
Integration and Exchangeability of External
Security-Critical Web Services
in a Model-Driven Approach

Marian Borek(B), Kurt Stenzel, Kuzman Katkalov, and Wolfgang Reif

Department of Software Engineering, University of Augsburg, Augsburg, Germany
{borek,stenzel,katkalov,reif}@informatik.uni-augsburg.de

Abstract. Model-driven approaches facilitate the development of appli-
cations by introducing domain-specific abstractions. Our model-driven
approach called SecureMDD supports the domain of security-critical
applications that use web services. Because many applications use exter-
nal web services (i.e. services developed and provided by someone else),
the integration of such web services is an important task of a model-
driven approach. In this paper we present an approach to integrate and
exchange external developed web services that use standard or non-
standard cryptographic protocols, in security-critical applications. All
necessary information is defined in an abstract way in the application
model, which means that no manual changes of the generated code are
necessary. We also show how security properties for the whole system
including external web services can be defined and proved. For demon-
stration we use a web shop case study that integrates an external pay-
ment service.

1 Introduction

The use of external web services is essential for many applications. For exam-
ple, a web shop needs to communicate with different external services, such as
authentication and authorization services, different payment services or supply
chain management services. Therefore, a model-driven approach for developing
such applications needs to support the integration of external web services. One
way to invoke external web services from a modeled application is to extend the
generated code manually. However, our model-driven approach generates from
a UML application model runnable code as well as a formal specification for
verification of security properties for that application. The manual extension of
the generated code would introduce a gap between the formal model and the
runnable code, so that the verified properties do not hold necessarily for the
running code. Another way is to integrate the external web service into the
application model and generate everything from that model. Thereby, every-
thing that is application-specific has to be modeled (e.g., message conversion or
security mechanism) in order to be considered by formal verification. Further-
more, it is often necessary to be able to exchange those services against cheaper,

c© Springer International Publishing Switzerland 2015
M.A. Jeusfeld and K. Karlapalem (Eds.): ER 2015 Workshops, LNCS 9382, pp. 63–73, 2015.
DOI: 10.1007/978-3-319-25747-1 7



64 M. Borek et al.

more popular or more efficient ones. The challenge is to make the replacement
of external services very easy and minimize verification effort.

Another benefit of the integration of external web services in a model-driven
approach is the possibility to extend the approach by application-specific func-
tionality without changing the transformations for code and formal specifica-
tions. With this approach also libraries and legacy systems can be integrated by
being wrapped inside a web service.

This paper focuses on the integration and exchangeability of external web
services in a model-driven approach for security-critical applications by consid-
ering different cryptographic mechanisms and discusses the verification of the
entire application including the communication with external services.

This paper is structured as follows. Section 2 gives an overview of our model-
driven approach and Sect. 3 describes the integration and exchangeability of web
services. Section 4 considers assurances and the verification of security properties
of the entire application and Sect. 5 explains how external services that use
cryptography mechanisms can be integrated and exchanged. Section 6 discusses
related work and Sect. 7 concludes this paper.

2 The SecureMDD Approach

SecureMDD is a model-driven approach to develop secure applications. From
a UML application model using a predefined UML profile and a platform-
independent and domain-specific language (MEL [6,15]), runnable code for
different platforms as well as formal specifications are generated (see Fig. 1).
One formal specification is used for interactive verification with KIV [4] (see
[16,17]) and the other to find vulnerabilities with the model-checker platform
AVANTSSAR [1] (see [7]). Additionally, platform-specific models are generated
for incremental transformations and better documentation. The approach sup-
ports smart cards (implemented in Java Card [21]), user devices like secure

Fig. 1. SecureMDD approach



Integration and Exchangeability of ExternalSecurity-Critical Web Services 65

terminals or home PCs (implemented in Java), web services (also Java) and
external web services. The static view of an application is modeled with UML
class diagrams and deployment diagrams. The dynamic behavior of system com-
ponents is modeled in UML activity diagrams with our platform-independent
and domain-specific language MEL. Application-specific security properties are
expressed with OCL in class diagrams (see [8]) and test cases that generate code
for testing the generated application are modeled in UML sequence and activity
diagrams (see [12]). The approach is fully tool-supported and all model trans-
formations are implemented. For further information about our approach visit
the SecureMDD website1.

