presented in [5], dif-
ferentiated by the fusion criterion and also the widespread similarity measure
through the concept of Bregman Information. Thus, H is obtained by a fusion
algorithm in which the loss in Bregman Information is minimized. The Bregman
Information used for the functional can be defined using different metrics derived
from the Bregman divergence.

2 Bregman Information

2.1 Bregman Divergence

Definition: Given a convex function ϕ : R
n

R the corresponding Bregman
Divergence between x and y ∈ dom(ϕ) is given by:

dϕ(x, y) = ϕ(x) − ϕ(y) − 〈∇ϕ(y), x − y〉
where ∇ϕ(y) is the gradient vector of ϕ in y [3].

A low mathematical accuracy of this definition is presented in Fig.1.

Fig. 1. Geometric interpretation of Bregman Divergence.

Different choices for the convex function f induces different metrics, Table 1
contains some convex functions f with their respective Bregman Divergences [2].

In [2], the authors use the divergence of Bregman to measure the distor-
tion rate of Shannon, thus introducing the concept of Bregman Information.



Bregman Divergence Applied to Hierarchical Segmentation Problems 495

Table 1. Convex Functions x Bregman Divergence.

Domain ϕ(x) dϕ(x, y) Distance

R
d x 2 x− y 2 Squared Euclidean Distance

R++ − log x x
y
− log(x

y
)− 1 Itakura-Saito Distance

d-Simplex
∑d

j=1 xj log2 xj

∑d
j=1 xj log2(

xj

yj
) KL-Divergence

R
d
+

∑d
j=1 xj log xj

∑d
j=1 xj log(

xj

yj
)−∑d

j=1(xj − yj) Generalized I-Divergence

From this concept, the problem of finding a partition and its representatives
is presented as a problem of minimizing the loss in Bregman Information. In
the following sections, a summary of these concepts is presented, with a more
detailed study established in [2].

2.2 Bregman Information

Definition: Let X be a random variable with values in X = {xi}n
i=1 ⊂ S ⊂

R
n with a discrete probability distribution v = {vi}. Given the divergence of

Bregman dϕ, the Bregman Information of the X, in relation to ϕ is given by:

I(X) = mins∈ri(S)

n∑
i=1

vidϕ(xi, s).

The vector s, which makes the above mentioned functional minimal will
be called the Bregman Representative of X. This representative does not
depend on the choice of Bregman divergence and it is the value expected for the
random variable X, [2]. So taking s = μ =

∑n
i=1 vixi one has:

I(X) =
n∑

i=1

vidϕ(xi, μ). (1)

2.3 Loss in Bregman Information

Let X be a random variable that take values in a finite set X = {xi}n
i=1 ⊂ S ⊂ R

n

following a probability measure v. Let ℘ = {Rh}k
h=1 be a partitioning of X

with their respective Bregman representatives. If M = {μh}k
h=1 is the set of

those representatives and p = {ph}k
h=1 with ph =

∑
xi∈Rh

vi as a measure of
probability in M , it has the variable induced M with values in M and the
probability of distribution p. Thus Rh is a random variable with values in Rh

following the probability distribution vi

ph
to xi ∈ Rh, [2].

Note that Iϕ(X) is the “Bregman Total Information” while Iϕ(M) is the
“Bregman Information between regions”. The difference Lϕ(M) = Iϕ(X) −
Iϕ(M) is called Loss in Bregman Information and represents the “Breg-
man Information within regions”,[2]. Applying Bregman Information definition
given in (1), it follows that:

Lϕ(M) =
k∑

h=1

n∑
i=1

vidϕ(xi, μh). (2)
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Lϕ(M) measures the Information Loss occurred when performing the partition
of X. Thus, the smaller the loss in Bregman Information better will be the
performed partition.

If k = n, i.e., the number k of regions is equal to the size of X, then there is
no loss of information. On the other hand if all elements of the set X are grouped
into a single set, the loss of information is given by the Bregman Information of
the X, in other words, Lϕ(M) = Iϕ(X) where M = {μ} and μ is the Bregman
representative of the X.

Based on the above definitions presented, the problem of determining a par-
tition for a given image I = {xi}n

i=1 may be formulated as an optimization
problem of Lϕ(M). The goal is to determine M = {μh}k

h=1 such that Lϕ(M) is
minimal.

3 Proposed Method

The main idea of the proposed method is to combine Bregman Information of
regions with boundaries, to obtain a hierarchical partition. With the hierarchi-
cal structure constructed, the problem of targeting becomes the locating of the
desired partition in the hierarchy, which can be performed by establishing a
threshold for the number of end regions.

Let I = {xi} be all the pixels of a given image, ℘ = {Rh}k
h=1 an I partition

with their respective Bregman representatives, M = {μh}k
h=1 and K the set

of all the boundaries between the regions obtained by the partition. For the
construction of the hierarchical structure a region merging algorithm is used,
whose purpose is to determine the sets of representatives M and boundaries K,
which minimize the functional defined by:

Eϕ(M,K) =
k∑

h=1

∑
xi∈Xh

vidϕ(xi, μh) + λl(K) = Lϕ(M) + λl(K). (3)

where:

– Eϕ(M,K) is the energy of the functional in function of the image X =
{xi}n

i=1 and the K boundaries between regions.
– l(K) is the length of the boundaries K.
– λ is a scale parameter [7].

Note that the segmentation of the functional defined in equation (3) is a prob-
lem of minimizing the loss in Bregman Information Lϕ(M), plus a regularization
term that controls the length of boundaries K that divide regions.

Due to the large quantity of points in image I, for a hierarchical partition,
we constructed the Region Adjacency Graph (RAG) for the pixels in the image.
Thus, the fusion is performed only to neighboring regions that meet the criteria
of similarity. For each graph edge, there is associated a minimum value α which
indicates the cost of fusion. Later, the regions are merged iteratively following
the criterion of fusion, usually this criterion involves minimizing the cost of the
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fusion. Each time a pair of regions is joined, a new node is created in the tree.
This new node is attached to the pair of nodes, that are now called “children
nodes”, and a new value α is assigned to the “father node”. The algorithm stops
when there is only one region in RAG. The cost and fusion criteria used in this
study are presented below.

3.1 Fusion Cost

Merging two adjoining regions is interesting if its result is better than the previ-
ous representation, that is, if the energy Eϕ(X), considering the joined regions,
is less than when these were separated. From this statement the criterion used
in the fusion algorithm is constructed.

Consider the adjacent regions R1 = {x1, ..., xl} and R2 = {xl+1, ..., xm} such
that R = {x1, ..., xm}. If Xu is a random variable with values in Xu following the
probability distribution vi the Bregman representative of Xu is μ =

∑m
i=1 vixi.

Note that Xd = {R1, R2} is a partition from Xu and M = {μh}2h=1 the
respective set of Bregman representatives. Considering p = {ph}2h=1 with ph =∑

xi∈Rh
vi as a probability measure in M , we have the induced variable M with

values in M and the probability distribution p. The regions Rh are random
variables with values in Rh following the probability distributions vi

ph
for each

xi ∈ Rh. Bregman representatives of the variables R1 and R2 are given by:
μ1 =

∑l
i=1

vi

p1
xi and μ2 =

∑m
i=l+1

vi

p2
xi, respectively.

The Bregman representative s, from M, is the expected value of M, these
means: s =

∑2
h=1 phμh = p1

∑l
i=1

vi

p1
xi + p2

∑m
i=l+2

vi

p2
xi =

∑m
i=1 vixi = μ.

From definition (1) one has:

Iϕ(M) =
2∑

h=1

phdϕ(μh, μ) = p1dϕ(μ1, μ) + p2dϕ(μ2, μ). (4)

One also observes that the loss in Bregman Information given by the Xd

partition is Lϕ(M) = Iϕ(Xu) − Iϕ(M).
In order to define the fusion criterion the difference between the energy

obtained by considering the fusion regions, Eϕ(Mu,Ku), and that obtained when
they remain separate, Eϕ(M,K), should be calculated. If there is no partition
to Xu, the set Ku is empty. Therefore, l(Ku) = 0. In this manner one obtains
from equation (3) that

Eϕ(Mu,Ku) = Lϕ(Mu) + λl(Ku) = Lϕ(Mu) = Iϕ(Xu); (5)

Let K be a unitary set whose element is the boundary between R1 and R2.

Eϕ(M,K) = Lϕ(M) + λl(K); (6)

Thus, using equations (4), (5) and (6), a definition is made as follows, the
cost of the fusion Δϕ(R1, R2) of the regions R1 and R2 are defined in the fol-
lowing.

Definition: Let ϕ a relatively convex and differentiable function, R1 =
{x1, ..., xl} and R2 = {xl+1, ..., xm} two adjacent subsets of X with Bregman
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representatives, μ1 and μ2 respectively. Let M = {μ1, μ2} be an interior set of
dom(ϕ). Consider X as a random variable with values in X following the prob-
ability distribution vi. Being p = {ph}2h=1 with ph =

∑
xi∈Rh

vi a probability
measure on M and K being a unitary set whose element is the boundary between
R1 and R2. Then,

Δϕ(R1, R2) = Eϕ(Mu,Ku) − Eϕ(M,K), or

Δϕ(R1, R2) = p1dϕ(μ1, μ) + p2dϕ(μ2, μ) − λl(K). (7)

Note that the fusion cost is calculated using only the Bregman representa-
tives of the regions instead of all the elements of R1 and R2. This procedure is
analogous to that shown in [8].

One observes that if X follows a uniform probability distribution, this means
p1 =

∑
xi∈R1

vi =
∑l

i=1
1
m = l

m and p2 =
∑

xi∈R2
vi =

∑m
i=l+1

1
m = m−l

m .
Hence,

Δϕ(R1, R2) =
l

m
dϕ(μ1, μ) +

m − l

m
dϕ(μ2, μ) − λl(K). (8)

Considering the convex and differentiable function ϕ = ‖.‖2, the Bregman
divergence is the Euclidean distance, which is, dϕ(x, y) = ‖x − y‖22. Therefore,

Δϕ(R1, R2) =
l

m
‖μ1 − μ‖22 +

m − l

m
‖μ2 − μ‖22 − λl(K), where (9)

l = |R1| and m − l = |R2|. (10)

Furthermore:

‖μ1 − μ‖2 =
|R2|‖μ1 − μ2‖2

|R1| + |R2| and ‖μ2 − μ‖2 =
|R1|‖μ1 − μ2‖2

|R1| + |R2| . (11)

Replacing the equations (10) and (11) in (9) one has:

Δϕ(R1, R2) =
|R1||R2|

|R1| + |R2| ‖μ1 − μ2‖22 − λl(K). (12)

Equation (12) is the discretized form of the Mumford-Shah functional, one
of the most robust methods used in image segmentation [5].

The decision to merge two regions is not made based on the simple compari-
son of the two regions, but considering if the union results in a better approxima-
tion, that is, a consideration is made as to how much Δϕ(Ri, Rj) is less than zero.
In this manner, the fusion of (Ri, Rj) occurs if for each Ri with Δϕ(Ri, R.) < 0,
Δϕ(Ri, Rj) is minimal.

3.2 Algorithm

Let I = {xi} be the set of pixels in a given image and ℘ = {Rk} a partition from
I. The initial partition can be obtained by considering each pixel as an image
region, that is, causing Ri = xi,∀i.

1. Set the ℘ initial partition;
2. Input a value for the scale parameter λ;
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3. While |℘| > 1
(a) Calculate cost Δϕ(Ri, Rj) as defined in (7) for each pair of adjacent

regions the fusion;
(b) Find the set C of all pairs of adjacent regions in which Δϕ(Ri, Rj) < 0;
(c) While a pair Cij ∈ C is selected

i. Select the pair Cij = (Ri;Rj) following the fusion criterion;
ii. Replace in ℘, Ri and Rj with the union of these regions;
iii. Remove from C all pairs containing Ri or Rj ;

(d) End-While;
(e) Increase λ;

4. End-While;

The λ increment can be linear, polynomial or exponential. The algorithm per-
forms a multi-scale segmentation, depending on this parameter. The increase in
λ value enables the fusion of regions that will remain separated with lower values
of this parameter.

4 Obtained Results

In the experiments, one observed the ability of the described method to capture
the regions using different choices of Bregman Divergence. The performance was
analyzed for the methods of three Bregman Information definitions given by the
divergence: Generalized I-divergence, Itakura-Saito and Squared Euclidean. The
last, as previously shown, generates the discretized form of the Mumford-Shah
functional(MS).

Fig. 2. (a) original images, (b) segmented images using Squared Euclidean distance,
(c) segmented images using Generalized I-divergence , (d) segmented images using
Itakura-Saito.
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The parameter λ as well as the method used for increasing the λ depends
on the choice of Bregman Divergence. In this work for Generalized I-divergence
and Itakura-Saito, the parameter was increased linearly while for the Squared
Euclidean an exponential increase was chosen. Fig. 2 shows the results obtained
using the Bregman divergences mentioned above. One observes that the algo-
rithm performed well in all models. Methods using the divergences Generalized
I-divergence and Itakura-Saito have similar results to the discrete model of MS.

5 Concluding Remarks

The applicability of systems involving the search for similarity depends on the
distance chosen. Moreover, in many applications it is not clear which is the
most appropriate metric. Thus, several studies have been conducted in order to
develop methods that are efficient for a family of distance functions that share
similar properties. In this sense, we propose a functional which generalizes the
Mumford-Shah Funcional. We propose the use the Bregman Information concept
as an alternative to constructing a hierarchical segmentation method. From this
concept, the method allows the use of different similarity measures as well as it
allowing to update Eϕ, during the merging process, with a computational cost
that does not depend of the size of the intervening regions.

The results presented herein were obtained using the Generalized I-
divergence, Itakura-Saito and Squared Euclidean, which demonstrate the good
performance of the algorithm for these different choices.
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Abstract. This work proposes the use of SALSA (A Simple Automatic
Lung Segmentation Algorithm), a simple and fast algorithm for the seg-
mentation of Computerized Tomography lung volumes. The algorithm is
composed by the application of several simple image processing opera-
tions. The algorithm was tested on the database provided by LOLA11,
a lung segmentation challenge that took part during the MICCAI 2011.
The obtained results put SALSA’s accuracy rate very close to the accu-
racy rates of the methods on the top of the LOLA11 ranking. We are
currently at the stage of developing the method for segmenting the lung
lobes, a more challenging task.

Keywords: Image segmentation · Lung segmentation · Cut adjustment

1 Introduction

Since its invention, the usage of Computerized Tomography (CT) images for
diagnostic purposes has revolutionized the medical practice. However, the anal-
ysis of pulmonary tomographic images is a demanding task due to the high
amounts of data involved, that have to be segmented. There are several semi-
automatic and automatic methods for performing this task, with varying com-
putational efficiency and accuracy values. The method proposed in this work
uses several simple and well known image processing operations, such as the 3D
FloodFill algorithm [1], to segment the volumes based on the voxel intensities
and their relationship with their neighborhoods.

The Computer Aided Diagnostic (CAD) is an application area that is going
through a fast expansion due to the the ever growing requirements of obtaining
fast diagnostics when working with large and complex data volumes. In Pul-
monology, the lung segmentation is the first step in obtaining the diagnostic for
a patient. The segmentation algorithm must be robust to several problems that
may be present in the CT volumes, such as the presence of artifacts, noise or
the abnormal formation of the lungs, as can be seen in Figure 1.

This paper is organized as follows: This section introduces the problem and
contextualizes it, while Section 2 briefly summarizes some of the related work.
Section 3 describes in detail the proposed method, whose results are discussed
in Section 4. Finally, Section 5 shows comments about the work done and points
out the future developments associated with this work.
c© Springer International Publishing Switzerland 2015
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(a) (b)

(c) (d)

Fig. 1. Examples of volumes with anomalies in the LOLA11 database [9]: (a) Bad
formation of lungs, (b) Lung with a disease (c) CT volume with metal artifacts (d)
Volume with high level of noise.

2 Related Work

The task of performing semi or fully automatic lung segmentation is one that has
been successfully approached before [6], even though it had not been thoroughly
evaluated in some cases. In 2011, during the 14th International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI), a
challenge of lobe and lung segmentation (LOLA11) [9] was held as a part of the
Workshop on Pulmonary Analysis. The intent was to set up a database with
common as well as challenging CT chest volumes for analyzing the performance
and robustness of lung and lobe segmentation algorithms.

The LOLA11 database consists of 55 volumes of varied sizes, with the cans
coming from different sources and representing a variety of clinically common
scanners and protocols. The scans were selected such that the lung segmentation
is classified as easy in approximately half of the scans, and hard in the other
half.
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The results produced by the proposed methods are submitted to a web server,
that analyzes the accuracy of the methods against manually segmented ground
truth volumes and ranks them on the LOLA11 web site1. To ensure consistent
evaluation, the organizers of the workshop and maintainers of the web site do
not make available the reference (ground truth) segmentations.

Up to the time of the writing of this paper, other 16 groups have had their
results published in the LOLA11 web site. We now briefly describe some of these
methods.

The group labeled Human uses a second human observer to manually segment
all images and analyzes the variability between these segmentations and the
ground truth provided by LOLA11 [9].

The method proposed by Lassen et al. [7] uses a low resolution version of
the volume to detect the lungs and determine an appropriate threshold. Then,
a region growing method is used on the high resolution volume. The trachea
is found by looking for appropiate 2D objects in slices. After that, the method
employs a watershed to enhance the lung separation, as well as other operations
to remove leakages and to include blood vessels. The technique proposed by
Weinheimer et al. [12] starts the processing by looking for the tracheobronchial
tree. Then, a 3D region growing method searches for low density structures
(lungs) and the result of this operation is processed by a hole filling algorithm
to include high density structures, e.g. blood vessels, in the segmented object. If
a single component is found, a lung separation operation is performed by using
a method that searches for a minimum separation between the lungs.

The method proposed by Pinho et al. [8] is divided into 4 main steps: back-
ground removal, trachea localization, airway tree segmentation, and graph cut
segmentation to separate the lungs. Morphological operations of opening and
closing are then used to produce the final result. The method proposed by Korn
et al. [5] employs a region growing method based on density, geometry and shape
information. The method is divided into 4 steps by first segmenting the lungs,
followed by the refinement of this segmentation, the segmentation of the trachea
and bronchi, and the refinement of the separation between the lungs, where all
of this steps are performed by growing or shrinking objects based on geometrical
shape or density information surrounding the analyzed voxels.

The method of Sun et al. [11] uses an algorithm of rib detection to initialize
two active shape models to approximately segment the lungs, and then adapts
the model to the data by using an algorithm that also receives as input a seg-
mentation of the trachea and main bronchi, to find optimal surfaces of the lungs.
The method of Gu et al. [2] executes an initial approximated lung segmentation,
and then proceed to detect correct problems in the segmentation by detecting
know landmarks, such as ribs, lung bottom boundaries and using an elastic reg-
istration method to match the detected landmarks to a predefined template.

The method of Hosseini-Asl et al. [3] first removes the background surround-
ing the patient’s body. Then, the visual appearance of the 3D volume is modeled
using an Incremental Sparse Non-negative Matrix Factorization (ISNMF), gen-

1 http://www.lola11.com/

http://www.lola11.com/
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erating a voxel distribution in a feature space. The volume is then segmented
by clustering the voxels in this space using K-means. Finally, the 3D segmented
regions are refined through a connected component analysis.

3 SALSA

In this paper, we prose the algorithm SALSA (Simple Automatic Lung Segmen-
tation Algorithm), that is formed by composing several simple image processing
operations to perform the lung segmentation task. The work flow of the algo-
rithm can be seen in Figure 3 and it is described below.

After the original image is loaded, we apply a thresholding operation followed
by the search of seed voxels in each lung (Figure 3a). The threshold is set at
−239HU which was enough to guarantee that all lung voxels are selected. Small
variations of this value do not affect the overall results produced by the algo-
rithm. Then, the seed search step looks for voxels on the same y line on an axial
slice which have the most lung voxels between them. This process is repeated for
all slices that have lung voxels, while also estimating the maximum width and
height of the lungs on axial slices.

The seeds found in the previous step are used to perform an intensity based
growing boundary search, to segment the respiratory system (Figure 3b). This
task is performed by analyzing the 5×5×5 neighborhoods of all neighbors of the

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Work flow of the SALSA algorithm: (a) Thresholded image; (b) Boundary
object delineating the respiratory system; (c) Background detection (d) Detected tra-
chea; (e) Initial lung cut definition; (f) Final cut adjustment using Sobel operator; (g)
Detected vessel tree; and (h) Final 3D rendering of left and right lungs.
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seed voxels. An analyzed voxel is also labeled as boundary voxel and included in
the processing queue if its neighborhood contains more than a certain number
of background voxels, where this number is determined varies according to the
estimated noise level. This process is repeated until the processing queue is
empty. This detected boundary includes the lungs and trachea objects, but not
the vessels. We then use the 2D FloodFill algorithm to segment the background
outside the 2D axial boundary of the previous step (pink and reddish hues of
Figure 3c) and the background inside the 2D axial boundary of the previous step
(yellow hue of Figure 3c).

The trachea is found based on its anatomy, as we search for a tubular struc-
ture. Since some of the volumes are ordered in the opposite direction (equivalent
to upside down), we search for it in both directions. This search is performed
by looking for connected components in 3D and comparing the areas of the con-
nected component on adjacent slices. If these areas do not vary much throughout
the structure, it is assumed to be a tubular structure, and if its height is larger
than a threshold, the trachea is detected and segmented. A result can be seen
in Figure 3d.

At this point, we have the segmented the background and the trachea and we
need to check if the lungs touch each other, and separate them, if necessary. To
avoid leakages, we make a cut in the image based on the position of the two seeds
found before, producing an initial separation (Figure 3e). After that, the cuts
are analyzed and adjusted by optimizing the cut area using a local search [10],
such that we have the smallest possible number of voxels of a lung traversing
the cut. Several independent cuts can be moved in different directions on each
image, since the lungs may be connected in several points. We also use the result
of the application of a Sobel filter to guide those cuts, producing cleaner cuts, as
can be seen in Figure 3f. Note that, since these leakages occur in small localized
areas and the initial cuts are close to the optimal cuts, it is more efficient to
look for local adjustments of these cuts instead of running a mincut/maxflow
algorithm to globally optimize the cut.

After the last step, we need to include the voxels that belong to vessels. We
do that by adding all voxels that touch the computed boundary and belong to a
tubular object (Figure 3g). Then, we paint the lungs according to the standard
set by the LOLA11 Challenge [9], producing the result seen on Figure 3h.

4 Experiments

The validation of the proposed method was performed using the database pro-
vided by the LOLA11 Challenge [9], containing 55 CT chest images, with approx-
imately half of them being considered hard.

The LOLA11 Challenge web site allows somebody to submit the segmen-
tation results following their instructions, and computes the Maximum Overlap
(accuracies) of the submitted results against their manually labeled ground truth.
The Maximum Overlap rate is computed by translating the submitted results
a few voxels on each axis, computing the intersection between them and the
ground truth references, and keeping the highest score for each volume.
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The results below were obtained by applying SALSA to all 55 images of the
LOLA11 database, using a notebook with a I5-3337U CPU running at 1.8Ghz,
with 4Gb of RAM DDR3-1600 and an SS disk.

The Table 1 shows the Maximum Overlap rates of the segmented volumes
against the LOLA11 ground truth volumes, where mean indicates the mean
value, std the standard deviation, min the minimum value, Q1 the first quartile,
med the median, Q3 the third quartile, and max maximum values for the 55
volumes.

Table 1. Maximum Overlap rates for the 55 volumes of the LOLA11 Challenge
database.

obj mean std min Q1 med Q3 max

LL 0.959 0.108 0.213 0.968 0.985 0.989 0.994
RL 0.957 0.135 0.015 0.978 0.986 0.991 0.995

score 0.958

The execution times for all volumes averaged approximately 44s, ranging
from 10 to 248 seconds when applied to the 55 volumes. We can see in Figure
4 an example of the segmentation of a lung with an abnormality produced by
SALSA. The images were generated using the ITK-SNAP software [4].

We now summarize the results of the automatic segmentation methods sub-
mitted to LOLA11 [9] website. Weinheimer et al. [12] achieved a Maximum
Overlap of 0.964 (without morphological closing) and 0.97 (with morphological
closing). The average execution time on a computer with an Intel Xeon processor
running at 2.83 GHz with 4GB RAM was 7.3 minutes without and 11.4 minutes
with the morphological closing. Lassen et al. [7] achieved Maximum Overlap of
0.973 running on a standard quad-core Windows computer with 8 GB de RAM,
taking about 1 minute per case, on average, with the individual times ranging
from 0.5 to 3 minutes.

Pinho et al. [8] achieved Maximum Overlap of 0.948, Gu et al. [2] achieved
Maximum Overlap of 0.939 and Hosseini et al. [3] achieved Maximum Overlap
of 0.965. They did not provide execution times.

Korn et al. [5], achieved Maximum Overlap of 0.949 and reported an average
execution time was 12.6 minutos on a notebook Dell with an Intel Core2 Duo
T9600 CPU running at 2.8Ghz with 4GB RAM, while Sun et al. [11], achieved
Maximum Overlap of 0.949 with average execution time of about 6 minutos, but
the computer used in the experiments was not described.

In the LOLA11 Challenge [9], the best result was achieved by the Human
segmentation, that produced manually annotated segmentations following the
protocol defined by the challenge, resulting in a Maximum Overlap rate of 0.984.

O SALSA achieved better Maximum Overlap rates than seven algorithms,
such as Gu et al. [2], Pinho et al. [8], Korn et al. [5], Sun et al. [11], and worse
rates than seven algorithms, such as Weinheimer et al. [12], Lassen et al. [7] and
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(a) (b)

(c) (d)

Fig. 3. Segmentation of a lung with an abnormality (lola11-02 sample): (a) Surface
rendering of the lungs, (b) Axial, (c) Sagital, and (d) Coronal slices of the volume.

Hosseini et al. [3]. However, our average result is only 0.022 points (2.2%) below
the Maximum Overlap average rate of the best automatic segmentation method.

Since the execution times were measured on different machines, we cannot
compare the absolute values directly. However, considering that SALSA took an
average 0.435µs per voxel, we believe that our algorithm will compare favorably
against the other submitted algorithms.

5 Conclusion

In this work, we propose the SALSA algorithm, a simple and fast automatic
lung segmentation algorithm, that works well for a good range of protocols and
presence of noise and artifacts on CT chest scans. The algorithm is comprised of
several simple image processing operations that can be implemented efficiently.

The algorithm was tested on the database provided by LOLA11, a lung seg-
mentation challenge that took part during the MICCAI 2011. The proposed
method achieved the average accuracy rate of 0.958 (95.8%) on the 55 volume



508 A. Costa and B.M. Carvalho

database of the LOLA11 Challenge. We are currently tuning the algorithm to
produce results with higher accuracies. Future work will include the segmenta-
tion of the lung lobes, a much more challenging problem, due to the low contrast
that the thin membranes that divide the lobes present in CT exams.
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tation in MDCT images. In: Fourth Int. Works. on Pulm. Im. Anal. (at MICCAI
2011) (2011)

http://www.lola11.com/


© Springer International Publishing Switzerland 2015 
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 509–516, 2015. 
DOI: 10.1007/978-3-319-25751-8_61 

Segmentation of Urban Impervious Surface  
Using Cellular Neural Networks 

Juan Manuel Núñez() 

Centro de Investigación en Geografía y “Ing. Jorge L. Tamayo”,  
A.C. Contoy 137, Lomas de Padierna, Tlalpan 14240, Mexico D.F., Mexico 

jnunez@centrogeo.org.mx 

Abstract. In this paper an automatic segmentation technique for endmember 
detection to urban impervious surface with the help of the Biophysical Compo-
sition Index (BCI) and the segmentation based on Cellular Neural Network 
(CNN) was proposed. In particular, we focused in the derivation of BCI through 
of Landsat-8 Operational Land Imager (OLI) images, to proceed to the CNN 
segmentation through the threshold auto-select for impervious surface estima-
tion as a linear decision given by a linear activation function. After some simu-
lations based on the proposed technique, the obtained results, traditional single 
threshold-based segmentation and Otsu algorithm are assessed in terms of accu-
racy achieved through a stratified sample taken of a Very High Resolution im-
age (VHR) of WorldView-2 (WV-2) with the same date as Landsat-8 OLI. 

The accuracy assessment from a stratified random sample showed that the 
CNN segmentation was the most accurate method followed by the traditional 
single threshold-based segmentation. 

Keywords: Urban impervious surface · Cellular Neural Network · Urban  
biophysical composition · Endmember detection · Segmentation · Landsat-8 

1 Introduction 

Urban impervious surfaces are defined mainly as artificial structures and surfaces, 
such as buildings, pavements and car parks that seal the soil and prevent many essen-
tial ecosystem services (e.g., production of food, habitat for plants, micro-climate 
regulation); so that knowledge about their characteristics and changes in composition, 
magnitude, location, geometry and morphology is significant for a high range of prac-
tical applications at local and global scales [1]. The estimation of urban impervious 
surface can be seen as a problem of end members selection at the pixel level, one 
procedure widely employed in many fields to account for mixed pixels in remote 
sensing imagery [2]. In the determination of endmembers, the within-class and be-
tween-class variations can exert profound influences on the accuracy of estimation of 
impervious surface area, since an inappropriate endmember set could severely affect 
the accuracy of fractional impervious surface areas [3]. 

The within-class variability refers to relative differences in spectral signature with-
in the same land cover class, while the between-class variation suggests spectral  
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variations between two or more different land cover classes (e.g. soil and impervious 
surfaces). To reduce the impacts of endmember variability, different approaches have 
been developed to solve this problem. Some of them included the reduction of within-
class variation and/or the enhancement of between-class variation, and others that test 
all potentially feasible endmember combinations by the trial-and-error method trying 
to find the best-fit model [4]. With all this, the problem of endmember selection be-
tween “purest” endmembers that can be selected with relative ease but that do not 
always yield optimal results, or the selection of the most “representative” endmemb-
ers but very difficult to estimate with a simple linear combination of spectral signa-
tures of typical homogeneous materials, has not yet been fully solved [5]. In an  
attempt to expand and improve existing techniques for reducing variability endmemb-
er, some improved methods to extract endmembers take advantage of spatial and 
spectral relationships between a target pixel and its neighboring pixels to exclude 
unwanted pixels along the processing steps [6]. 

This paper proposes the developing an automatic segmentation technique for end-
member detection to urban impervious surface with the help of the biophysical com-
position index (BCI) and the segmentation based on Cellular neural network (CNN) 
[7, 8]. Because they exclusively have a degree of local connectivity, CNN is particu-
larly suitable for segmentation tasks. The pattern of their interaction with their near 
neighbors originates perform functions of extraction and hollow fill of small segments 
to merge them with larger regions. Taking advantage of the spectral and spatial rela-
tionships, it is intended that the proposal technique can both enhance between-class 
variation and decrease within-class variation for the urban impervious surfaces esti-
mated. The paper is organized as follows: Section 2 introduce the fundamentals of the 
proposed technique; then, in Section 3, for the studio area, the datasets used and major 
processing steps are presented; in Section 4, the accuracy assessment results for the 
impervious surface estimations are presented and discussed; finally, concluding re-
marks about the proposal are presented in Section 5. 

2 Background 

2.1 BCI Derivation 

BCI is a quantitative spectral indicator designed for characterizing biophysical com-
position of urban environments, that spectrally can moderately separate better bare 
soil from impervious surfaces, and it has significantly higher correlations with vegeta-
tion and impervious surface fractions when compared to other widely used indices in 
the endmember extraction techniques, including normalized difference vegetation 
index (NDVI), normalized difference built-up index (NDBI) and normalized differ-
ence impervious surface index (NDISI) [7]. BCI is derived by a review of the Tas-
seled Cap (TC) transformation [9], as shown in Eqs. (1) to (4)                                                2⁄2⁄                                                       1  
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with 1 11 1                                                           2  2 22 2                                                           3  3 33 3                                                           4  

 
where  H is “high albedo”, L is “low albedo”, and V is “vegetation”; TCi i1,2,3  are the first three TC components; TCi  and TCi  are the minimum and 

maximum values of the respective TC component. Because different forms of TC 
transformation have been proposed for a series of remote sensing sensors with various 
spatial and spectral resolutions, is also possible apply BCI to imagery from various 
remote sensors with multiple resolutions. 

2.2 CNN Segmentation 

The cellular neural network (CNN) is a large-scale nonlinear artificial circuit that 
possesses real-time signal processing ability. Originally developed by Chua and Yang 
[8], recently has been introduced in the context of satellite images, due to use of local 
connectivity's property in solving geospatial tasks [10, 11]. The standard CNN is 
formed by connected cells in a two-dimensional network structure. The state and out-
put equations of each cell could be expressed as below [8]: 

 ∑ , ; ., ,  ∑ , ; ,                             , , 5  1 1                                                                         6  

 
where X t , u  and y t  are the state, the input and the output of the cell. A i, j; k. l  and B i, j; k, l   are feedback and control templates, and  Z  represent the 

bias current value of the cell. u 1 and X 0 0 are the constraint conditions. 
Each cell in CNN only connects to its neighborhood N i, j  (r stands for neigh-

borhood radius, usually r 1) and interacted with each other directly, but the dis-
connected cells interacted with each other through continuous dynamic propagation 
effect. Cell neighborhood could be expressed as [8]: 

 ,  , | |, | | , 1 , 1 1            (7) 

Real-time signal processing capability and exclusively local connections are prop-
erties that have beginning to be used in tasks of digital image processing such as: 
feature extraction, edge detection, image segmentation, moving object detection and 
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image fusion [12]. Image segmentation aims at divide the image into homogeneous 
regions with the better borders position estimation. So, after image segmentation, the 
digital images are partitioned into disjoint homogeneous regions. There are several 
ways to define homogeneity of a region that are based on a particular objective in the 
segmentation process [13]. In the CNN approach, segmentation is based on a thre-
shold template selection and the most important essential point of CNN threshold is to 
find a set of accurate template. In this paper we work with the adaptive threshold 
method [14]. According to this method, the threshold template has the form: 0 0 00 a 00 0 0 ,         B  0 0 00 0 00 0 0 ,        Z z*              (8) 

where 1 and . If the initial activation   is contained in the interval [-
1, 1], then   so the activation function indicates that: 

                                    (9) 

where 1 is supposed and  is threshold value in the input image. 0 
sets a negative threshold , meanwhile 0 sets a positive threshold . 

3 Materials and Methods 

3.1 Study Area and Data Used 

The study area is the city of Merida, located at Northwestern Peninsula of Yucatan, 
Mexico. Merida is known for its cultural heritage and for being one of the safest cities 
in the country; however, also it faces major challenges in urban issues, such as pollu-
tion of aquifers related to expansion of impervious surface [15]. 

Multispectral Imagery. A Landsat-8 OLI image with multispectral bands (at 30 m 
spatial resolution) acquired on January 2014 was used in this study. The FLAASH 
method embedded in the ENVI software, based on the MODTRAN radiation transfer 
code, was applied to all multispectral bands. Uniform parameters were specified for 
the image: tropical atmospheric model, the rural aerosol model, and the 2-Band aero-
sol retrieval method. Atmospheric correction to obtain reflectance information is ne-
cessary for derived good estimates of biophysical variables like a TC transformation 
and BCI. In addition to the Landsat-8 OLI scene, a Very High Resolution (VHR) 
satellite image acquired by WorldView-2 (WV-2) in April 2014 (at 2 m spatial resolu-
tion) was used to assess the performance of the urban impervious surface estimation. 
The multispectral image at 2 m spatial resolution was then orthorectified using the 
rational polynomial coefficients provided by the image supplier. 
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3.2 Proposed Procedure 

Once the atmospherically corrected surface reflectance of Landsat-8 OLI is obtained, 
the proposed procedure is the following: 

a) TC Transformation Calculation. For the six Landsat-8 OLI bands (2 to 7) were 
applied the TC transformation parameters [16], resulting in the three firsts TC 
components: brightness, greenness and wetness. 

b) BCI Derivation. BCI indicator is calculated and the results are contained in the 
range [-1, 1]. Impervious surfaces are associated with higher and positive values; 
vegetation has lower and negative values and bare soil have intermediate values, 
and can be separable from impervious surfaces. 

c) Segmentation for Endmember Detection. To automatically extract endmember 
candidates of impervious surface, an optimal selection of threshold to extract low 
and high albedo was used according to [4]. The selection of this value is related to 
the largest number of features retained when the traditional single-threshold  
segmentation is applied. After CNN threshold template is applied by a linear acti-
vation function. For this case a = 2 is supposed, so the threshold value determines 
directly the quality of the resultant impervious surface estimation.  

d) Accuracy Assessment. To evaluate the performance of segmentation methods, 
ground references of impervious surfaces were derived by visual interpretation 
and manual digitization from the WV-2 satellite image. Two segmentation classes 
were assessed: impervious surfaces associated with higher and positive BCI val-
ues; and others linking vegetation, related with lower and negative values, bare 
soil and mixed lands (e.g., bare soil and vegetation in residential areas). A strati-
fied random sample of 180 reference sampling points was performed in the ENVI 
software for assessed each of the three segmentation methods. The selected sam-
ples were grouped in a 90×90 m size for to reduce impact of geometric error  
between multi-source remote sensing images. 

4 Results 

For the six Landsat-8 OLI reflectance bands (2 to 7), the three firsts TC components 
(brightness, greenness and wetness) were derived through method described in [16] 
and BCI image was calculated applying Eqs. (1) to (4). The chosen threshold value 
used to characterize endmember of impervious surface was fixed in -0.04, searching 
the preservation of the largest number of features. Single-threshold segmentation, 
CNN segmentation, and OTSU algorithm [17] were presented to illustrate the effec-
tiveness of the proposed method. 

Fig. 1 shows in an upper-left image, a natural color band combination in RGB for 
the orthorectified VHR WV-2 image. Upper-right image shows the results of segmen-
tation between single-threshold segmentation; low-left the CNN segmentation; and 
lower-right image the OTSU algorithm result. 
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Abstract. Spoken Language Understanding, as other areas of Language
Technologies, suffers from a mismatching between the conditions of the
training of the models and the real use of the systems. If the seman-
tic models are estimated from the correct transcriptions of the train-
ing corpus, when the system interacts with real users, some recognition
errors can not be recovered by the understanding system. To achieve
an improvement in real environments we propose the use of the output
sentences from the recognition process of the training corpus in order to
adapt the models. To estimate these models, a labeled and segmented
corpus is needed. We propose an algorithm for the automatic segmen-
tation and labeling of the recognized sentences considering the correct
segmented and labeled data as reference. Experiments with a spoken dia-
log corpus show that this approach outperforms the approach based on
correct transcriptions.

Keywords: Spoken language understanding · Learning from noisy
data · Adaptive training

1 Introduction

In many applications of language technologies, a mismatch may occur between
the conditions of the training of the models and the real use of the systems. This
problem can appear in statistical models, which are some of the most common
models used to represent the knowledge sources involved in oral communication.
Statistical models have the advantage that they can be trained by using auto-
matic learning algorithms and they can accurately represent the variability of
many linguistic components, such as acoustic-phonetic, syntactic, or semantic
components [11],[4]. However, in many cases it is not possible to have a training
corpus that contains all of the linguistic variability necessary to estimate good
linguistic components.

To address this problem, some approaches have been proposed in the liter-
ature depending on the kind of models to learn or the possibility of obtaining
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accurate training samples [5]. For example in Automatic Speech Recognition
(ASR), the acoustic-phonetic models must be adapted to noisy environments
and the language models must also be adapted to deal with the problems of cov-
erage. In Spoken Language Understanding (SLU), the lack of enough training
data is also a common problem.

One possibility for tackling unobserved inputs in real environments is to
supply lattices or graphs of linguistic units as input to the systems in order to
represent more variability according to similarities between words or phonemes,
for instance Word Confusion Networks are used for robust semantic parsing in
[14]. Another way to adapt systems to unobserved inputs in real environments
is to use active learning techniques [12], in which some real utterances/sentences
are selected to dynamically adapt the models.

In the specific case of SLU, one of the main problems is to obtain a seman-
tically labeled corpus [2], that is large enough to train the semantic models.
In most cases, even though the training corpus is obtained through real speech
interactions, the semantic labeling is generated by considering the correct tran-
scriptions of the utterances. Therefore, even though the semantic labeled training
corpus takes into account the variability associated to spontaneous speech, the
noise generated by the speech recognition errors is not considered. With seman-
tic models trained in that way, when the system interacts with real users, some
ASR errors cannot be recovered by the understanding module. Similar problems
occur when a multilingual SLU is designed. In that case the input sentences to
the understanding module are corrupted not only by the recognition process but
also by the translation process. Solutions to this problem can be found in [3],
where the translation process is enriched by the combination of several transla-
tors and generating a graph of words that represents multiple hypotheses, or in
[9], where the training samples are translated from the original language to the
user language and then translated back to the original language. This way they
have a training corpus that includes the specific characteristics of the translation
process.

In this paper, we present an adaptive training approach to SLU that uses the
output sentences from the ASR process of the training corpus in order to adapt
the SLU models to the characteristics of the ASR process. In order words, we
use the noisy training data, which is obtained from the recognition process, to
estimate the semantic models. We have applied this approach to the DIHANA
task [1] with information about train timetables and fares in Spanish, and we
have studied the behavior of the system by considering three different ASR
engines: an open domain (Google recognizer), and two in-domain recognizers
(HTK and Loquendo) where both the language model and the vocabulary must
be provided. Our training approach is based on the automatic segmentation and
labeling of the ASR output taking the correct semantically segmented/labeled
data as reference. To do this, an algorithm that segments and labels the ASR
output using the Levenshtein distance to the correct transcription has been
developed. Two approaches to SLU have been studied: a Conditional Random
Field (CRF) approach [10] and a Two-level stochastic model [13], which is based
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on Stochastic Finite-State Automata. Experiments with the DIHANA corpus
show that this enriched learning approach outperforms the classical approach
based on clean (the correct transcriptions) training data.

2 Semantic Representation for the DIHANA Task

The domain of the DIHANA task is an information system about railway timeta-
bles, fares, and services in Spanish. The DIHANA corpus consists of 900 dialogs
that were acquired from 225 users using the Wizard of Oz technique. Thus
many characteristcs of spontaneous speech are present in the user utterances.
The number of user turns acquired was 6,280 and the vocabulary size was 823
words. The semantic representation chosen for the task is based on frames. A
total of 25 semantic labels were defined for the DIHANA task, consisting of 10
types of frames (Affirmation, Negation, Price, Hour, Departure-time..) and 15
attributes (City, Origin-City,Destination-City, Class, Train-Type...).

An example of the semantic representation translated from the original Span-
ish DIHANA corpus is shown below:

“I want to know the timetable on Friday
to Barcelona, on June 18th”
(HOUR)
Destination-City: Barcelona
Departure-Date: (Friday)[18-06]

3 The Understanding System

Our understanding system works in two phases (see Figure 1) [13]. The first
phase consists of a sequential transduction of the input sentence in terms of an
intermediate semantic language. In the second phase, a set of rules transduces
this intermediate representation in terms of frames. Since the intermediate lan-
guage is close to the frame representation, this phase only requires a small set
of rules to construct the frame. This second phase consists of the following: the
deletion of irrelevant segments of the input sentence, the reordering of the rel-
evant concepts and attributes that appeared in the user sentence following an
order which has been defined a priori, the instantiation of certain task-dependent
values, etc.

In order to represent the meaning of the sentences in terms of the intermediate
semantic language, a set of 64 semantic units was defined. Each semantic unit
represents the meaning of words (or sequences of words) in the sentences. For
example, the semantic unit query can be associated to “can you tell me”, “please
tell me”, “what is”, etc. This way, an input sentence (sequence of words) has a
semantic sentence (sequence of semantic units) associated to it, and there is an
inherent segmentation. An example is shown in Figure 1.



522 F. Garćıa et al.

Frame
Generation

Rules

timetable to Alicante ?
please, what is the railway

FRAME
Pair Sequence:

semantic label
segment/Written

Sentence

(Automatic
Models

Stochastic

Learning)

Semantic
Syntactic/

Pair SequenceWritten Sentence FRAME

Semantic
Decoding

FIRST PHASE SECOND PHASE

(DEPART−TIME)
destination_city:Alicante

please:courtesy
what is:query

to:destination_marker
Alicante:destination_city

the railway timetable:<depart_time>

Lexical/

Fig. 1. The understanding process in two phases.

3.1 Semantic Models

Two different SLU techniques have been studied to implement the first phase,
a generative technique (the Two-level) and a discriminant technique (a classical
CRF).

To apply the Two-level technique [13],[6], we assume that each user turn in
the training set has a sequence of concepts (semantic units) associated to it, each
of these concepts represents a piece of meaning of the user turn, and there is a
segment (sequence of consecutive words) in the user sentence that is associated
to each of these concepts. This approach consists of learning two types of finite-
state models from the training set of pairs (u, c), where u is the sequence of
segments and c is the corresponding sequence of concepts.

A model As for the semantic language is estimated from the sequences of
concepts c that are associated to the input sentences. A set of models, concept
models Aci (one for each concept ci), is estimated from all the segments of words
associated to this concept. The semantic model As represents the semantic infor-
mation provided by the training data, and each concept model Aci represents
the lexical and syntactic information for the corresponding concept ci.

For the understanding process, all the models must be combined in order to
take advantage of all the lexical, syntactic, and semantic constraints. To do this,
the states of the stochastic automaton As are substituted by the correspond-
ing stochastic automaton Aci . Once this integrated automaton At is built, the
understanding process consists of finding the best path in this automaton given
the input sentence. In the experimentation, we used a 2-gram model for the As

automaton and for the Aci automata.
CRFs have been successfully used for SLU tasks [7]. We defined a set of

basic features that includes only lexical information, setting a window such as
incorporates the two previous and the two posterior words. A more complete set
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of features could be defined for applying the CRFs to SLU tasks [7], however, in
this work we have not done a depth study of the best combination of features.

4 Alignment Process

In order to learn the SLU system from noisy samples (that is, with the sentences
obtained by the ASR engine) it is necessary to segment and label these new
sentences for both approaches, the Two-level and CRFs.

To do this without manual effort, we translate the labeling and segmentation
of the correct transcribed sentences to the recognized sentences. This is done by
obtaining the Levenshtein distance between the two sentences, which not only
supplies the distance but also supplies the word alignment associated to this
distance.

Once we have a word-to-word alignment, we can translate the segmentation
and labeling to this new sentence. Then, we can learn the concept models by
using the original clean data, the new noisy data obtained by the ASR, or a
combination of the two. These concept models will be used in the SLU system
(Figure 2).

It should be noted that, in SLU, there are some words that are keywords
(very relevant) to some concepts, and systematic errors in these specific words
can generate many errors in the semantic interpretation. For example in the
following sentence:

Correct: qué tipo de tren es el más rápido
ASR output: que tipo de tres - el más rápido

qué tipo de tren es : <tipo tren>
el más rápido : tipo tren

que tipo de tres : <tipo tren>
el más rápido : tipo tren

there is an ASR error in the word “tren” (train) that has been recognized as
the word “tres” (three) due to the acoustic similarity in Spanish. If we include
the output of the ASR as a semantic training sample, the segment “que tipo de
tres” will be associated to the concept “tipo tren”. This way, it is possible for a
similar error to be recovered during the understanding process.

This also occurs with some words specific to the task, such as “moviendo”
(moving) instead of “volviendo” (returning); or “rosario” (rosary) instead of
“horario” (timetable).

5 Experiments

In order to evaluate the effectiveness of the approach we carried out some exper-
iments with the DIHANA corpus. The corpus was split into a training set of
4,887 turns and a test set of 1,340 turns.



524 F. Garćıa et al.

Fig. 2. Scheme of our approach

We studied the behavior of the proposed approach with three different ASR
engines: the open domain Google recognizer, and two in-domain recognizers
(Loquendo and HTK). The acoustic and language models were learned as fol-
lows. In the case of the Google ASR system, there were no options to adapt
the models because it is an open domain ASR system with its own acoustic and
language models. In the case of Loquendo, which has its own acoustic models,
only the language model was learned by using the DIHANA corpus. And in the
case of HTK, the acoustic and language models were in-domain models that
were learned from the DIHANA training corpus.

For the generation of the semantic corpus using the output sentences from
the ASR engines, we have worked in different ways. In the case of Google, since
it is an open domain ASR, the new sentences were obtained by just recognizing
all the utterances of the corpus. In the case of the other two engines, the lan-
guage model (LM) was estimated from a part of the training corpus. If we had
used the LM obtained from the whole training corpus to recognize it, the ASR
results would have been very good, and we would not have a corpus with typical
recognition errors. In order to obtain conditions in the new training corpus sim-
ilar to conditions in the test corpus, we split the training corpus into 10 subsets.
Each subset was processed by an ASR system with a LM estimated from the
rest of the training sentences. After 10 iterations we had a corpus of sentences
that were recognized in conditions similar to the test corpus.

After that, the new recognized sentences were segmented and semantically
labeled following the process described in Section 4. The Word Error Rate for
the Google recognizer was 27.11, for the Loquendo recognizer was 20.21, and for
the HTK recognizer was 17.66. As expected, the more capability to adapt the
models to the domain, the less error rate obtained.

We defined two measures to evaluate the accuracy of the models in the SLU
process, the percentage of correct semantic units (%csu) and the percentage of
correct frame slots (frame name and its attributes) (%cfs), which is equivalent
to concept accuracy.
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The %csu measure allows us to evaluate the first phase of our understanding
system. This measure is calculated in the same way as the word accuracy used
in speech recognition. The %cfs measure evaluate the overall understanding
system and have already been used by other authors [8]. As shown in Section
2, the semantic representation of a sentence is one or more frames. Each frame
consists of a name and a sequence of attribute-value pairs. The %cfs measure
is the frame slot accuracy, that is, the number of correctly understood units
(frame name and its attribute-value pairs) divided by the number of units in the
reference.

Table 1. Results obtained using the different ASR engines.

Two-level CRFs

ASR Google Loquendo HTK Google Loquendo HTK

SLU model %csu %cfs %csu %cfs %csu %cfs %csu %cfs %csu %cfs %csu %cfs

clean 62.0 72.8 73.8 82.5 80.4 85.6 74.1 77.0 80.3 85.7 84.7 87.8

noisy 76.8 82.6 77.2 85.2 81.3 86.1 83.3 85.2 82.6 87.5 85.3 88.4

clean+noisy 76.8 82.4 77.2 85.3 82.0 86.5 83.9 85.5 82.2 87.4 85.5 89.0

Table 1 shows the results of the understanding process for the test corpus
and for the two SLU approaches (Two-level and CRFs). As can be observed, in
all the recognizers and in all the understanding systems the results for the %cfs
measure outperforms those of the %csu. That is because in the %cfs measure
irrelevant segments are not considered. These kind of segments are syntactically
complex and in the training set there are few samples of each possible realization
of them.

The results of SLU systems estimated from noisy data (noisy in Table 1)
outperform the results obtained by the SLU systems estimated from clean data
( clean in Table 1) for all the measures defined in both SLU approaches. This dif-
ferences are more significant for the ASR engines with higher WER; for instance,
the Google noisy results outperform the Google clean results by 9.8 points in
the %cfs metric for Two-level approach and 8.2 points for CRFs approach. The
noisy results for the ASR with the lowest WER (HTK) only outperform the
clean results by 0.5 points in the %cfs metric for Two-level and 0.6 for CRFs
approach. As expected, the improvement in SLU is more significant in the ASR
engines with lower performance, which scope for improvement is bigger.

Finally, the use of the combined models (clean+noisy) returned very similar
results to those obtained with noisy models. We think that a more sophisticated
way of combining noisy and clean data, for instance using some interpolation
techniques, would obtain better results.

6 Conclusions

We have presented an approach for the development of SLU systems by adapting
the models to the errors generated in the previous phase of ASR. It is based on
the automatic generation of a new segmented and semantically labeled corpus
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from the original utterances. Some experiments were performed with the Spanish
DIHANA corpus using three different ASR systems and two SLU approaches.
The results show that this learning approach can recover and deal with errors
generated in the ASR process.

As future work, it would be interesting to study how to better combine models
obtained with clean training data with models obtained with noisy training data.
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hector.allende@ucv.cl

3 Universidad Adolfo Ibáñez, Viña Del Mar, Chile
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Abstract. The modelling and forecasting of volatility in Time Series
has been receiving great attention from researchers over the past years.
In this topic, GARCH models are one of the most popular models. In
this work, the effects of choosing different distribution families for the
innovation process on asymmetric GARCH models are investigated. In
particular, we compare A-PARCH models for the IBM stock data with
Normal, Student’s t, Generalized Error, skew Student’s t and Pearson
type-IV distributions. The main findings indicate that distributions with
skewness have better performance than non-skewed distributions and
that the Pearson IV distribution arises as a great candidate for the inno-
vation process on asymmetric models.

Keywords: Financial markets · GARCH models · Asymmetry · Inno-
vation processes

1 Introduction

In financial markets, the volatility of an asset is considered to be a metric of
the risk associated with the asset itself, so its estimation is crucial in pricing
models and in Value-at-Risk (VaR) calculations. Due to the large amount of
research in this topic, stylized facts about the volatility of financial assets have
emerged and been confirmed over the years [6], such as the mean reversion
property, persistence and the asymmetric impact of innovations on the volatility.
It should be expected that a good volatility model must be able to capture
these stylized facts. One of the most successful systems for volatility modelling
is the GARCH methodology developed by Engle et. al. [2,5] which is able to
encompass many of those stylized facts. Nevertheless, in the original formulation
of GARCH models, the asymmetry effect was not addressed. As a workaround,

Funded by CONICYT-PCHA/Maǵıster Nacional/2014 - 22141595.

c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 527–534, 2015.
DOI: 10.1007/978-3-319-25751-8 63



528 D. Acuña et al.

many extensions to this system have been proposed, being one of the most
successful ones the asymmetric power ARCH model (A-PARCH) of Ding et.
al. [4]. This model outperforms other classical GARCH1 formulations for equity
markets where asymmetry is a necessity [9]. Due to this reason, it is going to be
the preferred volatility formulation in this work.

Since the first works of Mandelbrot [13] and Fama [7] the distribution of finan-
cial asset returns have been known to be non-Gaussian and negatively skewed [10]
with heavy tails, but there is few research on the probability density function
(pdf) scheme of the innovations of a GARCH process with the ability to capture
the properties described before. The Normal distribution has been widely used
since the first work on ARCH models [5], but it obviously fails on accounting
fat tails. Also, the Student’s t [2] and the generalized error distribution (GED)
[15] have received some attention mainly because they are more flexible than the
Normal distribution regarding fat tails and skewness. More recently, Stavroyian-
nis et. al. [18] proposed the use of the Pearson type-IV distribution (see [14] for
a detailed study on the distribution) due to its flexibility to approximate pdfs
with fat tails [12], obtaining good results for standard GARCH models compared
to Student’s t and skewed Student’s t (s-Student) distributions in the sense of
Fernandez and Steel [8].

The aim of this paper is to make a formal study on the effect of the selection
of the family distribution used in the innovation part of a GARCH model for
the modelling of asymmetric process. In particular, it is of interest the analysis
of Normal, Student’s t, GED and Pearson IV distributions on A-PARCH mod-
els, regarding the performance of the model in tasks of forecasting volatility.
The results should give researchers guidelines to the correct specification of a
volatility model for a financial process. The remainder of this paper is organized
as follows: Section 2 explains the A-PARCH model and the distributions used
for the innovation process. In Section 3, the methodology of the study and the
data used for experimentation is presented. Section 4 reports the results and the
analysis of the study. Finally, in Section 5 we give some concluding remarks.

2 A-PARCH Model and the Innovation Process

Lets Pt denote an asset price at time t and its continuously compounded return
over the period t−1 to t as rt = ln(Pt)−ln(Pt−1). Following Engle’s formulation
[6] we can define both the conditional mean and variance as:

mt = Et−1[rt] (1)

ht = Et−1[(rt − mt)2] (2)

where Et−1[u] is the conditional expectation of u given the information set F
at time t − 1 (sometimes denoted as E[u|Ft−1]). The return process Rt can be
defined as:
1 The term GARCH is generally used in literature (and in this work) to refer to the

entire family of GARCH models when no conflict exist.
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Rt = mt +
√

htεt, where Et−1[εt] = 0 and V art−1[εt] = 1 (3)

As a general assumption, {εt} ∼ i.i.d. F () for some distribution function F .
The GARCH methodology focuses on providing an expression for the conditional
variance ht. As stated before, in this work ht will follow the formulation of an
A-PARCH(p,q) process:

hδ
t = α0 +

p∑
i=1

αi(|Rt−i| − γiRt−i)δ +
q∑

j=1

βjh
δ
t−j , where

α0 > 0, δ ≥ 0,

αi ≥ 0, i = 1, . . . , p,

−1 < γi < 1, i = 1, . . . , p,

βj ≥ 0, j = 1, . . . , q.

(4)

This model imposes a Box-Cox transformation on ht with order δ. The asym-
metry is handled by the parameter γ. If γ = 0 there is no asymmetry and with
δ = 2 the model behaves as a standard GARCH model. Since we are interested
on the asymmetry, in general γ will not be equal to zero.

2.1 The Innovation Process

Engle [5] proposed the use of the standard Normal distribution for the specifi-
cation of εt. As explained before, the distribution of the returns tends to have
fat tails, so the use of a Normal distribution is a strong assumption that needs
to be revisited. Bollerslev [2] and Nelson [15] showed that the innovations with
Student’s t and GED distributions obtained better results than the Normal one.
Later, several studies reported good results using skewed versions of Normal and
Student’s t distributions in contrast of the non-skewed versions on asymmetric
models [1,16]. Recently, Stavroyiannis et. al. [18] used the Pearson type-IV distri-
bution in a standard GARCH model outperforming skewed Student’s t versions
of the innovation process. So, it is of interest to perform a general study of those
distributions for the innovation process on asymmetric models. As seen on equa-
tion (3) one of the requirements over the distribution used for ε is being specified
as a zero mean and one variance process (0 − 1 from now on). Next, we show
how to get a 0 − 1 version for non-obvious distributions.

Generalized Error Distribution. The density of a 0−1 GED random variable
z is given by [15]:

f(z) =
ν · exp[ − 1

2 | z
λ |ν ]

λ · 2(1+1/ν)Γ ( 1
ν )

, where

λ =

[
2

−2
ν

Γ
(
1
ν

)

Γ
(
3
ν

)
] 1

2

, for − ∞ < z < ∞ and 0 < ν ≤ ∞.

(5)
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where Γ (·) is the gamma function and ν is a tail-thickness parameter. Note that
when ν = 2, z behaves as the standard Normal distribution.

Skewed Distributions by Inverse Scale Factors. It is possible to introduce
skewness into unimodal and symmetric distributions by using inverse scale fac-
tors in the positive and negative orthant [8]. Briefly, the procedure is as follows:
given a skew parameter ξ, the density of a random variable z can be represented
as:

f(z|ξ) =
2

ξ + ξ−1

[
f(ξz)H(−z) + f(ξ−1z)H(z)

]
(6)

where ξ ∈ R
+ and H(·) is the Heaviside function. The mean and variance are

defined as:

E[z] = M1(ξ − ξ−1)

V [z] = (M2 − M2
1 )(ξ2 − ξ−2) + 2M2

1 − M2

(7)

where Mr = 2
∫ ∞
0

zrf(z)dz.
It is possible to standardize skewed versions of the Normal, Student’s t and

GED distributions using the conditions given above.

Pearson Type-IV Distribution. A normalized version of the Pearson type-
IV distribution is given by [18] using a modern form for the distribution obtained
by Nagahara [14]. For a random variable z:

f(x) =
σ̂ · Γ (m+1

2 )√
π · Γ (m

2 )

∣∣∣∣
Γ (m+1

2 + i ν
2 )

Γ (m+1
2 )

∣∣∣∣
2

1

(1 + x2)
m+1

2

exp(−ν · tan−1x), where

x = σ̂z + μ̂

μ̂ = − ν

m − 1
and

σ̂2 =
1

m − 2

[
1 +

ν2

(m − 1)2

]
.

(8)

for m > 1/2, m controls the kurtosis and ν the asymmetry of the distribution.

3 Methodology

3.1 Data Description

The data set consist of continuously compounded returns of IBM stocks, where
the estimation period spans from January 1, 1990 to January 1, 2015 (6300
observations) and the out-of-sample evaluation period spans from January 2,
2015 to May 12, 2015 (90 observations). On Figure 1 two plots of the stock price
and return value for IBM are shown.
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Fig. 1. IBM stock and return values.

3.2 The Model and Performance Evaluation

From a previous study of IBM return series and its autocorrelation and partial
autocorrelation function, an A-PARCH(1,1) model was used for the conditional
variance:

hδ
t = α0 + α1(|Rt−1| − γ1Rt−1)δ + β1h

δ
t−1 (9)

The five distributions (Normal, Student-t, GED, Skewed Student-t and Pear-
son type-IV) used for the innovation process εt have mean 0 and variance 1. The
shape parameter for Student-t, GED, Skewed Student-t and Pearson type-IV
distributions is equal to ν. The skew parameter for the Skewed Student-t dis-
tribution is ξ and for the Pearson type-IV is m. For the estimation phase, the
preferred algorithm is maximum likelihood as usual in GARCH literature. For
the evaluation of the models, an out-of-sample evaluation is going to be used
with the second period of the data. Since there is no a preferred loss function for
GARCH models [9], we are going to use the following performance measures:

MSE = n−1
n∑

t=1

(σt − ht)2 (10)

MAE = n−1

n∑
t=1

|σt − ht| (11)

Logloss = −n−1
n∑

t=1

(σtln(ht) + (1 − σt)ln(1 − ht)) (12)

where n is the sample size. As we need a measure for the volatility (σt in each
loss function), a historical estimator for it is going to be needed. In particular,
the Garman-Klass estimator [11] has shown to be very efficient, provided that
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there are no destabilizing large values [17] and it will be used in this study. The
expression for the Garman-Klass estimator consists of:

σ̂2
t =

1
2

(
ln

Ht

Lt

)
− (2 · ln2 − 1)

(
Ct

Ot

)
(13)

where Ok and Ct are the opening and close price in day t, and, Ht and Lt are
the highest and lowest price of the asset in study in time t.

4 Experimentation and Analysis

The parameters estimation for the A-PARCH(1,1) model are given in Table 1
grouped by the distribution used on the innovation process. Also, below each
value, in parenthesis we give the standard error for the estimated value.

