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Abstract We explore the importance of the dynamics of motion, and how it can be
used first to develop and to personalize intelligent systems that can understand
human motions, then to analyze motions. We propose a framework that uses not
only the kinematics information of movements but also the dynamics and allows to
classify, analyze and recognize motions, emotions in a non-verbal context. We use
the direct measure of the dynamics when available. If not we propose to compute
the dynamics from the kinematics, and use it to understand human motions. Finally,
we discuss some developments and concrete applications in the field of motion
analysis and give some experimental results using gait and simple choreography.

1 Introduction

Human motion science and motion analysis have a long history [1]. The
Renaissance has been a fruitful period in understanding the underlying mechanics
of the human body, and it is in the 17th century that Isaac Newton, and later
Lagrange, have really enabled to write the equations of motion as we know them.
The 19th century and the 20th century have then enable to measure what these
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equations were expressing, with the development of photography and motion
picture and the famous work of Muybridges and Marey to cite only the most
famous.

The last decade of the 20th century and the 21st century have been marked by
the developments of motion capture technology, with faster capture rates, higher
measuring precision and resolution. Not only can the kinematics of a motion be
measured but its dynamics too with the use of force sensors and force-plates. These
systems have paved the way for numerous applications and developments and are
now commonly used in animation, sport science, motor rehabilitation and robotics
[2–4]. On the other hand dance and performance professionals have developed
powerful systems to annotate, record and reproduce extremely complex chore-
ographies and motion sequences [5]. From the kinematics information, systematic
annotation can be done [6], in addition from a set of notations, motion kinematics
can be generated and therefore used for animation [7]. These offer an extremely
powerful mean to generate and record motion of any entities, human or not and the
annotation are crucial to understand these motions. Labanotation (also known as
Kinetography Laban) offers a compact and powerful notations system for motions.
Each motion can be described with a number of defined elements just like a score in
music. Labanotation treats of the dynamics which is expressed by the body of a
performer, and the way the performer interacts with the environment which is a
difficult concept. However Labanotation does not quantify or measure these factors.
Yet the dynamics is an important aspect of motion since entities are bound to
external forces: gravity, and then interact with their environment to create motion,
to generate more or less force, express something, convey energy. The sole kine-
matics cannot describe these interactions and thus incompletely describes motions.
Our research offers a mean to quantify and bridge the gap between classical
dynamics analysis in biomechanics and in robotics and in annotations in
Labanotation.

We present a general framework to analyze and classify motions and in par-
ticular dynamics in order to highlight some specific value: motion, emotion, or
mood that can be used to systematically define dynamics as defined in Labanotation
[8]. Our framework is based on the definition of a feature vector of the data and of a
decomposition in principal components (PC). The decomposition in the PC space is
used as the base of our classification and recognition algorithm.

The chapter is organized as follows: in Sect. 2, we first describe the terminology
used to describe a motion and its dynamics and how it relates to or differs from
Labanotation developed to analyze and record motion in dance and more generally
performances. Section 3 presents the feature vector analysis using principal com-
ponent analysis (PCA). Section 4 presents concrete examples using torso data and
contact forces. Section 5 provides some extension of the results and proposes to use
dynamics information for emotion and mood classification. Section 6 concludes this
chapter by offering some perspectives for future applications and developments.
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2 Equation of Motion and Terminology

The equation of motion (1) in its most general form [9, 10] provides a simple mean
to understand the time variant relationship between what is called in Biomechanics
[1] and Robotics [11] a motion: displacement and orientation of a reference, joint
angles of the articulated system; the forces and moment of forces applied on the
environment and the forces generated by the muscles and transmitted through the
joint torques. It also makes use of time invariant such as the body segment lengths
and the dynamic properties of these segments, such as masses and inertia.
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where Mc, Cc, Gc, Mb, Cb, and Gb, are the inertia, Coriolis and gravity matrices
calculated at the articulated chain (subscript c) and at the floating base level
(subscript b), respectively. _h, €h, and C are the joint velocity, acceleration and torque
vectors, respectively. JT is the Jacobian transpose matrix mapping the external
forces to the joint space and JTb is the Jacobian transpose of the matrix mapping the
external forces to the floating base frame. Finally, _qb, and €qb are the base Cartesian
velocity and acceleration vectors, respectively.

