
Improving the Reliability and the Performance
of CAPE by Using MPI for Data

Exchange on Network

Van Long Tran1(B), Éric Renault1, and Viet Hai Ha2

1 Institut Mines-Telecom – Telecom SudParis, Évry, France
{van long.tran,eric.renault}@telecom-sudparis.eu
2 College of Education, Hue University, Hue, Vietnam

haviethai@gmail.com

Abstract. CAPE — which stands for Checkpointing Aided Parallel
Execution — has demonstrated to be a high-performance and compli-
ant OpenMP implementation for distributed memory systems. CAPE
is based on the use of checkpoints to automatically distribute jobs of
OpenMP parallel constructs to distant machines and to automatically
collect the calculated results on these machines to the master machine.
However, on the current version, the data exchange on networks use man-
ual sockets that require time to establish connections between machines
for each parallel construct. Furthermore, this technique is not really reli-
able due to the risk of conflicts on ports and the problem of data exchange
using stream. This paper aims at presenting the impact of using MPI to
improve the reliability and the performance of CAPE. Both socket and
MPI implementations are analyzed and discussed, and performance eval-
uations are provided.

Keywords: CAPE · OpenMP · MPI · High-performance computing ·
Parallel programming

1 Introduction

In order to explore further the capabilities of parallel computing architectures
such as grid, cluster, multi-processors and multi-cores, an easy-to-use parallel
programming language is an important factor.

MPI [1] (which stands for Message Passing Interface) is the de-facto standard
for developing parallel applications on distributed-memory architectures. Essen-
tially, it provides point-to-point communications, collective operations, synchro-
nization, virtual topologies, and other communication facilities for a set of
processes in a language-independent way, with a language-specific syntax, plus a
small set of language-specific features... Although, it is capable of providing high
performance, it is difficult to use. MPI requires the programmers to explicitly
distribute the program onto the nodes. Moreover, some operations, like send-
ing and receiving data or the synchronization of processes, must be explicitly
specified in the program.
c© Springer International Publishing Switzerland 2015
S. Boumerdassi et al. (Eds.): MSPN 2015, LNCS 9395, pp. 90–100, 2015.
DOI: 10.1007/978-3-319-25744-0 8



Improving the Reliability and the Performance of CAPE 91

OpenMP [2] also has become a standard for the development of parallel
applications but on shared-memory architectures. It is composed of a set of very
simple and powerful directives and functions to generate parallel programs in C,
C++ or Fortran. From the programmer’s point of view, OpenMP is easy to use
as it allows to incrementally express parallelism in sequential programs, i.e. the
programmer can start with a sequential version of a program and step by step
add OpenMP directives to change it into a parallel version. Moreover, the level
of abstraction provided by OpenMP makes the expression of parallelism more
implicit where the programmer specifies what is desired rather than how to do
it. This has to be compared to message-passing libraries, like Message Passing
Interface (MPI) [1], where the programmer specifies how things must be done
using explicit send/receive and synchronization calls.

Because of these advantages of OpenMP, there have been some efforts to run
OpenMP programs on distributed-memory systems. Among them, CAPE [3,4] is
a tool to compile and provide an environment to execute OpenMP programs on
distributed-memory architectures. This solution provides both high performance
and a compiler that is fully-compatible with the OpenMP standard.

In order to automatically distribute jobs onto slave nodes of a distributed-
memory system, CAPE follows the following algorithm: when reaching a parallel
section, the master thread is dumped and its checkpoint is sent to slaves; then,
each slave executes a different thread of the parallel section; at the end of the
parallel section, each slave extracts and returns the list of all modifications that
has been locally performed to the master thread; the master then includes these
modifications and resumes its execution.

In the current version of CAPE, data exchanged between nodes are computed
using DICKPT [3,5] (which stands for Discontinuous Incremental Checkpoints),
and are transferred over the network using manual sockets. However, initializing,
connecting and listening to sockets at runtime is clearly a waste of time. In
addition, this approach is weak in terms of reliability, due to the difficulty to
manage the data exchanged over the network.

