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2 Laboratoire Samovar UMR CNRS 5157, Évry, France
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Abstract. In Cloud storage of multiple CPU cores, many Mapreduce
applications may run in parallel on each compute node and collocate
with local Disks storage. These Disks storage are shared by multiple
applications that use full CPU power of the node. Each application
tends to issue contiguous I/O requests in parallel to the same Disk; how-
ever if large number of Mapreduce tasks enters the I/O phase at the
same time, the requests from the same task may be interrupted by the
requests of other tasks. Then, the I/O nodes receive these requests as
non-contiguous way under I/O contention. This interleaved access pat-
tern causes performance degradation for Mapreduce application, this is
particularly important when writing intermediate files by multiple tasks
in parallel to the shared Disk storage. In order to overcome this prob-
lem, we have proposed approach for optimizing write access for Mapre-
duce application. The contributions of this paper are: (1) analyze the
open issues on scheduling access request of Mapreduce workload; (2) pro-
pose framework for scheduling and predicting I/O request of Mapreduce
application; (3) describe each role of component that intervenes in the
scheduling theses I/O request on Block-level of storage server to provide
contiguous access.

Keywords: Mapreduce · Cloud storage · Disk I/O · Markov model ·
Scheduling algorithm

1 Introduction

Cloud computing has become a viable, mainstream solution for data process-
ing, storage and distribution. A cloud environment allows sharing of distributed
resources, like CPU, Network and Disk based on virtual machine, these resources
must be used efficiently for performing data intensive application. Cloud storage
systems use modern server nodes based on Disk storage that contains multiple
Disk drives and buffers memory. These typically have many CPU cores; it is
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desirable to use increased level of parallelism on each node to be able to use the
full CPU power of the node. In distributed computing such as those running
in Mapreduce [1] and using its open source implementation Hadoop [2] or sim-
ilar model are often dominated by I/O bound, particularly reading and writing
operations conducted on Disk storage that are limited than the CPU resources,
theses Disk storage are shared by multiple processes or number of parallel tasks
(or job) and alternate between computation and I/O phases.

A Mapreduce application consists of many maps and reduces tasks that read
and write data on distributed file system and local Disks. Each map task has
a memory buffer that it writes the output to. The buffer is 100 MB by default,
it is a size which can be tuned by changing the Hadoop parameters. Each time
the memory buffer reaches a certain threshold, then a new intermediate file is
created.

In order to use multi-core systems, Hadoop schedules multiple tasks to run
simultaneously on each node. In this case, the I/O resources of node are divided
between these tasks and are exposed to I/O contention. Particularly, this situ-
ation affect write request of parallel tasks which remains on each Buffer befor
reaching the threshold to the shared Disk storage. For example, parallel tasks
slot often write intermediate data from each buffer to the Disk, each task tends
to issue contiguous write I/O requests, but if multiple tasks issue many I/O
requests managed by buffers simultaneously in one node, the requests are han-
dled by local Disk in a non-contiguous way. This interleaved access pattern
increases read I/O cost and I/O bandwidth falls, and can cause intermediate
data fragmentation in many local file system. This means that Hadoop does not
have a control over the allocation of physical blocks for intermediate files, and
it can not effectively manage all buffers of multiple tasks, but is dependent on
the kernel I/O scheduler and allocation strategy used by file system driver.

Particularly those that do not support optimization used at the OS kernel
(Buffer memory policy, scheduling queue Disk) [3,4] cannot take advantage of
the properties and behaviors of each particular application and are therefore not
able to address the overall efficiency of the system. As the size of the system
continues to increase, planners must have a global view of I/O operation needs
of all applications in order to make appropriate allocation decision.

In order to solve this problem, we have proposed a framework for schedul-
ing I/O request of parallel Mapreduce task, and Markov model [5] for predict-
ing non contiguous write access to improve I/O access of Mapreduce task on
shared Disks.