Table 1. Parameters estimated for the volatility model

Innovation μ ω α1 γ1

Normal
3.042e-04 1.018e-03 7.856e-02 4.735e-01

(9.706e-05) (1.452e-04) (5.902e-03) (4.922e-02)

Student
2.380e-04 5.872e-04 7.509e-02 0.4154

(1.119e-04) (1.368e-04) (7.371e-03) (6.166e-02)

GED
2.055e-04 7.439e-04 7.594e-02 0.4431

(1.342e-04) (1.533e-04) (7.290e-03) (6.173e-02)

s-Student
2.565e-04 5.934e-04 7.53553e-02 0.4142

(1.461e-04) (1.388e-04) (7.390e-03) (6.196e-02)

Pearson IV
2.838e-04 5.917e-04 7.544e-02 0.4123

(1.697e-04) (1.387e-04) (7.399e-03) (6.193e-02)

Innovation β1 δ shape skew

Normal
9.279e-01 6.406e-01 - -

(5.466e-03) (8.009e-02) - -

Student
0.9344 0.6932 5.1893 -

(6.848e-03) (0.1050) (0.3170) -

GED
0.9319 0.6737 1.2744 -

(6.8529e-03) (0.1012) (2.771e-02) -

s-Student
0.9342 0.6913 5.1859 1.0156

(6.8692e-03) (0.1050) (0.3164) (1.808e-02)

Pearson IV
0.9341 0.6914 5.1835 -0.0874

(6.8844e-03) (0.1055) (0.3161) (0.1203)

It is interesting to note that, for the Student’s t, skewed Student’s t and the
Pearson IV distributions the shape parameter is practically the same. The differ-
ence between those three distribution is given by the skewness: the Student’s t
is symmetric, where the skewed Student’s t and Pearson IV are asymmetric dis-
tributions. In Table 2, we show the performance measures (loss function) used.
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For all cases from the out-of-sample evaluation the Pearson IV distribution gave
the best results. For the log-likelihood of the estimation phase, the skewed Stu-
dent’s t distribution obtained the best result. Those results show that the skewness
for the innovation process plays a fundamental role in the volatility modelling.

Table 2. Loss functions and Log Likelihood for each model estimated (in bold each
value which is the best measure for the selected loss function)

Innovation MSE MAE Log Loss Log Likelihood

Normal 7.4849e-06 2.19496e-03 6.44927e-02 -8849.456
Student 3.6194e-06 1.42859e-03 6.43533e-02 17541.49
GED 3.6519e-06 1.43351e-03 6.43545e-02 -8583.458
s-Student 3.6167e-06 1.42848e-03 6.43531e-02 17541.91
Pearson IV 3.5970e-06 1.42641e-03 6.43524e-02 17541.83

For the forecast made (in table 2) we can observe that the best distributions
for the innovation process were the Pearson type-IV followed by the skewed
Student’s t distribution. A corrected Diebold-Mariano test [3] for checking the
statistical significance of the better forecast obtained from Pearson IV was made.
The results are presented in table 3 where it can be seen that for the MSE, it is
clear that the Pearson IV distribution has statistically different forecast accuracy
than the skewed Student’s t and because it has lower MSE in this case we choose
the Pearson IV innovation. For the MAE loss function we cannot reject the null
hypothesis so statistically the two forecast have the same accuracy.

Table 3. Diebold Mariano test statistic (DM) for forecast comparison using skewed
Student’s t and Pearson IV distributions.

Innovation used in forecast Test result MSE MAE

s-Student vs Pearson IV
DM 2.3176 0.6521

p-value 0.0277 0.5195

5 Conclusion

The election of the distributions used for the disturbances in GARCH asymmet-
ric volatility modelling has shown to be an important phase on the construction,
estimation and forecasting in volatility financial markets models. In particu-
lar, we have concluded that the model with skewed distributions outperforms
the model with non-skewed distributions in the forecast of the IBM stock time
series in terms of the performance measures MSE, MAE and Log Loss.

We tested the introduction of the Pearson type-IV distribution for the dis-
turbances on an A-PARCH model. The results obtained in IBM stock time series
are encouraging (similar than for standard GARCH models [18]). The proposal
was also validated with the S&P-500 time series obtaining similar results (avail-
able upon request). Future work will deal with the validation of this formulation
with other well-known time series.
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Abstract. Cognitive Radio has emerged as a promising technology to
improve the spectrum utilization efficiency, where spectrum sensing is the
key functionality to enable its deployment. This study proposes a cyclo-
stationary feature detection method for signals with unknown param-
eters. We develop a rule of automatic decision based on the resulting
hypothesis test and without statistical knowledge of the communica-
tion channel. Performance analysis and simulation results indicate that
the obtained algorithm outperforms reported solutions under low SNR
regime.

Keywords: Cognitive radio · Cyclostationarity · Feature detection ·
Blind spectrum sensing

1 Introduction

A new paradigm for wireless communication devices called Cognitive Radio [1]
has emerged to optimize the employment of the radio spectrum. Through the use
of vacant channels it is possible to improve the spectrum utilization [2]. Several
current technologies operate in this way, for example: Bluetooth (WPAN – IEEE
802.15.1) [3], WLAN – IEEE 802.11k [4], and WRAN – IEEE 802.22 [5]. In this
regard, spectrum sensing techniques represent a key component of these systems.

From the perspective of signals detection, the spectrum sensing techniques
can be classified as coherent detection or non-coherent detection [6]. In the former
case, the signal of interest (SoI) is detected using a generated signal, this is con-
formed taking into account the modulation parameters like the carrier frequency
and phase, order of the modulation, shape and duration of pulses, etc. Matched
filter provides the optimal solution in terms of the output signal-to-noise-ratio
(SNR). However, prior knowledge of the SoI is required [6]. On the other hand,
non-coherent detection also referred as blind detection, does not require prior
knowledge of the primary signals modulation parameters. Energy detection (ED)
is the most widely used technique for blind detection [7]. Nevertheless, the inca-
pability of distinguishing between different types of signals, the vulnerability to
uncertainty in noise variance estimation, and the poor performance under low
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 535–542, 2015.
DOI: 10.1007/978-3-319-25751-8 64
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SNR regimes, represent an important limitation in practice [8]. On the other
hand, the use of cyclostationarity detection (CD) is reported to mitigate the
limitations of ED [9]. By means of CD, the performance in terms of reliabil-
ity under low SNR and fading conditions overcomes the main disadvantages in
regard to the ED [8,9]. Although this technique is considered by many authors
as a coherent technique, there have been several attempts to use CD detectors
in blind detection [10,11]. Jang in [11] gives a method to compute the cycle fre-
quencies profile of the spectral correlation density (SCD). Using that method,
the author proposes a threshold for automatically signal detection, which is the
maximum estimated magnitude of SCD that rejects null hypothesis. The eval-
uation method used was Monte Carlo simulations, under multi-path fading and
low SNR.

The rest of this paper is organized as follows. The CD model for blind detec-
tion is described in Section 2. In Section 3, the main results are discussed. Finally,
the conclusions are drawn in Section 4.

2 Cyclostacionary Feature Detection

The spectrum sensing problem can be stated in terms of a binary hypothesis
test, where H0 represents the hypothesis corresponding to the absence of the
signal, and H1 to the presence of the signal. These hypotheses are given by:

H0 : x[n] = ω[n]
n = 0, 1, ..., N − 1

H1 : x[n] = s[n] ⊗ h[n] + ω[n]
(1)

where x[n] and s[n] represent the received signal and the SoI, respectively. The
impulse response of the channel (h[n]) is conformed taking into account fading
conditions and it is modeled to be statistically independent from the additive
white Gaussian noise (AWGN) of the channel (w[n]). The operation ⊗ indicates
convolution product over N . The main difference between detection techniques
is the statistic used to discriminate the hypotheses. The spectral correlation
density function is the statistic used in cyclostationary feature detection.

2.1 Cyclostationary Processes

Cyclostacionarity1 is an inherent property of the communication signals. This
feature is present in sinusoidal carriers, train pulses, spreading codes, hopping
sequences, cyclic prefixes and preambles, sampling and propagation phenom-
ena [13]. For these signals, the autocorrelation function is periodic and can be
obtained by a set of basis functions called cyclic autocorrelation function (CAF).
The CAF is a generalization of the autocorrelation function, and allows to dis-
tinguish cyclic features from stationary noise. Extrapolating Wiener-Khinchin’s
1 In the proposed model, only wide sense cyclostationary processes are considered.

Further mathematical details can be found in [12].
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theorem [14] to cyclostationary signals, the Fourier transform of the CAF stands
for the cyclic spectrum, also referred as spectral correlation density function
(SCD). The SCD can be estimated for each cyclic frequency α by the cyclic
periodogram as:

Iα[n, f ] � 1
N

XN [n, f ]X∗
N [n, f − �αN�] ≡ Sα

xN
[n, f ] (2)

where XN [n, f ] indicates the short-time Fourier transform (STFT) of x[n]
at n over N samples, and �·� stands for the integer part of the number. The
symbol (∗) indicates complex conjugate. From (2) a classical spectral analysis
could be made setting α = 0 (no periodicities at all). This particular case cor-
responds to the power spectral density function (PSD), derived from the wide
sense stationary processes theory.

Figures 1(a) and 1(b) show2 the PSD and the SCD, respectively, of a BPSK
signal contaminated with AWGN. From the PSD, it is difficult to distinguish the
set of spectral frequencies corresponding to a SoI, due to the overlapping between
signal and noise. On the other hand, the cyclic spectral analysis avoids this
effect, since the SoI exhibits periodicities and the noise does not. For example,
it is easier to detect a peak in the cycle frequency at α = 2fc (where there is
not overlapping noise) than in α = 0, that corresponds to the traditional PSD.
It should be noted that, for every α �= 0, the SCD of noise (Sα

ω [f ]) is zero due
to it’s stationarity.
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Fig. 1. Spectral analysis of a BPSK signal (fc = 2886 Hz, Rb = 260 bits/s, N = 1024
samples) contaminated with AWGN (SNR = 3 dB). (a) Power spectral density (PSD),
S0

x[f ]. (b) Spectral correlation density (SCD), Sα
x [f ].

2.2 Impact of Channel Fading and Doppler Shift on the
Cyclostationary Features

According to the results presented by Bkassiny [15], cyclostationary features in
communication signals are preserved even in the presence of channel fading. The
2 Cyclic and spectral frequencies are specified in Hz, it is easily done from the sampling

frequency, fs = 22050 Hz in this example.
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channel can be considered as wide sense stationary as long as the mobile device
covers a distance about a few tens of the wavelength of the carrier signal, this in
an observation period. An acceptable approximation is to consider the channel as
wide sense stationary with uncorrelated scattering (WSSUS), a commonly used
model for dealing frequency selective channels [15]. In this case, the autocorre-
lation function of the received signal is also periodic with the same period than
the SoI. Hence, the received signal is also cyclostationary with the same cycle
components than the transmitted signal. As a result, when fading channels are
considered as general linear time-variant systems, the cyclostationary features
of the SoI are not modified. This is why the blind detection technique presented
in this work is robust under practical scenarios.

If the channel is also characterized by Doppler effect, the cyclic spectrum
of the SoI is convolved by the Doppler power spectral density. Let fmax be the
maximum Doppler shift, the convolution causes the cyclic spectrum to spread
at most ±fmax for every cycle frequency. However, Doppler shifting is irrelevant
in blind spectrum sensing performance, given that the parameters of the signal
are not used in the detection procedure. The cyclic features do not vanish, so it
is still possible to perform detection.

2.3 Detection Statistic

In case of cyclostationary signals in AWGN, an approximate sufficient statistic
for the maximum likelihood detector [16], called multicycle detector, is given by:

YML =
∑
α∈A

∑
f

Sα
s [f ]S∗α

xN
[f ] (3)

where Sα
s [f ] and Sα

xN
[f ] are the SCD3 of the SoI and the received signal,

respectively, and A is the set of cycle frequencies for which the SCD is not zero.
If only cycle frequencies different from zero are considered in equation (3), then
Sα

x [f ] = Sα
s [f ], and

YML =
∑

α∈A,(α�=0)

∑
f

|Sα
xN

[f ]|2 (4)

Under blind conditions, the set A of cycle frequencies is unknown. The radiome-
ter, or energy detector, is a common solution of blind detection, and it is a
particular case of equation (3) when α = 0 is considered:

Y 0 =
∑

f

|S0
xN

[f ]|2 (5)

Let Y α =
∑

α∈A

∑
f

|Sα
xN

[f ]|2, then the maximum likelihood detection criterion in

equation (4) can be stated in term of Y 0 and Y α by:

YML = Y α − Y 0 (6)
3 From now on, the time parameter in the SCD is omitted for simplicity. Hence,
Sα

xN
[f ] ≡ Sα

xN
[n, f ] is always treated as the SCD estimated using equation (2).
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From the interpretation of the cyclic spectrum as a spectral correlation func-
tion [11], Y α is also given by:

Y α = lim
N→∞

1
2N + 1

∑
α∈A

Y [�αN�] ⊗ Y ∗[−�αN�] (7)

where Y [f ] = XN [f ]X∗
N [f ].

Given the statistic Z[�αN�] = Y [�αN�]⊗Y ∗[−�αN�], it is easy to verify that
Z is an estimator of |Sα

xN
[f ]|2 for every cycle frequency [11]. Besides, Z[�αN�] =

F{y[n]y∗[n]}, and y[n] = xN [n] ⊗ xN [−n]. The sequence y[n], can be obtained
applying the inverse DFT to |XN [f ]|2, in order to avoid the convolution. This
can be performed in a very efficient way if an FFT (Fast Fourier Transform)
algorithm is used.

As Jang proposed in [11], the accumulative value of Z can be used to avoid
missing features due to the lack of cycle frequency resolution.

G[�αN�] =
�αN	∑
β=0

Z[β] (8)

An equivalent and more efficient way to obtain this magnitude is attainable
through the following convolution:

G[�αN�] = Y [�αN�] ⊗ Y ∗[−�αN�] ⊗ u[�αN�]

= F {
y[n]y∗[n] × F−1{u[�αN�]}} (9)

where the notation u[·] indicates a unit step sequence. Hence, the statistic Z can
be efficiently computed by the following difference equation:

Z[�αN�] = G[�αN�] − G[�αN� − 1] (10)

for every α ∈ A. The resulting set of values correspond to the cycle frequencies
profile of the SCD [11]. The block diagram of the proposed algoritm for obtaining
the cylic profile is shown in Figure 2.

x[n] F{ · } X[f]

(·)*
F -1{ · } y[n]

(·)*

_______1
(1-e         )   j(2π/N)n

F -1{u[αN]} =

F{ · }
G[αN]

z-1

-

Z[αN]

(?)

N

Fig. 2. Block diagram of the proposed algoritm for obtaining the cylic profile. The
inverse DFT of unit step is not computed during the procedure, it’s assumed to be
previously caculated.
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2.4 Detection Threshold Setting

The main parameters that characterize any detector’s performance are: the prob-
ability of detection (Pd) and the probability of false alarm (Pfa) [17]. The
value of γ that maximizes the Pd for a fixed Pfa, can be obtained from the
Neyman-Pearson’s Theorem, also known as likelihood ratio test [17]. However,
it is required to know the probability density functions of the detection statis-
tic under both hypotheses H0 and H1. Therefore, under blind conditions, an
empirical criteria for establishing a detection threshold is demanded.

Figure 3(a) shows the normalized Z statistic (Zu), obtained using the method
described in Figure 2, corresponding to the same signal of Figure 1. The his-
togram of Zu is shown in Figure 3(b). When the SoI is present, most of the
samples of Zu are related with noise4. In order to select a threshold, a confi-
dence criteria C must be defined. The detection threshold for a confidence C,
denoted by γc, corresponds to the magnitude of Zu for which the C ∗100 percent
of samples are lower than γc. However, the proposed criteria is valid only under
the hypothesis H1. If there is not a signal present (and γc is close to 1), there
will always be samples above this value. Hence, both the probability of detection
and the probability of false alarm would be one, and this detector would not be
useful.
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Fig. 3. Establishing the detection threshold (C = 0.95). (a) Normalized detection
statistic for the BPSK signal of Figure 1. (b) Histogram corresponding to (a).

Another parameter is defined for avoiding this problem: the tolerance level
(T ), defined as the maximum value of γc for which H0 is rejected. Every threshold
below T indicates detected signal. Finally, the normalized threshold for blind
cyclostationary feature detection can be stated as follows:

γ =
{

γc , if γc ≤ T
1 , otherwise. (11)

If γc > T (γ = 1), then hypothesis H0 will never be rejected.

4 This noise is not channel noise properly, but estimation error from the periodogram
in equation (2). According to the central limit theorem [17], this error can be modeled
as a normally distributed random variable.
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3 Results

The proposed detector was verified through Monte Carlo simulations, as sug-
gested by Kay [17]. For each hypothesis, 2000 iterations were conducted in order
to obtain reliable results. BPSK, QPSK, BFSK and MSK signals with length
N = 1024 samples were analyzed. As an additional condition, fading and Doppler
effects were considered, which parameters were randomly selected from trial to
trial.

Receiver Operating Characteristics (ROC). An effective way to summa-
rize the detector performance is to represent Pd versus Pfa [17]. A set of ROCs
curves corresponding to the detection of different signals are showed in Figure
4(a). In Figure 4(b) another representation of the simulations results are shown
for several types of signals. Similar representations are shown for the conven-
tional ED and the enhanced version using sliding window, obtained from their
analytical expressions presented in [10]. Note that the performance of the ED
is independent of the modulation detected. Although the performance of the
classical ED is poor under low SNR regimes, about 10 dB gain can be obtained
if a sliding window of length 70 samples is used. However, the complexity of
the detector is increased. Even using this enhanced version, the proposed CD
method overcomes the ED for all the signals analyzed and Pd = 0.9.
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Fig. 4. Comparison between the ED and the proposed technique. (a) ROC
curves for SNR = -5 dB. (b) Curves of Pd vs. SNR for Pfa = 0.1.
* Results obtained by simulations using the proposed technique.

4 Conclusions

The method proposed in this paper takes advantage of the cyclic features com-
monly presented in communication signals, in order to perform spectrum sensing.
Conventional cyclostationary feature detection techniques are not well posed if
the signal parameters are unknown. Under these conditions, a decision criteria
for blind detection of primary signals is proposed based on practical assumptions.

Considering the trade-off between implementation complexity and perfor-
mance, our proposed method stands as a good compromised solution for blind
spectrum sensing. Low SNR regimes, presence of a fading channel and Doppler
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effect were considered in simulations. It was shown that the proposed method
has a better performance than other solutions based on energy detection.

The proposed solution represents a useful technique for cognitive radio
devices that operate as secondary users. It allows to detect idle channels for
increasing spectrum utilization efficiency.
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Abstract. This paper proposes a novel front-end for automatic spoken
language recognition, based on the spectrogram representation of the
speech signal and in the properties of the Fourier spectrum to detect
global periodicity in an image. Local Phase Quantization (LPQ) texture
descriptor was used to capture the spectrogram content. Results obtained
for 30 seconds test signal duration have shown that this method is very
promising for low cost language identification. The best performance is
achieved when our proposed method is fused with the i-vector represen-
tation.

Keywords: Spoken language recognition · Texture image descriptors ·
Low cost language identification

1 Introduction

The process of automatically recognize the presence of a given spoken language
in a speech segment, is commonly referred to as spoken language recognition.
The existing language recognition systems rely on features derived through short-
time spectral analysis, many of such systems are based solely on acoustic models,
trained using spectral/cepstral features.

In many approaches that apply prosody to spoken language recognition,
extracted features are based on statistics of pitch and energy contour segments
[1]. Our texture-based spoken language recognition system is motivated by a fun-
damental hypothesis, which states that different languages can be distinguished
using texture descriptors over the speech signal spectrogram, we also consider
a big component of that discriminative information is prosody, known as the
music of language [2].

The present paper is organized as follows. After this introduction, Section 2
reviews what an spectrogram is and how texture descriptor is used in this work.
In Section 3 a theory about the prosodic nature of textural characteristics found
in the spectrogram, is discussed. Furthermore in Section 4 are presented all the
experimental details. Finally Section 5 is devoted to the results analysis, followed
by Section 6 with the conclusions and research perspective.
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Fig. 1. Wideband spectrogram example.

2 Texture Descriptors Over the Spectrogram

Spectrogram is a visual representation of the spectrum of frequencies in a sound
[3].

As shown in Figure 1, texture is the most noticeable visual content in a spec-
trogram image. Taking this into account, we have explored a texture descrip-
tor presented in image processing literature in order to capture information to
describe this content.

The literature shows us a long story of research in texture representation but
recent works have shown that Local Phase Quantization (LPQ) [4] appear to
be a very interesting alternative to textural content description. LPQ has been
successfully applied to different problems achieving promising results, including
in works related to audio classification tasks [5–7].

The next subsections describe some details about it.

2.1 Local Phase Quantization (LPQ)

This texture operator was originally created to describe the textural content on
blurred images. However, it has shown a good performance even when applied
to clear images. LPQ, the acronym for Local Phase Quantization, is a spectral
texture approach which extracts frequency components that characterizes the
underlying structures in the images taking into account the blur invariance of
the Fourier Transform Phase.

The phase of 2D Short Term Fourier Transform (STFT) is used to find the
blur insensitive information for each pixel over a rectangular window on its
neighbourhood [4].

A rectangular window Nx, of size M -by-M is taken from each image pixel
position x of an image f(x) to calculate the local phase information using STFT:

F (u, x) =
∑

y∈Nx

f(x − y)e−2πuT y = wT
u fx (1)

where wu is the basis vector of the 2-D DFT at frequency u, and fx is a vector
containing all M2 image samples from Nx.
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The following four vectors are considered on the LPQ operator: u1 = [a, 0]T ,
u2 = [0, a]T , u3 = [a, a]T , and u4 = [a,−a]T , where a is sufficiently small to
satisfy the blur invariance condition, therefore

Fx = Wfx. (2)

For the purpose of maximally preserve the information, the coefficients need
to be decorrelated, quantized and turn in integers ranging from 0 to 255. Thus,
a feature vector is composed of these integer values in order to be used in clas-
sification tasks.

3 Language Long Term Cues

The basic appeal of long-term approach is that it aims to describe the spectral
characteristics of speech as a whole, by taking into account the contribution of
all the individual speech sounds in the considered time interval [8].

Indeed, modelling prosody is still an open problem, mostly because of the
suprasegmental nature of the prosodic features [9].

The variation of pitch provides some recognizable melodic properties to
speech. This controlled modulation of pitch is referred as intonation and it can
be observed in the spectrogram between 80-400 Hz as a dark line, in the voiced
phonemes interval [10].

Some syllables or words may be made more prominent than others, resulting
in linguistic stress. This property is reflected in the spectrogram as darker zones.

The sound units gets shortened or lengthened in accordance to some under-
lying pattern giving certain rhythm to speech. The spectrogram provides visual
clues that delimit the temporal boundaries between phonemes and words, also
between speech and silence intervals. That is why, if a sentence is represented
with an spectrogram, is possible to obtain information about its rhythm.

So prosodic cues might live in different frequency zones of the spectrogram,
and they could be modelled using textural information.

3.1 Prosody, The Music of Language and Speech

Acoustically, speech and music are fundamentally similar. Both use sound, and so
are received and analysed by the same organs. Many of their acoustical features
are similar, although used in different ways [11].

Musical genres are categorical descriptions that are used to describe music. A
particular musical genre is characterized by statistical properties related to the
instrumentation, rhythmic structure and form of its members Different reasons
had motivated research on automatic music genre classification, and spite of all
efforts done during the last years, such task still remains an open problem [5].

Motivated by the similarities between the perceptual characteristics that
define musical genre and the prosody of languages, we decided to evaluate an
effective method of automatic recognition of musical genre, to identify spoken
language. [6].
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Fig. 2. Methodology used for classification.

4 Experimental Design and Implementation

The experiments were conducted over predefined training and evaluation sets,
using for all this purposes the data defined as evaluation set by the National
Institute of Standardization Technologies for the 2009 Language Recognition
Evaluation (NIST LRE-2009). For training each language model, were used no
more than 2 and a half hours, this is why we call it a low cost method, regarding
the low resource demand. The 5 target languages involved were English, French,
Mandarin, Russian and Spanish. The evaluation corpus were two balanced sets
of 250 signals each, one including 3 seconds duration samples and the other of
30 seconds duration.

Frequency spectrograms were obtained from the 8 kHz signals by applying
256-point Discrete Fourier Transform to Hanning windowed frames at a 10 ms
frame rate. Taking into account that the texture produced by the spectrograms
is not uniform in frequency, and that previous results described in [5,6] suggest
that spectrogram image zoning, in order to preserve local feature, could help to
achieve good results, we decided to segment the spectrogram image in n = 10
frequencies sub-bands. Figure 2 depicts this strategy, here called linear zoning.

Once the spectrograms were generated we proceeded the texture feature
extraction from these images. We used LPQ and LBP texture operators to cap-
ture the image content in each sub-band [12,13].

In LPQ representation, quantized coefficients are mapped as integer values
using binary coding. These binary codes will be generated and accumulated in
a histogram to be used as the feature vector, 256-bin histogram.

The classifier used in this work was the Support Vector Machine (SVM)
introduced by Vapnik in [14]. Normalization was performed by linearly scaling
each attribute to the range [−1, 1]. For the SVM a Gaussian kernel was used and
the parameters cost and gamma were tuned using a grid search.

Each training sample is represented by a spectrogram, saved as an image,
and then divided into 10 small images corresponding to 10 frequency zones. Each
image thumbnail is represented with a texture descriptor and those descriptors
are used to train a SVM multiclass by zone.
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The same procedure was used to obtain the test descriptors for utterances of
3 and 30 seconds, of each target language.

Each SVM classifier was trained using 1500 descriptors (300 utterances of
each language). With this amount of classifiers (n = 10), we used estimation
of probabilities to proceed the combination of outputs in order to get a final
decision. In this situation, is very useful to have a classifier producing a posterior
probability P (class|input). Here, we are interested in estimation of probabilities
because we want to try different fusion strategies like Product and Sum, both
presented by Kittler et al. in [15].

4.1 Baseline System Description

In order to validate this approach we attempt to evaluate a state-of-the-art
system implemented by us, over the designed experimental setup. It wouldn’t
be fair to quote the results observed in the literature for language identification
since they are built using much more data.

The TV space is estimated over the training set of target languages (72 hours
of data) using a Gaussian Mixture Model-Universal Background Model (GMM-
UBM) [16] with 512 Gaussian components trained over around 200 hours of 40
languages.

Table 1. Performance obtained for each zone created with linear zoning.

Zone Id. Frequency band (Hz) Accuracy (%)
LPQ30 LPQ3

1 0-400 86 63.8
2 400-800 76 53.6
3 800-1200 66.8 42.8
4 1200-1600 62 41.6
5 1600-2000 53.2 42.4
6 2000-2400 52.8 39.6
7 2400-2800 54.8 44.8
8 2800-3200 52 38.8
9 3200-3600 48 40.8
10 3600-4000 46.8 37.2

Table 2. Results obtained by the 5 class system, merging all zone predictions.

Fusion rule LPQ30 LPQ3

Acc. EER Acc. EER

Sum 86% 7.3 % 65% 17.2%
Product 88% 8% 66% 16.8%

The dimension of the i-vector is set to 400 [17], and intersession compensation
is applied to remove the nuisance in i-vectors using linear discriminant analy-
sis (LDA)[18], a popular dimension reduction method in the machine learning
community. The dimension of the i-vectors after LDA is 4.
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Each target language model is obtained by taking the mean of the corre-
sponding compensated i-vectors, over a set of 4 hours of balanced data per
language.

Given a test utterance, the score for a target language is estimated using the
cosine similarity measure between the target i-vector and the test i-vector.

5 Results and Analysis

Two different evaluations were made: training and testing with 30 seconds speech
utterances, and training and testing with 3 seconds speech utterances.

Table 1 shows the performance obtained for each zone created with linear
zoning. Here the notation LPQ30, refers to the experiment that uses LPQ texture
descriptors and 30 seconds duration signals to train and test.

The performance measures used for this evaluation are the accuracy and the
equal error rate (EER). The accuracy reflects the percentage, of the 250 test sig-
nals, that were correctly classified. The EER represents the system performance
when the false acceptance probability (detecting the wrong language for a given
test segment) is equal to the missed detection probability (rejecting the correct
language).

To apply LPQ features over a spectrogram, has a lot in common with extract-
ing MFCC features to the speech signal, besides most state-of-the-art speech pro-
cessing systems use some form of MFCC as their acoustic feature representation,
because of their spectral nature.

Table 2 shows the fused classification scores. It is worth noting how merging
all zones predictions improves the performance of the best individual SVM clas-
sifier (from zone 1). Another important issue was to verify that to discharge the
worst zones -upper ones- does not always help to increase the final recognition.
Even zone 10, provided useful information when classifiers were merged.

Spoken language recognition over short duration (≤ 3sec) speech segments is
one of the ongoing challenges, our method is also susceptible to this phenomenon
(Table 2).

5.1 Comparison with the TV Approach

Trying to reproduce a state-of-the-art method for language recognition over our
own experimental setup, we developed an i-vector framework taking the risk of
a bad performance due to its nature of high demanding resources method.

Comparing the results with the baseline, is remarkable how the proposed
method obtained comparable results with the TV state of the art approach
(Table 3).

However the most important outcome is the significant EER reduction when
both systems scores are merged. Notice how the fusion itself is a result that
competes with state of the art systems, however using much less data [17].

We could also say that both representations, textural representation of the
speech and total variability, complement each other based on the improvement
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Table 3. Comparison between LPQ system, i-vector baseline and their fusion, in terms
EER (%) and demanded data (hours).

System 30 sec 3 sec Model data UBM-TV data

LPQ 7.3 % 17.2% 2.5 h/target -
i-vector 7.6 % 22.8% 4 h/target 72 h
Fusion 4.8 % 14.29% - -

their fusion brought. Besides it is quit known that long term approaches are able
to convey information sometimes impossible to reflect in the short term based
ones.

6 Conclusion

The most interesting and original result is the experimental demostration of how
the spectrogram texture discriminates the musical genre and it is also useful to
identify languages.

In this study, we proposed a framework to model textural characteristics of
speech spectrograms, which as we showed, indirectly model prosodic cues.

It was described a technique of visual data interpretation for spoken language
recognition, and as main outcomes of this innovative approach we could mention:

- a new methodology to extract language features from spectrogram represen-
tation was developed,

- a new framework for using suprasegmental information in spoken language
recognition was presented,

- a low dimensional vector representation which brings a comprehensive frame-
work for futures subsystem merging,

- a representation with complementary information to the TV space [19].

Remains as challenges:

- to find an optimal fusion rule, probably a trained fusion function,
- to try this method in closely related language sets.
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Abstract. In this paper, we present an approach to Spoken Lan-
guage Understanding (SLU) where we perform a combination of mul-
tiple hypotheses from several Automatic Speech Recognizers (ASRs) in
order to reduce the impact of recognition errors in the SLU module. This
combination is performed using a Grammatical Inference algorithm that
provides a generalization of the input sentences by means of a weighted
graph of words. We have also developed a specific SLU algorithm that is
able to process these graphs of words according to a stochastic semantic
modelling.The results show that the combinations of several hypotheses
from the ASR module outperform the results obtained by taking just the
1-best transcription.

Keywords: Graph of words · Graph of concepts · Spoken language
understanding

1 Introduction

Advances in speech technologies have allowed voice-driven human-computer
interaction systems to be ubiquitous in our lives. All these systems have many
features in common, and one of them is that they have to understand what the
user said in order to provide a suitable answer. Spoken Language Understanding
(SLU) aims to provide a semantic representation of the user’s utterance.

The input to the SLU system is usually the 1-best transcription of the utter-
ance provided by the ASR [6]. However, this approach makes it impossible to
correct the mistakes made in the recognition stage. In recent years, there has
been a growing interest in overcoming the limitations derived from using a sin-
gle decoding of the utterance as the input to the SLU system by exploiting the
information contained in the ASR lattices [7],[11]. Another way to address this
problem is to combine a set of sentences provided by one or more ASRs, in order
to reduce the effect of the errors introduced by any single sentence. One way to
perform this combination is to use a voting algorithm [5], to obtain a new out-
put that is made of segments corresponding to the original sentences. Another
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option, which is the one explored in this paper, is to build a graph of words from
the set of sentences by using a Grammatical Inference method. This way, a set
of extra sentences made up from chunks of the original sentences are represented
in the graph of words along with the original sentences.

Many successful SLU systems are based on statistical models [3],[10],[8],[4].
This kind of modelization is able to represent the variability of the lexical real-
izations of concepts (meanings) as well as the different ways in which concepts
can be arranged. Another important aspect of these models is that they can be
learned from corpora. The training corpora must be large enough to allow an
accurate estimation of the probabilities, and it must represent the lexical and
syntactic variability that is used in the language to express the semantics as
much as possible. Nevertheless, the training corpus may not be large enough to
contain all the variability, and it is also important to have information about
the errors that can be generated in the recognition process [11]. Since this infor-
mation is ASR dependent, it is not usually included in the training process. For
this reason, it can be a good approach to learn semantic models from a clean
corpus and to enrich the input to the semantic decoding by means of multiple
hypotheses. We have explored this approach and we have applied it to a task of
an information system about railway timetables and fares in Spanish.

2 System Description

Spoken Language Understanding is usually addressed as the task of finding the
best sequence of concepts Ĉ, given an utterance A:

Ĉ = argmax
C

p(C|A) (1)

By introducing the sequence of words W underlying the utterance Equation 1
can be written as:

Ĉ = argmax
C

max
W

p(A|W ) · p(W |C) · p(C) (2)

In this work, we have used a decoupled modular architecture (see Figure 1).
The key aspects of this architecture are the use of a Grammatical Inference

Fig. 1. Scheme of the architecture of our system.
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algorithm to combine and generalize the outputs of one or more ASRs and a
specific SLU algorithm that is able to take graphs of words as input.

In this architecture, the first module is dedicated to speech recognition. Since
we want to combine and generalize multiple sentences provided by this module,
its output will be either the n-best list provided by a single ASR or a set of
1-best decodifications provided by several ASRs working in parallel.

The second module combines the sentences provided by the first step by
using a Grammatical Inference algorithm. The idea of Grammatical Inference
is to generate a language (usually represented as an automaton or a graph of
words) that generalizes a set of sentences that are provided as its input. Also,
the algorithm that we have developed assigns a probability to each sentence
of the new generalized set by means of a Maximum Likelihood criterion. This
probability can be seen as a re-estimation of the distribution p(A|W ).

Next, the semantic decoding is carried out by means of a SLU module that
is able to deal with graphs of words. For this system, we have developed a
semantic decoding methodology that works in two stages. First, the graph of
words is converted into a graph of concepts in which both syntactic and semantic
information is included in the arcs of the graph. To build this graph of concepts,
the first stage of the SLU algorithm uses both the graph of words and a set of
Stochastic Finite State Automata (SFSA), which modelize the lexicalizations of
the concepts of the task. Then the algorithm searches for matchings between
the sequences of words that are represented in the graph of words and in each
of the SFSA. The matchings of maximum probability become arcs in the graph
of concepts. The weights of each arc in this graph are p(A|W j

i ) · p(W j
i |c), where

W j
i stands for a chunk of a sentence represented between nodes i and j in the

input graph of words and c is the concept it represents.
Then, this graph of concepts is processed in a second stage. In this stage,

the algorithm searches for the best path in the graph based on the probabilities
represented in both the graph of words and in a model that represents how the
concepts are chained. The path of the maximum combined probability fulfills
Equation 2. However, the output of this stage is not only the best sequence of
concepts, it is also the underlying sequence of words and its segmentation in
terms of the concepts.

Finally, the segmentation provided by the previous module is processed to
extract and normalize the relevant semantic information and convert it into a
frame representation.

3 A Grammatical Inference Algorithm to Build Graphs
of Words

The goal of our Grammatical Inference algorithm is to generalize the syntactic
structures of the sentences supplied by one or more ASRs by building a weighted
graph of words. A graph of words represents a set of recognition alternatives that
are built from the individual transcriptions of the utterance. This way, the SLU
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Correct utterance: me puede decir horarios de trenes a Alicante
(could you tell me train timetables to Alicante)

MSA Matrix with multiple ASR outputs:
me puede decir horarios de trenes – Alicante

– puede decir horas de trenes – Alicante

me puede decir hola – trenes a Alicante

Graph of words:

Fig. 2. Method to build a graph of words from multiple ASR outputs.

module can search among them for the most accurate sentence based on semantic
constraints.

Our algorithm for building this weighted graph of words works in two steps.
First, the different recognition alternatives are aligned using a Multiple Sequence
Alignment (MSA) algorithm [1]. To carry out this process, we have modified the
ClustalW [9] Multiple Sequence Alignment software.

The MSA process builds an alignment matrix. Each row in this matrix rep-
resents awords different sentence, and each column represents the alignment of
each symbol. When a symbol cannot be aligned to any other symbol of any other
sentence, the special symbol ’-’ is used (non-alignment points).

The second step consists of building a weighted directed acyclic graph of
words from the information contained in the MSA alignment matrix. The graph
construction algorithm starts creating as many nodes as columns in the align-
ment matrix, plus one for the initial state. Then, for each cell in the matrix that
contains a symbol different to ’-’, we create an arc in the graph of words. Each
arc is labeled with the word attached to the cell and has a counter of the num-
ber of times it is used. Finally, we weight the arcs by normalizing the counters
attached to them. The final node of the graph is the node that represents the
last column of the matrix.

Figure 2 shows an example of how the graph-builder algorithm works. As
shown, this graph represents not only the input sentences, but also a set of
sentences of similar characteristics. For example, the correct sentence me puede
decir horarios de trenes a Alicante (could you tell me train timetables to Ali-
cante) was not among the transcriptions provided, but it can be recovered using
this mechanism. Furthermore, any full path from the initial to the final node
in the graph represents an alternative transcription of the original utterance,
and its probability is the product of the probabilities of the individual arcs of
the path. Hence, this graph provides a re-estimation of the probability distribu-
tion p(A|W ), considering only a generalization of the individual transcriptions
provided by the ASR module and weighting them according to a Maximum
Likelihood criterion.
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4 Semantic Decoding

Our SLU method works in two stages, both of which use stastistical semantic
models. The first stage converts a graph of words into a graph of concepts using
the information provided by the semantic model about the lexical structures
that are associated to each concept. The graph of concepts has the same nodes
as the graph of words. However, each arc represents a path in the graph of words
whose underlying sequence of words is associated to a concept. Hence, each arc is
labeled with the corresponding sequence of words and the concept it is attached
to. Each arc is also weighted using a combination of the probabilities represented
in the graph of words and those provided by the semantic model. The second
stage finds the best sequence of concepts by searching for the best path in the
graph of concepts, based also on the information about the concatenation of
concepts included in the semantic model. The method for building the graph
of concepts finds paths between any pair of nodes in the graph of words that
represent sequences of words that are associated to any of the concepts of the
task. To modelize the probability of a sequence of words for a given concept, we
train a bigram Language Model (LM) for every concept. Thus, given a sequence
of words W j

i induced by a path from node i to node j in the graph of words, the
LM associated to concept c computes the probability p(W j

i |c).
An n-gram LM can be represented as a Stochastic Finite State Automaton

(SFSA). Hence, the problem of searching for relevant sequences of words in the
graph of words for each concept can be stated as the search for common paths
in both the graph of words and the automaton that represents the LM for each
concept. However, due to the nature of this problem, we can add two restrictions
to this statement. Let LMc be the LM attached to the concept c and let qc be
a state of this automaton. The first restriction is that any path in LMc must
start at its initial state, but it can end at any state qc. The second restriction is
related to the second stage of the semantic decoding process. We search for the
best path in the graph of concepts and the score for any path is the product of the
probabilities of its edges combined with the score provided by a LM of sequences
of concepts. Hence, in the first stage, for any pair of nodes i, j and any concept c,
only the path in the graph of words that maximizes the score p(A|W j

i ) · p(W j
i |c)

becomes an arc in the graph of concepts. Therefore, the graph of concepts can
be built by using the following Dynamic Programming algorithm1:

M(i, j, qc) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = j ∧ qc is the initial state of LMc

0 if i = j ∧ qc is not the initial state of LMc

0 if j < i
max

∀a∈EGW :dest(a)=j

∀(q′
c,wd(a),qc)∈LMc

M(i, src(a), q
′
c) · p(q′

c,wd(a), qc) · wt(a)

otherwise

(3)

1 We say that for every two nodes i, j in the graph of words, it holds that i < j if i
comes before j in the topological order of the nodes of the graph.
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where dest(a) stands for the destination node of the arc a in the graph of words,
src(a) refers to its source node, and wd(a) and wt(a) refer to the word and
the weight attached to the arc, respectively. Also, (q′

c,wd(a), qc) represents a
transition from the state q′

c to the state qc labeled with wd(a) in the SFSA
that represents LMc. In consequence, M(i, j, qc) represents the best path in the
graph of words that starts in the node i, ends in the node j, and whose underlying
sequence of words reaches the state qc in LMc.

The second SLU stage searches for the best path in the graph of concepts,
taking into account a bigram LM of sequences of concepts, which modelizes the
probability distribution of the sequences of concepts p(C). This search is per-
formed via Dynamic Programming. The result is the best sequence of concepts
as well as the underlying sequence of words and its segmentation in terms of the
concepts.

Finally, this segmentation is converted into a frame representation (Table 1),
which involves deleting irrelevant segments, reordering concepts and attributes,
and automatically instantiating certain task-dependent values, among others.

Table 1. Example of semantic segmentation and its frame.

Input hola queŕıa saber los horarios para ir a Madrid
utterance (hello I’d like to know the timetables to go to Madrid)

Semantic hola : courtesy
segments queŕıa saber : query

los horarios para ir : <time>
a Madrid : destination city

Frame (TIME?)
DEST CITY : Madrid

5 Experimental Results

To evaluate the proposed approach, we have performed a set of experiments using
the DIHANA task [2]. This task consists of a telephone-based information system
for trains in Spanish. It has a corpus of 900 dialogs of spontaneous telephonic
speech (which were acquired using the Wizard of Oz) that amount to 6, 229 user
turns from 225 speakers. This set of user turns was split into a subset of 4, 889
utterances for training and 1, 340 for testing. The orthographic transcriptions
of all the user turns are available and are semi-automatically segmented and
labeled using a set of 30 concepts.

We used the HTK, Loquendo, and Google ASRs. Table 2 shows if the Acous-
tic Model and the Language Model of each ASR were trained with the infor-
mation from the training corpus. It also shows the resulting Word Error Rates
(WERs). As expected, the greater the amount of information provided to the
ASR from the corpus, the lower the WER.

In order to validate our approach, we performed three types of SLU experi-
ments. The first type constitutes the baseline and consists of taking the 1-best
of each ASR separately. In the second type, we took the n-best from the Google
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Table 2. Information of the task provided to each ASR.

ASR Acoustic Model Lang. Model WER

HTK yes yes 17.55

Loquendo no yes 20.12

Google no no 29.73

ASR since it is the one that best modelizes a real-world situation, and we built
graphs of words using them. Finally, we took the 1-best from each ASR and com-
bined them into a graph of words. To evaluate each experiment we measured the
WER, the Concept Error Rate (CER), and the Frame-Slot Error Rate (FSER),
which refers to errors in the semantic frames.

The results obtained in our experiments are shown in Table 3. These results
show that, in terms of FSER, the combination of multiple hypotheses from the
ASR module outperformed the respective baselines. The same happened for
CER, except when comparing the CER achieved using the combination of the
sentences from all the ASRs with the one obtained using the 1-best sentence from
HTK. The reason for this is related to the data we used for training each ASR.
The LMs for HTK and Loquendo were trained with data from the task, while the
Google ASR had no information from the task. This way, it was easier for HTK
and Loquendo to recognize in-vocabulary words, but when an out-of-vocabulary
word appeared they failed, while the Google ASR could provide the correct
transcription. Thus, when we combined the three ASRs, the Google ASR helped
to identify some semantic segments with important keywords (which may have
been out-of-vocabulary words), but in some cases it generated more variability in
the graph due to its transcription errors. The results also show that in most cases
the FSER is lower than the CER, which means that most of the errors were done
in semantically irrelevant segments, such as courtesies. In terms of WER, the
quality of the transcription achieved using a combination of several hypotheses
and the proposed semantic decoding method was better than the respective
baselines in all cases. This helped to improve the FSER, as the values of the
frame slots were better recognized. Thus, we confirm our hypothesis that the
sentences obtained through a generalization process by means of a Grammatical
Inference algorithm lead to an improvement in the overall behavior of the system.

Table 3. Results obtained using the different compositions of ASR outputs as well as
the individual 1-bests.

Input graphs of words WER CER FSER

HTK 1-best 17.55 14.15 12.81

Loquendo 1-best 20.12 24.10 22.65

Google 1-best 29.73 32.50 32.69

Google 3-best 27.04 24.28 23.77

Google 5-best 26.85 23.85 23.00

HTK + Google + Loquendo 1-bests 14.87 15.58 10.48
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6 Conclusions

In this work, we have presented an approach to SLU based on the combination of
several ASR outputs in a graph-based system. We have developed a Grammatical
Inference algorithm that takes several recognitions provided by the ASR module
and builds a graph of words that represents a generalization of the original
sentences. We have also developed a two-stage SLU method, which is based on
Dynamic Programming algorithms. We have evaluated this approach using the
Spanish DIHANA task. The results show that an appropiate combination and
generalization of the transcriptions provided by the ASR module improves the
overall behavior of the system.
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Abstract. One of the workhorses of Brain Computer Interfaces (BCI)
is the P300 speller, which allows a person to spell text by looking at
the corresponding letters that are laid out on a flashing grid. The device
functions by detecting the Event Related Potentials (ERP), which can be
measured in an electroencephalogram (EEG), that occur when the letter
that the subject is looking at flashes (unexpectedly). In this work, after a
careful analysis of the EEG signals involved, we propose a preprocessing
method that allows us to improve on the state-of-the-art results for this
kind of applications. Our results are comparable, and sometimes better,
than the best results published, and do not require a feature (channel)
selection step, which is extremely costly, and which must be adapted to
each user of the P300 speller separately.

Keywords: EEG · ERP · BCI · P300 speller · SSVEP

1 Introduction

Brain signals detected using non-invasive methods such as electroencephalo-
grams (EEG) (Figure 1) provide a very rough summary of the overall activity
of the brain at different locations of the scalp. Event Related Potentials (ERP)
are relatively strong signals that can be detected when an event that is signif-
icant to the subject occurs. The P300 ERP (which stands for Positive peak at
300ms) is thought to occur when such event is both relevant to the task that
the subject is performing, and unexpected. This principle has been applied to
construct the so-called “P300 speller” (see Figure 2), which allows a subject to
spell text by focusing on each individual letter, one at a time, and waiting for it
to flash on a screen. If such flashes are unpredictable, a P300 occurs, which hints
the device as to which letter the subject is looking at. In practice, the signal to
noise ratio is very low, thus P300 events are very hard to detect. Therefore, each
letter must usually be flashed several times before an automatic decision can be
made. Some devices arrange the letters on a rectangular grid and flash entire
rows and columns at a time, which increments the number of times that each
letter is flashed per time unit.

This work was supported by the CSIC 2012 I+D project 519, and the CSIC “Ini-
ciación a la Investigación” program.
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Fig. 1. Left: sample EEG measurement device. Right: typical EEG signal from one
channel.

In 2006, an open challenge called the BCI Competition III was proposed. Its
goal was to obtain the best possible performance (in correct letter classification)
on a dataset obtained using a speller on two different subjects. The winner
of the competition was the method proposed in [1], which combines several
mainstream machine learning techniques. The method will be described in full
detail in Section 2.

In this work, we perform an in-depth signal processing-oriented analysis of the
EEG signals produced in P300 speller systems. In particular, we focus on the ones
obtained from the BCI Competition.1 The driving question behind our work is:
how much can we simplify and/or robustify a speller system by applying a priori
knowledge about the EEG signals involved? The result of this work is twofold:
first, we are able to improve on the state-of-the-art by exploiting such prior
information instead of relying on a pure black-box approach such as [1]; second,
we provide evidence supporting the hypothesis that there is a significant amount
of underlying information, beyond the P300 ERPs, that is needed for a successful
discrimination between positive and negative events. The latter conclusion is
obtained by classical signal-theoretic results from synchronous detection theory.

2 Background

In this section we describe common aspects of EEG signals, the P300 speller,
and the approach followed in [1] to infer a letter to be spelled from the EEG
signals read from the scalp of the subject.

Figure 1 shows a typical EEG measurement device. The EEG signal is cap-
tured by several electrodes distributed over the scalp of a subject. These elec-
trodes measure the electromagnetic field, at various points on the surface of the
scalp, that is produced by the neural activity of the brain. The distribution of
such points varies from device to device although some standards exist. The
system discussed in this work adheres to the 10-20 standard for EEG electrode
location [2]. The signal measured at each electrode is called a channel. Due to

1 Dataset available at http://www.bbci.de/competition/iii.

http://www.bbci.de/competition/iii
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Fig. 2. P300 speller diagram. All possible letters are laid out on a square grid, displayed
on a computer screen. All rows and colums are flashed, one at a time, in random order,
while the subject stares at the desired letter. Meanwhile, the neural activity of the
subject is captured using an EEG device, pre-processed, and then fed to a classification
system which infers the letter that the subject is looking at.
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Fig. 3. Average P300 waveform for subject A. Left: on all 64 channels. Right: detail
for the Cz channel, which is one channels where the P300 ERP manifests itself with
more strength. In this case, on the Cz channel, the maximum potential is not achieved
at 300ms, but rather at 450ms. However, the overall peak seems to be centered around
300ms.
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the conductive interface between the signal to be measured and the transducing
electrodes, the resulting signal is low-pass filtered both in space (as a function
of the position on the scalp), and time. Finally, due to the very small potentials
involved, and the high amplification needed, the resulting signal to noise ratio
(SNR) on all channels is usually very low. Other problems derived from the mea-
surement mechanism includes common noise accross electrodes (channels). (We
refer the reader to [3,4] for details on the subject.)

The speller device used in the BCI Competition III (depicted in Figure 2)
consists of a screen with a set Y of 36 characters arranged on a 6×6 grid, coupled
to an EEG measurement machine with 64 channels distributed according to the
10-20 standard [2]. For the competition, the following experiment was performed
on two different subjects, which we call “subject A” and “subject B”. While a
subject stares at some specific letter on the screen, each of the 6 rows and each of
the 6 columns is flashed separately. This cycle of 12 flashes is repeated 15 times,
for a total of 12×15 flashes, where a different random order is selected each time
for the flashing of rows and columns. This procedure in turn is repeated for a
series of 185 letters; we refer to each of these 185 repetitions as an epoch. The
first 85 epochs are reserved for training; the remaining 100 are exclusively for
testing.

Beginning with each flash, the EEG signal of the 64 channels is sampled for
a duration of one second, at a precision of 12 bits per channel, at a sampling
frequency of 240Hz. The resulting matrix of 240×64 signal samples constitutes
one data sample, which we denote by X = {xik}, with xik being the voltage
measured for channel k at discrete time i (relative to the beginning of the flash).
Each data sample Xj (where j denotes a data sample time index) is labeled with
the letter Yj ∈ Y that the subject is looking when the data is sampled.

The method proposed in [1] consists of a combination of various machine
learning techniques, together with a standard pre-filtering of the signals. To
begin with, the method considers only the first 667ms of the signal, discarding
the remainig 333ms. It then applies a low-pass filter of cutoff frequency fc = 10Hz
followed by a subsampling of 12 : 1, after which each data sample Xj is reduced
to an 64×14 matrix. The system is trained on each subject separately, using the
85 training epochs of the dataset, and tested, only on that same subject, with
the 100 testing epochs of the dataset.

Training of all parameters is done via a cross-validation[5]/classifier aggre-
gation variant where the training subset is divided into 17 segments, and each
segment is used to train a different (linear) Support Vector Machine (SVM) [6,7].
This training includes the choice of the optimum parameter “C”, as well as the
optimum subset of channels (columns of the data samples X) from which to
train the SVM, and of course the best SVM for that setting.

Training proceeds as follows. The subset of channels is chosen via backward
selection. In turn, for each candidate subset, differen SVMs are trained using
different values of C, and the best one is kept. In all cases, the cost function to
be minimized is the error rate on the remaining 16 subsets.
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Finally, the best 17 SVMs are combined into one classifier by linearly adding
their scores, and selecting the letter with the highest associated cumulative score.

validationblock 1

block 2

block 3

...

block 1block 17

lowpass
filter

block 1

block 2

block 3

...

block 1block 17

subset
selection SVM

classifier 1

lowpass
filter

subset
selection SVM linear
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subset
selection SVM

subset
selection SVM

X y

(a)

(b)

Fig. 4. Classifier architecture proposed in [1]. a) The training dataset is divided into 17
equal-sized, non-overlapping subsets, and 17 SVMs are trained with each one of them.
The parameters of each SVM, including the selection of the best subset of channels
on which to apply the SVM, is learned independently, using the other 16 subsets as
validation data. b) For classification, the output of all 17 SVMs is linearly added to
produce an average score, which is then used to select the candidate letter.

A diagram of the architecture just described is shown in Figure 4.
From the above description, two things should be immediatly clear. First,

the training procedure is notoriously costly, as each step in the backward selec-
tion of each SVM consists in turn of the training and testing of several SVMs.
(Once trained, however, detection is very fast, as only a few linear operations are
required). Second, the total number of parameters is quite high, which makes
the obtained detector extremely overfitted to a particular user. Although cross-
performance between subjects was not the goal of the competition, it is never-
theless interesting to see how universal such system could be.

3 Adding a-priori Information to Improve P300 Spellers

As mentioned in the introduction, the focus of this work is on a priori information
about EEG signals for P300 speller detection. The a priori information that is
usually assumed about EEG signals (see [4] for a review on the subject) includes,
as is generally the case, a characterization of what is signal, and what is noise.
The noise, as in most applications, is assumed white and uncorrelated. The signal
of interest, on the other hand, is considered a band-limited linear superposition
of various sub-signals related to specific neural phenomena such as alpha and
beta waves, electrooculomotor (EOG) impulses, and ERPs.

In the case of P300 spellers, as their name suggests, the main hypothesis
behind their design is that positive events (that is, “the row or column that the
user is looking at flashes”) produce a positive ERP 300ms after the flash occurs.
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Incidentally, another component that is usually present in P300 speller systems
is the so-called Steady State Visual Evoked Potential (SSVEP), which occurs in
response to a periodic visual stimulus. In the case of the BCI Competition speller
experiment, the row and column flashes, which are produced at a constant rate
of 5.7Hz, are the cause of such sub-signals. Clearly, for a speller application,
such SSVEP is to be considered interference.
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Fig. 5. Removal of SSVEP: Left: Average positive (blue, continuous) and negative (red,
dotted) signals for subjects A (above) and B (below). Right: same signals after SSVEP
removal. The SSVEP can be clearly seen as a periodic component on the average
negative signals on both graphs on the left. Notice that both the average P300, as well
as the SSVEP, vary significantly between both subjects.

According to the above scenario, and using [1] as the reference method, we
propose three approaches to exploit the existing (or assumed) a priori informa-
tion about EEG signals, with the hope to improve the speller performance:

1. A synchronous detector of the P300 pulse waveform
2. Pre-filter the signal using the P300 waveform as a matched filter and feed

the result to the speller of [1]
3. Remove the SSVEP from the EEG signal and feed the result to the speller

of [1]

In the first case, we constructed a synchronous detector by modeling the
overall P300 pulse waveform (one per channel) from the grand average of all
positive events (see Figure 3). Denote by Yr the characters of Y on the r-th
row, and by Yc the characters on the c-th column. Denote by rj ∈ {0, 1, 2, . . . , 6}
and cj ∈ {0, 1, 2, . . . , 6} the index of the row or column flashed during sample j
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(if a row is flashed, we let cj = 0 and vice versa). The P300 waveform is estimated
as the average signal measured each time either Yr or Yc contains Yj :

Z =
∑
j

Xj1
({Yj ∈ Yrj} ∪ {Yj ∈ Ycj}

)
, (1)

where 1(·) denotes the indicator function associated to an event.
Note that we are making a strong assumption here: that the shape and posi-

tion of the pulse is always the same. Deviations from such assumptions may
deteriorate the estimation of the matched filter Z. The detection procedure,
according to synchronous detection theory, is to measure the filter response at
the peak of the matched filter. Note that the filter Z is multi-channel, each col-
umn of it being a classical one-dimensional matched filter (for example, the one
corresponding to the Cz channel is shown in Figure 3 on the right):

ζj =
∑
k

∑
i=1

(Xj)ikZik . (2)

Denote by J a given epoch. Similar to (1), the overall score for a candidate
letter Y occuring during epoch J is given by

ζ(Y ) =
∑
j∈J

ζj1
({Yj ∈ Yrj} ∪ {Yj ∈ Ycj}

)
. (3)

As evidenced by the results in Table 1, the above procedure yields very poor
results, which point out the weaknesses behind the basic assumptions about the
P300 ERP in its role for detecting significant events. This may occur at two
levels: either the P300 ERP is too variable itself (besides what can be assumed
interference) to be summarized as an average waveform, either in shape or in
location, or there is more information besides what may be called “P300” that
is related to a positive event. The second detector proposed, which pre-filters
the EEG signals prior to introducing it into the machinery proposed in [1],
supports the above conclusion. Although synchronicity is not required in this
case, variations in the occurence of the P300 peak may introduce a significant
blur in the resulting matched filter, with a negative impact on the overall process.

The third variant is based on the observation that the periodic flashes that
occur throughout the entire experiment induce a Steady State Visual Evoked
Potential, which manifests itself as a periodic waveform of the same frequency
as the flashing rate; this is clearly visible in Figure 5, left column. We remove
this interference by estimating the periodic component of the signal with period
5.7Hz and then substracting that component from the original signal. The result
can be observed on the left column of Figure 5.

4 Results, Discussion and Conclusions

By performing the aforementioned operation as a pre-processing step to the
speller of [1], we observe gains in several aspects. The most important one is
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Table 1. Summary of results, given as the number of correct letter identification
obtained on the BCI Competition III testing dataset, which consists of 100 epochs.
A: results from [1]; B: synchronous detector results, C: results obtained with [1] when
the matched P300 filter is used to pre-filter the input; D: method from [1] when the
SSVEP component is removed from the input; E: [1] with no channel selection; F: [1]
with no channel selection, with the SSVEP component removed from the input.

Subject A B C D E F

A 97 33 83 96 94 98
B 96 34 61 95 92 94

that we are able to significantly improve upon the performance of [1] when no
channel selection is performed (and all channels are used); to give some perspec-
tive, using the implementation provided by the authors of [1], this reduces the
training time from over an entire day to a few minutes. Moreover, for subject A,
we even improve on the best result that can be obtained after the selection proce-
dure. For subject B, the performance drops slightly (only two more samples are
missclassified). When combining our pre-filtering with the full training of [1], we
maintain the performance on subject A, and come closer to that of subject B. As
such small differences could easily be due to random fluctuations, we conclude
that the pre-filtering method proposed is able to produce essentially the same
results as the original algorithm, while reducing its training time dramatically.
Given that this training must be performed on each new subject, such reduction
is clearly welcome.
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Abstract. This paper describes an audio-visual speech recognition sys-
tem based on wavelets and Random Forests. Wavelet multiresolution
analysis is used to represent in a compact form the sequence of both
acoustic and visual input parameters. Then, recognition is performed
using Random Forests classification using the wavelet-based features as
inputs. The efficiency of the proposed speech recognition scheme is eval-
uated over two audio-visual databases, considering acoustic noisy con-
ditions. Experimental results show that a good performance is achieved
with the proposed system, outperforming the efficiency of traditional
Hidden Markov Model-based approaches. The proposed system has only
one tuning parameter, however, experimental results also show that this
parameter can be selected within a small range without significantly
changing the recognition results.

Keywords: Speech recognition · Audio-visual speech · Random forests ·
Wavelet analysis

1 Introduction

Communication among humans is inherently a multimodal process, in the sense
that, for the transmission of an idea, not only is important the acoustic signal
but also the facial expressions and body gestures [9]. For instance, a significant
role in spoken language communication is played by lip reading. This is essen-
tial for the hearing impaired people, and is also important for normal listeners
in noisy environments to improve the intelligibility of the speech signal. This
correlation between the acoustic and visual information during speech has moti-
vated, in the last decades, several research activities associated with audio-visual
speech recognition [14]. This research has demonstrated that recognition rates
in noisy acoustic conditions can be significantly improved in comparison with
only-acoustic recognition systems [12].

For audio-visual speech recognition, several kinds of pattern recognition
methods have been adopted in the literature such as Linear Discriminant Analy-
sis, Artificial Neural Networks (ANN) [12], matching methods utilizing dynamic
programming, K-Nearest Neighbors (K-NN) algorithms [13], Support Vector
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 567–574, 2015.
DOI: 10.1007/978-3-319-25751-8 68
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Machine classifiers (SVM) [16] and Hidden Markov Models [7][8][11]. The most
widely used classifiers are traditional HMMs that statistically model transitions
between the speech classes and assume a class-dependent generative model for
the observed features. In general, these recognition systems require a calibration
stage to tune the parameters of the classifier in order to obtain an adequate
performance in the recognition. This calibration is often performed by testing
different combinations of the classifier’s tuning parameters, which is usually a
time consuming procedure. In addition, the optimal values for the parameters
could depend on the particular visual features data set being employed.

In this paper, a novel audio-visual speech classification scheme based on
wavelets and Random Forests (RF) [4] is proposed. Wavelet multiresolution
analysis is used to model the sequence of audio and visual parameters. The
coefficients associated with these representations are used as features to model
the audio-visual speech information. Speech recognition is then performed using
these wavelet-based features and a Random Forests classification method. Ran-
dom Forests [4] have very good discriminative capabilities, run efficiently on
large databases, can handle thousands of input variables avoiding the need for
variable selection, are fast and can grow as many trees as it is necessary with-
out overfitting. These good characteristics are inherited by the proposed audio-
visual recognition scheme. The performance of the proposed speech classification
scheme is evaluated over two different isolated word audio-visual databases.

The rest of this paper is organized as follows. In section 2 the proposed
classification scheme for audio-visual speech recognition is presented. The dif-
ferent visual databases employed to evaluate the proposed system are described
in section 3. In section 4 experimental results are presented, and the accuracy
of the proposed method is compared to the corresponding to traditional Hid-
den Markov Model-based approaches, over the same databases. Finally, some
concluding remarks are given in section 5.

2 Proposed System

A schematic representation of the proposed speech classification scheme is
depicted in Fig. 1. In a first stage, Discrete Wavelet Transform (DWT) is applied
to the input parameters. The idea is to perform a multilevel decomposition of
the time varying input parameters using the DWT and then use the approxi-
mation coefficients to represent them. Resampling of the time functions, prior
to the DWT decomposition, is needed in order to have a fixed-length feature
vector. In this way, independently of the number of frames associated with each
word, a resulting fixed length feature vector is obtained. To have a fixed-length
feature vector represents an advantage since it makes the comparison between
two feature vectors easier. This method is also independent of the kind of input,
in this paper the method is evaluated using acoustic and fused audio-visual input
parameters. The wavelet-based feature vector computation scheme is depicted
in Fig. 2.