This paper aims at presenting the approach focusing on the reduction of
the checkpoint’s transfer time and increasing the reliability of data transfers of
CAPE over the network. The remainder of the paper is as follows: first, some
related works and the advantages of using MPI to transfer data over the network
are listed in Sect. 2. Section 3 discusses and analyzes the current version of CAPE
using manual sockets. Section 4 proposes a new method that use MPI instead of
manual sockets. Section 5 compares the two methods by presenting an evaluation
and some experimental results. At the end, Sect. 6 draws some conclusions and
future works.

2 Related Works

Using the MPI framework to transfer data between nodes over the network has
been developed and widely applied today. This allows to achieve high reliability,
security, portability, integrity, availability and high-performance of the trans-
ferred data.



92 V.L. Tran et al.

A typical example is the combination of MPI and OpenMP. In this case, the
MPI framework is used to send data and code from the master node to all work-
ing nodes in the network. At the working node side, the OpenMP framework is
used to execute the assigned task in parallel. Finally, the results from the working
nodes are sent back to the master node by using explicit MPI codes. Although
this way takes time and efforts from the programmer, it takes advantages of the
performance and the integrity. In [6], authors show that this method can achieve
high efficiency and scalable performance. In [7,8], authors show a reduction of
the communication needs and memory consummation, or an improvement of the
load-balancing ability.

They are also a lot of works that use advantage of MPI to assume the data
exchange between accelerators on clusters. For example, the GPU-aware MPI [9]
and CUDA Inter-process Communication [10] use the MPI standard to support
data communication form GPU to GPU on clusters. This technique has demon-
strated high-performance and portability of the system using MPI. In addition,
on cloud, Cloud Cluster Communication [11] and ECC-MPICH2 [12] using a
modified MPI framework have shown the validation of the security in terms of
authentication, confidentiality, portability, data integrity and availability.

The result above is very important for the orientation of the future develop-
ment of CAPE using MPI. In this paper, the MPI framework is used by CAPE
to transfer checkpoints between nodes. In the future, MPI will bring an even
more important contribution to CAPE as the latter aims at supporting GPU
and cloud computing infrastructures in the near future.

Note that the use of MPI by CAPE as presented in this paper is completely
different from the combination of MPI and OpenMP as mentioned above or from
the translation of OpenMP constructs into MPI function calls. In fact, the use
of MPI as a support for CAPE does not change the essence of CAPE. CAPE is
based on the use of checkpointing technique to implement OpenMP on distrib-
uted systems. This implementation is fully compliant with the OpenMP standard
and programmers do not need to modify their application program source codes.
With CAPE, the role of MPI only consists in transferring checkpoints over the
network, while for most other cases programmers need to modify their source
codes and, as a consequence, cannot provide a fully-compliant implementation
of OpenMP.

3 CAPE Based on Manual Sockets

In CAPE, each node consists in two processes. The first one runs the application
program. The second one plays two different roles: the first one as a DICKPT
checkpointer and the second one as a communicator between the nodes. As a
checkpointer, it catches the signals from the application process and executes
appropriate handles to create the DICKPT checkpoint. As a communicator, it
ensures the distribution of jobs and the exchange of data between nodes. Figure 1
shows the basic principle of the CAPE organization.

In the current version, the master node is in charge of managing slave nodes
and does not execute any application job in the parallel sections.



Improving the Reliability and the Performance of CAPE 93

Fig. 1. CAPE organization.

3.1 Execution Model

CAPE is an alternative approach to allow the execution of OpenMP programs
on distributed-memory systems. CAPE is based on a process as a parallel unit,
which is different from the traditional implementations of OpenMP where the
parallel unit is a thread. All the important tasks of the fork-join model are
automatically generated by CAPE based on checkpointing techniques, such as
task division, reception of results, updating results into the main process, etc.
In its first version, CAPE used complete checkpoints so as to prove the concept.
However, as the size of complete checkpoints is very large, it takes a lot of traffic
on the network to transfer data between processes and involves a high cost
for the comparison of the data from the different complete checkpoints to extract
the modifications. These factors have significantly reduced the performance and
the scalability of our solution. Fortunately, these drawbacks have been overcome
in the second version of CAPE based on DICKPT.