Depending on the available measures and the region of interest for the human
motion analysis different approaches can be considered. Some studies [12, 13]
consider only the movement of the extremities and or the torso since they are of low
dimensions, what is often called the task space in robotics [11]. Labanotation
system describes the displacement of weigh (weight transfer) and the displacement
of the parts of body, and the way of its displacements in physical space [5] (=task
space). Most of the studies on human motion consider the movement at the joint
level [14–16], what is often called the joint space in robotics [11] Labanotation
system segments a human body by body signs which specify limbs, joints, areas,
and surface of the body [17]. Concerning the motion of limbs, though space
measurement signs specify the degree of flexion of limbs, a movement does not be
considered by only change of the degree of joints in Labanotation. Both cases in
robotic and in Labanotation, data are referred as kinematics and are actually related
[11–18].

One other interesting aspect is the contact with the environment and how the
body generates force to interact with it and receives force from it [19, 20]. In
Robotics it is called external forces [11]. Finally, the computational tools of
Robotics [11] and Biomechanics [1] allow to also consider the inner forces acting
on the body such as the joint torques and the muscle activity and muscle forces. In
Labanotation, a notion of dynamics seems similar to these concepts of external and
inner force in robotics. Dynamics in Labanotation links to the quality of the
movement that varies according to flow of energy and force, different way of using
time and space during a performance [8]. However, Labanotation does not measure
external force which can affect human motion, nor inner force. Labanotation
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categorizes different accentuation, intensity or muscular tension observable during
the execution of a movement by strength measurement signs (dynamics signs) [5].
In Laban Movement Analysis (LMA), a concept of Effort, which is one of the four
components of LMA, focuses on clarifying a motion dynamics [21]. Laban
Movement Analysis is a method to analyse, observe and explore human motions,
and it differs from Labanotation (Kinetography Laban) which aims to translate
movement process taking place in four dimensions (three dimensional spaces and
time) into signs written in two-dimension [18]. Effort analyses a human dynamic
and its relations with personality or psychological reactions such as emotion,
feeling, and thinking in a descriptive and indicative way by using a visual support,
but Effort does not take account into how muscular forces generate such dynamics.

In this study we consider the dynamics in the general form of the equation of
motion, when the word refers to the Labanotation dynamics it is explicitly men-
tioned, since this term in the Labanotation refers to the left hand term of Eq. (1) and
eventually also includes Gb and Gc according to [8].

3 Feature Vector Analysis Using Principal Component
Analysis (PCA)

In this section we present a framework to classify time series of data: here motion
data using what is called a feature vector and introduced in Sect. 3.1. The feature
vectors are then analyzed using principal component analysis (PCA) to obtain
clouds of points. The points’ proximity indicates resemblance in the motion data,
and can form clusters of similar motion data as developed in Sect. 3.2. These
clusters can then be used to analyze furthermore the data, develop recognition
algorithms and so on as presented in Sect. 3.3.

3.1 Construction of the Feature Vector of a Data

A feature vector is a vector that contains characteristics that could quantify various
data qi: kinematics, dynamics, in the joint space, in the task space, contact forces,
muscle activity… It is obtained by computing the auto-correlation matrix of the
considered data qi [22]. The auto-correlation matrix Oi(l) of a given data-set is
given by Eq. (2). l is a time constant difference, here we set l = 2, because we can
reflect the information of the data change (velocity for example). Then we arrange
the elements of Oi(l) into a single column vector. The result is called the feature
vector for the given motion data qi for an iteration i. For each motion repetition or
each new motion i the feature vector is computed.
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3.2 Principal Component Analysis of the Feature Vector
of a Data

Principal Component Analysis (PCA) of the obtained feature vectors provides
information of the clustering properties of the data. A training data-set is created
with a few exemplars of data. Consequently, it gives information on the possibility
to discriminate a data-set from another data-set [22]. Applied to motion recognition,
it means that it gives information on the differences and resemblances of different
motion data-set; it allows discriminating between several motions, for which the
algorithm was trained. This algorithm functions as an unsupervised learning
algorithm, since data as data accumulates the PC space varies and clusters appear.
Depending on the resemblances, points create clusters of various shapes, in the
space of principal components, which are dense or scattered. It is also possible to
find whether a motion belongs to the training data or not, and perform incremental
learning.

Often the three dimensional space of the first three principal components is used
because it allows a visualization of the dataset. The two dimensional principal
component (PC) space can also be used if the cluster structure is clear enough using
only the first two components. The shape of a cluster highlights data-set with
similarities, while scattered points represent data-set with little similarity to each
other.