The remainder of the paper is organized as follows. In Sect. 2, we outline the
related work and open issues that directs our research. In Sect. 3, we describe
the proposed approach for scheduling write access of Mapreduce application, and
the role of each component in this framework. Finally, in Sect. 4 we conclude and
summarize our plans for future work.

2 Motivation Example

In this section we show an illustrative example for the restraints of the problem
of Disk I/O contention during Mapreduce workload processing. The effect of I/O
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contention is dependent on the workflow and I/O patterns used by the Mapre-
duce application under I/O phases. During Mapreduce workload execution, map
and reduce tasks go through a number of phases of execution. If multiple tasks
are running at the same time, it is not guaranteed that all those tasks are exe-
cuting the same phase at the same time as long as each task execute his own
I/O phase and form a life cycle throughout the process Mapreduce. However,
the tasks are not always executing the same phase is that tasks are typically
not identical in duration, but even for tasks that are normally very similar in
execution time this situation can occur because of the variance in task execution
time caused by I/O contention that are observed in Fig. 2.

During the shuffle phase, reduce task input is divided into segments, with one
segment being read from the output files of each map task spread over the entire
cluster. While each segment itself is read sequentially, the set of segments for a
particular reduce task is not stored sequentially and not guaranteed to be read
in any particular order. This situation occurs when writing intermediate data
to the shared Disk. For the spill phase if large number of tasks enters the I/O
phase at a same time, the requests from the same task may be interrupted by the
requests of other tasks. Then I/O nodes receive these requests as non-contiguous
way under I/O contention.

3 Background

3.1 Mapreduce Programming Model

Mapreduce [1] uses a divided-and-conquer approach in which input data are
divided into fixed size units processed independently and in parallel by tasks,
which are executed distributedly across the nodes in the cluster.

Mapreduce applications consists of a map function and a reduce function.
As shown in Fig. 1, the input to an application is organized in records, each of
which is a < k1, v1 > pair. The map function processes all records one by one,

Fig. 1. Disk sharing issue
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and for each record outputs a list of zero or more < k2, v2 > records called
intermediate data. The map output is stored in an in-memory buffer; when this
buffer is almost full then it start (in parallel) the spilling phase in order to remove
data from it to the Disk. Then all intermediate data with < k2, v2 > records
are collected and reorganized so that records with the same keys (k2) are put
together into and shuffled a < k2, list (v2) > record. These < k2, list (v2) >
records are then processed by the reduce function one by one, and for each record
the reduce function outputs a < k2, v3 > pair. All < k2, v3 > pairs together
coalesce into the final result. Map and reduce functions can be summarized in
the following equations:

map(< k1, v1 >) → list(< k2, v2 >) (1)
reduce(< k2, list(v2) >) → < k2, v3 > (2)

Fig. 2. Structure of map and reduce task in Hadoop

3.2 Linux Disk Scheduler

Disk scheduler are typically work-conserving, since they select a request for ser-
vices as soon as (or before) the previous request has completed. Since 2.6 version
Linux provides four non-conserving Disk I/O schedulers: deadline, anticipatory,
noop, and completely fair queuing (CFQ), along with an option to select one of
these four at boot time or runtime. The selection is based on a priori knowledge of
the workload, file system, and I/O system hardware configuration, among other
factors. The anticipatory scheduler (AS) is the default for 2.6 version. Now in our
context, we consider process issuing Disk read request synchronously which each
process issues a new request shortly after its previous request has finished, and
thus maintains at most one outstanding request at any time. “Deceptive idle-
ness” is a situation where a process appears to be finished reading from the Disk
when it is actually processing data in preparation of the next read operation.
This will cause a normal work-conserving I/O scheduler to switch to servicing
I/O from an unrelated process. This situation is detrimental to the through-
put of synchronous reads, as it degenerates into a seeking workload. In this



82 S. Ikken et al.

situation the Anticipatory scheduler [8] performs well, and it is based on two
assumptions: (1) synchronous Disk requests are issued by individual processes
and, thus, anticipation occurs only with respect to the process that issued the
last request; and (2) for anticipation to work properly, the anticipated process
must be alive; if the anticipated process dies, there is no further anticipation
for requests to nearby sectors. Instead, any request that arrives at the scheduler
is scheduled for dispatch, irrespective of the requested head position and the
current head position.