3 Modeling Communication with External Web Services

To communicate with a web service, the client which invokes the service needs
to know its public interface. For SOAP web services this interface is defined by
a WSDL document, which provides the offered web service functionality, and
especially the expected messages in a machine-readable description. Our app-
roach takes a WSDL document and transforms it automatically into an external
service interface represented by a UML class diagram that is imported as a
module into the UML application model (see Fig. 1). As a result, the external
web service and all message data types are included in the application model as
classes with operations, attributes and stereotypes. The model abstracts from
information like the service address, namespaces and coding algorithm because
they are not relevant for modeling an application in a platform-independent way
and it is also not relevant for verification of the supported security properties.
Because of this abstraction the resulting meta-model for external web services
remains simple and it can be used for other web service specification languages
like WADL. But the omitted information is available in the generated code as
stubs that are generated automatically from the WSDL specification. We use
WSDL2Java from Apache Axis22 with JiBX3 as our stubs-generator to bind
arbitrary class structures on XML documents. That is important because the
data types from external web services differ from the predefined data types in
our approach. The transformation from WSDL to UML is done by hyperModel4

that uses generic XML schema documents as input.
The communication with external web services is mainly described in UML

activity diagrams using our platform-independent and domain-specific language
called MEL. The external web service is represented by a UML class with the
stereotype �ExternalService� and the external web methods are represented
by operations of that class and UML call behavior actions without modeling the
behavior. The invocation of a web method is modeled by UML send signal actions
and accept event actions that are connected with the UML call behavior actions.
1 www.isse.de/securemdd.
2 axis.apache.org/axis2.
3 jibx.sourceforge.net.
4 xmlmodeling.com/hypermodel/.

www.isse.de/securemdd


66 M. Borek et al.

Fig. 2. Invocation of external web service

For conversion of the message data types between the modeled application and
the external service, conversion methods have to be defined. This is done by sub
activities using MEL. They have to be invoked before sending a message to an
external web service and after receiving a message from the external web service.

Figure 2 shows how a modeled web service (WebShop) invokes the exter-
nal service Authorize.Net for payment issues. Therefore the conversion methods
c1 and c2 are used. c1 converts the data from the modeled application into the
required message structure of Authorize.Net and c2 converts the result of Autho-
rize.Net back. That means the payload pay from type Pay and result from type
Boolean belong to the modeled application and CreateCustomerProfileTransac-
tionSoapIn and CreateCustomerProfileTransactionSoapOut are data types used
by Authorize.Net.

Figure 3 shows the definition of the conversion method c1 that converts the
pay object into CreateCustomerProfileTransaction. Some classes can be mapped

Fig. 3. Convert method c1 Fig. 4. Converted classes



Integration and Exchangeability of ExternalSecurity-Critical Web Services 67

one-to-one (e.g., Credentials and MerchantAuthenticationType) other classes
consist of merged information from different classes (e.g., ProfileTransAuthCap-
tureType contains attributes from the Pay and Order classes) and if the output
class has more attributes than the input class, the missing information has to
emerge from the existing one by duplication or transformation (e.g., Profile-
TransAuthCaptureType needs a customerProfileId and a customerPaymentPro-
fileId that can be both extracted from customerID) (see Fig. 4). The conversion
in Fig. 3 is chosen minimal but the output class CreateCustomerProfileTransac-
tion has roughly 100 optional attributes and if all attributes are needed this leads
to a very large and error-prone converting method. But because this method
must be verified, mistakes that violate specified security properties will be found
in contrast to a manually programmed conversion method.

Should the external payment service Authorize.Net in Fig. 2 be replaced with
a different one, the protocol diagrams have to be changed and the verification of
the entire application would need to be redone. To avoid this, the security-critical
protocols and the invocation of an external service can be separated. In order
to achieve that, we support a proxy pattern. Therefore, a proxy interface that is
independent from the external payment service has to be modeled and used in the
protocols described by activity diagrams. For each external service a proxy has to
be modeled that implements this interface and invokes the external service. Then
the external web services can be easily switched by changing the proxy in the
class diagram. In our case study the WebShop has to invoke a PayService proxy
interface. To add a concrete payment service like Authorize.Net, a new proxy
(e.g., Authorize.NetProxy) has to be created that inherits from PayService and
defines the behavior of the pay method and the conversion methods.

4 Security Properties and Assurances

For the verification of certain security properties of the entire application,
assumptions about the external service are necessary. Those are assured by the
service provider. If those assurances are informal, they have to be formalized by
the developer. An example for a security property for our web shop is that “only
goods that are paid for will be shipped”. Obviously, some information about the
external payment service method are necessary, e.g., that “if the return value
is positive, then the payment was or will be successful”. This assumption is
specified for the proxy. It represents an abstraction of the external service and
manages the conversion between different messages and the invocation of the
external service. As a result, the security property is provable independently
from the external web service.

