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Abstract. In the late three decades, grid computing has emerged as a new field
providing a high computing performance to solve larger scale computational
demands. Because Directed Acyclic Graph (DAG) application scheduling in a
distributed environment is a NP-Complete problem, meta-heuristics are intro-
duced to solve this issue. In this paper, we propose to hybridize two well-known
heuristics. The first one is the Heterogeneous Earliest Finish Time (HEFT)
heuristic which determines a static scheduling for a DAG in a heterogeneous
environment. The second one is Particle Swarm Optimization (PSO) which is a
stochastic meta-heuristic used to solve optimization problems. This hybridiza-
tion aims to minimize the makespan (i.e., overall completion time) of all the
tasks within the DAG. The experimental results that have been conducted under
hybridization show that this approach improves the scheduling in terms of
completion time compared to existing algorithms such as HEFT.

Keywords: Grid computing � Task scheduling � Directed acyclic graph �
Heterogeneous earliest finish time algorithm � Particle swarm optimization
algorithm � Makespan

1 Introduction

The deployment of high-speed networks and powerful computers has involved to new
computing paradigms. Hence, while current hardware infrastructures are distributed in
nature such as in grid computing, the underlying applications are composed of tasks
distributed on different nodes. In fact, a grid computing is a set of geographically
remote resources deployed across multiple nodes allowing their computational power
and storage space to be shared. Grid resources are heterogeneous, dynamic and owned
by various administrative organizations under locally defined policies. Grids are used in
a variety of scientific applications such as in astronomy, geophysics and bioinformatics
where a single and powerful parallel super computer [1] cannot resolve the large-scale
application issues.
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To take advantage of the potentials of grid computing, efficient scheduling algo-
rithms are fundamentally important [2]. The task-scheduling problem refers to the
mapping of the application tasks to a set of distributed resources or nodes. Because this
problem is NP-Complete, various algorithms are proposed in the literature with dif-
ferent criteria in order to schedule efficiently application tasks.

Our contribution in this paper is twofold: firstly, we propose a scheduling approach
based on the hybridization of two scheduling algorithms like HEFT and an adapted
DPSO, called DPSO*, for the dependent-tasks scheduling problem. Secondly, we
undertake some measurements that show that the hybridization approach improves the
performances in terms of makespan. Makespan is the time difference between the start
and finish of a sequence of tasks.

The remainder of this paper is organized as follows. Related works are presented in
Sect. 2. Section 3 formalizes the scheduling problem. Section 4 describes the HEFT,
our adapted DPSO* algorithms and their hybridization. Then, performance tests are
discussed in Sect. 5. Finally, Sect. 6 concludes the paper with some perspectives.

2 Related Works

In [3], Casavant and Kuhl have proposed a taxonomy of scheduling algorithms for
general-purpose parallel and distributed computing systems. Since grid computing has
specific features, scheduling algorithms for grid computing fall into a subset of this
taxonomy [2]. In fact, in [2], the authors classified grid scheduling algorithms
depending on whether the grid scheduling algorithm is static or dynamic, distributed or
centralized, cooperative or non-cooperative.

Due to the NP-Complete property of the scheduling algorithms and the difficulty to
prove the optimality of a given solution, researchers tried to find sub-optimal solutions
through heuristic approaches. When the relationship between the tasks within the grid
application is considered, scheduling algorithms are dichotomized into independent
and dependent task scheduling. Hence, in [4], a comparison between eleven heuristics
used to schedule independent tasks is discussed. Among these heuristics, we can find
Opportunistic Load Balancing, Minimum Execution Time, Minimum Completion Time,
etc. Each of them aims to assign a task to a resource with an optimal completion time.

In the case of dependent task scheduling, also called workflow scheduling, a task
precedence graph called Directed Acyclic Graph (DAG) is usually used to model the
application scheduling. The nodes of the DAG represent the tasks and the directed edges
represent the execution dependencies and the data communication between tasks [5]. There
are two major types of scheduling, best-effort based and QoS constraint based scheduling.
Supporting QoS scheduling algorithms are based on either deadline (time) or budget (cost)
constraints and are at a very preliminary stage [6]. Best-effort based scheduling attempts to
minimize themakespan using different approaches. These approaches can be classified into
different heuristics such as list-scheduling, clustering, duplication-based algorithms, and
meta-heuristics (guided random search methods) approaches.