In the wavelet decomposition block, a multilevel decomposition of the time
functions is performed, and only the approximation coefficients are retained to
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Fig. 1. Schematic representation of the proposed audio-visual speech classification sys-
tem.

represent them. The approximation accuracy is determined by the chosen resolu-
tion level, which also determines the length of the resulting feature vector. Since
this length has to be kept reasonably small, there will be a trade-off between
accuracy and feature vector length. The design parameter is then the length of
the feature vector, which determines the resolution level to be used. The widely
used db4 wavelet [5] is employed for the representation of the time functions.

In the second stage, a classification based on Random Forests (RF) is per-
formed. Random Forests is an ensemble of decision trees. The ensemble construc-
tion strategy is focused in increasing the diversity among the trees. Decision trees
are very unstable (generally a small change in the dataset results in large changes
in the developed model [3]), then the diversity among the trees in the ensem-
ble is increased by fitting each tree on a bootstrap replicate (random subset of
the available data, of the same length, taken with replacement) of the whole
data. In addition, more diversity is introduced during the growing of each tree.
For each node the method selects a small random subset of P attributes (from
the total number of attributes available) and use only this subset to search for
the best split. The combination of these two sources of diversity produces an
ensemble with good prediction performance. This performance will depend on
the correlation between any two trees in the forest and on the strength of each
individual tree. The stronger the individual trees are and the less correlated they
are, the better error rate the classifier will achieve. The parameters to adjust for
a Random Forests classifier are the number of trees to grow and the number of
randomly selected splitting variables to be considered at each node. The number
of trees to grow does not strongly influence the results as long as it is kept large
(generally, 1000 trees are enough). Then, in practice, the only tuning param-
eter of the model is the number of randomly selected splitting variables to be
considered at each node.
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Fig. 2. Schematic representation of the method proposed for computing the wavelet-
based feature vector. In this example, the input features are composed by 4 parameters.

3 Audio-Visual Databases

The performance of the proposed classification scheme is evaluated over two
isolated word audio-visual databases, viz., a database compiled by the authors,
hereafter referred as AV-UNR database and the Carnegie Mellon University
(AV-CMU) database (now at Cornell University) [1].
I) AV-UNR database: The AV-UNR database consists of videos of 16 speak-
ers, pronouncing a set of ten words (up, down, right, left, forward, back, stop, save,
open and close) 20 times. The audio features are represented by the first eleven
non-DC Mel-Cepstral coefficients, and its associated first and second derivative
coefficients. Visual features are represented by three parameters, viz., mouth
height, mouth width and area between lips.
II) AV-CMU database: The AV-CMU database [1] consists of ten speakers,
with each of them saying the digits from 0 to 9 ten times. The audio features
are represented by the same parameters as in AV-UNR database. To represent
the visual information, the weighted least-squares parabolic fitting method pro-
posed in [2] is employed in this paper. Visual features are represented by five
parameters, viz, the focal parameters of the upper and lower parabolas, mouth’s
width and height, and the main angle of the bounding rectangle of the mouth.

4 Experimental Results

The proposed audio-visual speech recognition system is tested separately on the
databases described in section 3. To evaluate the recognition rates under noisy
acoustic conditions, experiments with additive Babble noise, with SNRs ranging
from -10 dB to 40 dB, were performed. Multispeaker or Babble noise environment
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is one of the most challenging noise conditions, since the interference is speech
from other speakers. This noise is uniquely challenging because of its highly
time evolving structure and its similarity to the desired target speech [10]. In
this paper, Babble noise samples were extracted from NOISEX-92 database,
compiled by the Digital Signal Processing (DSP) group at Rice University [6].
To obtain statistically significant results, a two nested 5-fold cross-validation
(CV) is performed over the whole data in each of the databases, to compute the
recognition rates.

For each database, the evaluation is carried out considering speech data rep-
resented by only-audio information on one side and by fused audio-visual infor-
mation on the other, resulting in four different experiments. Independently of
the database being considered, audio-visual features are extracted from videos
where the acoustic and visual streams are synchronized. The audio signal is par-
titioned in frames with the same rate as the video frame rate. For the case of
considering audio-visual information, the audio-visual feature vector at frame
t is composed by the concatenation of the acoustic parameters with the visual
ones.

The tuning parameters of the system are the ones associated with the audio-
visual feature representation block and the ones corresponding to the RF classi-
fier. Regarding the wavelet-based representation, the tuning parameters are the
normalized length of the resampled time functions, the mother wavelet and the
resolution level for the approximation. In the experiments over the two databases
presented in this paper, these parameters are remained fixed. In particular, the
normalized length was set to 256, the wavelet resolution level was set to 3, and
the widely used db4 was chosen as the mother wavelet. Regarding the RF clas-
sifier, the parameters to adjust are the number of trees to grow and the number
of randomly selected splitting variables to be considered at each node. However,
the number of trees to grow does not strongly influence the performance of the
classifier as long as it is kept large. In particular, in the experiments presented
in this paper this value is set to 1000 trees. Thus, the only tuning parameter of
the proposed recognition scheme is the number of randomly selected splitting
variables to be considered at each node, hereafter denoted as α.

4.1 Results

The recognition rates of the proposed method over the two audio-visual
databases are presented in this subsection. In addition, these results are com-
pared with the ones obtained with a speech recognition system based on Hid-
den Markov Models (HMMs) over the same databases. Hidden Markov Model
approaches have been extensively proposed in the literature for speech recog-
nition [8], and proved to be highly efficient for this task, even on noisy condi-
tions [15]. For comparison purposes, the performance of the HHMs based recog-
nition system was computed for each database, using also two nested 5-fold
cross-validation. In particular, the HMMs were implemented using N -state left-
to-right models and considering continuous symbol observation, represented by
the linear combination of M Gaussian distributions.
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Fig. 3. Recognition rates for different SNRs for the cases of considering (a) only-audio
and (b) fused audio-visual information over the AV-UNR database. The performance of
the proposed recognition scheme is depicted in solid line (green), while the correspond-
ing to the HMM-based approach is in dashed line (blue). The grey area corresponds
to the performances obtained by selecting α in the range from 2 to 6.

AV-UNR database: The results obtained for the cases of considering speech
data represented by only-acoustic and audio-visual information over the AV-
UNR database are depicted in Fig. 3(a) and 3(b), repectively. It can be seen
that for this database, with the proposed approach (solid green line) satisfac-
tory results are obtained, outperforming the HMM-based classification approach
(dashed blue line).

AV-CMU database: In Fig. 4(a) and 4(b), the recognition rates obtained
over the AV-CMU database are depicted for the cases of considering audio-only
and audio-visual information, respectively. As expected, the performance in the
recognition task deteriorates as the SNR decreases. For both cases, it can be
seen that with the proposed classification scheme (solid green line) good perfor-
mance is achieved. In particular, in comparison with traditional HMMs approach
(dashed blue line), the proposed method leads to significant improvements in the
recognition rates for middle and low range SNRs.

The results depicted in Fig. 3 and 4 shows that the proposed method per-
forms well, yielding better performance in comparison with HMM-based meth-
ods. As stated before, these experiments were performed by selecting the value
for the only tuning parameter, that is the number of randomly selected splitting
variables to be considered at each node, via validation procedure (inner CV).
However, these experiments also show that this parameter can be selected within
a range without significantly affecting the performance of the recognition task.
This situation is depicted in Fig. 3 and 4, where the gray areas corresponds to
the performances of the system when using α in the range from 2 to 6. Thus,
these results indicate that the system can be employed using a fixed setup, i.e.,
the same wavelet-based representation and RF classifier parameters in all the
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Fig. 4. Recognition rates for different SNRs for the cases of considering (a) only-audio
and (b) fused audio-visual information over the AV-CMU database. The performance of
the proposed recognition scheme is depicted in solid line (green), while the correspond-
ing to the HMM-based approach is in dashed line (blue). The grey area corresponds
to the performances obtained by selecting α in the range from 2 to 6.

experiments, and the performance will be similar to the one obtained through
a tuning stage. This is an important advantage of the proposed approach in
comparison to other methods that necessarily require a usually time consuming
optimization stage of the classifiers’ metaparameters.

5 Conclusion

An audio-visual speech classification scheme based on wavelets and Random
Forests have been proposed in this paper. The sequences of input acoustic and
visual parameters are represented via wavelet multilevel decomposition, where
only the approximation coefficients are retained to represent them. The proposed
representation method leads to a fixed length feature vector, independently of
the number of frames associated with each word. This method is also indepen-
dent of the kind of input feature, either audio-only or fused audio-visual, being
considered. These fixed-length wavelet-based feature vectors are then used to
model the speech information. Speech recognition is then performed using these
wavelet-based features and a Random Forests classification method. The perfor-
mance of the proposed recognition scheme is evaluated over two different isolated
word audio-visual databases. Experimental results show that a good performance
is achieved with the proposed system, outperforming the efficiency of traditional
Hidden Markov Model-based approaches. The proposed system has only one tun-
ing parameter which can be selected within a small range without significantly
changing the recognition results. The experimental results show that the system
can be employed using a fixed setup, i.e., the same wavelet-based representation
and RF classifier parameters in all the experiments, and the performance will
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be similar to the one obtained through a tuning stage. This is an important
advantage of the proposed approach in comparison to other methods that nec-
essarily require a usually time consuming optimization stage of the classifiers’
metaparameters.
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Abstract. Falling is a risk factor of vital importance in elderly adults,
hence, the ability to detect falls automatically is necessary to minimize
the risk of injury. In this work, we develop a fall detection algorithm
based in inertial sensors due its scope of activity, portability, and low
cost. This algorithm detects the fall across thresholds and residual events
after that occurs, for this it filters the acceleration data through three
filtering methodologies and by means of the amount of acceleration dif-
ference falls from Activities of Daily Living (ADLs). The algorithm is
tested in a human activity and fall dataset, showing improves respect to
performance compared with algorithms detailed in the literature.

1 Introduction

The elderly people are facing risk factors as are the falls that can lead to suffer
minor, serious and even fatal injuries. It is estimated that each year about one-
third of adults over 65 years old suffer falls, and the likelihood of falling increases
substantially with advancing age [9]. When a fall occurs, it is possible to minimize
the risk of injury depending largely on the response, rescue and timely care.
Therefore, an appropriate system for falls detection on real time of elderly people
is a problem of interest, which has been approached from different fields based
on video [3], acoustic [12], inertial sensors [4] or mobile phone technology [7].

Existing fall detection approaches can be explained and categorized into three
different classes, which are: camera, environment sensor, and wearable device
based approaches [5]. Fall detection through cameras (vision) or environment
sensors (audio, vibration) requires expensive equipment that limits the scope of
activity for the person being monitored and can compromise his privacy because
these sensors commonly are in indoors. In contrast, fall detection through wear-
able devices has been increasing because the scope of activity is relatively unre-
stricted, the device may be easily attached to the body, and its cost is low; this
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 575–583, 2015.
DOI: 10.1007/978-3-319-25751-8 69
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approach is based on embedded inertial sensors to detect the body movement
and they are divided into two classes: the first class only analyzes the accelera-
tion to detect falls (accelerometers), and the second class uses the acceleration
and the body orientation (accelerometers and gyroscopes) [7].

A key factor to fall detect is the ability that possess the methodologies to
acquire, manage, process and get useful information from the inertial sensor raw
data, hence, the methodologies must be able to discover accurately features that
differentiate a fall from the ADLs. But the raw data generated by the sensors are
affected for several sources: some related to intentional movement of the body
as human and gravitational acceleration (low frequency signals) and others that
may add noise as external vibrations and mechanical resonance (high frequency
signals), that should be attenuated by adequate filtering techniques [2].

The fall detection paradigm can be interpreted as a binary classification
problem between falls and ADLs, some works implement complex inference tech-
niques as in [9] that use hidden Markov models to analyze acceleration data, but
they are inappropriate for falls detection because they spend excessive amounts
of computational resources and a fast response is essential. Therefore, most solu-
tions with wearable devices use threshold-based algorithms for detection of falls
events because the processing capacity is lower [4].

In this work, we present a fall detection algorithm based on thresholds and
residual events after the fall occurs, through an accelerometer worn on the human
body. The algorithm uses three filtering methodologies to attenuate the sources
that affect the data (Median filter, High pass Finite Impulse Response (FIR)
filter, and Soft thresholding), it also uses one feature that measures the amount
of acceleration to differentiate falls from ADLs (Signal Magnitude Area). To
evaluate the proposed algorithm we implement two algorithms detailed in the
literature and we test them using The MobilFall Dataset available online [11].
The results are presented like the capacity to detect or not detect a fall in
terms of sensitivity, specificity and hit rate, showing that the proposed algorithm
improvement the fall detection regarding algorithms of the literature.

2 Methods

Generality the output of the accelerometer has three signals A =
(x(t),y(t),z(t)) that represent the tri-axial acceleration x,y,z due to the motion
and gravity.

Preprocessing: In the preprocessing step is used a median filter that refers to
the replacement of a point Ai by the median values of the signal in a segment
Me{A(i,j)} this filter eliminates most of the signal generated by noise, keeping
the low frequency components as are the body motion and the gravitational
acceleration. Also is used a high pass filter that eliminates the low frequency
corresponding to acceleration due to gravity, removing the offset from the signal
to give a dynamic acceleration.
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To generate a signal and to do more representative the fall with respect to
ADLs considering the residual movement, is formulate the Soft Thresholding [6],
that is an optimization problem of the form:

argmin
B

{||A− Â||22 + λ||Â||1}

where Â = (x̂(t), ŷ(t), ẑ(t)) are the estimation to be determined from the
observe A signals. The regularization term λ||Â||1 is chosen to promote sparsity
of the solution Â. The Soft Thresholding allows depending on the regularization
parameter λ selected to ensure that the noise variance is reduced to a specified
fraction of its original value.

Feature Extraction: The algorithms for fall detection use the acceleration and/or
orientation data to detect sequential stages to determine a fall, if the sequence
is met the fall is confirmed. The sequence of stages may include: start of fallen,
velocity, change of orientation and posture monitoring. To such detection the
accelerometer signals are characterized through the Signal Magnitude Area
(SMA) [13]:

SMA =
∑
i

|xi| +
∑
i

|yi| +
∑
i

|zi|,

where xi, yi, zi are the ith sample of the x,y,z axis respectively. This feature
is independent of the orientation of the device and corresponds to the amount
of acceleration that an user has exerted on the accelerometer.

Fall Detection Algorithm: The fall detection algorithm operates in a series of
steps represented in the Algorithm 1. First over an observation window in the
accelerometer data three preprocessing methods (a median filter, a high pass
FIR filter and finally the Soft Thresholding) are applied in order to make more
representative the fall. After the Signal Magnitude Area (SMA) is calculated to
get the accumulated acceleration and to evaluate if the accumulated acceleration
exceeds an acceleration threshold empirically determined, meaning the user is
engaged in a high energy activity like running, jumping or a possible fallen. So,
if this upper acceleration threshold is exceeded the window is moved a determi-
nate time (sliding windows) and over it is applied again the three preprocessing
methods and is calculated the Signal Magnitude Area (SMA), finally if this SMA
value no exceeds a lower acceleration threshold empirically determined, it means
the user is in a low energy activity and the fall is detected.

3 Experiments

Usually for falls detection through portable devices are used the methodology
presented in Fig. 1, our work emphasizes on the stage of data preprocessing and
fall detection.



578 F.M. Grisales-Franco et al.

Data
Acquisition

Data Pre-
procesing

Fall
Detection

Data
Transfer

Fig. 1. Framework for fall detection.

The data set used called The MobilFall Dataset (second version) [11] was
recorded on the Biomedical Informatics & eHealth Laboratory, at the Depart-
ment of Informatics Engineering of the Technological Educational Institute of
Crete. Data from the accelerometer and gyroscope sensor of a smartphone were
recorded with sampling period 7.6ms at 87Hz mean sampling frequency for the
accelerometer and 0.3ms at 200Hz mean sampling rate for the gyroscope. The
MobilFall Dataset contains data from 24 volunteers: seventeen males (age: 22−47
years, height: 1.69− 1.89m, weight: 64− 103kg) and seven females (age: 22− 36
years, height: 1.60−1.72m, weight: 50−90kg). Nine participants performed falls
and ADLs, while fifteen performed only the falls, discriminated as shown in the
table Table 1.

To build the fall detection algorithm we use the following parameters based
on the basic trade-off between detecting all falls and avoiding false positives:
The windows length is l = 2 seconds, the first acceleration threshold is 11m/s2,
the second acceleration threshold is a value close to zero, and the wait time is
equivalent to n = 1 second. In the preprocessing step we use the follow set of
values to ensure good filtering as they do in [1]: for the median filter we determine

Algorithm 1. Fall Detection

Input acceleration: A ∈ R
3×t, Windows length: l and Thresholds: ζu, ζl ∈ R

+.
Initialize the windows A(i,j) where l = |i − j|.
while Fall is not detected do

Apply the Median Filter, the High Pass Filter, and the Soft Thresholding.
Calculate ASMA = SMA{A(i,j)}
if ASMA > ζu then

wait n samples and set A(i+n,j+n)

Apply the Median Filter, the High Pass Filter, and the Soft Thresholding.
Calculate ASMA = SMA{A(i+n,j+n)}
if ASMA < ζl then

Fall is detected
else

Fall is not detected
end if

else
Fall is not detected

end if
Increment the windows.

end while
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Table 1. The MobiFall Dataset.

Type Trials Time Description

FOL Forward-lying 3 10s Fall Forward from standing, use of hands to dampen fall
FKL Front-knees-lying 3 10s Fall forward from standing, first impact on knees
SDL Back-sitting-chair 3 10s Fall backward while trying to sit on a chair
BSC Sideward-lying 3 10s Fall sidewards from standing, bending legs

STD Standing 1 5m Standing with subtle movements
WAL Walking 1 5m Normal walking
JOG Jogging 3 30s Jogging
JUM Jumping 3 30s Continuous jumping
STU Stairs up 6 10s Stairs up (10 stairs)
STN Stairs down 6 10s Stairs down (10 stairs)
SCH Sit chair 6 6s Sitting on a chair
CSI Car-step in 6 6s Step in a car
CSO Car-step out 6 6s Step out a car

Table 1 Shows the Falls (FOL, FKL, SDL, BSC) and the ADLs (STD, WAL, JOG,
JUM, STU, STN, SCH, CSI, CSO) recorded in the MobiFall Dataset.

a filter of order 13, in the high pass FIR filter we use a order of 35, with stop
frequency of 0.5Hz. And to select the regularization parameter λ in the Soft
Thresholding we set a series of values and select the value that gives better
results in the methodology respect to the Hit Rate, Sensitivity and Specificity,
as shows the Fig. 2, that value corresponds to λ = 0.1.
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Fig. 2. Performance against λ, respect to Hit Rate, Sensitivity, Specificity.

The Fig. 3 shows an example of how the preprocessing step with the three
filter methods affects the accelerometer signals to generate a representation more
suitable of a fall taking into account the residual events. The Fig. 3(a) shows a
fall of type FOL. The Fig. 3(b) shows the fall signal after of apply the median
filter. The Fig. 3(c) shows the fall signal filtered Fig. 3(b) after of apply the high
pass FIR filter. And the Fig. 3(d) shows the fall signal filtered Fig. 3(c) after of
apply the Soft Thresholding.
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(a) Fall example.
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(b) Fall after the Median filter.

0 100 200 300 400 500 600 700 800 900

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time

Ac
ce

ler
at

ion

(c) Fall after the HP-FIR filter.

0 100 200 300 400 500 600 700 800 900

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time

Ac
ce

ler
at

ion

(d) Fall after the Soft Thresholding.

Fig. 3. Example of the preprocessing step in a fall signal. x axis, y axis, z axis.

In order to compare the proposed algorithm we implement two algorithms
detailed in the literature:

Panagiotis Algorithm: This algorithm is reported by [10], and detects the fall
when the magnitude of the acceleration overcomes two thresholds. If the mag-
nitude of the acceleration exceeds the first threshold referred as upper, then the
algorithm waits a predetermined time interval and evaluates if the magnitude
of acceleration exceeds the second threshold referred as lower, thus, if the two
thresholds are overcome the fall is detected.

Suleman Algorithm: This algorithm is reported by [8], and detects the fall evalu-
ating two thresholds. If the norm L1 of the acceleration calculated every second
exceeds a first threshold of acceleration, the algorithm waits a predetermined
time and checks the orientation through the tilt angle, and if a second threshold
of angle is overcome by the tilt angle, this means that the user is not standing
and has fallen.

To evaluate properly the fall detection algorithm the results are presented in
terms of sensitivity, specificity and hit rate as shown in the table 2, the results are
represented like the capacity of detect or no a fall, so, the sensitivity represents
the capacity to detect falls, the specificity represents the capacity of only detect
falls and ignore non fall events, and the hit rate represents the proportion of true
results among the population.
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Table 2. Results of the four fall detection algorithms.

Panagiotis Alg [10] Suleman Alg [8] Proposed Alg

Activity Type Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Fall

FOL 0, 9722 0, 9306 0, 9583
FKL 0, 9306 0, 9861 0, 9722
SDL 0, 9444 0, 9722 0, 9722
BSC 0, 9722 0, 9167 0, 9583

ADL

STD 1, 0000 1, 0000 1, 0000
WAL 0, 1111 1, 0000 1, 0000
JOG 0, 7037 0, 7037 1, 0000
JUM 1, 0000 0, 3333 1, 0000
STU 0, 6481 1, 0000 1, 0000
STN 0, 5556 1, 0000 0, 9074
SCH 1, 0000 1, 0000 0, 9444
CSI 1, 0000 0, 6296 0, 8889
CSO 1, 0000 1, 0000 0, 9444

Total 0, 9549 0, 8275 0, 9514 0, 8655 0.9653 0,9503

Hit Rate 0, 8857 0, 9048 0,9571

4 Discussion and Conclusion Remarks

In the present work, we implement a fall detection algorithm based on thresholds
to detect sequential stages in inertial sensor data, the MobilFall Dataset (second
version) was used in order to evaluate the fall detection algorithm comparing
it against two algorithms detailed in the literature. The result presents in the
table 2 show the strengths and weaknesses of each one of the algorithms with
respect to the different types of fall and ADLs.

As seen in the Fig. 3 for a fall detection algorithm in the step of preprocessing
an adequate filtering techniques allows detect patterns corresponding to a fall
and give acceleration signals more suitable to the classification step to decide
between a fall and an ADL. Therefore the median filter Fig. 3(b) reduces the
noise in the accelerometer signal and provide to the High Pass FIR filter a cleaner
signal. The High Pass FIR filter Fig. 3(c) is used to remove the offset from
the signals and obtain a dynamic acceleration. The Soft Thresholding Fig. 3(d)
promotes sparsity to the acceleration signal representing the low energy activities
as zero, necessary in the algorithm to decide whether there has been a fall, since
in the moment of detect the fall is important to consider the residual events,
like they are: the user direction, the energy activity, and the normal acceleration
values.

In the table 2 we see that the Panagiotis algorithm [10] presents better capac-
ity of detect falls that of ignore non fall events, higher sensitivity than specificity.
It works better for falls of type FOL, BSC than for FKL and SDL; on the other
hand the algorithm works well for ADLs as STD, SCH, CSI, CSO. Commonly
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these activities do not exceed the upper threshold and if exceed it, they do
not exceed the lower threshold. Unlike the algorithm does not perform well with
WAL, JOG, STU and STN that are higher energy activities that they can exceed
the upper and lower thresholds. We see also that the Suleman algorithm [8] has
less sensitivity and higher specificity with respect to Panagiotis algorithm, this
algorithm present more sensitivity for falls of type FKL and SDL than for FOL
and BSC falls; at the ADLs the algorithm presents more specificity for STD,
WAL, STU, STN, SCH, CSO than for JOG, JUM, CSI; as the algorithm works
with the subject direction these three ADLs present more intensity that affects
the device direction.

The results in the table 2 shows with respect to the Hit Rate, the total
of sensitivity and specificity that the proposed algorithm performs better than
the Panagiotis and Suleman algorithms that are detailed in the literature. For
falls we see that our algorithm in terms of sensitivity compared to the Suleman
algorithm improves in FOL, BSC and keeps in SDL and in terms of specificity it
is equal in STD, WAL, and STU because these activities do not exceed the first
threshold in the two algorithms. For ADLs the proposed algorithm has more
specificity in JOG, JUM, and CSI because it does not take into account the
direction (in these ADLs the Suleman algorithm presents the lowest values of
specificity), our algorithm has less specificity in STN, SCH, and CSO; probably
It detects them as a fall, because these activities present a moment of high energy
where the first threshold could be overcome, followed by a moment of low energy
where the second threshold could be not overcome.

As future work, it is important to test the proposed algorithm in others data
sets, and find automatically the optimal regularization parameter λ in the Soft
Thresholding.
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Abstract. Digital filter design with short transient state is a problem
encountered in many fields of signal processing. In this paper a novel low-
pass filter design technique with time-varying parameters is introduced in
order to minimize the rise-time parameter. Through the use of calculus of
variations a methodology is developed to write down the optimal closed-
form expression for varying the parameters. In this concern, two cases
are addressed. The ideal case in which infinite bandwidth is required
and a solution of finite bandwidth. The latest is obtained by means of a
proper restriction in the frequency domain. The proposed filter achieves
the shortest rise-time and allows better preservation of the edge shape
in comparison with other reported filtering methods. The performance
of the proposed system is illustrated with the aid of simulations.

Keywords: Filter design · Rise-time · Time-varying parameters · Cal-
culus of variations

1 Introduction

Time constraint filter design is widely used for receiving signal involving rectan-
gular pulses. Several configurations are based on the displacement of poles over
particular curves in the S plane with regard to the Butterworth design, in order
to obtain a reduction of rise-time. For instance, some designs use the parabola
[12], the ellipse [16] or the catenary curves [7].

Other solutions modify the equations formula of a given design by a param-
eter. In this respect, a modification of the Bessel filter is considered in [8], and
the rise-time is decremented through the increase of a given parameter. However,
the cutoff frequency is also shifted, which represent a trade-off for this type of
solution. Moreover, a method for the synthesis of the wide-band amplifier trans-
fer function can be developed by using the direct performance parameter in the
time domain, known as delay to rise-time ratio [5].

On the other hand, the eigenfilter method represents an approach in a least
square sense [11]. This design is implemented with time and frequency con-
straints in order to minimize the rise-time and overshoot of the step response
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 584–592, 2015.
DOI: 10.1007/978-3-319-25751-8 70



Digital Filter Design with Time Constraints 585

simultaneously. In a similar way, the linear programming has been applied to
filter design. In this methodology the ease of implementation is remarkable and
the convergence to a unique-solution is generally guaranteed [9].

Furthermore, by means of several analytic definitions of rise-time parameter,
closed-form relations can be obtained for the filter coefficients. These coefficients
are established looking for the minimum value of the rise-time. A first approach
for defining the rise-time analytically, given in [4], is based on the standard devi-
ation of the impulse response. A second approach, described in [3], is obtained
under the constraint of a given noise bandwidth. Finally, after considering restric-
tions in the bandwidth, optimal expressions of the filter coefficients are suggested
in [15].

However, when a constant cutoff frequency is specified in advance, the inde-
terminacy principle establishes a lower bound for the rise-time. In order to over-
come this issue, the variation of parameters in time is considered in [10,14].
This solution has been implemented in many fields of signal processing as: seis-
mic data processing, navigation systems, speech analysis and measurement of
evoked potentials of the human brain [10].

The contribution of this paper is focused on obtaining the optimal close-
form expression for the characteristic frequency function, in order to minimize
the rise-time. This solution is motivated by the work presented in [10]. A practi-
cal approximation and the digital implementation of the proposed time-varying
system are also discussed. The results show to possess many advantages over the
above-mentioned time-varying systems.

2 Filter Conception

2.1 Problem Formulation

Analog second order systems are described by the following transfer function:

H(s) =
k

1
ω2
0

s2 +
2β

ω0
s + 1

(1)

where k, β and ω0 represent the gain, the damping factor and the charac-
teristic frequency, respectively. In addition, β and ω0 are related to the step
response. The larger values of β and ω0 are, the smaller the output oscillations
and the rise-time become.

Besides, the step response of the second-order filter [10] is given by:

g(t) = 1 −
[

cos
(
ω0t

√
1 − β2

)
+

1√
1 − β2

sin
(
ω0t

√
1 − β2

)]
· e−βω0t (2)

Usually, the rise-time is defined as the time interval TR between g(t) = 0.1
and g(t) = 0.9. Moreover, it is known as the time required for the step response
to increase from 10 to 90 percent of its final value [1]. However, to establish an
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analytic expression of TR from this definition is not possible. An alternative rise-
time definition [4] is shown in Fig. 1 taking into account the impulse response
h(t). This definition is applied in particular fields as indicated in [2]. The quantity
is directly related to the standard deviation of the impulse response h(t) and is
equaled to:

TR =

√
2π

[∫ ∞

0

t2h(t)dt − T 2
D

]
(3)

where TD is the time-delay and can be defined as the centroid of area of the
curve h(t) [4], i.e.:

TD =
∫ ∞

0

t · h(t)dt (4)

An expression for varying the ω0 parameter in time for the second order
system given in (2) is proposed in [10]. This dynamic system allows a reduction of
rise-time. However, the optimal relations are not derived, which in turn demands
further analysis. The next Section addresses a method for solving the above
problem based on the definition given in (3) and the use of calculus of variations.
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Fig. 1. Impulse response of a generic system.

2.2 Ideal Case with Infinite Bandwidth

The aforementioned close-form expression of rise-time in (3) can be considered
as the functional of a variational problem [17] of the form:

I(ω0(t)) =
∫ ∞

0

F (ω0(t), ω′
0(t), t)dt (5)
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where
F (ω0(t), ω′

0(t), t) = t2 · h(ω0(t), ω′
0(t), t) (6)

and TD = 0 for minimizing the time-delay parameter simultaneously. The
impulse response of second-order systems with time-varying characteristic fre-
quency is h(ω0(t), ω′

0(t), t). This term is represented by the inverse Laplace trans-
form of the equation (1) or the derivative of the step response (2) as follows:

h(t) =
R

2

[
(P2t + jP1t)eP2+jP1 + (P2t − jP1t) eP2−jP1

]
(7)

where

R =

√
2 − β2

1 − β2
, P1 = ω0(t)

√
1 − β2t + tan−1

(
−1√
1 − β2

)
(8)

P2 = −ω0(t)βt, P1t =
√

1 − β2(ω0(t) + ω′
0(t)t), P2t = −β(ω0(t) + ω′

0(t)t)

The integrand given in (5) is related to the definition of TR in (3). The number
I(ω0(t)), defined in (5), gives a measure of rise-time, with lower I(ω0(t)) the rise-
time assumes a lesser value. The main idea is to find an optimal expression of
ω0(t), denoted by ω0(t), in order to obtain the optimal value of the TR parameter.
This solution must satisfy the Euler-Lagrange equation written as [17]:

∂F

∂ω0

(
ω0(t),

dω0

dt
(t), t

)
− d

dt

(
∂F

∂ω′
0

(
ω0(t),

dω0

dt
(t), t

))
= 0 (9)

By writing out the derivatives, the following condition arises:

− 2t2ReP2β cos(P1) = 0 (10)

in which the solution is given by P1 = (2k + 1)π
2 . Finally, through the definition

of P1 in (8) the final expression of ω0(t) is described as:

ω0(t) = −
(2k + 1)π

2 + tan−1
(

1√
1−β2

)

√
1 − β2t

t �= 0 (11)

The time-varying solution given in (11), for the characteristic frequency, goes
to infinity when t approach to zero, that is, the system can not be implemented by
any practical system in hardware. However, a solution can be addressed adding
an expression of energy restriction for the ω0(t) curve. This is described in the
next Section.
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2.3 Proposed Method with Finite Bandwidth

The class of problem in which the required functional is expressed with inte-
gral restrictions is called isoperimetric [17]. The isoperimetric problem allows to
establish conditions for obtaining bounded solutions. In this case, the constraint
introduced is described as:

Eω0 =
∫ ∞

0

ω2
0(t)dt = constant (12)

The condition (12) ensures a bounded solution for the variational problem
in (5). The new expression for the functional can be rewritten as follows:

F (ω0(t), ω′
0(t), t) = t2 · h(ω0(t), ω′

0(t), t) + λω2
0(t) (13)

where λ is the undetermined Lagrangian multiplier whose values must be
determined. Thus, according to the Euler-Lagrange equation given in (9) with
the functional described in (13), the following condition must be satisfied:

−t2Rβ cos
(

ω0(t)
√

1 − β2t + tan−1

(
1√

1 − β2

))
e−ω0(t)βt + λω0(t) = 0 (14)

From (14) the obtaining of a closed-form expression for ω0(t) is not affordable
and the solution is investigated by numerical methods. For each value of t, ω0(t)
represents the root of the function defined in the left member of (14). Fig. 2 shows
a plot of the ω0(t) encountered by a combination of bisection, secant, and inverse
quadratic interpolation methods [6] when t is varied from 0 to 65.7596 · 10−5 in
steps of 2.2676 · 10−5 seconds having a precision of 1.1102 · 10−16 Hertz.

A family of curves is obtained for each different value of λ specified in Fig. 2.
The value of λ controls the peak of the curve, higher peaks demand higher
bandwidth and produce lower rise-time. The curves on Fig. 2 illustrates the
bounded behavior specified by the isoperimetric condition.

3 Digital Implementation

The digital implementation of the proposed filter with varying parameters is
carried out using the bilinear transformation s = 2fs( 1−z−1

1+z−1 ) in order to avoid
the aliasing effect [13]. Consequently, the analog filter shown in (1) is transformed
into a digital filter as follow:

H(z) =
b0 + b1z

−1 + b2z
−2

a0 + a1z−1 + a2z−2
(15)

where:

b0 = ω0
2, b1 = 2ω0

2, b2 = ω0
2 (16)

a0 = 4f2
s + 4fsβω0 + ω0

2, a1 = 2ω0
2 − 8f2

s , a2 = 4f2
s − 4fsβω0 + ω0

2
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Fig. 2. Characteristic Frequency for particular values of λ.

From the relation given in (15) the following difference equation is obtained
after applying the inverse z -Transform:

y[n] =
b0
a0

x[n] +
b1
a0

x[n − 1] +
b2
a0

x[n − 2] − a1

a0
y[n − 1] − a2

a0
y[n − 2] (17)

Moreover, the coefficients of the difference equation given in (17) are updated
based on the time-varying characteristic frequency described by ω0(t). In regard
to hardware complexity, the scheme for implementing the proposed system is
conformed by two blocks, one for the synchronization procedure and one for the
digital system H(z). In this respect, a similar behavior compared to the system
presented for Kaszynski-Piskorowski [10] is obtained.

4 Results

In order to illustrate the performance of the given design graphical results are
obtained in a noisy environment. Figure 3 depicts the rectangular impulse signal
at the input of the proposed filter. In this case, the signal-to-noise ratio (SNR)
parameter is equaled to 5 dB. A filter with time-varying characteristic frequency
is implemented based on the curve obtained in Fig. 2 and sampling frequency
fs = 44100 Hz. In this case, a value of λ = 10−14.7 is chosen in order to reduce the
oscillations at the output. However, an optimum value of λ must be investigated.

For comparing the output filtered signals, three different systems are ana-
lyzed: traditional filter of constant parameter given in (2), time-varying param-
eters filter presented for Kaszynski and Piskorowski [10,14], and the proposed
method based on calculus of variations.

The first simulation is made by equaling the peaks of ω0(t) of both methods,
the proposed solution and the Kaszynski-Piskorowski method. Besides, a value of
d = 10 is assumed in [10] in order to evaluate the methods in similar conditions.
The filter of constant parameter is implemented having β = 0.866 and ω0 = 104

rad/s.
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Fig. 3. Rectangular impulse of SNR equaled to 5 dB.
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Fig. 4. Output filtered signals by three different systems.

Fig. 4 shows similar behavior of the systems analyzed taking into account
the rise-time. The proposed solution, the Kaszynski-Piskorowski method and
the constant parameter filter exhibit values of TR equals to 1.7857 · 10−5,
1.8714 · 10−5 and 30.0904 · 10−5 seconds, respectively. The proposed solution
improves the TR parameter in comparison to the Kaszynski-Piskorowski method.

The rise-time parameter is incremented to 4.1211 · 10−5 seconds choosing
a value of d = 5. This value is selected in order to minimize the oscillations
for the Kaszynski-Piskorowski method [10,14]. According to this, the proposed
filter, developed in Section 2, allows shorter transient state and smaller overshoot
than any of the other time-varying parameter techniques reported.

On the other hand, the second simulation is performed by using the input
signal with step changes and SNR = 10 dB, as shown in Fig. 5. This allows to
evaluate the case in which rectangular impulses with certain levels are introduced
in the proposed system, Fig. 6 depicts the results.
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0 1 2 3 4 5 6 7 8 9

x 10
−3

0

0.5

1

1.5

2

2.5

Time(s)

y(
t)

Proposed Time Varying Filter

Time Varying Filter (d=10)

Fig. 6. Filtered signal with step changes.

From Fig. 6 it can be observed that the proposed filter is superior to the
Kaszynski-Piskorowski method in the preservation of the pulse shape. In this
regard, the rise-time parameter is similar in both of these methods, but the
oscillations are smaller in the proposed filter.

5 Conclusion

In this paper a new filter with time-varying parameter is given, which describes
an optimal solution for the characteristic frequency by means of calculus of vari-
ations. In order to minimize the rise-time parameter, an ideal method and a
practical approximation are presented. The digital system is implemented using
a bilinear transformation and the result shows a reduction in the rise-time param-
eter with regard to others reported methods. This methodology allows overshoot
and undershoot due to the variation in the spectral properties, however the oscil-
lations exhibit better behavior in comparison with the solution given in [10]. In
particular, the trade-off between rise-time and overshoot is an open issue in
the frame of calculus of variations and time-varying parameters. Finally, for
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each value of λ in Fig. 2 the time-bandwidth product of the system is already
specified, the behavior of which must be analyzed for different values of λ in
comparison to the theoretical reported by the indeterminacy principle.
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Abstract. Multi-output Gaussian processes (MOGP) are probability
distributions over vector-valued functions, and have been previously
used for multi-output regression and for multi-class classification. A less
explored facet of the multi-output Gaussian process is that it can be
used as a generative model for vector-valued random fields in the con-
text of pattern recognition. As a generative model, the multi-output
GP is able to handle vector-valued functions with continuous inputs, as
opposed, for example, to hidden Markov models. It also offers the ability
to model multivariate random functions with high dimensional inputs. In
this paper, we use a discriminative training criteria known as Minimum
Classification Error to fit the parameters of a multi-output Gaussian pro-
cess. We compare the performance of generative training and discrimina-
tive training of MOGP in subject recognition, activity recognition, and
face recognition. We also compare the proposed methodology against
hidden Markov models trained in a generative and in a discriminative
way.

1 Introduction

A growing interest within the Gaussian processes community in Machine learning
has been the formulation of suitable covariance functions for describing multi-
ple output processes as a joint Gaussian process. Examples include the semi-
parametric latent factor model [17], the multi-task Gaussian process [5], or the
convolved multi-output Gaussian process [1,6]. Each of these methods uses as a
model for the covariance function either a version of the linear model of core-
gionalization (LMC) [9] or a version of process convolutions (PC) [11]. Different
alternatives for building covariance functions for multiple-output processes have
been reviewed by [3].

Multiple output GPs have been used for supervised learning problems, specif-
ically, for multi-output regression [5], and multi-class classification [7,16]. The
interest has been mainly on exploiting the correlations between outputs to
improve the prediction performance, when compared to modeling each output
independently. In particular, a Gaussian process is used as a prior over vector-
valued functions f(x) mapping from x ∈ R

p to f(x) ∈ R
D. Components of f(x)

may be continuous or discrete.
c© Springer International Publishing Switzerland 2015
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In this paper, we advocate the use of multi-output GPs as generative mod-
els for vector-valued random fields, this is, we use multi-output GPs to directly
modeling p(f(x)). Afterwards, we use this probabilistic model to tackle a classi-
fication problem. An important application area where this setup is of interest
is in multivariate time series classification. Here the vector-valued function f is
evaluated at discrete values of x, and it is typically modeled using an unsuper-
vised learning method like a hidden Markov model (HMM) or a linear dynamical
system (LDS) [4]. Notice that by using a multi-output GP to model f(x), we
allow the vector-valued function f(x) to be continuous on the input space. Fur-
thermore, we are able to model multivariate random functions for which p > 1.
It is worth mentioning that the model we propose here, is different from classical
GP classification as explained for example in [15]. In standard GP classification,
the feature space is not assumed to follow a particular structure, whereas in
our model, the assumption is that the feature space may be structured, with
potentially correlated and spatially varying features.

As a generative model, the multi-output Gaussian process can be used for
classification: we fit a multi-output GP for every class independently, and to
classify a new vector-valued random field, we compute its likelihood for each
class and make a decision using Bayes rule. This generative approach works
well when the real multivariate signal’s distribution is known, but this is rarely
the case. Notice that the optimization goal in the generative model is not a
function that measures classification performance, but a likelihood function that
is optimized for each class separately.

An alternative is to use discriminative training [12] for estimating the param-
eters of the multi-output GP. A discriminative approach optimizes a function
classification performance directly. Thus, the results of the discriminative train-
ing procedure are usually better for classification problems. There are different
criteria to perform discriminative training, including maximum mutual informa-
tion (MMI) [10], and minimum classification error (MCE) [13].

In this paper we present a discriminative approach to estimate the hyper-
parameters of a multi-output Gaussian Process (MOGP) based on minimum
classification error (MCE). In section 2 we review how to fit the multi-output
GP model using the generative approach, and then we introduce our method to
train the same MOGP model with a discriminative approach based on MCE. In
section 3 we show experimental results, with both the generative and discrimi-
native approaches. Finally, we present conclusions on section 4.

2 Generative and Discriminative Training of MOGPs

In our classification scenario, we have M classes. We want to come up with
a classifier that allows us to map the matrix F(X) to one of the M classes.
Columns of matrix X are input vectors xn ∈ R

p, and columns of matrix F are
feature vectors f(xn) ∈ R

D, for some n in an index set. Rows for F correspond to
different entries of f(xn) evaluated for all n. For example, in a multi-variate time
series classification problem, xn is a time point tn, and f(xn) is the multi-variate
time series at xn = tn. Rows of the matrix F are the different time series.
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The main idea that we introduce in this paper is that we model the class-
conditional density p(F|X, Cm,θm) using a multi-output Gaussian process, where
Cm is the class m, and θm are hyperparameters of the multi-output GP for
class m. By doing so, we allow correlations across the columns and rows of F.
We then estimate θm for all m in a generative classification scheme, and in a
discriminative classification scheme using minimum classification error. Notice
that a HMM would model p(F|Cm,θm), since vectors fn would be already defined
for discrete values of x. Also notice that in standard GP classification, we would
model p(Cm|F), without any particular correlation assumptions over F.

Available data for each class are matrices Fl
m, where m = 1, . . . , M , and

l = 1, . . . , Lm. Index l runs over the instances for a class, and each class has
Lm instances. In turn, each matrix Fl

m ∈ R
D×N l

m with columns f l
m(xn) ∈ R

D,
xn ∈ R

p, and n = 1, . . . , N l
m. To reduce clutter in the notation, we assume

that Lm = L for all m, and N l
m = N for all m, and l. Entries in f l

m(xn) are
given by f l,m

d (xn) for d = 1, . . . , D. We define the vector f̂ l,m
d with elements

given by {f l,m
d (xn)}N

n=1. Notice that the rows of Fl
m are given by (f̂ l,m

d )�. Also,
vector f l

m = [(f̂ l,m
1 )� . . . (f̂ l,m

D )�]�. We use Fm to collectively refer to all matrices
{Fl

m}L
l=1, or all vectors {f l

m}L
l=1. We use Xl

m to refer to the set of input vectors
{xn}N

n=1 for class m, and instance l. Xm refers to all the matrices {Xl
m}L

l=1.
Likewise, Θ refers to the set {θm}M

m=1.

2.1 Generative Training

In the generative model, we train separately a multi-output GP for each class. In
our case, training consists of estimating the kernel hyperparameters of the multi-
output GP, θm. Let us assume that the training set consists of several multi-
output processes grouped in Fm and drawn independently, from the Gaussian
process generative model given by p(f l

m|Xl
m, Cm,θm) = N (f l

m|0,Km), where
Km is the kernel matrix for class m. In order to train the generative model,
we maximize the log marginal likelihood function with respect to the parameter
vector θm, assuming that the different instances of the multi-output process are
generated independently given the kernel hyperparameters. We use a gradient-
descent procedure to perform the optimization.

To predict the class label for a new matrix F∗ or equivalently, a new vector f∗,
and assuming equal prior probabilities for each class, we compute the marginal
likelihood p(F∗|X∗, Cm,θm) for all m. We predict as the correct class that one
for which the marginal likelihood is bigger.

2.2 Discriminative Training

In discriminative training, we search for the hyperparameters that minimize
some classification error measure for all classes simultaneously. In this paper, we
chose to minimize the minimum classification error criterion as presented in [13].
A soft version of the {0,1} loss function for classification can be written as
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�m(f) =
1

1 + exp(−γ1dm(f) + γ2)
, (1)

where γ1 > 0 and γ2 are user given parameters, and dm(f) is the class classifi-
cation error measure, given by

dm(f) = −gm(f) + log
[

1
M − 1

∑
∀k

k �=m

egk(f)η

] 1
η

, (2)

where η > 0, and gm(f) = a log p(f |X, Cm,θm) + b = a log N (f |0,Km) + b.
Parameters a > 0, and b are again defined by the user. Expression gm(f) is an
scaled and translated version of the log marginal likelihood for the multi-output
GP of class m. We scale the log marginal likelihood to keep the value of gm(f)
in a small numerical range such that computing exp(gk(f)η) does not overflow
the capacity of a double floating point number of a computer. Parameters γ1
and γ2 in equation (1) have the same role as a and b in gm(f), but the numerical
problems are less severe here and setting γ1 = 1 and γ2 = 0 usually works well.

Expression in equation (2) converges to −gm(f)+max∀k:k �=m gk(f) as η tends
to infinity. For finite values of η, dm(f) is a differentiable function. The value
of dm(f) is negative if gm(f) is greater than the “maximum” of gk(f), for k �=
m. We expect this to be the case, if f truly belongs to class Cm. Therefore,
expression dm(f) plays the role of a discriminant function between gm(f) and
the “maximum” of gk(f), with k �= m.1 The classification error measure is a
continuous function of Θ, and attempts to model a decision rule. Notice that if
dm(f) < 0 then �m(f) goes to zero, and if dm(f) > 0 then �m(f) goes to one,
and that is the reason as why expression (1) can be seen as a soft version of
a {0,1} loss function. The loss function takes into account the class-conditional
densities p(f |X, Cm,θm), for all classes, and thus, optimizing �m(f) implies the
optimization over the set Θ.

Given some dataset {Xm,Fm}M
m=1, the purpose is then to find the hyperpa-

rameters Θ that minimize the cost function that counts the number of classifi-
cation errors in the dataset,

L({Xm}M
m=1, {Fm}M

m=1,Θ) =
M∑

m=1

L∑
l=1

�m(f l
m). (3)

We can compute the derivatives of equation (3) with respect to the hyper-
parameters Θ, and then use a gradient optimization method to find the optimal
hyperparameters for the minimum classification error criterion.

Computational Complexity. As part of the inference process, we need to
invert each matrix Km, with dimensions DN × DN . The computational com-
plexity of each optimization step is then O(LMD3N3), this could be very slow
1 We use quotes for the word maximum, since the true maximum is only achieved

when η tends to infinity.
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for many applications. In order to reduce computational complexity, in this paper
we resort to low rank approximations for the covariance matrix appearing on the
likelihood model. In particular, we use the partially independent training con-
ditional (PITC) approximation, and the fully independent training conditional
(FITC) approximation, both approximations for multi-output GPs [2].

3 Experimental Results

In this section we show results for different experiments that compare the fol-
lowing methods: hidden Markov models trained in a generative way using the
Baum-Welch algorithm [14], hidden Markov models trained in a discriminative
way using minimum classification error [13], multi-output GPs trained in a gener-
ative way using maximum likelihood (this paper), and multi-output GPs trained
in a discriminative way using minimum classification error (this paper). We use
the CMU MOCAP database to identify subjects from their walking styles and
to classify different activities like walking and running. For this experiment, we
also try different frame rates for the training set and validation set to show how
the multi-output GP method adapts to this case. We also experiment with a
problem of face recognition, to show that our method is not constrained to time
series (to model f(t)), but can be used in a general Markov field scenario (to
model f(x), where x has more than one dimension).

We assume that the HMMs have a Gaussian distribution per state. The
number of hidden states of a HMM is shown in each of the experiments in
parenthesis, for instance, HMM(q) means a HMM with q hidden states

3.1 Subject and Activity Identification in MOCAP

For this experiment we used the CMU MOCAP database.2 To perform subject
identification by walking style, we took the first 8 repetitions of the walking
sequences for subject 7, subject 8, and subject 35. Then, for each subject, we
took four instances for training, and other four for validation. For the activity
identification experiment, we classified between running and walking. We used
instances from ten different subjects (subjects 2,7,8,9,16,35,39,127,141,143) with
a total of 37 repetitions for running, and 42 repetitions for walking.

We also studied the scenario where the frame rate for the motions used in
training could be different from the frame rate for the motions used in testing.
This configuration simulates the scenario where cameras with different recording
rates are used to keep track of human activities. Notice that HMMs are not
supposed to adapt well to this scenario, since the Markov assumption is that the
current state depends only on the previous state. However, the Gaussian process
captures the dependencies of any order, and encodes those dependencies in the
kernel function, which is a continuous function of the input variables. Thus, we
can evaluate the GP for any set of input points, at the testing stage, without
the need to train the whole model again.
2 The CMU Graphics Lab Motion Capture Database was created with funding from

NSF EIA-0196217 and is available at http://mocap.cs.cmu.edu.

http://mocap. cs.cmu.edu.
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Table 1. Classification accuracy rates (mean and standard deviation) of subject and
activity identification on the CMU-MOCAP database. The table on the left shows the
accuracy on an experiment where the camera frame rates of the training and validation
cameras is the same. The table on the right shows the scenario when the validation
camera frame rate is different from the training camera.

Method Generative Discriminative

FITC 60.68 ± 3.98 95.71 ± 2.98
PITC 76.40 ± 12.38 93.56 ± 5.29

HMM (3) 96.70 ± 2.77 97.95 ± 2.23
HMM (5) 94.69 ± 4.36 96.32 ± 0.82
HMM (7) 92.24 ± 4.49 99.77 ± 0.99

(a) Activity identification

Method Accuracy

FITC Gen 93.28 ± 3.76
PITC Gen 93.28 ± 3.76
FITC MCE 94.96 ± 4.60
PITC MCE 94.96 ± 4.60

HMM Gen (7) 33.33 ± 0.00
HMM MCE (7) 83.33 ± 16.6

(b) Subject identification

Table 1 shows the results of these experiments. The table on the left shows the
results for activity identification, for the case where the training and validation
cameras have the same frame rate. Notice that in this case the HMMs have a
good performance both in the generative and the discriminative case. On the
other hand, the results for the Gaussian processes are much better with our
proposed discriminative method than with the generative method. The table on
the right shows the results for the subject identification experiment, and also the
scenario where the camera used in training and in validation have different frame
rates. Notice that since a MOGP models f(t) for a continuous time variable t, it
is easy to adapt our model to this case by simply scaling the time accordingly
to the ratio of the frame rates of the training and validation camera without the
need to train the model again. The HMMs do not adapt well to this scenario as
we said before. The results show that the performance of the multi-output GP
is clearly superior to the one exhibited by the HMM in this case. Although the
results for the HMM in Table 1 (right) were obtained fixing the number of states
to seven, we also performed experiments for three and five states, obtaining
similar results. This experiment is an example where our model is useful to solve
a problem that a HMM does not solve satisfactorily.

3.2 Face Recognition

The goal of this experiment is to show an example where the vector-valued
function is dependent on input variables with dimensionality greater than one,
functions of multi-dimensional inputs like space (f(x0), f(x1), ..., f(xn)). We do
not present results with HMMs for this experiment since they are not meant to
model these multidimensional-input random fields. In this problem we work with
face recognition from pictures of the Georgia Tech database.3 This database,
contains images of 50 subjects stored in JPEG format with 640 × 480 pixel
resolution. For each individual 15 color images were taken, considering variations

3 Georgia Tech Face Database, http://www.anefian.com/research/face reco.htm

http://www.anefian.com/research/face_reco.htm
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in illumination, facial expression, face orientations and appearance (presence of
faces using glasses). For each subject we took 8 images for training and 7 images
for validation.

Here we did two experiments. The first experiment was carried out taking 5
subjects of the Georgia Tech database that did not have glasses. For the second
experiment we took another 5 subjects of the database that had glasses. In both
experiments, each image was divided in a given number of regions of equal aspect
ratio. For each region n we computed its centroid xn and a texture vector fn.
Notice that this can be directly modeled by a multi-output GP where the input
vectors xn are two dimensional. Table 2 show the results of this experiment

Table 2. Face recognition accuracy (mean and standard deviation) using a grid of size
BX=4, BY=7.

Method Gen Disc

FITC 61.57 ± 3.50 86.84 ± 0.01
PITC 64.72 ± 2.34 95.78 ± 8.03
FITC* 66.71 ± 3.82 96.84 ± 7.06
PITC* 73.68 ± 5.88 96.30 ± 3.00

(a) Faces without glasses

Method Gen Disc

FITC 54.73 ± 6.55 81.57 ± 3.7
PITC 64.21 ± 9.41 81.57 ± 7.2
FITC* 60.53 ± 0.02 90.52 ± 9.41
PITC* 69.47 ± 9.41 77.36 ± 8.24

(b) Faces with glasses

with the discriminative and the generative training approaches. The number of
divisions in the X and Y coordinates are BX and BY respectively. The features
extracted from each block are mean RGB values and Segmentation-based Fractal
Texture Analysis (SFTA) [8] of each block. The SFTA algorithm extracts a
feature vector from each region by decomposing it into a set of binary images,
and then computing a scalar measure based on fractal symmetry for each of
those binary images.

The results show high accuracy in the recognition process in both schemes
(faces with glasses and faces without glasses) when using our proposed discrim-
inative training method. For all the settings, the results of our discriminative
training method are better than the results of the generative training method.
This experiment shows the versatility of the multi-output Gaussian process to
work in applications that go beyond time series classification.

4 Conclusions

In this paper, we advocated the use of multi-output GPs as generative models for
vector-valued random fields. We showed how to estimate the hyperparameters of
the multi-output GP in a generative way and proposed a method to find these
parameters in a discriminative way. Through different experiments we could
see that the performance of our framework is equal or better than its natural
competitor, the HMM.
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For future work, we would like to study the performance of the frame-
work using alternative discriminative criteria, like Maximum Mutual Information
(MMI) using gradient optimization or Conditional Expectation Maximization
[12]. We would also like to compare our method against supervised classification
techniques for functional data.
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Abstract. In this paper, we propose combining Netconf as quality mea-
sure and Dynamic−K satisfaction mechanism into Class Association
Rules (CARs) based classifiers. In our study, we evaluate the use of
several quality measures to compute the CARs as well as the main satis-
faction mechanisms (“Best Rule”, “Best K Rules” and “All Rules”) com-
monly used in the literature. Our experiments over several datasets show
that our proposal gets the best accuracy in contrast to those reported in
state-of-the-art works.

Keywords: Supervised classification · Satisfaction mechanisms · Class
association rules

1 Introduction

Associative classification, introduced in [2], integrates Association Rule Mining
(ARM) and Classification Rule Mining (CRM). This integration involves mining
a special subset of association rules, called Class Association Rules (CARs),
using some quality measures (QM) to evaluate them. A classifier based on this
approach usually consists of an ordered CAR list l, and a satisfaction mechanism
for classifying unseen transactions using l [2,3,6].

Associative classification has been applied to many tasks including prediction
of consumer behavior [17], automatic error detection [19], breast cancer detection
[15], and prediction of protein-protein interaction types [16], among others.

In associative classification, similar to ARM, a set of items I = {i1, . . . , in}, a
set of classes C, and a transactional dataset T , are given. Each transaction t ∈ T
is represented by a set of items X ⊆ I and a class c ∈ C. A lexicographic order
among the items of I is assumed. The Support of an itemset X ⊆ I, denoted as
Sup(X), is the fraction of transactions in T containing X (see Eq. 1).

Sup(X) =
|TX |
|T | (1)

where TX is the set of transactions in T containing X and | · | represents the
cardinality.
c© Springer International Publishing Switzerland 2015
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A CAR is an implication of the form X ⇒ c where X ⊆ I and c ∈ C. The
most commonly used measures to evaluate CARs are Support and Confidence.
The rule X ⇒ c is held in T with certain Support s and Confidence α, where s is
the fraction of transactions in T that contains X ∪ {c} (see Eq. 2), and α is the
probability of finding c in transactions that also contain X (see Eq. 3), which
represents how “strongly” the rule antecedent X implies the rule consequent c.
A CAR X ⇒ c satisfies or covers a transaction t if X ⊆ t.

Sup(X ⇒ c) = Sup(X ∪ {c}) (2)

Conf(X ⇒ c) =
Sup(X ⇒ c)

Sup(X)
(3)

However, in [4], the authors analyzed several measures (Conviction, Lift, and
Certainty factor), as an alternative to the Support and Confidence measures, for
estimating the strength of an association rule.

The rest of the paper is organized as follows. The related work is described
in next section. Our proposal is presented in section three. In the fourth section
the experimental results are shown. Finally, conclusions are given in section five.

2 Related Work

In general, CAR-based classifiers could be divided in two groups according to
the strategy used for computing the set of CARs:

1. Two Stage classifiers. In a first stage, all CARs satisfying the Support and
Confidence values (or other measures) are mined and later, in a second stage,
a classifier is built by selecting a small subset of CARs that fully covers the
training set, CBA [2] and CMAR [3] follow this strategy.

2. Integrated classifiers. In these classifiers a small subset of CARs is directly
generated using different heuristics, CPAR [6], TFPC [9] and DDPMine [13]
follow this strategy.

Regardless of the strategy used for computing the set of CARs, in order to
build the classifier we need to sort the CARs. In the literature, there are six
main strategies for ordering CARs:

a) CSA (Confidence - Support - Antecedent size): First, the rules are sorted
in a descending order according to their Confidence. In case of ties, CARs
are sorted in a descending order according to their Support, and if the tie
persist, CSA sorts the rules in ascending order according to the size of their
rule antecedent. This strategy has been used by the CBA classifier [2].

b) ACS (Antecedent size - Confidence - Support): This strategy is a variation
of CSA, but it takes into account the size of the rule antecedent as first
ordering criterion followed by Confidence and Support. The classifier TFPC
[9] follows this ordering strategy.
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c) SrQM (Specific rules (Sr) - Quality Measure (QM)): First, the rules are
sorted in a descending order according to the size of the CARs and in case
of tie, the tied CARs are sorted in a descending order according to their QM
value. CAR-IC classifier follows this ordering strategy [18].

d) WRA (Weighted Relative Accuracy): The WRA rule ordering strategy
assigns to each CAR a weight and then sorts the set of CARs in a descending
order according to the assigned weights [12,14]. The WRA has been used
to order CARs in two versions of the TFPC classifier [12,14]. Given a rule
X ⇒ Y the WRA is computed as follows:

WRA(X ⇒ Y ) = Sup(X)(Conf(X ⇒ Y ) − Sup(Y ))

e) LAP (Laplace Expected Error Estimate): LAP was introduced by Clark and
Boswell [1] and it has been used to order CARs in CPAR classifier [6]. Given
a rule X ⇒ Y , in [6] the LAP is defined as follows:

LAP (X ⇒ Y ) =
Sup(X ⇒ Y ) + 1
Sup(X)+ | C |

where C is the set of predefined classes.
f) χ2 (Chi-Square): The χ2 rule ordering strategy is a well known technique in

statistics, which is used to determine whether two variables are independent
or related. After computing an additive χ2 value for each CAR, this value is
used to sort the CARs in a descending order in the CMAR classifier [3].

In [18], the authors show that the SrQM rule ordering strategy obtains the
best results of all strategies mentioned above. Once the classifier has been built,
we need to select a satisfaction mechanism for classifying unseen transactions.
Four main satisfaction mechanisms have been reported [2,3,14,21]:

1. Best Rule: It selects the first (“best”) rule in the order that satisfies the
transaction to be classified, and then the class associated to the selected rule
is assigned to this transaction [2].

2. Best K Rules: It selects the best K rules (per each class) that satisfy the
transaction to be classified and then the class is determined using these K
rules, according to different criteria [14].

3. All Rules: It selects all rules that satisfy the transaction to be classified
and use them to determine the class of the new transaction [3].

4. Dynamic−K: It is similar to the “Best K Rules” mechanism but the value
of K may change for each transaction to be classified [21].

Classifiers following the “Best Rule” mechanism could suffer biased classi-
fication or overfitting since the classification is based on only one rule. On the
other hand, the “All Rules” mechanism includes rules with low ranking for clas-
sification and this could affect the accuracy of the classifier. The “Best K Rules”
mechanism has been the most used satisfaction mechanism for CAR-based clas-
sifiers, reporting the best results. However, in [21] the authors mention some lim-
itations of this mechanism. Also in [21], the authors proposed the Dynamic−K
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satisfaction mechanism, which does not have the drawbacks of the other three
mechanisms (see next section).

In this paper, we propose to combine the Dynamic−K satisfaction mecha-
nism and the Netconf quality measure into CAR-based classifiers. In order to
show the suitability of our proposal, we evaluate several quality measures as well
as the other reported satisfaction mechanisms. Experiments over several datasets
show that our proposal gets the best performance in contrast to those reported
in state-of-the-art works.

3 Our Proposal

In the next subsections we describe the Dynamic−K satisfaction mechanism
(subsection 3.1) as well as the Netconf measure (subsection 3.2). Based on the
advantages of Dynamic−K over the other satisfaction mechanisms and based on
the characteristics of Netconf measure, we propose in this paper to improve the
accuracy of CAR-based classifiers by combining them.

3.1 Dynamic−K Satisfaction Mechanism

As we mentioned in related works, the main satisfaction mechanisms reported
have limitations that can affect the classification accuracy. In general, the “Best
K Rules” mechanism has been the most widely used for CAR-based classifiers,
reporting the best results [11]. However, in [21] the authors show that using
this mechanism could affect the classification accuracy. Ever more when most
of the best K rules were obtained extending the same item, or when there is
an imbalance among the numbers of CARs with high measure values, per each
class, that cover the new transaction (see some examples in [21]).