3.3 Motion Classification Algorithm

The proposed recognition algorithm is based on the clustering in the PC space of
the feature vectors [23]. In the feature vector PC space, we calculated a feature
value using the center point of each cluster and the approximate straight line by the
least-squares method of each cluster as shown in Fig. 1. It thus provides the center
and the approximate shape of the cluster. When a test data needs to be compared
with training dataset, it is projected into the PC space and the distance from each
cluster center dij as well as the distance to the linear regression hij are calculated.
The weighted sum of dij and hij gives the feature value Sij which is used to
determine whether the test data belongs to one of the existing clusters (if so which
one) or not. The smallest Sij allows to conclude that the test-data belongs to cluster
Motion j. If it is not small enough then one can conclude that it belongs to none of
the existing cluster and a new cluster can be created. The process is described in
Fig. 2, where the test data belongs to the cluster “Motion 4”.
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Fig. 1 Feature vector in the PC space forming clusters of similar motions for four examplar of
motion data (color of markers) repeated each five times (number of markers of each color). And
barycenters (round marker) and linear approximations (straight line) for each cluster
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Fig. 2 Concept of the proposed recognition algorithm using the barycenter and the linear
approximation for each clusters in the PC space of the feature vectors. The distance from each
cluster to the test-data provides a metric: feature value that allows to associate the data with a
cluster (in that case Motion 4), or without any and is the base of our recognition algorithm
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The weights of the weighted sum can be chosen to give equal weight to the
distance from the straight line and the center, or to favor one over the other
depending on the shape of the cluster. For example a rather spherical cluster may
give more weight to the distance to the center, while an oblong cluster may require
more weight on the distance to the straight line. Using the training data to define the
shape of the cluster can be used to generate automatically appropriate weights.
These weights need to be recalculated any time a new test-data is inserted in the
dataset since the addition of a new data point may change the global shape and size
of the clusters.

4 Examples of Motion Classification and Motion
Recognition

The feature vector can be obtained with any kind of data for any type of motion. It
can be used to classify motions and there resemblance, it can be used to classify
inner state that are embedded in a motion: moods and emotions. In fact it has been
shown in the literature that motion carry more information than just the simple
kinematics and dynamics, and these data relates to human inner states [24, 25]. In
the following section we show some examples of utilization of our algorithm and
the potential it can offer for automatic notations through quantification.

4.1 Using Kinematics Data in the Task Space: Gait

Gait is one of the most common task in daily life, and it is also the most important
locomotion characteristics of human and humanoids. Gait is rich in information and
it was shown extensively in our previous work that biometrics from gait is possible
[23], as well as emotion recognition using the torso motion and the head inclination,
with a simple similarity index [13]. Using the same dataset of 4 candidates and 5
repetitions of each emotional gait, which is extensively described in [13], the
individual emotion recognition rate reaches 90 % in average. For further detail in
the protocol and the results please refer to our works [13, 23] (Fig. 3).

4.2 Using Contact Force Data

The dynamics of the motion also contains rich information. Each motion has a
dynamic signature that is characteristic with the way one interact with the envi-
ronment and according to (1) it is possible to link the external contact forces and the
motion directly. We propose to use the contact force information measured by force
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plates or insole sensors for example to classify motions with the algorithm proposed
in Sect. 3. In our preliminary works [19, 24] we proved that it was possible to
recognize motions using only the contact force measurement regardless of the
person characteristics using a laboratory grade force-plate that provided the 3 forces
and the 3 moment of forces. We now propose to use Nintendo wii balance boards
that can only measure the vertical force and the moment of force in the horizontal
plane. The algorithm is tested experimentally on the data of 5 subjects for 7 types of
exercises motion.

4.2.1 Experimental Protocol

Figure 4 presents the type of motions that were performed on top of two Nintendo
wii balance boards. This set of seven prescribed motions was chosen among a
Japanese daily television exercise program (Radio Exercise). Five male candidates
(mean age 24) were shown a video of the motions they were asked to perform, prior
to the experiment. During the experiments, the same video was shown so that
candidates can synchronize with the video. Each motion was repeated five times to
insure enough training data and enough test data, in addition to the fact that a
motion sequence may consist in repeating a few times the same motion. We
measured the contact force information for each of the chosen seven sequences of
motions noted M1–M7 as shown in Fig. 4.

Fig. 3 Feature vector in the PC space for the four basic emotions in 5 gait trial for a given
individual [13]. “Sadness” strikes out the rest of the emotions. The close up on the right shows that
when sadness is not considered, each emotion also appears in a cluster, allowing for emotion
recognition in gait
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4.2.2 Results and Discussion

The recorded motions are automatically segmented [26]. The feature vectors were
calculated with the vertical forces measured by the Nintendo wii balance board and
the moment of force around the horizontal plane. In total 6 components. The
classification results are given in Fig. 7. We use the exclusion method proposed in
[23]. This suggests that with trained subject the repeatability would in-crease and
that recognition would be much easier. With un-trained subject the size of the
clusters increases. This can also be used as a quantification of training performance
or motion repeatability.

