
Production Process Monitoring Using
Model-Driven Event Processing Networks

Falko Koetter(B) and Tobias Krause

University of Stuttgart IAT, Nobelstr. 12, 70569 Stuttgart, Germany
{falko.koetter,tobias.krause}@iao.fraunhofer.de

Abstract. Economic realities make flexibility in production processes a
necessity. Small batch production necessitates reuse of machines within
different production processes. Monitoring in such production environ-
ments must adapt to process changes without impacting production
machines and software. In this work we propose a novel method for pro-
duction monitoring using event processing networks, separating machine
and production processes, thus increasing flexibility and minimizing con-
figuration efforts.

Keywords: Business process management · Process monitoring · Com-
plex event processing · Event processing networks · Model-driven archi-
tecture

1 Introduction

The term Industry 4.0 describes the increasing use of information technology,
networking, smart objects, services and data in manufacturing [20]. Akin to
the trend of business process management, production processes become IT-
supported. In a production process, products are manufactured according to
given orders using production resources and materials [5].

One part of Industry 4.0 is the monitoring and optimization of production
processes with respect to cost, quality and time [14]. Production processes
are stricter organized in single activities, while business processes provide more
degrees of freedom during execution. The reason for this is that machines used
in production need to be fine-tuned to work seamlessly together and provide a
high throughput and quality, especially in assembly-line production. However,
due to trends like just in time production and mass customization, production
in smaller batches becomes a necessity and thus, more flexibility in production
processes is needed [20, p. 90].

According to [20, p. 93] the majority of manufacturing companies note a lack
of accurate and up-to-date process information, which makes manual interven-
tion in production processes necessary. However, 72 % of companies estimate a
high or very high potential to avoid these interventions if current process infor-
mation is available via monitoring.

c© Springer International Publishing Switzerland 2015
M.A. Jeusfeld and K. Karlapalem (Eds.): ER 2015 Workshops, LNCS 9382, pp. 89–98, 2015.
DOI: 10.1007/978-3-319-25747-1 9

90 F. Koetter and T. Krause

In this work we describe a novel approach to monitoring of small-batch pro-
duction processes. Extending an approach for model-driven process monitor-
ing, we present a method to model, deploy and link multiple process monitor-
ing instances in an event processing network (EPN). We apply this method to
small-batch production processes, separating the machine, machine process and
production process levels to facilitate easy rearrangement of machines for moni-
toring different batches with batch specific processes, goals and fault tolerances.

The remainder of this work is structured as follows. Section 2 gives an
overview of related work. Section 3 describes the example scenario. Section 4
gives an overview of the model-driven process monitoring approach used in this
work. Section 5 describes how EPNs can be utilized to monitor and reconfig-
ure production processes. In Sect. 6 the prototype and evaluation are described.
Finally, Sect. 7 gives a conclusion and outlines future work.

2 Related Work

In this section we give an overview of relevant work in the fields of production
monitoring, distributed process monitoring and EPNs.

Monitoring of production processes measures Key Performance Indicators
(KPI) like timeliness, workload, machine productivity, availability, reaction time,
inventory and stock levels as well as product and process quality [8, p. 13ff].
When monitoring production processes, existing approaches differ in their scope,
purpose and position within the process. To monitor single machines, so-called
machine-integrated monitoring systems are used. An example is the monitor-
ing and enforcement of thresholds to prevent damage to parts currently being
worked on [23, p. 331ff]. Machine-integrated monitoring systems can use a wide
array of sensors to measure mechanical, electrical, thermal, magnetic or chemical
parameters [9, p. 387]. If the monitoring tool is integrated in the control, existing
values of the controls like position of spindles and speed can be monitored, for
example to prevent self-damaging of machines [23, p. 376ff]. On a larger scope,
Manufacturing Execution Systems (MES) connect business management and
production processes [8, p. 7]. MES provide overarching functionality, e.g. prod-
uct tracking, monitoring data gathering, analysis and process monitoring [13].
MES are used in assembly line and mass production, but lack the flexibility to
be used for small batch production [19, p. 157].

Niche solutions exist for specialized processes. For example, [18] describes a
monitoring software for production logistics processes. Maintenance of machines
can be costly if it leads to extended downtime, which makes monitoring and
proactively detecting maintenance important [22]. Maintaining machines before
an outage would occur is called predictive maintenance [17, p. 4-6]. Monitoring
solutions to predict necessary maintenance can take into account cost and other
factors [4]. Overall, the state of the art in production monitoring shows sophisti-
cated solutions at the machine level and for large-scale processes. However, these
solutions lack the flexibility needed in small batch production.