Figure 2 describes the execution model of the second version of CAPE using
three nodes. At the beginning, the program is initialized on all nodes and the
same sequential code block is executed on all nodes. When reaching an OpenMP
parallel structure, the master process divides the tasks into several parts and
send them to slave processes using DICKPT. Note that these checkpoints are
very small in size, typically very few bytes, as they only contain the results
of some very simple instructions to make the difference between the threads,
which do not change the memory space that much. At each slave node, after
receiving a checkpoint, it is injected into the local memory space and initialized



94 V.L. Tran et al.

Fig. 2. Data transfer between nodes in CAPE.

for resuming. Then, the slave process executes the assigned task, extracts the
result, and creates a resulting checkpoint. This last checkpoint is sent back to
the master process. The master process then combines all resulting checkpoints
together, injects the result into its memory space and sends it to all the other
slave processes to synchronize the memory space of all processes and prepare for
the execution of the next instruction of the program.

3.2 Data Transfer

In order to distribute checkpoints to slave nodes, the master node initializes a
socket to listen to the connection requests from slaves. After the master accepts
a connection request, it sends a checkpoint to the slave node through the estab-
lished connection. Figure 3 presents the algorithm used to send checkpoints from
the master to all slaves.

At the slave node side, a checkpoint must be returned to the master after
the execution of the parallel part. The slave node initializes a client socket and
tries to connect to the master. After the connection is accepted, the checkpoint
is sent to the master.



Improving the Reliability and the Performance of CAPE 95

Fig. 3. Master-to-slave transfer using manual sockets.

Fig. 4. Slave-to-master transfer using manual sockets.

To receive DICKPT checkpoints from the salves, the master initializes a
server socket, accepts connections and receives data from the slaves the one
after the one. At the other side, each slave always maintains a loop to request
a connection to server before receiving data. The algorithm is summarized in
Fig. 4.

From the two algorithms presented above, one can see that the use of man-
ual sockets to send and receive data involves a waste of time to initialize and
establish the connections between the nodes for each data exchange requirement.
Furthermore, in order to request a connection to the master, the slave always
performs a polling. This requires resources both on the node and over the net-
work. In addition, transferring data by means of a stream using manual sockets
is not reliable as the risk of conflicts on port numbers and data is not packaged.



96 V.L. Tran et al.

4 CAPE Based on MPI

Nowadays, parallel programming on clusters have been dominated by message
passing, and using MPI [13] has become a de-facto standard. MPI has demon-
strated advantages over other systems (see Sect. 2). Moreover, for the case of
MPI, data are transfered from the address space of one process to the one of
another process through cooperative operations on each process. Simply stated,
the goal of MPI is to provide a widely used standard for writing message-passing
programs. The interface aims at being practical, portable, efficient and flexible.

Fig. 5. MPI-based CAPE organization.

In order to take advantage of the MPI benefits, the organization of CAPE has
been moved from a socket-based communication system to the MPI framework.
The new organization of CAPE is shown in Fig. 5. With this new organization,
the monitor process uses the MPI framework to send and receive DICKPT check-
points. In addition, it also uses MPI routine to reduce the time overhead and
improve the global reliably of the system.

4.1 Data Transfer

In order to provide a new version of CAPE on top of MPI, the sending and the
receiving of data at both the master and the slaves nodes have been implemented
as presented in pseudo-code on Figs. 6 and 7.

For this implementation, the MPI library is loaded by each node at the begin-
ning of the execution, so that it is not necessary to initialize it when the nodes



Improving the Reliability and the Performance of CAPE 97

Fig. 6. Master-to-slave transfer using MPI.

Fig. 7. Slave-to-master transfer using MPI.

need to send or receive data. Therefore, the execution time is reduced when com-
pared with the manual-socket implementation. In addition, MPI automatically
setup connections between nodes to perform data transfers which means that
there is no need for maintaining a loop to request a connection from the slaves to
the master. As a result, the use of the CPU and other resources is considerably
reduced at this time.

