
Chapter 5
Applications and Extensions

We are now at a point in this book where we have seen a number of different al-

gorithms for the graph colouring problem and have noted many of their relative

strengths and weaknesses. In this chapter we now present a range of problems, both

This chapter also considers a variant of the graph colouring problem where not all

of the graph is visible to an algorithm, or where the graph is subject to change over

time. Such problems can arise when setting up wireless ad hoc networks and also

in some timetabling applications. We then go on to consider problems that extend
and therefore generalise the graph colouring problem, specifically list colouring,

equitable colouring and weighted graph colouring. Detailed real-world applications

of graph colouring are also the subject of Chapters 6, 7 and 8.

Note that, in contrast to the rest of this book, the first two sections of this chapter

are concerned with colouring the faces of graphs and the edges of graphs as opposed

to the vertices. As we will see, the latter two problems can be converted into equiva-

lent formulations of the vertex colouring problem using the concepts of dual graphs
and line graphs respectively. However, it is often useful for face and edge colouring

problems to be considered as separate problems; hence we will often use the term

“vertex colouring” instead of “graph colouring” to avoid any ambiguities.

5.1 Face Colouring

In the face colouring problem we want to colour the spaces between vertices and

edges, as opposed to the vertices themselves. Face colouring is specifically con-

cerned with planar graphs which, as we saw in Chapter 1, are graphs that can be
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theoretical- and practical-based, for which such algorithms might be applied includ-

ing face colouring, edge colouring, pre-colouring, solving Latin squares and sudoku

puzzles and testing for short circuits on printed circuit boards. Note that these prob-

lems actually represent special cases of the general graph colouring problem in that

their underlying graphs conform to specific topologies, as we shall see.
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drawn on a plane so that no edges cross one another. When drawn in this way pla-

nar graphs can be divided into faces, including one unbounded face that surrounds

the graph. Figure 5.1, for example, shows a planar graph comprising ten faces: nine

bounded faces and one unbounded face (numbered 10 in the figure). The boundary
of a face is the set of edges that surrounds it and, when the face is bounded, these

edges form a cycle.

It is evident by inspecting Figure 5.1 that the number of faces seems to be re-

lated to the number of vertices and edges of the graph. In fact, this relationship can

be stated explicitly due to an elegant theorem that was first noted in the 1700s by

mathematician Leonhard Euler (1707–1783):
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Fig. 5.1 Planar graph with n = 15 vertices, m = 23 edges and f = 10 faces

Theorem 5.1 (Euler’s characteristic) Let G be a planar graph with n vertices, m
edges, and f faces. Then

n−m+ f = 2

Proof. The proof is via induction on the number of faces f . If f = 1, then the graph

contains no cycles and must therefore be a tree. Since the number of edges in a tree

m = n−1, the theorem holds because n− (n−1)+1 = 2.

Now assume f ≥ 2, meaning that G must now contain at least one cycle. Let

{u,v} be an edge in one of these cycles. Since this cycle divides two faces, say F1

and F2, removing {u,v} from G to form a subgraph G′ will have the effect of joining

F1 and F2 with all other faces remaining unchanged. Hence G′ has f −1 faces.

Let n′, m′, and f ′ be the number of vertices, edges, and faces in G′. Thus, n′ = n,

m′ = m−1, f ′ = f −1, and n−m+ f = n′ −m′+ f ′ = 2. ��
We see that Euler’s characteristic does indeed hold for the example graph in

Figure 5.1 since n−m+ f = 15−23+10 = 2 as required.

When considering the face colouring problem it is necessary to restrict ourselves

to planar graphs that contain no bridges. A bridge is defined as an edge in a graph

G whose removal increases the number of components. When a graph contains a

bridge {u,v}, the unbounded face will surround the graph, but will also feature

{u,v} on its boundary twice, making it impossible to colour. Hence planar graphs

containing bridges are not considered further in this section.

Let us now consider the maximum number of edges that a graph can feature

while retaining the property of planarity. Consider a connected planar graph G with

n vertices, m edges, and f faces. Also write fi for the number of faces in G that are

surrounded by exactly i edges in their boundaries. Clearly ∑i fi = f and, assuming

that G does not contain a bridge,
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∑
i
= i fi = 2m (5.1)

since every edge is on the boundary of exactly two faces. We can use this rela-

tionship in conjunction with Euler’s characteristic to give an upper bound on the

number of edges in a planar graph. This result also involves knowledge of the girth
of a graph, defined as follows.

Definition 5.1 The girth of a graph G is the length of the shortest cycle in G. If G
is acyclic (i.e., contains no cycles), then its girth equals infinity.

Theorem 5.2 Let G be a planar graph with n ≥ 3 vertices, m edges, f faces and
no bridges. Then G has at most 3n− 6 edges. Furthermore, if G has a girth g (for
3 ≤ g ≤ ∞), then:

m ≤ max

{
g

g−2
(n−2),n−1

}

Proof. For g = 3, we get max{ 3
3−2 (n−2),n−1}= 3(n−2), giving m ≤ 3n−6 as

required. Hence we only need to prove the second assertion above.

If g > n, then this implies g = ∞ meaning that G has no cycles and is therefore

a tree. Hence, m = (n−1)≤ n. Now assume that g ≤ n and that the assertion holds

for smaller n’s. Also assume without loss of generality that G is connected. From

earlier we know that:

2m = ∑
i

i fi = ∑
i≥g

i fi ≥ g∑
i

fi = g f .

Hence by Euler’s characteristic (Theorem 5.1), we get:

m+2 = n+ f ≤ n+
2

g
m

and so

m ≤ g
g−2

(n−2)

as required. ��

Theorem 5.2 can often be used to decide whether a graph is planar or not. For

example, the complete graph with five vertices K5 cannot possibly be planar because

it has n = 5 vertices and m = 10 edges, meaning m ≤ 3n−6 is not satisfied. As an-

other example, the complete bipartite graph with six vertices G = (V1,V2,E), where

E = {{v,u} : v ∈ V1,u ∈ V2} and |V1| = |V2| = 3, is also not bipartite since it has

m = 9 edges, n = 6 vertices, and a girth of 4, meaning that m = 9 > 4
4−2 (6−2) = 8.

Less obvious, but profoundly more useful, however, is the amazing fact that a graph

is planar if and only if it does not contain a subgraph that is a subdivision of ei-

ther of these two examples. This result, due to Kuratowski (1930), has been used

alongside similar results to help construct a number of efficient (polynomial-time)
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algorithms for determining whether a graph is planar or not, including the Path Ad-

dition method of Hopcroft and Tarjan (1974) and the more recent Edge Addition

method of Boyer (2004).

5.1.1 Dual Graphs, Colouring Maps, and the Four Colour
Theorem

The close relationship between the problems of vertex colouring and face colouring

becomes apparent when we consider the concept of dual graphs. Given a planar

graph G, the dual of G, denoted by G∗, is constructed according to the following

steps. First, draw a single vertex v∗i inside each face Fi of G. Second, for each edge

e in G, draw a line e∗ that crosses e but no other edge in G, and that links the two

vertices in G∗ corresponding to the two faces in G that e is separating.

G G* 

Fig. 5.2 Illustration of how to convert a planar graph G to its dual G∗

This procedure is demonstrated in Figure 5.2. Here, the vertices in G are shown in

grey, and the vertices in G∗ are shown in black. G has six faces in total, five bounded

faces and one unbounded face. The unbounded face is represented by the top vertex

of G∗ in the example and is made adjacent to all vertices in G∗ whose corresponding

faces in G have an edge on the exterior of the graph. Note that G∗ may also have

multiple edges between a pair of vertices, as is occurring on the right-hand side of

the example graph.