In order to overcome these drawbacks, the Dynamic−K mechanism was pro-
posed in [21]. First, Dynamic−K sorts the CARs using the SrQM rule ordering
strategy. Later, it selects, for each class c ∈ C, the set of rules X ⇒ c covering
the new transaction t and satisfying the following conditions:

– X ⇒ c is a maximal rule.
– for all i ∈ I, with i lexicographically greater than all items of X,

QM(X ∪ {i} ⇒ c) < QM(X ⇒ c) holds.

Thereby they included more large rules with high quality measure values in
the classification, avoiding redundancies and including more different items in
the antecedents of the selected CARs.

Let Ni be the set of maximal CARs of class ci that were selected for
Dynamic−K mechanism. After selecting all Ni (for i = 1 to |C|), Dynamic−K
assigns the class cj such that the QM average of all rules of Nj is greater than the
QM average of the top |Nj | rules of each Ni, with i �= j and |Ni| ≥ |Nj |. In case
of tie among classes with different number of CARs, the class with less number
of CARs is preferred because the CARs are sorted in descendent order according
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to their sizes (SrQM rule ordering strategy); in case of tie among classes with
equals number of CARs, the class with greater Support is selected, if the tie
persist the class is selected randomly.

Resuming, the Dynamic−K mechanism does not have the drawbacks of the
other existent mechanisms since:

– It selects the maximal rules with high QM values, avoiding redundancies
and allowing the inclusion of more different items in the antecedents of the
selected CARs, thereby CARs of low quality are not included for classifying.

– The result is not affected when there is an imbalance among the numbers of
CARs with high QM values, for each class, that cover the new transaction,
this happens because to classify a new transaction, Dynamic−K considers
the average of the same amount of CARs.

– It considers all good quality CARs that cover the new transaction and not
only the best one. Thereby, Dynamic−K does not fall on the mistake of
assuming that the best rule is going to classify correctly all transactions
that it covers.

3.2 Main Quality Measures

In [4], the authors analyzed several measures (Conviction, Lift, and Certainty
factor), as an alternative to the Confidence measure, for estimating the strength
of an association rule. As an important result, they show that some of these
measures overcome the drawbacks of the Confidence. However, in case of Lift
and Certainty factor, they have other limitations.

The Lift measure (see Eq. 4) has a not bounded range [4], therefore differences
among its values are not meaningful and for this reason, it is difficult to define
a Lift threshold.

Lift(X ⇒ Y ) =
Sup(X ⇒ Y )

Sup(X)Sup(Y )
(4)

On the other hand, Certainty factor is defined by Eq. 5.

CF (X ⇒ Y ) =

⎧
⎪⎨
⎪⎩

Conf(X⇒Y )−Sup(Y )
1−Sup(Y ) if Conf(X ⇒ Y ) > Sup(Y )

Conf(X⇒Y )−Sup(Y )
Sup(Y ) if Conf(X ⇒ Y ) < Sup(Y )

0 otherwise

(5)

Negative values of Certainty factor mean negative dependence, while positive
values mean positive dependence and 0 means independence. However, the value
that Certainty factor takes depends on the Support of the consequent (the class
in our case). When Conf(X ⇒ Y ) is close to Sup(Y ), even if the difference of
Conf(X ⇒ Y ) and Sup(Y ) is close to 0 but still positive, the Certainty factor
measure shows a strong positive dependence when Sup(Y ) is high (close to 1).

In [7], the authors introduced a measure to estimate the strength of an asso-
ciation rule, called Netconf. This measure, defined in equation 6, has among its
main advantages that it detects misleading rules produced by the Confidence.
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Netconf(X ⇒ Y ) =
Sup(X ⇒ Y ) − Sup(X)Sup(Y )

Sup(X)(1 − Sup(X))
(6)

As a simple example, suppose that Sup(X) = 0.4, Sup(Y ) = 0.8 and
Sup(X ⇒ Y ) = 0.3, therefore Sup(¬X) = 1 − Sup(X) = 0.6 and Sup(¬X ⇒
Y ) = Sup(Y ) − Sup(X ⇒ Y ) = 0.5. If we compute Conf(X ⇒ Y ) we obtain
0.75 (a high Confidence value) but Y occurs in 80 % of the transactions, there-
fore the rule X ⇒ Y does worse than just randomly guessing, clearly, X ⇒ Y is
a misleading rule [4]. For this example, Netconf(X ⇒ Y ) = −0.083 showing a
negative dependence between the antecedent and the consequent.

4 Experimental Results

In this section, we present the result of combining the Netconf measure and the
Dynamic−K satisfaction mechanism into a CAR-based classifier. These results
are compared with those obtained by the other three satisfaction mechanisms:
“Best Rule” [2], “Best K Rules” [14] and “All Rules” [3]. Additionally, we show
the result of combining different measures and the four satisfaction mechanisms.

For the experiment showed in Table 1, the four satisfaction mechanisms were
implemented inside the CAR-IC classifier [18], using the Netconf threshold set to
0.5, as it was reported in other works [20]. All our experiments were done using
ten-fold cross-validation reporting the average over the ten folds, the same folds
were used for all satisfaction mechanisms. All the tests were performed on a PC
with an Intel Core 2 Duo at 1.86 GHz CPU with 1 GB DDR2 RAM. Similar to
other works [2,3,8,13,20], we used several datasets, specifically 20. The chosen
datasets were originally taken from the UCI Machine Learning Repository [10],
and their numerical attributes were discretized by Frans Coenen using the LUCS-
KDD [5] discretized/normalized CARM Data Library.

For the experiment showed in Table 2, we used the Confidence threshold
set to 0.5, the Certainty Factor threshold set to 0 and for Lift and Conviction,
the threshold set to 1, as their authors suggested. It is important to highlight
that both Lift and Conviction are not bounded range [4], therefore differences
among its values are not meaningful. Therefore, the authors suggest to use for
these measures, the threshold set to 1; values greater than 1 mean positive
dependence between antecedent and consequent. In case of Certainty Factor,
positive dependence is obtained for values greater than 0.

In Table 1, we can see that the combination of Dynamic−K mechanism and
Netconf measure yields an average accuracy higher than the combination of
Netconf and all other reported mechanisms, having a difference of 2.4 % with
respect to the mechanism in the second place (“Best K Rules” with K set to
5, the same value used in other works [6,11,12,14]). Additionally, Dynamic−K
wins in 19 of the 20 datasets and ties in the other one.

From the results show in Table 2, we can conclude that the Dynamic−K
mechanism obtains the best results independent of the quality measure used to
compute the set of CARs, being Netconf the best of all evaluated measures.
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Table 1. Classification accuracy using Netconf and the different mechanisms.

Dataset Best rule All rules Best K rules Dynamic K

adult 83.17 82.15 84.50 87.33
anneal 92.74 91.89 95.38 96.42
breast 85.48 84.58 85.43 87.65
connect4 56.95 55.95 62.18 67.09
dermatology 79.48 78.28 79.66 80.39
ecoli 83.01 81.40 84.01 86.92
flare 87.03 86.44 86.45 88.58
glass 69.07 68.23 68.92 72.13
heart 54.26 53.20 57.34 61.92
hepatitis 85.51 84.60 87.02 87.60
horseColic 83.51 82.81 83.56 86.41
ionosphere 85.03 83.96 86.02 86.93
iris 97.10 97.04 96.67 97.72
led7 73.67 72.37 75.88 78.18
letRecog 74.20 73.56 73.42 75.70
mushroom 99.48 98.80 99.52 99.52
pageBlocks 92.88 92.19 94.93 97.81
penDigits 78.80 77.36 78.32 84.03
pima 76.38 75.65 78.53 79.67
waveform 74.11 73.18 75.22 79.07

Average 80.59 79.68 81.65 84.05

Table 2. Average accuracy of different quality measures over the tested datasets, for
different satisfaction mechanisms.

Measure Best rule All rules Best K rules Dynamic−K

Certainty Factor 74.28 73.39 72.08 77.68
Lift 75.49 74.64 73.21 77.88
Conviction 79.53 78.32 79.21 81.16
Confidence 79.59 78.68 80.60 81.52
Netconf 80.59 79.68 81.65 84.05

5 Conclusions

In this paper, we have proposed to improve the accuracy of CAR-based classifiers
by combining Netconf measure and Dynamic−K satisfaction mechanism. From
the experimental results, we can conclude that the Dynamic−K satisfaction
mechanism obtains the best results independent of the quality measure used to
compute the set of CARs, being Netconf the best of all evaluated measures.
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5. Coenen, F.: The LUCS-KDD discretised/normalised ARM and CARM Data
Library (2003). http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS-KDD-DN

6. Yin, X., Han, J.: CPAR: Classification based on predictive association rules. In:
Proc. of the SIAM International Conference on Data Mining, pp. 331–335 (2003)

7. Ahn, K.I., Kim, J.Y.: Efficient Mining of Frequent Itemsets and a Measure of
Interest for Association Rule Mining. Information and Knowledge Management
3(3), 245–257 (2005). Hanoi, Vietnam

8. Wang, J., Karypis G.: HARMONY: Efficiently mining the best rules for classifica-
tion. In: Proc. of SDM, pp. 205–216 (2005)

9. Coenen, F., Leng, P., Zhang, L.: Threshold Tuning for improved classification asso-
ciation rule mining. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS
(LNAI), vol. 3518, pp. 216–225. Springer, Heidelberg (2005)

10. Asuncion, A., Newman D.J.: UCI Machine Learning Repository (2007). http://
www.ics.uci.edu/∼mlearn/MLRepository.html

11. Wang, Y.J., Xin, Q., Coenen, F.: A novel rule weighting approach in classification
association rule mining. In: International Conference on Data Mining Workshops,
pp. 271–276 (2007)

12. Wang, Y.J., Xin, Q., Coenen, F.: A novel rule ordering approach in classification
association rule mining. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571,
pp. 339–348. Springer, Heidelberg (2007)

13. Cheng, H., Yan, X., Han, J., Yu, P.S.: Direct discriminative pattern mining for
effective classification. In: Proc. of the ICDE, pp. 169–178 (2008)

14. Wang, Y.J., Xin, Q., Coenen, F.: Hybrid Rule Ordering in Classification Associa-
tion Rule Mining. Trans. MLDM 1(1), 1–15 (2008)

15. Karabatak, M., Ince, M.C.: An expert system for detection of breast cancer based
on association rules and neural network. Expert Syst. Appl. 36, 3465–3469 (2009)

16. Park, S.H., Reyes, J.A., Gilbert, D.R., Kim, J.W., Kim, S.: Prediction of protein-
protein interaction types using association rule based classification. BMC Bioin-
formatics 10(1) (2009)

17. Bae, J.K., Kim, J.: Integration of heterogeneous models to predict consumer behav-
ior. Expert Syst. Appl. 37, 1821–1826 (2010)

18. Hernández, R., Carrasco, J.A., Fco, M.J., Hernández, J.: Classifying using specific
rules with high confidence. In: Proc. of the MICAI, pp. 75–80 (2010)

19. Malik, W.A., Unwin, A.: Automated error detection using association rules.
Intelligent Data Analysis 15(5), 749–761 (2011)

20. Hernández, R., Carrasco, J.A., Fco, M.J., Hernández, J.: CAR-NF: A Classifier
based on Specific Rules with High Netconf. Intelligent Data Analysis 16(1), 49–68
(2012)

21. Hernández-León, R.: Dynamic K : a novel satisfaction mechanism for CAR-based
classifiers. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part I.
LNCS, vol. 8258, pp. 141–148. Springer, Heidelberg (2013)

http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html


Local Entropies for Kernel Selection and Outlier
Detection in Functional Data

Gabriel Martos(B) and Alberto Muñoz
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Abstract. An important question in data analysis is how to choose the
kernel function (or its parameters) to solve classification or regression
problems. The choice of a suitable kernel is usually carried out by cross
validation. In this paper we introduce a novel method consisting in choos-
ing the kernel according to an optimal entropy criterion. After selecting
the best kernel function we proceed by using a measure of local entropy
to compute the functional outliers in the sample.

Keywords: Local entropy · Functional data · Kernel selection · Outlier
detection

1 Introduction

Outlier detection is a common task in Statistics and Data Analysis. When one
deals with functional data, this problem becomes difficult since it is not obvious
how to translate functional data into the traditional statistical framework. In
recent works [2,6] and references therein, several authors propose to consider
depth measures to capture the atypical functional data. As we will show, these
measures fails to capture the depth but extreme in shape functional observations.

In this paper we use a finite dimensional representation of functional data
in order to transform the (infinite dimensional) functional data objects to finite
dimensional data points that possess a ‘traditional’ probability distribution. For
this aim, we need first to select a suitable kernel function and/or its adequate
parameters. We address this problem by using a minimal entropy criterion. Next,
given a suitable kernel based representation of the functional data at hand, we
determine if there are functional outliers in the data by using a local entropy
measure for functional data.

The article is organized as follows: In Section 2 we propose a measure of
local entropy and present a consistent estimator for it. In Section 3 we describe
the procedure to choose a suitable kernel to represent functional data and
how to address the problem of outlier detection using a local entropy mea-
sure. In Section 4 we show the performance of the proposed method with two
experiments.
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2 Local Entropies

We consider a measure space (X,F , μ), where X is a sample space (here a com-
pact set of R

d), F a σ-algebra of measurable subsets of X and μ : F → R
+

the ambient σ-additive measure, the Lebesgue measure. A probability measure
(PM) P is a σ-additive finite measure absolutely continuous w.r.t. μ that satisfies
the three Kolmogorov axioms. By Radon-Nikodym theorem, there exists a mea-
surable function fP : X → R

+ (the density function) such that P(A) =
∫

A
fPdμ,

and fP = dP
dμ is the Radon-Nikodym derivative.

The family of α-Entropies, proposed by Rényi [10], plays an important role
in several statistical and data analysis problems. Next we present this family of
uncertainty measures to later extend this concept to a measure of local entropy.

Definition 1 (α-Entropy). Let P be a probability measure defined in a measure
space (X, F , μ) and let fP be the respective density function. For α ≥ 0 and
α �= 1, the α-Entropy of the PM P is computed as follows:

Hα(P) =
1

1 − α
log (Vα(P)) =

1
1 − α

log
(∫

X

fα
P

(x)dx

)
,

where Vα(P) = ||fP||α = EP(fα−1
P

).

Several renowned entropy measures in the statistical literature are particular
cases in the family of α-Entropies. For instance, when α = 0 we obtain the
Hartley entropy, when α → 1 then Hα converges to the Shannon entropy and
when α → ∞ then Hα converges to the Min-entropy measure.

Let x ∈ X be a point in the support of the PM P and let B(x, rδ) be the ball
with center in x and radius rδ that fulfils the following condition:

δ =
∫

B(x,rδ)

fP(x)dx,

the δ-Neighbors of the point x, denoted as nδ(x), is the open set nδ(x) =
X

⋂
B(x, rδ). Let us introduce the new entropy:

Definition 2 (δ-Local α-Entropy). Let x ∈ X be a point in the support of
the PM P and let nδ(x) be the set of its δ-neighbors. For α ≥ 0 and α �= 1, the
δ-local α-entropy of the point x is defined as:

hα,δ(x) =
1

1 − α
log (vα,δ(x)) =

1
1 − α

log

(∫

nδ(x)

fα
P

(x)dx

)
.

The Hα entropy of a PM P can be estimated by means of the local entropy
measures. Given a partition of the support of the PM P into a suitable sequence
of non overlapping regions, that is a collection of points {x1, . . . , xn} and a proper
δ such that X =

⋃n
i=1 nδ(xi) and nδ(xi)

⋂
nδ(xj) = ∅ ∀i �= j, then:

Vα(P) =
∫

X

n∑
i=1

1[x∈nδ(xi)](x)fα
P

(x)dx =
n∑

i=1

∫

nδ(xi)

fα
P

(x)dx =
n∑

i=1

vα,δ(xi),
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where 1[x∈nδ(xi)] stands for the indicator function that takes the value 1 when
x ∈ nδ(xi) and 0 otherwise. Therefore, the entropy of a PM P can be computed
as the sum of local entropies:

Hα(P) =
1

1 − α
log (Vα(P)) =

1
1 − α

log

(
n∑

i=1

vα,δ(xi)

)
. (1)

Next we propose a general method to estimate the δ-Local α-Entropy, and
using Equation 1 the α-Entropy of a probability measure.

2.1 Entropy Estimation

Usually the available data are given as a finite sample. We consider a iid sample
sn(P) = {xi}n

i=1 drawn from a PM P. In first place we propose a method to
estimate the δ-Local α-Entropy and later, by aggregation, an estimator of the
α-Entropy. For this aim, we consider asymptotic fP-monotone functions.

Definition 3 (asymptotic fP-monotone functions). Consider a random
sample Sn = {xi}n

i=1 drawn from a PM P with density function fP. A func-
tion g(x, Sn) : X × Sn → R is asymptotically fP-monotone if:

fP(x) ≥ fP(y) ⇒ lim
n→∞ P (g(x, Sn) ≥ g(y, Sn)) = 1 ∀x, y ∈ X.

Examples of asymptotic fP-monotone functions are g1(x, Sn) ∝ f̂Sn
(x), where

f̂Sn
is a consistent estimator of the density fP and g2(x, Sn, k) = e−dSn,k(x), our

choice in this article, where dSn,k(x), is the distance from the point x to its kth-
nearest neighbour. The asymptotic fP-monotone functions are natural plug-in
estimators of the δ-Local α-Entropy:

ĥα(x) =
1

|1 − α| log
(
g(x, Sn)−α

)
forα > 0andα �= 1.

Proposition 1 (Consistency). The proposed estimator ĥα of the δ-local α-
entropies is consistent.

Proof. Let g be an asymptotic fP-monotone function used as a plug-in estimator
of hα,δ. If fP(x) ≥ fP(y) then for a sufficiently small δ is always true that
hα,δ(x) ≤ hα,δ(y) (and equivalently vα,δ(x) ≤ vα,δ(y)). By Definition 3 then:

fP(x) ≥ fP(y) ⇒ lim
n→∞ P

(
ĥα(x) ≤ ĥα(y)

)
= 1 ∀x, y ∈ X.

With the decomposition given in Equation 1, we are able to propose the following
estimator for the α-Entropy.

Definition 4 (α-Entropy estimator). Given a random sample Sn = {xi}n
i=1

drawn from a PM P and an asymptotically fP-monotone function g(x, Sn), the
plug-in α-Entropy estimator of the distribution P is defined as:

Ĥα(P) =
1

1 − α
log

(
n∑

i=1

v̂α,δ(xi)

)
=

1
1 − α

log

(
n∑

i=1

g(xi, Sn)−α

)
.
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In next section with the aid of Ĥα(P) we will be able to compare the entropy
associated to different kernel representations. The δ-Local α-Entropy estimations
will be used to find functional outliers in the sample.

2.2 Estimation of Minimum Entropy Regions for Outlier Detection

Consider an iid sample sn(P) = {xi}n
i=1 drawn from the PM P. To estimate

which points in the sample belong to high density regions, we solve the following
optimization problem:

min
χ1,...,χn

n∑
i=1

χiĥα,δ(xi) + C

n∑
i=1

ξi

s.t. ĥα,δ(xi) ≤ H + ξi ,
ξi ≥ 0, i = 1, . . . , n ,

(2)

where χi ∈ {0, 1} for i = 1, . . . , n are auxiliary and binary variables, H is a
threshold parameter and C is a regularization constant.

The local entropy measure can be seen as a projection of the sample points
to a new coordinate system where the less locally entropic points are projected
near to the origin and the most entropic far away from the origin. The solution
of the problem stated in Equation 2 is an optimal hyperplane that isolates the
points projected near the origin, that is the set of points that belongs to a high
density (low entropy) region in the support of the distribution.

3 Kernel Selection and Outlier Detection

Most functional data analysis approaches choose an orthogonal basis of functions
B = {φ1, . . . , φN} (N ∈ N), where each φi belongs to a general function space
H (usually L2(X) being X a compact real vector space) and then represent
each functional datum by means of a linear combination in the Span(B) [4,
9]. A usual choices is to consider H as a Reproducing Kernel Hilbert Space
(RKHS) of functions [1]. In this case, the elements in the spanning set B are the
eigenfunctions associated to the (positive-definite and symmetric) kernel K that
generates H. Let f be a curve in H sampled in Sn

f = {(xi, f(xi)) ∈ X × R}n
i=1,

by using the Mercer’s decomposition, the function f can be approximated as:

f(x) ≈
n∑

i=1

αiK(x, xi) =
n∑

i=1

αi

d∑
j=1

λjφj(xi)φj(x),

where λj is the eigenvalue corresponding to the eigenvector φj of the kernel
matrix KSf

= (K(xi, xj))i,j for all (xi, xj) ∈ Sn
f and d = min(n, range(KS)). We

represent each functional datum f ∈ H as a point in R
d by using the expansion

coefficients {λ∗
1, . . . , λ

∗
d} associated to f , where λ∗

j = λj

∑n
i=1 αiφj(xi). This

representation is stable as is demonstrated in Theorem 2 in [8].
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3.1 Kernel Selection Based on a Minimum Entropy Criterion

The choice of the kernel and its best parameters is usually carried out using
a cross-validation criterion. Our approach consist in select the kernel parame-
ter(s) such that the Hα entropy associated to the point representation of the
functional data (using the coefficients {λ∗

1, . . . , λ
∗
d}) is optimal. In this way the

dimension (complexity) [5] of the feature space is established at the point where
the decrements in the Hα entropy is stabilized.

3.2 Functional Outlier Detection Method

Given the best finite dimensional representation of the functional data, we pro-
ceed by using the δ-Local α-Entropy to solve the problem stated in Equation 2
in order to capture the most local entropic functional data (Max-local entropy).

4 Experimental Section

Artificial Experiment: In the first experiment we show how to choose the
best kernel parameter to represent functional data and how to detect functional
outliers in the sample. For this aim, we simulate 100 curves as follows:

fi(t) = sin(t) + cos(t + εi) + ai + bit
2 i = 1, . . . , 95,

fi(t) = sin(t) + cos(t + εi) +
1

2
(sin(5πt) + cos(5πt + εi)) + ai + bit

2 i = 96, . . . , 100,

where t ∈ [0, 2π], and the random coefficients εi, ai, bi, are independently and
normally distributed with means: με = 0, μa = 5 and μb = 1 and variances
σ2

ε = σ2
b = 0.25 and σ2

a = 0.2. The curves are represented in Figure 1.
For this experiment we consider a polynomial kernel Kρ(xi, xj) = 〈xi, xj〉ρ,

where ρ = 1, . . . , 10. In Figure 2-left we shown the entropy for different kernel
degree parameters ρ. We choose the parameter ρ = 7 (the elbow of the plot)

Fig. 1. The 100 curves generated for the experiment.
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Fig. 2. Entropy evolution according to ρ (left) and functional representation of a curve
based on a SVM Polynomial Kernel with ρ = 7 (right).

as it is the value where the changes in the entropy stabilizes. In Figure 2-right
we show an outlier curve approximated using a Support Vector Machine (SVM)
with Kρ=7 to shown that the entropy criterion is adequate to fit the ρ parameter
to represent functional data.

After fixing the best parameter ρ = 7 for representing the simulated func-
tional data, we proceed to detect the outliers in the sample. We use a battery
of different algorithms (already implemented in R) [3] to identify contaminated
points (outliers) in the simulated data. The results are summarized in Table 1.

Table 1. Number of outlier, false-Positive and false-Negative identifications.

Metric/Technique True outliers Positives-false Negative-false
captured (Type I error) (Type II error)

Out-Trim 0 5 5
FM-depth 0 5 5
Out-Mode 0 0 5
Out-RP 0 5 5
Out-RProy 0 5 5
Out-Double R. Proy. 1 4 4
Max-local entropy (Kp=7) 5 0 0

The proposed method (Max-local entropy) works very well in the detection
of the contaminated (outliers) curves. Our method is able to detect all the out-
liers in the sample without any positive-false nor negative-false detections. More
sophisticated techniques, such as Out-Trim that made use of a bootstrapping
procedure to compute the outliers or the double projection method that uses
multiple depth measures, fails in the task of detect the simulated extreme curves.

Real Data Experiment. The real data example considers the detection of
outliers in a sample of non-linear profiles. These data come from the manufacture
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of engineered woodboards [11]. In Figure 3-left we shown the set of 24 curves,
each one corresponding to a vertical density profile. In a previous work [7], the
authors identify 3 outliers profiles that are highlighted in red in Figure 3-right.
The aim of this experiment is to demonstrate that the proposed method is also
able to detect the outliers in the sample of non-linear profiles. For this experiment

Fig. 3. The 24 density profiles and the 3 otulier profiles in red on the right.

we consider a RBF kernel Kσ(xi, xj) = exp− (xi−xj)2

2σ , when σ is the complexity
parameter. When σ increases then the RBF kernel tends to behaves like the
linear kernel. In the other way around, when σ decreases the dimension of the
feature space increases. In Figure 4-left we shown the entropy for different σ-
parameter, we choose the value σ = 20 as it is the point where the changes in
the entropy stabilizes. The representation of one profile obtained for Kσ=20 is
presented in Figure 4-center. In Figure 4-right, we present a boxplot of the local
entropies. The 3 outlier points in this plot correspond to the 3 non-linear outlier
profiles [7] highlighted in red in Figure 3-right.

Regarding the competitor depth measures, the only metric that it is able to
detect the 3 outlier in the sample is Out-Trim, that makes use of a bootstrapping
procedure to determine the extreme values in the sample. The remaining metrics,
also used in the artificial experiment, are able to capture only two outliers (the
two most depth curves in the sample) but not the outlier in shape.

Fig. 4. Entropies associated to different σ values (left). An example of an adjusted
profile using Kσ=20 (center). The distribution of the local entropies (σ = 20)(right).
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5 Conclusions

In this work we introduce a new measure, the local entropy, that can be additively
used to compute the entropy of a distribution. A consistent estimator for the
local entropy is also introduced. Using a finite dimensional representation for
functional data, we select suitable kernel parameters for representing functional
data according to a minimal entropy criterion. Given a suitable representation
of the functional data at hand, we are able to detect the outliers in the sample
outperforming other standard methods in functional outlier detection tasks as
it is demonstrated in the experimental section.

Acknowledgments. We will afford the study of the asymptotic properties of the
proposed δ-Local α-Entropy estimators. This work was supported by projects MIC
2012/00084/00, ECO2012-38442, SEJ2007-64500.
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Abstract. Machine learning techniques have been actively pursued in
the last years, mainly due to the great number of applications that make
use of some sort of intelligent mechanism for decision-making processes.
In this work, we presented an improved version of the Optimum-Path
Forest classifier, which learns a score-based confidence level for each
training sample in order to turn the classification process “smarter”,
i.e., more reliable. Experimental results over 20 benchmarking datasets
have showed the effectiveness and efficiency of the proposed approach for
classification problems, which can obtain more accurate results, even on
smaller training sets.

Keywords: Optimum-path forest · Supervised learning · Confidence
measures

1 Introduction

Pattern recognition techniques aim at learning decision functions that separate
a dataset in clusters of samples that share similar properties. Supervised tech-
niques are known to be the most accurate, since the amount of information
available about the training samples allows them to learn class-specific prop-
erties, as well as one can design more complex learning algorithms to improve
the quality of the training data. The reader can refer to some state-of-the-art
supervised techniques, such as Support Vector Machines (SVMs) [4], Artificial
Neural Networks (ANNs) [8], Bayesian classifiers, and the well-known k-nearest
neighbours (k-NN), among others. The reader can refer to Duda et al. [6] for a
wide discussion about such methods.

Although we have very sophisticated and complex techniques, it is always
important to keep an open mind for different approaches that may lead us to

c© Springer International Publishing Switzerland 2015
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better results. Simple ideas can improve the effectiveness of some well-known
techniques. Ahmadlou and Adeli [1], for instance, proposed the Enhanced Prob-
abilistic Neural Networks, being the idea to avoid the influence of noisy samples
when computing the covariance matrix of each class. This simple idea has shown
to be very effective in some situations. Later on, Guo et al. [7] presented a simple
heuristic to reduce SVM computational load while maintaining its good gener-
alization over unseen data. Their approach is based on the computation of the
lowest margin instances, which are than used as support vector candidates.

Some years ago, Papa et al. [10,11] presented a graph-based supervised
pattern recognition technique called Optimum-Path Forest (OPF), which has
demonstrated interesting results in terms of efficiency and effectiveness, being
some of them comparable to the ones obtained by SVMs, but faster for training.
The idea of OPF is to model the pattern recognition task as a graph partition
problem, in which a set of key samples (prototypes) acts as being the rulers
of this competition process. Such samples try to conquer the remaining ones
offering to them optimum-path costs: when a sample is conquered, it receives
the label of its conqueror. An interesting property stated by Souza et al. [12]
concerns with OPF error bounds, which are the same as k-NN when all training
samples are prototypes and a path-cost function that computes the maximum
arc-weight along a path is employed. Such statement is very interesting, since
a recent work by Amancio et al. [3] showed strong evidences that, in practice,
k-NN may perform so well as SVMs.

The approach proposed by Papa et al. [10,11] elects the prototype nodes as
being the nearest samples from different classes, which can be found out through
a Minimum Spanning Tree (MST) computation over the training graph: the
connected samples in the MST are marked as being the prototype nodes. In case
of multiple MSTs in large datasets, the current OPF implementation, although
the values of the possible optimum-paths that are going to be offered for a given
graph node may be the same from samples from different classes, the one which
reaches that node first will conquer it. The main problem concerns with the
“tie-regions”, i.e., the regions in which we have a set of training samples that
offer the same optimum-path cost to a given node. Therefore, this scenario may
lead OPF to be more prone to errors in the training set.

In this paper, we propose to consider not only the optimum-path value from
a given sample in the classification process, but also its confidence value, which
is measured by means of a score index computed through a learning process
over a validating set. The idea is to penalize the training samples that do not
have “reliable” confidence values. We have shown this approach can overcome
traditional OPF in several datasets, even when we learn on smaller training sets,
as well as it can perform training faster than its na ”ive version when using the
same amount of data.

The remainder of the paper is organized as follows. Sections 2 and 3 present
the OPF background theory and the proposed approach for score-based con-
fidence computation, respectively. Section 4 describes the methodology and
the experimental results. Finally, conclusions and future works are stated in
Section 5.
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2 Optimum-Path Forest

Let D(X ,Y) be a dataset, in which X and Y stand for the set of samples (feature
vectors) and the set of their labels, respectively. The OPF classifier models D
as being a weighted graph G(V,A, d), such that the set of samples are now the
graph nodes, i.e., V = X , and the arcs are defined by the adjacency relation A.
In addition, the arcs are weighted by a distance function d : V × V → �+.

Similarly to the process of ordered communities generation, in which group of
individuals are originated based on the connectivity relations among their lead-
ers, the OPF classifier employs a competition process among some key samples
in order to partition the graph into optimum-path trees (OPTs) according to
a predefined path-cost function. Analogously, the population is partitioned into
communities, where each individual belongs to a group that has offered him the
best reward.

Besides, the dataset D can be partitioned in two or three subsets according
to the set of possible approaches. In the situation we need two subsets, we have
that D = D1 ∪ D2, in which D1 and D2 stand for the training and testing sets,
respectively. Therefore, the graph-based formulations of the training and testing
sets are given by G1(V1,A1, d) and G2(V2,A2, d), respectively. However, without
loss of generality, OPF usually uses the same adjacency relation for both sets.
Thus, we can redefine both graphs as G1(V1,A, d) and G2(V2,A, d). Notice the
standard OPF classifier uses a complete graph, which means all pairs of nodes
are connected.

Let πs be a path in the graph G1 with terminus in the sample s ∈ D1, and
(πs · 〈s, t〉) be the concatenation between πs and the arc 〈s, t〉, such that t ∈ D1.
Let S ⊆ V1 be the set of prototype nodes from all classes. Roughly speaking, the
idea of OPF is to minimize f(πt), ∀t ∈ D1, where f(·) is defined as the path-cost
function given by:

f(〈s〉) =
{

0 if s ∈ S
+∞ otherwise,

f(πs · 〈s, t〉) = max{f(πs), d(s, t)}, (1)

in which d(s, t) denotes the distance between nodes s and t. Particularly, an
optimal set of prototypes S∗ can be found exploiting the theoretical relation
between the MST and the minimum spanning forest generated by OPF using
f(·), as stated by Alléne et al. [2]. By computing an MST in G1, we obtain an
acyclic graph whose nodes are the samples in D1 and the arcs are non-directed
and also weighted by the distance function d. Besides that, every pair of nodes
in the MST is connected by a simple path, which is optimum with respect to
f(·). In addition, this minimum spanning tree encodes an optimum-path tree for
each root (prototype) node. Thus, the optimum prototypes are defined as the
nearest elements in the MST with different labels in D1.
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In the classification phase, for each sample r ∈ D2, we consider all arcs
connecting r to every s ∈ D1. If we take into account all possible paths from
S∗ to r, we can find the optimum path π∗

r , i.e., the one that minimizes f(r) as
follows:

f(r) = min
∀s∈D1

{max{f(s), d(s, r)}}. (2)

Let s∗ ∈ D1 be the sample that satisfies Equation 2. The OPF classification
step simply assigns the label of s∗ as being that of r.

3 Learning Score-Based Confidence Levels

The classification using the confidence level supports the idea of assigning a
score to all training nodes by means of a learning process over a validation set.
In order to extract the confidence level, we need to partition the dataset D in
three subsets, say that D = D1 ∪Dv ∪D2, in which D1, Dv and D2 stand for the
training, validation and testing sets, respectively.

The proposed approach for learning scores aims at training OPF classifier
over D1 for further classification of Dv, using the same methodology described
in Section 2. The main difference now is that we associate to each training sample
a reliability level φ(·), which is computed by means of its individual performance
in terms of its recognition rate over the validation set. However, considering the
aforementioned approach, a sample t ∈ D1 that did not participate from any
classification process, would be scored as φ(t) = 0, and may be penalized, since
the higher the score the most reliable that sample is. Therefore, for such samples
we have set φ(t) → 1 to give them a chance to perform a good job during the
classification over the unseen (test) data. Thus, at the and of the classification
process over the validation set Dv, we have a score measure φ(s) ∈ [0, 1], ∀s ∈ D1,
which can be used as a confidence level of that sample. In short, there are three
possible confidence levels:

– φ(s) = 0: it means sample s did not perform a good work on classifying
samples, since it has misclassified all samples. Therefore, samples with score
equals to 0 may not be reliable;

– 0 < φ(s) < 1: it means sample s has misclassified samples, as well as it has
also assigned correct labels to some of them. Notice the larger the errors,
the lower is a sample’s reliability. Samples with scores that fall in this range,
may be reliable; and

– φ(s) = 1: it means either sample s did not participate in any classification
process, or s assigned the correct label to all its conquered samples, which
means s is a reliable sample according to our definition.

After learning the confidence levels for each training sample, one needs to
modify the näıve OPF classification procedure in order to consider this informa-
tion during the label assignment. In order to fulfill this purpose, we proposed a
modification in the OPF classification procedure (Equation 2) as follows:
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f(r) = min
∀s∈D1

{(
1

φ(s) + ε

)
∗ max{f(s), d(s, r)}

}
, (3)

where ε = 10−4 is employed to avoid numerical instabilities. Therefore, the idea
of the first term in the above equation is to penalize samples with low confidence
values by increasing their costs. In short, the amount of penalty is inversely
proportional to a sample’s confidence level.

4 Methodology and Experimental Results

In order to evaluate the efficiency and effectiveness of the proposed confidence-
based approach for OPF classifier, we perform experiments over 20 classification
datasets (real and synthetic datasets)1,2,3,4. Due to the lack of space, instead
of showing characteristics individually for these datasets, we append in Table 1
which also presents the mean accuracies. The choice of these datasets was moti-
vated by their level of complexity (overlapped samples), which turns the clas-
sification process more sensible to misclassification. The experiments were con-
ducted on a computer with a Pentium Intel Core i3 R© 3.07Ghz processor, 4 GB of
memory RAM and Linux Ubuntu Desktop LTS 12.04 as the operational system.

For each dataset, we conducted a cross-validation procedure with 15 run-
nings, being each of them partitioned as follows: 30% of the samples were used
to compose the training set, being the validation and testing sets ranged from
10% − 60%, 20% − 50%, . . . , 50% − 20%. These percentages have been empiri-
cally chosen, being more intuitive to provide a larger validation set for confidence
learning.

In Table 1 is included average accuracy over all datasets. In order to pro-
vide a robust analysis, we performed the non-parametric Friedman test, which is
used to rank the algorithms for each dataset separately. In case of Friedman test
provides meaningful results to reject the null-hypothesis (h0: all techniques are
equivalent), we can perform a post-hoc test further. For this purpose, we con-
ducted the Nemenyi test, proposed by Nemenyi [9] and described by Demšar [5],
which allows us to verify whether there is a critical difference (CD) among tech-
niques or not. Due to the lack of space, instead of showing all diagrams for each
dataset, we highlighted the best techniques in bold according to Nemenyi test.

We can observe OPFc has obtained the best results in 7 out 20 datasets,
and with results very close to the best ones in other 7 datasets. The very worst
results were obtained over “duke-breast-cancer” and “Leukemia”, since these
are small datasets, thus providing a validation set that was not enough to learn
good confidence levels. However, even in these datasets, OPFc recognition rate
was close to standard OPF one. As OPF* has employed bigger datasets, it was
expected more accurate results.
1 http://mldata.org
2 http://archive.ics.uci.edu/ml
3 http://pages.bangor.ac.uk/∼mas00a/activities/artificial data.htm
4 http://lrs.icg.tugraz.at/research/aflw

http://mldata.org
http://archive.ics.uci.edu/ml
http://pages.bangor.ac.uk/~mas00a/activities/artificial_data.htm
http://lrs.icg.tugraz.at/research/aflw
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Table 1. Mean accuracy results: the bold values stand for the most accurate techniques.
The recognition rates were computed according to [11], which consider unbalanced
datasets.

Dataset OPF OPF* OPFc # samples # features # classes

a1a 65.74 65.59 69.05 32, 561 123 2
aloi 95.31 96.92 95.09 108, 000 128 1, 000
connect-4 63.32 63.05 63.10 67, 557 126 3
synthetic1 50.69 50.78 50.72 100, 000 100 1, 000
synthetic2 85.29 85.56 87.33 100, 000 4 4
synthetic3 89.55 89.70 91.14 100, 000 4 4
synthetic4 53.05 52.44 56.14 500 2 2
dmoz-web-directory-topics 59.16 62.06 56.72 1, 329 10, 629 5
dna 83.80 88.99 85.02 5, 186 180 3
duke-breast-cancer 80.37 91.15 79.46 86 7, 129 2
ijcnn1 93.78 96.46 94.13 191, 681 22 2
Statlog-Letter 97.31 98.58 97.58 35, 000 16 26
Leukemia 71.47 76.90 69.63 72 7, 129 2
mushrooms 93.68 92.61 96.93 8, 124 112 2
scene-classification 66.04 67.78 66.60 2, 407 294 15
shuttle 94.48 97.25 95.09 101, 500 9 7
usps 97.24 97.93 97.28 9, 298 256 10
w1a 80.54 80.15 80.68 49, 749 300 4
yahoo-web-directory-topics 50.54 51.77 56.36 1, 106 10, 629 4
aflw 88.00 89.48 88.93 8, 193 4, 096 2

It was not possible to establish some specific situation (considering the
dataset configuration, such as the number of classes and the number features,
for instance) in which OPFc might be better than OPF and OPF*, although it
seems the proposed approach has obtained the top results in high-dimensional
datasets, except for “dmoz-web-directory-topics”. If we consider an error mar-
gin of around 3%, the proposed approach obtained similar results in 17 out
20 datasets, thus being considered a very suitable approach to improve OPF
classifier.

The above assumption can be strengthened if we consider the computational
effort of the techniques. As expected, standard OPF has been faster than OPFc
and OPF* with respect to the training (training+learning scores) step, since it
does not need to compute the confidence level for every training sample. However,
the Nemenyi statistical test pointed out OPFc has been faster than OPF* for
training (Figure 1a), being similar to it with respect to the classification step,
as displayed in Figure 1b. On average, i.e., considering all 20 datasets, standard
OPF has been about 2.108 times faster than OPFc and OPF*.

(a) (b)

Fig. 1. Nemenyi statistical test regarding the (a) training (training + learning scores)
and (b) testing computational load. Groups of similar approaches are connected to
each other.
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5 Conclusions and Future Works

In this work, we introduced a confidence-based learning algorithm to improve
OPF classification results. The idea is to penalize training samples that mis-
classify others in a classification process over a validation set. The proposed
algorithm aims at learning confidence levels for each training sample to be fur-
ther used in a modified version of the standard classification procedure employed
by OPF.

Experiments over 20 datasets showed the robustness of the proposed app-
roach, which obtained the best results in 7 datasets, as well as very close recog-
nition rates in other 7 datasets. Additionally, OPFc can improve standard OPF
results even with smaller training sets, being also faster than OPF trained over
training+validation sets.
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support, and FAPESP grants #2013/20387-7 and #2014/16250-9, as well as CNPq
grants #47057162013-6, #303182/2011-3 and #306166/2014-3.
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Abstract. This work introduces a multiple kernel learning (MKL)
approach for selecting and combining different spectral methods of dimen-
sionality reduction (DR).Fromapredefined set of kernels representing con-
ventional spectral DR methods, a generalized kernel is calculated by means
of a linear combination of kernel matrices. Coefficients are estimated via a
variable ranking aimed at quantifying how much each variable contributes
to optimize a variance preservation criterion. All considered kernels are
testedwithinakernelPCAframework.Theexperimentsarecarriedoutover
well-known real and artificial data sets. The performance of compared DR
approaches is quantified by a scaled version of the average agreement rate
between K-ary neighborhoods. Proposed MKL approach exploits the rep-
resentation ability of every single method to reach a better embedded data
for both getting more intelligible visualization andpreserving the structure
of data.

Keywords: Dimensionality reduction · Generalized kernel · Kernel
PCA · Multiple kernel learning

1 Introduction

The aim of dimensionality reduction (DR) is to extract a lower dimensional,
relevant information from high-dimensional data, being then a key stage within
the design of pattern recognition and data mining systems. Indeed, when using
adequate DR stages, the system performance can be enhanced as well as the data
visualization can become more intelligible. The range of DR methods is diverse,
including those classical approaches such as principal component analysis (PCA)
and classical multidimensional scaling (CMDS), which are respectively based on
variance and distance preservation criteria [1]. Recent methods of DR are focused

This work is supported by the Faculty of Engineering of Universidad Cooperativa
de Colombia-Pasto, and the ESLINGA Research Group.

c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 626–634, 2015.
DOI: 10.1007/978-3-319-25751-8 75



Multiple Kernel Learning for Spectral Dimensionality Reduction 627

on the data topology preservation. Mostly such a topology is driven by graph-
based approaches where data are represented by a non-directed and weighted
graph. In this connection, the weights of edge graphs are certain pairwise sim-
ilarities between data points, the nodes are data points, and a non-negative
similarity (also affinity) matrix holds the pairwise edge weights. Spectral meth-
ods such as Laplacian eigenmaps (LE) [2] and locally linear embedding (LLE) [3]
were the pioneer ones to incorporate similarity-based formulations. Also, given
the fact that the rows of the normalized similarity matrix can be seen as prob-
ability distributions, divergence-based methods have emerged (i.e., stochastic
neighbor embedding (SNE) [4]). Spectral approaches for DR have been widely
used in several applications such as relevance analysis [5,6], dynamic data anal-
ysis [7,8] and feature extraction [9,10]. Because of being graph-driven methods
and involving then similarities, spectral approaches can be easily represented
by kernels [11], which means that a wide range of methods can be set within a
Kernel PCA framework [12]. At the moment to choose a method, aspects such as
nature of data, complexity, aim to be reached and problem to be solved should
be taken into consideration. In this regard, as mentioned above, there exists a
variety of DR spectral methods making the selection of a method a nontrivial
task. Also, some problems may require the combination of methods so that the
properties of different methods are simultaneously taken into account to perform
the DR process and the quality of resultant embedded space is improved.

The purpose of this work is to provide a multiple kernel learning (MKL)
approach allowing for both selecting a DR method, and combining different
methods to exploit the representation ability of every single method to reach a
better embedded space than the one obtained when using only one method. This
approach starts with kernel representations of conventional spectral methods as
explained in [11]. Then, a generalized kernel is calculated by means of a linear
combination of kernel matrices whose coefficients are estimated by an adapted
variable relevance approach proposed in a previous work [6]. Similar approaches
have been applied on dynamic data clustering [13] and image segmentation [14].
The experiments are carried out over well-known data sets, namely an artificial
Spherical shell, a Swiss roll toy set, and MNIST image bank [15]. The DR
performance is quantified by a scaled version of the average agreement rate
between K-ary neighborhoods as described in [16].

The rest of this paper is organized as follows: Section 2 outlines the proposed
MKL approach for dimensionality reduction. Section 3 describes the experimen-
tal setup as well as section 4 presents the results and discussion. Finally, some
final remarks are drawn in section 5.

2 Multiple kernel Learning for Dimensionality Reduction

In mathematical terms, the goal of DR is to embed a high dimensional data
matrix Y ∈ R

D×N into a low-dimensional, latent data matrix X ∈ R
d×N , being

d < D. Then, observed data and latent data matrices are formed by N data
points, denoted respectively by yi ∈ R

D and xi ∈ R
d, with i ∈ {1, . . . , N}.
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Kernel PCA, as PCA, maximizes a variance criterion, which can be seen as an
inner product criterion when data matrix is centered. Let Φ ∈ R

Dh×N be an
unknown high dimensional representation space such that Dh ≫ D, and φ(·)
be a function that maps data from the original dimension to a higher one, such
that φ(·) : RD → R

Dh ,yi �→ φ(yi).
Given this, we can write the i-th column vector of matrix Φ as Φi =

φ(yi). Consequently, the inner product on the high-dimensional vector space
is φ(yi)�φ(yj) = k(yi,yj) = kij , where k(·, ·), followed from Mercer’s condition,
is a kernel function. In matrix terms, we get that the kernel matrix is K = Φ�Φ.

Since Kernel PCA is developed under the condition that matrix Φ has zero
mean, we must ensure this condition by centering the kernel matrix as follows:

K ←K − 1
N

K1N1�
N − 1

N
1N1�

NK +
1

N2
1N1�

NK1N1�
N

= (IN − 1N1�
N )K(IN − 1N1�

N ), (1)

where 1N and IN are N -dimensional all ones vector and identity matrix, respec-
tively.

The aim of our MKL approach is to get a generalized kernel K̃ ∈ R
N×N

from a linear combination of a set of kernels {K(1), . . . ,K(M)} to input a DR
approach based on kernels. Ensuring linear independency, the generalized kernel
can be written as:

K̃ =
M∑

m=1

αmK(m). (2)

Here, we propose to estimate the coefficients by using an adapted version
of the variable ranking approach proposed in [6]. In [13], authors apply MKL
based on a ranking vector to cluster time-varying data in a sequence of frames.
A cumulative kernel is calculated to track the dynamic behavior, having each
kernel a corresponding data matrix (one per frame). Unlike, in this approach
we have a single data matrix, and then the ranking vector should be calculated
using directly the kernel matrices. Define a matrix K ∈ R

N2×M holding the
vectorization of the kernel matrices. Likewise, suppose that a lower-rank repre-
sentation K̂ ∈ R

N2×M of matrix K̂ is known. Regarding any othonormal matrix
U = [u(1) · · · u(c)] ∈ R

M×c, we can write the lower-rank matrix as

K̂ = KU . (3)

So, the full-rank matrix can be then estimated as K = K̂U�. Similarly to
the feature extraction problem stated in [5,9], here we propose to maximize the
variance of K̂ by solving the following optimization problem:

max
U

tr(U�KKU) (4a)

s. t. U�U = Ic. (4b)
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As demonstrated in [6], previous problem has a dual version that can be
expressed as

min
U

‖K − K̂‖2F (5a)

s. t. U�U = Ic, (5b)

where ‖ · ‖F stands for Frobenius norm. Since this formulation is a quadratic
problem subject to orthonormal constraints, a feasible solutions is selecting U
as the eigenvectors related to the c largets eigenvalues of KK.

Finally, the coefficients αm of the linear combination to calculate the general-
ized kernel are the ranking values quantifying how much each column of matrix
K (each kernel) contributes to minimizing the cost function given in (5a). Again,
applying the variable relevance approach presented in [6], we can calculate the
ranking vector α = [α1, . . . , αM ] using:

α =
c∑

m=1

λmu(m) ◦ α(m), (6)

where ◦ denotes Hadamard (element-wise) product. Given the problem formu-
lation, possitivenes of α is guaranteed and then can be directly used to perform
the linear combination.

3 Experimental Setup

Databases. Experiments are carried out over three conventional data sets. The
first data set is an artificial spherical shell (N = 1500 data points and D = 3).
The second data set is a randomly selected subset of the MNIST image bank [15],
which is formed by 6000 gray-level images of each of the 10 digits (N = 1500
data points –150 instances for all 10 digits– and D = 242). The third data set is
a toy set here called Swiss roll (N = 3000 data points and D = 3). Figure 1
depicts examples of the considered data sets.

Kernels for DR. Three kernel approximations for spectral DR methods [11] are
considered. Namely, classical multidimensional scalling (CMDS), locally linear
embedding (LLE), and graph Laplacian eigenmaps (LE). CMDS kernel is the
double centered distance matrix D ∈ R

N×N so

K(1) = KCMDS = −1
2
(IN − 1N1�

N )D(IN − 1N1�
N ), (7)

where the ij entry of D is given by dij = ||yi − yj ||22 and || · ||2 stands for
Euclidean norm.

A kernel for LLE can be approximated from a quadratic form in terms of the
matrix W holding linear coefficients that sum to 1 and optimally reconstruct
observed data. Define a matrix M ∈ R

N×N as M = (IN −W)(IN −W�) and
λmax as the largest eigenvalue of M . Kernel matrix for LLE is in the form

K(2) = KLLE = λmaxIN − M . (8)
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Fig. 1. The three considered datasets.

Since kernel PCA is a maximization problem of the covariance of the the high-
dimensional data represented by a kernel, LE can be expressed as the pseudo-
inverse of the graph Laplacian L:

K(3) = KLE = L†, (9)

where L = D − S, S is a similarity matrix and D = Diag(S1N ) is the degree
matrix. All previously mentioned kernels are widely described in [11]. The simi-
larity matrix S is formed in such a way that the relative bandwidth parameter
is estimated keeping the entropy over neighbor distribution as roughly log K
where K is the given number of neighbors as explained in [17]. The number of
neighbors is established as K = 30.

As well, a RBF kernel is also considered: K(4) = KRBF whose ij entry are
given by exp(−0.5||yi − yj ||/σ2) with σ = 0.1. For all methods, input data is
embedded into a 2-dimensional space, then d = 2.

Accordingly, the MKL approach is performed considering M = 4 ker-
nels. The generalized kernel provided K̃ here as well as the individual kernels
K(1), . . . ,K(M) are tested on kernel PCA as explained in [12].

Performance Measure: To quantify the performance of studied methods, the
scaled version of the average agreement rate RNX(K) introduced in [16] is used,
which is ranged within the interval [0, 1]. Since RNX(K) is calculated at each
perplexity value from 2 to N−1, a numerical indicator of the overall performance
can be obtained by calculating its area under the curve (AUC). The AUC assesses
the dimension reduction quality at all scales, with the most appropriate weights.

Notwithstanding, it is important to note that kernels approximations are
suboptimal and input parameters are not properly set, which means that under
other settings, the quality measure and resultant embedding data might be sig-
nificantly different. Here, just basic settings are considered in order to show the
benefit of MKL rather than the individual methods.
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Fig. 2. 2D representations for selected methods over all data sets.
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Fig. 3. Performances for the three considered datasets.

4 Results and Discussion

Figure 2 shows the resultant embedding data using the corresponding kernels of
the studied methods, and the proposed generalized kernel for MKL. Comparing
resultant embedding representations with the RNX(K) curves shown in Figure 3,
we can appreciate that proposed MKL approach determines the best one among
the considered methods, since embedding data reached by MKL resemble to
the one of the best method. In this case, the best method is LE, which gets
more intelligible representation since either underling clusters are better formed
(see Figure 2(h)), or the manifold is better represented -resembling an object
unfolding (see Figures 2(g) and 2(i)).

Additionally, the generalized kernel used in a kernel PCA may improve the
quality of representation as can be appreciated from Figure 3. Indeed, the area
under the curve reached by our MKL is the highest for two of the tested data
sets. Particularly, for Swiss roll data set, our approach gets higher AUC than
the baseline LE but is not the highest one. Nonetheless, differently the other
considered methods, the RNX curve of proposed MKL approach has a right-
sided asymmetric plotting, which means that our approach is focused on specific
structures of data -in this case, the global structure.
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5 Conclusions and Future Work

In this work, a multiple kernel learning approach for dimensionality reduction
tasks is presented. The core of this approach is the generalized kernel that is
calculated by means of a linear combination of kernel matrices representing spec-
tral dimensionality reduction methods, where the coefficients are obtained from
a variable ranking based on a variance criterion. Proposed approach improves
both data visualization and preservation by exploiting the representation ability
of every single technique.

As future work, new multiple kernel learning approaches will be explored
by combining kernel representations arising from other dimensionality reduc-
tion methods, aimed at reaching a good trade-off between preservation of data
structure and intelligible data visualization.
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Abstract. Latent force models (LFM) are an hybrid approach which
combines multiple output Gaussian processes and differential equations,
where the covariance functions encode the physical models given by the
differential equations. LFM require the specification of the number of
latent functions used to build the covariance function for the outputs.
Furthermore, they assume that the output data is explained by using
the entire set of latent functions, which is not the case in many real
applications. We propose in this paper the use of an Indian Buffet process
(IBP) as a way to perform model selection over the number of latent
Gaussian processes in LFM applications. Furthermore, IBP allows us to
infer the interconnection between latent functions and the outputs. We
use variational inference to approximate the posterior distributions, and
show examples of the proposed model performance over artificial data
and a motion capture dataset.

Keywords: Indian buffet process · Latent force models · Gaussian
processes · Regression

1 Introduction

Latent force models (LFM) are an hybrid approach of Gaussian processes (GP),
where the covariance function is built from a convolution. This convolution is
performed using the Green’s function of a differential equation [1]. Hence, latent
functions may represent a physical quantity, like the action of a protein for
transcription regulation of a gene or a latent force in a system involving masses,
springs and dampers (see [1]). Despite its success for prediction, it is still unclear
how to select the number of latent functions and, how to unveil the interactions
between the latent functions and the output variables that are being modelled [5].
Several methods have been proposed in the literature for the problem of model
selection in related areas of multiple output Gaussian processes. For example in
multi-task learning, a Bayesian multi-task learning model capable to learn the
sparsity pattern of the data features base on matrix-variate Gaussian scale mix-
tures is proposed in [11]. Also, in [7], Robot inverse dynamics are approximated
by a multi-task Gaussian Process where a Bayesian information criterion is used
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for model selection. In a closely related work in multi-task Gaussian processes
[15], the problem of model selection was approached using the spike and slab
distribution as prior over the weight matrix of a linear combination of Gaussian
processes latent functions. The inference step is performed using a variational
approach.

In this paper, we use an Indian Buffet Process (IBP) [9,10] for model selection
in latent force models. The IBP is a non-parametric prior over binary matrices,
that imposes an structure over the sparsity pattern of the binary matrix. It has
previously been used for introducing sparsity in linear models [12]. We formulate
a variational inference procedure for inferring posterior distributions over the
structure of the relationships between output functions and latent processes, by
combining ideas from [4] and [8]. We show examples of the model using artificial
data and motion capture data.

2 Latent Force Models

In a multi-variate regression setting the likelihood model for each output can be
expressed as yd(t) = fd(t) + wd(t), where t ∈ R

+ is the input time, {yd(t)}D
d=1

is the collection of D outputs, wd(·) is an independent noise process and each
fd(t) is given by

fd(t) =
Q∑

q=1

Sd,q

∫ t

0

Gd(t − τ ′)uq(τ ′) d τ ′, (1)

where Gd(·) is a smoothing function or smoothing kernel, {uq(t)}Q
q=1 are orthogo-

nal processes, and the variables {Sd,q}D,Q
d=1,q=1 measure the influence of the latent

function q over the output function d. We assume that each latent process uq(t)
is a Gaussian process with zero mean function and covariance function kq(t, t′).

2.1 Covariance Functions

Due to the linearity in expression (1), the set of processes {fd(t)}D
d=1 follows a

joint Gaussian process with mean function equal to zero, and covariance func-
tion given by kfd,fd′ (t, t′) =

∑Q
q=1 Sd,qSd′,qkfq

d ,fq

d′ (t, t
′), where kfq

d ,fq

d′ (t, t
′) is

defined as

kfq
d ,fq

d′ (t, t
′) =

∫ t

0

∫ t′

0

Gd(t − τ)Gd′(t′ − τ ′)kq(τ, τ ′) d τ d τ ′. (2)

For some forms of the smoothing kernel Gd(·), and the covariance function kq(·),
the covariance functions kfq

d ,fq

d′ (t, t
′) can be worked out analytically. Additio-

nally, we assume the following form for kq(t, t′)

kq(t, t′) = exp
(

− (t − t′)2

l2q

)
, (3)

where lq is the length-scale associated to latent function q. Next, we briefly
describe two different smoothing kernels used in this work.
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Gaussian Smoothing (GS) Function. If we assume that the smoothing
kernel Gd(·) has the following form

Gd(t, t′) =
p
1/2
d

(2π)1/2
exp

[
−pd

2
(t − t′)2

]
,

where pd is a precision value. Although we refer to this function as GS function, it
has been shown by [2] that this Green’s function can be derived from a particular
form of a partial differential equation that represents a diffusion process.

Second Order Differential Equation (ODE2). In this scenario, we assume
that the data can be explained using a second order differential equation related
to a mechanical system

md
d2fd(t)

dt2
+ Cd

dfd(t)
dt

+ Bdfd(t) =
Q∑

q=1

Sd,quq(t), (4)

where {md}D
d=1 are mass constants, {Cd}D

d=1 are damper constants, and {Bd}D
d=1

are spring constants. Without loss of generality, the value of the mass md,
for all d, is set to one. Now, assuming initial conditions equal to zero, the
solution for the Green’s function associated to (4) is given by Gd(t − t′) =
1

ωd
exp [−αd(t − t′)] sin [ωd(t − t′)] , where αd is the decay rate and ωd is the nat-

ural frequency. Both variables are defined as αd = Cd/2 and ωd =
√

4Bd − C2
d/2,

as explained in [2]. In next section, we describe the proposed method for model
selection in latent force models.

3 Model

The model selection approach presented here follows ideas from the variational
formulation for convolved multiple output Gaussian processes presented in [4],
and the variational formulation for the Indian Buffet Process proposed in [8].
We start by defining the likelihood as p(y|u,X,θ,S,Z) =

∏D
d=1 N (yd|fd,Σwd

),
where Σwd

is the covariance matrix associated to noise process at output d,
u = {uq}Q

q=1, S = [Sd,q] ∈ �D×Q, Z = [Zd,q] ∈ {0, 1}D×Q and each output
vector fd is defined as

⎡
⎢⎣

fd(x1)
...

fd(xN )

⎤
⎥⎦ =

⎡
⎢⎢⎣

∑Q
q=1 Zd,qSd,q

∫
X Gd,q(x1 − z)uq(z)dz

...∑Q
q=1 Zd,qSd,q

∫
X Gd,q(xN − z)uq(z)dz

⎤
⎥⎥⎦ .

For each latent function uq(·), we define a set of auxiliary variables or inducing
variables uq ∈ R, obtained when evaluating the latent function uq at a set of
M inducing inputs {zm}M

m=1. We refer to the set of inducing variables using



638 C. Guarnizo et al.

u = {uq}Q
q=1. Following ideas used in several computationally efficient Gaus-

sian process methods, we work with the conditional densities p(u|u), instead of
the full Gaussian process p(u), as in [3]. The conditional density of the latent
functions given the inducing variables can be written as

p(u|u) =
Q∏

q=1

N (uq|k�
uq,uq

K−1
uq,uq

uq, kuq,uq
− k�

uq,uq
K−1

uq,uq
kuq,uq

),

with k�
uq,uq

= [kuq,uq
(z, z1), kuq,uq

(z, z2), . . . , kuq,uq
(z, zM )]. The prior over u

has the following form p(u) =
∏Q

q=1 N (uq|0,Kuq,uq
). For the elements of S we

use an spike and slab prior as follows [12]

p(Sd,q|Zd,q, γd,q) =Zd,qN (Sd,q|0, γ−1
d,q) + (1 − Zd,q)δ(Sd,q),

where Zd,q are the elements of the binary matrix Z that follows an Indian
Buffet Process Prior. Thus, the prior for Zd,q is given by p(Zd,q|πq) =
Bernoulli(Zd,q|πq). With πq =

∏Q
j=1 υj and p(υj) = Beta(α, 1). To apply the

variational method, we write the joint distribution for Z and S as

p(S,Z|υ,γ) =
D∏

d=1

Q∏
q=1

[πqN (Sd,q|0, γ−1
d,q)]Zd,q [(1 − πq)δ(Sd,q)]1−Zd,q ,

where hyperparameters γd,q follow p(γ) =
∏D

d=1

∏Q
q=1 Gamma(γd,q|aγ

d,q, b
γ
d,q).

According to our model, the complete likelihood follows as

p(y,X, u,S,Z,υ,γ,θ) =p(y|X, u,S,Z,υ,γ,θ)p(u|θ)p(S,Z|γ,υ)p(υ)p(γ),

where θ are the hyperparameters regarding the type of covariance function.

3.1 Variational Inference

For the variational distribution, we use a mean field approximation, and assume
that the terms in the posterior factorize as q(u) =

∏Q+
q=1 q(uq), q(S,Z) =∏D

d=1

∏Q+
q=1 q(Sd,q|Zd,q)q(Zd,q), q(γ) =

∏D
d=1

∏Q+
q=1 q(γd,q), q(υ) =

∏Q+
q=1 q(υq).

where Q+ represents the level of truncation, this indicates that the number of
latent functions Q is estimated from the range [1,Q+] (see [8], for details). Fol-
lowing the same formulation used by [3], the posterior takes the form q(u,u,S,
Z,υ,γ) = p(u|u) q(u) q(S,Z) q(γ)q(υ). Thus, the lower bound FV (q(u), q(S,Z),
q(γ), q(υ)) that needs to be maximized, is given as [6]

∫
q(u,u,S,Z,υ,γ) log

{
p(y,X, u,S,Z,υ,γ,θ)

q(u,u,S,Z,υ,γ)

}
du dudSdZdυ dγ.

