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Abstract. Optimal usage of data center resources has become one of the most 
important topics in the cloud computing research community. Increased effi-
ciency alongside decreased power consumption becomes a desired goal. Crucial 
point in achieving this goal is the process of virtual machine placement. In this 
paper, we analyze and compare several heuristics aiming to evaluate their capa-
bilities with special attention to balanced resource usage versus total number of 
used physical machines. The presented results identify the preferred placement 
heuristic that achieve maximum balancing performances based on the data cen-
ter characteristics, size of the cloud services and their diversity. 
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1 Introduction 

Cloud computing becomes today’s prevalent computing trend. The centralized re-
sources that reside inside the data centers are flexibly answering to the elastic online 
demand from cloud users [1]. The key technology that enables cloud computing is 
virtualization, facilitating the separation of the physical servers from the operating 
systems and user applications, thus making the usage of computing resources more 
economically consolidated. While seeking to maximize the utilization of the available 
hardware resources, datacenters are simultaneously striving for two potentially di-
verging targets: maximum performance and minimum energy usage.  

The cloud users’ demand in Infrastructure as a Service (IaaS) environment is 
represented as a set of tightly coupled virtual machines (VMs) that are governed by 
the same user. This set of user controlled VMs represents a cloud service [2] that can 
be comprised of one or multiple VMs with possibly different resource demands (CPU, 
memory, etc.).  

Key component of the cloud datacenter physical machines (PMs) resource manager 
is the VM placement algorithm that maps the demanded virtual machines resources 
onto carefully selected target PMs. The mapping abilities of these algorithms are cru-
cial for achieving the best physical resources consolidation and maximizing the profit. 
Opposed to traditional grid computing and the problem of job scheduling, in the cloud 
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environment the arrival of cloud service demands can not be controlled by the broker. 
This situation makes the employment of a batch offline method for deciding the best 
placement of all cloud services at once an unacceptable solution. Thus, the VM 
placement algorithm in the case of cloud computing VM placement needs to work 
online: dynamically deciding on the placement of the VMs belonging to a given cloud 
service independently as the services arrive in the requests queue.   

The VM placement problem represents an instance of the bin-packing problem, 
which is known to be strongly NP-hard [3]. In our case the PMs represent the bins 
that are to be packed with items, i.e. VMs. Finding optimal solutions to this problem 
has been a big challenge for the research community which is intensified in the recent 
period by considering the most general case of bin-packing where both bins and items 
are described as a vector in then-dimensional space, thus allowing the VMs and PMs 
to be defined with their resources, each dimension representing one type of resource 
(e.g., CPU, RAM, etc.)[4]. Opposed to the one-sized bins problem, where once a 
placement is made on a given PM, it becomes not-usable even though there are still 
available resources on it; the variable bin size across resources [5] enables the repre-
sentation of non-homogenous data centers that have potentially different resources 
available after each cloud service placement. The usual methodology for solving such 
problems is to build a mathematical representation or a metric of the resource utiliza-
tions by different VMs and PMs [6]. This metric is typically a function of the norma-
lized resource utilization of individual resource types, sometimes called resource uti-
lization vector. Some approaches use metric that is a weighted sum of the resources 
[7], while others use a more complex mathematical function of resources [8]. 

The final goal of all VM placement algorithms is to map the cloud service into a 
minimum number of bins available, which is commonly implemented as a heuristic 
approach that aims to minimize or maximize a given objective function based on the 
metrics used to describe the problem. Thus, the most popular approaches fall into the 
greedy types of First Fit or Best Fit heuristics, wherein the ordering is defined using a 
size function which returns a scalar for each bin and item. Note that all more complex 
approaches using multi-objective functions are still based on the combination of the 
heuristic approaches that are examined in this paper. While striving for most efficient 
packing, the difference in the implementations can also be in whether they take into 
account balanced resource utilization [9]. Although, load balancing seems indifferent 
on the small scale of one cloud service placement, it has major repercussions on the 
overall resource utilization and performances of the entire datacenter. The main ob-
jective in this case is to minimize the number of used PMs but in such a way that the 
used resources are optimally utilized, i.e. the PMs have a small amount of wasted 
unutilized resources along any dimension of the resource vector.    

Thus, in this paper we aim to analyze the performances of the most popular online 
VM placement heuristic algorithms from the balancing efficiency point of view and 
how it is influenced by the different characteristics of the datacenter PMs and the 
demanded cloud services from the user side. The rest of the paper is organized as 
follows: In the next section we describe the variable size n-dimensional implementa-
tion of four different heuristics. In section 3 the results from the extensive perfor-
mance analysis are presented. The final section concludes the paper. 
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2 VM Placement Heuristics 

The most commonly implemented VM placement algorithms are based on the follow-
ing heuristics: BinCentric(BC), DotProduct (DP), Vector Based Load Balancing 
(VBLB) and Vector Based Consolidation (VBC). Since we are mostly interested in 
the balancing performance of these heuristics, in the first part of this section we give 
just a brief overview of their packing strategy. For more information please refer to 
the corresponding references. 