It is clear from the figure that the process of forming duals is reversible: that is,

we can use the same process to form G from G∗. It is also clear that because G is

planar, its dual G∗ must also be planar. We are also able to state simple relationships

between the number of vertices, faces and edges in G and G∗ such as the following:

Theorem 5.3 Let G be a connected planar graph with n vertices, m edges, and f
faces. Also, let G∗ be the dual of G, comprising n∗ vertices, m∗ edges, and f ∗ faces.
Then n∗ = f , m∗ = m and f ∗ = n.

Proof. It is clear that n∗ = f due to the method by which duals are constructed.

Similarly m∗ = m because all edges in G∗ intersect exactly one edge each in G (and

vice versa). The third relation follows by substituting the previous two relationships

into Euler’s characteristic applied to both G and G∗. ��
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Recall from Chapter 1 that the Four Colour Theorem (or “conjecture” as it was

at the time) was originally stated in 1852 by Francis Guthrie, who hypothesised

that four colours are sufficient for colouring the faces of any map such that neigh-

bouring faces have different colours. In the context of graph theory, a map can be

Fig. 5.3 The territories of mainland Australia (left), and the corresponding planar graph (right)

represented by a bridge-free planar graph G, with the faces of G representing the

various regions of the map, edges representing borders between regions, and ver-

tices representing points where the borders intersect. An illustration using a map of

Australia (excluding the Australian Capital Territory) is given in Figure 5.3.

The following theorem now reveals the close relationship between the vertex

colouring and face colouring problems:

Theorem 5.4 Let G be a connected planar graph without loops, and let G∗ be its
dual. Then the vertices of G are k-colourable if and only if the faces of G∗ are
k-colourable.

Proof. Since G is connected, planar, and without loops, its dual G∗ is a planar graph

with no bridges. If we have a k-colouring of the vertices of G, then each face of G∗

can now be assigned to the same colour as its corresponding vertex in G. Because

no adjacent vertices in G have the same colour, it follows that no adjacent faces in

G∗ will have the same colour. Thus the faces of G∗ are k-colourable.

Now suppose that we have a k-colouring of the faces of G∗. Since every vertex

of G is contained in a face of G∗, each vertex in G can assume the colour of its

corresponding face in G∗. Again, since no adjacent faces in G∗ are allocated the

same colour, this implies no adjacent vertices in G are given the same colour. ��

This result is important because it tells us that the faces of any map, represented

as a planar graph G∗ with no bridges, can be k-coloured by simply determining

a vertex k-colouring of its dual graph G. The result also tells us that we can take

any theorem concerning the vertex colouring of a planar graph and then state a

corresponding theorem on the face colouring of its dual, and vice versa. One elegant

theorem that arises from this characteristic demonstrates a link between a special

type of topology known as Eulerian graphs and graphs that are bipartite.

Definition 5.2 A graph G is Eulerian if and only if the degree of all vertices in G
are even.
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This gives rise to the following theorem:

Theorem 5.5 The faces of a planar graph with no bridges G are 2-colourable if
and only if G is Eulerian.

Proof. Recall that a graph’s vertices are 2-colourable if and only if it is bipartite.

Hence we need to show that the dual of any planar Eulerian graph is bipartite, and

vice versa.

Let G be an Eulerian planar graph. By definition, all vertices in G are even in

degree. Since the degree of a vertex in G corresponds to the number of edges sur-

rounding a face in the dual G∗, the edges surrounding each face in G∗ constitute

cycles of even length. Hence according to Theorem 2.8, G∗ is bipartite.

Conversely, let G∗ be bipartite. This means G∗ contains no odd cycles and, since

G is planar, all faces are surrounded by an even number of edges. Hence all vertex

degrees in G are even, making G Eulerian. ��

(a) (b) (c) 

Fig. 5.4 Examples of face colourings using two colours

Practical examples of Theorem 5.5 arise in the tiling industry where we are often

interested in laying tiles of two different colours such that adjacent tiles do not

have the same colour. Two example patterns are shown in Figure 5.4(a) and (b).

Close examination of these patterns reveals the underlying graphs to be Eulerian as

expected. Another example arises in the childhood doodling game in which a single

connected line is drawn on a piece of paper, with the faces then being coloured

using just two colours. Figure 5.4(c) shows an example of this game. We see that

each time the line crosses itself, the degree of the vertex existing at this intersection

increases by 2; hence vertex degrees are always even as expected.

The connection between face k-colourings of maps and vertex k-colourings of

their planar duals allows us to conclude that the Four Colour Theorem for maps

is equivalent to the statement that the vertices of all loop-free planar graphs are 4-

colourable.1 This concept was hinted upon in Section 1.2 where, in Figure 1.7, we

took a map of Wales, constructed its (planar) dual graph, 4-coloured its vertices, and

then converted this solution back into a 4-colouring of the faces of original map. The

task of proving that four colours are sufficient for the vertices of any planar graph

(and therefore the faces of any map) was formally one of the most famous unsolved

problems in the whole of mathematics. It was eventually solved in controversial

circumstances by Kenneth Appel and Wolfgang Haken in 1976. Their proof is both

1 Recall that loops (i.e., edges of the form {vi,vi}) are disallowed in the vertex colouring problem.
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very long and involved using months of computation time to test and classify a

large number of different graph configurations. Consequently, we end this section

by restricting ourselves to proving the weaker Six and Five Colour Theorems, before

giving a general history of the Four Colour Theorem itself.

Theorem 5.6 The vertices of any loop-free planar graph are 6-colourable.

Proof. Let G be a planar graph with n ≥ 3. According to Theorem 5.2, G has at

most 3n−6 edges. This means that the minimal degree of G cannot exceed 5. Thus

in every subgraph G′ of G there is a vertex with degree of at most δ = 5. Therefore,

according to Theorem 2.6, we get χ(G)≤ 5+1. ��
With some additional reasoning we can improve this result to get the following:

Theorem 5.7 (Heawood (1890)) The vertices of any loop-free planar graph are 5-
colourable.

Proof. For contradictory purposes, suppose this statement to be false, and let G be a

planar graph with chromatic number χ(G) = 6 and a minimal number of vertices n.

Because of Theorem 5.2, G must have a vertex v with deg(v)≤ 5. Let G′ = G−{v}.

We know that G′ can be 5-coloured using, say, colours labelled 1 to 5. Each of

these colours must also be used to colour at least one neighbour of v; otherwise

G would also be 5-colourable. We can now assume that v has five neighbours, say

u1,u2, . . . ,u5, arranged in a clockwise fashion around v, with colours c(ui) = i.
Now denote by G′(i, j) the subgraph of G′ spanned by vertices with colours i and

j. Suppose that u1 and u3 belong to separate components of G′(1,3). Interchanging

the colours 1 and 3 in the component of G′(1,3) containing u1 will give us another

feasible 5-colouring of G′. However, in this 5-colouring, both u1 and u3 will have

the same colour, meaning that a spare colour now exists for v. This implies that G is

in fact 5-colourable.

Since u1 and u3 must belong to the same component G′(1,3), we now deduce

the existence of a path P1,3 in G′ whose vertices are coloured using colours 1 and

3 only. Similarly, G′ must also contain a path P2,4 using colours 2 and 4. However,

this is impossible in a planar graph since the cycle u1,P1,3,u3 separates u2 from u4,

meaning that P2,4 cannot be drawn without edges crossing (see Figure 5.5). Hence

G cannot be planar. ��
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Fig. 5.5 Depicting paths P1,3 and P2,4 used in the proof of Theorem 5.7. Colour labels are written
inside the vertices
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5.1.2 Four Colours Suffice

In the proof of Theorem 5.7 we make use of the notation G(i, j), which denotes

the subgraph induced by taking only those vertices coloured with colours i and j
in G. Note that individual components of G(i, j) are actually Kempe chains (see

Definition (3.1)). These are named after the mathematician Alfred Kempe (1849–

1922), who used them in his infamous false proof for the Four Colour Theorem in

1879.