Complex Event Processing (CEP) is a technology for processing large
amounts of events in near real-time [15]. For example, the CEP Engine Esper

Production Process Monitoring Using Model-Driven 91

uses an event processing language (EPL) to filter, aggregate, change and gener-
ate streams of events [1]. An event processing network (EPN) consists of multiple
so-called event processing agents (EPA) processing events in unison, consuming
and producing them [15]. Such an EPN can be used for distributed event process-
ing, to handle large amounts of events and to separate concerns and abstraction
levels [16]. [16] shows how CEP can be used to monitor production processes.
[2] shows a case study of using CEP to control and monitor a modular manu-
facturing line. However, the rearrangement for different batches or products is
not tackled in both approaches. [21] shows an approach to connect a process
engine with a CEP engine to monitor and adapt business processes using graph-
ically modeled EPL rules. This approach however is limited to a single process
engine and allows reuse only of EPL rules, not EPAs. [6] presents an approach
to use event data for process control in a process engine. In comparison to our
approach, a high degree of manual implementation is necessary.

3 Motivational Example

Consider a metal-working company producing parts which are used in other
products, for example in the IT, automotive and furniture industries. Due to
raising demands in flexibility [20, p. 90], most parts are produced in small batches
using multiple machines as part of an individualized process for each part. The
CNC (Computerized Mechanical Control) machines [12] are programmable to
produce the desired part. Programs can be exchanged relatively quickly, but the
overall process involving multiple machines is more complex to change. For a
simplified process, we introduce three machines.

Punch

punching1

ID

part_id

TS

timestamp

ID

step_id

Instructions
complete?

Quality Control

punching2

ID

part_id

TS

timestamp

D

envelope_set_value

D

envelope_is_value

D

envelope_deviation

no

yes

Fig. 1. Example process and goal model for punching machine.

Figure 1 shows the process model of the punching machine. Holes are punched
into a metal part until all punching instructions are executed. Afterwards, a

92 F. Koetter and T. Krause

machine-integrated quality control step takes place, comparing the shape of the
part to a set reference using the envelope method [11]. Attached to the process
model is a goal model in the ProgoalML notation. Measuring points (e.g. punch-
ing1) are attached to both activities, indicating that a measurement of moni-
toring data should take place. Inside the measuring points, the parameters to
be measured are given. For example, in punching2 attached to Quality Control
the id of the current part, the timestamp of the measurement and the expected
(set) and actual (is) value of the metal shape from the envelope method are mea-
sured. From both values, a KPI is calculated, indicating the deviation in percent
according to the envelope deviation. Note that no concrete goal regarding devi-
ation is given in the machine process. KPIs in ProgoalML are defined using a
formula editor, providing mathematical operations, aggregations, etc. [10].

Quality Control

bending1

ID

part_id

TS

timestamp

D

bend_deviation

B

correction_necessary

Correction
necessary?

Correction

bending2

ID

part_id

TS

timestamp

D

bend_deviation

B

part_ok

Bend

D

final_bend_deviation

part_is_ok

B

no

yes

Fig. 2. Example process and goal model for bending machine.

Figure 2 shows the process and goal model of the bending machine. A flat
metal part is bent according to specifications to attain a desired three-
dimensional shape. After bending quality control takes place, the deviation of
the bent part from the ideal shape is measured. If necessary, a correction step is
used to fix minor deviations in the bent shape [3]. In the goal model, a KPI mea-
sures the final bend deviation after correction and the goal part is ok is fulfilled
if the part is without deviation after the correction step.

Figure 3 shows the process and goal model of the painting machine. A metal
part is painted by dipping or spraying paint, after which the part needs to dry
before the paint job is considered finished. The goal model only monitors paint
level and stipulates that the paint level must be sufficient (i.e. above 5 %).