Figure 5 show the PC space obtained for all the candidates and all the motions.
Clear clusters appear in the PC space, while some data are more confused. The
exclusion method automatically removes the data that are too far to narrow the
search space of possible motions. The total average recognition rate reaches 75 %,
as shown in Table 1. The confusion matrix given in Table 2, also shows that
motions that have high similarities are more difficult to discriminate from each
other, such as M3 and M6 that only differ from the direction of the bending. This
suggests that some motions have poor repeatability: poor execution of the motion
by the candidate for example. For example if one candidate moved his arm faster or
slower, or with less amplitude in one motion, it is plotted at a point that is far from
the motion’s cluster. This suggests that with trained subject the repeatability would

M1 Arm circles

M2 Side-bending 

M3 Front bending

M4 Waist rotations 

M5 Legs and arms

M6 Touch their foot 

M7 Small jumps

Fig. 4 The seven different
types of movements recorded
on top of the forceplate for
five male candidates. Each
motion was repeated five
times, to provide sufficient
training data and test data
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increase and that recognition would be much easier. With untrained subject the size
of the clusters increases. This can also be used as a quantification of training
performance or motion repeatability in terms of dynamics.

5 Application for Emotion and Mood Classification
in Motion

5.1 Using Contact Forces

Using a similar experimental protocol as described in Sect. 4.2.1, candidates were
asked to walk on top of the force plates and to change their mood while walking.
Each data was taken 5 times. The obtained PC space is shown in Fig. 6. A clear
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Fig. 5 Feature vector in the PC space for the seven motions repeated each five times, by five
candidates. Both graphs represent the same results with a different view point

Table 1 Summary of the successful recognition rate [%] for each motion using the proposed
exclusion method

M1 M2 M3 M4 M5 M6 M7

76 72 68 76 100 72 60

The average recognition rate is 75 %

Table 2 Summary of the
confusion matrix (M1–M7)
using the proposed exclusion
method

M1 M2 M3 M4 M5 M6 M7

M1 0.76 0.24 0 0.08 0 0.04 0

M2 0.08 0.72 0 0 0 0 0.32

M3 0 0 0.68 0.04 0 0.2 0

M4 0.08 0 0 0.76 0 0.04 0.08

M5 0 0 0 0 1 0 0

M6 0.04 0 0.32 0.12 0 0.72 0

M7 0.04 0.04 0 0 0 0 0.6
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cluster structure appears and the average recognition rate for all of the four emo-
tions reaches 80 %. These results suggest that the contact forces with the envi-
ronment and thus the dynamics contain also emotional information. This allows to
quantify and classify dynamics data and thus will likely enable automatic classi-
fication and annotation of the dynamics in the Labanotation system and of the Effort
in Laban Movement Analysis.

5.2 Using Kinematics and Muscle Contractions

As explained in Sect. 2, in Labanotation the dynamics describes a wide range of
variables and among them the muscular intensity plays an important role. Muscular
information relates with the dynamics through the joint torques. Moods show a
variety of physiological manifestations that can be measured with a diverse array of
techniques. The physiological activities such as brain waves, skin responses, heart
responses and muscle responses, reflect change of a mental condition. The infor-
mation on the mood included in behavior is classified into nonverbal information,
and is also included in behavior without necessarily being based on the intention of
an agent [27]. With surface electromyography (EMG) it is possible to record the
muscular activity of surface muscles and associate it with motion and emotion. In
this section we present our findings regarding the relationship between shoulder and
upper-arm muscular contractions and mood variations. Identification of emotion
and mood using EMG information has been done with a variety of methods until
now [28–31]. Most are based on use of facial muscles. Walking is one of the key
actions when identifying the information on humans. It is known that human
walking includes information that is specific to the individual and be affected by

Fig. 6 PC space obtained
from the contact force
information while walking
with different moods: normal,
sadness, anger, happy. Each
form a cluster charateristic
showing that emotions can be
recognized through the way
one interact with the
environment dynamically
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mood [13, 24, 25]. That is, it is thought that the EMG analysis of walking is
effective in the identification of human mood. In this work, we made a subject walk
in various mood states and answer psychological tests that measure the mood. We
use two types of tasks: music listening (affective value scale of music (AVSM) and
multiple mood scale (MMS) [32]); and numerical calculation for evoking different
moods. It is expected that numerical calculation evokes either a more aggressive or
frustrated mood upon failure, or self-satisfaction when successful, than listening to
music. Figure 7 shows the experimental protocol of our experiment. In foreground
space the task is listening to calm music (odd numbers in the green circles). In the
background space the subject’s task which is either listening to music (uplifting and
depressive) or doing the numerical calculation (even numbers in the green circles).
Inserting a task of listening to calm music between each other tasks allow to
stabilize the moods as can be seen from Fig. 7-right.