As we saw in Chapter 1, the conjecture that all maps can be coloured using at

most four colours was first pointed out in 1852 by Francis Guthrie (1831–1899),

who, at the time, was a student at University College London. Guthrie passed these

observations on to his brother Frederick who, in turn, passed them on to his mathe-

matics tutor Augustus De Morgan (1807–1871). De Morgan was not able to provide

a conclusive proof for this conjecture, but the problem, being both easy to state

and tantalisingly difficult to solve, captured the interest of many of the most no-

table mathematicians of the era, including William Hamilton (1805–1865), Arthur

Cayley (1821–1895) and Charles Pierce (1839–1914). Indeed, over time the Four

Colour Conjecture was to become one of the most famous unsolved problems in all

of mathematics.

In 1879 a student of Arthur Cayley, Alfred Kempe, announced in Nature maga-

zine that he had proved the Four Colour Theorem, publishing his result in the Amer-
ican Journal of Mathematics (Kempe, 1879). In his arguments, Kempe made use

of his eponymous Kempe chains in the following way. Suppose we have a map in

which all faces except one are coloured using colours 1, 2, 3, or 4. If the uncoloured

face, which we shall call F , is not surrounded by faces featuring all four colours,

then obviously we can colour F using the missing colour. Therefore, suppose now

that F is surrounded by faces F1, F2, F3, and F4 (in that order), which are coloured

using colours 1, 2, 3, and 4 respectively. There are now two cases to consider:

Case 1: There exists no chain of adjacent faces from F1 to F3 that are alternately

coloured with colours 1 and 3.

Case 2: There is a chain of adjacent faces from F1 to F3 that are alternately

coloured with colours 1 and 3.

If Case 1 holds then F1 can be switched to colour 3, and any remaining faces in the

chain can also have their colours interchanged. This operation retains the feasibility

of the solution (no adjacent faces will have the same colour) and also means that

no face adjacent to F will have colour 1. Consequently F can be assigned to this

colour.

If Case 2 holds then there cannot exist a chain of faces from F2 to F4 using only

colours 2 and 4. This is because, for such a chain to exist, it would need to cross the

chain from F1 to F3, which is impossible on a map. Thus, Case 1 holds for F2 and

F4, allowing us to switch colours as with Case 1.

The arguments of Kempe were widely accepted among mathematicians of the

day; he was promptly elected a Fellow of the Royal Society and also went on to be

knighted in 1912. The Four Colour Conjecture was now the Four Colour Theorem.
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This all changed 11 years later when, in 1890, English mathematician Percy Hea-

wood (1861–1955) shocked the mathematics fraternity by publishing an example

map which exposed a flaw in Kempe’s arguments (Heawood, 1890). Though he

failed to supply his own proof, Heawood had shown that the Four Colour Theorem

was indeed still a conjecture. In the same publication Heawood did show, however,

that arguments analogous to Kempe’s could be used to prove that all maps are 5-

colourable, as we saw in Theorem (5.7). In later work, Heawood also proved that if

the number of edges around each region of a map is divisible by 3 then the map can

be 4-coloured.

As the decades passed, the problem that had first been pointed out by Guthrie

in 1852 still remained unproven. Some piecemeal progress towards a solution was

made with one proof showing that four colours were sufficient for colouring maps

of up to 27 faces. This was followed by proofs for up to 31 faces, and then 35 faces.

However, it would turn out that methods used by Kempe and his contemporaries in

early papers would ultimately pave the way forward.

To start, the focus of research turned towards writing proofs concerning the ver-

tices of loop-free planar graphs (i.e., the dual graphs of maps). In the first half of

the twentieth century, researchers also concentrated their efforts on reducing these

graphs to special cases that could be identified and classified. The idea was to pro-

duce a minimal set of configurations that could each be tested. Initially, this set was

thought to contain nearly 9,000 members, which was considered far too large for

mathematicians to study individually. This compelled some to turn towards using

computers in order to design specialised algorithms for testing them.

Ultimately, the first conclusive proof of the Four Colour Theorem was produced

in 1976 by mathematicians Kenneth Appel (1932-2013) and Wolfgang Haken (b.

1928), who showed that no configuration can exist that will appear in a minimal

counterexample to the Four Colour Theorem (Appel and Haken, 1977a,b,c). In re-

search carried out at the University of Illinois, together they reduced the set of con-

figurations to just 1,936 members, which were then individually checked by com-

puter. As was later stated in Appel’s obituary in The Economist on May 4th, 2013:

Both he and Dr Haken hugely exceeded their time allocation on the computer, which be-
longed to the university administration department. . . . Their proof depended on both hand-
checking by family members and then brute-force computer power; the result was published
in over 140 pages in the Illinois Journal of Mathematics and 400 pages of further diagrams
on microfiche. They also, in the old fashioned way, chalked the message on a blackboard in
the mathematics department: FOUR COLOURS SUFFICE.

At the time, this proof was controversial, with some mathematicians publicly

questioning the legitimacy of a proof in which much of the work had been carried

out by computer. (How might we guarantee the reliability of the algorithms and

hardware?) However, despite these worries independent verification soon convinced

the majority that the Four Colour Theorem had indeed finally been proved. Hence

we are now able to state:

Theorem 5.8 (The Four Colour Theorem) The vertices of any loop-free planar
graph are 4-colourable. Equivalently, the faces of any map are 4-colourable.
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In recent years, refinements to Haken and Appel’s proof have been made, with

Robertson et al. (1997) showing that, through various acts of trickery, only 633

configurations need to be considered. (A short summary of this proof, together with

a description of a polynomial-time algorithm for 4-colouring planar graphs, can

be found at http://people.math.gatech.edu/∼thomas/FC/fourcolor.html.) However, a

proof along more “traditional” lines still remains elusive and, to this day, the Four

Colour Theorem remains an excellent example, along with Fermat’s Last Theorem,

of a problem that is very easy to state, but exceptionally difficult to prove.

Readers interested in finding out more about the fascinating history of the Four

Colour Theorem are invited to consult the very accessible book Four Colors Suffice:
How the Map Problem Was Solved by Wilson (2003).

5.2 Edge Colouring

Another way in which graphs might be coloured is by assigning colours to their

edges, as opposed to their vertices or faces. This gives rise to the edge colouring
problem where we seek to colour all edges of a graph so that no pair of edges

sharing a common vertex (incident edges) have the same colour, and so that the

number of colours used is minimal. The edge colouring problem has applications in

scheduling round robin tournaments and also transferring files in computer networks

(de Werra, 1988; Coffman et al., 1985). The minimum number of colours needed to

edge colour a graph G is called the chromatic index, denoted by χ ′(G). This should

not be confused with the chromatic number χ(G), which is the minimum number

of colours needed to vertex colour a graph G.

As mentioned earlier, the edge colouring and vertex colouring problems are very

closely related because we are able to edge colour any graph by simply vertex

colouring its corresponding line graph.

Definition 5.3 Given a graph G, the line graph of G, denoted by L(G), is con-
structed by using each edge in G as a vertex in L(G), and then connecting pairs
of vertices in L(G) if and only if the corresponding edges in G share a common
vertex as an endpoint.

An example conversion between a graph G and its line graph L(G) is shown in

Figure 5.6(a). From this process, it is natural that the number of vertices and edges

in L(G) is related to the number of vertices and edges in G.