Furthermore, the transfer of data using manual sockets requires the imple-
mentation of routines to send and receive data over the network, especially those
routines that are very important to distribute and collect data, such as broad-
cast and reductions [14]. This requires a huge effort in terms of development and
ensuring the reliability of such an implementation is not easy. Meanwhile, all
these routines have been made available in the MPI framework and after many
years of customization they are regarded as highly reliable and efficient [13].
Moreover, for the case of MPI, vendor implementations usually exploit native
hardware features to optimize the performance [1]. For all these reasons, using
MPI for sending and receiving data over the network is better than using manual
sockets, especially when considering reliability and performance.

5 Experimentation and Evaluation

Let tcomm be the time to exchange data between the nodes, i.e. the total time for
sending and receiving DICKPT checkpoints from the master to all slave nodes
and vice versa. Let tcomp be the time to execute the application code at both
the master and slave nodes. For the two methods mentioned in Sects. 3 and 4,
tcomp in the same.



98 V.L. Tran et al.

According to the execution model of CAPE as presented in Sect. 3, the exe-
cution time of a parallel section can be computed using Eq. (1).

t = tcomm + tcomp (1)

Let p be the number of slave nodes, tstartup be the time to set up a socket,
i.e. the time to initialize, connect and prepare to send and receive data of each
time when a checkpoint has to be exchanged, and tdata be the time to send and
received data.

When using manual sockets as presented in Sect. 3, the time required to send
and receive DICKPT checkpoints can be computed using Eq. (2).

tcommi
= p(tstartup + tdata) (2)

With MPI, the scatter operation has been used so that the startup step is
executed at the same time on all nodes. As a result, the communication time for
the sending or receiving phase can be computed using Eq. (3).

tcommi
= tstartup + p.tdata (3)

From Eqs. (2) and (3), one can see that each time a DICKPT checkpoint has
to be sent or received, the communication time when using the MPI method is
always more efficient than using manual sockets.

In order to verify the above arguments, some performance measurements have
been conducted on a real cluster. The plateform is composed of nodes includ-
ing four 3-GHz Intel(R) Pentium(R) CPUs with 2 GB of RAM, operated by
Linux kernel 3.13.0 with the Ubuntu 14.04 flavour and connected by a standard
100 Mbits/s Ethernet. The cluster consists of three nodes, i.e. one master and
two slaves. In order to avoid as much as possible any external influences, the
entire system was dedicated to the tests during performance measurements.

The program used for tests is the matrix-matrix product for which the size
varies from 3,000 × 3,000 to 9,000 × 9,000. Matrices are supposed to be dense and
no specific algorithm has been implemented to take into account sparse matrices.
Each experiment has been performed at least 10 times and a confidence interval
of at least 90 % has always been achieved for the measures. Data reported here
are the means of the 10 measures.

Figure 8 shows the total execution time (in seconds) for both MPI and the
manual socket implementation. Since the major parts of the program serve for
computing works, the time for transferring data between nodes takes a very
small scale. Therefore, although there is a significant improvement in the time
to send and receive results, the overall execution time of the program remains
almost the same.

The details are shown in Fig. 9. During the Init step, the DICKPT check-
points are created and sents to the slave nodes, while during the Update step
the master waits for the reception of the computed results from the slave nodes
and injects them into its memory space.

The DICKPT checkpoints created during the Init step are composed of very
few bytes of data, so that the time to send these checkpoints is very short. For



Improving the Reliability and the Performance of CAPE 99

Fig. 8. Total execution time (in seconds) of CAPE using MPI and Socket.

the Update step, it takes almost the same amount of time to wait for the result of
the computations from the slaves, so that the communication time is not really
significant as compared with the overall time of the program. This results in
very similar overall times for both methods as shown in Fig. 9.

(a) Init (b) Update

Fig. 9. Execution time (in seconds) for both Init and Update steps.

From the result above, it is clear that using MPI consumes less time than
using manual sockets. However, the difference is not significant while comparing
the overall time of the program.