4 Related Work and Open Issues

There are lots of work on Modeling access behavior and scheduling Mapreduce
applications in Cloud environment. We classify the current trends and exiting
approaches with respect to traditional scheduling algorithm, and presents open
issues that direct our research.

4.1 Modeling I/O Behavior of Mapreduce Workload
Without I/O Contention

Although in recent years, there has been an increasing amount of work in mod-
eling the I/O behavior of Mapreduce workload. In [9–14] the authors focusing
to reduce the total amount of I/O performed by the application. In [14], the
authors model the read I/O behavior of map tasks. In [12], the authors propose
a statistical model to evaluate the effect of various configuration parameters of
Hadoop-Mapreduce job.

4.2 Scheduling Task, Job and VM Under I/O Contention

The authors propose techniques to address the I/O stream contention in Mapre-
duce tasks. In [15], they propose to limit the number of concurrent I/O streams,
and alleviate the I/O contention by orders the I/O streams in accordance to
job priority. In [16], they propose competing applications’ I/O by interposing
HDFS I/O and use an SFQ-based proportional-sharing algorithm. In [17–19]
the authors characterize and predict I/O performance under I/O contention,
which focuses primarily on the hardware environment. In [20], they propose a
scheduling system that takes I/O contention into account, but it applies to VM
scheduling rather than I/O access scheduler.

4.3 Scheduling I/O Access Disk Without I/O Contention

Each I/O scheduler algorithm is performed at the top level, which the I/O request
reordering and merging is performed by the filesystem driver, and at the lower
level, which the I/O requests are reordered by the I/O device. Disk scheduler
plays main role in the service of I/O operation, in [7,21] they trie to optimize the
movement of the Disk head to specific goals under limit condition, but each has
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difficulties of predicting these movements. Recently, non-conservation works of
Disk schedulers, such as CFQ scheduler [7] and Anticipatory scheduler [8] were
designed to record the spatial location with concurrent services of interleaved
requests from multiple processes. This strategy takes the Disk head slowed after
serving a request from a process until the next request from the same process
happens or waiting threshold expires.

4.4 Open Issues

Our researches are focuses to analyze the problem of scheduling intermediate
data for parallel Mapreduce tasks under I/O contention. Our work differ from
others existing approaches, especially in modeling access behavior and scheduling
Mapreduce application on block level of shared Disks nodes.

(1) The works we’ve cited above, make effort on modeling the I/O perfor-
mance of Mapreduce, the impact of I/O contention on access request is not
considered.

(2) The works presented above about mitigating I/O contention focuse to
coordinate Mapreduce application at high level, rather than at block level.

(3) Unlike traditional Disk scheduler problems, scheduling I/O workload for
Mapreduce application is even more complicated, and it should meet the algo-
rithms of access requests to the Disk, and they take into account information
related to the type of workload behavior and traditional Disk scheduler policy.

Table 1, depicts the summarize of the analysis and comparison of the related
work based on the criteria that characterizes our orientation.