Theorem 5.9 Let G = (V,E) be a graph with n vertices and m edges. Then its line
graph L(G) has m vertices and

1

2
∑
v∈V

deg(v)2 −m

edges.
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Fig. 5.6 Illustration of (a) how to convert a graph G into its line graph L(G), and (b) how a vertex
k-colouring of L(G) corresponds to an edge k-colouring of G

Proof. Since each edge in G corresponds to a vertex in L(G) it is obvious that L(G)
has m vertices. Now let {u,v} be an edge in G. This means that {u,v} is a vertex in

L(G) with degree deg(u)+deg(v)−2. Hence the total number of edges in L(G) is:

1

2
∑

{u,v}∈E
(deg(u)+deg(v)−2) =

1

2
∑

{u,v}∈E
(deg(u)+deg(v))−m

Note that the degree of each vertex v appears exactly deg(v) times in this sum.

Hence, we can simplify the expression to that stated in Theorem 5.9 as required.

��

Figure 5.6(b) also demonstrates the way in which a vertex k-colouring of the line

graph L(G) corresponds to an edge colouring of G. Consequently, rather like the

way in which a face colouring problem can be solved by vertex colouring a graph’s

dual, any edge colouring problem stated on a graph G can be tackled by applying a

vertex colouring algorithm to its line graph L(G).
We now discuss some important results concerning the chromatic index of a

graph.

Theorem 5.10 Let Kn be the complete graph with n > 1 vertices. Then χ ′(Kn) =
n−1 if n is even; else χ ′(Kn) = n.

Proof. When n is odd, the edges of Kn can be coloured using n colours by the fol-

lowing process. First, draw the vertices of Kn in the form of a regular n-sided poly-

gon. Next, select an arbitrary edge on the boundary of this polygon and colour it,

together with all edges parallel to it, using colour 1. Now moving in a clockwise di-

rection, select the next edge on the boundary and colour it, together with its parallel

edges, with colour 2. Continue this process until all edges have been coloured.

It is easy to demonstrate that the edges of Kn are not (n−1)-colourable by the fact

that the largest number of edges that can be assigned the same colour is (n−1)/2;
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it then follows, because the number of edges in Kn is
n(n−1)

2 , that n colours are

required.

When n is even, a similar process can be followed, where a regular (n−1)-sided

polygon is constructed, with the remaining vertex being placed in the centre. The

same method for the (n−1) case is then followed, with edges perpendicular to the

edges currently being coloured also being assigned to the same colour. As in the

previous case it is easily shown that no feasible edge colouring of Kn exists using

fewer than n colours. ��
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Fig. 5.7 Illustrating how optimal edge colourings can be constructed for complete graphs with (a)
K5 and (b) K6 using the circle method

The method used in the proof of Theorem 5.10 is often referred to as the circle

(or polygon) method and was originally proposed by mathematician and Church

of England minister Thomas Kirkman (1806-1895) (Kirkman, 1847). An important

practical use of this method is for constructing round-robin sports leagues, where

we have a set of n teams that are required to play each other once across a sequence

of rounds. Figure 5.7 provides examples of this method for n = 5 and n = 6. Here,

the vertices can be thought of as “teams”, with edges representing “matches” be-

tween these teams. Each colour then represents a round in the schedule. Considering

Figure 5.7(a), where n = 5, the first round involves matches between team-v2 and

team-v5 and between team-v3 and team-v4, with team-v1 receiving a bye. The next

round then involves matches between team-v1 and team-v3 and between team-v4

and team-v5, with team-v2 receiving a bye, and so on. The pattern is similar when n
is even, as shown in Figure 5.7(b), except that no team receives a bye. Applications

of graph colouring to sports scheduling problems are considered in more detail in

Chapter 7.

A further result, due to König (1916), concerns the chromatic index of bipartite

graphs.

Theorem 5.11 (Konig’s Line Colouring Theorem) Let G = (V1,V2,E) be a bi-
partite graph with maximal degree Δ(G). Then χ ′(G) = Δ(G).
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Proof. The proof is via induction on the number of edges m in G. It is sufficient to

prove that if m− 1 edges have been coloured using at most Δ(G) colours, then the

remaining edge can be coloured using one of the Δ(G) available colours.

Suppose all edges except {u,v} have been coloured. Then there exists at least

one colour not incident to u, and one colour not incident to v. If the same colour is

not incident to both u and v, then edge {u,v} can be assigned to this colour. If this

is not the case, without loss of generality we can say that: (a) u ∈V1 is incident to a

grey edge, but not a black edge; and (b) v ∈V2 is incident to a black edge but not a

grey edge.

Now consider a grey-black Kempe chain starting from u (that is, a component of

G containing u that comprises only those vertices incident to a grey or black edge).

Travelling along this chain from u involves alternating between vertex sets V1 and

V2. However, we will never reach v because each time we arrive at a vertex in V2 we

do so via a grey edge, which v is not incident to.

Since v is not in the Kempe chain, we can now interchange the colours of the

edges in this chain without affecting v (or indeed any other vertices outside of the

chain). Hence the edge {u,v} can be coloured grey, completing the edge colouring.

��

The previous two theorems demonstrate that the edge colouring problem is solv-

able in polynomial time for both complete and bipartite graphs. We have also seen

that, for both topologies, their chromatic indices χ ′(G) are either Δ(G) or Δ(G)+1.

Somewhat surprisingly, it also turns that this feature applies to any graph G, as

proved by Vizing (1964).

Theorem 5.12 (Vizing’s Theorem) Let G be a simple graph with maximal degree
Δ(G); then Δ(G)≤ χ ′(G)≤ Δ(G)+1.

Proof. When Δ(G) edges are incident to a vertex, these edges all require a different

colour. Hence the lower bound is proved: Δ(G)≤ χ ′(G).
The upper bound can be proved via induction on the number of edges. Sup-

pose that, using Δ(G) + 1 colours, we have coloured all edges in G except for

the single edge {u,v0}. Since Δ(G) gives the maximal degree, at least one colour

will be unused at each of these two vertices. Now construct a series of edges,

{u,v0},{u,v1}, . . ., and a sequence of colours, c0,c1, . . ., as follows: Select a colour

ci that is an unused colour at vi. Now, let {u,vi+1} be an edge with colour ci. We

stop (with i = k) when either ck is an unused colour at u, or ck is already used on an

edge {u,v j<k}.

Case 1: If ck is an unused colour at u, then we can recolour {u,vi} with ci for

0 ≤ i ≤ k. We now need to simply recolour edges incident to u to complete the

proof.

Case 2: Otherwise, we recolour {u,vi} with ci for 0≤ i< j and remove the colour

from {u,v j}. Observe that ck (say, “grey”) is missing at both v j and vk. Now let

“black” be an used colour at u. If grey is unused at u then we can colour {u,v j}
grey. If black is unused at v j then we can colour {u,v j} black. However, if black

is unused at vk then we colour {u,vi} with ci for j ≤ i < k and colour {u,vk}



124 5 Applications and Extensions

black, because none of the edges {u,vi} for j ≤ i < k will be coloured grey or

black.

If neither case above holds, then we consider the subgraph of grey and black edges.

The components of this subgraph will be paths and/or cycles. The vertices u, vi,

and vk are the terminal vertices of paths; hence they cannot all belong to the same

component. In this case, select a component containing just one of these vertices

and interchange the colours of its edges. This means that one of the cases above

now applies. ��

In essence, Vizing’s theorem tells us that the set of all graphs can be partitioned

into two classes: “class one” graphs, for which χ ′(G) = Δ(G), and “class two”

graphs, where χ ′(G) = Δ(G) + 1. Holyer (1981) has shown that the problem of

testing whether a graph belongs to class one is NP-complete. However, a number of

polynomially bounded algorithms are available for colouring the edges of any graph

using exactly Δ(G)+ 1 colours, such as the O(nm) algorithm of Misra and Gries

(1992). The existence of such algorithms tells us that we can colour the edges of

any graph using a maximum of one extra colour beyond its chromatic index.