Using these three machines, a variety of metal parts can be created. Consider
for example a metal part of a head gasket in a car. This part needs to be punched
and bent precisely, as it is critical to sealing the cylinders. Not considering rust

Production Process Monitoring Using Model-Driven 93

Paint

painting1

ID

part_id

TS

timestamp

D

paint_level_percentage

Drying Time

sufficient_paint_left

B

Fig. 3. Example process and goal model for painting machine.

protection, the part does not need to be painted, as it is not visible from the
outside. In comparison, consider a metal part that is going to be the faceplate
for an electronic device. This faceplate needs to be painted, as it is visible to the
customer. The deviation in punching and bending is comparably relaxed. Both
parts can be created with the three machines, but the overall processes have
different steps and quality criteria.

4 Model-Driven Process Monitoring

In previous work we introduced aPro, a model-driven architecture for business
process monitoring [10]. Figure 4 gives an overview of the most important com-
ponents of the approach.

To monitor a process, first, a process model is graphically modeled and aug-
mented with process goals, metrics and KPIs as shown in the motivational exam-
ple. The process and monitoring model are stored in a ProGoalML file. This file
is used as basis for automatic model transformation, which serves to create tech-
nical components from the conceptual model. A monitoring container is created,
containing a dashboard and CEP engine, both configured with event process-
ing rules detecting process instances from measurement patterns and calculating
KPIs and goals as well as a dashboard configuration (VisML [7]). This monitor-
ing container receives monitoring data via monitoring web services. To support
a wide array of executing systems, ranging from process engines to legacy appli-
cations to machines, monitoring stubs are used. Monitoring stubs are integrated
with the executing systems and send monitoring data to monitoring web ser-
vices. To achieve this, events can be sent from the application, triggered to be
sent by an application, sent by an external component monitoring the execut-
ing systems status etc. Some monitoring stubs can be automatically generated
(e.g. shell scripts and Java classes), others need to be manually implemented.
Note that monitoring stub integration is the only part of aPro which is not fully
automated.

94 F. Koetter and T. Krause

Event Flow

Process and
Goal Model
(ProGoalML)

Monitoring Container

Model
Transformation

Dashboard

CEP Engine Event Rules

VisML

Executing System(s)

Monitoring
Stubs

Monitoring
Web Services

Monitoring
Container

Virtual
Monitoring Stubs

Implementation
Details

Subprocess
Configuration

Implementation Flow

Fig. 4. Overview of model-driven process monitoring (focus of this work highlighted
in grey)

During operation, events are generated by the monitoring stubs and sent
to the monitoring container. The CEP engine processes these events with rules
generated according to the conceptual model, assembling process instances from
single events, calculating KPIs and goals and aggregating data. The results are
visualized in a dashboard. While this model-driven approach allows to setup a
process monitoring infrastructure without component configuration supporting
arbitrary systems executing the process, the degree of abstraction is limited.
aPro separates the conceptual monitoring model from the implementation in
event processing rules. However, all monitoring events are processed and aggre-
gated in the same CEP engine, regardless of their role within the monitored
process, making a new model transformation and redeployment of the monitor-
ing container necessary, whenever a change in the monitoring model is made.

5 Event Processing Networks

Considering the motivational example, the three machine processes are sub-
processes of the overall production processes. To allow monitoring of these over-
arching processes, either the machine process monitoring has to be remodeled
on the production process level or it has to be reused. While reusing measuring
points via copy and paste recreates the behaviour on a model level, the mon-
itoring stubs of the machine processes still need to be adapted during model
transformation.

We propose using an EPN to facilitate hierarchical monitoring of machine
level subprocesses and production level main processes. To enable the building
of model-driven EPNs, a relationship between different monitoring containers
acting as event processing agents need to be defined. Expanding on the monitor-
ing stub concept, we propose using a monitoring container itself as a monitoring

Production Process Monitoring Using Model-Driven 95

stub for another, higher-level monitoring container. Thus, a subset of result data
can be reused as a complex event in a downstream monitoring container.

Fig. 5. Event processing network of production process scenario

Figure 5 shows the proposed concept applied to the production process sce-
nario. On the machine level, production machines are instrumented with mo-
nitoring stubs gathering data as indicated in Sect. 3. On the machine process
level, for each machine, a monitoring container receives the gathered data and
processes it according to the goal model of the respective machine process. These
monitoring containers monitor the machine processes, calculating KPIs and goals
for each instance. For each process instance, they send a complex event to the
monitoring container on the production process level, which monitors the produc-
tion process. As indicated in Fig. 5, two configurations of the EPN are possible,
depending on which production process is currently running.