List-scheduling heuristics are based on two steps: in the prioritizing phase, tasks are
ordered in a list by assigning a priority for each task, while in there resource selection
phase each selected task is scheduled on the resource that minimizes a predefined cost
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function [7]. Various research works have been proposed in the literature under this type
of heuristics such as HEFT and CPOP [7], FCP [8], DCP [9], DLS [10], and xDCP [11].

While the clustering approaches (DSC [12], CASS II [13], EZ [9], CTHP [14])
assign a group of inter-communicated tasks to the same cluster hence to the same
resource, the duplication based-scheduling approaches (DSH [15], CPFD [16], TDS
[17], BTDH [18], THAN [19]) duplicate tasks to assign them to idle-time slots within
the resource, thus avoiding the data communication overhead.

Besides, meta-heuristics are stochastic algorithms dedicated to solve optimization
problems. Using meta-heuristic approach, there is no guarantee to find a global opti-
mum but it provides an approximation of this optimum in a reasonable time. Genetic
Algorithms (GA) [20–24] are examples of meta-heuristics that are widely used, for the
good solutions they provide. To overcome the high execution time taken by GA,
Kennedy and Eberhart introduced the Particle Swarm Optimization (PSO) methodol-
ogy in [25]. In the context of grid computing, PSO has been used by the authors of [26]
to schedule independent tasks by transforming the continuous values of particles into
discrete values thanks to the Smallest Position Value (SPV) rule. In [27], Liu et al.
designed a fuzzy scheme based on discrete PSO to solve the independent job
scheduling problem on computational grids. Izakian et al. [28] have proposed a version
of discrete PSO for grid independent job scheduling.

In this paper, our aim is to build an optimal scheduling algorithm by adapting the
PSO algorithm and then by hybridizing it with HEFT heuristic, in order to schedule
DAG tasks in the context of grid computing. In fact, according to the PSO principle,
since the particles are initialized randomly, our idea is to inject a particular particle
initialized thanks to HEFT algorithm that is considered as a high-quality solution, in
order to enhance PSO technique and hence to reduce significantly the convergence
time. Before describing this hybridization, we formalize the scheduling problem in the
next section.

3 Scheduling-Problem Formalization

A scheduling system is generally modeled thanks to an application, a platform and a
scheduling-performance criterion. In our case, the criterion is the makespan. In the next
sub-sections, we formalize each part of the scheduling model.

3.1 Application Formalization

Each application is modeled by a Direct Acyclic Graph G = (V, E), where V is a set of
v vertices representing tasks (jobs) Ti (1 ≤ i ≤ v), and E a set of directed edges. An edge
(i, j)2E, corresponds to a dependence constraint between task Ti and Tj. Ti is an
immediate parent task of Tj, and Tj the immediate child task of Ti. A child task cannot
be executed until all of its parent tasks are completed. A task with no parent tasks is
called an entry task and a task with no children tasks is called an exit task. We assume
that only one entry and one exit tasks exist in the graph.
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Data matrix, with v × v dimensions, represents the data volume exchanged between
tasks.

3.2 Platform Formalization

The target computing environment is made up of a set of q heterogeneous compute
resources completely interconnected. We assume that the communication between
compute resources is performed without contention and can be overlapped with
computation. We define two distinct matrices.

Computation_time matrix, with v × q dimensions, represents the execution time of
tasks on compute resources. Computation_timei, j is the estimated execution time of the
task Ti on the compute resource PCj.

The average execution time of a task Ti is:

Computation timei ¼
Pq

j¼1 Computation timei;j
q

ð1Þ

Transfer_rate matrix, with q × q dimensions, represents the data transfer rate
(bandwidth) between compute resources.

The communication time of an edge (i, j)2E in the DAG, which is the time taken to
transfer data from task Ti (executed on PCp) to task Tj (executed on PCk), is defined as
in the following:

Communication timei;j ¼ datai;j
Transfer ratap;k

ð2Þ

When tasks Ti and Tj are executed on the same compute resource, we have
Communication_timei,j equal to zero. Consequently, the average communication time
of an edge (i, j) is given in formula 3.

Communication timei;j ¼ datai;j
Transfer rate

ð3Þ

Where Transfer rate is the average of transfer rates between all the compute
resources.

3.3 Makespan Formalization

To define the makespan, we use two attributes as defined in [7]:

1. Earliest execution Start Time (EST) of a task Ti assigned to a compute resource PCj.
EST is the earliest time during which a task Ti is started. As shown in the following,
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the EST of a task T depends not only on the end of execution of the parent tasks of
T but also on the data communication time, except when T is an entry task in which
case EST is equal to zero.