We might now ask whether the existence of such tight bounds for the edge colour-

ing problem helps us to garner further information about the vertex colouring prob-

lem. It is clear that if we were given the task of vertex colouring a line graph L(G),
one approach would be to convert L(G) into its “original” graph G, and then solve

the corresponding edge colouring problem on G. Since χ(L(G)) = χ ′(G), then ac-

cording to Vizing’s theorem this would immediately tell us that we need to use either

Δ(G) or Δ(G)+1 colours to feasibly colour the vertices of L(G). Indeed, if G were a

type two graph, then algorithms such as Mistra and Gries’s could be used to quickly

find the optimal edge colouring for G and therefore the optimal vertex colouring for

L(G). However, it should be remembered that this very attractive sounding proposal

is only applicable when we wish to colour the vertices of a line graph that therefore

has an “original” graph into which it can be converted. Unfortunately we cannot

convert all graphs into an “original” graph in this way.

5.3 Precolouring

In the precolouring problem we are given a graph G for which some subset of the

vertices V ′ ⊆V has already been assigned to colours. Our task is to then colour the

remaining vertices in the set V −V ′ so that the resultant solution is feasible and uses

a minimal number of colours.

Applications of precolouring arise in register allocation problems (see Sec-

tion 1.1.4) where certain variables must be assigned to specific registers, perhaps

due to calling conventions or communication between modules. They also occur in

areas such as timetabling and sports scheduling where we might be given a problem

instance in which some of the events have been preassigned to particular timeslots.



5.4 Latin Squares and Sudoku Puzzles 125

Precolouring problems can be easily converted into a standard graph colouring

problem using graph contraction operations.

Definition 5.4 The contraction of a pair of vertices vi,v j ∈V in a graph G produces
a new graph in which vi and v j are removed and replaced by a single vertex v
such that v is adjacent to the union of the neighbourhoods of vi and v j; that is,
Γ (v) = Γ (vi)∪Γ (v j).

The following steps can now be taken. Given a precolouring problem instance

defined on a graph G, let V ′(i) define the set of vertices precoloured with colour i.
Assuming there are k different colours used in the precolouring,

⋃k
i=1 V ′(i) =V ′ and

V ′(i)∩V ′( j) = /0, for 1 ≤ i �= j ≤ k. First, for each set V ′(i), merge all vertices into a

single vertex using a series of contraction operations. This has the effect of reducing

the number of precoloured vertices to k. Next, add edges between each pair of the k
contracted vertices to form a clique. Finally remove all colours from the vertices of

this graph, and apply any arbitrary graph colouring algorithm to produce a feasible

solution. A colouring of the original can then be obtained by simply reversing the

above process. An example is provided in Figure 5.8.

(a) (b) (c) (d) 

Fig. 5.8 How a precolouring problem (a), can be converted into a new graph via contraction oper-
ations on the precoloured vertices (b), then coloured (c), and then converted back into a solution to
the original problem (d)

5.4 Latin Squares and Sudoku Puzzles

Another prominent area of mathematics for which graph colouring techniques are

naturally suited is the field of Latin squares. Latin squares are l × l grids that are

filled with l different symbols, each occurring exactly once per row and once per

column. They were originally considered in detail by Leonhard Euler, who filled his

grids with symbols from the Latin alphabet, though nowadays it is common to use

the integers 1 through to l to fill the grids. Example Latin squares of different sizes

are shown in Figure 5.9.

Latin squares have practical applications in various different areas, including

scheduling and experimental design. For an application in scheduling, imagine that

we have two groups of l people and we want to schedule meetings between all pairs

of people belonging to different groups. Clearly in this case, l2 meetings will take

place in total and, since only l meetings can take place simultaneously, at least l
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3 2 1 

(a) (b) (c) 
1 2 3 4 

2 4 1 3 

3 1 4 2 
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5 1 2 3 4 

1 3 2 4 5 

2 4 3 5 1 

3 5 4 1 2 

4 1 5 2 3 

5 2 1 3 4 

Fig. 5.9 Example Latin squares for (a) l = 3, (b) l = 4, and (c) l = 5

timeslots will be needed. Latin squares give solutions to such problems that make

use of exactly l timeslots. To see this, let us name the members of team one as

r1,r2, . . . ,rl , which are represented by the rows in the grid, and the members of

team two c1,c2, . . . ,cl , represented by the columns. The characters within an l × l
Latin square then represent the various timeslots to which the meetings are assigned.

For example, the Latin square shown in Figure 5.9(a) schedules meetings between

r1 and c1, r2 and c2, and r3 and c3 into timeslot 1; meetings between r1 and c3, r2

and c1, and r3 and c2 into timeslot 2; and meetings between r1 and c2, r2 and c3, and

r3 and c1 into timeslot 3. Obviously, any l × l Latin square will provide a suitable

meeting schedule fitting these criteria.

For an example application of Latin squares in experimental design, imagine that

a medical trials centre wants to test the effects of l different drugs on a particular

illness. Suppose further that the trials are to take place over l weeks using l different

patients, with each patient receiving a single drug in each week. An l× l Latin square

can be used to allocate treatments in this case, with rows representing patients, and

columns representing weeks. This means that over the course of the l weeks each

patient receives each of the l drugs once, and in each week all of the l drugs are

tested. Looking at the 3× 3 Latin square from Figure 5.9(a), for example, we see

that Patients 1, 2, and 3 are administered Drugs 1, 2, and 3 (respectively) in Week

1; Drugs 3, 1, and 2 in Week 2; and Drugs 2, 3, and 1 in Week 3, as required.

Note that we are able to permute the rows and columns of a Latin square and

still retain the property of each character occurring exactly one per column and

once per row. It is therefore common to write Latin squares in their standardised
form, whereby the rows and columns are arranged so that the top row and leftmost

column of the grid have the characters in their natural order 1,2, . . . , l. The other

l!(l −1)!−1 Latin squares that can be formed by permuting the rows and columns

are then considered to be equivalent to this. The Latin square in Figure 5.9(b) is in

standardised form, while the one in Figure 5.9(a) is not. It is also known that as l is

increased, then so does the number of different l × l Latin squares. For l = 11 this

figure is approximately 5.36×1033, though for larger values of l these figures have

so far proved too large to compute.

Figure 5.10 shows how the production of a Latin square can be expressed as

a graph colouring problem. Here, as illustrated, the symbols used within the grid

represent the colours. Each cell of the grid is then associated with a vertex, and edges

are added between all pairs of vertices in the same row, and all pairs of vertices

in the same column. This results in a graph G = (V,E) with n = l2 vertices and
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v1 v2 v3 

v4 v5 v6 

v7 v8 v9 

1 3 2 

2 1 3 

3 2 1 

Colour 

2 
3 

1 

(a) (b) (c) 

Fig. 5.10 Showing the relationship between graph colouring and Latin squares. Part (a) associates
each grid cell with a vertex; (b) shows the corresponding graph together with a feasible colouring;
and (c) gives a valid Latin square corresponding to this colouring

m = l2(l−1) edges, for which deg(v) = 2(l−1) ∀v ∈V . We also see that the set of

vertices in each row forms a clique of size l, as do vertices in each column, implying

that solutions using fewer than l colours are not possible.

Note that it is simple to produce a Latin square in standardised form for any

value of l by simply using values (1,2, . . . , l) for the first row, (2,3, . . . , l,1) for the

second row, (3,4, . . . , l,1,2) for the third row, and so on (see for example the left

Latin square in Figure 5.9(c)). Hence graphs representing Latin squares are actu-

ally a particular topology for which the associated graph colouring problem can be

easily solved in polynomial time for any value of l, without a need for resorting to

heuristics or approximation algorithms. Graph colouring algorithms can, however,

be used for producing different Latin squares to this.