Figure 5 shows that a security property uses classes from the client and the
proxy and of course the assumptions specified for the proxy. The assurance of the
external service uses classes from the external service interface that is generated
from the WSDL and the assurance has to be a refinement of the assumption.
The security property for the application, the assurance of the external service
and the assumption about the proxy are formally defined as OCL constraints



68 M. Borek et al.

Fig. 5. Relation between security property, assumption and class diagrams

on classes that represent internal states and messages of the application partic-
ipants. The mapping between messages are handled by the modeled conversion
methods that are automatically transformed to executable Java code, and also
to formal specifications. The relationship between the internal states is only
necessary for verification. Hence, it is not modeled but specified during the ver-
ification. Those two mappings make it possible to show the refinement between
the external service and the proxy. If the external service is a refinement of the
proxy, the security property that holds for the payment method of the proxy
holds also for the payment method of the external service. This way, the exter-
nal services can be exchanged without influence on the security property if the
assurances of the new external service are also an refinement of the assumptions
of the proxy.

5 Cryptography and External Web Services

There are different ways to secure the communication by cryptography for web
services. The simplest and most common way is to use TLS. It is a standard
protocol that is independent from any specific web service. But TLS does not
fulfill all possible requirements, e.g., end-to-end encryption. WS-SecurityPolicy
is a language to describe individual cryptographic protocols for web services. But
the design of application-specific security protocols is error-prone and requires
verification. Additionally, it is likely that different web services have different
WS-SecurityPolicies. This influences the exchangeability of web services. Our
approach supports three different ways to secure the modeled functionality using
cryptography.

1. The first one is to apply TLS on a connection between two system partic-
ipants (e.g., web shop and an external payment service). This is modeled
using a stereotype that is applied on a UML Communication Path between
two UML Nodes in a deployment diagram. Furthermore, the stereotype has
two properties to distinguish between mutual authentication and server side
authentication. From this model runnable code that uses TLS to secure
the communication as well as the key stores and default keys that have to
be exchanged during deployment are generated automatically.



Integration and Exchangeability of ExternalSecurity-Critical Web Services 69

2. The second way uses predefined security data types for encryption, signatures,
macs, hashes, nonces, keys and predefined operations to create those data types.
Because in the past our focus was not exchangeability but ensuring application-
specific security properties, there is no strict separation between application
logic and cryptography. But for exchangeability this approach is unsuitable.

3. Therefore, the third way to secure the modeled functionality using cryptog-
raphy in our approach is WS-SecurityPolicy. It applies cryptography directly
before sending a message and directly after receiving a message but always
independent from application logic. WS-SecurityPolicy is integrated in WSDL
so the policies can be automatically extracted from the WSDL and trans-
formed to an abstracted UML representation using stereotypes, classes and
attributes. Additionally, it abstracts from WS-SecurityPolicy assertions like
AlgorithmSuite because it is not used for the formal verification. A WS-
SecurityPolicy specification of a web service can contain several alternative
policies so the application designer has to choose one that should be used by
the client. This is modeled with an attribute of the client or the proxy class.
Because reusability makes software more clear, maintainable and reduces
errors we mapped WS-SecurityPolicies to the already supported notation that
is used for the generation of formal specifications. Therefore, MEL expressions
whose behavior is equivalent to the policies are injected inside the modeled
activity diagram that invokes the external service. This is done with model-
to-model transformations in QVTo [19] and the resulting model is used with
our existing generator for formal specifications.

Figures 6 and 7 show a part of a protocol with injected policy behavior. In the
original protocol, without the injected policy, the client collects the payment
information (first activity node in Fig. 6) and sends it to the service proxy
that invokes the pay method (last activity node in Fig. 7), which handles the
conversion and invokes the external service. The regarded WS-SecurityPolicy
describes a simple security protocol with symmetric binding and body encryp-
tion. The symmetric binding uses a X.509 certificate as protection token that
is already exchanged and will be addressed in messages by its thumbprint
reference. Hence, the injected part in Fig. 6 (second activity node) generates
a symmetric key, stores it in the key store to be able to decrypt an optional
response, encrypt the symmetric key with the public key from the X.509 cer-
tificate that belongs to the external service, creates the SOAP header includ-
ing the encrypted symmetric key, encrypts the payment information with
the symmetric key and puts it in a SOAP body object. The injected part
in Fig. 7 (second activity node) decrypts the symmetric key from the header
and uses the symmetric key to decrypt the payment information, that is used
to invoke the pay method. The send and receive nodes are modified because
the original modeled messages were exchanged with SOAP messages by the
transformations. This is all done automatically together with the generation
of the required classes. Besides the encrypted symmetric key the real SOAP
header contains also algorithm information that can be omitted and token
references like the thumbprint of the public key that is not necessary if the
formal representation of the external service has only one key pair.