Updates for moments of each variational distribution are obtained by calculating
the derivative of the expression above with respect to each moment and setting
the derivative equal to zero.
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4 Results

In this section, we show results from different datasets, including artificial data
and motion capture data. For the artificial dataset, we are interested in recov-
ering the known interconnection matrix (Z) between the latent functions and
outputs. For the real datasets, we analyse the regression performance compared
to its non-sparse version.

4.1 Synthetic Data

To show the ability of the proposed method to recover the underlying structure
between the output data and the latent functions, we apply the method to a
toy multi-output dataset. Toy data is generated from the model explained in
section 3, with the GS smoothing kernel, D = 3, Q = 2 and α = 1. For GS
smoothing kernel, we set the precision values to p1 = 0.01, p2 = 1/120, and
p3 = 1/140. We use the following values for matrices Z, and S,

Z =

⎡
⎣

0 1
1 0
1 0

⎤
⎦ , S =

⎡
⎣

0 1.48
−3.19 0
6.87 0

⎤
⎦ .

For the covariance functions kq(t, t′) of the latent functions, we choose the length-
scales as l1,1 = 0.1 and l2,1 = 0.2. Next, we sample the model and generate 30
data points per output, evenly spaced in the interval [0, 1]. We assume that
each process wd(t) is a white Gaussian noise process with zero mean, and stan-
dard deviation equal to 0.1. The approximate model is then estimated using the
proposed variational method with Q+ = 4 and α = 1. Additionally, for the vari-
ational distribution of latent functions, we set M = 15 inducing points evenly
space along the output interval. Fig. 1 shows the results of model selection for
this experiment. Hinton diagram (Fig. 1a) shows that E[Z] approximates well
Z. Moreover, the posterior mean functions for each output closely approximate
the data, as shown in Figures 1b to 1d.

4.2 Human Motion Capture Data

In this section, we evaluate the performance of the proposed method compared to
the Deterministic Training Conditional Variational (DTCVAR) inference proce-
dure proposed in [3]. DTCVAR also uses inducing variables for reducing compu-
tational complexity within a variational framework, but assumes that Zd,q = 1,
for all q, and d. Hyperparameters for kernel functions are learned using scaled
conjugate gradient optimization. In this case, we use the Carnegie Mellon Uni-
versity’s Graphics Lab motion-capture motion capture database 1. Specifically,
we consider the movements “walking” and “balance” from subject 02 motion 01
and subject 49 motion 18, respectively. From the 62 channels, we select 15 for

1 This dataset is available at http://mocap.cs.cmu.edu

http://mocap.cs.cmu.edu
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(a) Hinton diagram
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(c) Ouput 2
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(d) Ouput 3

Fig. 1. Results for model selection for example 1. Hinton diagram for E[Zd,q] and,
mean and two standard deviations for the predictions over the three outputs.

this experiment. We assume a level of truncation Q+ = 9, and make a compari-
son between the GS and the ODE2 covariance functions. The latter covariance
function is used because human motion data consists of recordings of an skele-
ton’s joint angles across time, which summarize the motion. For performance
comparison purposes, we use standardized mean square error (SMSE) and mean
standardized log loss (MSLL) as defined in [14]. Table 1 shows the performance
comparison, where best performance is obtained using the method proposed
here. Figure 2 shows the Gaussian process mean and variance for the predictive

Table 1. Standardized mean square error (SMSE) and mean standardized log loss
(MSLL) for different models and different kernel functions.

Subject ODE2 IBP + ODE2 GS IBP + GS

02 SMSE 0.5463 0.2087 0.5418 0.1790
SMLL -0.6547 -1.2725 -0.7863 -1.1993

42 SMSE 0.9448 0.1013 - -
SMLL -0.0295 -1.5939 - -

distribution of six outputs from subject 02 using IBP + ODE2. In most of the
predictions, the model explains the testing data points with adequate accuracy,
taking into account that the number of latent functions inferred by our approach
is 2, while DTCVAR approach uses 9 latent functions.



IBP for Model Selection in Latent Force Models 641

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

(a) Channel 5 Root

0 0.5 1 1.5 2 2.5 3
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

(b) Channel 2 Lower Back

0 0.5 1 1.5 2 2.5 3
−5

−4

−3

−2

−1

0

1

(c) Channel 3 Lower back

0 0.5 1 1.5 2 2.5 3
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

(d) Channel 2 Thorax

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(e) Channel 3 Thorax

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

(f) Channel 2 Head

Fig. 2. Mean (solid line) and two standard deviations (gray shade) for predictions over
six selected outputs from IBP + ODE2 trained model. Data points are represented by
dots.

5 Conclusions

We have introduced a new variational method to perform model selection in
latent force models. Our main aim was to identify the relationship between the
latent functions and the outputs in LFM applications. The proposed method
achieved comparable results to the DTCVAR method, in which, a full connec-
tivity between latent functions and output functions is assumed. This makes our
method suitable to applications where the complexity of the model should be
reduced. The proposed model selection method can be applied in other applica-
tions that involve the use of a covariance function based on differential equations,
such as inferring the biological network in gene expression microarray data (e.g.
see [13]).
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4. Álvarez, M.A., Luengo, D., Titsias, M.K., Lawrence, N.D.: Efficient multioutput
Gaussian processes through variational inducing kernels. In: Teh, Y.W., Titter-
ington, M. (eds.) Proceedings of the Thirteenth International Conference on Arti-
ficial Intelligence and Statistics. JMLR W&CP 9, Chia Laguna, Sardinia, Italy,
pp. 25–32, May 13–15, 2010
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José Hernández-Palancar1, and Claudia Feregrino-Uribe2

1 Centro de Aplicaciones de Tecnoloǵıas de Avanzada (CENATAV),
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Abstract. In this paper, we propose a novel algorithm for mining
Sequential Patterns-based Rules, called SPaR-FTR. This algorithm
introduces a new efficient strategy to generate the set of sequential rules
based on the interesting rules of size three. The experimental results show
that the SPaR-FTR algorithm has better performance than the main
algorithms reported to discover frequent sequences, all they adapted to
mine this kind of sequential rules.

Keywords: Data mining · Sequential patterns · Rule mining

1 Introduction

An important part of the Sequential Patterns-based Classification (SPaC) is
the process of mining the set of classification rules, called SPaRs (Sequential
Patterns-based Rules). These rules are mined from a class-transaction dataset,
where a SPaR describes an implicative co-occurring relationship between a
sequence α and a class c.

It is very common to confuse sequences of items with itemsets. In itemsets,
an item can occur at most once but in a sequence, an itemset can occur multiple
times. Additionally, in itemset mining, (abc) = (cba) but in sequence mining,
〈(ab) c〉 �= 〈c (ab)〉.

Sequential Patterns-based Classification has been used in different tasks, for
example: text classification [1], document-specific keyphrase extraction [2], text
segmentation [3,4], web document classification [5,6], determination of DNA
splice junction types [7], e-learning [8], automatic image annotation [9], among
others.

In SPaC, it is assumed that a set of items I = {i1, i2, ..., il}, a set of classes
C, and a set of transactions T are given, where each transaction t ∈ T consists
of a sequence 〈α1 α2 ... αn〉, so that αi ⊆ I, and a class c ∈ C. The Support of
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 643–650, 2015.
DOI: 10.1007/978-3-319-25751-8 77



644 J.K. Febrer-Hernández et al.

a sequence α, denoted as Sup(α), is the fraction of transactions in T containing
α (see Eq. 1).

Sup(α) =
|Tα|
|T | (1)

where Tα is the set of transactions in T containing α (see Def. 1) and | · | is
the cardinality operator.

Definition 1. Let α = 〈α1 α2 ... αn〉 and β = 〈β1 β2 ... βm〉 be sequences, we
will say that α is contained in β if there exists integers 1 ≤ j1 < j2 < ... < jn ≤ m
such that α1 ⊆ βj1 , α2 ⊆ βj2 , ..., αn ⊆ βjn , with βji ∈ β.

A SPaR is an implication of the form α ⇒ c where α is a sequence and c ∈ C.
The size of a SPaR is defined as its cardinality, a SPaR containing k itemsets
(including the class) is called a k-SPaR. The rule α ⇒ c is held in T with certain
Support and Confidence (see Eqs. 2 and 3). If both Support and Confidence
values of a SPaR r : α ⇒ c are greater than to the user-specified thresholds, r is
declared to be an interesting SPaR.

Sup(α ⇒ c) = Sup(α ⊗ 〈c〉) (2)

where ⊗ is the concatenation operator (see Def. 2).

Conf(α ⇒ c) =
Sup(α ⇒ c)

Sup(α)
(3)

Definition 2. Let α = 〈α1 α2 ... αn〉 and β = 〈β1 β2 ... βm〉, we will call the
sequence 〈α1 α2 ... αn β1 β2 ... βm〉 the concatenation of α and β, and we will
use the operator ⊗ to indicate it.

In this paper, we introduce an efficient strategy to generate the set of SPaRs
based on the interesting rules of size three. The rest of the paper is organized as
follows. The next section describes the related work. Our proposal are presented
in Section three. In the fourth section the experimental results are shown. Finally,
the conclusions and future works are given in section five.

2 Related Work

In the last decades, some works have used sequential patterns to increase the
accuracy of classifiers. In these works, the extracted sequential patterns are con-
sidered to be important features and are used to build the classification model.
However, there are not reported algorithms (with pseudo code or source code
included) that directly compute the set of SPaRs. We assume that this is due to
these algorithms can be obtained from the sequential pattern mining algorithms,
without any algorithmic complications.

In general, most of the sequential pattern mining algorithms can be split
into two main groups: (1) apriori-like algorithms (AprioriAll, AprioriSome and
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DynamicSome [10], GSP [11], SPIRIT [12]) and (2) pattern-growth based algo-
rithms (PrefixSpan [13], LAPIN [14], PRISM [15]).

In [11], the authors proposed the GSP algorithm, which includes time con-
strains and taxonomies in the mining process. In the experiments, the authors
show that GSP runs 2 to 20 times faster than apriori-like algorithms [10]. Fol-
lowing similar ideas, the use of regular expressions was introduced in the SPIRIT
algorithm [12].

The PrefixSpan algorithm, proposed in [13], is based on recursively con-
structing the patterns by growing on the prefix, and simultaneously, restricting
the search to projected datasets. This way, the search space is reduced at each
step, allowing for better performance in the presence of small support thresholds.

PRISM, the algorithm introduced by Karam Gouda in [15], uses a vertical
approach for enumeration and support counting, based on the novel notion of
primal block encoding, which is based on prime factorization theory.

The LAPIN (LAst Position INduction) algorithm [14] uses an item-last-
position list and a prefix border position set instead of the tree projection or
candidate generate-and-test techniques introduced so far.

Our proposal also stores a list of occurrence positions but unlike LAPIN
that stores the last position of each single item in each transaction, SPaR-FTR
stores for each interesting sequence α, and for each transaction t, a list with the
occurrence positions of α in t.

3 SPaR-FTR Algorithm

In this section, we describe the SPaR-FTR algorithm, which uses the Support
and Confidence measures to evaluate the candidate SPaRs and generates all
candidate SPaRs from the set of interesting 3-SPaRs. Let r : α ⇒ c be an
interesting SPaR and T be a transactional dataset, SPaR-FTR stores for each
t ∈ T , a list Lt with the occurrence positions of α in t (see Def. 3).

Definition 3. Let α = 〈α1 α2 ... αn〉 and β = 〈β1 β2 ... βm〉 be sequences such
that α is contained in β (i.e. exists integers 1 ≤ j1 < j2 < ... < jn ≤ m such
that α1 ⊆ βj1 , α2 ⊆ βj2 , ..., αn ⊆ βjn), we will call occurrence position of α in
β (occP (α, β)) to:

– the set of positions of all possible βjn in β, if | α |≤ 2;
– the least position of all possible βjn in β, if | α |> 2.

In Table 1, five transactions and the occurrence positions of three sequences of
different sizes are shown. Notice that when | α |> 2 (e.g. 〈a f b〉 in transaction 2)
we could also have several βjn (e.g. (b : 4) and (b : 6)) but the proposed strategy
to generate the candidate rules, only require the least of all.

Similar to the reported algorithms for frequent sequence mining [10,13–15], in
a first step, SPaR-FTR computes all the interesting 2-SPaRs using the Support
and Confidence measures to evaluate them. As we mentioned above, SPaR-FTR
stores for each interesting SPaR r : α ⇒ c (of any size) and for each transaction
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Table 1. Example of five transactions and the occurrence positions of three sequences
off different sizes.

Tid Sequence 〈b〉 〈a f〉 〈a f b〉
1 〈a b〉 (b:2)
2 〈cd a ef b cd ab〉 (b:4), (b:6) (f:3) (b:4)
3 〈af f〉 (f:2)
4 〈af ef bf〉 (b:3) (f:2), (f:3) (b:3)
5 〈b〉 (b:1)

t ∈ T , a list with the occurrence positions of α in t. Later, in a second step,
SPaR-FTR obtains the set of 3-SPaRs (see Alg. 1) by combining the 2-SPaRs
belonging to the same class. Unlike the reported algorithms mentioned above,
which generates the k-SPaRs either by combining the interesting (k − 1)-SPaRs
with a common k − 2 prefix or using a depth first search strategy, SPaR-FTR
computes the k-SPaRs (k > 3) by combining the interesting (k − 1)-SPaRs and
the interesting 3-SPaRs obtained in the second step (see Alg. 2).

Algorithm 1. Pseudo code for computing the interesting 3-SPaRs.
Input: Transactional dataset T , Support threshold minSup and Confidence

threshold minConf .
Output: Set of interesting 3-SPaRs.

L1 ← {twoInterestingSPaR(T )}1

L2 ← ∅2

foreach c ∈ C do3

foreach (r1 : 〈i〉 ⇒ c) ∈ L1 and (r2 : 〈j〉 ⇒ c) ∈ L1 do4

foreach t ∈ T do5

if ∃op1 > op2 (op1 ∈ occP (〈j〉, t) and op2 ∈ occP (〈i〉, t)) then6

r3 ← 〈i〉 ⊗ 〈j〉 ⇒ c7

Computes support Sup and confidence Conf of r38

if (r3.Sup > minSup) and (r3.Conf > minConf) then9

L2 ← L2 ∪ {r3}10

end11

end12

end13

end14

end15

return L216

The main differences between algorithms 1 and 2 are in lines 4 and 6. In line
4 of Algorithm 1, the 2-SPaRs of the same class are combined to generate the
candidate 3-SPaRs while in Algorithm 2, the (k − 1)-SPaRs are combined with
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Algorithm 2. Pseudo code for computing the interesting k-SPaRs
Input: Set of interesting (k − 1)-SPaRs, set of interesting 3-SPaRs, Support

threshold minSup and Confidence threshold minConf .
Output: Set of interesting k-SPaRs.

L1 ← (k − 1)-SPaRs1

L2 ← 3-SPaRs2

L3 ← ∅3

foreach c ∈ C do4

foreach (r1 : 〈α1 ... αk−1〉 ⇒ c) ∈ L1 and (r2 : 〈αk−1 β〉 ⇒ c) ∈ L2 do5

foreach t ∈ T do6

if ∃op1 (op1 ∈ occP (〈αk−1 β〉, t) and op1 > occP (〈α1 ... αk−1〉, t))7

then

r3 ← 〈α1 ... αk−1〉 ⊗ 〈β〉 ⇒ c8

Computes support Sup and confidence Conf of r39

if (r3.Sup > minSup) and (r3.Conf > minConf) then10

L3 ← L3 ∪ {r3}11

end12

end13

end14

end15

end16

return L317

the 3-SPaRs to generate the candidate k-SPaRs. In case of line 6, the difference
is a direct consequence of the definition of occurrence position (see Def. 3 in this
section.

4 Experimental Results

In this section, we present the results of our experimental comparison between
SPaR-FTR and the main sequence mining algorithms reported in the literature
(GSP [10], PrefixSpan [13], LAPIN [14] and PRISM [15]), all them adapted to
compute the interesting SPaRs. All codes (implemented in ANSI C standard)
were provided by their authors and adapted by us to compute the interesting
SPaRs.

The experiments were conducted using several document collections, three
in our case: AFP (http:// trec.nist.gov), TDT (http://www.nist.gov) and Reuter
(http:// kdd.ics.uci.edu). The characteristics of these datasets are shown in Table
2. Our tests were performed on a PC with an Intel Core 2 Quad at 2.50 GHz
CPU with 4 GB DDR3 RAM, running on Windows 7 system.

In the same way as in other works [10], for all used datasets, sentences are
distinguished and ordered in each document. This means that the document is

http://trec.nist.gov
http://www.nist.gov
http://kdd.ics.uci.edu
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Table 2. Tested datasets characteristics.

Dataset #instances #classes

AFP 711 22
TDT 2978 92
Reuter 21578 115

considered as being an ordered list of sentences. Each sentence is considered
as being an unordered set of words. If we compare the market basket analysis
problem with our approach, then a document plays the role of a client, the
sentences from a document play the role of all the transactions for this client,
the position of the sentence within the document plays the role of the date,
and the set of words from a sentence plays the role of a list of bought items.
Therefore, we represented the document as a sequence of itemsets where each
one corresponds with the set of words of each sentence.
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Fig. 1. Runtime comparison using AFP, TDT and Reuter document collections.

In order to evaluate the performance of the SPaR-FTR algorithm, we process
the three document collections with different support thresholds. In general,
document collections are very sparse (with low transaction overlapping degree).
Therefore, low Support thresholds are required, mainly in Reuter collection,
where there are 21578 transactions and 115 classes.

In figures 1(a), 1(b) and 1(c), we show the result of all evaluated algorithms
using different Support thresholds and a Confidence threshold set to 0.5. We do
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not test different Confidence values because the volume of the SPaRs depends
on the Support threshold and we are evaluating the efficiency of our algorithm
to generate the set of SPaRs. Notice that we add the characters “ C” to the
name of the algorithms to specify that they are the adaptation of the original
sequence mining algorithms mentioned above.

In the three experiments, the SPaR-FTR algorithm shows the best perfor-
mance of all evaluated algorithms. The main reason of this result is that the
candidates generation strategy, introduced in SPaR-FTR, generates less can-
didate rules than the other algorithms. As another experiment, we count the
number of candidate SPaRs generated for each evaluated algorithm. In Table 3,
we show the approximate results, in thousands, obtained on Reuter collection.

Table 3. Approximate number of candidate SPaRs, in thousands, obtained on Reuter
collection.

Support thresholds (%)
Algorithms 10 5 1 0.05
GSP C 25.3 46.2 80.9 112.3
PrefixSpan C 23.9 41.1 73.6 104.2
LAPIN C 21.3 37.4 68.7 97.5
PRISM C 19.3 34.6 64.6 91.2
SPaR-FTR 16.2 28.8 52.1 71.9

Notice that SPaR-FTR generates 15 % less candidate rules (for all Support
thresholds) than PRISM C algorithm, which has the second better performance.
Therefore, based on our experiments we can conclude that SPaR-FTR has good
scalability with respect to the number of transactions and with respect to the
decreasing of the Support threshold.

5 Conclusions

In this paper, we have proposed a novel algorithm for mining Sequential Patterns-
based Rules, called SPaR-FTR, which introduces a new efficient strategy to
generate the set of SPaRs based on the interesting rules of size three. The exper-
imental results show that the SPaR-FTR algorithm has better performance than
the main algorithms reported to discover frequent sequences, all they adapted
to mine this kind of sequential rules.

As future work, we are going to study the problem of producing SPaRs with
multiple labels, it means rules with multiple classes in the consequent. This kind
of rules could be useful for problems where some documents can belong to more
than one topic.
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4. Garćıa-Hernández, R.A., Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A fast
algorithm to find all the maximal frequent sequences in a text. In: Sanfeliu, A.,
Mart́ınez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol.
3287, pp. 478–486. Springer, Heidelberg (2004)

5. Shettar, R.: Sequential Pattern Mining from Web Log Data. International Journal
of Engineering Science and Advanced Technology 2, 204–208 (2012)

6. Haleem, H., Kumar, P., Beg, S.: Novel frequent sequential patterns based proba-
bilistic model for effective classification of web documents. In: 2014 International
Conference on Computer and Communication Technology (ICCCT), pp. 361–371
(2014)

7. Berzal, F., Cubero, J.C., Sánchez, D., Serrano, J.M.: ART: A Hybrid Classification
Model. Mach. Learn. 54(1), 67–92 (2004)

8. Faghihi, U., Fournier-Viger, P., Nkambou, R., Poirier, P.: A generic episodic learn-
ing model implemented in a cognitive agent by means of temporal pattern mining.
In: Chien, B.-C., Hong, T.-P., Chen, S.-M., Ali, M. (eds.) IEA/AIE 2009. LNCS,
vol. 5579, pp. 545–555. Springer, Heidelberg (2009)

9. Teredesai, A.M., Ahmad, M.A., Kanodia, J., Gaborski, R.S.: CoMMA: A Frame-
work for Integrated Multimedia Mining Using Multi-relational Associations.
Knowl. Inf. Syst. 10(2), 135–162 (2006)

10. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering, pp. 3–14 (1995)

11. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: Proceedings in the 5th International Conference Extend-
ing Database Technology, pp. 3–17 (1996)

12. Garofalakis, M., Rastogi, R., Shim, K.: SPIRIT: Sequential pattern mining with
regular expression constraints. In: Proceedings of the 25th International Conference
on Very Large Data Bases, pp. 223–234 (1999)

13. Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal U., Hsu, M.:
PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern
growth. In: Proceedings of the 17th International Conference on Data Engineering,
pp. 215–224 (2001)

14. Yang, Z., Wang, Y., Kitsuregawa, M.: LAPIN: effective sequential pattern mining
algorithms by last position induction for dense databases. In: Kotagiri, R., Radha
Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol.
4443, pp. 1020–1023. Springer, Heidelberg (2007)

15. Gouda, K., Hassaan, M., Zaki, M.J.: Prism: An effective approach for frequent
sequence mining via prime-block encoding. J. Comput. Syst. Sci. 76(1), 88–102
(2010)

16. Yu, X., Li, M., Lee, D.G., Kim, K.D., Ryu, K.H.: Application of closed gap-
constrained sequential pattern mining in web log data. In: Zeng, D. (ed.) Advances
in Control and Communication, LNEE, vol. 137, pp. 649–656. Springer, Heidelberg
(2012)

17. Liao, V., Chen, M.: An efficient sequential pattern mining algorithm for motifs
with gap constraints. In: Proceedings of the 2012 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM) (2012)



Online Kernel Matrix Factorization
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Abstract. Matrix factorization (MF) has shown to be a competitive
machine learning strategy for many problems such as dimensionality
reduction, latent topic modeling, clustering, dictionary learning and
manifold learning, among others. In general, MF is a linear modeling
method, so different strategies, most of them based on kernel methods,
have been proposed to extend it to non-linear modeling. However, as with
many other kernel methods, memory requirements and computing time
limit the application of kernel-based MF methods in large-scale prob-
lems. In this paper, we present a new kernel MF (KMF). This method
uses a budget, a set of representative points of size p � n, where n is
the size of the training data set, to tackle the memory problem, and uses
stochastic gradient descent to tackle the computation time and memory
problems. The experimental results show a performance, in particular
tasks, comparable to other kernel matrix factorization and clustering
methods, and a competitive computing time in large-scale problems.

Keywords: Feature space factorization · Kernel matrix factorization ·
Large-scale learning

1 Introduction

Matrix factorization (MF) is a popular method in machine learning. The goal of
matrix factorization is to find two (or more) matrices, which multiplied better
approximate an original input matrix. There different approaches to perform
MF, which include principal component analysis (PCA), non-negative matrix
factorization (NMF) [9], singular value decomposition (SVD), and independent
component analysis (ICA) [7]. All of them have proved their good performance
in different machine learning problems such as dimensionality reduction, mani-
fold learning, dictionary learning and clustering. However, the majority of MF
methods are linear methods, which is an important limitation when dealing with
data exhibiting non-linear dependencies. Kernel methods are an important class
of machine learning methods, which address the problem of non-linear pattern
modeling by first mapping the data to a higher dimensional feature space induced
by a kernel, and then finding linear patterns that correspond to non-linear pat-
terns in the original space. Methods like the support vector machines are widely
used and show a very high performance, compared to other supervised methods.
Many linear methods can take advantage of kernels by means of the kernel trick.
c© Springer International Publishing Switzerland 2015
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Kernel matrix factorization methods such as kernel matrix factorization (KMF)
[6,19], kernel PCA (KPCA) [14], kernel SVD (KSVD) [16], have demonstrated
their capability extracting non-linear patterns that is translated in better per-
formance when compared to their linear counterparts. The drawback of such
kernel methods is their high computational cost, the time and space required to
compute kernel matrices is quadratic in terms of the number of examples. This
leads to the impossibility of directly using these methods when the number of
samples is large. The purpose of this paper is to present online kernel matrix
factorization (OKMF), a KMF algorithm that is able to handle the matrix fac-
torization in a kernel induced feature space with large-scale data sets, under a
reasonable amount of time and storage resources. OKMF addresses the memory
problem imposing a budget restriction, this is, restricting the number of samples
needed to represent the feature space base. With respect to the computation
time, OKMF uses a stochastic gradient descent (SGD) strategy for optimizing
its cost function [2]. SGD has proven to be a fast alternative to solve optimization
problems when the amount of samples is large. The method was evaluated in a
clustering task of 5 data sets that range from medium to large-scale. We com-
pared OKMF with other kernel and large-scale clustering methods. The paper
is organized as follows, the next section present the related work to KMF. In
section 3 we present OKMF derivation and algorithm. In section 4, we present
the experiments, results and their analysis. Finally, in section 5 we present the
conclusions of the work.

2 Related Work

This section shows a short review of the current development of kernel matrix
factorization. Basically KMF methods extend the linear matrix factorization
methods with kernels in order to achieve a factorization able tot extract non-
linear patterns. As with SVM, the kernel trick allows to extend linear methods
to work in a high-dimensional space, called feature space, without calculating
an explicit mapping to that space. One of the first methods to extend MF with
kernels is the work of Zhang et al. [19] that considers a factorization of the form
φ(X)T φ(X) = φ(X)T WφH. This method uses a modification of the multiplica-
tive rules proposed by Lee et al. [9]. In the field of recommender systems the
work of Rendle et al. [13] propose to use a regularized kernel matrix factor-
ization in order to create a recommender system. Jun et al. [8] proposed two
methods, P-NMF and KP-NMF, which are projective variations of NMF [9] and
KMF [19]. Another of the seminal works in the field of KMF is the method pro-
posed by Ding et al. [6], this method uses a different factorization of the form
Φ(X) = Φ(X)WGT . An et al. [1] proposes a method for multiple kernel factor-
ization. The work of Pan et al. [12] proposes a method with a self-constructed
kernel that preserves the non-negativity restriction in feature space. The article
presented by Li et al. [10] uses a similar approach to Ding et al., but constructs
a new kernel that represent, in a non-supervised approach, the manifold of the
feature space. The work of Li and Ngom [11] provides some modifications to
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classical KMF [6,19], in order to simplify the calculations. Xia et al. [18] pro-
pose a robust kernel matrix factorization using the same factorization as in [6],
but instead the cost function uses a different norm. All the mentioned works use
the complete kernel matrix to compute the KMF, and therefore, they are inap-
plicable to large scale problems. This motivates the development of of a kernel
matrix factorization method capable of dealing with large scale problems. Select-
ing a sample of the data, is one of the most common approaches for reducing
time and memory requirements for machine learning methods. This approach
has been used to improve the scalability of kernel methods through a strategy
called learning in a budget [4]. In this strategy, the budget is a representative set
of the training set with only p � n, samples, where n is total number of samples
in the training data set. The kernel is then calculated between the training set
and the budget, reducing the size from O(n2) to O(np). Following this approach,
Wang et al. proposed ECKF a KMF method [17]. This method uses a subset
of the data in order to compute a KMF. Another related method is presented
the work of Chen and Cai on spectral clustering[3], which uses a subset of data
samples called landmarks to calculate a sparse representation of data based on
kernels.

3 Online Kernel Matrix Factorization

In the following discussion we assume a kernel function k : X × X → IR, which
induces a mapping Φ : X → F from the problem space, X , to a feature space, F .
For simplicity’s sake, we assume X = IRmand F = IRn. Also, a set of l samples
in the problem space is noted as X corresponding to a matrix in IRm×l, and a
subset, called a budget, is noted as B ∈ IRm×p.

To understand OKMF, let’s consider a factorization of the feature space into
a product of a linear combination of feature space vectors and a low-dimensional
latent space representation.

Φ(X) = Φ(B)WH (1)

where Φ(X) ∈ IRn×l is the mapping of all data into a feature space , Φ(B) ∈
IRn×p is the mapping of the budget B into the feature space and B satisfies
the budget restriction, i.e, |B| � |X|. W ∈ IRp×r is a weight matrix . Finally,
H ∈ IRr×l is the latent space representation for every element of Φ(X).
The previous factorization lead us to the following optimization problem:

min
W,hi

Ji(W,hi) = min
W,hi

1
2
‖Φ(xi) − Φ(B)Whi‖2 +

λ

2
‖W‖2F +

α

2
‖hi‖2 (2)

To find the optimization rules for SGD, the partial derivatives of the cost in
equation 2 with respect W and hi.

∂Ji(W,hi)
∂hi

= WT Φ(B)T Φ(xi) − WT Φ(B)T Φ(B)Whi + αhi (3)
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∂Ji(W,hi)
∂W

= Φ(B)T Φ(xi)hT
i − Φ(B)T Φ(B)Whih

T
i + λW (4)

In the previous equations we can replace Φ(B)T Φ(B) by the matrix k(B,B) ∈
IRp×p defined as k(B,B) = {k(bi, bj}i,j , where bi ∈ IRm corresponds to the i-th
column of B. In the same way we can replace Φ(B)T Φ(xi) by k(B, xi) defined
in a similar way. This means that we can avoid computing the explicit mapping
of data into feature space and use the more common kernel-trick approach. The
update rule for ht is a closed formula resulting from equating the derivative in
equation 3 to zero.

ht = (WT
t−1k(B,B)Wt−1 − αI)−1WT

t−1k(B, xt) (5)
The update rule for Wt is the standard SGD rule

Wt = Wt−1 − γ(k(B, xt)ht
T − k(B,B)Wt−1htht

T + λWt−1) (6)
With the rules found in equation 5 and equation 6 we can design an algo-

rithm to compute the feature space factorization. It takes as arguments the data
matrix, budget matrix, the learning rate γ, regularization parameters λ and α.
The output correspond to the matrix W.

Algorithm 1. Online kernel matrix factorization

procedure OKMF(X, budget,W, γ, λ, α)
KB ← k(budget, budget)
for all xi ∈ X do

kxi ← k(budget, xi)
hi ← (WT KBW − αI)−1WT kxi
W ← W − γ(kxihi

T − KBWhihi
T + λW )

end for
return W

end procedure

The use of a budget poses a new problem which is the selection of this budget. To
tackle this problem, two approaches were used. The first was randomly picking
p instances of the data set. The second one is computing a k-Means clustering
with k = p, the resulting k cluster centers can be viewed as a prototype set of
the data.

4 Experiments

One of the applications of matrix factorization is clustering, hence we choose it
as the task to evaluate OKMF. The columns of the factors matrix, Φ(B)W , can
be viewed as a set of cluster centers in feature space. In turn, the latent space
representation matrix H contains the information of the membership of each
element to each cluster.
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Fig. 1. Average factorization time of 30 runs vs. data set size (left) and OKMF average
loss vs. epochs(right)

Table 1. Datasets Characteristics

Name # of Samples # of Classes # of Attributes

Abalone 4,177 3 8
WineQ 4,898 3 11

Synthetic 5,000 2 2
Seismic 98,528 3 50
Covtype 581,012 7 54

Two kinds of data sets were used, medium-scale and large-scale, the char-
acteristics of the data sets is presented in Table 1. The performance measure
selected is the clustering accuracy, which is the fraction of correctly clustered
points, showed in equation 7.

AC =
∑N

i=1 δ(cfi,map(ci))
N

(7)

Where cfi is the found label and ci the ground truth, N the number of data
points. δ(·) is 1 when the found label cfi matches ci. map(·) is the best match
of the found clusters and the ground truth computed using the Hungarian Algo-
rithm. The compared algorithms are kernel k-Means [5], kernel convex non-
negative matrix factorization [6] and online k-Means [15]. The kernels used in
the experiments are linear and Gaussian (RBF). A parameter exploration was
performed to find parameters of OKMF and the σ parameter of the RBF kernel.
30 tests were conducted and average accuracy and average time are reported.
Finally the budget size was fixed to 500. The randomly picked budget is labeled
as OKMF-R in the results, the strategy using k-Means cluster centers is labeled
as OKMF-K. All algorithms were implemented in Python using Anaconda’s
MKL Extension on a computer with Intel Core i5 with four cores at 3.30GHz
and 8GB of memory. Given kernel k-Means and CNMF methods require to have
the whole kernel matrix in main memory, it is not feasible to use them to cluster
the Seismic and Covtype data sets.
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Table 2. Average clustering accuracy of 30 runs. Results for CNMF and KK-means
are not reported for the larger datasets, since it was not possible to evaluate them on
the whole dataset.

Method Abalone WineQ Synthetic Seismic Covtype

CNMF-Linear 0.5253 0.3966 0.6369 n.a. n.a.
CNMF-RBF 0.5269 0.4488 0.9800 n.a. n.a.

K K-means-Linear 0.5280 0.3962 0.6377 n.a. n.a.
K K-means-RBF 0.5268 0.4487 1.000 n.a. n.a.
Online k-means 0.5286 0.3918 0.6494 0.4007 0.4276
OKMF-K-Linear 0.3658 0.4261 0.5041 0.3923 0.4405
OKMF-K-RBF 0.5188 0.4447 0.6230 0.5000 0.4875
OKMF-R-Linear 0.3658 0.4276 0.5033 0.3918 0.4300
OKMF-R-RBF 0.5331 0.4410 0.6925 0.5000 0.4876

4.1 Analysis

Table 2 show the results of the different methods and the different data sets.
Our method performs very well in the task of clustering. Also the capability
of using kernels enhance the performance of the accuracy without incurring in
large memory usage or time to compute the factorization. Also the accuracy is
not greatly affected by the budget selection scheme, given there is not a large
difference between the performance of OKMF-R and OKMF-K.

Table 3 presents the clustering times, online k-means is the fastest algorithm,
it outperforms by much the other algorithms. However, OKMF is faster than
the CNMF factorization algorithm. The figure 1 shows a comparison between
CNMF and OKMF with 500 and 1000 budget size, whilst CNMF average time
behaves quadratic, OKMF average time behaves linear, also shows that OKMF
converges within 2 to 5 epochs. Figure 2 shows the impact of budget size on
clustering accuracy, this support the idea of having a small budget and achieve
good performances.

Table 3. Average clustering time of 30 runs. Results for CNMF and KK-means are
not reported for the larger datasets, since it was not possible to evaluate them on the
whole dataset.

Method Abalone WineQ Synthetic Seismic Covtype

CNMF-Linear 35.91 52.26 49.92 n.a. n.a.
CNMF-RBF 37.15 50.88 50.95 n.a. n.a.

K K-means-Linear 1.10 1.55 1.54 n.a. n.a.
K K-means-RBF 2.35 2.84 3.04 n.a. n.a.
Online k-means 0.06 0.06 0.05 0.41 1.90
OKMF-K-Linear 3.06 3.22 3.62 45.45 422.21
OKMF-K-RBF 4.54 4.84 5.18 82.65 648.59
OKMF-R-Linear 1.23 1.33 1.20 34.18 396.94
OKMF-R-RBF 2.72 3.14 3.76 70.23 635.67
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Fig. 2. Average clustering accuracy of 30 runs vs. budget size

5 Conclusions

We presented a novel kernel matrix factorization method that uses a budget
restriction to tackle the memory issue and computation time. Using a budget
leads to OKMF save memory, given it is not necessary to store the complete
kernel matrix of size n×n, but a smaller kernel matrix of the budget of size p×p,
which is a significant reduction if p � n. However, this leads to two problems,
the budget size selection and the selection of the budget itself. The first problem
can be solved by the exploration of this budget size in order to minimize the
reconstruction error. To solve the second problem, we studied two ways, the
first is randomly pick p instances of the original data, the second is applying
k-means fixing k to the budget size. Also, in the task of clustering our method
performs as well as other kernel matrix factorization methods, including CNMF.
OKMF has low memory requirements, because it depends directly on the budget
size, so having millions of samples, doesn’t affect the memory usage. Using SGD
as the method to optimize also implies a memory saving when performing the
KMF, instead of keeping in memory a kernel matrix of the budget against all
the data with a size of p × n, OKMF only needs a kernel vector of the budget
against the current instance of size p × 1. Besides OKMF has an advantage in
the time required to process large number of instances, because it converges
with a small number of epochs and the time factorization takes grows linearly
with the number of instances. As future work, other strategies for the budget
selection can be studied and the application of OKMF in other tasks different
from clustering.
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Abstract. Given a universe of local communities of a large network, we
aim at identifying the meaningful and consistent communities in it. We
address this from a new perspective as the process of obtaining consen-
sual community detections and formalize it as a bi-clustering problem.
We obtain the global community structure of the given network without
running expensive global community detection algorithms. The proposed
mathematical characterization of the consensus problem and a new bi-
clustering algorithm to solve it render the problem tractable for large
networks. The approach is successfully validated in experiments with
synthetic and large real-world networks, outperforming other state-of-
the-art alternatives in terms of speed and results quality.

1 Introduction

The inference of global community structure in networks (i.e., finding groups
of nodes such that intra-group connections are denser than inter-group ones)
has become a topic of great interest in the data analysis scientific commu-
nity [4,5,15,24]. However, the best way to establish the community structure is
still disputed [7]. This is particularly true for large networks, as the vast majority
of community detection algorithms, e.g., modularity maximization [15], require
the network to be completely known. A family of algorithms aims at finding com-
munities by analyzing the network locally [1,4,22,24]. But how can we go from a
collection of such local communities to global community structure? Addressing
this efficiently for large networks is the topic of this work.

Let G = (V,E, ψ) be the graph to analyze, where V is the set of m nodes,
E is the set of edges, and ψ : E → R

+ is a weighting function on the edges (in
the following we use the terms graph and network interchangeably). Generically,
we consider that a local community-detection algorithm provides a candidate
community C ⊂ V . Let us consider that we are provided with a pool (universe)
{Ck}n

k=1 of n such candidates. These candidates might come from a combina-
tion of running (a) different local community-detection algorithms, (b) one local
algorithm with different parameters or initializations, and/or (c) one local algo-
rithm on different modalities of the same network, by changing the set of edges
and/or the function ψ (this case includes a network that changes over time).
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Given the pool {Ck}n
k=1, how do we stitch these local communities together

to obtain a coherent and global structure of the network G? Consensus/ensemble
clustering is a well known family of techniques used in data analysis to solve this
type of problem when we have a pool of partitions (instead of single communities
as we have here). Typically, the goal is to search for the partition that is most
similar, on average, to all input partitions. See [21] for a survey of the subject.

The most common form of consensus clustering for the case of a pool of single
communities involves creating an m × m co-occurrence matrix B, such that

B = 1
c

n∑
i=1

Bk where (Bk)ij =

{
1 if i, j ∈ Ck;
0 otherwise.

(1)

There are many algorithms for analyzing B, from simple techniques such as
applying a clustering algorithm to it (e.g., k-means or hierarchical clustering), to
more complex techniques [13]. Consensus for community detection was addressed
in [3] and [8] within the standard formulation just described.

The mentioned aggregation process used to build B involves losing infor-
mation contained in the individual matrices Bk. In particular, only pairwise
relations are conserved, while relations involving larger groups of nodes might
be lost. In addition, using the average of several partitions might not be robust
if some of them are of poor quality.

Contributions. We propose a novel formal framework and perspective for
reaching consensus community detection by posing it as a bi-clustering prob-
lem [20]. We also introduce a new bi-clustering algorithm, fit for the type of
matrices we analyze. The core novelty of this work is the use of a consensus
framework for stitching local communities together, produced by algorithms that
do not necessarily analyze large/huge networks as a whole. This allows to inte-
grate this partial and seemingly disaggregated information into a coherent and
global structural description of large networks. Our framework does not require
a community quality measure to make decisions but can use of it if it is available.

Organization. In Section 2 we present the proposed approach. In Section 3 we
discuss the experimental results. We provide some closing remarks in Section 4.

2 Consensus Community Detection

The input of the consensus algorithm is a pool U = {Ck}n
k=1 of candidates.

We also assign a weight wk ∈ R
+ to each community candidate Ck. From V

(the set of nodes) and U , we define the m×n preference matrix A. The element
(A)ik = wk if the i-th node belongs to the k-th local community, and 0 otherwise.

The community weights indicate the importance assigned to each candidate
and can take any form. The simplest form uses uniform weights (∀k) wk = 1,
in which case A becomes a binary matrix. In this case, no prior information
is used about the quality of the input community candidates. If we have such
information, it can be freely incorporated in these weights.
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We are interested in finding clusters in the product set V ×U . The main con-
tribution of this work is to establish the formal connection between bi-clustering
the preference matrix A (as a complete representation of U) and the extraction
of global community structure from local communities. This provides a very
intuitive rationale: for each bi-cluster, we are jointly selecting a subset of nodes
and local communities such that the former belongs to the latter.

2.1 Solving the Bi-clustering Problem

Among many tools for bi-clustering, see [16] and references therein, the Penalized
Matrix Decomposition [23] and the Sparse Singular Value Decomposition [12]
have shown great promise, mainly due to their conceptual and algorithmic sim-
plicity. Correctly setting the parameters of these methods is crucial, since they
determine the size of the bi-clusters [12,18,23]. In our experiments, finding the
correct values for these parameters has proven extremely challenging, since each
experiment needs a specifically tuned set of values.

We propose to follow a different path for solving the bi-clustering problem
at hand. For 1 ≤ q ≤ min{m,n}, we define

min
X∈R

m×q,Y∈R
q×n

‖A − XY‖1 s.t. X,Y ≥ 0. (L1-NMF)

A is, in our application, a sparse non-negative matrix. Notice that the positivity
constraints on X,Y have a sparsifying effect on them. The intuition behind
this is that when approximating a sparse non-negative matrix, the non-negative
factors will only create a sparse approximation if they are themselves sparse.
We thus obtain sparse factors X,Y without introducing any (difficult to set)
parameters. With the L1 fitting term, we are aiming at obtaining a “median”
type of result instead of the mean, providing robustness to poor group candidates
present in the pool (i.e., spurious columns of A).

A challenge with NMF is that q is not an easy parameter to set. To avoid
a cumbersome decision process, we propose to set q = 1 and inscribe the L1-
NMF approach in an iterative loop, find one rank-one at a time. The rank-one
factorization XY will thus approximate a subset of A (because of the sparsity-
inducing L1-norm), correctly detecting a single bi-cluster. Let R,Q be the active
sets (non-zero entries) of X, Y, respectively: R selects rows (nodes), while Q
selects columns (local communities).

Algorithm 1 summarizes the proposed non-negative bi-clustering approach.
Notice that instead of subtracting the product XY from A, we set the corre-
sponding rows and columns to zero, enforcing disjoint active sets between the
successive Xt and Yt, and hence orthogonality. This also ensures that non-
negativity is maintained throughout the iterations. If the bi-clusters are allowed
to share nodes, we do not change the rows of A. This is an important feature
for community detection since overlapping communities are ubiquituous. The
proposed algorithm is very efficient, simple to code, and demonstrated to work
well in the experimental results that we will present later.
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Algorithm 1. Bi-clustering algorithm.
input : Preference matrix A ∈ R

m×n, stopping parameters τR and τC.
output: Bi-clusters {(Rt, Qt)}T

t=1

1 t ← 0;
2 while A �= 0 do
3 t ← t + 1;
4 Solve Problem (L1-NMF) for Xt,Yt with q = 1;
5 Rt ← {i | i ∈ [1, m], (Xt)i,1 �= 0}; Qt ← {j | j ∈ [1, n], (Yt)1,j �= 0};
6 if |Rt| ≤ τR ∨ |Qt| ≤ τC then t ← t − 1; break;
7 if non-overlapping biclusters are desired then
8 (∀i,j) i ∈ Rt, j ∈ [1, n], (A)ij ← 0;

9 (∀i,j) i ∈ [1, m], j ∈ Qt, (A)ij ← 0;

10 T ← t;

The iterations should stop (1) when A is empty (line 2), or (2) when A
contains no structured patterns. The second case is controlled by τR and τC
(line 6), which determine the minimum size that a bi-cluster should have. Note
that these parameters are intuitive, related to the physics of the problem, and
easy to set. In all experiments in this paper, we set τR = 3 and τC = 2.

Implementation and Scalability. Any NMF algorithm can be adapted to
use the L1 norm and solve (L1-NMF); in this work, we use the method in [20].
Following [14], it is relatively straightforward to implement any NMF algorithm
in a MapReduce framework, making it completely scalable.

2.2 Extracting Local Communities

For community detection in large networks, algorithms that analyze the network
locally are becoming popular [1,4,22,24]. These algorithms are extremely fast
and can be adapted to optimize a wide range of different local quality measures.
However this partial and seemingly disaggregated information does not provide
a description of the full large network. We use our framework to integrate these
local communities, obtaining such a coherent and global structural description.

In particular, given a single member s of an unknown community S, we
aim at discovering S itself. To address this task, we use the PageRank-Nibble
method [1,24], mainly because of its efficiency. Its computational cost is indepen-
dent of the network size and proportional to the size of the detected community
(think about how many friends you have in Facebook versus the total number of
Facebook users). The key idea of PageRank-Nibble is to obtain a local spectral
clustering algorithm by computing random walks starting from a single seed node
s [1]. The PageRank scores give a measure of how well connected are the nodes
around s. Algorithm 2 summarizes the overall procedure.

Conductance is the scoring function of choice in [24]. Communities are iden-
tified as local minima of {f(S1) . . . f(Sh)}. In our experiments, we found that
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Algorithm 2. Community detection from a seed node
input : Graph G(V,E), seed node s, community scoring function f , threshold ε.
output: A community Skext ⊂ V containing the seed node s.

1 Compute random walk scores ru from seed node s using PageRank-Nibble [1];

2 Compute the sweep vectors set {Sk}h
k=1 [1], where

Sk = Sk−1 ∪ {argmaxu/∈Sk−1,ru≥ε
ru

d(u)
}, S1 = s, and d(u) is the degree of u;

3 Find the index kext corresponding to the extremum of {f(S1) . . . f(Sh)};

conductance does not produce robust local minima; we use an alternative func-
tion. Modularity [15], the standard community scoring measure, is not effective
for assessing small communities in large networks [7]. However, if we restrict the
computation to the subgraph induced by the set {u ∈ V | ru ≥ ε}, modularity
becomes effective. We name this measure local modularity. This choice is not
critical in our framework and any other suitable scoring function can be used
instead, e.g. [4].

In our experiments, we extract a single community per seed (notice again
that this is not critical in our framework). We thus identify the local community
around a seed node s as the sweep vector with maximum local modularity.

The pool of candidates is the set of all local communities, using every node
as a seed. Alternatively, we could randomly sample the set of nodes, in a Monte
Carlo fashion. Moreover, any local community detection algorithm, e.g., [4,22],
or even a combination of several of them, can be used with our framework. In
this work, we use a binary preference matrix, i.e., uniform weights.

3 Experimental Results

We begin by testing the proposed framework in synthetic networks with ground
truth communities, see Table 1. The performance of the consensus solution is
on par with what is achieved by analyzing the ground truth and then picking
the best local communities in the pool of candidates. The consensus community
structure is obtained without tuning parameters nor accessing the ground truth.

We tested the proposed approach on four real-world networks (Amazon,
DBLP, Youtube, and Orkut) with a functional definition of ground-truth [24]
(http://snap.stanford.edu/). The ground-truth contains the top 5,000 ground-
truth communities of each network. To run the simulations with these large net-
works, we accelerate our computations by pruning, from the preference matrix,
the columns (local communities) whose local modularity is below a threshold γ
(for Amazon, DBLP, Youtube, and Orkut γ = 0.22, 0.2, 0.22, 0.09, respectively).

We compare the proposed approach with other state-of-the-art methods both
in terms of speed and quality of the results. The stochastic variational inference
(SVI) algorithm [6] was particularly designed to work with large networks. How-
ever, the number of communities is an input to the method and the author’s
code does not scale well with this quantity: trying to discover more than 500

http://snap.stanford.edu/
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Table 1. Results with synthetic networks (m is the number of nodes and δ the average
node degree), produced with a standard benchmark generator [10]. In each experiment,
we compute generalized normalized mutual information scores [9] over 100 different
synthetic instances. For this comparison, we created a small subset of the local com-
munities that fit more closely each of the Tgt ground truth communities. By picking the
best and the median in this subset we obtain each of the Tgt best local communities
and each of the Tgt good local communities, respectively. The consensus solution is
always competitive with the best base solution and outperforms the good base solu-
tion, both found by using the ground truth and thus providing idealized performances
(hardly achievable in practice). Our result is achieved by only looking at the base local
communities.

Mean STD Median Min Max

m = 102, δ = 10
Consensus 0.879 0.171 0.964 0.336 1.000
Tgt best local communities 0.872 0.126 0.926 0.446 1.000
Tgt good local communities 0.654 0.159 0.676 0.256 0.924

m = 102, δ = 15
Consensus 0.705 0.217 0.707 0.289 1.000
Tgt best local communities 0.733 0.198 0.779 0.239 1.000
Tgt good local communities 0.664 0.175 0.701 0.255 0.917

m = 103, δ = 10
Consensus 0.812 0.053 0.818 0.665 0.922
Tgt best local communities 0.844 0.036 0.850 0.749 0.924
Tgt good local communities 0.790 0.047 0.795 0.648 0.879

m = 103, δ = 15
Consensus 0.661 0.066 0.659 0.536 0.841
Tgt best local communities 0.683 0.041 0.681 0.566 0.798
Tgt good local communities 0.611 0.044 0.609 0.506 0.713

m = 104, δ = 30
Consensus 0.618 0.067 0.622 0.332 0.773
Tgt best local communities 0.455 0.070 0.457 0.171 0.633
Tgt good local communities 0.307 0.075 0.306 0.117 0.577

communities led to out-of-memory issues. We thus set this number to 500 for all
experiments. The global consensus algorithm (LF) in [8] allows to use different
base community detection algorithms; we used OSLOM [11], Infomap [19], Lou-
vain [2], and Label Propagation (LP) [17]. All tests were performed on a desktop
computer with an Intel i7-4770 CPU, 32 GB of RAM, and Ubuntu Linux 12.04.

Our method outperforms the alternatives in all the evaluated networks,
see Table 2. In the Amazon network, our method is 3 minutes slower than
LF+Louvain but obtains a performance gain of 34% over it; it is one order
of magnitude faster than LF+Infomap with a performance gain of 8%. These
comparisons are much more favorable to our method in the DBLP network. Our
method is 4 times faster and almost 3 times better than LF+Louvain; it is also
68 times faster than LF+OSLOM with a performance boost of 48%.

Figure 1 presents two examples of the results of our bi-clustering algo-
rithm. First, we observe that the proposed approach clearly organizes the data
contained in the preference matrix, detecting an almost block-diagonal struc-
ture in it (albeit with overlaps and a small amount of noise in the preference
matrix itself). Another important observation is that the detected bi-clusters
share nodes (see the zoomed-in details), thus detecting overlapping consensus
communities.
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Table 2. Comparison of the efficiency and accuracy of the proposed approach against
other community detection methods. We compare with the stochastic inference algo-
rithm (SVI) [6], and with the global consensus algorithm (LF) [8], using different base
community detection algorithms. Our approach achieves top precision performances in
minimum time (respectively measured as the fraction of retrieved communities that
the ground truth and in minutes). V and E are the set of vertices and edges of the
networks, respectively.

Algorithms

Amazon DBLP Youtube Orkut
#V ≈ 3 × 106 #V ≈ 3 × 106 #V ≈ 1 × 107 #V ≈ 3 × 107

#E ≈ 9 × 106 #E ≈ 1 × 107 #E ≈ 3 × 107 #E ≈ 1 × 109

Time Prec. Time Prec. Time Prec. Time Prec.

LF [8] + OSLOM [11]1 263.15 0.837 660.68 0.664 –3 – –3 –
LF [8] + Infomap [19]1 179.83 0.900 407.43 0.616 –3 – –3 –
LF [8] + Louvain [2]1 8.10 0.724 41.55 0.347 –4 – –3 –
LF [8] + LP [17]1 23.37 0.792 172.40 0.406 –3 – –3 –
SVI [6]2 58.88 0.409 28.22 0.388 78.63 0.271 –4 –
Our approach 11.12 0.976 9.70 0.984 11.42 0.981 67.45 0.718

1 https://sites.google.com/site/andrealancichinetti/
2 https://github.com/premgopalan/svinet
3 No results after more than 6 days of execution (> 8700 minutes).
4 Presented out-of-memory problems and was terminated by the operating system.
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Fig. 1. Examples of bi-clustering the preference matrix for two real-world networks
using the proposed approach. We permute rows and columns of the bi-clustered pref-
erence matrix to ease its visualization. The structural simplification obtained with
our consensus approach is clear in the block-diagonal (plus overlaps) structure of the
preference matrix.

4 Conclusions

We analyzed for the first time the process of generating a global community
structure from locally-extracted communities and formalized it as a bi-clustering
consensus problem. This offers a new perspective for this important problem.
Our consensus algorithm stitches the local communities together, obtaining a
coherent and global community structure for large networks. The approach is
successful in several experiments with synthetic and large real-world networks.
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Abstract. The inference of gene regulatory networks (GRNs) from
expression profiles is a great challenge in bioinformatics due to the curse
of dimensionality. For this reason, several methods that perform data
integration have been developed to reduce the estimation error of the
inference. However, it is not completely formulated how to use each
type of biological information available. This work address this issue
by proposing feature selection approach in order to integrate biological
data and evaluate three types of biological information regarding their
effect on the similarity of inferred GRNs. The proposed feature selection
method is based on sequential forward floating selection (SFFS) search
algorithm and the mean conditional entropy (MCE) as criterion function.
An expression dataset was built as an additional contribution of this work
containing 22746 genes and 1206 experiments regarding A. thaliana. The
experimental results achieve 39% of GRNs improvement in average when
compared to non-use of biological data integration. Besides, the results
showed that the improvement is associated to a specific type of biological
information: the cellular localization, which is a valuable and informa-
tion for the development of new experiments and indicates an important
insight for investigation.

Keywords: Gene regulatory networks · Feature selection · Data inte-
gration · Bioinformatics · Arabidopsis thaliana

1 Introduction

One of the main challenges in bioinformatics is to perform the reverse engineering
of GRNs (gene regulatory networks) from expression profiles [2]. Since the genes
and their corresponding proteins are only part of a whole biological system, it is
important to discover the network of interactions between the cell components to
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better understand how the systems work. Furthermore, such knowledge can be
useful to perform intervention and control of the system[23]. The development of
techniques such as DNA microarrays, SAGE and RNA-Seq [29] allowed studying
the dynamic of the cell in a scale that was unfeasible with the previous methods.
Since the interaction between the genes works as a network that produces the
observed expression, the idea is to perform a reverse engineering in order to
recover the network from the expression profiles.

The search space of possible networks is huge. Thus, the inference can be
modeled as a feature selection problem, where a criterion function is used to
evaluate a subset of predictor genes (features) that better classify the state of
a given target gene based on the expression values [16,17]. In this way, the
inference consists in searching for a subset of predictors for each target.

A GRN can be modeled as Bayesian Networks [12], Boolean Networks [8],
Probabilistic Boolean Networks (PBN) [25] or Probabilistic Genetic Network
(PGN) [3]. Also, distinct criterion function can be used for inference. Some
criterion function as Pearson correlation [26] are limited to the evaluation of
pairs of genes and the combinatorial regulation of multiple predictors cannot be
assessed. The Coefficient of Determination (CoD) [13] is not limited to a number
of variables and allows to model the multivariate nature of the regulation. Other
criterion functions are based on information theory such as Mutual Information
[22], Tsallis Entropy [19] and Mean Conditional Entropy (MCE) [18].

One of the main limitations of the inference is the high dimensionality. For
this reason, it is important the development of new methods that take into
account other information than the expression profiles in order to reduce the
intrinsic estimation error of the inference and to recover plausible biological
networks.

Distinct approaches have been proposed to implement data integration in
GNs. Some works evaluate the data integration in biological networks [20,21,28].
Other methods perform a clustering analysis to identify groups of genes related
to some particular property [7]. Other methods include known information about
the topological properties of the network such as degree of connectivity, average
path length and other local and global characteristics [16,27].

However, a methodology to define how to select the biological information in
order to reduce error on inference is still not completely formulated. Moreover,
the study of distinct biological information can reveal the contribution of each
one in the inference and favor the discovery of new biological knowledge such
as biological information that are decisive to characterize the network together
with the system dynamic. This work proposes a feature selection approach in
order to evaluate a GRNs inference model based on a criterion function that
encodes multivalued biological features applied on the A. thaliana organism.
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2 Materials and Methods

2.1 Gold Standard Network

The gold standard network is the directed graph with the known physical direct
interactions between each predictor (TF) and their target genes. The Arabidopsis
thaliana gold standard network (AtRegNet) was obtained from AGRIS (The
Arabidopsis Gene Regulatory Information Server) [30] on which each interaction
is verified in at least one experimental approach. The graph has 8154 genes of
which 67 are predictors and 8131 are target genes, comprising 11481 edges.

Expression Data. All expression data were obtained from GEO [4] and only
samples of the platform GPL198 (Affymetrix Arabidopsis ATH1 Genome Array)
were selected. The chip contains 22810 probe sets that were mapped to genes
through annotation data from TAIR [15], Gene Ontology [1] and TIGR [5]. A
probe set is a collection of sequences (probes) used to identify a gene sequence
and to measure its expression.

The GEO files containing the expression samples were obtained through the
R Bioconductor, GEOquery and Biobase [6]. The files in SOFT format were
acquired in three types: GDS (GEO Dataset, 13 files), GSE (GEO Series, 58
files) and GSM (GEO Samples, 109 files), each one with a set of expression
experiments. The files were preprocessed to obtain the expression values and to
filter out samples with missing data. Thus the 180 files resulted on a table with
22746 genes and 1206 experiments.

Biological Information. A set of features associated to each probe set in the
expression data where obtained from TAIR, KEGG [14] and NCBI [11]. For
each probe set a corresponding locus identifier (TAIR) and a NCBI gene id
were obtained. Then, the biological information associated to the NCBI gene
id were obtained from the NCBI and features associated to the locus identifier
were obtained from TAIR and KEGG. The dataset contains 23593 annotated
elements and 15 features related to several biological aspects.

2.2 GRNs Inference

To infer the GRN it is necessary determine the best subset of predictors for
each target gene. Thus, in a dataset with n transcription factors there are 2n

possible subset of predictors for each gene. Since the search space is huge, the
sequential forward floating selection (SFFS)[24] algorithm was adopted to search
for the best solution. The criterion function evaluates each subset by taking into
account both the expression values and the biological information on the dataset.
The expression value part is evaluated computing the mean conditional entropy
(MCE) [18]. The MCE is computed as the average of the entropies of a target
gene Y given the values of the predictors X (Eq. 1).

H(Y |X) =
∑
x∈X

H(Y |x)P (x). (1)
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The MCE take into account only the expression values. Because the small
number of samples it is common the occurrence of many ties between distinct
set of predictors. Thus, only the expression data is commonly insufficient to
determine a suitable solution. For this reason, the proposed criterion function
includes a term related to another type of feature, i.e., a biological information.

F (Y,X) = α[H(Y |X)] + β[D(Y,X)], (2)

where D(Y,X) is equals to 1 when the biological information of the gene Y is
equals to X in the biological data set D. The parameters α and β defines the
weight of each type of information where β ∈ (0, 1) and α = 1 − β. Thus, with
the proposed feature selection approach the SFFS will search for the subset of
predictors that not just minimize the entropy, but also for those that are coherent
to the other biological aspects of the target gene.

3 Results and Discussion

Data Preprocessing. The expression data are represented in a table with
the variables (genes) in rows and the expression samples s(i) in columns. The
expression values of the genes of each sample s(i), s(i) ∈ R, were normalized by
the normal transformation, defined as follows:

η[s(i)] =
s(i) − E[s(i)]

σ[s(i)]
, (3)

where σ[s(i)] is the standard deviation of s(i) and E[s(i)] is the expectation of
s(i). The normalized data where discretized into three levels {-1,0,+1} through
a threshold mapping

s(i) =

⎧
⎨
⎩

−1 α < l
0 l ≤ α ≤ h

+1 α > h
(4)

where, α is the expression value of the sample s, of the gene g.

Biological Features. The annotation of genes on public databases makes
available several types of information, which refer to distinct aspects. They can
be descriptive, some times adopting conventional terms to classify the gene as
belonging to a category, for example, to a specific biological pathway, a known
function, to cite but a few. Thus, in this work were adopted three features related
to physical aspects and to the activity of the gene: (i) cellular location, (ii) path-
way and (iii) function. Then, since all annotated features into the databases are
attributes of type nominal, the value of each feature was indexed by an integer
value resulting on a dataset with 20817 unique annotated pairs (probe set, gene
locus) Table 1.

Intersection Between Datasets. To evaluate the proposed approach, the
subset of genes in the intersection of the three datasets (gold standard network,
expression and biological information) was adopted, resulting on 5974 Gene locus
(Table 2).
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Table 1. Biological information available on public databases.

Database Feature Number of distinct values

TAIR function 121
TAIR located in 6
KEGG pathway 128

Table 2. The validation dataset comprises 5974 genes.

Dataset Description Quantity

Gold standard network Edges 8589
Expression data Samples 1206

Biological features Features 3

Evaluation of the Inference. In order to measure the effectiveness of the
proposed approach it was adopted the Similarity between the gold standard and
the inferred network, which was presented by [9] and is widely used for validation
of methods of GNs inference. The validation is based on a confusion matrix, as
described in Table 3. The Similarity is computed as presented in (Eq. 5) and the
normalized value relative to the inference based only on expression data(α = 1),
defined as follows:

Table 3. Confusion matrix. TP = true positive, FN = false negative, FP = false
positive, TN = true negative.

Edge Inferred Not Inferred

Present TP FN
Absent FP TN

Similarity =
√

precision × recall =

√
TP

TP + FP
× TP

TP + FN
. (5)

The experimental results have presented distinct performance for the three
types of biological information (Figure 1(a)). In particular, the localization
improves the similarity while pathway and function increased the error of the
inference. For cellular localization, the curve increases from β varying from 0.1 to
0.7 and decreases for values greater than 0.7. This indicates that the expression
combined to cellular localization can improve the similarity and that the use of
only one type of data can limit the inference. The improvement varies according
to the threshold, being higher for small values. The average improvement when
the same weight is given to both expression and biological information ( i.e.
β = 0.5) is 39.1%.