3 1 

3 

2 

(a) (b) (c) (d) 
3 1 2 

2 3 1 

1 2 3 

Colour 

2 
3 

1 

Fig. 5.11 A partial 3×3 Latin square with four filled-in cells (a); the corresponding precolouring
problem (b); the same graph with a contraction of two vertices, together with a feasible colouring
(c); and the corresponding Latin square solution (d)

Graph colouring algorithms arguably become more useful in this area when we

consider the partial Latin square problem. This is the problem of taking a partially

filled l × l grid and deciding whether or not it can be completed to form a Latin

square. This problem has been shown to be NP-complete by Colbourn (1984).

Figure 5.11 gives an example of how the partial Latin square problem can be

tackled using graph colouring principles. In essence it follows the same method as

the previous example given in Figure 5.10, except that extra edges can now also

be added between any pair of vertices predefined as having the same colour. Once

this has been done, the same steps as with the precolouring problem (Section 5.3)

can be followed, with contractions being used to make the graph smaller if desired.

An l-colouring of this graph then corresponds to a completed l × l Latin square. Of

course, depending on the values of the filled-in cells in the original problem, there

could be zero, one, or multiple feasible l-colourings available.



128 5 Applications and Extensions

5.4.1 Solving Sudoku Puzzles

The partial Latin square problem has become very popular in recent decades in the

form of Sudoku puzzles. In Sudoku we are given a partially filled Latin square and

the objective is to complete the remaining cells so that each column and row contains

the characters 1, . . . , l exactly once. In addition, Sudoku grids are also divided into

l “boxes” (usually marked by bold lines) which are also required to contain the

characters 1, . . . , l exactly once; thus Sudoku can be considered a special case of the

partial Latin square problem in which the constraint of appropriately filling out the

“boxes” must also be satisfied. An example 9×9 Sudoku puzzle and corresponding

solution is shown in Figure 5.12.

2 4 7 
6 

3 6 8 4 1 5 
4 3 1 5 
5 3 2 
7 9 6 
2 9 7 1 8 

4 9 3 
3 1 4 7 5 

1 2 4 9 5 7 3 8 6 
6 8 5 3 4 1 2 9 7 
7 9 3 6 8 2 4 1 5 
4 3 1 2 6 5 9 7 8 
5 6 8 4 7 9 1 3 2 
7 9 2 1 3 8 5 6 4 
2 5 9 7 1 6 8 4 3 
8 4 7 5 9 3 6 2 1 
3 1 6 8 2 4 7 5 9 

Fig. 5.12 A 9×9 Sudoku puzzle and corresponding solution

Because Sudoku is intended to be an enjoyable puzzle, problems posed in books

and newspapers will nearly always be logic solvable.

Definition 5.5 A Sudoku puzzle is logic solvable if and only if it features exactly
one solution, which is achievable via forward chaining logic only.

Puzzles that are not logic solvable require random choices to be made. In general

these should be avoided because players will have to go through the tedious process

of backtracking and reguessing if their original guesses turn out to be wrong.

As an example of how a player might deduce the contents of cells, consider the

puzzle given in Figure 5.12. Here, we see that the cell in the seventh row and sixth

column (shaded) must contain a 6, because all numbers 1 to 5 and 7 to 9 appear

either in the same column, the same row, or the same box as this cell. If the problem

instance is logic solvable (as indeed this one is), the filling in of this cell will present

further clues, allowing the user to eventually complete the puzzle.

A number of algorithms for solving Sudoku puzzles are available online, such

as those at www.sudokuwiki.org and www.sudoku-solutions.com. Such algorithms

typically mimic the logical processes that a human might follow, with popular de-

ductive techniques, such as the so-called X-wing and Swordfish rules, also being

commonplace. In other areas of Sudoku research, Russell and Jarvis (2005) have

shown that the number of essentially different Sudoku solutions (when symmetries

such as rotation, reflection, permutation and relabelling are taken into account) is

5,472,730,538 for the popular 9× 9 grids. McGuire et al. (2012) have also shown
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that 9× 9 Sudoku puzzles must contain at least 17 filled-in cells to be logic solv-

able (thus 9×9 puzzles with 16 or fewer filled-in cells will always admit more than

one solution). Similar results for larger grids are unknown, however. Herzberg and

Murty (2007) have also shown that at least l −1 of the l characters must be present

in the filled cells of a Sudoku puzzle for it to be logic solvable.

Despite the fact that Sudoku is a special case of the partial Latin squares prob-

lem, Yato and Seta (2003) have demonstrated that the problem of deciding whether

or not a Sudoku puzzle features a valid solution is still NP-complete. Graph colour-

ing algorithms can therefore be useful for solving instances of Sudoku, particularly

those that are not necessarily logic solvable.

Sudoku puzzles can be transformed into a corresponding graph colouring prob-

lem in the same fashion as partial Latin square problems (see Figure 5.11), with

additional edges also being imposed to enforce the extra constraint concerning the

“boxes” of the grid. We now present two sets of experiments that illustrate the capa-

bilities of the HEA and backtracking algorithms from Chapter 4 for solving Sudoku

puzzles. In the first set of experiments we focus on Sudoku problems that are not

necessarily logic solvable (random puzzles), while in the second set we focus on

9×9 grids that are logic solvable.

5.4.1.1 Solving Random Sudoku Puzzles

To generate problem instances that are not necessarily logic solvable, we can start by

taking a completed Sudoku solution of a given size. Such solutions can be obtained

from a variety of places such as the solution pages of a Sudoku book or newspaper,

or by simply executing a suitable graph colouring algorithm on a graph representing

a blank puzzle. In the next step of the procedure, this completed grid can then be

randomly shuffled using the following five operators:

• Transpose the grid;

• Permute columns of boxes within the grid;

• Permute rows of boxes within the grid;

• Permute columns of cells within columns of boxes; and

• Permute rows of cells within rows of boxes.

Note that all of these shuffle operators preserve the validity of a Sudoku solution.

Finally, a number of cells in the grid are made blank by going through each cell in

turn and deleting its contents with probability 1− p, where p is a parameter to be

defined by the user. This means that instances generated with a low value for p have

a lower proportion of filled-in cells.

Figure 5.13 illustrates the performance of the HEA and backtracking algorithms

on 9×9, 16×16 and 25×25 Sudoku grids respectively. In each case 100 instances

for each value of p have been generated and, as in Chapter 4, a computation limit

of 5× 1011 constraint checks is imposed. For each algorithm two statistics are dis-

played. The success rate (SR) indicates the percentage of runs for which the al-

gorithms have found a valid Sudoku solution (a feasible l-colouring) within the
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computation limit. The solution time then indicates the mean number of constraint

checks that it took to achieve these solutions. Note that only successful runs are

considered in the latter statistic.
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Fig. 5.13 Comparison of the HEA and backtracking algorithm’s performance with random Sudoku
instances of size 9×9, 16×16, and 25×25 respectively. Note the different scales on the vertical
axes in each case
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Looking at the results for 9×9 Sudoku puzzles first, we see that both algorithms

feature a 100% success rate across all instances with only a very small proportion of

the computation limit being required.2 For 16× 16 puzzles, similar patterns occur

for the HEA, with all problem instances being solved, and no runs requiring more

than one second of computation time. On the other hand, the backtracking algorithm

features a dip in its success rate for values of p between 0.1 to 0.55, with a corre-

sponding increase in solution times. Finally, with the larger 25× 25 puzzles, this

pattern becomes even more apparent, with both algorithms featuring dips in their

success rates and subsequent increases in their solution times. However, these dips

are less pronounced with the HEA, indicating its superior performance overall.