70 M. Borek et al.

Fig. 6. Send HandlePayment with injected policy behavior

Fig. 7. Receive HandlePayment with injected policy behavior

Because the policy behavior is injected before the pay method (which handle the
conversion and invoke the external service) is invoked, replacing external services
that both use WS-SecurityPolicy can be done without additional verification if
the policy of the replaced external service is a subset of the new one. In this
case the new external service ensures the same security properties like the old
external service plus some additional ones. This can be checked very fast and
automatically during the transformation with QVTo.

6 Related Work

There are many works that consider web services in a model-driven approach.
The most related works can be mainly categorized in static web service repre-
sentation, orchestration and security.

Castro et al. [9] describe web services with a UML meta-model that is very
close to the WSDL one. That means that each WSDL element is described by a
stereotype with the same name. They also define transformation rules that gen-
erate a UML model from a WSDL specification. The advantage of this approach
is that the WSDL specification and the generated UML model have the same



Integration and Exchangeability of ExternalSecurity-Critical Web Services 71

information content, but the disadvantage is that the resulted UML model has
the same complexity like the WSDL specification. But the aim of a UML model
is abstraction. [10,22] describe approaches that transform a WSDL specification
in an abstract UML model by predefined rules. This is very close to our WSDL
to UML transformation, but because our abstraction level differs from theirs we
defined modified abstraction rules that fit better to our approach. They do not
describe a model-driven approach that integrates external web services.

Self-Serv [3,5] is a model-driven approach for web service development
with focus on orchestration. It uses state machines and generates BPEL based
service-skeletons with orchestration logic but without modeling or generating
application-specific logic. It does not consider security aspects and it does not
integrate existing services. MDD4SOA [13] also illustrates a model-driven app-
roach for web service orchestration. From a UML model code is generated for
BPEL, WSDL, Java and the formal language Jolie. Security or the integration
of external web services is not considered.

Nakamura et al. [18] enable the model-driven development of WS-Security-
Policy specifications. They describe standard security properties with stereo-
types that are used to select predefined security patterns from a library and apply
them on the model. From that model, configuration documents for IBM Web-
Sphere Application Server (WAS) and WS-SecurityPolicy specifications are gen-
erated. In contrast we generate an abstract model from the WS-SecurityPolicy of
an existing web service that is selected and applied on the client as well as used for
formal verification. Menzel et al. [14] also introduce a model-driven approach that
uses abstract security patterns to generate XML-based configuration documents
for the Apache Rampart-Modul that implements the WS-Security Stack. Jensen
et al. [11] is also a model-driven approach that generates WS-BPEL, WSDL and
WS-SecurityPolicy specifications from a model. The mentioned works do not
integrate external web services and do not transform WS-SecurityPolicies into a
formal representation for verification.

Pironti et al. [20] generate verified client-code, which uses an existing TLS-
Service but they have to write thousand lines of code for the data conversion
manually and without security guarantees. In [2] they explore the verification of
systems with external services but they do not generate code, and verifying the
security of the application is not part of that work.

We are not aware of a model-driven approach that considers the secure inte-
gration and replacement of existing web services in security-critical applications
and verifies security properties about the whole application including the exter-
nal services.

7 Conclusion

The integration and replacement of external security-critical web services
in a model-driven approach is a novel and important topic. It enables the
model-driven development of realistic applications that use existing code, e.g.,
services, legacy systems or libraries. In this paper we have shown how to model



72 M. Borek et al.

the communication with external web services and how runnable code is gen-
erated automatically from the model without the necessity of manual changes.
We have also discussed how security properties for the modeled application that
uses external web services can be verified and how web services that use different
cryptographic protocols are handled. An important issue was also the replace-
ment of external web services with minimal verification effort. As a result, we
were able to develop a simple web shop with our model-driven approach that
integrates the real payment service Authorize.Net. Additionally, we are now able
to extend our approach by application-specific functionality without changing
the transformations for code and formal specifications. This can be done by pro-
viding the functionality as a web service and specifying the behavior with OCL.
In our opinion this work extends model-driven development with verification
significantly and makes the development of real applications that use external
components feasible.