Machine process level monitoring containers serve as virtual monitoring stubs
for both production processes. Consider the production process for the faceplate
in Fig. 6. This process uses all three machines to produce faceplates. Quality
criteria specific to the use case have to be met by a part, otherwise it is scrapped
before painting. These criteria are determined using data from the machine
processes. Also, both completed and scrapped parts per hour are measured.

Three of the four measuring points of the faceplate production process repre-
sent the machine processes. In order to measure at these measuring points, the
monitoring containers of the machine processes need to act as virtual monitor-
ing stubs. As shown in the highlighted part of Fig. 4, a subprocess configuration
is used to determine the virtual monitoring stubs. This configuration indicates
which virtual monitoring stubs are to be created and maps data of the monitored
process instance to the input of the monitoring stubs.

96 F. Koetter and T. Krause

Punching

punch_mp

ID

part_id

TS

timestamp

D

punching_deviation

Bending
Part ok?

Scrap Part

scrap_mp

ID

part_id

TS

timestamp

Painting

paint_mp

ID

part_id

TS

timestamp

bend_mp

ID

part_id

TS

timestamp

B

bending_ok

D

final_deviation

D

scrapped_last_day

B

finished_last_day

B

quality_criteria

part_is_ok

B

N
o

Yes

Fig. 6. Process and goal model for faceplate production

1 <forwarding>
2 <s e rverUr l>http : // l o c a l h o s t :8080/ Facep la te/</serverUr l>
3 <measuringPoint>punch mp</measuringPoint>
4 <mappings>
5 <mapping>
6 <element>enve l ope dev ia t i on </element>
7 <parameter>punching dev iat ion </parameter>
8 </mapping>
9 <mapping>

10 <element>par t id </element>
11 <parameter>par t id </parameter>
12 </mapping>
13 </mappings>
14 </forwarding>

An example subprocess configuration is listed above, creating a virtual mon-
itoring stub for the measuring point punch mp withing the punching process.
serverUrl and measuringPoint elements are used to address the monitoring web
service. Mappings determine which elements of the punching process goal model
are mapped to which parameters of the punching mp measuring point. Note that
multiple virtual monitoring stubs can be contained within the configuration.

Using subprocess mappings, the measuring points of the faceplate process
can be provided with events. The fourth measuring point, scrap mp corresponds
to no machine and needs to be triggered whenever a part is scrapped. This can
be done automatically or manually using an automatically generated webform
monitoring stub [10].

If instead of faceplates different parts shall be produced, another production
process has to be used, for which individual steps, quality criteria, KPIs etc.
can be modeled. Using the subprocess mappings, the machine processes and
monitoring stubs can be reused without change. Thus, the production process
level is flexible while avoiding unnecessary, costly changes on the machine level.

Production Process Monitoring Using Model-Driven 97

6 Prototype and Evaluation

We implemented subprocess mapping and virtual monitoring stubs within the
aPro prototype described in [10]. The prototype provides web-based modeling
of process and goal models as well as model transformation and monitoring
container deployment. We used the prototype to model all five processes, deploy
them and create the EPN between monitoring containers.

Fig. 7. Live dashboard of faceplate process with synthetic data

Figure 7 shows the generated dashboard of the faceplate production process.
We evaluated the EPN using synthetic test data generators posing as monitoring
stubs for the machine processes. We found the EPN to work as described, pass-
ing data from machine process monitoring containers to production monitoring
containers. Switching production processes was achieved by changing the sub-
process configuration files. While proving the feasibility of the concept, we have
not yet evaluated the prototype within a real production process environment.
We are currently searching for industry partners to perform such trials.

7 Conclusion and Outlook

In this work we described a method for production process monitoring using a
model-driven monitoring architecture and connecting multiple monitoring con-
tainers to form an event processing network. This approach effectively separates
sub and main processes and makes reuse and reconfiguration feasible, minimiz-
ing the need for change on lower levels when high level processes change. We
evaluated this approach with a prototype using the example scenarios.

In future work, we would like to apply the work in a real-life production
environment. Additionally, we would like to further investigate the formation
of EPNs between different processes, in particular more user-friendly ways to
visualize and change an EPN.