The dips in the success rates of these algorithms are analogous to the phase tran-

sition regions we saw with the flat graphs in Section 4.2. When p is low, although

solution spaces will be larger, there will also tend to be many valid solutions within

these spaces. Consequently, an effective algorithm should be able to find one of

these within a reasonable amount of computation time, as is the case with the HEA.

For high vales for p meanwhile, although there will only be a very small number

of valid solutions (and perhaps only one), the solution space will be much smaller.

Additionally, solutions to these highly constrained instances will also tend to reside

at prominent optima (with a strong basin of attraction), thus also allowing easy dis-

covery by an effective algorithm. However, instances at the boundary of these two

extremes will cause greater difficulties. First, the solution spaces for these instances

will still be relatively large, but they will also tend to admit only a small number

of valid solutions. Second, because of their moderate number of constraints, the

cost landscapes will also tend to feature more plateaus and local optima, making

navigation towards a global optimum more difficult for the algorithm.

5.4.1.2 Logic Solvable Sudoku Puzzles

We now examine the performance of the HEA and backtracking algorithms on logic

solvable instances, allowing us to examine the effect that the size of the solution

space has on the difficulty of a puzzle when its solution is known to be unique. As

we have seen, it is known that a 9×9 Sudoku puzzle must contain at least 17 filled-

in cells to be logic solvable (McGuire et al., 2012). There is also an online resource

containing over 49,000 different instances of these 17-clue puzzles maintained by

Gordon Royle, available at:

staffhome.ecm.uwa.edu.au/∼00013890/sudokumin.php
For our tests we took a random sample of 100 of these 17-clue instances together

with their corresponding (unique) solutions. Logic solvable puzzles with more than

17 filled-in cells were then also generated for each of these by randomly selecting

an appropriate number of blank cells in the puzzles, and adding the corresponding

2 On our equipment (3.0 GHz Windows 7 PC with 3.87 GB RAM) the longest run in the entire set
took just 0.02 seconds.
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entries from their solutions. This operation maintains the uniqueness of each puz-

zle’s solution while reducing the size of its solution space. All other experimental

details remain the same as in the previous subsection.

Figure 5.14 shows the relative performance of the two graph colouring algo-

rithms. In all cases, valid solutions were found within the computation limit. When

the solution space size is relatively large (17-20 filled-in cells) we see that the HEA

requires up to 2.4×1010 constraint checks to find a solution.3 However, beyond this

point the puzzles are solved using very little computational effort—indeed, for more

than 35 filled-in cells, solutions are achieved by the initial solutions produced by the

DSATUR algorithm.

C
he

ck
s 

by
 H

E
A

C
he

ck
s 

by
 B

kt
r 

(%
 c

om
pa

re
d 

to
 H

E
A

)

Number of Filled Cells

Bktr
HEA

 0

 5e+009

 1e+010

 1.5e+010

 2e+010

 2.5e+010

 20  30  40  50  60  70  80
 0

 20

 40

 60

 80

 100

Fig. 5.14 Comparison of the HEA and backtracking algorithm’s performance on 9× 9 Sudoku
grids with unique solutions

In contrast to our earlier results on random Sudoku puzzles, Figure 5.14 also

shows that the backtracking algorithm outperforms the HEA with these problem in-

stances. With 17-clue puzzles for example, the algorithm has identified the unique

solutions using just 0.03% of the computational effort required by the HEA. Thus,

unlike in the larger puzzles seen in the previous section, here the solution spaces

seem suitably sized and structured for the backtracking algorithm to be able to iden-

tify the unique Sudoku solutions in very short spaces of time.

5.5 Short Circuit Testing

Another interesting practical application of graph colouring is due to Garey et al.

(1976), who suggest its use in the process of testing for (undesired) short circuits

in printed circuit boards. In their model, a circuit board is represented by a finite

lattice of evenly spaced points on to which a set of n cycle-free components has

3 This equated to approximately three minutes on our computer.
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been printed. This set P is referred to as a net pattern, with individual components

P ∈ P being called nets. Each net connects a number of points that are intended

to be electrically common. An example net pattern comprising four components is

shown in Figure 5.15(a). Note that connections between points are only permitted

in vertical or horizontal directions.

(a) (b) 

Fig. 5.15 An example net pattern (a), and a net pattern containing a short between two nets (b)

Given a net pattern P , the problem of interest is to determine whether there exists

some fault on the circuit board (due to the manufacturing process) whereby an extra

conductor path has been introduced between two nets that are not intended to be

electrically common. This is the case in Figure 5.15(b). These extra conductor paths

are known as “shorts”.

An obvious strategy to determine whether a short has occurred is to test each

pair of nets Pi,Pj ∈ P in turn by applying an electrical current to Pi and seeing if

this current spreads to Pj. However, Garey et al. (1976) suggest that the number

of pairwise tests can be reduced significantly by making use of the following two

observations.

(a) (b) 

P1 

P2 

P3 
P1 

P2 

P3 

Fig. 5.16 Two further net patterns

First, it is noted that many pairs do not need to be tested. Consider, for example,

the net pattern in Figure 5.16(a). Here it is unnecessary to test the pair P1,P3 because

if there is a short between them, then shorts must also exist between pairs P1,P2 and

P2,P3. Since the objective of the problem is to determine if any shorts exist, testing

either P1,P2 or P2,P3 is therefore sufficient. Furthermore, if we go on to consider

the net pattern in Figure 5.16(b), it might also be reasonable to assume that shorts

cannot occur between P1 and P3 without also causing a short involving P2. Thus,

depending on the criteria used for deciding where and how shorts can occur, we

have the opportunity to exclude many pairs of nets from the testing procedure. If it

is deemed necessary to test a pair of nets, these are called critical pairs; otherwise

they are deemed noncritical.
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The second observation is as follows. Let G = (V,E) be a graph with a set of

vertices V = {v1,v2, . . . ,vn}, where each vertex vi ∈ V corresponds to a particular

net Pi ∈ P (for 1 ≤ i ≤ n). Also, let each edge {vi,v j} ∈ E correspond to a pair of

nets Pi,Pj judged to be critical. Now let S = {S1, . . . ,Sk} be a partition of V such

that no pair of vertices vi,v j in any subset Sl forms a critical pair. From a graph

colouring perspective, S therefore defines a feasible k-colouring of the vertices of

G. Now suppose that for the printed circuit board in question, external conductor

paths are provided so that all nets in any subset Sl can be made electrically common

during testing. There are thus k “supernets” that need to be tested. It can be seen

that the printed circuit board contains no short if and only if no pair of “supernets”

is seen to be electrically common. Therefore, we only have to perform a maximum

of
(k

2

)
tests as opposed to our original figure of

(n
2

)
tests. Naturally, it is desirable to

reduce k as far as possible in order to minimise the number of tests needed.

In their paper, Garey et al. (1976) propose a number of criteria for deciding

whether a pair of nets should be deemed critical, with associated theorems then

being presented. We now review some of these.

Theorem 5.13 (Garey et al. (1976)) Consider a pair of nets Pi,Pj ∈P to be critical
if and only if a straight vertical line of sight can be drawn that connects Pi and Pj.
Then the corresponding graph G = (V,E) is planar and has a chromatic number
χ(G)≤ 4.