References

1. Armando, A., Arsac, W., Avanesov, T., Barletta, M., Calvi, A., Cappai, A.,
Carbone, R., Chevalier, Y., Compagna, L., Cuéllar, J., Erzse, G., Frau, S., Minea,
M., Mödersheim, S., von Oheimb, D., Pellegrino, G., Ponta, S.E., Rocchetto, M.,
Rusinowitch, M., Torabi Dashti, M., Turuani, M., Viganò, L.: The AVANTSSAR
platform for the automated validation of trust and security of service-oriented
architectures. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214,
pp. 267–282. Springer, Heidelberg (2012)

2. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.:
Verification of relational data-centric dynamic systems with external services. In:
Proceedings of the 32nd Symposium on Principles of Database Systems, pp. 163–
174. ACM (2013)

3. Bäına, K., Benatallah, B., Casati, F., Toumani, F.: Model-driven web service devel-
opment. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 290–
306. Springer, Heidelberg (2004)

4. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system devel-
opment with KIV. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, p. 363.
Springer, Heidelberg (2000)

5. Benatallah, B., Sheng, Q.Z., Dumas, M.: The self-serv environment for web services
composition. Internet Comput. IEEE 7(1), 40–48 (2003)

6. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Model-driven development of secure
service applications. In: 2012 35th Annual IEEE Software Engineering Workshop
(SEW), pp. 62–71. IEEE (2012)

7. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Model checking of security-
critical applications in a model-driven approach. In: Hierons, R.M., Merayo, M.G.,
Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 76–90. Springer, Heidelberg
(2013)

8. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Security requirements formalized
with OCL in a model-driven approach. In: Model-Driven Requirements Engineering
Workshop (MoDRE), pp. 65–73. IEEE (2013)

9. de Castro, V., Marcos, E., Vela, B.: Representing wsdl with extended uml. Revista
Columbiana de Computation, vol. 5 (2004)



Integration and Exchangeability of ExternalSecurity-Critical Web Services 73

10. Gronmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-driven web services devel-
opment. In: 2004 IEEE International Conference on e-Technology, e-Commerce
and e-Service, EEE 2004, pp. 42–45. IEEE (2004)

11. Jensen, M., Feja, S.: A security modeling approach for web-service-based business
processes. In: 16th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, ECBS 2009, pp. 340–347. IEEE (2009)

12. Katkalov, K., Moebius, N., Stenzel, K., Borek, M., Reif, W.: Modeling test cases
for security protocols with SecureMDD. Comput. Netw. 58, 99–111 (2013)

13. Mayer, P.: MDD4SOA: model-driven development for service-oriented architec-
tures. Ph.D. thesis, lmu (2010)

14. Menzel, M.: Model-driven security in service-oriented architectures. Ph.D. thesis,
Potsdam University (2011). http://opus.kobv.de/ubp/volltexte/2012/5905/

15. Moebius, N., Stenzel, K., Reif, W.: Modeling security-critical applications with
UML in the secureMDD approach. Int. J. Adv. Soft. 1(1), 59–79 (2008)

16. Moebius, N., Stenzel, K., Reif, W.: Generating formal specifications for security-
critical applications - a model-driven approach. In: ICSE 2009 Workshop: Inter-
national Workshop on Software Engineering for Secure Systems (SESS 2009).
IEEE/ACM Digital Libary (2009)

17. Moebius, N., Stenzel, K., Reif, W.: Formal verification of application-specific secu-
rity properties in a model-driven approach. In: Massacci, F., Wallach, D., Zannone,
N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 166–181. Springer, Heidelberg (2010)

18. Nakamura, Y., Tatsubori, M., Imamura, T., Ono, K.: Model-driven security based
on a web services security architecture. In: IEEE International Conference on Ser-
vices Computing, pp. 7–15. IEEE Press (2005)

19. Nolte, S.: QVT-Operational Mappings: Modellierung mit der Query Views Trans-
formation. Springer, Heidelberg (2009)

20. Pironti, A., Pozza, D., Sisto, R.: Formally-based semi-automatic implementation
of an open security protocol. J. Syst. Softw. 85(4), 835–849 (2012)

21. Sun Microsystems Inc., Java Card 2.2 Specification (2002). http://java.sun.com/
products/javacard/

22. Thöne, S., Depke, R., Engels, G.: Process-oriented, flexible composition of web
services with UML. In: Olivé, À., Yoshikawa, M., Yu, E.S.K. (eds.) ER 2003. LNCS,
vol. 2784, pp. 390–401. Springer, Heidelberg (2003)

http://opus.kobv.de/ubp/volltexte/2012/5905/
http://java.sun.com/products/javacard/
http://java.sun.com/products/javacard/

	Integration and Exchangeability of External Security-Critical Web Services in a Model-Driven Approach
	1 Introduction
	2 The SecureMDD Approach
	3 Modeling Communication with External Web Services
	4 Security Properties and Assurances
	5 Cryptography and External Web Services
	6 Related Work
	7 Conclusion
	References