Table 1. Feature comparison of related work

Related work Mapreduce
workload

Modeling
access
behavior

I/O contention Block level
scheduler

High level
scheduler

[9–14] X X

[15,16,19,20] X X X

[7,8] X

Our focus
research

X X X X

5 Proposed Approach

We have proposed an approach that defines a framework to anticipate non-
contiguous write request of Mapreduce workload on shared Disk storage. Mapre-
duce phases are sequential write-only and read-only subtask, and write access is
done in parallel using a separate thread from in memory buffer to local Disk in
round-robin fashion. We develop a methodology to characterize the interleaved
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Fig. 3. A Framework for Scheduling write access of parallel MapReduce Tasks

write access submitted from parallel Mapreduce task to the shared Disk, and
uses anticipation support to decided when these I/O request will be allocated
on the Disk to avoid non-contiguous access, Fig. 1 show the proposed approach.
On our study, we need to modeling write access at block-level to make out the
non-contiguous write I/O for guiding future scheduler decision to improve access
of Mapreduce tasks.

5.1 Markov Model Prediction

To capture non-contiguous write I/O requests, we have model parallel write
access streams for Mapreduce tasks under IO contention using Markov model;
the choice of model description is critical to its predictive ability. One must
determine what application behavior corresponds to a state s, the total number
of states N that can be fully described by its transition probability matrix P,
and the allowed observations. Given the present state and all past states, if the
future state of the system depends only on the present state, the system is said to
have the Markov property. In the context of Disk access request for Mapreduce
task slot, one can build a transition probability matrix by sampling the state
of the Disk system at regular intervals during Mapreduce job processing. We
generate I/O trace from Mapreduce workload processed on same Disk storage.
We construct a Markov model where each state corresponds to write I/O request
at time t. Each state can have one or multiple part of non-contiguous I/O request
related to one task; that means the state can be contiguous or non-contiguous
write I/O request of a single task. This is because; request can be interrupted
by the request from other task in Mapreduce sub phases. The non-contiguous
write I/O requests are sequential access on block regions of variable size. Ideally,
write request size is chosen to correspond to a split size from HDFS (Hadoop

Fig. 4. Markov chain of order m describing contiguous Write I/O request
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Fig. 5. Markov chain of order m describing Interleaved Write request under I/O
contention

Distributed FileSystem). In the context of this paper, we assume that there is
only one phase cycle of Mapreduce, then a request size may be more than or
equal to 64 Mbyte, and the Hadoop parameters are fixed for each training set of
action-sequences. Therefore, the state number is the number of write I/O request
of parallel task slot, and If one tasks slot has 64 Mbyte intermediate data size,
access to this data region could be modeled by a 64 states Markov model with
different sizes of each access.

Observations are write request under I/O contention that changes the current
state with some probability to a new state that reflects a new current non-
contiguous write request; this is the interleaved write access of each task slot.
We process a trace of I/O request so those contiguous write requests that access
sequentially the current block region on Disk does incur reflexive transition.
Figure 4 illustrates the write access pattern which is deterministic; each task
slot tends to issue contiguous write I/O access, but Fig. 5 illustrates a pattern
where there is an interleaved write request of two or more task slot since multiple
task issue many write I/O request simultaneously on Datanode. This interleaved
access pattern can cause intermediate data fragmentation, increases read IO
overhead (Fig. 5).

5.2 Scheduling Non-contiguous Write Access Based
on Markov Model

Many Disk scheduler algorithm have been proposed that achieved performance
applications by taking into account information about characteristic of each indi-
vidual I/O request and the current state of Disk subsystem [6,7]. In this paper,
we use the Anticipatory Disk scheduler [8]. The idea behind this algorithm is to
anticipate which streams are most likely to make their deadlines for synchronous
read and which are not, based on the estimated supply and demand of time slots
in the future. In some situation, the scheduler can cause undesirable delays to
IO requests in other environments, particularly when there is update or delayed
write like Mapreduce phases. Therefore, fast phase read response is disrupted
by interfering writes request in Mapreduce phases. For this situation our idea
is having control of non-contiguous write request to improve read access from
Mapreduce phases, and use Markov model for predicting these non-contiguous
write request.
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Fig. 6. Adaptive anticipatory scheduler based on Markov model