The other two biological information presented a negative effect in similarity.
A possible explanation is that the gold standard regulatory network refers to
physical interactions and metabolic pathway and gene function refers to other
type of relationship. The localization refers to a physical space on the cell where
genes acts, metabolic pathway is more generic than localization and refers to
the biological pathway the genes are related (not necessarily the genes are in
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Fig. 1. Evaluation of the data integration of three types of biological information: Func-
tion, Metabolic pathway and Cellular localization. Weight = 0 means only expression.
Weight = 1 means only biological information.

the same local or interacts physically each other) and, an even more generic
than metabolic pathway is the gene function. Thus, several proteins can have
the same molecular function or acts in common metabolic pathways and can be
an explanation for the decreasing in similarity. This points to the importance of
the correct feature selection that can reduce the estimation error, specially in
this type of multilevel data integration.

Figure 1(b) shows the improvement in similarity. Results show the similarity
increases more and faster for lower thresholds and that both expression and
localization are important. For weight of biological information over 0.7 the
similarity decreases faster despite of the threshold.

Another important issue is the validation of GNs inference. Here, we adopted
the validation regarding to a know network, which useful to evaluate the inferen-
tial perspective as pointed by [10]. The validation of methods of data integration
is still an problem to be solved in GNs inference.

4 Conclusions

This work presented a feature selection approach for integration of distinct
datasets based on expression data and biological information for the inference of
gene regulatory networks, which is based on SFFS search algorithm and MCE
criterion function. An expression dataset was built as an additional contribution
of this work containing 22746 genes and 1206 experiments regarding A. thaliana.
The dataset was composed with a gold standard network, expression data and
biological features were assembled and the proposed approach was applied on the
composed dataset. The results showed the increasing on the similarity (average
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39%) of the recovered network when the criterion function is based on cellu-
lar localization. Also, the results showed that the performance is better when
expression and cellular localization are combined instead of the use of each one
only, which is a valuable information for the development of new experiments
and indicates an important insight for investigation.

The evaluation of GNs inference is commonly performed based on the know
links of a gold-standard network. However, other biological information could be
also used to validate the inference methods. Thus, as future work it is suggest
the investigation of validation measures that take into account distinct biological
data. Also, the inclusion of more types of biological information and to perform
the proposed approach using these biological information can be considered as a
further work. Moreover, would be also important to evaluate the best set of the
parameters (weight of biological information and the threshold of the criterion
function).
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{lvbeltranb,javanegasr,fagonzalezo}@unal.edu.co

Abstract. This paper presents a matrix factorization method for
dimensionality reduction, semi-supervised two-way multimodal online
matrix factorization (STWOMF). This method performs a semantic
embedding by finding a linear mapping to a low dimensional semantic
space modeled by the original high dimensional feature representation
and the label space. An important characteristic of the proposed algo-
rithm is that the new representation can be learned in a semi-supervised
fashion. So, annotated instances are used to maximize the discrimination
between classes, but also, non-annotated instances can be exploited to
estimate the intrinsic manifold structure of the data. Another important
advantage of this algorithm is its online formulation that allows to deal
with large-scale collections by keeping low computational requirements.
According with the experimental evaluation, the proposed STWOMF
in comparison with several linear supervised, unsupervised and semi-
supervised dimensionality reduction methods, presents a competitive
performance in classification while having a lower computational cost.

1 Introduction

Multimedia information presents many opportunities due to the richness of its
high-dimensional information, but also implies many computational challenges
mainly related with the well-known “curse of dimensionality” [3] that dramat-
ically affects the speed of machine learning algorithms. Dimensionality reduc-
tion allows to eliminate the redundancy and the noise present in the manifold
structure of the original high dimensional feature representation and tackles the
curse of dimensionality by compressing the representation in a more expressive
reduced set of variables that preserve the most important characteristics of the
initial set. This is done by finding a transformation that does not alter the infor-
mation presented by the initial data set. Dimensionality reduction is a technique
widely used today in many machine learning tasks such as regression, annota-
tion, classification, clustering, pattern recognition, information retrieval among
others [1]. This technique would be used in unsupervised as well as supervised
approaches. Unsupervised dimensionality reduction is mainly used with the aim
of exploring the data structure and extracting meaningful information from data
without any prior information. In contrast, in supervised dimensionality reduc-
tion specific targets (labeled instances) of interest are used to guide the process
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 676–682, 2015.
DOI: 10.1007/978-3-319-25751-8 81
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of dimensionality reduction. Even though supervised approaches can exploit the
labeled data in order to improve classification performance, they require every
training instance to be labeled. But a proper annotation of a whole dataset is an
arduous process, and for large-scale real-world collections is infeasible to ensure
a reliable annotation for each instance. So, in many cases we are in a situation
where we have a big quantity of potential data for training our algorithms but
only a small fraction with annotations can be used. Even so, non annotated
data present valuable information about the manifold structure of the data that
should be exploited in some way. This paper presents a semi-supervised dimen-
sionality reduction method based on matrix factorization that can be used in
training datasets that are not fully annotated by using the information from
annotated instances to preserve the separability between elements from differ-
ent classes, but also using the non-annotated elements to estimate the intrinsic
manifold structure of the data.

The rest of this paper is organized as follows: Section 2, presents a compre-
hensive revision of related works in linear dimensionality reduction; in Section
3, details about of the proposed method are explained; Section 4, presents an
evaluation of the proposed method in comparison with several state-of-the-art
linear methods in dimensionality reduction; and finally, Section 5 presents some
concluding remarks.

2 Related Work

There are a high number of linear techniques that perform dimensionality reduc-
tion by embedding the data to a lower semantic space, among the unsupervised
approaches stand out principal component analysis (PCA) [10], factor analysis
(FA) and independent component analysis (ICA) [13]. Other approaches like
locality preserving projection (LPP) [11] and neighborhood preserving embed-
ding (NPE) [9] try to preserve the local neighborhood structure. Some dimen-
sionality reduction techniques can take into account domain knowledge. This
domain knowledge can be expressed in different forms, such as, class labels,
pairwise constraints or another kind of prior information. Fisher’s linear dis-
criminant analysis (LDA) [8] was one of the first techniques to take advantage of
class observation to preserve the separability of the original classes. Also, there
are semi-supervised alternatives that learn from a combination of both labeled
and unlabeled data. For instance, semi-supervised discriminant analysis (SDA)
[5] and the soft label based linear discriminant analysis SL-LDA [16] use the
labeled data to maximize the separability between classes and uses the unla-
beled data to estimate the intrinsic manifold structure of the data. Also, there
are some non-linear alternatives (isometric feature mapping [14], locally linear
embedding [12] and Laplacian Eigenmaps [2], among others). Unfortunately the
modeling of these non-linearities leads to high computational complexities that
make them prohibitive to use in large-scale collections. The method introduced
in this paper, presents two characteristics that make it highly scalable: first, it
is based on linear transformations, and second, its algorithm is formulated as an
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online-learning approach, which only needs to keep small portions of the train-
ing data in main memory and requires little time to reach a predefined expected
risk.

3 Semi-supervised Two-Way Multimodal Online Matrix
Factorization

We can represent an entire collection by a matrix X ∈ R
n×k, where k is the

total number of instances in a training set and n is the number of features that
represent each instance. In a similar way, we can represent the associated classes
by a binary matrix T ∈ R

m×k, where m is the total number of classes in the
collection, and a 1 in the j−th position (1 ≤ j ≤ m) of the i-th column defines
the membership of the i-th instance in the j−th class.This paper presents a
semi-supervised dimensionality reduction framework based on TWOMF (Two-
way Multimodal Online Matrix Factorization ) [15], which simultaneously finds
a mapping from the feature representation and from the class representation
to an r-dimensional common semantic space, where n � r, and additionally,
back-projection functions that reconstruct from this low r-dimensional space to
the original feature and class representations are learned. These mappings are
modeled for encoder and decoder matrices that perform linear transformations
to and from the semantic space. So, the feature representation can be projected
to the semantic space by an encoder matrix Wx ∈ R

r×n and reconstructed back
by a decoder matrix W

′
x ∈ R

n×r such that H ≈ WxX and X ≈ W
′
xH. And, in a

similar way, a reconstruction for the label representation is defined by H ≈ WtT
and T ≈ W

′
t H, where, Wt ∈ R

r×m, and W
′
t ∈ R

m×r are the encoder and
decoder matrices for the label representation.Finally, a mapping between the
original features and label representation, forcing an alignment of the semantic
projections, is expressed by: T ≈ W

′
t WxX. All these previous conditions are put

together and the problem is solved as an optimization problem by minimizing
the following loss function:

L = α
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where, xi is the feature vector of the i-th instance in the data collection X and
ti is the corresponding binary label vector, α controls the relative importance
between the reconstruction of the instance representation and the label repre-
sentation, δ controls the relative importance of the mapping between instance
features and label information and β controls the relative importance of the
regularization terms, which penalize large values for the Frobenius norm of the
transformation matrices. In this paper, we are interested in scenarios where we
have a large number of instances for training (k instances), but only a restricted
l number of them are properly labeled. The loss function (Eq. 1) takes advan-
tage of both annotated and non-annotated instances. The first term in the loss
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function uses all the instances to model the low semantic space and the second
and third terms use only the annotated instates to model the semantic space and
the mapping between features and label information. The final algorithm uses
stochastic gradient descent learning [4], by updating the transformation matrices
at each iteration with a mini-batch of instances with their corresponding features
and label representation that are randomly sampled from the training set, due
to the fact that samples in a minibatch are discarded after the minibatch is
processed, it is possible to scan large datasets without memory restrictions.The
algorithm ends when a predefined maximum number of epochs is reached. Once
the learning process is completed, the projection to the low-rank semantic repre-
sentation can be performed by multiplying the original high-dimensional feature
representation by the coding Wx matrix (hi = Wxxi).

4 Experiments and Results

In this section, we evaluate our algorithm in comparison with several widely-
used datasets for dimensionality reduction, manifold learning and classification
tasks (the details of each dataset are shown in Table 1). We evaluate the per-
formance of our algorithm by calculating classification accuracy in each one
of these datasets. We compare our method with other linear supervised, semi-
supervised and unsupervised dimensionality reduction methods. These methods
include SVM (Support Vector Machines) with a linear kernel [7], LDA [8], SRDA
(spectral regression discriminant analysis) [6], SDA [5] and PCA [10]. For deter-
mining the parameters of each method, we perform an exploration by using
5-fold cross-validation. For our method, we need to determine five parameters,
including, the learning rate, the mini-batch size and the α, β and δ parameters
present in the cost function.

Table 1. Dataset information and data partition for each dataset

Dataset
Original dataset

partitions

Low-scale partitions Large-scale

evaluation
#Dim #Class

Train Test Train Test Train Test

Covtype 581012 8000 8000 100000 2000 54 7

MNIST 60000 10000 8000 8000 60000 10000 784 10

Letters 20000 8000 8000 – 16 26

USPS 4649 4649 4649 4649 – 256 10

For all algorithms, except for the supervised, i.e, SVM, LDA and SRDA,
we use the projected training set to construct a nearest neighborhood classi-
fier (1NN) for evaluating the classification accuracy of the projected test set,
in a similar setup as in [16]. In this evaluation, we explore the performance for
different percentage of randomly selected annotated instances in training set.
Table 2 reports the average accuracies for 10 runs in each configuration in the
four datasets using the low-scale partitions (see Table 1). As we can see, the
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STWOMF presents competitive results in comparison with all other algorithms
when the dimensionality of the semantic representation coincides with the num-
ber of classes (r=C). Furthermore, when the dimensionality increases (r=C+10),
STWOMF over performs the other algorithms (in our experiments, a further
increase of the dimensionality did not contribute to improve the performance of
the algorithm).

An evaluation with the two largest datasets using different sizes of train-
ing set was performed in order to verify the capability of the proposed method
to deal with large-scale collections. Figure 1 presents the average classification
accuracies and times for different sizes of the training set (the reported results
are the average of 10 runs for each configuration). The STWOMF is compared
against the SDA which is another semi-supervised method that also uses the
unlabeled data to estimate the manifold structure of the data. For all training
sizes only 30% of instances are annotated, so we can see that both methods
are able to learn from labeled and unlabeled instances and both can improve
their performance as more training instances are available. However, STWOMF
presents two advantages: first, unlike SDA, in STWOMF we can increase the
dimensionality of the semantic space resulting in an improvement in the per-
formance. For instance, in the MNIST dataset, the STWOMF using 17 latent
factor (STWOMF-r17) presents a gain in accuracy of about 6 points over the
same STWOMF using only 7 latent factor (STWOMF-r7) and the SDA; and
second, STWOMF presents a little increase in the time required for training as
more training instances are used, leading to a speedup of about 3.5x-7x over SDA
in MNIST and about 8x in CovType. The main reason for the short time used
in training phase by STWOMF is that, thanks to its online formulation for large
datasets, a few number of epochs are required until the algorithm converges (con-
vergence in all algorithms is verified by means of a minimum threshold required
to improve the reconstruction error in each epoch). In fact, for both datasets
MNIST and CovType only two epochs are required to achieve convergence.

Table 2. Classification accuracy for different percentages of annotated instances in
training set using low-scale partitions. Reported results are the average of 10 runs for
each configuration (r = number of latent factors, C = number of classes in the dataset).

METHOD
STWOMF STWOMF

SDA LDA SVM SRDA
PCA PCA

r=C r=C+10 r=C r=C+10

COVTYPE

100% 0.725 1.0e-2 0.770 1.0e-2 0.735 0.0 0.708 3.5e-3 0.674 3.3e-16 0.698 3.3e-16 0.707 3.3e-16 0.763 3.3e-16

60% 0.720 1.9e-2 0.755 1.0e-2 0.719 3.3e-16 0.704 7.6e-3 0.679 3.3e-16 0.685 3.3e-16 0.683 3.3e-16 0.724 0.0

30% 0.686 1.7e-2 0.712 1.0e-2 0.687 3.3e-16 0.707 7.6e-3 0.667 3.3e-16 0.653 0.0 0.639 3.3e-16 0.679 0.0

MNIST

100% 0.882 0.0 0.939 0.0 0.870 0.0 0.897 0.0 0.839 0.0 0.856 0.0 0.874 0.0 0.938 0.0

60% 0.864 0.0 0.930 0.0 0.870 0.0 0.890 0.0 0.817 0.0 0.833 0.0 0.863 0.0 0.929 0.0

30% 0.848 0.0 0.916 0.0 0.850 0.0 0.881 0.0 0.780 0.0 0.786 0.0 0.842 0.0 0.910 0.0

LETTERS

100% 0.946 1.5e-2 0.946 1.6e-3 0.950 3.3e-16 0.699 0.0 0.701 3.3e-16 0.936 0.0 0.940 0.0 0.940 0.0

60% 0.933 1.9e-3 0.923 0.0 0.940 3.0e-4 0.694 3.3e-16 0.699 0.0 0.919 3.3e-16 0.913 3.8e-3 0.914 0.0

30% 0.905 3.5e-3 0.885 6.1e-3 0.917 4.4e-4 0.680 3.3e-016 0.697 3.3e-16 0.893 0.0 0.872 2.5e-3 0.872 3.1e-3

USPS

100% 0.936 9.2e-4 0.966 3.3e-3 0.925 6.7e-4 0.943 3.3e-16 0.914 6.6e-16 0.921 6.6e-16 0.930 0.0 0.963 0.0

60% 0.927 3.4e-3 0.957 1.0e-3 0.917 0.0 0.939 0.0 0.901 0.0 0.906 6.6e-16 0.921 6.6e-16 0.953 0.0

30% 0.910 4.9e-3 0.942 2.4e-3 0.903 3.3e-16 0.926 6.6e-16 0.883 3.3e-16 0.884 0.0 0.903 3.3e-16 0.938 3.3e-16
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Fig. 1. Average classification accuracy (top) and average required time for training
(bottom) in MNIST (left) and CovType (right) datasets using different number of
training instances. For all training sizes only 30% of instances are annotated.

5 Conclusions

We presented an approach for dimensionality reduction that takes advantage of
annotated data to model a semantic low-space representation that preserves the
separability of the original classes. Furthermore, this method has the ability to
exploit unlabeled instances for modeling the manifold structure of the data and
use it to improve its performance in classification. The experimental evaluation
shows that the proposed method presents competitive results in terms of classi-
fication accuracy in comparison with several unsupervised, semi-supervised and
supervised linear dimensionality reduction methods, but with the advantage of
its online learning formulation that allows it to deal with large collections of data
by achieving a significantly reduction in computational requirements, in terms
of memory consumption and required time for training.
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Abstract. Deep learning-based approaches have been paramount in the
last years, mainly due to their outstanding results in several application
domains, that range from face and object recognition to handwritten dig-
its identification. Convolutional Neural Networks (CNN) have attracted
a considerable attention since they model the intrinsic and complex brain
working mechanism. However, the huge amount of parameters to be set
up may turn such approaches more prone to configuration errors when
using a manual tuning of the parameters. Since only a few works have
addressed such shortcoming by means of meta-heuristic-based optimiza-
tion, in this paper we introduce the Harmony Search algorithm and some
of its variants for CNN optimization, being the proposed approach vali-
dated in the context of fingerprint and handwritten digit recognition, as
well as image classification.

1 Introduction

One of the biggest computer vision problems consists in producing good intern
representations of the real world, in such way that these descriptions can allow a
machine learning system to detect and classify objects in labels [3]. The problem
still persists when faced with situations where there exist variations of luminosity
in the environment, as well as different perspectives in the image acquisition
process and problems related to rotation, translation and scale.

Traditional machine learning approaches intend to tackle the aforementioned
situation by extracting feature vectors with the purpose to feed a classifier by
means of a training set, and thereafter classify the remaining images. Thereby,
although the feature learning problem has received great attention in the last
decades, a considerable effort has been dedicated to the study of deep learning
techniques [2,5,9]. Despite the fact that there are several deep learning tech-
niques out there, one of the most widely used approaches is the Convolutional
Neural Networks (CNN) [9].These neural networks are composed of different
stages and architectures, which are responsible for learning different kinds of
information (e.g., images and signals).

c© Springer International Publishing Switzerland 2015
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The main problem related to such deep learning techniques concerns with the
high amount of parameters used to adjust these neural networks to their best
performance. Meta-heuristic techniques are among the most used for optimiza-
tion problems, since they provide simple and elegant solutions in a wide range of
applications. Nonetheless, the reader may face just a few and very recent works
that handle the problem of CNN optimization by means of meta-heuristic tech-
niques. Fedorovici et al. [6], for instance, employed Particle Swarm Optimization
and Gravitational Search Algorithm to select parameter in CNN aiming to cope
with optical character recognition applications.

Although some swarm- and population-based optimization algorithms have
obtained very promising results in several applications, they may suffer from
a high computational burden in large-scale problems, since there is a need for
optimizing all agents at each iteration. Some years ago, Geem [7] proposed the
Harmony Search (HS) technique, which falls in the field of meta-heuristic opti-
mization techniques. However, as far as we know, Harmony Search and some of
its variants have never been applied for CNN optimization.

Therefore, the main contributions of this paper are twofold: (i) to introduce
HS and some of its variants to the context of CNN fine-tuning for handwrit-
ten digits and fingerprint recognition, as well as for image classification, and
(ii) to fill the lack of research regarding CNN parameter optimization by means
of meta-heuristic techniques. The remainder of this paper is organized as fol-
lows. Sections 2 and 3 present the Harmony Search background theory and the
methodology, respectively. Section 4 discusses the experiments and Section 5
states conclusions and future works.

2 Harmony Search

Harmony Search is a meta-heuristic algorithm inspired in the improvisation pro-
cess of music players. Musicians often improvise the pitches of their instruments
searching for a perfect state of harmony [7]. The main idea is to use the same
process adopted by musicians to create new songs to obtain a near-optimal solu-
tion according to some fitness function. Each possible solution is modeled as a
harmony, and each musical instrument corresponds to one decision variable.

Let φ = (φ1,φ2, . . . ,φN ) be a set of harmonies that compose the so-called
“Harmony Memory” (HM), such that φi ∈ �M . The HS algorithm generates
after each iteration a new harmony vector φ̂ based on memory considerations,
pitch adjustments, and randomization (music improvisation). Further, the new
harmony vector φ̂ is evaluated in order to be accepted in the harmony memory:
if φ̂ is better than the worst harmony, the latter is then replaced by the new
harmony. Roughly speaking, HS algorithm basically rules the process of creating
and evaluating new harmonies until some convergence criterion.

In regard to the memory consideration step, the idea is to model the process of
creating songs, in which the musician can use his/her memories of good musical
notes to create a new song. This process is modeled by the Harmony Memory
Considering Rate (HMCR) parameter, which is the probability of choosing one
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value from the historic values stored in the harmony memory, being (1−HMCR)
the probability of randomly choosing one feasible value1, as follows:

φ̂j =
{

φj
A with probability HMCR

θ ∈ Φj with probability (1 − HMCR),
(1)

where j ∈ {1, 2, . . . ,M}, A ∼ U(1, 2, . . . , N), and Φ = {Φ1, Φ2, . . . , ΦM} stands
for the set of feasible values for each decision variable2.

Further, every component j of the new harmony vector φ̂ is examined to
determine whether it should be pitch-adjusted or not, which is controlled by the
Pitch Adjusting Rate (PAR) variable, according to Equation 2:

φ̂j =
{

φ̂j ± ϕj� with probability PAR

φ̂j with probability (1-PAR).
(2)

The pitch adjustment is often used to improve solutions and to escape from
local optima. This mechanism concerns shifting the neighbouring values of some
decision variable in the harmony, where � is an arbitrary distance bandwidth,
and ϕj ∼ U(0, 1).

2.1 Improved Harmony Search

In the last years, several researches have attempted to develop variants based
on the original HS [1] in order to enhance its accuracy and convergence rate.
Some works have proposed different ways to dynamically set the HS parame-
ters, while others suggested new improvisation schemes. Mahdavi et al. [11], for
instance, proposed a new variant called Improved Harmony Search (IHS), which
taps a new scheme that improves the convergence rate of the Harmony Search
algorithm. In other words, the IHS algorithm differs from traditional HS as it
updates dynamically its PAR and distance bandwidth values during every new
improvisation step.

As stated before, the mainly difference between IHS and traditional HS algo-
rithm is how they adjust and update their PAR and bandwidth values. In order
to pursue this goal and to eradicate the handicaps that come up with fixed values
of PAR and �, the IHS algorithm changes their values according to the iteration
number.

2.2 Global-Best Harmony Search

Some concepts of swarm intelligence algorithms, as the ones presented in Parti-
cle Swarm Optimization (PSO) [4,8], have been used to enhance the Harmony

1 The term “feasible value” means the value that falls in the range of a given decision
variable.

2 Variable A denotes a harmony index randomly chosen from the harmony memory.
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Search algorithm in order to improve its effectiveness on either discrete and con-
tinuous problems. The so-called Global-best Harmony Search (GHS) [12] applies
this technique by modifying the pitch-adjustment step of the IHS, so that its
new harmony value is represented by the best harmony found in the Harmony
Memory. Thereby, the distance bandwidth parameter � is deserted off the impro-
visation step, so that the decision variable j of the new harmony is computed as
follows:

φ̂j = φj
best, (3)

where best stands for the index of the best harmony in the HM.

2.3 Self-Adaptive Global-Best Harmony Search

Unlikely and inspired by its predecessor (i.e., GHS), the self-adaptive Global-
best Harmony Search (SGHS) algorithm [13] applies a new improvisation method
and some fine-tuning adaptive parameter procedures. During the memory con-
sideration step, in order to avoid getting trapped at a local optimum solution,
Equation 1 is replaced as follows:

φ̂j =
{

φj
A ± ϕj� with probability HMCR

θ ∈ Φj with probability (1 − HMCR).
(4)

Since HMCR and PAR variables are dynamically updated during the iter-
ation process by recording their previous values in accordance to the gener-
ated harmonies, we assume their values are drawn from normal distributions,
i.e., HMCR ∼ N (HMCRm, 0.01) and PAR ∼ N (PARm, 0.05). The variables
HMCRm and PARm stand for the average values of HMCR and PAR, respec-
tively.

In order to well-balance the algorithm exploitation and exploration processes,
the bandwidth parameter � is computed as follows:

�(t) =
{

�max − �max−�min

T × 2t if t < T/2
�min if t ≥ T/2.

(5)

3 Methodology

3.1 Experimental Setup

In this work, we proposed the fine-tuning of CNN parameters using Har-
mony Search-based algorithms, as well as using a random initialization of the
parameters (RS). We have employed three HS variants: (i) Improved Harmony
Search [11], (ii) Global-best Harmony Search [12], and (iii) Self-adaptive Global-
best Harmony Search [13]. In order to provide a statistical analysis by means
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of Wilcoxon signed-rank test [15], we conducted a cross-validation with 10 run-
nings. Finally, we employed 15 harmonies over 250 iterations for convergence
considering all techniques. Table 1 presents the parameter configuration for each
optimization technique3.

Table 1. Parameter configuration.

Technique Parameters

HS HMCR = 0.7, PAR = 0.5, � = 0.1

IHS HMCR = 0.7, PARMIN = 0.0
PARMAX = 1.0, �MIN = 0.0

�MAX = 0.1

GHS HMCR = 0.7, PARMIN = 0.1
PARMAX = 1.0

SGHS HMCRm = 0.98, PARm = 0.9
�MIN = 0.0, �MAX = 0.1

LP = 100

3.2 Datasets

In regard to the parameter optimization experiment, we employed two datasets,
as described below:

– MNIST dataset4: it is composed of images of handwritten digits. The original
version contains a training set with 60, 000 images from digits ‘0’-‘9’, as well
as a test set with 10, 000 images5.

– CIFAR-10 dataset6: is a subset image database from the “80 million tiny
images” dataset, collected by Alex Krizhevsky, Vinod Nair, and Geoffrey
Hinton. Composed by 60, 000 32x32 colour images in 10 classes, with 6, 000
images per class. It is also divided into five training batches and one test
batch, each one containing 10, 000 images. Therefore we have 50, 000 images
for training purposes and 10, 000 for testing duties.

In regard to the source-code, we used the well-known Caffe library7 [16],
which is developed under GPGPU (General-Purpose computing on Graphics
Processor Units) platform, thus providinga more efficient implementations.

4 Experimental Results

In this section, we present the experimental results over MNIST and CIFAR-10
datasets. We employed the very same architecture proposed by Caffe8 to handle
3 Notice these values have been empirically chosen.
4 http://yann.lecun.com/exdb/mnist/
5 The images are originally available in gray-scale with resolution of 28 × 28.
6 http://www.cs.toronto.edu/∼kriz/cifar.html
7 http://caffe.berkeleyvision.org
8 http://caffe.berkeleyvision.org/gathered/examples/mnist.html

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html
http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org/gathered/examples/mnist.html
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(a) (b)

Fig. 1. Some training examples from (a) MNIST and (b) CIFAR-10 datasets.

MNIST dataset, which is composed of two layers with convolution and pooling
operations.

Table 2 presents the mean accuracy and the standard deviation over the
testing set using the best parameters found out by HS-based algorithms, random
search (RS) and the set of parameters employed by Caffe library itself. According
to the Wilcoxon signed-rank test, we have bolded the most accurate techniques
in Table 2. Additionally, we also show the number of calls to the CNN learning
procedure to give us an idea about the computational burden of each technique.

Table 2. Experimental results concerning MNIST dataset.

Technique Final Accuracy #calls
(test set)

Caffe 99.07%±0.03 1

RS 98.70%±0.56 1

HS 99.23%±0.04 265

IHS 99.24%±0.03 265

GHS 99.24%±0.08 265

SGHS 99.29%±0.06 265

Considering the experimental results, we can drive some conclusions here:
HS-based techniques seem to be very suitable for CNN optimization, since they
achieved better results than a simple random search algorithm. This statement is
very interesting, since most part of works employ a random search to fine-tune
CNNs. Other conclusion concerns with the HS variants, for example, IHS: it
seems to be slightly more important to update the PAR parameter dynamically
regarding to the vanilla harmony search algorithm, but is still also better to
consider the best harmony’s values when creating the new harmony memory, as
employed by GHS and SGHS.

Currently, the best error rate we have obtained was around 0.63% with SGHS
technique, being one of the best errors up to date obtained by the work of
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Wan et al. [14] (0.21%). However, their work employed a different technique of
the one applied in this paper. Thereafter, we are not concerned in improving the
top results, but to stress we can turn the results better by using meta-heuristic
techniques instead of a random search. We have shown here we can improve the
results obtained by Caffe library itself by means of a proper selection of the CNN
parameters.

In regard to “CIFAR-10 Dataset” experiments, we employed the CIFAR-
10 quick model9, which is composed of three layers with one convolution and
one pooling operation each. We bolded the most accurate techniques in Table 3
according to the Wilcoxon signed-rank test. Once again, SGHS has obtained the
top results concerning CNN fine-tuning, which can be a promising indicator of
the suitability of this technique to this context.

Table 3. Experimental results concerning CIFAR-10 dataset.

Technique Final Accuracy #calls
(test set)

Caffe 71.51%±0.77 1

RS 66.97%±1.39 1

HS 72.28%±0.37 265

IHS 71.54%±0.09 265

GHS 71.86%±0.10 265

SGHS 72.43%±0.19 265

5 Conclusions

In this paper, we dealt with the problem of CNN model selection by means
of meta-heuristic techniques, mainly the ones based on the Harmony Search.
We conducted experiments in two public datasets for CNN fine-tuning consid-
ering HS and three variants, as well a random search and the set of parameters
suggested by the open-source code we have used. The results highlighted here
allow us to conclude that HS-based techniques are a suitable approach for CNN
optimization, since they outperformed other techniques compared in this work.

Acknowledgments. The authors are grateful to FAPESP grants #2013/20387-7,
#2014/09125-3, #2014/16250-9 and #2014/24491-6, and CNPq grants #303182/2011-
3 and #470571/2013-6.
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Abstract. In this paper we present a sampling approach to run the
k-means algorithm on large data sets. We propose a new genetic algo-
rithm to guide sample selection to yield better results than selecting the
individuals at random and also maintains a reasonable computing time.
We apply our proposal in a public mapping points data set from the 9th
DIMACS Implementation Challenge.

Keywords: Cluster analysis · k-means · Resampling · Meta-heuristics

1 Introduction

In many applications of different fields the task of identifying sets of similar
elements is required. In such applications the objective is to find groups so that
objects belonging to the same group are similar to each other and dissimilar to
objects of other groups. The concept of similarity is subjective and may vary from
one application to another. A widely used and well-known criteria for similarity
is the sum of squared errors (SSE). The problem is to partition the observations
into groups so the SSE is minimum, which is NP-hard for most cases [1]. As it
is unlikely that there is an exact algorithm that runs in polynomial time, unless
P = NP , the use of heuristic and approximate methods is justified.

Depending on the metric(criteria), the data distribution, size of the data set
and number of groups, some clustering methods are better than others. One
of the most popular clustering method is the k-means algorithm [10,11]. The
k-means is very well known for its speed and accuracy when the metric to be
met is the SSE. In fact, the k-means is a local search algorithm for the minimum
SSE that always finishes running in a local minimum [10]. Despite having been
applied to many problems with good results, the traditional k-means algorithm
is unfeasible for very large data sets. To solve this problem, there are numerous
approaches, like initializing methods for the clusters centroids [2,13], dimension
reduction [8,12,14] and others [3,6,7].

In this paper we try to solve the k-means algorithm for clustering large data
sets by searching a good sample using a genetic algorithm (GA) [9]. Other works
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 691–698, 2015.
DOI: 10.1007/978-3-319-25751-8 83
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did a similar approach [3,6], improving the execution time of the k-means by
randomly sampling a subset of the original data to estimates the centroids. In this
paper we propose a genetic algorithm (GA) [9] to guide the individuals selection
to obtain a better sample to perform k-means, yielding a better estimation of
centroids and, consequently, lower SSE.

The paper is organized as follows: in the Section 2 we discuss how to deter-
mine which sample is better and the intuition behind this idea; Section 3 presents
the genetic algorithm to perform the re-sampling of the original data set; in
Section 4 we apply our method on public mapping points data set from the 9th
DIMACS Implementation Challenge and compare the results with the ones from
two other algorithms, and we present our findings and observations in Section 5.

2 Sampling k-means

One of the most used approach to undertake the k-means algorithm on very large
data sets is sampling. The centroids are estimated based on a representative
sample of the entire data set. The obvious choice is to pick a random sample
and carry out the k-means algorithm to obtain estimates of the true centroids.
We call the true centroids a set of points that will give us the lowest SSE in the
complete data set. Our experiments revealed that the sample size is expected to
grow in proportion to the number of groups to maintain quality. This result is in
line with the one reported in [3]. We ran the random k-means on the NY data set
from the 9th DIMACS implementation challenge [5] two times, one varying the
sample size linearly with the number of clusters and another with a sample size
fixed. Figure 1 shows how the quality of the results is affected by the sample size.
Let 1 be the best known solution, note that as the number of centroids (clusters)
increases the quality diminishes if we keep the sample size fixed. Therefore, it is
unfair to compare results between methods with different sample sizes.
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Fig. 1. Influence of the sample size in the solution quality (NY data set).

Given an arbitrary sample size, we propose an algorithm to guide the selec-
tion of individuals to compose the sample. Our proposal tries to find the set
of observations that results in the highest sample SSE. Although this sounds
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counterintuitive, since we want to minimize the SSE in the original data set, our
results show that our proposal outperforms the traditional random sampling.
The intuition behind our approach is that if we remove a point close to a cen-
troid its position will change a little. The further from a centroid a point to be
removed is, the further the centroid will be repositioned. Following this thought,
it is noticeable that the points in the cluster edge will have a greater impact on
the centroid position and if we want to choose a set of points to remove from the
data set, choosing the points with less contribution to SSE, and consequently
with less impact on the centroid position, would be a good idea.

In this paper we seek for a sample that result the highest sample SSE. The
basic idea would be to discard points near the centroid and pick up new ones to
replace them, keeping the sample size unchanged. After that, run the k-means
algorithm in the new sample and repeat the procedure with the new centroids.
Repeat this until you can not get a higher SSE, and at this stage the selected
points in the last sample must be away from the centroids, on the edge of the
clusters (Fig. 2). Rather than implement the algorithm described above, we
have implemented a meta-heuristic to accomplish this task. In the next section
we detail the genetic algorithm utilized to re-sampling the data set.
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Fig. 2. Final selected points on the edge of the clusters.

3 Genetic Sampling

The genetic algorithm is a search and optimization technique that mimics the
natural selection process [9]. Through inheritance (crossover) and mutation of
individuals we can simulate a survival of the fittest environment. The fitness
of the individuals is measured by the quality criteria, ranging from problem to
problem. In our problem, the individuals (samples) with larger SSE are more
likely to survive and produce offspring for future generations.

At first, a population of individuals (samples) and the centroids are initialized
at random. Then, the parents are selected through a roulette wheel, a well-known
way to perform selection, with selection probabilities proportional to the quality
(SSE), so that more adapted individuals will have a better chance of generating
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Algorithm 1. Genetic Algorithm Framework
function GASampler(P, K, Sample, Pop)

for each individual in population do � Initialization and evaluation
individual ← a random sample of Sample points of P
fitness ← Fitness(individual)

end for
while not stop condition do � Main Loop

while Population Size < 2 · Pop do
Using roulette wheel select the parents � Selection
Offspring ← Crossover(parent1, parent2) � Crossover
if Random ≤ mutation probability then � Mutation

Mutation(Offspring1)
end if
if Random ≤ mutation probability then � Mutation

Mutation(Offspring2)
end if
Population ∪ Offspring

end while
for each individual in population do � Initialization and evaluation

fitness ← Fitness(individual) � Evaluation
end for
Remove from the population the Pop less fittest individuals

end while
return The best individual of the population

end function

offspring to the next generation. The basic framework utilized in this work can
be seen in the algorithm 1.

The parameters used in the algorithm 1 are: P ⊂ R
d, set of data points to be

clustered. Like in k-means algorithm the K parameter is used to represent the
number of groups in the final solution. The last two parameters, Sample and
Pop are the sample size used for each individual and how many individuals will
compose the population (the size of the population) in the genetic algorithm,
respectively.

The function that calculates fitness of the individuals is straight forward.
Given an individual, we run the k-means algorithm and return the SSE of the
solution. The two operators (crossover and mutation) are described in the algo-
rithms 2 and 3.

Commonly, the crossover operator cuts the chromosome of parents in one or
two points and generates two new individuals using pieces of each chromosome.
However, in our problem the chromosome is a collection of objects (a sample of
the original data set), and the order of the elements in the chromosome does not
influence the quality of the sample. To allow any combining output between the
two individuals we shuffle the chromosome before cut.

The mutation operator is responsible for adding new information on popu-
lation. In our case, those observations of the data set that were not selected in
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Algorithm 2. Crossover operator
function Crossover(individual1, individual2)

individual1 ← shuffle individual1
cut ← a random integer between 0 and individual size
newIndividual1 ← elements before the cut individual1 ∪ elements after the cut

of individual2
newIndividual2 ← elements before the cut individual2 ∪ elements after the cut

of individual1
return newIndividual1, newIndividual2

end function

the random start would not be in any individual. After all, the crossover opera-
tor only generates new individuals within the elements that already exist in the
population. The idea of mutation operator is simple, we remove an element of
an individual and choose, from the full data set, a new element to replace it.
However, we introduce a bias in this random selection. This kind of bias does not
normally exist, but our tests showed good results. We use a mechanism similar to
the selection (roulette wheel), with probabilities of points removal proportional
to the distance to the nearest centroid, since those points contribute little to the
SSE.

Algorithm 3. Mutation operator
function Mutation(individual)

using roulette wheel selection to select a point from the sample to swap
select a random point from the population not in the sample
swap the two points

end function

4 Experimental Results

In this section the results of the experiments are presented and discussed. First,
the data sets used to validate the algorithm are presented, after that we explain
how the algorithm was set up and the test environment configuration. At last,
the results are presented.

We have used twelve real data sets varying from small to very large number
of points. They are all mapping points from the 9th DIMACS Implementation
Challenge [5]. We didn’t fixed the number of clusters, instead we have varied it
from 2 to 20.

4.1 Algorithm Set Up

In Table 1 we show the parameters choice for the genetic algorithm. All tests
were run on a Intel(R) Core(TM) i5-3570 CPU @ 3.40GHz with 8 Gb of available
physical memory. The algorithms were implemented using Python in a LINUX
environment.
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Table 1. Parameters used in the algorithm

Parameter Value Description

P - One of the data sets on the previous subsection
K 2-20 Number of clusters

Sample 510 Size of each sample [4]
Pop 20 Size of the population of samples

generations 50 Number of iterations of the genetic algorithm

4.2 Tests Results

Figure 3 shows the comparison the running times of our genetic proposal and
the full k-means algorithm for the NY and LKS data sets (the other data sets
result on similar figures). As we expected, the full k-means algorithm is not
recommended for application on very large data sets and high values of k. Since
the proposed method works with a fixed number of samples, the size of the
original data set does not influence the computational cost of the algorithm.
Moreover, as the number of clusters goes up, the time consumed to finish the
k-means algorithm increases substantially, whereas the runtime for our proposal
scales well (sublinear). These two facts show that the proposed method is suitable
for large data sets.

Figure 4 presents the average quality based on 30 replications of our proposal.
Remind that the solution quality 1 represents best known solution, obtained
by carrying out the full k-mean algorithm. For comparison, we also show the
average quality of the sampling k-means based on a random sample of size 510.
The genetic algorithm searches for a sample whose elements are in the cluster
edge, instead of picking any at random. As a result it outperforms the random,
specially for large values of k. The results for the data sets not showed in this
paper follow the same pattern to the ones presented here.
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Fig. 3. Average runtime of the k-means (full data set) and GA Sampler.
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Fig. 4. Average quality of the GA sampler and a uniform random sampler.

5 Conclusion

From the results shown we can conclude that the Genetic Algorithm is a viable
option for clustering large databases. It performs right between the full k-means
and the random sampling on time and solution quality.

As future work, we intented to improve the quality drop when the number
of clusters goes up. We conjecture that increasing the sample size linearly with
the number of clusters would mantain the results of our proposal comparable
with the ones form the full k-means algorithm. In addition, it is important to
compare how this sampling technique performs next to other algorithms for
clustering large data sets. So, it is in our plans to compare the Genetic Sampling
k-means against the most popular algorithms for clustering large data sets.

Acknowledgments. We gratefully acknowledge the financial support provided by
FAPES, without which the present study could not have been completed.
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Abstract. In this work, we analyze the training samples for discovering
what kind of samples are more appropriate to train the back-propagation
algorithm. To do this, we propose a Gaussian function in order to iden-
tify three types of samples: Border, Safe and Average samples. Experi-
ments on sixteen two-class imbalanced data sets where carried out, and a
non-parametrical statistical test was applied. In addition, we employ the
SMOTE as classification performance reference, i.e., to know whether
the studied methods are competitive with respect to SMOTE perfor-
mance. Experimental results show that the best samples to train the
back-propagation are the average samples and the worst are the safe
samples.

Keywords: Two-class imbalance · Border · Average and safe samples ·
SMOTE · Back-propagation

1 Introduction

Class imbalance is a type of problem in the Pattern Recognition, where some
classes are highly under-represented compared with other classes. It has been
considered one of the ten challenging problems in Data Mining research, and in
the last years it has been received a great attention for the research community
on machine learning and Pattern Recognition [10,19].
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The back-propagation multilayer perceptron is a very popular artificial neural
network (ANN), and is affected by the class imbalance in the same way that
the other standard classifiers,, which become slow to converge to the expected
solution [1–3]. In this way, several techniques for dealing with class imbalance
problem through the appropriate selection of the samples to train the ANN
are proposed. For example, in Ref. [16] a selection mechanism was presented,
which pay more attention to the samples that are ”difficult” to classify. Similarly,
other authors suggest to give more priority to the samples close to the decision
borderline or to the samples which are harder to learn [9,11,13].

On the other hand, about the class imbalance problem several researches pro-
pose to improve the classification performance [2,4,15] eliminating the samples
that are hard to learn or close to the decision borderline, because they could be
”noise” or ”overlapped” samples. The edition techniques as the Edited Nearest
Neighbor Rule or Tomek links have been widely used [10,19]. So the question
pendent is: What it is best for the back-propagation? to eliminate samples that
are hard to learn or close to the decision borderline? or to pay more attention
on these samples?

In this paper, we empirically analyze these scenarios in order to identify which
samples are the best for training the back-propagation on two-class imbalanced
domains. We propose a novel function which uses the output of the neural net-
work for identifying each kind of samples: border, safe and average samples.
Experiments on sixteen two-class imbalanced data sets show the adequate dis-
tinction of the samples and how the neural network behavior is increased.

2 Theoretical Framework

In the specialized literature about the class imbalance problem, it is rived the
interest of finding the best samples to build the classifiers, eliminating those
samples with high probability to be noise or overlapped samples [2,4,14,15], or
focusing in those close to the borderline decision [9,11,13] (the latter has been
less explored). So, in these literature, we identify basically three categories of
samples:

– Noise and rare or outliers samples. The first ones are instances with error in
their labels [17] or erroneous values in theirs features that describe them, and
the last ones are minority and rare samples located inside of the majority
class [20].

– Border or overlapped samples, are those samples located where the decision
boundary regions are intersected [2].

– Safe samples are those with high probability to be correctly labeled by the
classifier and they are surrounded by samples of the same class [20].

However, there are other samples that might be of interest, those samples
situated close to the borderline decision and far of the safe samples. These sam-
ples are known as average samples. In this paper, we are interested in identifing
what samples could be the best for training the back-propagation multilayer



Analysing the Safe, Average and Border Samples 701

perceptron when this is trained in a two-class imbalance context. Bearing this
in mind, we analyze only three kinds of samples: the border, the safe and the
average samples. We use the neural network output to analyze the training sam-
ples using a Gaussian function γ (Eq. 1) for identifying the kind of sample. The
function proposed is:

γ(diff) = exp(−||diff − μ||2
2σ2

), (1)

Variable diff is the normalized difference between the real ANN outputs for a
sample q,

diff =
zqmin√

(zqmin − zqmaj)2
− zqmaj√

(zqmin − zqmaj)2
, (2)

where zqmin and zqmaj are the real ANN outputs corresponding to minority and
majority classes (respectively) for a q sample. Variable μ is computed under the
following consideration: the target ANN outputs are usually codified in 0 and 1
values. For example, for a two-class problem (class A and class B) the desired
ANN outputs is codified as ((1; 0) and (0; 1)) respectively. These values are the
target ANN outputs, and the expected final values are emitted by the ANN after
training. So, in accordance with this understanding, the expected values by μ
are:

– μ =1.0 for safe samples, because it is expected that the ANN classifies with
high accuracy level, it is expected that the ANN output for all neurons will
be values close to (0,1) or (1,0). So, if we apply Eq. 2 the expected value
(ideally) is 1.0, at which the γ function (Eq. 1) has its maximum value.

– μ =0.0 for border samples, because it is expected that the classifier do not
classifies correctly, i.e., the expected ANN outputs for all neurons are values
close to (0.5,0.5), so the diff (Eq. 2) is approximately 0.0, at which the γ
function (Eq. 1) has its maximum value for these samples.

– μ =0.5 for average samples, because it is expected that ANN classifies with
less accuracy. In addition, the average samples are between safe (μ = 1.0)
and border (μ = 0.0) samples.

The γ function (Eq. 1) is in this work proposed to give a certain degree of priority
to each type of samples. The goal is to identify each type of sample for that μ
value. The Eq. 1 gives high values to samples when its diff (Eq. 2) is close to μ
and low values when the diff is far to μ. That is to say, how the neural network
output depends on certain sample evaluated in some moment, the samples closed
to the desired output (more similar)

Basically, the process to select the samples was the next: Before the ANN
training, the training data set is balanced at 100% through an effective over-
sampling technique. In this work we use the SMOTE [6]. During training, the
proposed method select the samples using the Eq. 1 to update the neural network
weights, it chooses from the balanced training data set only the samples to use
in the neural network train.
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3 Experimental Set-Up

In this section, we will describe the techniques, data sets and experimental frame-
work used in this paper. Firstly, for the experimental stage we chose two real-
world remote sensing data bases: Cayo and Feltwell. The Cayo data set comes
from a particular region in the Gulf of Mexico [1], and it has eleven classes, four
features and 6019 samples. The Feltwell data set represents an agricultural area
near the village of Fetwell (UK) [5] with fifteen features, five classes and 10945
samples. However, as we are interested in to study two-class imbalance problems,
we decompose the multi-class problem into multiple two-class classification prob-
lems. We proceed as follow: we take one class (cj) from original database (DB)
to integrate the minority class (c+) and the rest of classes were joined to shape
the majority class (c−), so we integrate the two-class dabase DBj (j = 1, 2, ..., J ,
and J is the number of classes in DB). In other words, DBj = c+ ∪ c−. So we
obtain J two-class imbalanced data sets. The main characteristics of the new
produced benchmarking data sets are shown in Table 1.

Table 1. A brief summary of the main characteristics of a new produced benchmarking
data set. The Cj and Fj databases corresponding to subsets of Cayo and Feltwell
respectively.

Databases #Minority class #Majority class Imbalance Ratio
samples samples

C1 838 5181 6.18
C2 293 5726 19.54
C3 624 5395 8.65
C4 322 5697 17.69
C5 133 5886 44.26
C6 369 5650 15.31
C7 324 5695 17.58
C8 722 5297 7.34
C9 789 5230 6.63
C10 833 5186 6.23
C11 772 5247 6.80
F1 3531 7414 2.10
F2 2441 8504 3.48
F3 896 10049 11.22
F4 2295 8650 3.77
F5 1781 9164 5.15

On the other hand, the sequential back-propagation algorithm was used in this
work, the ten-fold cross-validation method was applied on all data sets shown in
Table 1, and the weights were ten times randomly initialized for each training pro-
cess. Therefore, the results of classifying the test samples were averaged between
the ten folds and the ten different weights initialization. The learning rate (η) was
set to 0.1 and the stopping criterion was established at 500 epoch or if the MSE
value is lower than 0.001. A single hidden layer was used. The number of neurons
in the hidden layer was set in four. Finally, the Area Under the Receiver Operating
Characteristic Curve (AUROC) [7] was used as a measure criteria for the classifiers
performance, because it is one of most widely-used and accepted technique for the
evaluation of binary classifiers in imbalanced domain [10].
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4 Results and Discussion

Here we present the main experimental results of this research. We have used a
well known and effective over-sampling technique (SMOTE [6]) to deal with the
class imbalance problem, as classification performance reference, to know if the
studied methods show competitive performing. Table 2 shows the AUC obtained
in the classification stage for each dataset in accordance to the type samples,
when the back-propagation gives priority to the border, safe and average samples
(see section 2). The values in bold type represents the best result in each data
set.

Table 2. Back-progation classification performance measured using AUC and average
rank.

Databases µ = 0 µ = 0.5 µ = 1 SMOTE Standard
C1 0.9421 0.9774 0.9365 0.9780 0.9335
C2 0.9652 0.9688 0.9378 0.9688 0.7520
C3 0.9622 0.9664 0.9577 0.9670 0.9490
C4 0.8883 0.9789 0.8306 0.9818 0.9406
C5 0.9182 0.9688 0.9543 0.9669 0.8458
C6 0.8603 0.9478 0.8452 0.9514 0.7720
C7 0.9108 0.9788 0.9647 0.9813 0.8303
C8 0.9766 0.9903 0.9879 0.9895 0.9853
C9 0.9353 0.9645 0.8519 0.9679 0.9350
C10 0.9018 0.9021 0.8666 0.9185 0.8337
C11 0.8683 0.9698 0.8491 0.9667 0.9219
F1 0.9774 0.9779 0.9721 0.9781 0.9773
F2 0.9700 0.9735 0.9497 0.9748 0.9651
F3 0.9687 0.9767 0.9553 0.9748 0.8900
F4 0.9741 0.9774 0.9657 0.9765 0.9705
F5 0.9821 0.9852 0.9702 0.9820 0.9676

Average Rank 3.3125 1.5625 4.1875 1.5 4.4375

In Table 2 we observe that the best classification performance is presented by
SMOTE and by the back-propagation with μ = 0.5 (when the ANN is trained
with average samples). In addition, it is noted that the worst performance is
obtained for the safe samples (μ = 1.0) and the standard back-propagation.
The back-propagation classification performance when μ = 0 is close to the safe
samples performance, but it is better, in agreement with the Friedman ranks
and the AUC values. In other words, we observe that the best samples to the
training at the back-propagation are the average samples, i.e., those that are not
in the overlap region but are close to them and near to the area where the safe
samples are.

On the other hand, the classification performance of the back-propagation
with μ = 0.5 is very similar to the SMOTE performs, they exhibit virtually
the same results. However, the number of samples used by back-propagation
with μ = 0.5 is approximately 38% (to Fj and Cj) of the total samples used by
SMOTE and 68% of samples employed by standard back-propagation (see Table
3). Moreover, we do not despite the μ = 0 results, because using approximately
only 2.3% of the samples on SMOTE algorithm, it obtains results with few
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Table 3. Number of samples used in the training process in accordance to the μ values
(see section 2). Remembering we used the ten-fold-cross-validation method and the
resulting number showed correspondence to the training fold.

Databases µ = 0 µ = 0.5 µ = 1 SMOTE Standard
C1 142 4007 7796 9327 5418
C2 287 3408 8166 10309 5418
C3 269 3646 7959 9711 5418
C4 228 3632 5962 10255 5418
C5 224 3378 8720 10595 5418
C6 246 3949 6373 10171 5418
C7 259 4027 8549 10253 5418
C8 182 3611 8340 9535 5418
C9 91 3105 6741 9415 5418
C10 838 4418 6671 9335 5418
C11 233 3577 6007 9445 5418
F1 258 5232 11389 13343 9850
F2 294 6576 12758 15305 9850
F3 256 6515 14887 18087 9850
F4 284 5854 13135 15567 9850
F5 283 5431 14032 16495 9850

Average 273 4397 9217 11696 6803

differences in its performance. Table 3 shows the number of samples used in the
training stage for several μ values.

From sizes shown in the Table 3, we observe that when the back-propagation
is trained with μ = 0 the number of samples used is much less than with the other
values of μ. However, the classification performance obtained with this value is
worst than SMOTE and back-propagation with μ = 0.5. So, when the μ = 1.0
the number samples used is close to the SMOTE and the back-propagation
performance is the worst among all studied methods. According to the results
shown in this section, we consider necessary to make a statistical analysis. For
this, we apply the Friedman and Iman–Davenport test in order to detect whether
differences in the results exist. Both test are applied with a level of confidence
γ = 0.05, and we use the KEEL software. If the null-hypothesis is rejected, we use
a post-hoc test in order to find the particular pairwise comparisons that produce
statistical significant differences. The Holm-Shaffer post-hoc tests are applied in
order to report any significant difference between individual methods here used.
The Holm procedure rejects the hypotheses (Hi) one at a time until no further
rejections can be done [12]. Holm method ordains the p-values from the smallest
to the largest, i.e., p1 ≤ p2 ≤ pk−1, and the sequence H1,H2, ...,Hk−1 being the
corresponding hypotheses. After the Holm procedure rejects H1 to Hi−1 if i is
the smallest integer such that pi > α/(k−i). This procedure starts with the most
significant p-value. As soon as a certain null-hypothesis cannot be rejected, all
the remaining hypotheses are retained as well [18]. The Shaffer method follows
a very similar procedure to that proposed by Holm, but instead of rejecting Hi

when pi ≤ α/(k − i), it rejects Hi if pi ≤ α/ti, where ti is the maximum number
of hypotheses which can be true given that any (i − 1) hypotheses are false [8].

Considering reduction performance distributed according to chi-square with
4 degrees of freedom Friedman statistic is to set at 50.5, and p-value com-
puted by Friedman Test is 3.1355E-10. Now, considering reduction performance
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distributed according to F-distribution with 4 and 60 degrees of freedom, Iman
and Davenport statistic is 56.1111, and p-value computed by Iman and Daveport
Test is 1.3086E-19. So the null hypothesis is rejected, both Friedman’s and Iman-
Davenport’s tests indicate that significant differences exist in the results. Due
to these results, a post-hoc statistical analysis is required. We have to compute
and ordain the corresponding statistics and p−values. Table 4 presents the fam-
ily of hypotheses ordered by their p−values and the adjustment by Holm’s and
Shaffer’s statistics procedures. In Table 4 we can see that the Holm-Shaffer test
agrees in that do not exist statistical significant differences between the back-
propagation with μ = 0.5 and the SMOTE back-propagation, but there is differ-
ence between the back-propagation μ = 0.1 and the SMOTE back-propagation.
The classification performance of the back-propagation with μ = 0.5 is very
competitive with the SMOTE back-propagation, using much less samples in the
training stage than the SMOTE algorithm (see Table 3). In same way, results
from the Table 4 confirm that the worst samples to train the back-propagation
are those far to decision borderline: the back-propagation with μ = 1.0.

Table 4. P-values for α = 0.05. Holm and Shaffer test rejects those hypotheses
that have unadjusted p−value ≤ p−Holm and p−value ≤ p−Shaffer respectively. The
rejected null hypothesis are typed in bold.

Methods z = (R0 − Ri)/SE p p−Holm p−Shaffer
10 SMOTE vs. Standard 5.25476 0 0.005 0.005
9 µ =0.5 vs Standard 5.142956 0 0.005556 0.008333
8 µ =1.0 vs SMOTE 4.807546 0.000002 0.00625 0.008333
7 µ =0.5 vs µ =1.0 4.695743 0.000003 0.007143 0.008333
6 µ =0.0 vs SMOTE 3.242299 0.001186 0.008333 0.008333
5 µ =0.0 vs µ =0.5 3.130495 0.001745 0.01 0.0125
4 µ =0.0 vs Standard 2.012461 0.044171 0.0125 0.0125
3 µ =0.0 vs µ =1.0 1.565248 0.117525 0.016667 0.016667
2 µ =1.0 vs Standard 0.447214 0.654721 0.025 0.025
1 µ =0.5 vs SMOTE 0.111803 0.910979 0.05 0.05

5 Conclusion

In this paper we study the performance of the backpropagation algorithm when
it is trained with samples in different points of the representation space, specifi-
cally, in the borderline, average and safe area. The proposal follows three goals:
firstly, identify the nature of the samples which are more appropriate for train-
ing the back-propagation algorithm while the computational cost is diminished
without sacrificing performance; secondly, provide a method for handling the
imbalance problem in data sets with two-classes using the neural network; finally,
analyze the competitiveness of the proposal here made respect to use a resam-
pling method which avoid the imbalance problem in the data set, but increase
significantly the amount of samples used, SMOTE.

For the identification of the nature of the samples we propose to include a
Gaussian function in the decision step of the back-propagation algorithm. The
results obtained show that the best samples for training the back-propagation
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are the average samples, i.e., those close to the borderline decision that are not
in the overlap region. With this, the back-propagation needs less samples in the
training stage than the SMOTE, obtaining a similar classification performance.

Future work will extend this study, we are interested in to generalize this
study to multiples classes domains and to dip in problems where the dataset
shows a large size and an extreme class imbalance.
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Abstract. In this paper, we propose some improvements to the Sequen-
tial Patterns-based Classifiers. First, we introduce a new pruning strat-
egy, using the Netconf as measure of interest, that allows to prune the
rules search space for building specific rules with high Netconf. Addi-
tionally, a new way for ordering the set of rules based on their sizes and
Netconf values, is proposed. The ordering strategy together with the
“Best K rules” satisfaction mechanism allow to obtain better accuracy
than SVM, J48, NaiveBayes and PART classifiers, over three document
collections.

Keywords: Data mining · Supervised classification · Sequential
patterns

1 Introduction

Classification based on Sequential Patterns (CSPa), introduced in [6], integrates
Classification Rule Mining [1] and Sequential Pattern Mining [2]. This inte-
gration involves mining a subset of Sequential Patterns-based Rules (SPaRs).
Sequential patterns-based classification has been used in different tasks, for
example: text classification [3], document-specific keyphrase extraction [4], and
web document classification [5], among others.

CSPa aims to mine a set of SPaRs from a class-transaction dataset. A clas-
sifier based on this approach usually consists of an ordered SPaR list l, and
a mechanism for classifying new transactions using l. It is common to confuse
sequences with itemsets. Unlike an itemset, in which an item can occur at most
once, in a sequence an itemset can occur multiple times. Additionally, in itemset
mining, (abc) = (cba) but in sequence mining, 〈(ab) c〉 �= 〈c (ab)〉. In CSPa, it
is assumed that a set of items I = {i1, i2, ..., in}, a set of classes C, and a set
of transactions T are given, where each transaction t ∈ T consists of a sequence

c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 708–715, 2015.
DOI: 10.1007/978-3-319-25751-8 85
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〈α1 α2 ... αn〉, so that αi ⊆ I, and a class c ∈ C. The Support of a sequence α,
denoted as Sup(α), is the fraction of transactions in T containing α (see Eq. 1).

Sup(α) =
|Tα|
|T | (1)

where Tα is the set of transactions in T containing α (see Def. 1) and | · | is the
cardinality operator.

Definition 1. Let α = 〈α1 α2 ... αn〉 and β = 〈β1 β2 ... βm〉 be sequences, we
will say that α is contained in β if there exists integers 1 ≤ j1 < j2 < ... < jn ≤ m
such that α1 ⊆ βj1 , α2 ⊆ βj2 , ..., αn ⊆ βjn , with βji ∈ β.

A SPaR is an implication of the form α ⇒ c where α is a sequence and c ∈ C.
The size of a SPaR is defined as its cardinality, a SPaR containing k itemsets
(including the class) is called a k-SPaR. The rule α ⇒ c is held in T with
certain Support and Confidence (see Eqs. 2 and 3). If the measure values used
to compute and evaluate a SPaR r : α ⇒ c are greater than to a user-specified
threshold, r is declared to be an interesting SPaR.

Sup(α ⇒ c) = Sup(α ⊗ 〈c〉) (2)

where ⊗ is the concatenation operator (see Def. 2).

Conf(α ⇒ c) =
Sup(α ⇒ c)

Sup(α)
(3)

Definition 2. Let α = 〈α1 α2 ... αn〉 and β = 〈β1 β2 ... βm〉, we will call the
sequence 〈α1 α2 ... αn β1 β2 ... βm〉 the concatenation of α and β, and we will
use the operator ⊗ to indicate it.

The accuracy of the sequential patterns-based classifiers depend on four main
elements: (1) the quality measure used to generate the SPaRs, (2) the pruning
strategy, (3) the ordering strategy and (4) the mechanism used for classifying
unseen transactions. Therefore, any of the main sequential patterns mining algo-
rithms (GSP [6], PrefixSpan [7], LAPIN [8] and PRISM [9]) can be adapted to
generate the SPaRs.

Currently, all classifiers based on sequential patterns use the Support and
Confidence measures for computing and ordering the set of SPaRs. However,
several authors have pointed out some drawbacks of these measures [10], for
example, Confidence detects neither statistical independence nor negative depen-
dence among items (misleading rules).

Many studies [2,6] have indicated the high number of rules that could be
generated using a small Support threshold. To address this problem, recent works
[11] prune the rules search space each time that a rule satisfies both Support
and Confidence thresholds, it means that rules satisfying both thresholds are
not extended anymore. Using this strategy, it is more frequent the generation of
general (short) rules than the generation of specific (large) rules, some of which
could be more interesting.
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In order to overcome these drawbacks, in this paper we propose some general
improvements to the sequential patterns-based classifiers. The rest of the paper
is organized as follows. The next section describes the related work. Our proposal
are presented in section three. In the fourth section the experimental results are
shown. Finally, the conclusions are given in section five.

2 Related Work

In the last decades, some works have used sequential patterns to increase the
accuracy of classifiers. The sequential pattern mining algorithms can be split into
two main groups: (1) apriori-like algorithms (GSP [6]) and (2) pattern-growth
based algorithms (PrefixSpan [7], LAPIN [8], PRISM [9]).

Once the SPaRs are generated, these are ordered. For this task there are
six main strategies reported in the literature: Confidence-Support-Antecedent,
Antecedent-Confidence-Support, Weighted Relative Accuracy, Laplace Expected
Error Estimate, Chi-Square and L3. In [12], the authors show that the L3 rule
ordering strategy obtains the best results of all strategies mentioned above. How-
ever, all these ordering strategies are based on Confidence measure.

Once a SPaR-based classifier has been built, usually presented as a list of
sorted SPaRs, there are three main mechanisms for classifying unseen data [11].

– Best rule: This mechanism assigns the class of the first (“best”) rule in the
order that satisfies the transaction to be classified.

– Best K rules: This mechanism selects the best K rules (for each class) that
satisfy the transaction to be classified and then the class is determined using
these K rules, according to different criteria.

– All rules: This mechanism selects all rules that satisfy the unseen transac-
tion and then these rules are used to determine their class.