The Bin centric [10] heuristic belongs to the Best Fit Decreasing group. The pack-
ing starts from the smallest bin and iterates while the list of bins is not empty. It con-
tinuously places the biggest item that can fit into the selected bin until such items no 
longer exist, after which the selected bin is removed from the list. The scalar sizes of 
the items and bins used for ordering inside this heuristic are calculated as weighted 
sums of the respective vector components (requirements for items, and remaining 
capacities for bins). Among the different proposed scaling coefficients used for the 
weighted sums, we used the best performing BC with capacity normalized fitting 
implementation where the normalization is based on bins capacities.  

The DotProduct [11] approach is an example of First Fit Decreasing heuristic. Its 
goal is to maximize the weighted similarity of the bin and the item, i.e. the scalar 
projection of the item requirements onto the bin remaining capacities. In our DP im-
plementation, we normalize both requirements and capacities, thus minimizing the 
angle between the bin and item vectors. Note that, in order to determine the maximum 
similarity, dot products for all pairs of bins and items must be computed, which low-
ers the performance of this heuristic in terms of computational time.  

Opposed to the previous approaches, the Vector Based Load Balancing [6] heuris-
tic aims at balancing the load of the bins. Inside this heuristic, the current load of the 
bins falls into one of three categories: low, medium and high, with respect to the nor-
malized resource utilization vector. When placing a new item, the heuristic tries to 
discover the least loaded bin that has complementary resource usage with respect to 
that item.  

In the cases when the main goal is to minimize the number of used bins, instead of 
load balancing, Vector Based server Consolidation [6] heuristic can be used. In this 
situation, when placing a new item, the heuristic tries to find the bin with the highest 
load that has complementary resource usage with respect to the item.  

2.1 Dynamic Online VM Placement Illustration 

As a first step towards discovering the underlying VM placement mechanisms of the 
discussed heuristics we present an overview of the online placement efficiency in 
terms of balanced physical machines for 3 sample cloud services (see Fig.1).  

Each quadrant represents a single PM described with two normalized physical re-
sources (CPU – x axes, and RAM memory – y axes). Each cloud service is comprised 
of different VMs and their placement across the PMs is color coded (yellow, green, 
blue). The light blue rectangles represent the free capacity still available for further 
use on the PM.  
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If during VM placement, one of the PM’s resources becomes depleted (the VM 
rectangle reaches the borders of the PM’s quadrant, as marked on Fig.1-a), the rest of 
the PM’s resources are being wasted. For achieving efficient use of the data center 
resources this type of placement is not desirable and eventually leads to using a larger 
number of PMs that increases the costs and power usage of the datacenter. Thus, one 
of the important characteristics of the chosen VM placement heuristic must be uni-
form, i.e. balanced, usage of the PMs that should (in ideal cases) follow the main 
resource utilization vector represented as the main diagonal of the PM quadrant.  

 

 
a) Bin Centric packing b) DotProduct packing 

 
c) Vector based Load Balancing packing d) Vector based Consolidation packing 

Fig. 1. Placement decision for three sample cloud services using different heuristics 

When comparing the different heuristics, we can conclude that the Bin Centric (BC) 
packing heuristics exhibits the worst performances on balanced packing of the pre-
sented sets of VMs, while on the other hand the DotProduct (DP) heuristic achieves 
the maximum possible balance. However, in order to achieve the maximum balancing 
DotProduct uses 10 PMs compared to the other 3 heuristics that need only 9 PMs to 
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accommodate the same VMs. The two variations of the Vector based packing differ in 
the placement of two very small VMs due to the consolidation effort of the second 
heuristic, which results with slightly better packing. Another remark that should be 
noted for the presented placement is the small number of variations in the placement 
decisions across all heuristics, which leads to the conclusion that, when compared on 
a larger scale, the heuristics should have similar performances, with DotProduct using 
a slightly larger number of PMs in order to achieve better balancing. However, as 
presented below, this is not the case. 

3 Performance Analysis 

In order to analyze the performances of the four heuristics in the case of online VM 
placement of a large number of cloud services thus recreating a typical cloud datacen-
ter setting, we defined a number of different simulation scenarios by varying the main 
cloud service description parameters, as well as, the datacenter PMs resources. The 
results presented in the rest of the paper are obtained different cases of online place-
ment of 1000 to 8000 cloud services, each defined with minimum 5 and maximum 20 
VMs. Each VM is randomly generated with 1, 2 or 4 cores and 2, 4, or 8 GB RAM. 
The VMs are to be placed inside a 5000 or 10000 PMs homogenous cloud datacenter 
wherein each PM has 8 cores and 16 GB RAM, or 16 cores and 32 GB RAM. Note 
that the heuristics are deciding on the placement on each cloud service separately, one 
by one, i.e. online VM cloud service placement, as opposed to the batch mode where 
all cloud services are placed at once as a complete set of VMs. 