Then, we propose an adaptive Anticipatory scheduler based on Markov model.
The challenge of our heuristic is to know that already serviced requests will have
other sub-requests and how to estimate the think time for each read and write
requests of all task. Given a write I/O access Markov model, it still does not
want to delay write requests indefinitely, however, the buffer ensure that data is
eventually written to Disk to prevent in-memory buffers from growing too large
or reached a threshold. Also, there is I/O access which is contiguous or proximate
requests, and it is not necessary to wait for these requests to serve immediately.
This optimizes the overall think time for the scheduler and decrease the over-
lapping of parallel write request from buffers when allocating on shared Disk
storage. Markov model parameters which are the transition probability matrix
used in a simulated anticipatory algorithm to find a permutation of the buffered
write that substantially does not penalize the future Read operation and reduces
expected seek distance of IO request (Fig. 6).

The transition probability matrix by itself is need for predicting non-
contiguous write request on Disk device after intermediate data buffered in Round
robin fashion. Then, the scheduler calculate seek distance for each available request
and it predicts the next state for keeps Disk idle with an estimate think time by
using the information maintained by means of the transition probability matrix.
For this purpose, the scheduler chooses a sequence of request by repeatedly finding
the most likely transition from the current state s to have non-contiguous request
from the same task.This approach builds onN-step transitionmodels fromMarkov
theory. The sequence of predicted non-contiguous request stop when a specified
number of requests is reached, i.e. when the total probability of the sequence drops
belowa given threshold.Then,Anticipatory schedulermeets all the non-contiguous
sequences found to calculate think time for read and write request giving priority
for read operation. It interacts with the transition probability matrix based Antic-
ipatory heuristic to decide if and how long to wait for each task slot. Figure 4 show
the interaction between the various component.
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5.3 Training Markov Chain

Each application/job has one Markov chain per workload and hardware para-
meters. These models are trained online by running a Mapreduce workload, and
then generating trace of block spill file based on trace tool, which has been linked
with a training module. The Markov chain segment size is selected in advance
based on the block segment size, and the training module maintains counts of all
record block write transition. Most spill file (intermediate data) involves only a
single access pattern; in this case, a degenerate Markov chain with one state per
block of spill file suffices to model them and training is a trivial calculation. The
probabilities for each transition are calculated by dividing the number of occur-
rences of the transition by the total number of transitions from each block, and
only a single training execution is required. The examples in this paper utilize
this training algorithm. We implemented Markov chain with the C ++ language
and used representative benchmarks hosted on a single node cluster: Terasort
and Wordcount benchmarks, we generated 40 GB and 20 GB of intermediate
data respectively on Hadoop 1.0.3 version on Ubuntu Linux 14.04 machine. The
setting parameters of Hadoop are 4 CPU, 8G RAM and 4 Disks of 1TB) for each
training set of sequences with 4 tasks Map and 3 Tasks Reduce in parallel. We
stressed a Linux system with blktrace to have Disk I/O of read/write operation
during the execution of Mapreduce workload.

6 Conclusion

In this paper, we have proposed framework for scheduling write access of paral-
lel Mapreduce application under I/O contention on block-level. We focused on
the issues that occur when multiple applications are running in parallel on a
shared node in order to take advantage of multiple CPU cores. To characterize
I/O request, we modeled the write access of Mapreduce task based on Markov
model to predict the non-contiguous write operation. The model uses knowledge
about Mapreduce application by tracing I/O access on lower level from shared
Disk, and it is used for making decision to scheduling these accesses on Disk
queue. For this purpose, we used Anticipatory scheduler to sort non-contiguous
write request from buffers to the Disk using transition probability matrix. This
proposed framework is an approach that describe different components that play
a key role to scheduling I/O access of intermediate data on block-level, and to
decide if using the hinted sequence of transition probability matrix for future
scheduler is likely to provide benefit. For future work, we will estimate the pre-
diction accuracy of Markov model, and describe our implementation for possible
evaluation.
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