Since the “Best K rules” mechanism has been the most widely used for rule-
based classification, reporting the best results, we will use it in our experiments.

3 Our Proposal

In the next subsections we describe a procedure, called SPaRs-Gen, to generate
the set of interesting SPaRs (subsection 3.3), which uses the Netconf measure
to evaluate the candidate SPaRs (subsection 3.1) and applies a new pruning
strategy (subsection 3.2).

3.1 Netconf Measure

All classifiers based on sequential patterns use the Support and Confidence mea-
sures for mining the set of SPaRs. However, several authors have pointed out
some drawbacks of these measures that could lead us to discover many more
rules than it should [10]. In particular, the presence of items with high Support
can lead us to obtain misleading rules (see Ex. 1) because higher-Support items
appear in many transactions and they could be predicted by any itemset.
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Example 1. Without loss of generality, let us assume that Sup(X) = 0.4,
Sup(Y ) = 0.8 and Sup(X ⇒ Y ) = 0.3, therefore Sup(¬X) = 1 - Sup(X) = 0.6
and Sup(¬X ⇒ Y ) = Sup(Y ) - Sup(X ⇒ Y ) = 0.5. If we compute Conf(X ⇒
Y ) we obtain 0.75 (a high Confidence value) but Y occurs in 80% of the trans-
actions, therefore the rule X ⇒ Y does worse than just randomly guessing. In
this case, X ⇒ Y is a misleading rule.

On the other hand, in [13] the authors proposed a measure, called Netconf
(see Eq. 4), to estimate the strength of a rule. In general, this measure solves
the main drawbacks of the Confidence measure, reported in other works [10].

Netconf(X ⇒ Y ) =
Sup(X ⇒ Y ) − Sup(X)Sup(Y )

Sup(X)(1 − Sup(X))
(4)

The Netconf has among its main advantages that it detects the misleading
rules obtained by the Confidence. For the Ex. 1, Netconf(X ⇒ Y ) = −0.083
showing a negative dependence between the antecedent and the consequent.
Therefore, in this paper we propose to use the Netconf measure instead of Sup-
port and Confidence for computing and ordering the set of interesting SPaRs.

3.2 Pruning Strategy

Most of the algorithms in SPaR-based classification [6] prune the SPaRs search
space each time a SPaR satisfying the defined thresholds is found, it produces
general (small) rules reducing the possibility of obtain specific (large) rules, some
of which could be more interesting. Besides, since the defined threshold(s) must
be satisfied, many branches of the rules search space could be explored in vain.

In our proposal, instead of pruning the SPaR search space when a SPaR
satisfies the Netconf threshold, we propose the following pruning strategy:

– If a SPaR r does not satisfy the Netconf threshold minNF (r.NF ≤
minNF ) we do not extend it anymore avoiding to explore this part of the
SPaR search space in vain.

– Let r1 : α ⇒ c and r2 : β ⇒ c be SPaRs, if the SPaR r : 〈α ⊗ β〉 ⇒ c
satisfies the Netconf threshold but r.NF < r1.NF and r.NF < r2.NF then
we prune r avoiding to generate SPaRs with less quality than their parents.

The intuitive idea (or hypothesis) behind this pruning strategy is that specific
rules with high values of quality measure are better to classify than general rules
with high values of quality measure.

3.3 Generating and Ordering the SPaRs

In this section, we describe the procedure (called SPaRs-Gen) to generate de set
of interesting SPaRs, which uses the Netconf measure to evaluate the candidate
SPaRs and applies the pruning strategy introduced in section 3.2.

Let α ⇒ c be an interesting SPaR and T be a set of transactions, SPaRs-Gen
stores for each t ∈ T , a list with the occurrence positions of α in t (see Def. 3).
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Definition 3. Let α = 〈α1 α2 ... αn〉 and β = 〈β1 β2 ... βm〉 be sequences such
that α is contained in β (i.e. exists integers 1 ≤ j1 < j2 < ... < jn ≤ m such
that α1 ⊆ βj1 , α2 ⊆ βj2 , ..., αn ⊆ βjn), we will call occurrence position of α in
β (occP (α, β)) to the least position of all possible βjn in β, if | α |> 2, and the
set of positions of all possible βjn in β, if | α |≤ 2.

Similar to the reported algorithms for frequent sequence mining [6–9], in a
first step, SPaRs-Gen obtains the set of 3-SPaRs by combining the 2-SPaRs
belonging to the same class. The pseudo code of the 3-SPaRs generation is not
described for simplicity. However, is valid to remember that, as we mentioned
above, SPaRs-Gen stores for each interesting SPaR α ⇒ c (of any size) and for
each transaction t ∈ T , a list with the occurrence positions of α in t. Unlike
the reported algorithms, which generate the k-SPaRs either by combining the
interesting (k − 1)-SPaRs with a common k − 2 prefix or by using a depth first
search strategy, SPaRs-Gen computes the k-SPaRs (k > 3) by combining the
interesting (k − 1)-SPaRs and the interesting 3-SPaRs (see Alg. 1).

Algorithm 1. Pseudo code for computing the interesting k-SPaRs
Input: Set of interesting (k − 1)-SPaRs, set of interesting 3-SPaRs and Netconf threshold

minNF .
Output: Set of interesting k-SPaRs.
L1 = (k − 1)-SPaRs, L2 = 3-SPaRs, L3 = ∅1
foreach c ∈ C do2

foreach (r1 = 〈α1 ... αk−1〉 ⇒ c) ∈ L1 and (r2 = 〈αk−1 β〉 ⇒ c) ∈ L2 do3
foreach t ∈ T do4

if ∃op1 (op1 ∈ occP (〈αk−1 β〉, t) and op1 > occP (〈α1 ... αk−1〉, t)) then5
r3 = 〈α1 ... αk−1〉 ⊗ 〈β〉 ⇒ c6
Computes the Netconf NF of r37
if (r3.NF > minNF ) and8

(r3.NF ≥ r1.NF or r3.NF ≥ r2.NF ) then9
L3 = L3 ∪ {r3}10

end11

end12

end13

end14

end15
return L316

In line 3 of Algorithm 1, the (k−1)-SPaRs are combined with the 3-SPaRs to
generate the candidate k-SPaRs. In line 5, the definition of occurrence position
is applied. Finally, the candidate SPaRs are built in line 6, their Netconf values
computed in line 7 and, the pruning strategy verified in lines 8 − 9.

Once the set of SPaRs has been generated, it is sorted. As mentioned in
section 3.2, for classifying, we propose to use specific (large) rules with high
Netconf; for this purpose, we sort the set of SPaRs in a descending order accord-
ing to their sizes (the largest first) and in case of tie, we sort the tied SPaRs in
a descending order according to their Netconf (the highest values first).

The intuitive idea behind this ordering strategy is that large rules should be
preferred before short rules because in general more specific rules have a higher
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Netconf than general rules. In case of tie in size, rules with high Netconf values
should be preferred before rules with low Netconf values.

For classifying unseen transactions, we decided to follow the “Best K rules”
mechanism, because the “Best rule” mechanism could suffer biased classification
since the classification is based on only one rule; and the “All rules” mechanism
takes into account rules with low ranking, which could affects the accuracy.

4 Experimental Results

In this section, we report some experimental results where our proposal, called
SPaC-NF, is compared, over three document collections, against other classifiers
as NaiveBayes, PART [14], J48 [1], Support Vector Machines [15] and against
a classifier (SPaC-MR) built with the Main Results obtained in SPaR-based
classification. All these classifiers, with the exception of SPaC-NF and SPaC-
MR, were evaluated using Weka (http://www.weka.net.nz/).

The experiments were done using ten-fold cross-validation, reporting the
average over the ten folds. Our tests were performed on a PC with an Intel
Core 2 Quad at 2.50 GHz CPU with 4 GB DDR3 RAM, running on Windows 7
system. Similar to other works, experiments were conducted using several doc-
ument collections, three in our case: AFP (http://trec.nist.gov), TDT (http://
www.nist.gov) and Reuter (http://kdd.ics.uci.edu). The characteristics of these
datasets are shown in table 1.

Table 1. Tested datasets characteristics.

Dataset #instances #classes
AFP 711 22
TDT 2 978 92
Reuter 21 578 115

In the same way as in other works, for all used datasets, sentences are ordered
in each document. This means that the document is considered as being an
ordered list of sentences and each sentence is considered as being an unordered
set of words. Therefore, we represented the document as a sequence of itemsets
where each one corresponds with the set of words of each sentence.

In the experiments, different parameters for each classify were used. In case of
SVM classify, the weka default parameter values and a polynomial kernel were
used. For J48 and PART classifiers we used the confidence factor set to 0.25
and the minimum number of objects set to 2, as their authors suggested in [1];
additionally, for PART classifier we used the seed value set to 1. In SPaC-MR
we used the Confidence threshold set to 0.5 as was proposed in other works [12].
Finally, in SPaC-NF we used the Netconf threshold set to 0.5 (equivalent to 75
% if we map Netconf from [−1; 1] to [0; 1]) based on the study performed in [16].

In Table 2, the results show that SPaC-NF yields an average accuracy higher
than the other evaluated classifiers, having in average a difference in accuracy
of 3.2 % with respect to the classifier in the second place (SVM classifier).

http://www.weka.net.nz/
http://trec.nist.gov
http://www.nist.gov
http://www.nist.gov
http://kdd.ics.uci.edu
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Table 2. Comparison against other sequential patterns-based classifiers.

Dataset SVM J48 NaiveBayes PART SPaC-MR SPaC-NF
AFP 88.7 81.5 83.6 78.3 89.5 93.8
TDT 89.6 86.2 80.8 75.4 87.1 91.9
Reuter 82.5 79.3 78.2 75.7 80.3 84.7
Average 86.9 82.3 80.8 76.4 85.6 90.1

In Table 3, we show the impact of our improvements. For this, we compare
our approach (SPaC-NF) that uses the Netconf measure and obtains large rules
against a SPaR-based classifier (SPaC-MR) that uses the Confidence measure
and obtains short rules. Additionally, for both classifiers, we evaluate the best
rule ordering strategy reported (L3) and the strategy proposed by us, based on
their rule sizes (largest first) and Netconf values.

Table 3. Impact of the different improvements in a general SPaC-based classifier.

SPaC-MR SPaC-NF
Dataset L3 Size & NF L3 Size & NF
AFP 89.5 90.9 92.4 93.8
TDT 87.1 88.6 90.3 91.9
Reuter 80.3 81.8 83.5 84.7
Average 85.6 87.1 88.7 90.1

To show the better performance of sequential patterns-based classifiers over
the Class Association Rules (CARs) based classifiers in tasks of texts classifica-
tion, in Table 4 we compare our approach against the main CAR-based classi-
fiers. The results show how the own nature of the sequences, where the order is
important, make them more appropriated than CARs for texts classification.

Table 4. Comparison against the main CAR-based Classifiers.

Dataset CBA CMAR HARMONY CAR-NF SPaC-NF
AFP 72.8 74.2 76.3 77.5 93.8
TDT 74.2 74.3 72.4 74.8 91.9
Reuter 74.9 73.7 73.6 74.1 84.7
Average 73.9 74.1 74.1 75.5 90.1

5 Conclusions

In this paper, we have proposed some improvements to the Sequential Patterns-
based Classifiers. Firstly, we introduced a new pruning strategy for computing
SPaRs, using the Netconf as measure of interest. This pruning strategy allows
to obtain specific rules with high Netconf. Besides, we proposed a new way for
ordering the set of SPaRs using their sizes and Netconf values. The experimental
results show that SPaC-NF classifier has better performance than SVM, J48,
NaiveBayes, PART and SPaC-MR classifiers, over three document collections.
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Delegación Gustavo A. Madero, 07738 Ciudad de Mexico, Mexico
{vgonzalez,sgodoyc}@cic.ipn.mx
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Abstract. This paper presents a mixed, global and local, learning strat-
egy for finding typical testors in large datasets. The goal of the proposed
strategy is to allow any search algorithm to achieve the most significant
reduction possible in the search space of a typical testor-finding prob-
lem. The strategy is based on a trivial classifier which partitions the
search space into four distinct classes and allows the assessment of each
feature subset within it. Each class is handled by slightly different learn-
ing actions, and induces a different reduction in the search-space of a
problem. Any typical testor-finding algorithm, whether deterministic or
metaheuristc, can be adapted to incorporate the proposed strategy and
can take advantage of the learned information in diverse manners.

Keywords: Feature selection · Testor theory · Algorithms

1 Introduction

Feature Selection is a well known branch of Pattern Recognition responsible for
identifying those features, describing objects under study, that provide relevant
information for classification purposes. Testor Theory is one of the common tools
used for such task. During the last decade several algorithms have been designed
for finding the set of all typical testors in a dataset [5,7,9]. Unfortunately, the
time complexity of computing all typical testors has an exponential growth with
respect to the number of features describing objects. Also, recent research has
unveiled different elements that also have effect over the complexity of that
problem, such as the number of rows in the initial basic matrix, the density
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of that matrix, and the number of typical testors within it or the underlying
structure of the basic matrix Agregarcitaaartculo4delrevisorMemo. All those
factors severely complicate finding typical testors in large datasets. Moreover,
some of the empirical results found in carefully designed benchmarks like the one
on [2], add up to the intuition that no single typical testor-finding algorithm can
be found to have the best possible behavior for any given problem. This kind of
No-Free-Lunch intuition, taken from the field of evolutionary and bio-inspired
algorithms, encourages researching techniques that allow increased algorithm
performance and solving the problem of finding typical testors in large datasets
with the least possible computational cost.

With that goal in mind, this paper proposes a mixed learning strategy
designed to allow typical testor-finding algorithms to reduce the search space
of any problem. The proposed strategy will be responsible for identifying and
storing the pertinent local and global information for the stated purpose, while
the underlying typical testor-finding algorithm (a search algorithm) decides when
and how it makes use of the learned information.

2 Theoretical Framework

Several research papers have more than exhaustively presented the fundamental
definitions of Testor Theory. Here we quickly outline the context for our par-
ticular research, and advise the reader who requires a thorough review of those
concepts to refer to [4] and [6].

All known typical testor-finding algorithms have a comparison matrix as
input. That matrix, called Basic Matrix, contains the summary information
about the comparison of all objects belonging to different classes within a given
supervision sample. When the original supervision sample is a partition, and all
comparisons have been evaluated with a boolean difference function, then the
basic matrix (BM) is binary and its rows conform a Sperner family. Within
such matrix, a Testor is defined as a subset τ of columns (or features) such
that no zero-row can be found in BM |τ (called the τ -restricted matrix). Also, a
Typical Testor is defined as an irreducible testor (i.e. a testor such that none of
its subsets is a testor). As a consequence of its irreducibility, typical testors are
identified by the property that each feature in BM |τ has at least one Typical
Row, where the corresponding column contains a 1, and all other columns in
that row contain a 0.

In practical terms, typical testors are characterized by being the only feature
subsets that fulfill the two following conditions:

1. BM |τ has no zero-rows (so τ is a testor)
2. Each column in BM |τ has at least one typical row (so τ is typical)

Largely, the complexity of finding typical testors in big matrices lies in the
analysis of restricted matrices in search for the fulfillment of both conditions. In
order to minimize that effort, and as the basis for our proposed learning strategy
we briefly introduce the following concepts:
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2.1 Masks and Assessment Indices

The following definitions are introduced in [5]:
Let B be a basic matrix, and let τ be any feature subset in B, then

Definition 1. The Acceptance Mask of τ (am(τ)) is a binary tuple in which
the ith element is 1 if the ith row in B|τ has at least a 1 in the columns of
features in τ , and 0 otherwise.

Definition 2. The Compatibility Mask of τ (cm(τ)) is a binary tuple in which
the ith element is 1 if the ith row in B|τ has only a 1 in the column of a feature
in τ and 0 otherwise.

To the previous definitions, we add the following,

Definition 3. The Typicity Mask of τ (tm(τ)) is an integer tuple in which the
ith element is the number of typical rows that feature xi has in B|τ .

The defined masks allow the characterization of all feature subsets, either as
a Testor or as a Typical. For that task we define the following indexes:

Definition 4. The Testor Error index of subset τ in B (eT (τ)), is the number
of zero rows in B|τ (i.e. the number of zero entries in am(τ)).

Definition 5. The Typical Error index of subset τ in B (eTy(τ)), is the num-
ber of features in τ that do not have at least one typical row in B|τ (i.e. the
number of zero entries in tm(τ)).

For algorithmic purposes, both error indexes are interpreted as the number
of changes a particular feature subset has to undergo in order to become a testor
or a typical testor.

2.2 The Classifier

By using the error indexes defined in previous subsection we define a trivial clas-
sifier that effectively partitions the search space (i.e. the power set of all feature
subsets) in four classes: Testors, Typicals, TypicalTestors, and Incompatibles
(See Fig.1).

The first three classes have already been presented: Testors, Typicals and
Typical Testors are characterized by the conditions discussed in section 2.
Incompatibles, on the other hand, are those feature subsets whose restricted
matrix contains one or more zero-rows, and where not all features have a typical
row.

Often, the reason why a particular feature fails to have a typical row, is
because another feature, in the same subset, damages its potential typical rows
by having a 1 in the same row. We call that condition an incompatibility between
those two features, and have identified it as one of the most important phenom-
ena to be learned. When, during the search for typical testors, an incompatibility
is found within a feature subset, the search algorithm can safely ignore the anal-
ysis of any other feature subset containing the identified pair of incompatible
features.
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Fig. 1. The feature subset classifier

3 Learning Strategy

By learning we mean the process by which any piece of information (knowl-
edge), relevant for the solution of a problem, is identified and stored to be used
later. So, as stated before, the goal of the proposed strategy is to provide some
additional knowledge to enable any typical testor-finding algorithm for a more
efficient search process.
All typical testor-finding algorithms proceed iteratively by analyzing one or more
feature subsets from the search space on each iteration, and then deciding which
other elements in the search space are to be, or not to be analyzed next. This
decision is made by a set of rules that follow a pre-defined order in which the
search space is to be traversed (even a random order). Deterministic algorithms
such as those in [5,7,9] generally analyze one subset at a time, while metaheuris-
tic algorithms like those in [1,3,8] tend to analyze more than one subset on each
iteration.
When a typical testor-finiding algorithm is adapted to use this strategy, the
learning module learns all that can be learned from each feature subset the
search algorithm analyzes. The resulting knowledge can then be used as a form
of taboo list that allows the algorithm to skip the analysis of some subsets with
the guarantee that no typical testor is going to be missed by the overall process.
The specific way in which the proposed learning strategy can be adapted to any
algorithm is briefly described in the next subsection.

3.1 Adapting the Strategy

Regardless of the specific order that a typical testor-finding algorithm follows,
there are only two specific modifications that it needs to undergo in order to
adapt the proposed learning strategy:
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1. Allow the learning module to analyze each feature subset the algorithm
selects,

2. Avoid the analysis of any feature subset whose structure has already been
learned,

The analysis of each feature subset starts by classifying it as Testor, Typical,
TypicalTestor or Incompatible. The resulting label triggers different learning
actions. If the analyzed subset turns out to be TypicalTestor the whole subset
is learned globally to ensure that the algorithm never tests any of its subsets
or supersets. Similarly, if the subset is Incompatible (i.e. it has zero-rows and
includes feature incompatibilities) all pairs of incompatible features are glob-
ally learned so that the search algorithm never tests a subset that includes any
of those incompatibilities. In both cases the learned information is considered
global in the sense that it remains constant during the whole run of the search
algorithm. Locally learned information, on the other hand, only stores informa-
tion that serve as a reference point for deciding which subsets not to analyze.
This kind of knowledge is updated as the algorithm runs. Such is the case for
subsets labeled as Testor or as Typical which have one important property in
common: either their Testor Error index, or their Typical Error index eval-
uates to zero. By following that line of reason, it quickly becomes clear that
finding a Testor immediately rules out the analysis of any of its supersets, while
finding a Typical rules out the analysis of any of its subsets.
Any known typical testor-finding algorithm can be adapted to incorporate the
proposed strategy. Figure 3 presents a tiny example where the proposed learning
strategy is used to analyze several feature subsets and generate their descendants.

4 Pseudo-Code and Sample Experiments

In this section we present the algorithmic form of the proposed strategy as well
as some experiments performed with it.

4.1 Pseudo-Code

Let B be a basic matrix with columns labeled with the elements of set R (a com-
plete feature set). We call descendants of τ any feature subset within the search
space whose analysis is not ruled out after analyzing τ . Also, let Incomp(τ) be a
procedure that finds and returns all pairwise incompatibilities in subset τ . Figure
2 outlines the proposed learning strategy in the form of a function that receives
a τ ⊂ R as input, and returns its filtered descendants. Two auxiliary functions
were used for clearly stating the pseudocode in Figure 2, those functions are:

1. Classify(): Receives a feature subset as input, and outputs the correspond-
ing class label (See Figure 1).

2. FilterWithGlobalLearning(): Receives a family of feature subsets as input,
and uses any previously stored global learning information to filter the set.
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Learning Strategy.

Input: A feature subset τ
Output: The filtered descendants of τ

label = Classify(τ)
Case label of

Testor do
Store: τ and eTy(τ)
Descendants = {σ ⊂ τ | eTy(σ) < eTy(τ)}

Typical do
Store: τ and eT (τ)
Descendants = {σ ⊃ τ | eTy(σ) = 0 ∧ eT (σ) < eT (τ)}

Typical Testor do
Store: τ
Descendants = {σ ∈ ℘(R) | σ � τ ∧ σ � τ)}

Incompatible do
Store: τ , eT (τ), eTy(τ), and Incomp(τ)
Descendants = {σ ∈ ℘(R) | eT (σ) ≤ eT (τ) }

endCase

Descendants = FilterWithGlobalLearning(Descendants)

Fig. 2. Pseudocode for the proposed learning strategy

In order to ilustrate the mechanics of the learning strategy, Table 1 shows a
tiny basic matrix (called the Ms matrix). Some feature subsets from the Ms
matrix are analyzed following the the pseudo-code in Figure 1. The results are
summarized in Table 2.

Table 1. The Ms matrix used for illustrating the learning strategy

a b c d e f

1 0 0 0 1 0
1 1 0 0 0 1
0 0 1 0 0 1
1 0 0 1 0 1

4.2 Sample Experiments

We adapted the well-known BR-algorithm [5] to use the proposed learning strat-
egy, and compared the number of tested subsets (labeled as Hits) and the exe-
cution time between the original algorithm and the adapted one. Input matrices
for these experiments were designed by applying the φ, θ, and γ operators, over
the Ms matrix, following the specifications and method described in [2]. Table
3 summarizes the experiments performed showing the number of rows, columns
and typical testors (TTestors) of each input matrix.
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Table 2. Some examples of four different cases

τ eT (τ), eTy(τ) Label Learning Descendants

τ1 = {a, c, e} eT (τ1) = 0
eTy(τ1) = 1

Testor [{a, c, e}, 1] {{a, c}}

τ2 = {b, c} eT (τ2) = 2
eTy(τ2) = 0

Typical [{b, c}, 2] {{b, c, d},{b, c, e},{b, c, d, e},{b, c, d, f}}

τ3 = {a, f} eT (τ3) = 0
eTy(τ3) = 0

Typical
Testor

[{a, f}] {{b},{c},{d},{e},{a, b},{a, c},{a, d},
{a, e},{b, c},{b, d},{b, e},{b, f},{c, d},
{c, e},{c, f},{d, e},{d, f},{e, f},{a, b, c},
{a, b, d},{a, b, e},{a, c, d},{a, c, e},
{a, d, e},{b, c, d},{b, c, e},{b, c, f},
{b, d, e},{b, d, f},{b, e, f},{c, d, e},
{c, d, f},{c, e, f},{d, e, f},{a, b, c, d},
{a, b, c, e},{a, b, d, e},{a, c, d, e},
{b, c, d, e},{b, c, d, f},{b, c, e, f},
{b, d, e, f},{c, d, e, f},{a, b, c, d, e},
{b, c, d, e, f}}

τ4 = {b, c, d, f} eT (τ4) = 1
eTy(τ4) = 4

Incompatible [{b, c, d, f}, 1, 4
(b, f),(c, f),(d, f)]

{{a, c},{a, f},{e, f},{a, b, c},{a, c, d},
{a, c, e},{a, e, f},{a, b, c, d},{a, b, c, e},
{a, c, d, e},{b, c, d, e},{a, b, c, d, e}}

Table 3. Performance of the adapted BR-algorithm

Matrix Rows Cols TTestors Original BR Adapted BR
Hits Time Hits Time

Id5 5 5 1 16 0.001 16 0.001
Id15 15 15 1 16384 1.582 16384 1.580

φ2(Ms) 4 12 28 180 0.002 68 0.001
φ3(Ms) 4 18 108 2361 0.03 222 0.006
θ2(Ms) 16 12 8 617 0.011 216 0.013
θ3(Ms) 64 18 12 30979 3.986 4196 1.157
γ2(Ms) 8 12 16 352 0.007 252 0.037
γ3(Ms) 16 24 256 166252 152.617 111132 22.305

As it can be seen, the proposed strategy cannot improve the search process in
the case of identity matrices. However, the number of hits is notoriously reduced
in all other cases, effectively reducing the problem’s search space. Also note
that the execution time is not always reduced proportionally, since the internal
structure of the input matrix can sometimes severely complicate the calculation
of masks and error indices.

5 Conclusions

A general mixed learning strategy for finding typical testors in large datasets was
presented. The proposed strategy uses both globally and locally learned infor-
mation to calculate the descendants of the currently analyzed feature subset,
effectively reducing the search space for any problem. The host search algorithm
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however, must decide the order in which the search space is analyzed, as well
as the size of its population. The interaction and dependence between the host
algorithm and the learning module determines, for the most part, the perfor-
mance yield by any experiment. Since there are no current means for predicting
the optimum order for traversing a search space or for maximizing the use of
learned information, the intuition that no single algorithm can be found to opti-
mally solve any problem instance is strengthened.

Evidently the problem of finding typical testors still stands as not solvable in
polynomial time; however, the proposed strategy is enough to cut out from the
analysis all feature subsets that neither have real possibilities of being typical
testors, nor contribute to the rest of the search process.
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Abstract. Multiple Instance Learning (MIL) is a relatively new learning
paradigm which allows to train a classifier with weakly labelled data. In
spite that the community has been developing different methods to learn
from this kind of data, there is little discussion on how to proceed when
there is an imbalanced representation of the classes. The class imbalance
problem in MIL is more complex compared with their counterpart in
single-instance learning because it may occur at instance and/or bag
level, or at both. Here, we propose an oversampling approach at bag level
in order to improve the representation of the minority class. Experiments
in nine benchmark data sets are conducted to evaluate the proposed
approach.

Keywords: Multiple instance learning · Class imbalance ·
Oversampling · Bag oversampling

1 Introduction

In pattern recognition, a supervised classifier is trained to assign a class label
to an object based on its feature vector. In this approach, also known as Single-
Instance Learning (SIL), each object is represented by a single feature vector
which has a unique class label associated to it. However, in many applications,
this representation is insufficient to describe complex objects (e.g. a forest) con-
sisting of different parts (e.g trees, mountains, sky and lake). In such appli-
cations, the parts of the objects are important to differentiate among them
(e.g. to discriminate between a forest and a beach). A relatively new learning
paradigm named Multiple-Instance Learning (MIL) allows to describe a complex
object (termed a bag) using multiple feature vectors (termed instances). Based
on it, a learning algorithm is trained on a set of bags which can potentially
preserve more information of the objects, compared with a single feature vector
representation [1].
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MIL problems are often considered as two-class ones, where bags in the pos-
itive class are those containing the target concept to be recognized, while bags
in the negative class do not contain it. In the above-mentioned example, pos-
itive bags correspond to images of forests and negative bags could be images
of beaches, cities and deserts. The standard assumption claims that positive
bags contain at least one positive instance (the target concept), whereas nega-
tive bags contain only negative (or background) instances. Nevertheless, other
assumptions might be considered [7].

An important issue in SIL is the class imbalance problem [9]. This is related
with the unequal representation of classes in a training data set. Several studies
have shown that, with imbalanced training data sets, Bayesian decision algo-
rithms give strongly biased solutions towards the majority class (the less impor-
tant in most applications), getting poor performance in the minority one (typ-
ically, the most important one) [12]. In MIL, the problem of class imbalance
also appears; however, it is more complex because the imbalance can occur at
either instance or bag levels, or at both [13]. As in SIL, the majority class influ-
ences MIL algorithms in order to build decision boundaries biased in favor of
this. Despite the importance of the problem in pattern recognition applications,
there is still a little discussion about it. Then, in this paper we explain in short
the imbalance problem and propose an oversampling approach to balance MIL
data sets at bag level.

2 Related Work

2.1 Multiple Instance Learning

MIL, as defined by Dietterich et al. [6], allows us to represent complex objects
through a collection (named bag) of feature vectors (named instances). A
mutiple instance (MI) data set, in a two-class problem, has the form B =
{(B1, y1), . . . , (BN , yN )} where, yi ∈ Ω = {+1,−1} is the label for the bag
Bi = {xi1, . . . , xini

} ∈ R
χ, containing ni instances from the instance space

χ. This way, the goal of MIL algorithms is to learn a mapping function
F (B) : Rχ → Ω . This function returns a bag label by classifying its instances
and combining their hidden labels (yij) using, for example, the noisy-or rule [7],

F (Bi) =
p(y = 1|Bi)

p(y = −1|Bi)
=

1 − ∏ni

j=1(1 − p(yij = 1|xij))∏ni

j=1(p(yij = −1|xij))
(1)

which represents the standard assumption that a bag is positive if and only if at
least one of the instances is positive.

Several MIL algorithms have been developed over the past years. One of
the earliest works is Axis-Parallel Rectangles (APR) [6]. This approach tries to
isolate the target concept by building an hyper-rectangle in the instance space
χ, which only contains instances from positive bags. Another related approach,
named Diverse Density (DD) [11], aims to find the most positive point in the
input space with the maximum diverse density. Few years later, motivated by
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the high computation requirements of the DD algorithm, Zhang & Goldman
proposed the EM-DD algorithm [21], which uses the Expectation Maximization
(EM) approach to speed up the optimization process of the DD algorithm. Other
methods try to model the target concept through density models, and then,
they use a discriminative approach to separate the concept and background
instances. Two examples of these approaches are MI-SVM [2] and MIL-Boost
[18]. In contrast, other authors have proposed to embed each bag into a new
feature space using a representative set of instances selected from the training
bags and then learn a single-instance classifier in this new feature space; a salient
example of these embeddings is MILES [4]. For a more detailed description of
these and other approaches, readers can refer to [1,7].

2.2 The Class Imbalance Problem

In SIL, the class imbalance problem occurs when the samples of one class (the
majority) outnumber the samples of the other class (the minority). Bayesian
decision algorithms optimize a decision rule by minimizing the overall risk in the
classification. In other words, they look for a function f(x) such that:

f(x) = arg min
ωk∈Ω

C∑
k=1

Lkjp(x|ωk)P (ωk) (2)

where, Lkj is the loss (or cost) function of confusing ωj with ωk, p(x|ωk) is
the conditional probability and P (ωk) is the prior probability for the class ωk.
When it is assumed that costs of misclassifications are equal for all classes, the
optimal decision rule is to select the class with the highest posterior probability,
as shown in (3) for a two-class problem.

f(x) =

{
1, p(x|y=1)

p(x|y=−1) > P (y=−1)
P (y=1)

−1, otherwise
(3)

Accordingly, learning algorithms trained with imbalanced data sets draw
decision boundaries biased in favor of the majority class. As a result, samples
from the majority class are classified with high precision, while samples from the
minority class (usually the most important one) tend to be misclassified.

Several approaches have been proposed to face the class imbalance problem
in SIL [9,14]. Among them, sampling algorithms to change the class distributions
[3], cost-sensitive learning algorithms [17], one-class learning algorithms [10] and
approaches based on classifier ensembles [8]. However, these approaches can not
be directly applied to MIL data sets because they are designed to work on
individual instances rather than on bags.

2.3 The Class Imbalance Problem in MIL

The MIL paradigm has been attracting attention in the pattern recognition
community because it can be applied in practical problems where the training



A Bag Oversampling Approach in MIL 727

data sets are weakly labelled. However, in many real-world problems the train-
ing samples are imbalanced, e.g. automatic inspection involves class imbalance
between defects (the minority class) and non-defects (the majority class); simi-
larly, in face recognition for video surveillance applications, the same drawback
appears since there are few samples of the target (positive) class compared with
the background (the negative one).

As in SIL, MIL algorithms could be biased for the majority class. However
in MIL the problem is more complex because the imbalance can be at instance
level, bag level, or both [13,20]. Following the taxonomy presented in [1], MIL
algorithms fall in one of the following paradigms: Instance-Space (IS) paradigm,
in which the discriminative learning process occurs at the instance-level; the
Bag-Space (BS) paradigm, where each bag is treated has a whole entity and the
learning process discriminates between entire bags; and finally, the Embedded-
Space (ES) paradigm, where each bag is mapped into a single feature vector
that summarizes the relevant information about the whole bag, so a classifier is
learned in the new embedded space.

Based on that, if the imbalance is present at the instance level, MIL algo-
rithms which fall in the IS paradigm will be biased by the negative class. It
happens because the number of real positive instances in positive bags are few
compared with the negative ones in both, positive and negative bags. There-
fore, discriminative algorithms which build a decision boundary based on the
Bayesian framework, will be biased in favor of the negative class. On the other
hand, algorithms in the ES paradigm could be skewed by the imbalance if the
function used to map a bag into a single feature vector is prone to be affected by
the imbalance rate. An example is the average mapping function, which excludes
the relevant information in positive bags, if the number of positive instances in
the bag is very low compared with the negative ones. Similarly, if the imbalance
is present at bag level, MIL algorithms which fall in the BS paradigm will also
be biased for the negative class.

In the literature there is a little discussion about this problem in MIL. Wang
et al. presented in [19] a cost-sensitive approach based on AdaBoost where dif-
ferent costs are considered for the misclassification of bags. The same authors
proposed in [20] an oversampling approach which uses SMOTE [3] to increase
the number of both, instances and bags in the positive class. However, this
approach does not care whether the instances used for the oversampling are neg-
ative instances in positive bags, which could increase the ambiguity in the data
set. Finally, authors in [13] proposed an instance level strategy to improve the
representation of the positive class by oversampling true positive instances and
undersampling the negative ones.

3 An Oversampling Approach for Bags

As done in [13], we take advantage of the standard MIL assumption and use
Kernel Density Estimation (KDE) [15] to model the negative population in order
to look for the most positive instances in positive bags. In this way, if instances
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in negative bags {xi} ∈ B− are i.i.d. data drawn from an unknown density
p(x|B−), it can be estimated by KDE according to:

p̂
(
x|B−)

=
1

r− hd

r−∑
i=1

k

(
x − xi

h

)
(4)

where h is a tunable smoothing parameter, d is the dimensionality of x, k(· ) is
the kernel of the estimator, and r− is the number of negative instances of all
negative bags. Here, we take the typical choice of using a Gaussian kernel.

If we use p̂ (x|B−) as a quantitative measure of the degree of negativity for
each instance, then we can claim that the farther x is away from B−, the higher is
the probability that x is positive according to B−. Similarly, we assume that the
target concept, responsible for the positive label, in a positive bag is represented
by the most positive instances, i.e. the farthest instance from the model of the
negative population. Once the most positive instances have been identified, we
can use SMOTE to create new synthetic positive instances and then create new
positive bags in order to strength the target concept in the training data set.
As a result, the number of positive instances increases as well as the number of
positive bags. Algorithm 1 shows the details of the proposed approach.

Algorithm 1. Informative Bag SMOTE(P, N)

1: P : average instances per bag
2: N : number of synthetic bags to be generated
3: for i = 1 to N do
4: Bi

new ← Create a new empty bag with positive label
5:
6: � Generate a new positive instance for Bi

new:
7: (B+

1 , B+
2 ) ← select 2 positive bags from the training data set at random

8: x+
1j ← arg minj=1,...,ni

p̂(x1j |B−) � Select the most positive instance in B+
1

9: x+
2j ← arg minj=1,...,ni

p̂(x2j |B−) � Select the most positive instance in B+
2

10: xi1 ← x+
1j + (x+

2j − x+
1j) ∗ α, where α ∈ [0, 1] at random

11: Append(xi1, Bi
new)

12:
13: � Generate new negative instances for Bi

new:
14: x−

1j ← arg maxj=1,...,ni
p̂(x1j |B−) � Select the most negative instance in B+

1

15: for j = 2 to P do
16: x−

2j ← get a negative instance from B+
2 at random

17: xij ← x−
1j + (x−

2j − x−
1j) ∗ α, where α ∈ [0, 1] at random

18: Append(xij , Bi
new)

19: end for
20: end for

This approach is different from the Bag SMOTE algorithm presented in [20]
because ours makes an informative oversampling always considering the most
positive instances in positive bags. Therefore, our approach creates synthetic
bags containing synthetic positive instances, which helps to reinforce the target
concept in the data set.
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4 Experiments and Discussion

We use nine standard MIL benchmark data sets [5] to test our method. Table 1
lists the data sets and their characteristics. We choose these data sets because
they are well known in the MIL literature, come from diverse pattern recognition
applications, and have different rates of imbalance at bag level.

Adopting a standard evaluation procedure, we repeat the experimental pro-
cess by 5 runs with different random selected training and testing sets using
10-fold cross-validation. We report the area under the receiver-operating curve
(AUC) and G-Mean, which are standard measures in class imbalance problems
[9]. Additionally, we compare different state-of-the-art MIL algorithms, however,
we only report the one with the best average results in the original dataset, i.e.
before applying the resampling techniques. Afterwards, we use it for comparison.
A list of the used algorithms, together with their parameters, is below. All of
them are available from the MIL toolbox [16].

– APR with a threshold t = 0.1
– Citation k-NN with k = 3 (named C-kNN)
– mi-SVM with a radial kernel and a regularization parameter C = 10
– MILBoost with 100 reweighting rounds

The average of the AUC performances and the average of the G-Mean are
shown in Table 2. Each column reports the measure for each data set. The MIL
algorithm used for the classification for each data set appears in brackets under
its name. Through the rows, the table is split into two blocks: in the first block
we report the results for the AUC measure and, in the second block, we report
the results for the G-Mean. Each block is subdivided in four parts: the first part
(named Original) shows the performance measures achieved by MIL classifiers
with the original version of the data sets. The second part (named B-Bags∗)
shows the performance measures for the MIL algorithms after oversampling the
positive bags with the approach proposed in this paper. The third part (named
Bag-SMOTE) shows the performance of the bag oversampling approach pre-
sented in [20]. The fourth one (named B-Instances) shows the performance for
the MIL algorithms after resampling using the instance approach in [13].

Table 1. Details of standard MIL benchmark data sets used in the experiments

Data set Size Features
Positive
Bags

Negative
Bags

Positive
Instances

Negative
Instances

%Minority
Bags

Musk2 6598 166 39 63 1017 5581 38,20
Muta2 2132 7 13 29 660 1472 30,95
Bird (BRCR) 10232 38 197 351 4759 5473 35,95
Bird (WIWR) 10232 38 109 439 1824 8408 19,89
Web1 2212 5863 17 58 488 1724 22,66
Web2 2219 6519 18 57 499 1720 22,66
Corel(African) 7947 9 100 1900 484 7463 5,00
Corel(Horses) 7947 9 100 1900 389 7558 5,00
Corel(Cars) 7947 9 100 1900 493 7454 5,00
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Table 2. Performance Results for the AUC(x100) and the G-Mean(x100). Best results
are highlighted in boldface and the proposed method is indicated with the symbol ∗

Musk2 Muta2
Bird

(BRCR)
Bird

(WIWR)
Web1 Web2

Corel
(African)

Corel
(Horses)

Corel
(Cars)

[APR] [mi-SVM] [MILBoost] [C-kNN] [mi-SVM] [MILBoost] [C-kNN] [C-kNN] [C-kNN]

AUC
Original 84,40 71,21 75,18 94,52 83,62 75,77 90,60 95,94 82,83
B-Bags∗ 81,00 73,52 75,87 94,34 79,23 69,46 86,04 97,10 86,56
Bag-
SMOTE

84,39 67,49 74,75 94,05 84,25 65,53 89,87 95,96 82,66

B-Instances 85,36 73,22 75,02 94,06 84,56 74,66 85,73 93,55 81,15

G-Mean
Original 84,00 61,33 66,12 84,55 71,08 64,23 56,09 87,00 60,31
B-Bags∗ 80,30 68,71 68,58 88,09 71,69 61,12 76,18 92,29 77,92
Bag-
SMOTE

83,82 57,74 68,24 86,22 73,94 50,38 71,23 90,56 67,60

B-Instances 84,90 56,75 68,38 89,89 74,44 60,12 49,84 78,30 58,30

Several observations can be made from this table. First, in most datasets the
use of a resampling technique (whether at bag level or at instance level) improves
the performance achieved by the algorithms in one of the measures. It empirically
confirms that MIL algorithms are prone to be affected by the class imbalance
problem, therefore, the use of resampling techniques contributes in the increase
of the algorithm’s performances. Second, the proposed method in this paper
(B-Bags) achieved better performance in four of the datasets. Furthermore, it
gets better results, for the G-Mean measure, when the imbalance rate between
the positive and negative class is high, as in Corel datasets. Finally, comparing
B-Bags (our approach) with Bag-SMOTE, we can see that B-Bags gets better
performance in most data sets. It can be explained because our approach has
a higher probability of generating at least one positive instance in synthetic
bags, compared with Bag-SMOTE, which only generates new synthetic instances
without taking care of replicating the true positive ones.

5 Conclusions

In this paper an informative bag oversampling approach for MIL data sets has
been proposed. This approach uses a model of the negative population in order to
find the most positive instances in the minority class (the positive one). In con-
trast to other approaches, the oversampling is conducted for those most positive
instances, therefore, the new synthetic bags help to strength the target concept
in the positive class. Additionally, experiments empirically confirm that MIL
algorithms are prone to be affected by the class imbalance problem, therefore,
the use of resampling techniques can help to increase the prediction performance
of the minority class. Our future work will be conducted in order to design a
resampling approach that includes a bag undersampling approach in order to
reduce both, the ambiguity among bags and the size of the data set.
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Abstract. Multimedia-content classification has been paramount in the
last years, mainly because of the massive data accessed daily. Video-
based retrieval and recommendation systems have attracted a consid-
erable attention, since it is a profitable feature for several online and
offline markets. In this work, we deal with the problem of automatic
video classification in different genres based on visual information by
means of Optimum-Path Forest (OPF), which is a recently developed
graph-based pattern recognition technique. The aforementioned classifier
is compared against with some state-of-the-art supervised machine learn-
ing techniques, such as Support Vector Machines and Bayesian classifier,
being its efficiency and effectiveness evaluated in a number of datasets
and problems.

Keywords: Video classification · Optimum-Path Forest · Supervised
learning

1 Introduction

Advances in data transmission and storage have allowed a continuous growth
of large digital libraries and multimedia databases [7]. In this context, genre-
based video classification is often required to classify the dataset in order to
allow a faster retrieval response. Video recommendation systems also make use
of automatic classification of multimedia content, since each video genre might
be associated with a certain profile of consumer.

A number of video classification solutions are based on machine learn-
ing techniques [4], being the main purpose of such approaches to predict the
genre of a given input video. In the last years, several methods for genre-based
video retrieval/classification have been proposed, in which textual [4,20], audio-
based [13] and mostly low-level visual features [3,4,7,20,22] are among the most
widely used tools for video description. Huang and Wang [14], for instance,
employed the well-known Support Vector Machines (SVMs) together with a
Self-Adaptive Harmony Search optimization algorithm to classify movie genres,

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25751-8 88
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and You et al. [21] proposed a semantic-oriented approach for video analysis
based on Hidden Markov Models and a Bayesian classifier.

Later on, Hamed et al. [11] presented a video classification approach based
on the Weighted Kernel Logistic Regression classifier, and Karpathy et al. [15]
employed a Convolutional Neural Network for the same purpose. Dammak and
Ben-Ayed [9] also employed SVMs for video classification, but now using signal
processing-based feature extraction approaches. Recently, Ekenel and Semela [10]
employed audio-visual and cognitive features to automatic classify videos of TV
programs and YouTube.

Some years ago, Papa et al. [17,18] proposed the Optimum-Path Forest
(OPF) classifier, which models the pattern recognition task as a graph parti-
tion problem. Basically, the dataset samples (feature vectors) are represented by
graph nodes, which are connected to each other through an adjacency relation.
After that, some key nodes (prototypes) rule a competition process among them-
selves in order to conquer the remaining samples offering to them optimum-path
costs. When a sample is conquered, it receives the very same label of its con-
queror, as well as the cost it has been offered. The OPF classifier has gained
popularity in the last years, since it has obtained similar results to SVMs, but
with a faster training step. Some of its main advantages are: (i) it does not make
assumption samples separability in the feature space, (ii) it has no parameters,
and (iii) it can be designed in a number of different ways.

However, to the best of our knowledge, OPF has never been employed in
the context of genre-based video classification. Therefore, the main goal of this
work is to introduce OPF for video classification tasks using video properties
obtained from Bag-of-Visual Words, Bag-of-Scenes and Histogram of Motion
Patterns, as well as to compare OPF against with some state-of-the-art pattern
recognition techniques, such as Support Vector Machines, k-nearest neighbours
(k-NN), Artificial Neural Networks with Multilayer Perceptrons (ANN-MLP),
and a Bayesian classifier (BC).

The remainder of this work is organized as follows. Section 2 presents the
theory related to the Optimum-Path Forest classifier, and Section 3 discusses the
methodology used in this work. The experimental section is further described in
Section 4, and Section 5 states conclusions and future works.

2 Optimum-Path Forest Classification

The OPF framework is a recent highlight to the development of pattern recognition
techniques based on graph partitions. The nodes are the data samples, which are
represented by their corresponding feature vectors, and are connected according
to some predefined adjacency relation. Given some key nodes (prototypes), they
will compete among themselves aiming at conquering the remaining nodes. Thus,
the algorithm outputs an optimum path forest, which is a collection of optimum-
path trees (OPTs) rooted at each prototype. This work employs the OPF classifier
proposed by Papa et al. [17,18], which is explained in more details as follows.

Let D = D1 ∪ D2 be a labeled dataset, such that D1 and D2 stands for
the training and test sets, respectively. Let S ⊂ D1 be a set of prototypes of
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all classes (i.e., key samples that best represent the classes). Let (D1, A) be a
complete graph whose nodes are the samples in D1, and any pair of samples
defines an arc in A = D1 × D1

1. Additionally, let πs be a path in (D1, A) with
terminus at sample s ∈ D1.

The OPF algorithm proposed by Papa et al. [17,18] employs the path-
cost function fmax due to its theoretical properties for estimating prototypes
(Section 2.1 gives further details about this procedure):

fmax(〈s〉) =
{

0 if s ∈ S
+∞ otherwise,

fmax(πs · 〈s, t〉) = max{fmax(πs), d(s, t)}, (1)

where d(s, t) stands for a distance between nodes s and t, such that s, t ∈ D1.
Therefore, fmax(πs) computes the maximum distance between adjacent samples
in πs, when πs is not a trivial path. In short, the OPF algorithm tries to minimize
fmax(πt), ∀t ∈ D1.

2.1 Training

We say that S∗ is an optimum set of prototypes when OPF algorithm minimizes
the classification errors for every s ∈ D1. We have that S∗ can be found by
exploiting the theoretical relation between the minimum-spanning tree and the
optimum-path tree for fmax [1]. The training essentially consists of finding S∗

and an OPF classifier rooted at S∗. By computing a Minimum Spanning Tree
(MST) in the complete graph (D1, A), one obtain a connected acyclic graph
whose nodes are all samples of D1 and the arcs are undirected and weighted by
the distances d between adjacent samples. In the MST, every pair of samples
is connected by a single path, which is optimum according to fmax. Hence, the
minimum-spanning tree contains one optimum-path tree for any selected root
node.

The optimum prototypes are the closest elements of the MST with different
labels in D1 (i.e., elements that fall in the frontier of the classes). By removing
the arcs between different classes, their adjacent samples become prototypes in
S∗, and the OPF algorithm can define an optimum-path forest with minimum
classification errors in D1.

2.2 Classification

For any sample t ∈ D2, we consider all arcs connecting t with samples s ∈ D1,
as though t were part of the training graph. Considering all possible paths from
S∗ to t, we find the optimum path P ∗(t) from S∗ and label t with the class
λ(R(t)) of its most strongly connected prototype R(t) ∈ S∗ (λ(·) is a function
that assigns the true label for any sample in the dataset). This path can be
identified incrementally, by evaluating the optimum cost C(t) as follows:

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ D1. (2)
1 The arcs are weighted by the distance between their corresponding nodes.
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Let the node s∗ ∈ D1 be the one that satisfies Equation 2 (i.e., the predecessor
P (t) in the optimum path P ∗(t)). Given that L(s∗) = λ(R(t)), the classification
simply assigns L(s∗) as the class of t. An error occurs when L(s∗) 	= λ(t), being
L(·) the predicted label of a given sample.

3 Methodology

This section describes the methodology employed in this work, which is com-
posed of two main steps: (i) a feature extraction module based on three different
methods (Section 3.1), and then (ii) the genre classification (Section 3.2). Also, a
briefly description about the standardized dataset used in this work is presented
in Section 3.3.

3.1 Feature Extraction

We employed three main approaches to encode the visual properties of a video:
“Bag-of-Visual-Words” [5], “Bag-of-Scenes” [19] and “Histogram of Motion Pat-
terns” [2]. The former two approaches are based on video frames and disregard
transitions between them, whereas the latter one is based on motion information,
and it considers the transitions between video frames. The quoted approaches
are briefly described as follows:

Bag-of-Visual-Words (BoVW)
It represents visual content with statistical information of local patterns,
encoding the occurrences of quantized local features. For this, a visual dic-
tionary or visual codebook is created from the feature-space quantization [5].
Here, the BoVW features were extracted considering the Pooling over Pool-
ing (PoP) technique proposed in [3]. We used a dictionary of 1,000 visual
words for the local features, and average pooling to compute the BoVW
for each frame. Finally, max-pooling was then performed to combine those
frames.

Bag-of-Scenes (BoS)
BoS is an approach for encoding video visual properties [19] based on a dictio-
nary of scenes, and it carries more semantic information than the traditional
dictionaries based on local descriptions. Here, multiple configurations were
considered for computing the BoS of a video, like varying the dictionary size,
using hard or soft assignment and average or max pooling.

Histogram of Motion Patterns (HMP)
This structural and statistical combined visual feature was introduced in [2]
and designed to compare videos based on partial decoding of a video stream,
motion feature extraction and signature generation.
For each group of pictures (GOP) of a video stream, only the I-frames are
selected due to their lossless information property. Then, those frames are
divided into 8×8 pixel blocks, for subsequent extraction of 64 coefficients to
obtain the four DC luminance terms of each macroblock. Thereafter, ordinal
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measures are calculated for the macroblocks, and each possible combination
of those measures is treated as a 16-bit individual pattern. At the end, the
spatio-temporal patterns obtained from all macroblocks of the video stream
are accumulated to compose a normalized histogram.

3.2 Genre Classification

In order to perform the video classification task, the OPF classifier was compared
against with three well-known classifiers: Artificial Neural Networks with Multi-
layer Perceptron (ANN-MLP) [12], k-Nearest Neighbors (k-NN) [8] and Support
Vector Machines (SVM) [6]. It is noteworthy that a polynomial (SVM-POLY)
and a Radial Basis Function (SVM-RBF) kernel were used for SVM classifier,
as well as SVM parameters have been optimized through cross-validation.

For each classifier, we performed 12 different experiments considering the
visual features encoded with BoVW, BoS, and HMP. Table 1 presents in more
details the experimental setup.

Table 1. Experimental setup.

Experiment Descriptor Setup

1 BoVW Hard assignment – average pooling – 1000 visual words
2 BoS Hard assignment – average pooling – 1000 scenes
3 BoS Hard assignment – max pooling – 1000 scenes
4 BoS Soft assignment – average pooling – 1000 scenes
5 BoS Soft assignment – max pooling – 1000 scenes
6 BoS Hard assignment – average pooling – 100 scenes
7 BoS Hard assignment – max pooling – 100 scenes
8 BoS Soft assignment (σ = 1) – average pooling – 100 scenes
9 BoS Soft assignment (σ = 1) – max pooling – 100 scenes
10 BoS Soft assignment (σ = 2) – average pooling – 100 scenes
11 BoS Soft assignment (σ = 2) – max pooling – 100 scenes
12 HMP 6075 motion patterns

3.3 Dataset

In this work, we employed a benchmarking dataset provided by the MediaEval
2012 organizers for the Genre Tagging Task [20]. The dataset is composed of
14,838 videos divided into a development set (5,288 videos) and a test set (9,550
videos), comprising a total of 3,288 hours of video data.

The videos were collected from the blip.tv2, and they are distributed among
26 video genre categories assigned by the blip.tv media platform, namely (the
numbers in brackets are the total number of videos): Art (530), Autos and Vehi-
cles (21), Business (281), Citizen Journalism (401), Comedy (515), Conferences
2 http://blip.tv (as of May, 2015).

http://blip.tv
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and Other Events (247), Documentary (353), Educational (957), Food and Drink
(261), Gaming (401), Health (268), Literature (222), Movies and Television
(868), Music and Entertainment (1148), Personal or Auto-biographical (165),
Politics (1107), Religion (868), School and Education (171), Sports (672), Tech-
nology (1343), The Environment (188), The Mainstream Media (324), Travel
(175), Videoblogging (887), Web Development and Sites (116), and Default Cat-
egory (2349, which comprises videos that cannot be assigned to any of the previ-
ous categories). The main challenge of this scenario is the high diversity of video
genres, as well as the high variety of visual contents within each genre category.

4 Experiments and Results

In this section, we present the experiments conducted to assess the robustness
of OPF classifier in the context of genre-based video classification. In order
to evaluate the results, we consider two performance measures: (i) the Mean
Average Precision (MAP) and (ii) a recognition rate proposed by Papa et al. [18],
which considers unbalanced data, as well as we compute the computational load
for both training and classification steps. Figures 1(a) and 1(b) depict the results
considering MAP and accuracy measures, respectively.
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Fig. 1. Recognition results in terms of (a) MAP and (b) accuracy measures.

In regard to both measures, the experiment number 12 has showed the best
results for all classifiers (except for ANN), which might be due to the robustness
of HMP to several transformations, besides being suitable for very large collec-
tions of video data [2], which is in accordance with the MediaEval 2012 dataset
used in our experiments. In terms of MAP, OPF has been placed in second or
third in most cases, while for the accuracy measure OPF obtained the first or
second position in most part of the experiments.

If we consider the computational load displayed in Figures 2(a) and 2(b)
for the training and test steps, respectively, we shall observe OPF has been the
fastest classifier for training in almost all experiments, as well as the second
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Fig. 2. Computational load for (a) training and (b) classification steps.

fastest classifier considering the classification time. In light of those results, we
may conclude OPF is a suitable technique for the automatic classification of
videos based on visual information, since it has obtained good recognition rates
in a smaller amount of time when compared to the other techniques (except
for ANN-MLP). Such skill might be very interesting in online classification and
recommendation systems, in which a high trade-off between effectiveness and
efficiency is extremely desired.

5 Conclusions

In this work, we introduced the OPF classifier for the task of automatic genre-
based video classification. Three different video descriptors have been used
together with six classifiers to provide a robust experimental analysis, in which
OPF obtained good recognition rates (considering both MAP and accuracy) in
all problems, as well as it required a low computational load for both train-
ing and classification steps when compared to the other techniques. Such skills
allow OPF to be employed for online video retrieval and recommendation sys-
tems, in which a good trade-off between efficiency and effectiveness is highly
desired. Future work includes the use of other features and/or summarization
methods [16].
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Abstract. This paper presents a method for annotating and retriev-
ing videos of human actions based on two-way matrix factorization. The
method addresses the problem by modeling it as the problem of finding
common latent space representation for multimodal objects. In this par-
ticular case, the modalities correspond to the visual and textual (anno-
tations) information associated with videos, which are projected by the
method to the latent space. Assuming this space exists, it is possible to
map between input spaces, i.e. visual to textual, by projecting across the
latent space. The mapping between the spaces is explicitly optimized in
the cost function and learned from training data including both modali-
ties. The algorithm may be used for annotation, by projecting only visual
information and obtaining a textual representation, or for retrieval by
indexing on the latent or textual spaces. Experimental evaluation shows
competitive results when compared to state-of-the-art annotation and
retrieval methods.

1 Introduction

Video analysis is a task that has gained a lot of attention by the research com-
munity due to the growing amount of video content on the web. Having such
large video repositories, e.g. YouTube, poses the problem of efficiently manag-
ing and accessing them. A system able to correctly annotate videos is useful
for searching, categorizing and understanding applications. This work focuses
on video annotation with a predefined number of human actions, according to
their presence in the video. For this, only visual information is available at test
time, but more information sources may be used during model training, such as
action annotations or related audio.

For the current experimentation, the focus is given to the annotation model.
The representation problem is not approached, and a state-of-the-art represen-
tation is used. The chosen model is two way matrix factorization [10], which has
been also used for image annotation. The basic idea of the algorithm is to obtain
a common latent space, which embeds the information content of the different
modalities. Every modality has two projection matrices, one that allows to map
from the original modality space to the latent space, and another one which
maps back from the latent space to the original modality space. By means of
this matrices, one could project from a desired input space to another modal
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 743–750, 2015.
DOI: 10.1007/978-3-319-25751-8 89
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space, e.g. from visual to textual by first mapping from visual to latent and
finally from latent to textual.

After training the model for the annotation task, we also evaluate it in an
information retrieval setup using the same dataset. For retrieval, the query-by-
example method is used so only visual information is available as input query.
The approach maps the input query visual representation to one of the available
spaces, e.g. textual, latent, visual, and the collection videos to be retrieved are
also mapped to that space. Having both query and collection in the same rep-
resentation space, a particular similarity measure could be used to rank videos
according to their similarity with the query. The collection videos are then pre-
sented to the user according to the ranking. The results show a competitive per-
formance in both tasks when compared to an annotation model and a query by
semantic example retrieval mode, both based on linear support vector machines
(SVM).

This document is organized as follows: first, a short review of previous work
is given on Sec. 2; then, the selected annotation model is described in Sec. 3;
finally, experimental results are presented in Sec. 4 and conclusions in Sec. 5.

2 Previous Work

The evaluation in [14] compares different types of video features and interest
point detectors using Bag of Features (BoF) and nonlinear SVM. The most
important finding of the evaluation was that dense sampling improved action
classification over interest point detectors, with the drawback of large number of
features to process. This motivated the proposal of Dense Trajectory Features
(DTF) [12] and Improved Dense Trajectories (IDT) [13]. The main idea of these
features is to extract four descriptors along volumes aligned with tracked pixels.

These features have achieved state-of-the-art performance on various action
recognition datasets. The IDT proposal used Fisher vectors [2] instead of BoF to
encode the features and generate a video representation. Fisher vectors generate
a high dimensional representation based on the gradient of local features with
respect to the parameters of a generative model of the features.

By the time trajectory features were proposed, Convolutional Neural Net-
works (CNN) [5] were causing a revolution on image representation. These net-
works benefited from training deep models with large amounts of data, which
allowed to learn complex features and avoid overfitting. Inspired by this trend,
many video representations based on CNNs have been proposed. Among them
is the work of Simonyan et al. [8], were an appearance and a motion CNN are
combined to generate features which are aggregated with average pooling to gen-
erate a video representation, achieving a competitive result over IDT. Instead of
average or max-pooling, Xu et al. [15] propose to use Fisher vectors to encode
CNN features. This proposal achieved excellent results at the event detection
task by means of appearance information only.

As IDT have the drawback of large number of generated features and long
processing times, Motion Flow (MF) was proposed in [4], which reduces drasti-
cally the extraction time by exploiting the flow generated by the MPEG4 video
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encoding. This features are fast to compute, but achieve a lower performance
compared to IDT.

In [14] and [12], a nonlinear SVM was used to assign single actions to a
previously segmented video, represented using BoF. The nonlinear kernel in those
cases was χ2. Where multiple descriptors were available, such as for IDT, the
kernels were aggregated by addition before applying the exponential function.

Representations with Fisher vectors generate high dimensional vectors, which
achieve good performance with linear models, and so linear SVMs are used in
[13] and [15].

3 Annotation Model

Two Way Matrix Factorization (TWMF) is a latent space method in which the
cost function to optimize has no explicit mention of the latent space, and the
objective is to obtain the most accurate reconstruction of the modalities when
projected through the latent space and back. The basic assumption is that there
exists a linear projection matrix between two information modalities, e.g. textual
and visual. This projection first maps one modality to the latent space, and then
projects from that space to the other modality. Lets assume we have vectorial
representations vi ∈ R

Dv and ti ∈ R
Dt of the two modalities (v, t)for a given

entity i. Each of the modalities has a projection matrix to the latent space,
Wt ∈ R

r×Dt and Wv ∈ R
r×Dv respectively, where r is the dimension of the

latent space. After projecting, a latent representation hi ∈ R
r×1 is obtained for

the entity.

hi = Wtti . (1)
hi = Wvvi . (2)

Each of the modalities has also a back-projection matrix, W ′
t ∈ R

Dt×r and
W ′

v ∈ R
Dt×r, which maps back from the latent space to the respective modality.

ti = W ′
thi . (3)

vi = W ′
vhi . (4)

To express the relationship between modalities we can combine the previous
expressions to obtain crossmodal mappings that don’t explicitly use the latent
space:

ti = W ′
tWvvi . (5)

vi = W ′
vWtti . (6)

Assuming we have both representations for a number n of entities, the data
for a modality can be conveniently represented in a matrix were each column
represents an entity. Following our naming convention, these matrices are called
V ∈ R

Dv×n and T ∈ R
Dt×n. In the case of projecting from the “visual” to the

“textual” modality, we would have

T = W ′
tWvV . (7)
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To obtain the projection and back-projection matrices we use Stochastic
Gradient Descent implemented in Pylearn2 [1]. A cost function is minimized by
letting the library calculate gradients. For the annotation task, the interest is in
assigning labels based on visual content. The main term of the cost is based on
least squares reconstruction of the textual modality from the projection through
the latent space of the visual modality

arg minW ′
t ,Wv

||T − W ′
tWvV ||2F . (8)

What this means is that we want a model that reconstructs as accurately as
possible the textual modality from the visual modality.