ESTðTEntry;PCjÞ ¼ 0 ð4Þ

EST Ti; PCj
� � ¼ max avail j½ �; max

Tm2predðTiÞðAFT Tmð ÞþCommunication timem;iÞ
n o

: ð5Þ

Where:

– pred(Ti) is the set of immediate parent tasks of Ti.
– avail[j] is the earliest time at which the compute resource PCj is available to

execute a task, and
– AFT is the Actual Finish Time of a task as described here after.

2. Earliest execution Finish Time (EFT) of a task Ti on a compute resource PCj

corresponds to the time at which Ti ends its execution, that is, the starting time EST
of Ti added to its execution time.

EFTðTi;PCjÞ ¼ Computation timei;j þESTðTi;PCjÞ: ð6Þ

After task Ti is actually scheduled on the compute resource PCj, Actual Start
Time of the Ti is calculated as AST(Ti) = EST(Ti, PCj). In addition, Actual Finish
Time of task Ti is defined as: AFT (Ti) = EFT(Ti, PCj).

When all the DAG tasks are scheduled, the completion time of the application is
simply the AFT of the exit task.

Makespan ¼ AFTðTexitÞ ð7Þ

The objective of any scheduling algorithm is to find an assignment of tasks on
the compute resources, that minimizes the makespan among other criteria. The next
section deals with our contribution that aims to hybridize two heuristics in order to
minimize makespan when scheduling tasks in a grid computing.

4 HEFT/DPSO* Hybridization

Our objective in this research work is twofold:

• First, we aim to adapt the basic DPSO [28] for the dependent tasks scheduling
problem. In our proposed solution (DPSO*), after their assignment, tasks are
ordered in such a way that the dependencies constraints are satisfied.
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• Second, we aim to further improve the performances of our solution, i.e. the
DPSO*, by combining it with the HEFT algorithm.

Our purpose here is to adapt the DPSO algorithm so that we can minimize the
completion time of tasks when scheduled on a grid computing. Since the particles used
by PSO algorithm are initialized randomly, our idea is to inject a particular particle
initialized thanks to HEFT algorithm that is considered as a high-quality solution, in
order to reduce significantly the convergence time. Before describing our proposed
hybridization approach, we first recall the features of HEFT and describe our proposed
DPSO* approach.

4.1 Heft

HEFT (Heterogeneous Earliest-Finish-Time) [7] is one of the most widespread
scheduling-list algorithms. It determines a static scheduling of a DAG on a heteroge-
neous environment so as to minimize the makespan. As described in the following,
HEFT has two execution steps.

1. Task-prioritizing phase: HEFT uses the upward rank attribute to order the tasks of
the DAG. It is recursively defined by:

rankuðTiÞ ¼ Computation timei þ max
Tj2succðTiÞðCommunication timei;j þ rankuðTjÞÞ ð8Þ

Where succ(Ti) is the set of immediate children of task Ti. The rank is calculated
starting from the exit task.

rankuðTexitÞ ¼ Computation timeexit: ð9Þ

2. Compute-resource selection phase: Tasks are mapped to the adequate compute
resources that minimize the EFT like in the formula 6.
A variant of HEFT is the Duplication based HEFT (DHEFT) [29] that is based on
task duplication. By duplicating dependent tasks and assigning them within the
compute resources that host their children tasks, the communication overhead is
reduced, hence improving the makespan of the application.

4.2 Adapted Discrete PSO (DPSO*)

PSO is an adaptive population-based search method inspired by social behavior pat-
terns such as bird flocking and fish schooling. It can be implemented easily to solve
various function optimization problems. Its main advantage is its fast convergence.
Initially, PSO was used to solve continuous problems. However, a discrete binary
version of PSO was introduced to solve discrete optimization problems in [30].
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To solve scheduling problems, various versions of PSO were used like fuzzy PSO
in [27] or Discrete PSO in [28]. DPSO deals with scheduling independent jobs in the
grid environment. Since we are interested in this variant of PSO, we propose to adapt it
to the dependent-tasks problem then hybridize our adapted DPSO, called DPSO*, with
HEFT. Here, we explain its principle. In fact, our DPSO* algorithm initially generates
randomly a swarm of particles. A particle is analogous to a bird flying through a search
space. Each particle has a position X, a velocity V, and a fitness value. Particle’s
position is seen as a potential solution to the problem. Positions are evaluated by a
fitness function to be optimized. Also, each particle knows its best past position it has
reached (pbest) and the best position ever reached by any particle in the swarm (gbest).
The movement of particles is influenced by its actual position and its velocity. Parti-
cle’s velocity represents the direction and the magnitude of the next movement. It is
calculated by considering its actual velocity, pbest and gbest. The next paragraphs
discuss the features that characterize DPSO* algorithm.