 

 
Fig. 2. VM placement diversity across PMs  

We first tested the persistence of the DP’s typical behavior that was already noticed in 
Fig. 1. Namely, while DP places one set of VMs that belong to the same cloud ser-
vice, it aims at placing each VM on a different PM. This however is not a regular case 
for the other heuristics, where there are also large number of cases when 2, 3 or more 
VMs that belong to the same cloud service are placed on the same PM as it is 
represented in Fig. 2. This behavior exhibited by DP is one of the main reasons for 
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achieving the best balancing compared to the other heuristics and is due to the DP’s 
aim towards a global minimum when observing the total placement of all cloud ser-
vices. However, this strategy’s pitfall can be manifested in the case of having a frac-
tion of cloud services consisting of an extremely high number of VMs. In this case 
DP, following the motto of 1 VM on 1 PM per cloud service, will have to allocate 
new PMs, while the other heuristics will consolidate the placement better and yield to 
better resource usage. 
 

 
a) Bin Centric packing b) DotProduct packing 

 
c) Vector based Load Balancing packing d) Vector based Consolidation packing 

Fig. 3. Balancing VM placement “heat” maps 

The resource usage of a cloud datacenter with 5000 PMs is given in the corresponding 
heat maps in Fig.3after the online placement of 1500 cloud services, each with max 
10VMs. The cell annotation represents the number of PMs that have the correspond-
ing used resources (CPU x-axis, RAM y-axis).Note that lowest leftmost cell (0,0) 
represents the empty, not-used PMs, and the top right cell (8,16) contains the number 
of fully occupied PMs that have no wasted resources. 

All four heat maps depict the dense packing ability of the chosen heuristics, where 
there is a very small number of PMs that are not close to fully packed according to at 
least one resource dimension. When considering the performances of the different 
heuristics via the number of used PMs only, the absolute winner is DP, followed by 
VBLB and VBC that show slight differences, and BC as the worst performer. We use 
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the represented heat maps in order to gain a deeper insight on the way these perfor-
mances are achieved, especially from the point of view of balanced or wasted re-
sources, and future usage of the not fully used PMs. 

Following the examples from Fig. 1, we define the usage of the resources to be ba-
lanced if the majority of the PMs are within the region around the main diagonal 
(consider the annotation on Fig. 3-b). Outside this region the PMs can be unbalanced 
due to the higher number of cores used while a larger portion of the memory remains 
unused, the so-called CPU imbalance region, or due to the higher quantity of memory 
used while there is a large number of cores still available, the MEM imbalance region. 

 
Fig. 4. Comparison of the balanced PM resource usage 

The performances of the different heuristics in terms of number of PMs in the ba-
lanced versus imbalanced region, are presented in Fig. 4. As it is expected, DP has 
almost all of the PMs (98%) placed in the balanced region, with only a few in the 
memory unbalanced region. Also, DP has the highest number of still usable PMs 
(used CPU<8, and used Memory<16) upon the placement of the full set of cloud ser-
vices. Next in performances are VBLB and VBC, while BC is last, having lowest 
number for both balanced and usable PMs. 

In order to further understand the influence of the PM resource capacity on the 
heuristics behavior, we compared the balancing performances of the placement deci-
sions for the cases when the cloud data center is built using PMs with 8 cores and 16 
GB RAM vs. 16 cores and 32 GB RAM. As shown in Fig. 5, the PM capacity does 
not strongly affect DP’s balancing performances, although it performs slightly better 
when the PMs have smaller capacity. Aside from DP, when increasing the PM re-
source capacity, the heuristic performances are decreasing because of the accentuated 
non-balanced packing when compared to DP. 

An interesting observation is that VBC down-performs relative to the rest of the 
heuristics, with its performances falling in the case when larger PMs are used. Thus, 
when working with PMs with higher resource capacity, the difference between the 
two vector-based approaches is more pronounced.  

The differences in performances per heuristic that can be observed in Fig. 5 are due 
to the different nature of the cloud services that are to be placed, or more precisely, 
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Balancing performances of online VM placement heuristics in cloud data centers is 
crucial for determining the long-term behavior and efficiency of the data center as a 
whole. While using heuristics that provide best balancing (DP) ensures the best possi-
ble usage of the PMs resources, there are cases when due to dimensioning mismatches 
the price that will be paid for an efficient resource usage is the engagement of a larger 
number of PMs leading to higher power consumption inside the datacenter.  

Thus, a careful highly tailored choosing of the VM placement heuristic that is 
going to be employed needs to be made in order to align the datacenter physical cha-
racteristics with the users demand in the form of cloud services. The overall results 
show that the BC heuristics is the worst choice for all analyzed cases no matter the 
type of cloud services or underlying resource capacities. On the other side, DP holds 
best performances for well-matched cloud service – physical capacities. Hence, if 
there is no prior knowledge on the compatibility of cloud service demands with the 
available physical resources, the conservative approach would be to use vector load 
balancing, while vector consolidation exhibits slightly lower performances.  
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