Additional terms can be added to control model complexity, overfitting and
sparsity among others. The initial formulation in [10] adds a regularization term
of the projection matrices and reconstruction of each modality after passing
through the latent space and back (one way), resulting in the following opti-
mization problem:

arg min
Wt,W ′

t ,WvW ′
v

⎛
⎜⎜⎜⎜⎝

δ||T − W ′
tWvV ||2F+

α||V − W ′
vWvV ||2F+

(1 − α) ||T − W ′
tWtT ||2F+

β
(||W ′

t ||2F + ||Wv||2F + ||Wt||2F + ||W ′
v||2F

)

⎞
⎟⎟⎟⎟⎠

. (9)

4 Experiments

4.1 Annotation Task and Dataset Description

The goal of the task is to recognize the action or actions present in a video
from a predefined set of actions. For the experimental evaluation we used two
publicly available datasets: UCF101 [9] and THUMOS 2014 [3]. The UCF101
dataset contains realistic videos where each clip has exactly one action and
has been segmented in time to have the best fit to the action. The dataset
comprises 101 different actions, each action with several example videos. The
THUMOS 2014 dataset includes videos belonging to the same 101 actions, but
without time segmentation, so a single video can have more than one execution
of multiple activities and also frames from activities different to the 101 actions
set. There are two tasks and the current evaluation is performed on the first
task: recognition. The second task is temporal segmentation.

The dataset has a training partition of 13320 trimmed videos from UCF101
dataset, a validation partition of 1010 untrimmed videos from THUMOS 2014
and a test partition of 1574 untrimmed videos also from THUMOS 2014. Vali-
dation data may be used as part of training data to generate test results. The
objective is for each test video to generate a score for each of the 101 actions
present in the training set. In the case of untrimmed videos, more than one
action may be present in each sequence. Results are evaluated using Mean Aver-
age Precision (MAP).
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Two models are evaluated: linear SVMs and TWMF. Models are trained
using only training data, and evaluated on validation and test data. In the THU-
MOS data, a score must be generated for each action. For TWMF, the textual
projection value is used as score and for linear SVM, Platt scaled scores. The
SVM implementation is from Scikit-Learn [6].

Visual and Textual Representation. As visual features we use IDT,
extracted using the implementation provided by the IDT author and encoded
using Fisher vectors using the pipeline described in [7]. The resulting Fisher Vec-
tors are l2 and power normalized as it is a recommended practice. The Fisher
Vector implementation used is VlFeat [11]. The size of the resulting visual repre-
sentation using Fisher Vectors when concatenating the 4 descriptors is 101,376.

The textual information consists of a binary 101-dimensional vector. Each
dimension represents an action, and a 1 value indicates presence, while a 0 indi-
cates absence, of the action.

Two Way Matrix Factorization Cost Components Evaluation. To select
the algorithm parameters, we performed experiments using only parts of the cost
function and evaluating its influence on the validation set MAP and training set
cost value during each epoch. As textual information has a stronger semantic
content, it has a higher importance and therefore the highest possible weight

Fig. 1. Validation MAP and training cost when using all reconstruction terms and
regularization of all projection matrices



748 F. Páez and F.A. González

(i.e. δ = 1) is given to the two way term so that textual annotations are cor-
rectly reconstructed from the visual information. The most important term after
the two way reconstruction is the one way reconstruction which speeds up con-
vergence. Giving high importance to the regularization slows convergence. The
results when the complete cost is used are presented in Fig. 1. It includes one
experiment with a learning rate of 0.5. Other experiments using that learning
rate showed a faster convergence rate but instability problems when the valida-
tion MAP was saturated. The specific case in the figure seem to have converged
due to the high regularization. Only experiments with α = 0 are presented as
giving importance to reconstructing the one way visual term slowed convergence
and in some cases produced instabilities. This behavior is attributed to the fact
that the visual matrix is dense and is also made of high dimensional (101,376)
Fisher vectors, so reconstructing such a large amount of information is a harder
task.

Results. The MAP results for linear SVM and TWMF are presented in Tab. 1.
The C parameter of the SVM was selected using the validation set and the best
value was C = 100, which matches the best value reported by [13]. TWMF
obtains an improvement over linear SVM. Both algorithms show a performance
drop on test data with respect to validation data. This may be due to the fact
that training segments have only one label, while test segments have, in general,
multiple labels.

Table 1. MAP comparison between linear SVM and TWMF.

Method Validation Test

Linear SVM C=100 52.6% +/- 25.2% 39.8% +/- 19.9%
Two-way MF 10 epochs 57.2% +/- 24.9% 42.4% +/- 20%

The Two Way algorithm was trained using GPU acceleration provided by
Theano and Pylearn2. Two GPU devices were available: a Tesla C2050 and a
K40. The first one takes approximately 30 seconds per epoch for training and the
latter takes around 12 seconds which is almost a speed up of 3 times. Training
the SVM including the kernel calculation takes almost 8 minutes. Using GPU
acceleration, half of the time to train a linear SVM is needed to train a two-way
model for 20 epochs. When no GPU acceleration is used, each epoch takes a
minute in training. In the case of the SVM, the kernel calculation is parallelized
in all the available CPU cores.

4.2 Retrieval Experiments

After evaluating both methods on the recognition task, we are interested on the
retrieval task. The setup for the retrieval experiments consists on taking a par-
tition of the dataset as the collection used by the system to retrieve documents,
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and the remaining documents as queries. In this case query-by-example is used,
so each query visual representation is used as input to the system, and the aim
is that the system generates a ranked list of relevant documents. Documents are
considered relevant if they share at least one of the actions in the query docu-
ment. To generate the ranked results, both query and collection are mapped to
a semantic space. Using a similarity measure, the semantic representation of the
query is compared to the semantic representation of each of the documents in
the collection. The similarity value is used to generate the ranking. The semantic
spaces considered are the textual space, corresponding to the action labels, and
the latent space. Following previous work, we compare retrieval using TWMF
with pure visual retrieval and QBSE using the learned linear SVM. The similar-
ity measure is dot product in all cases, and the evaluation metric is also Mean
Average Precision (MAP). The results are presented in Tab. 2.

Table 2. Comparison of retrieval results for visual retrieval, QBSE and TWMF using
the latent and textual spaces.

Method Validation Test

Visual 11.8% 9.4%
QBSE SVM 51.5% 39.6%

Two Way MF Textual 10 epochs 52.5% 39.5%
Two Way MF Latent 10 epochs 52.5% 39.4%
Two Way MF Textual 20 epochs 57.9% 43.5%
Two Way MF Latent 20 epochs 58.4% 43.6%

5 Conclusions

The TWMF algorithm is an efficient method for annotation and retrieval of
videos containing actions. Its online nature allows to train on large datasets
without huge memory requirements and achieving task performance compet-
itive or even better than using linear SVM. By means of GPU acceleration,
the algorithm also achieves shorter training times compared to the linear SVM
implementation which is also accelerated but with CPU parallelization of the
kernel calculation.

The state of the art on the THUMOS dataset is achieved by combining IDT
features with CNN features. Including CNN features as an additional modality
or simply concatenating them with IDT is part of the future work. Nevertheless,
the linear SVM baseline with IDT features is a good enough baseline when the
comparison is focused not on the features but on the learning model.
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Abstract. To recognize human forms in non-pedestrian poses presents
a high complexity problem due mainly to the large number of degrees
of freedom of the human body and its limbs. In this paper it is pro-
posed a methodology to build and classify descriptors of non-pedestrian
human body forms in images which is formed with local and global infor-
mation. Local information is obtained by computing Local Binary Pat-
tern (LBP) of key-body parts (head-shoulders, hands, feet, crotch-hips)
detected in the image in a first stage of the method, and then this data
is coupled in the descriptor with global information about euclidean dis-
tances computed between the key-body parts recognized in the image.
The descriptor is then classified using a Support Vector Machine. The
results obtained using the proposed recognition methodology show that
it is robust to partial occlusion of bodies, furthermore the values of sensi-
tivity, accuracy and specificity of the classifier are high enough compared
with those obtained using other state of the art descriptors.

Keywords: Human detection · Non-pedestrian pose · Local Binary
Pattern (LBP) · Support Vector Machine (SVM)

1 Introduction

There is a lot of interest concerning to the research and development of algo-
rithm of human forms recognition due to the importance of its applications; such
as surveillance, search and rescue, security, among others. This is the main rea-
son of the existence in the literature of several approaches to recognize human
forms: In [7], the authors present a mathematical model of the human body and
in [9], [6], [13], they propose human detectors based on finding candidate body
segments, and then constructing assemblies of body parts (part-based model). In
[9], pictures of naked people were used, with uniform color background and with-
out partial occlusions. Their approach assumes that an image of a human can
be decomposed into a set of distinctive segments (torso, left/right upper arm,
left/right lower arm, left/right upper leg, left/right lower leg) and then con-
structing assemblies of body segments [9]. In [5], a human detector is presented,
which captures the local form information for the contour of the body silhouette

c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 751–759, 2015.
DOI: 10.1007/978-3-319-25751-8 90



752 N. Arana-Daniel and I. Cibrian-Decena

in images of 128 by 64 pixels. In [10], is proposed a pose-invariant descriptor
for humans, in standing pose, using part-template detections and segmenter of
shape and pose, with 128 by 64 pixel images. In [18], is presented a descriptor
robust to partial occlusion in images of people that are usually standing. In [19],
depth data from a Xbox 360 Kinect is used to identify people in all poses. This
method has affordable and low computational cost but has high dependency on
head detection. In [16], the region with greater weight or importance is detected
using Bag-of-Words (BoW); the method is robust to partial occlusion and dif-
ferent pose types, but only detects the region where the person could be located
and does not indicate pose type. This method can not deal with images that do
not contain human forms.

In pedestrian detection [15], a pedestrian template is learned from examples
and then used for classification with a Support Vector Machine (SVM). In [6]
they present a part-based model motivated by the pictioral structure models
(Fischler and Elschlager) and developed a system that can estimate the pose of
the human bodies. Among the major descriptors developed for various applica-
tions are Speed up Robust Features (SURF) [4]. This descriptor is invariant to
rotation and scale, focused on the histogram of local oriented gradients within
the interest point neighborhood. The Histogram of Oriented Gradient (HOG)
is one of the best descriptors to capture the edge or local shape appearance,
but achieves poor results with noisy backgrounds and it’s not invariant to rota-
tion and scale [5]. The Local Binary Pattern (LBP) is a simple and efficient
texture descriptor, highly discriminative, invariant to rotation and gray scales,
computationally efficient, but sensitive to noise [14]. LBP works successfully in
texture classification [20], human detection [18], and face detection [1]. SURF,
despite being scale invariant, is a sparse descriptor, as it uses only some features
extracted from the image. LBP is a dense descriptor and, as mentioned above,
it has proved to be successful in many applications.

In this paper, a descriptor of human forms in images is proposed, constructed
through a part-based model of four key-body parts, see Fig. 1. In a first stage
of the process of recognition, the LBP of the key-body parts is computed and
four SVMs are trained in order to recognize and locate them in an image. A
global descriptor is then built with the LBP and Euclidean distances computed
between the key-body parts that are recognized in the image to train a SVM
to recognize the whole human form (second stage). SVM has been proved to
be very effective for classification of linear and nonlinear data [17]. The method
has proved to be robust to partial occlusion of bodies and to reach high rates of
recognition, as shown in Section 4.

Fig. 1. a) Model of the human body by Hanavan; b) blue shades indicate the body
parts used.
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This paper is organized as follows: The next Section will present a brief
introduction to LBP. Then, in Section 3, the proposed approach based on LBP
and part-based model is described. In Section 4, experimental results are given
and Subsection 4.1 shows comparisons between our approach and some of the
state-of-the-art descriptors; while Section 5 is devoted to conclusions.

2 LBP

The local binary pattern (LBP) [14], is a gray-scale invariant texture measure.
In [14], Ojala et al, propose to use the LBP for rotation invariant texture classi-
fication. The original LBP operator (Eq. 1) is a binary code that describes the
local texture with the eight-neighbors of a pixel, using the value of the center
pixel as a threshold and then the thresholded values is multiplying with weights
given to the corresponding pixels and summing up the result, see Fig. 2.

LBPP,R =

P−1∑

p=0

s (gp − gc) 2P (1)

where

s(x) =

{
1, x ≥ 0
0, x < 0.

(2)

where P is the number of neighbors, gc is the gray value of the center pixel,
gp(p=0,...,p-1) is the value of its neighbors on a circle of radius R.

Fig. 2. The original LBP code

In [14], an extension of the original LBP is presented: uniform patterns
(Eq. 3). They introduced a uniformity measure U (pattern), which designates
patterns that have U value of almost 2 as uniform if it contains at most two 0-1
or 1-0 transition in the pattern. For example, proposed the patterns 111111112
have U value of 0 and 000111102 have U value 2. (Ojala, 2002) propose the
following operator for gray-scale and rotation invariant texture description.

LBP riu2
P,R =

⎧
⎪⎨

⎪⎩

P−1∑

p=0

s (gp − gc) , U(GP ) ≤ 2

P + 1, otherwise.

(3)

where the superscript riu2 stands the use of rotational invariant uniform patterns
and U(Gp) is defined as follows:
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U(GP ) = |s(gP−1 − gc) − s(g0 − gc)| +

P−1∑

p=0

|s (gp − gc) − s (gp−1 − gc)| (4)

In this work the extension of the original LBP is used in order to have a descriptor
which is rotational invariant.

3 Non-pedestrian Human Descriptor and Classifier

As it was mentioned above, this method involves two main processes or stages,
in order to obtain a fully automated system for recognizing human forms. In a
first off-line stage, five SVMs are used; the first four are trained using extended
LBPs (Eq. 3) of the key-body parts, head-shoulders, left/right hand, left/right
foot, i.e. one SVM is used for each body part, and therefore one SVM learns to
recognize both, left and right hands and another one is used to recognize left and
right foot. This is one of the advantages of using the extended version of LBP.
We call these SMVs the key-body parts recognizers (KBPR). The fifth SVM (the
whole body recognizer WBR) is trained using a whole human body descriptor
which is constructed using the LBPs of the six body parts (counting two hands
and two feet) and the Euclidean distance computed between these body parts in
order to add information that helps to discriminate if the recognized body parts
belong to the same body. The descriptor is shown in Fig. 5 and the off-line stage
of this process is illustrated in Fig. 3.

In a second on-line stage, the four KBPR are executed while a window
of size m × n, proportionally sized to the image’s size, is moved across the
image(whatever the size of the image, m × n is calculated so that the window
can cover every part of the body of a person occupying an area of 35% in the
image). On each movement, an LPB of the sub-image in the window is computed
and it is provided as input test vector data to the four previously trained KBPR.
If a KBPR recognizes a one body part, the LBP is stored in the corresponding

Fig. 3. Off-line stage of the process.
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Fig. 4. On-line stage of the process.

Fig. 5. The full descriptor of the whole human body constructed with the six LBPs of
key-body parts and the distances between them, it is called 6PD-LBP descriptor.

part of the descriptor of Fig. 5. Once the window is moved on the whole image
the distances between the recognized body parts can be computed to build the
descriptor of Fig. 5, using the Eq. 5. The on-line stage of the process is shown
in Fig. 4.

D(P1, P2) =

√
(x2 − x1)2 + (y2 − y1)2

base
(5)

where “base” is the Euclidean distance of the first two local features (body parts).
We normalize the distance dividing by 10, so all distances are proportional, no
matter the size of the image.

4 Results

Tests showed that a human form that occupies 20 − 35% of the image can be
detected by this descriptor. The tolerance to small changes in scale is another
advantage of using the extended version of LBP. In Fig. 6 we can see some results
of using the final descriptor and LBP as a local descriptor (6PD-LBP). In Fig.
7, we can see the result of 6PD-LBP on the same rotated original image and the
parts dispersed body, but are the same descriptors used in the images a) and b)
detects that these descriptors are not one person, by the distance between their
local descriptors. It’s important to note that our approach can deal with images
with different resolution.
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Fig. 6. The green square with the check mark indicates that a body is detected in the
image and the red square with the cross indicates that the image does not have a body.

Fig. 7. a)Rotated image, b)Original image, c)Dispersed body parts.

We used INRIA statical data set, introduced by Navneet DALAL, and is
publicly available for research purposes from http://lear.inrialpes.fr/data, and
some images by test from MPII Human Pose dataset [3]. SVMs were used, trained
with gaussian kernels.

4.1 Comparisons

Three comparisons were performed to validate the effectiveness of our descrip-
tor. Firstly, a full body LBP descriptor of the human form was computed. Then
a SVM was trained with positive (images with a body on them) and negative
(images without human bodies) images. Finally, the obtained detection results
of that descriptor an ours are compared; the results are shown in Figs. 8, 9(a),
and in the Table 1. The second comparison experiment consisted in computing
part-based descriptors using the same six body parts as in our approach and
descriptors such as: Histogram of Oriented Gradients (6PD-HOG) and SURF
(6PD-SURF) descriptors to construct the whole descriptor shown in Fig. 5.
Recognition rates obtained were compared against those obtained using 6PD-
LBP. Images incorrectly classified were those that had much noise, or because
of the body position, or where body parts were incorrectly detected.

http://lear.inrialpes.fr/data
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Fig. 8. Comparison between 6PD-LBP and LBP full body.

The following table shows the performance of classifiers using LBP, HOG and
SURF as descriptors of texture and LBP full body descriptor. The number of
training data is 505, where 253 are positive and 252 are negative. Meanwhile, the
test total number of vectors is 279, where 134 are positive and 145 are negative.

Table 1. Evaluating performance of the classifier on train and test set.

Train Test
Model Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

LBP full body 0.8201 0.9011 0.8015 0.6838 0.6940 0.7034

6PD-LBP 0.8947 0.9407 0.8888 0.8206 0.8880 0.8206

6PD-SURF 0.8791 0.9486 0.8690 0.8814 0.8880 0.8896

6PD-HOG 0.8726 0.9209 0.8650 0.8582 0.8582 0.8689

The following graphs, Fig. 9, are the ROC curve of the 4 classifiers with the
performance curve for the classifier. The reader can note that higher rates of
true positive patterns are obtained using the 6PD-LBP descriptor.

Fig. 9. a) ROC curves for SVMs classifiers trained with 6PD-LBP descriptor and the
full body LBP descriptor as input data. b) ROC curves obtained for SVMs classifiers
trained using part-base model descriptors 6PD-LBP, 6PD-SURF and 6PD-HOG.
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In the performance of classifiers, if we need more sensitivity, the specificity
is sacrificed. The reader should note that our approach has good results in the
training set getting good generalization. However, in the testing set, our approach
is slightly exceeded, while regarding the methodology of each local descriptor,
LBP is computationally cheaper.

5 Conclusions

In this work, a methodology is presented to construct a part-based human body
descriptor, that achieves non-pedestrian pose recognition. As it can be seen in
the ROC curves and in the tables presented in the previous Section, our method
obtains higher recognition rates compared with those approaches that use one
descriptor with global information about the whole human body (full body LBP);
even when this descriptor is rotational invariant. The part-based method proved
to be robust to occlusion, although to reach good performance in experimental
tests, at least four of the six body parts have to be recognized and included
in the full descriptor. As future work, the sensitivity of our method will be
proved statistically and implemented in an on-board computer of a flying robot,
controlled with neural networks [8],[2], using omnidirectional cameras [12],[11]
in order to obtain an intelligent UAV prototype.

Acknowledgments. This work was partially supported by grants CONACYT-CB-
106838, 103191, 156567, 129079, INFR-229696 and scholarship grant CVU-556068.
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Abstract. In this paper a novel method for video summarization is
presented, which uses a color-based feature extraction technique and a
graph-based clustering technique. One major advantage of this method
is that it is parameter-free, that is, we do not need to define neither
the number of shots or a consecutive-frames dissimilarity threshold. The
results have shown that the method is both effective and efficient in
processing videos containing several thousands of frames, obtaining very
meaningful summaries in a quick way.

Keywords: Optimum-path forest classifier · Video summarization ·
Shot detection · Clustering · Video processing

1 Introduction

Nowadays, huge amounts of multimedia information exist thanks to the popular-
ization of smart portable devices like cell phones or tablets, which have cameras
capable of recording high quality pictures and videos.

Such volume of information makes it necessary to have software capable of
summarizing this information, allowing us to store only the most important parts
of the videos. For example, 24-hour surveillance videos, that need to be analyzed
daily, could be summarized into few-minutes clips. This problem could be solved
using video processing and computer vision techniques.

To perform the analysis of the video’s content, we need to extract features
from each frame of it, more specifically, we need to characterize the color, texture
and shape of the images composing the video. Then, the video is splitted into
scenes and shots, which are the parts that compose it. This process is known as
shot detection and it is the most important part of this kind of systems.

On the other hand, traditional approaches for shot detection consider the
analysis of the level of dissimilarity between consecutive frames, setting a new
shot when the dissimilarity is higher than a certain threshold. The problem with
this approach is determining a suitable threshold for each video.

This paper presents a new approach for automatic video summarization,
based on the application of the Optimun-Path Forest unsupervised classifier,
a graph-based clustering technique known for being both fast and accurate.

c© Springer International Publishing Switzerland 2015
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Moreover, this new approach does not need to know a priori the number of shots
and scenes as other techniques do.

The rest of the document is organized as follows. Section 2 presents the main
concepts of video summarization systems, Section 3 explains the techniques used
for the proposed method, while Sections 4 and 5 present the evaluation and the
conclusions, respectively.

2 Video Summarization

Formally speaking, a video can be defined as a set V = 〈f1, f2, . . . , fn〉 of frames
fi, that are images of M x N pixels. A video is made of the union of shots, which
are separated by transitions. A transition Ti between the shots Si and Si+1 can
be represented by the pair (s, t), s < t, which are the indexes of the frames that
form the transition, such that, Si = 〈. . . , fs−1, fs〉 and Si+1 = 〈ft, ft+1, . . .〉.
These transitions can be abrupt, when t = s+1 (i.e. one shot starts immediately
after the other) or gradual, when t > s + 1 (i.e. the two shots are superposed),
being that the latter have edition effects, like fades or dissolutions.

In addition, the set of shots is grouped into scenes, which could be seen as
a set of related shots developed in the same environment, also known as shots
taken by the same camera.

The work developed by Chen et al. [2] presents an algorithm to detect the
transitions in a video by using a threshold for the distance (dissimilarity measure)
between two consecutive frames. This algorithm is very fast but it is very difficult
to choose a suitable threshold, because it can be very different among videos.

Jadhav and Jadhav [4] developed a video summarization method that uses
higher order color moments as the feature extraction technique. This method
aims at the detection of shot boundaries by computing different statistics with
the frames. However, it needs several thresholds for the shot boundary detection.

The method proposed by Ejaz et al. [3] uses an adaptive correlation scheme of
color-based features which aims at the detection of key frames by using a thresh-
old for the correlation level among them. The main drawback of this method is
choosing a suitable threshold for the correlation levels.

Ren et al. [6] proposed a fuzzy approach that is able to classify the frames
in the video according to the transitions present between them and according to
camera motion analysis. The main idea is to generate a summary of the video
according to the activities being performed inside it. One drawback is the use of
a threshold to determine the final size of the summary generated.

Finally, Zhou et al. [9] proposed a video summarization method based on the
use of a fuzzy c-means algorithm together with audio-visual features extracted
from the video. The main problem of this technique is determining a suitable
value for c (number of shots).
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3 Automatic Video Summarization by Optimum-Path
Forest

The method proposed in this paper relies on the use of a clustering algorithm
to divide the video into shots.

We let the frames form groups in a natural way, that is, every group contains
the most similar frames to each other. The reason for this is that a video is
nothing more than a sequence of very similar pictures placed one next to the
other at a certain frame rate. However, this is true for portions of the video
(shots), not for the entire video, i.e., all the frames inside a shot are very similar
to each other and they are different to frames in other shots.

This is the reason for using clustering. A clustering algorithm tries to find an
optimal partition inside a group of objects, following the rule that every group
has the highest level of similarity among their elements and the lowest level of
similarity to the objects in the other clusters.

To perform this task, we need the objects to be represented numerically, more
specifically as a feature vector, that it, a set of N numbers that represent the
object as a point in a N -dimensional space. It is able to dictate whether two
given images are similar or dissimilar. For the case of videos, they are obtained
by applying one or more image processing techniques (i.e. feature extraction),
which aim at the representation of the color, texture and shape of the frames.

Among the feature extraction techniques, we could mention color histograms,
Gabor filters or Fourier descriptors, which are focused on representing color, tex-
ture and shape, respectively. Then, some distance function is needed to compute
the level of dissimilarity between two vectors (e.g. Euclidean distance or Maha-
lanobis distance). Moreover, a very interesting option, and the one chosen for
this work, is Border-Interior Pixel Classification (BIC). This technique was cho-
sen because it is both accurate for representing the color and fast enough to
process the frames in the videos.

Regarding the clustering techniques, the most used approaches in the litera-
ture are the k-means algorithm and its variants fuzzy k-means or k-medians,
which are all partition-based approaches. Also, we can mention probability-
based approaches like Mean-Shift, DBSCAN and Expectation-Maximization.
And, between others, we can also talk about graph-based approaches, like the
ones based on the Minimum-Spanning Tree (MST) or the Optimum-Path Forest
(OPF), which is the one chosen for this work. We chose the OPF algorithm,
because it is a threshold-free approach and it is both accurate and fast enough
to find the shots in the video in a very short amount of time.

3.1 Feature Extraction Through Border/Interior Pixel Classification

Border-Interior Pixel Classification (BIC) [8] is a color-based technique proposed
to address the well-known issue of global color representation presented by the
traditional color histograms. This problem raises when we have two very different
images with a very similar color distribution, i.e., two very different images will
have very similar feature vectors.
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As a solution, BIC performs a previous step of pixel classification into two
possible kind of pixels, border and interior. For this, a quantization process has
to be performed, transforming the color range of the pixels from, say, 256 gray
levels (original image) to, say, 4 or 8 gray levels. Thus, an interior pixel is the one
that is surrounded by pixels of the same (quantized) color and a border pixel is
the one that is surrounded by at least one different color pixel. In other words,
the interior pixels are the homogeneous regions of the image and the border
pixels are the edges surrounding them. Then, separate histograms are computed
for both interior and border pixels and the union of them is the final vector.

Furthermore, an improved distance measure is used instead of the traditional
euclidean distance. This distance is called dLog and uses a logarithmic scale
instead of a decimal one, aiming at the dissipation of the effect of very large
values in the histograms (e.g. the image’s background). It is defined by the
Equation 3.1.

dLog(q, d) =
i<M∑
i=0

|f(q[i]) − f(d[i])| (3.1)

where M is the dimension of the vectors q and d and f is defined as:

f(n) =

⎧
⎨
⎩

0 if x = 0
1 if 0 < x ≤ 1
log2x + 1 otherwise

(3.2)

3.2 Clustering Through the Optimum-Path Forest Unsupervised
Classifier

The Optimum-Path Forest (OPF) [7] algorithm’s main goal is to find an optimal
partition of the training set with the help of a graph, which is used to represent
the samples being grouped. For this, every sample is mapped to a node in the
graph, representing it as a feature vector. The optimal partition OPF seeks for is
represented as a forest of optimal trees rooted in specially-chosen samples called
prototypes. A cluster is made of one or more trees.

OPF uses a searching algorithm which aims at finding an optimum path for
every sample in the training set, which starts in one of the chosen prototypes.
In this sense, this algorithm could be seen as a multiple-source and multiple-end
shortest-path algorithm, defined by Equation 3.3.

V(t) = max
∀πs

t ∈(N ,A)
{f(πs

t )} (3.3)

where πs
t is the path from the node s ∈ S (set of prototypes) to the node t,

(N ,A) is the set of nodes (as defined by the adjacency relationship A) and f is
a function that measures the cost of the path πs

t .
The set of prototypes S is chosen by computing a Probability Density Func-

tion (PDF) over the training set and then finding the maxima of this PDF.
However, this PDF does not use the traditional (radial) Gaussian function to
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weight the relationship between every sample and its neighbors. It uses a modi-
fied version of the Gaussian function that uses the k nearest neighbors to every
sample s instead of considering all the neighbors that are inside a certain radius.
This approach has the advantage of better dealing with arbitrary-shape clusters
by not assuming that all clusters has a circular shape, but allowing them to be
represented in its natural way. Equation 3.4 dictates how the PDF is computed.

ρ(s) =
1√

2πσ2|A(s)|
∑

t∈A(s)

exp
(−d2(s, t)

2σ2

)
(3.4)

which computes a gaussian function centered on s where A is the adjacency
function defined by k and σ is defined as: σ = max∀(s,t)∈A

{
d(s,t)

3

}
.

While we need to enter the number k of neighbours used to create the k-nn
graph, it can be computed automatically by measuring the quality of the graph
cut and then optimizing this value for [1, kmax], as proposed by Rocha et al. [7].
Finally, after finding the PDF maxima, we need to reduce the number of clusters
found by using β to avoid very small clusters, as explained by Rocha et al. [7].

3.3 Shot and Scene Detection Through Two-Level Clustering

The clustering process explained above is performed using the feature vectors
obtained from the video’s frames. The result is a set of groups which correspond
to the shots of the video. Then, we would like to choose one frame for each shot
that better represents it. This frame is called the key-frame and corresponds to
the centroid of the cluster.

Furthermore, after computing all the key-frames, we use them to perform
the last process of our method, namely, the scene detection process. Based on
the same principles behind the use of clustering to find the shots, we perform a
new clustering process using only the key-frames. As a result, the groups found
in this task will correspond to the scenes of the video.

Finally, we also compute the scene key-frames for this clusters and use them
to generate the summary of the video. For this, we extract a small set of frames
before and after each scene key-frame and put them together according to the
time position of each key-frame. According to the job developed by Pfeiffer et
al. [5], the minimum size a scene should have is 3.25 seconds in order to be
analyzed properly by a person.

4 Evaluation

The validation process of the proposed method was initially made using com-
mercial videos of different sizes. Table 1 summarizes the characteristics of the
videos. A manual inspection process was performed to obtain the shot detection
ground-truth for each video.

Regarding the statistical approach used to compare our method with other
methods, we used the ROC curve, the most used method to compare information
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Table 1. Videos used for the tests.

Video name Resolution Length Frames FPS Shots

Taboo 480x320 04:52 min. 7008 24 201

Say it right 480x320 03:56 min. 5664 24 216

Crazy Frog 352x288 03:20 min. 5006 25 82

Bendita tu luz 480x320 04:10 min. 6007 24 146

Destino de fuego 480x360 03:59 min. 7191 30 175

retrieval algorithms. A ROC curve allows us to evaluate the global behavior of
a technique, i.e., it is not biased by a particular choice of parameters.

We chose the threshold-based method proposed by Chen et al. [2] and also
we chose a similar work, developed by Castelo [1], where a k-means algorithm is
used to perform the clustering process. Furthermore, a threshold-based method
is used in this work to determine the value of k.

Figure 1 presents the ROC curves obtained for the three methods, our OPF-
based method, the threshold-based method and the k-means-based method.
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Fig. 1. ROC curves for the three methods, using the test videos. Here: 1 ≤ k ≤ 20, 0 ≤
β ≤ 500 (OPF) y 0 ≤ μ ≤ 0.99, 0 ≤ δ ≤ 0.99 (Thresholding and k-means).

Table 2 summarizes the ROC curves computed and presents, for each tech-
nique, the combination of parameters that lead to the better results according
to the ROC curve.

We used different threshold values for both methods to create the ROC curve
(thresholds μ and δ are used to detect abrupt and gradual transitions separately)
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Table 2. False Positive Rate, True Positive Rate, Accuracy and Execution Time (sec-
onds) for the three methods.

Video Method k/μ β/δ FPR TPR Acc. Exec.Time

Taboo
OPF 7 160 0.04 0.99 0.97 0.564 ± 0.077

Thresh. 0.00 0.04 0.04 0.97 0.96 0.001 ± 0.001
k-means 0.05 0.05 0.08 0.82 0.87 1.193 ± 2.048

Say it right
OPF 6 40 0.07 0.98 0.96 0.438 ± 0.062

Thresh. 0.04 0.12 0.06 0.99 0.96 0.001 ± 0.001
k-means 0.09 0.05 0.09 0.86 0.88 1.184 ± 1.619

Crazy Frog
OPF 14 340 0.03 0.96 0.97 0.396 ± 0.057

Thresh. 0.04 0.20 0.04 0.89 0.93 0.001 ± 0.001
k-means 0.09 0.05 0.09 0.93 0.92 0.495 ± 1.021

Bendita tu luz
OPF 15 100 0.02 0.97 0.97 0.463 ± 0.065

Thresh. 0.64 0.04 0.04 0.95 0.95 0.001 ± 0.001
k-means 0.09 0.05 0.06 0.79 0.87 0.732 ± 1.556

Destino de fuego
OPF 14 20 0.03 0.95 0.96 0.605 ± 0.085

Thresh. 0.00 0.04 0.04 0.94 0.95 0.001 ± 0.001
k-means 0.05 0.05 0.06 0.82 0.88 1.078 ± 1.708

and, for our method, we used different values for the parameters of the OPF algo-
rithm (the number k of nearest neighbors for the k-nn graph and the threshold
β, used to automatically find the number of prototypes).

As we can see in Figure 1, the proposed method obtained very good results,
i.e., its ROC curve is closer to the top left corner than the other methods’.

Regarding the processing time (Table 2), the proposed method obtained very
fast results, considering the number of frames of each video. In comparison with
the other methods, as expected, the threshold-based method is faster, since it
only performs a lineal analysis of the frames. However, considering the length of
the videos we can say that the difference is not very significant. On the other
hand, comparing our method with the k-means-based method, it performed so
much better regarding both, processing time and accuracy.

Furthermore, to demonstrate the efficiency of the proposed method, it was
used with longer videos (movies). Table 3 shows the characteristics of the movies
used and the processing times for them. As we can see, the processing time for
the movies are very low, considering the number of frames processed. The movie
“Ghost Rider” (158572 frames), for example, is processed in 23.85 seconds.

Table 3. Movies used for the time tests with their processing times.

Video Resolution Length Frames FPS Processing Times

Batman Forever 320x240 01:56:34 h. 174869 25 27.99

Ghost Rider 320x240 01:50:13 h. 158572 25 23.85

Starship Troopers 320x240 02:08:28 h. 192712 25 36.06

As future work, we will compare the proposed method to a wider range of
clustering algorithms.
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5 Conclusions

In this work, a novel method for video summarization was presented. This
method is based on the use of clustering techniques to find groups inside the
video, which correspond to the shots and scenes. As was shown, the method is
better than the two methods used for comparison. BIC, the feature extraction
technique chosen, has proved to be both effective and efficient since it helped
us to obtain low processing times with good accuracy. Overall, the proposed
method is very effective to summarize videos, having obtained the best results
looking at the ROC curves. Regarding the processing time needed to perform
the analysis, our method is very efficient, considering the number of frames in
the videos. It only needed 24 seconds to process a video with more than 158000
frames. Furthermore, one strong point of our method is that it does not need to
know a priori the number of groups to perform the cluster analysis.
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Abstract. This work addresses the application of a population based
evolutionary algorithm called shuffled complex evolution (SCE) in
the multidimensional knapsack problem. The SCE regards a natural
evolution happening simultaneously in independent communities. The
performance of the SCE algorithm is verified through computational
experiments using well-known problems from literature and randomly
generated problem as well. The SCE proved to be very effective in find-
ing good solutions demanding a very small amount of processing time.

Keywords: Multidimensional knapsack problem · Meta-heuristics ·
Artificial intelligence

1 Introduction

The multidimensional knapsack problem (MKP) is a strongly NP-hard com-
binatorial optimization problem which can be viewed as a resource allocation
problem and defined as follows:

maximize
n∑

j=1

pjxj

subject to
n∑

j=1

wijxj � ci i ∈ {1, . . . , m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}.

The problem can be interpreted as a set of n items with profits pj and a set of
m resources with capacities ci. Each item j consumes an amount wij from each
resource i, if selected. The objective is to select a subset of items with maximum
total profit, not exceeding the defined resource capacities. The decision variable
xj indicates if j-th item is selected.
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The multidimensional knapsack problem can be applied on budget planning
scenarios and project selections [8], cutting stock problems [7], loading prob-
lems [10], allocation of processors and databases in distributed computer pro-
grams [6].

The problem is a generalization of the well-known knapsack problem (KP)
in which m = 1. However it is a NP-hard problem significantly harder to solve
in practice than the KP. Due its simple definition but challenging difficulty of
solving, the MKP is often used to to verify the efficiency of novel metaheuristics.
A good review for the MKP is given by [5].

In this paper we address the application of a metaheuristic called shuffled
complex evolution (SCE) to the multidimensional knapsack problem. The SCE
is a metaheuristic, proposed by Duan in [3], which combines the ideas of a con-
trolled random search with the concepts of competitive evolution and shuffling.
The SCE algorithm has been successfully used to solve several problems like flow
shop scheduling [11] and project management [4].

The reminder of the paper is organized as follows: Section 2 presents the
shuffled complex evolution algorithm and proposes its application on the MKP.
Section 3 comprises several computational experiments. In section 4 we make
our concluding remarks about the experimental results.

2 The Shuffled Complex Evolution for the MKP

The shuffled complex evolution is a population based evolutionary optimization
algorithm that regards a natural evolution happening simultaneously in inde-
pendent communities. The algorithm works with a population partitioned in N
complexes, each one having M individuals. In the next Subsection the SCE is
explained in more details. In the later Subsection the application of SCE to the
multidimensional knapsack problem is considered.

2.1 The Shuffled Complex Evolution

In the SCE a population of N ∗M individuals is randomly taken from the feasible
solution space. After this initialization the population is sorted by descending
order according to their fitness and the best global solution is identified. The
entire population is then partitioned (shuffled) into N complexes, each containing
M individuals. In this shuffling process the first individual goes to the first
complex, the second individual goes to the second complex, individual N goes
to N -th complex, individual M + 1 goes back to the first complex, etc.

The next step after shuffling the complexes is to evolve each complex through
a given fixed amount of K ′ steps. The individuals in each complex is sorted by
descending order of fitness quality. In each step a subcomplex of P individuals
is selected from the complex using a triangular probability distribution, where
the i-th individual has a probability pi = 2(n+1−i)

n(n+1) of being selected. The use of
triangular distribution is intended to prioritize individuals with better fitness,
supporting the algorithm convergence rate.
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After the selection of the subcomplex, its worst individual is identified to
be replaced by a new generated solution. This new solution is generated by
the crossing of the worst individual and an other individual with better fitness.
At first the best individual of the subcomplex is considered for the crossing. If
the new solution is not better than the worst one, the best individual of the
complex is considered for a crossing. If the latter crossing did not result in any
improvement, the best individual of whole population is considered. Finally, if
all the crossing steps couldn’t generate a better individual, the worst individual
of the subcomplex is replaced by a new random solution taken from the feasible
solution space. This last step is important to prevent the algorithm becoming
trapped in local minima. Fig. 1(b) presents the evolving procedure described
above in a flowchart diagram.

After evolving all the N complexes the whole population is again sorted
by descending order of fitness quality and the process continues until a stop
condition is satisfied. Fig. 1(a) shows the SCE algorithm in a flowchart diagram.

2.2 The Shuffled Complex Evolution for the MKP

As it can be noted in its description the SCE is easly applied to any optimization
problem. The only steps needed to be specified is (a) the creation of a new
random solution and (b) the crossing procedure of two solutions. These two
procedures are respectively presented by Algorithm. 1 and Algorithm 2.

Algorithm 1. Generation of a new random solution for the MKP.
1: procedure New random solution
2: v ← shuffle(1, 2, . . . , n)
3: s ← ∅ � empty solution
4: for i ← 1 : n do
5: s ← s ∪ {vi} � adding item
6: if s is not feasible then � checking feasibility
7: s ← s − {vi}
8: end if
9: end for

10: return s
11: end procedure

To construct a new random solution (Algorithm 1) the items are at first
shuffled in random order and stored in a list (line 2). A new empty solution is
then defined (line 3). The algorithm iteratively tries to fill the solution’s knapsack
with the an item taken from the list (lines 4-9). The feasibility of the solution is
then checked: if the item insertion let the solution unfeasible (line 6) its removed
from knapsack (line 7). After trying to place all available items the new solution
is returned.

The crossing procedure (Algorithm 2) takes as input the worst solution
taken from the subcomplex xw = (xw

1 , xw
2 , . . . , xw

n ), the selected better solution
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(a) The SCE algorithm overview. (b) Evolving stage for a single complex.

Fig. 1. Flowchart representing the shuffled complex evolution algorithm.

xb = (xb
1, x

b
2, . . . , x

b
n) and the number c of genes that will be carried from the

better solution. The c parameter will control how similar the worst individual
will be from the given better individual. At first the items are shuffled in ran-
dom order and stored in a list (line 2). Then c randomly chosen genes are carried
from the better individual to the worst individual (line 5). At the end of steps
the feasibility of the solution is checked (line 7) and the solution is repaired if
needed. The repair stage is a greedy procedure that iteratively removes the item
that less decreases the objective function. Finally the fitness of the generated
solution is updated (line 10) and returned (line 11).
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Algorithm 2. Crossing procedure used on SCE algorithm.
1: procedure Crossing(xw : worst individual, xb : better individual, c)
2: v ← shuffle(1, 2, . . . , n)
3: for i ← 1 : c do
4: j ← vi
5: xw

j ← xb
j � gene carriage

6: end for
7: if sw is not feasible then
8: repair sw

9: end if
10: update sw fitness
11: return sw

12: end procedure

3 Computational Experiments

For the computational experiments a batch of tests was driven to find the best
parameters for the problem. Afterwards two main tests was considered: (a) using
the well-known set of problems defined by Chu and Beasley [2] and (b) a large
set of randomly generated instances using uniform distribution.

The set of MKP instances provided by Chu and Beasley was generated using
a procedure suggested by Freville and Plateau [5], which attempts to generate
instances hard to solve. The number of constraints m varies among 5, 10 and
30, and the number of variables n varies among 100, 250 and 500.

The wij were integer numbers drawn from the discrete uniform distribution
U(0, 1000). The capacity coefficient ci were set using bi = α

∑n
j=1 wij where α

is a tightness ratio and varies among 0.25, 0.5 and 0.75. For each combination of
(m,n, α) parameters, 10 random problems was generated, totaling 270 problems.
The profit pj of the items were correlated to wij and generated as follows:

pj =
m∑
i=1

wij

m
+ 500qj j = 1, . . . , n

The second set of instances is composed by problems generated using a similar
setup. The only differences is that the profit pj is also drawn from a discrete
uniform distribution U(0, 1000). For each combination of (m,n, α) parameter,
600 random problems was generated, totaling 16200 problems.

All the experiments was run on a Intel Core i5-3570 CPU @3.40GHz com-
puter with 4GB of RAM. The SCE algorithm for MKP was implemented in C
programming language. For the set of random instance all best known solution
was found by the solver SCIP 3.0.1 running for at least 10 minutes. SCIP [1] is an
open-source integer programming solver which implements the branch-and-cut
algorithm [9].

After a previous test batch parameters for SCE was defined as shown in
Table 1 and used in all executions of SCE.
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Table 1. Parameters used in SCE algorithm.

Parameter Value Description

N 20 # of complexes
M 20 # of individuals in each complex
P 5 # of individuals in each subcomplex
K 300 # of algorithm iterations
K′ 20 # of iterations used in the complex evolving process
c n/5 # of genes carried from parent in crossing process

Table 2 shows the performance of the SCE on the Chu-Beasley set of instance.
Each instance in the set was executed 10 times on SCE. The SCE t column shows
the average execution time of SCE. The gap column shows the average ratio of
the solution found by SCE and the best known solution of each instance. It can
be observed that the SCE has a fast convergence speed, achieving high quality
solutions in few seconds.

Fig. 2. Convergence process of SCE for MKP for a problem with n = 500, m = 30 and
t = 0.50.

The fast convergence speed of SCE for MKP can be noticed in Fig. 2. The
figure shows for each iterations step, the quality of best solution found for the
first 100 iterations. The problem instance used was taken from the second set of
problem (random instances). The best known solution was found with 600s of
execution on SCIP solver and the execution of the SCE algorithm expended 1.1
seconds.
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Table 2. SCE performance on Chu-
Beasley problems.

n m α SCE t (s) gap (%)

100 5 0.25 0.79 96.5

0.5 0.81 97.4

0.75 0.83 98.9

10 0.25 0.75 95.7

0.5 0.93 96.7

0.75 0.89 98.5

30 0.25 1.01 95.4

0.5 1.07 96.4

0.75 0.99 98.2

average gap 97.1

n m α SCE t (s) gap (%)

250 5 0.25 1.72 93.2

0.5 1.75 94.9

0.75 1.78 97.6

10 0.25 1.84 93.1

0.5 1.84 94.6

0.75 1.81 97.2

30 0.25 2.21 93.2

0.5 2.21 94.2

0.75 2.31 96.6

average gap 95.0

n m α SCE t (s) gap (%)

500 5 0.25 3.16 91.4

0.5 3.18 93.4

0.75 3.34 96.4

10 0.25 3.39 91.7

0.5 3.37 93.1

0.75 3.44 96.2

30 0.25 3.83 91.4

0.5 3.90 92.6

0.75 3.99 96.0

average gap 93.6

Table 3. SCE performance on the random
generated problems.

n m α SCIP t (s) SCE t (s) gap (%)

100 10 0.25 0.93 0.41 98.3

0.50 0.28 0.39 99.3

0.75 0.09 0.37 99.8

20 0.25 3.15 0.41 98.2

0.50 0.71 0.40 99.3

0.75 0.16 0.37 99.8

30 0.25 7.26 0.42 98.3

0.50 1.47 0.42 99.3

0.75 0.25 0.38 99.8

average gap 99.1

n m α SCIP t (s) SCE t (s) gap (%)

250 10 0.25 58.20 1.10 97.2

0.50 8.51 1.04 98.9

0.75 0.51 0.90 99.7

20 0.25 227.94 1.11 97.6

0.50 43.69 1.02 99.0

0.75 1.59 0.90 99.8

30 0.25 270.48 1.20 97.7

0.50 88.73 1.09 99.0

0.75 2.90 0.94 99.8

average gap 98.7

n m α SCIP t (s) SCE t (s) gap (%)

500 10 0.25 278.85 2.23 96.1

0.50 177.32 2.14 98.4

0.75 8.47 1.87 99.6

20 0.25 284.11 2.30 96.7

0.50 275.68 2.16 98.6

0.75 33.67 1.90 99.7

30 0.25 283.78 2.50 96.9

0.50 283.54 2.32 98.7

0.75 71.66 1.96 99.7

average gap 98.3
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4 Conclusions and Future Remarks

In this work we addressed the application of the shuffled complex evolution
(SCE) to the multidimensional knapsack problem and investigated it perfor-
mance through several computational experiments.

The SCE algorithm, which combines the ideas of a controlled random search
with the concepts of competitive evolution proved to be very effective in finding
good solution for hard instances of MKP, demanding a very small amount of
processing time to reach high quality solutions for MKP.

Future work includes the investigation of different crossing procedures and
the use of local search in the process of evolving complexes.
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Abstract. Pedestrian detection on urban video sequences challenges
classification systems because of the presence of cluttered backgrounds
which drop their performances. This article proposes a Multi-Objective
Optimization (MOO) technique reducing this limitation. It trains a pool
of cascades of boosted classifiers using different positive datasets. A
Pareto Front is obtained from the locally non-dominated operational
points of the Receptive Objective Curve (ROC) of those classifiers. Using
information about the dynamic of the scene, different pairs of operational
points from the Pareto Front are employed to improve the performance of
the system. Results on a real sequences outperform traditional detector
systems.

Keywords: Multi-Objective Optimization · Pedestrian detection

1 Introduction

The behavior of object detection systems using image processing is controlled by
fixing constrains or establishing performance criterias. Two numerical variables
which can define this behavior are: Correct Detections (CD) and False Alarms
(FA). CD computes objects successfully identified on the image, while FA are
the erroneous outputs of the detector.

In some applications the CD ratio would be very important to identify an
object or situation. For example, a buried land mines system detector should
be very sensible to CD and would validate a position if there exists a slight
doubt. Considering that a non detected land mine can take away a human life,
a great number of FA is not relevant. On the other hand, an herbicide system
using vision which has high FA ratio imply an economic waste when it fumigates
unnecessarily the farmland. Minimizing the number of FA implies that not all
the weeds would be eliminated. Even though, a low quantity of weed does not
represent a danger for the crop. Thus, finding a balance between CD and FA will
define the behavior of the system which is closely related with the application.

This article addresses a people detector using the Movement Feature Space
(MFS) [8,9] on video sequences captured at a street corner, as show fig. 1(a).
These kind of outdoors images with non controlled environments have numerous
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 776–784, 2015.
DOI: 10.1007/978-3-319-25751-8 93
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(a) Street Sequence
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(b) Pedestrian 1
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(c) Pedestrian 2

Fig. 1. Fig. (a) shows a capture of the street sequence. Figs. (b) and (c) represent non
detected pedestrians and the features obtained from the MFS.

factors harming the performance of state of the art pedestrians detectors [4,5].
This is mainly due to: other moving objects on the scene, abrupt changes of the
illumination, and a cluttered background.

Figures 1(b) and 1(c) show two examples of non detected pedestrians using
MFS classifier. Second column represents the orientations matrix Ot of the MFS,
and the third column shows the Histograms of Level Lines (HO2L) computed
inside each patch of the grid (see [7,8] for details).

The HO2L features of the background without the Pedestrian 1 on fig. 1(b)
are mostly composed of level lines with horizontal orientation: bin = 4. When
the person is in front of the vehicle, their presence changes the histograms, but
there is a high predominance of the horizontal orientation. It can be consid-
ered that their features are absorbed by the background features. Then, they
are hardly noticeable by the classifier which would not detect the pedestrian.
Pedestrian 2, fig. 1(c), shows a cluttered background generated by the shadows
of the trees, producing moving level lines on the MFS until they became part of
the background model. During this period, pedestrians walking in front of this
background are not detected. The immersion effect is similar to the example 1,
but less noticeable.

It can be stated that the problem is related with the presence of horizontal
features. Actually, a person hardly generates this kind of features [5]. There-
fore, on the training stage of a pedestrian classifier, this orientation becomes a
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discriminant factor that easily eliminates FA. However, when a person is sub-
merged on this type of background, it is not detected. To minimize this limita-
tion, a classifier can be trained using a greater number of persons with cluttered
backgrounds. But this will result in an exponential increase in the number of the
FA: the horizontal level lines are not as discriminating as before. The problem
has opposed objectives, and is necessary to seek for a different kind of solution.

This article proposes a technique of Multi-Objective Optimization (MOO)
to minimize the effect of the horizontal features on the pedestrian detectors at
the street corner. The methodology consists to train a pool of classifiers using
different datasets. Their performances projected on Receiver Operating Char-
acteristics (ROC) curves will define a Pareto Front with the operational points
locally optimums [3]. Recent works of the literature apply MOO to compare
performance of different algorithms [2], or obtain pools of classifiers [3,6,10,11]
to choose the better combination of the training hyperparameters or features.
This article, on the other hand, trains a pool of classifiers using different positive
datasets to optimize the behavior of the overall detection system.

The following sections details the methodology for the training and the way
the pool of classifiers in obtained. Results of the detection system are presented
on section 3, finishing with the conclusions of the work 4.

2 Methodology

2.1 ROC Front Construction

Pareto optimization gives a framework where solutions of the problem coexist
with opposed objectives. This pool of solutions Ψ are the different classifiers
trained by our system. The vector solution x = [x1, ..., xn]T ∈ �n is composed
of all the decision variables xi. The l objective functions are defined as fi(x), i =
1, ..., l. Then, the solution xi domminates solution x2 (x1 ≤ x2), if and only if
x1 is better than x2 on one objective and is not worst on the others [11]:

∀i : fi(x1) ≤ fi(x2) ∧ ∃j : fj(x1) < fj(x2) (1)

Using this dominance concept, the purpose of the MOO algorithm consists
to find the set of all dominant solutions applying the objective functions to the
system. This set is denominated Pareto Front.

This work relates the objective functions fj(x1) to the ratio CD/FA obtained
from the ROC curve [3]. The ROC curve is generally employed to choose an
operational point for a classifier [1]. To obtain the ROC for a two class problem,
a classifier is applied on a dataset composed of positives and negatives samples
using different validation thresholds. The use of each threshold would result on
a CD and FA point which is employed to construct the ROC curve. This curve
evaluates the sensibility and specificity of the classifier.

Fig. 2(b) represents and example of two ROC curves belonging to different
classifiers. The objective functions f look for CD maximization and FA mini-
mization points. Curve ROC1 locally dominates ROC2 for high values of CD,
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Fig. 2. Figure shows: (a) ROC curve for a Cascade of Boosted Classifiers and their
operational points qi, (b) Pareto Front using two ROC curves.

while ROC2 dominates ROC1 for low values of CD. The selection of locally
dominant operational points defines the Pareto Front, which is draw on fig. 2(a)
as the exterior bounding curve.

2.2 Classifiers Training

Cascade of Boosted Classifiers. This section details the methodology to
combine the training of the Cascade of Boosted Classifiers, and the Multi-
Objective Optimization technique. The training of a Cascade of Boosted Clas-
sifiers C requires a dataset P composed of positive samples of the class (pedes-
trians in this case), and a negative dataset N composed of non-class samples. It
is also necessary to define some training parameters as: the maximum number
of stages E in C, the minimum percentage of correct detections dmin and the
maximum percentage of false alarms fmax allowed at each stage [12].

The resulting Cascade C = {C1, C2, ..., Cn} is a set of n boosted classifiers
Ci of growing complexity. Those Ci are applied sequentially on an test image to
detect the positive class. The behavior of C is strongly related by the choose of
all the training parameters and the datasets: {P,N,E, dmin, fmax}.

The ROC curve of C is computed employing the methodology proposed by
Viola & Jones [12], considering the individual thresholds Ti of each stage Ci

obtained on the training. The ROC curve is composed of the concatenation of
the ROC segments calculated for each stage of the cascade. A segment j of the
curve, corresponding to the Cj classifier of C, results by applying a validation
threshold to the dataset from −∞ to the Tj value. Fig. 2(a) draws an example
where qn denotes the operational point of the last classifier Cn using Tn as value
for their threshold, qn−1 corresponding to the Cn−1 classifier, and so on.

Iterative Selection of P . The behavior of C will be strongly related by the
positive samples populating the training set P . If the dataset P is highly homo-
geneous, through the training of C the positive samples projected on the clas-
sification space are easily grouped on kernels. Dissimilar samples of the mean
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Algorithm 1. Multi-Objective Training
Require: P positive dataset, N negative dataset, and {E, dmin, fmax}
Ensure: Pool of Multi-Objective Cascades CMOO

1: k ← 1
2: Pk ← P , p ← # positives in P
3: while k ≤ N do
4: Ck ← TrainCascade(Pk, N,E, dmin, fmax)
5: n ← # of stages in (Ck)
6: s, idx ← ComputeOutputScores(Ck, Pk)
7: oidx ← SortIndexIncreassingOrder(s, idx)
8: Update p: p ← ((dmin)

n · p)
9: Create Pnew as the first p elements of Pk sorted by oidx
10: Save Ck in CMOO

11: k ← k + 1
12: Pk = Pnew

13: return CMOO

class, called outliers, which are projected far away from those kernels, can be
considered as negatives. The result of this kind of classifiers is a not so high ratio
of CD, but a very low ratio of FA. Curve ROC2 in fig. 2(b) designs this kind
of behavior. When P is heterogeneous, Adaboost has a hard work grouping the
positive samples on the classification space, generating largest boundaries. This
results on a highest ratio of CD and, at the same time, an increase of the FA.
Curve ROC1 in fig. 2(b) illustrate this behavior compared to ROC2.

Algorithm 1 trains a pool of N Cascades of Boosted Classifiers: CMOO =
{C1, ...,CN }. Function TrainCascade() on line 4 follows the guidelines of [12]
to train all Ci. It uses as input argument positive datasets Pk with growing
heterogeneity as i goes from 1 to N . Therefore, CN will have wider boundaries
on the classification space than C1. It can be done by removing from Pk the
positive samples placed at the center of the kernels on the classification space
by Ck. Functions ComputeOutputScores() and SortIndexIncreassingOrder()
obtain and sort the scores of all the samples in Pk using Ck, placing the highest
scores at the end of the list oidx. Variable p, which represents the number of
positive samples, is decreased on line 8 by a factor or dnmin (dmin < 1). Then,
Pnew dataset is created by the first p samples of list oidx, and will be the next
positive dataset to train Ck+1.

3 Experiments and Results

Training and Test Datasets. The positive dataset P employed on the training
procedure is composed of rectangular images containing a person from video
sequences captured at a street corner, as shown fig. 1(a). 6,726 positive samples
were obtained by flipping the patches on the vertical axis.

The negative set used to train the classifiers is the PASCALVOC 2012 dataset
composed of 7,166 images without persons. The INRIA person negative set
(1,570 images) is also employed but for the construction of the ROC curves
and the definition of the Pareto Front.

The pedestrian detection systems are tested on the GSDatasets, which con-
sist of view of a street corner capturing pedestrians while crossing the street.
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Fig. 3. The figure shows ROC curves from C1 and C5, and the operational points qi,1
for cascade C1 and qi,5 for cascade C5.

The datasets are public and available at http://pablonegri.free.fr/Downloads/
GSdataset-PANKit.htm. They consist on two sequences of two minutes where
each pedestrian on the sight has its bounding box and a unique label. This sets
can be employed to test detection and tracking systems on outdoors sequences.
In sequence GS06, there are five persons crossing the street, generating 1,157
position to detect for the classifier. Sequence GS54 has 3,644 positive positions
generated by 16 persons which cross the street. The remaining pedestrians of
both sequences are not evaluated by the detection system.

The training was performed using a 3 fold-cross validation technique. The
total positive base P is divided randomly in three datasets {P1,P2,P3}. Each
training of CMOO employs two of those sets to construct the positive dataset
P . The remaining set, it can be denominated as V , is employed to compute the
ROC curve in order to characterize the behavior of CMOO.

For each CMOO were trained N = 5 Ci following algorithm 1. This value of N
was chosen based on the number of positive samples that were discarded at each
iteration. It depends on variable dmin that is equals to 0.995 in our experiments.
For N = 5, the remaining number of positive samples is enough to train the last
cascade C5: the number of positives training C1 is 4,484, and 3,253 for C5. The
variable fmax has a value of 0.4.

A modification to the TrainCascade() function of alg. 1 was introduced to
train C. The regular version uses the same positive dataset on the Adaboost
algorithm for training and validating the strong classifier. This set changes at
each stage of the Cascade training. On the modified version fix, the positive
dataset is split on two sets for the training and the validation. The validation
set is the same (is ’fixed’) during all the training of C.

The architecture of regular C1 has 12 stages Ci, while the fixed Cfx
1 has 20

stages. The stage number of both versions of the Cascades increase within the
training of the pool, because the heterogeneity of the positive datasets.

Figure 3 draws ROC curves obtained from a set CMOO using dataset V (2,242
positive samples) and 100,000 negative patches from INRIA negative person set.

http://pablonegri.free.fr/Downloads/GSdataset-PANKit.htm
http://pablonegri.free.fr/Downloads/GSdataset-PANKit.htm


782 P. Negri

This figure shows the ROC of C1 and C5. Pareto Front can be estimated choos-
ing the operational points of one ROC which locally dominates the operational
points of the other ROC, maximizing the DC and minimizing FA.

Implementation of the MOO System. This section proposes a methodology
to select the Pareto Optimal Solution depending on the dynamic of the scene.

From fig. 3 the Pareto Front will be composed of the non-dominanted oper-
ational points from both classifiers C1 and C5. When the dynamic of the scene
changes, it is possible to chose another operational point of the same Ci or
change for the other classifier.

To simplify the operation, two operational points of the Pareto Front are
applied depending on the state of the traffic light. Because the objective is to
increase the detection of pedestrians walking in front of the stopped vehicles the
classifier should have wide boundaries on the classification space, and high CD
rate. However, the continual use of this operational point on the Pareto Front,
which also has high FA rate, will droops the performance of the detection system.
When pedestrians stop crossing the street because the vehicles are circulating,
the Pareto Solution can change for another operational point which belong to a
classifier with narrow boundaries on the classification space. As the dynamic of
the vehicles is governed by their traffic light, the change of the operational point
on the Pareto Front will also be determined by their states:
- Green Traffic Light: operational point qgreen → C1{qn,1} to minimize FA.
- Red Traffic Light: operational point qred → C5{qn,5} or C5{qn−1,5},
or C5{qn−2,5}, to maximize DC.

The performance is evaluated using: CD as the number of pedestrians cor-
rectly detected, the Miss Rate as the percentage of non-detected pedestrians,
FA the total amount of false alarms on the set, and the Average Precision Ratio
(AP) obtained from the Precision-Recall curve at the choose operational point.

Table 1 presents the results of the MOO system compared to the regular Cas-
cade of Boosted Classifiers C, and the ’fixed’ version Cfx. The results depicted
on table 1 of both versions of TrainCascade() function, exhibit that the ’fixed’
version has a better performance, and the implementation of the MOO system
shows a better performance than the classic implementation.

Table 1. Detection results using different systems.

GS06 (1,157 positives) GS54 (3,644 positives)
Detector CD Miss Rate FA AP CD Miss Rate FA AP

(%) (%)
C 790 31.7 160 67.8 2194 39.8 408 58.1

Cfx 836 27.7 354 70.5 2468 32.2 749 64.9

CMOO{qn,1, qn,5} 805 30.4 238 67.7 2308 36.6 471 60.5
CMOO{qn,1, qn−1,5} 812 29.8 323 68.1 2345 35.6 611 60.9
CMOO{qn,1, qn−2,5} 817 29.3 474 68.0 2389 34.4 775 61.4

Cfx
MOO{qn,1, qn,5} 852 26.3 460 71.7 2554 29.9 842 67.1

Cfx
MOO{qn,1, qn−1,5} 854 26.1 523 71.6 2570 29.4 907 67.3

Cfx
MOO{qn,1, qn−2,5} 854 26.1 562 71.5 2581 29.1 956 67.4
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As expected, MOO systems maximize the number of CD, minimizing the
Miss Rate, while the number of FA increase within acceptable values. For exam-
ple, Cfx

MOO{qn,1, qn−1,5} system increases the number of CD by 18 samples on the
GS06 dataset, and the FAs grows about 100, meaning one FA each 10 frames.
The advantage of the MOO system is better appreciated on the GS54 dataset,
while the FAs increase, again, by 100 samples, the system detect almost one hun-
dred additional pedestrians, representing 2.5 % in comparison with the classic
implementation. For detection systems, a greater number of CD is more signif-
icant as shown the highest values of AP. Thus, this combination can be choose
as the best for this application.

4 Conclusions

This article proposes a Multi-Objective Optimization System applied to pedes-
trian detection on outdoor scenes complexes with cluttered backgrounds. A pool
of classifiers is trained using different combination of positives datasets. Depend-
ing on the dynamic of the scene, different operational points corresponding to
locally non-dominated solutions of the Pareto Front are applied to improve the
system performance. The perspectives will be oriented to develop a methodology
to optimize the choose of the positive samples to train the pool of classifiers.
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