Particle’s Position. A particle’s position represents a potential scheduling solution.
We use the direct representation [28] to encode the scheduling solutions. The position
(solution) is a vector X of v elements where v is the number of jobs. The elements of
the vector are natural numbers included in range [0, q] where q is the number of
compute resources in the grid. Hence, X[j] is the index of the computer resource where
job j is assigned by the scheduler. For example, a solution of scheduling problem with
4 jobs to schedule and 2 available compute resources is represented by a vector of 4
elements X = (1, 0, 0, 1). So, jobs 1 and 4 are assigned to the compute resource indexed
by 1 and jobs 2 and 3 are assigned to compute resource indexed by 0.

Particle’s Velocity. The velocity is a q × v matrix called V where q is the number of
available compute resources and v the number of jobs, as expressed in the following:

V½i,j� 2 ½�vmax;Vmax�; 8i 2 f1; 2; . . .; qg et 8 j 2 f1; 2; . . .; vg

Initially, position’s vectors and velocity’s matrixes of particles are randomly gen-
erated as stated in Sect. 2.

Fitness Function. In general, the fitness function used to evaluate the particles is the
makespan. Because makespan refers to the efficiency of the tasks-compute resources
mapping, we have chosen to use it as a criterion to minimize.

Finess ¼ makespan: ð10Þ

Movement. The movement is realized by firstly updating the matrix velocity and then
the vector position of each particle. After each particle is moved, the pbest and gbest
must be updated by checking the performance of each particle using the fitness
function. The movement of the particles through the search space is described by the
following algorithm.
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Particles movement algorithm:

w, c1 and c2 are the PSO parameters, w is the inertia weight, c1 is the coefficient of the
self-recognition component and c2 is the coefficient of the social component, r1 and r2
are random numbers used to maintain the diversity of the swarm.

Dependency Constraint Supported. To take into consideration the dependency
constraints between tasks, we characterize each task with the following parameters:
task number, EST, EFT, and a tag value that indicates if the task is scheduled or not.

Before scheduling, the AST and AFT folders of each task are initially unknown,
and all the tasks are tagged as not scheduled. Once DPSO* is applied, EST and EFT
folders of each task are known and all the tasks are tagged as scheduled.

To get the final scheduling, our approach operates according to the following steps:

1. All the tasks are assigned to compute resources on which they will run. This step is
similar to the basic DPSO that is suitable for independent tasks as described in [28].
However at this step, the order in which each task will start and finish its execution
on a given compute resource is not known yet due to the task dependencies.
Consequently, a second step is necessary as in the following.

2. In this second step, the start and finish execution time of each task will be defined
on each compute resource. To do so, the DAG must be traveled downwards starting
from the entry task. First, because entry task has no parent, it is tagged as scheduled
and its EST is set to 0 (see formula 4) and its EFT is calculated using formula 5.
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Second, the other tasks will wait until all their immediate parents are scheduled, in
other terms, their ESTs and EFTs are calculated according respectively to the
formulas 5 and 6.

DPSO* Algorithm. Before the start of the DPSO* execution some parameter values
must be set. Then, particles are generated and initialized randomly. After that, they
explore the search space trying to find a satisfactory solution for the problem until the
maximum number of iteration is reached. A pseudo-code of the DPSO* algorithm is
shown in the following.

4.3 The HEFT/DPSO* Hybridization

As depicted in Fig. 1, after generating the initial swarm, instead of randomly initializing
all the particles, in our proposed DPSO* algorithm, one particle is initialized with the
solution given by HEFT and other particles are randomly initialized. In this way, this
step is optimized.

5 Experimental Results

To evaluate the performance of our proposed algorithm, we have conducted some
experiments and compared the resulting tests of our hybrid HEFT/DPSO* algorithm
with HEFT and DPSO* algorithms regarding the makespan parameter. We have used a
DAG generator called RandomTaskGraphGenerator to generate our DAGs that rep-
resent the applications to schedule.

The grid environment that we considered here is composed of several heteroge-
neous compute resources which are connected by heterogeneous links.
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We assume that the computation time of each task on each compute resource, the
data volume exchanged between tasks and the data transfer rate between compute
resources are known.