Statistical features of EMG signals are calculated using Fast Fourier Transform
and Principal Component Analysis. These statistical features are related with psy-
chological test scores obtained from a two-dimensional Mood Scale (TDMS) [33],
using regression analysis.

The two types of tasks are performed on two laptop computers. Moreover, the
tasks are done by turns at two distant spaces in the room, and the subjects walk back
and forth between them. After completion of each task, the subjects fill in ques-
tionnaires about their mood at that time, and then the subjects walk to the other
space. The TDMS test consists of eight questions on a 6-point Likert scale, and can
quantify the state of mind at the time of measurement. The result of TDMS is

Fig. 7 Experimental setup for the mood changing experiment. Left The experimental setup at
College de France with the two working stations and the free space for walking in between. Right
Principal component analysis of the mood scores of the psychological TDMS test at the different
stages of the experiments. The number in the green circle corresponds to the number of
occurrence. It shows that the mood changes with time during the experiment as expected
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expressed as a score of “pleasure” and “arousal” (from −20 to 20). In other words,
high pleasure indicates a comfortable and positive state, high arousal indicates an
excited and active state. The test is filled in less than 1 min, thus it is suitable for
temporal observation of mood changes. The subjects repeated that work 8 times.
Subjects were not informed that the motion for interest in our study was walking to
insure walking as naturally as possible.

Surface EMGs of the biceps, triceps, middle deltoids, and upper trapezius were
recorded. The mean power frequency MPF obtained by Fast Fourier Transform
(FFT) of the EMG data were generated for each muscles for the PCA.

MPF ¼
R1
0 fP fð ÞdfR1
0 P fð Þdf ð3Þ

where P is the power of the signal, and f is its frequency.
The PCA was performed for each frequency range over all the muscles. Finally a

multiple linear regression analysis (MRA) was performed on the principal com-
ponent score as an explanatory variable and the amount of variation in the TDMS
pleasure score which is the difference between each pleasure score and the previous
one as a response variable. By considering the score not using an absolute value but
using a relative value, we can take into consideration the individual difference of the
reaction to a stimulus.

5.2.1 Experimental Results and Discussion

As a result of the regression analysis as shown in Fig. 8, we can confirm a sta-
tistically significant positive correlation between the muscle activity and the arousal
level (p < 0.001) with R = 0.59. This correlation is promising in using muscle
information to predict moods. Moreover muscle contraction are related to more
observable variable such as joint stiffness, allowing for quantification of
mood/emotion through joint stiffness.

Fig. 8 Experimental results. Left Mean power frequency of EMGs of muscles around the
shoulders and psychological TDMS test scores of “pleasure” correlates. EMGs can be used to
predict the mood state. Right Loading factors of the different muscles involved
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6 Conclusion and Perspectives

This chapter emphasizes on considering not only the kinematics information of a
motion but also the dynamics information, and in particular the contact forces with
the environment when analyzing human motion or simulating motions for anima-
tion or humanoid robotics. Indeed, the dynamics play an important role in robotics
to control the stability and generate smooth and safe motions. In biomechanics it
allows to understand the interaction of the human body with the environment and in
Labanotation, dynamic is important criteria to observe and describe the way and the
quality of movement and performance. The theory of Effort in Laban Movement
Analysis treats exclusively a study of dynamic and explores its relation with psy-
chological state with using a rigorous observation grid [21]. Using a quantification,
a classification and a systematic analysis of the dynamics as presented here will
allow to generating systematic dynamics annotations, both as understood in
robotics [11] as well as in the Labanotation [8]. This systematic notations will help
in bridging the gap of terminology of both communities and in providing a general
framework and understanding that will benefit both communities. Our promising
results in using contact forces, muscle activity and further joint stiffness to
understand mood and emotions are also crucial to generate motions that can convey
feelings, and understand these motions when performed by humans.

If some of these results are at a preliminary stage, we are confident that they will
lead to outstanding outcome in human motion science and further to humanoid
motion generation.
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