6 Conclusion and Future Work

From the analysis and the experiments above, we found that it is interesting
to replace the use of manual sockets by use of MPI for data exchange. This
helps CAPE achieves higher stability, security and tends to improve performance
for the programs using functions supported by MPI, such as broadcast and
reductions.

In the near future, we will keep on developing CAPE to support other
constructs of OpenMP in order to allow a larger set of algorithms to run on
distributed-memory architectures. Moreover, it is also planed to port CAPE on
top of other architectures like GPU-based clusters for example.



100 V.L. Tran et al.

References

1. MPI: A Message-Passing Interface Standard. Message Passing Interface Forum
(2012)

2. OpenMP specification 4.0. OpenMP Architecture Review Board (2013)
3. Ha, V.H., Renault, E.: Design and performance analysis of CAPE based on discon-

tinuous incremental checkpoints. In: Proceedings of the IEEE Conference on Com-
munications, Computers and Signal Processing. Victoria, Canada, August 2011

4. Ha, V.H., Renault, E.: Improving performance of CAPE using discontinuous
incremental checkpointing. In: Proceedings of the IEEE International Conference
on High Performance and Communications 2011 (HPCC-2011), Banff, Canada,
September 2011

5. Ha, V.H., Renault, E.: Discontinuous incremental: a new approach towards
extremely checkpoint. In: Proceedings of IEEE International Symposium on Com-
puter Networks and Distributed System (CNDS 2011), Tehran, Iran, February
2011

6. Li, Y., Shen, W., Shi, A.: MPI and OpenMP paradigms on cluster with multicores
and its application on FFT. In: Proceedings of the Conference on Computer Design
and Application (ICCDA 2010) (2010)

7. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming
on clusters of multi-core SMP nodes. In: Proceedings of 17th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing (2009)

8. Wong, H.J., Rendell, A.P. : The design of MPI based distributed shared memory
systems to support OpenMP on clusters. In: Proceedings of IEEE International
Conference on Cluster Computing (2007)

9. Wang, H., Potluri, S., Bureddy, D., Rosales, C., Panda, D.K.: GPU-aware MPI
on RDMA-enabled clusters: design, implementation and evaluation. IEEE Trans.
Parallel Distrib. Syst. 25(10), 2595–2605 (2014)

10. Potluri, S., Wang, H., Bureddy, D., Singh, A.K., Rosales, C., Panda, D.K. : Opti-
mizing MPI communication on Multi-GPU systems using CUDA inter-process
communication. In: Proceedings of the IEEE International Conference on Parallel
and Distributed Processing Symposium Workshops & Ph.D. Forum (IPDPSW)
(2012)

11. Balamurugan, B., Krishna, P.V., Rajya Lakshmi, G.V., Kumar, N.S.: Cloud cluster
communication for critical applications accessing C-MPICH. In: Proceedings of the
International Conference on Embedded Systems (ICES 2014) (2014)

12. Shivaramakrishnan, S., Babar, S.D.: Rolling curve ECC for centralized key man-
agement system used in ECC-MPICH2. In: Proceedings of the IEEE Global Con-
ference on Wireless Computing and Networking (GCWCN 2014) (2014)

13. Matsuda, M., Kudoh, T., Kodama, Y., Takano, R., Ishikawa, Y.: Efficient MPI
collective operations for clusters in long-and-fast networks. In: Proceedings of the
IEEE International Conference on Cluster Computing (2006)

14. Rabenseifner, R.: Automatic MPI counter profiling of all users: first result on a
CRAY T3E 900–512. In: Proceedings of the Message Passing Interface Developers
and Users Conference 1999 (MPIDC 1999) (1999)


	Improving the Reliability and the Performance of CAPE by Using MPI for Data Exchange on Network
	1 Introduction
	2 Related Works
	3 CAPE Based on Manual Sockets
	3.1 Execution Model
	3.2 Data Transfer

	4 CAPE Based on MPI
	4.1 Data Transfer

	5 Experimentation and Evaluation
	6 Conclusion and Future Work
	References