For our simulation, the platform is described within a configuration file that con-
tains the following information: the number of tasks composing each application, the
number of compute resources of the platform and three matrices. The first is the
computational cost matrix with “Number of tasks × Number of compute resources”
dimension (line index represents the number of tasks and column index represents the
number of compute resources). The second is the data transfer speed matrix with
“Number of compute resources × Number of compute resources” dimension (line and
column indexes represent compute resource numbers). The value ‘0’ means there is no

Fig. 1. Flow chart of HEFT/DPSO* hybridization
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transfer between a compute resource and another; besides the transfer speed between a
compute resource and itself is null. The third one is the data matrix that contains the
data transferred between tasks. This matrix has “Number of tasks × Number of tasks”
dimension (the line and column indexes represent task numbers). The value ‘−1’ means
that there is no data exchanged between tasks. A value ‘0’ means that a task has another
kind of dependence, other than data transfer, with another task. Concerning the positive
values of the data matrix, each value corresponds to the volume of data transfer
between the two corresponding tasks.

Based on the configuration file, we conducted our measurements using five
applications with different number of tasks on a grid environment with different
number of available compute resources.

Since the results of our DPSO* and our hybrid algorithm are stochastic (due to the
DPSO behavior), we repeated each experiment 10 times and recorded the makespan
value of the best solution obtained. For HEFT, it is executed only once since it is a
deterministic algorithm.

Specific parameter settings used by our hybrid HEFT/DPSO* and our DPSO* are
described in Table 1.

In our experiments, we measured the makespan criterion by varying the number of
compute resources in one side, and the number of tasks in the other side.

5.1 First Performance Study

We used an application of 40 tasks which we run on a grid environment with different
number of available compute resources (2, 3, 5, 7 and 10), and we measured the
makespan as in Table 2.

Figure 2 shows the makespan as measured for each scheduling algorithm when
varying the number of compute resources. According to these measurements, we notice
that in respect to makespan, our hybrid HEFT/DPSO* algorithm offers better results
than DPSO* and HEFT algorithms.

Table 1. Parameter settings of DPSO.

DPSO* parameter Value

Size of swarm 50
Maximum iteration 1000
Self-recognition coefficient c1 2
Social coefficient c2 1

Table 2. Makespans comparison according to the number of compute resources.

Compute resource number HEFT/DPSO* DPSO* HEFT

2 733 736 922
3 560 580 620
5 425 437 441
7 383 392 399
10 296 329 308
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5.2 Second Performance Study

To measure the makespan criterion when varying the number of tasks, we considered
five applications with different number of tasks (10, 20, 40, 60 and 100) that we run on
a grid environment with 5 available compute resources. We compared the results of our
hybrid solution with those obtained with the following scheduling algorithms: DPSO*
and HEFT. Table 3 shows the values of the makespan as obtained in the different
situations.

Figure 3 depicts the makespan comparison between different scheduling algorithms
when varying the number of tasks. Even when varying the number of tasks, the
makespan seems to be better especially when the number of tasks is relatively
important.

According to Figs. 2 and 3, we can notice that the performances of the hybrid
HEFT/DPSO* solution and those of the DPSO* are better than HEFT heuristic
regarding the makespan criterion. Moreover, in the majority of cases, the hybrid
solution provides better makespans than the DPSO*.

Fig. 2. Makespan comparison according to the number of compute resources

Table 3. Makespan comparison according to the number of tasks.

Task number HEFT/DPSO* DPSO* HEFT

10 71 71 84
20 225 228 299
40 431 411 441
60 446 511 654
80 434 573 523
100 681 849 701
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6 Conclusion and Future Work

In this paper, a dependent task scheduling algorithm for computational grid has been
proposed based on hybridization of two heuristics. The first one is a list-scheduling
heuristic which is the well-known HEFT used to schedule DAGs. The second one is
based on a meta-heuristic called Particle Swarm Optimization (PSO). A discrete ver-
sion of PSO has been adapted to handle the scheduling of DAGs. Our objective was to
minimize the makespan of applications that are executed on a grid environment.
However, we plan to measure other criteria like energy consuming in our future work.

We showed in this article that our proposed scheduling approach gives better
results in term of completion time than HEFT and our DPSO*.

At last, we aim to complete our current research work by hybridizing the DHEFT
algorithm with a PSO technique to support the duplication of tasks in one side, and in
the other side to measure the impact of the clustering approach that groups
inter-dependent tasks into meta-tasks by using a genetic algorithm and then by
scheduling them using HEFT algorithm.
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