98 F. Koetter and T. Krause

References

1. Esper EPL Reference. http://esper.codehaus.org/esper-4.11.0/doc/reference/
en-US/html/index.html

2. Ahmad, W.: Formal modelling of complex event processing and its application to
a manufacturing line (2012)

3. Boettger, U.: Messtechnik mit kurzem draht zur biegemaschine. Indus-
trieanzeiger. http://www.industrieanzeiger.de/home/-/article/12503/28869833/
Messtechnik-mit-kurzem-Draht-zur-Biegemaschine/

4. Denkena, B., Bluemel, P., Kroening, S., Roebbing, J.: Condition based maintenance
planning of highly productive machine tools. Prod. Eng. 6(3), 277–285 (2012)

5. Ingenieure, V.D.: Vdi-richtlinie: Vdi 5600 blatt 1 fertigungsmanagementsysteme
(2013)

6. Janiesch, C., Matzner, M., Mller, O.: Beyond process monitoring: a proof-of-
concept of event-driven business activity management. Bus. Process Manage. J.
18(4), 625–643 (2012)

7. Kintz, M.: A semantic dashboard description language for a process-oriented dash-
board design methodology. In: 2nd MODIQUITOUS 2012 (2012)

8. Kletti, J.: Manufacturing Execution Systems-MES. Springer, Berlin (2007)
9. Klocke, F., König, W.: Fertigungsverfahren 1: Drehen, Fräsen, Bohren, vol. 1.

Springer-Verlag, Heidelberg (2008)
10. Koetter, F., Kochanowski, M.: A model-driven approach for event-based busi-

ness process monitoring. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012.
LNBIP, vol. 132, pp. 378–389. Springer, Heidelberg (2013)

11. Kopka, T., Schwer, A., Faulhaber, W.: Sensoren sichern die stabilitaet im
stanzprozess. BLECH InForm 5, 48–51 (2004)

12. Koren, Y.: Computer Control of Manufacturing Systems. McGraw-Hill, New York
(1983)

13. Louis, P.: Manufacturing Execution Systems. Springer, Berlin (2008)
14. Lucke, D.M.: Ad hoc informationsbeschaffung unter einsatz kontextbezogener sys-

teme in der variantenreichen serienfertigung (2014)
15. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-

ing in Distributed Enterprise Systems. Addison-Wesley, Boston (2001)
16. Luckham, D.C., Frasca, B.: Complex event processing in distributed systems. Tech-

nical report CSL-TR-98-754. Stanford University (1998)
17. Mobley, R.K.: An Introduction to Predictive Maintenance. Butterworth-

Heinemann, Boston (2002)
18. Münzberg, B., Schmidt, M., Beck, S., Nyhuis, P.: Model based logistic monitoring

for supply and assembly processes. Prod. Eng. 6(4–5), 449–458 (2012)
19. Pfeifer, T., Schmitt, R.: Autonome Produktionszellen: Komplexe Produktion-

sprozesse Flexibel Automatisieren. VDI-Buch. Springer, Heidelberg (2006)
20. Spath, D., Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., Schlund, S.:

Produktionsarbeit der Zukunft-Industrie 4.0. Fraunhofer Verlag (2013)
21. Vidačković, K., Weiner, N., Kett, H., Renner, T.: Towards business-oriented mon-

itoring and adaptation of distributed service-based applications from a process
owner’s viewpoint. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/Service-
Wave 2009. LNCS, vol. 6275, pp. 385–394. Springer, Heidelberg (2010)

22. Weck, M., Brecher, C.: Werkzeugmaschinen: Maschinenarten und Anwendungs-
bereiche. VDI-Buch. Springer, Heidelberg (2005)

23. Weck, M., Brecher, C.: Prozessüberwachung, prozessregelung, diagnose und
instandhaltungsmaßnahmen. Werkzeugmaschinen 3: Mechatronische Systeme,
Vorschubantriebe, Prozessdiagnose, pp. 267–404 (2006)

http://esper.codehaus.org/esper-4.11.0/doc/reference/en-US/html/index.html
http://esper.codehaus.org/esper-4.11.0/doc/reference/en-US/html/index.html
http://www.industrieanzeiger.de/home/-/article/12503/28869833/Messtechnik-mit-kurzem-Draht-zur-Biegemaschine/
http://www.industrieanzeiger.de/home/-/article/12503/28869833/Messtechnik-mit-kurzem-Draht-zur-Biegemaschine/

	Production Process Monitoring Using Model-Driven Event Processing Networks
	1 Introduction
	2 Related Work
	3 Motivational Example
	4 Model-Driven Process Monitoring
	5 Event Processing Networks
	6 Prototype and Evaluation
	7 Conclusion and Outlook
	References