Proof. Given a net pattern P , for each pair of nets for which a vertical line of sight

exists, draw such a line. Since each line is vertical, none can intersect. It is now

possible to contract each net into a single point, deforming the lines of sight (which

may no longer be straight lines) in such a way that they remain nonintersecting. This

structure now corresponds to the graph G = (V,E), with each vertex corresponding

to a contracted net, and each edge corresponding to the lines of sight. Since G is

planar, χ(G)≤ 4 according to the Four Colour Theorem (Theorem 5.8). ��

Theorem 5.14 (Garey et al. (1976)) Consider a pair of nets Pi,Pj ∈P to be critical
if and only if a straight vertical line of sight or a straight horizontal line of sight can
be drawn that connects Pi and Pj. Then the corresponding graph G = (V,E) has a
chromatic number χ(G)≤ 12.

Proof. It is first necessary to show that any graph G formed in this way has a vertex

v with deg(v)≤ 11. Let G1 = (V,E1) and G2 = (V,E2) be subgraphs of G such that

E1 is the set of edges formed from vertical lines and E2 is the set of edges formed

from horizontal lines. Hence E = E1 ∪E2. By Theorem (5.13), both G1 and G2 are

planar. We can also assume without loss of generality that the number of vertices

n > 12. According to Theorem (5.2), the number of edges in a planar graph with n
vertices is less than or equal to 3n−6. Thus:

m ≤ |E1|+ |E2| ≤ (3n−6)+(3n−6) = 6n−12.

Since each edge contributes to the degree of two distinct vertices, this gives:
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∑
v∈V

deg(v) = 2m ≤ 12n−24.

Hence it follows that some vertex in G must have a degree of 11 or less.

Now consider any subset V ′ ⊆ V with |V ′| > 12. The induced subgraph of V ′

must contain a vertex with a degree at most 11. Consequently, according to Theo-

rem (2.6), χ(G)≤ 11+1. ��

In their paper, Garey et al. (1976) conjecture that the result of Theorem (5.14)

might actually be improved to χ(G) ≤ 8 because, in their experiments, they were

not able to produce graphs featuring chromatic numbers higher than this. They also

go on to consider the maximum length of lines of sight and show that:

• If lines of sight can be both horizontal and vertical but are limited to a maximum

length of 1 (where one unit of length corresponds to the distance between a pair

of vertically adjacent points or a pair of horizontally adjacent points on the circuit

board), then G will be planar, giving χ(G)≤ 4.

• If lines of sight can be both horizontal and vertical but are limited to a maximum

length of 2, then G will have a chromatic number χ(G)≤ 8.

Finally, they also note that if arbitrarily long lines of sight travelling in any direction

are permitted (as opposed to merely horizontal or vertical) then it is possible to

form all sorts of different graphs, including complete graphs. Hence arbitrarily high

chromatic numbers can occur.

5.6 Graph Colouring with Incomplete Information

In this section we now consider graph colouring problems for which information

about a graph is incomplete at the beginning of execution. In the following sub-

sections we discuss three different interpretations, specifically decentralised graph

colouring, online graph colouring, and dynamic graph colouring, and give practical

examples of each.

5.6.1 Decentralised Graph Colouring

In decentralised graph colouring it is generally assumed that each vertex of a graph

is an independent entity responsible for choosing its own colour. Moreover, the only

information available to each vertex is who its neighbours are, and what their colours

are. In other words, vertices are unaware of the structure of the graph beyond their

own neighbouring vertices.

A practical example of this problem might occur in the setting-up of a wireless

ad hoc network. Imagine a situation where a network is to be created by randomly

dropping a set of wireless devices (equipped with radio transmitters and receivers)
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into a particular environment. Imagine further that each device in this network will

broadcast information at a particular frequency on the radio spectrum. Finally, also

consider the fact that if two devices are close together but using the same frequency

(or frequencies that are suitably similar) their transmissions will interfere with one

another, inhibiting the ability of other devices to decipher their individual signals.

The above situation is illustrated in Figure 5.17, where each wireless device ap-

pears at the centre of a grey circle denoting its transmission range. Figure 5.17(a)

shows two devices, u and v, that are situated in each other’s transmission ranges.

This is sometimes known as a primary collision and implies that u and v should

not broadcast using the same frequency. Figure 5.17(b), meanwhile, denotes a sec-
ondary collision . Here, although there is no primary collision between devices v1

and v2, it is still necessary that they broadcast at different frequencies in order to

allow u to be able to distinguish between them.

v u v1 v2 u 

(a) (b) 

 v 

 u  v1 

 u 

 v2 

Fig. 5.17 Illustration of a primary collision (a), and (b) a secondary collision (dotted line) in a
wireless network

The problem of choosing suitable frequencies for each device in a wireless net-

work can be modelled as a graph colouring problem by relating each device to a

vertex, with edges then occurring between any pair of vertices subject to a primary

and/or secondary collision. Each frequency then corresponds to a colour and, due

to the finite number of frequencies that exist in the radio spectrum, we now wish to

colour this graph using the minimal number of colours.

More precisely, let G = (V,E) be a graph with vertex set V and an edge E. The

set of edges due to primary collisions, E1, contains all pairs of devices that are

close enough to be able receive each other’s transmissions (as with Figure 5.17(a)).

The set E2 then contains pairs of devices subject to secondary collisions: that is,

{vi,v j} ∈ E2 if and only if the distance between vi and v j in the graph G1 = (V,E1)
is exactly 2 (as is the case in Figure 5.17(b)). If only primary collisions need to

be considered when assigning frequencies, we only need to colour the graph G1;

otherwise we will need to colour the graph G = (V,E = E1 ∪E2). In either case,

this task is a type of decentralised graph colouring problem because each vertex

(wireless device) is responsible for choosing its own colour (frequency), while being

aware only of its neighbours and their current colours.

One simple but effective algorithm for the decentralised graph colouring prob-

lem is due to Finocchi et al. (2005). Let G = (V,E) be a graph with maximal degree

Δ(G). To begin, all vertices in G are set as uncoloured. Each vertex is also allocated
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a set of candidate colours, defined Lv = {1,2, . . . ,deg(v)+1} ∀v ∈V . A single iter-

ation of the algorithm then involves the following four steps.

1. In parallel, each uncoloured vertex v selects a tentative colour tv ∈ Lv at random.

2. In parallel, consider each tentatively coloured vertex v. If no neighbour of v is

coloured with tv, then set tv as the final colour of v.

3. In parallel, consider each remaining tentatively coloured vertex v and

a. Remove its tentative colour.

b. Update Lv by deleting all colours from Lv that are assigned as final colours to

neighbours of v.

c. If Lv = /0 then let l be the largest colour label assigned as a final colour in v’s

neighbourhood and set Lv = {1,2, . . . ,min{l +1,Δ(G)+1}}.

4. If any uncoloured vertices remain, return to Step 1.

An example run of this algorithm is shown in Figure 5.18. In the first iteration,

we see that three of the five vertices are allocated final colours; the remaining two

vertices are then allocated final colours in the second iteration.

{1,2,3} 

{1,2,3,4,5} {1,2,3,4} 

{1,2,3,4} {1,2,3} 

3 
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4 
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2 
{1,2,3} 

{1,2,3,4,5} {1,2,3,4} 

{1,2,3,4} {1,2,3} 

3 
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2 
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{2,3} 
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2 

{1,3} 

{2,3} 

4 1 

2 1 

2 

4 

Initial state Step 1. Step 2. 

Steps 3(a) and (b). Step 1. Step 2. 

Fig. 5.18 Example run of Finocchi et al.’s algorithm. Here tentatively coloured vertices appear in
white, with labels within the vertices indicating tentative colours

Note that in the above algorithm, each vertex v is initially assigned a set of

candidate colours Lv = {1,2, . . . ,deg(v)+ 1}. This means that Lv always contains

sufficient options to allow each vertex v to be coloured differently from all of its

neighbours; hence Step 3(c) will never actually be used. If, however, we desire a

solution using fewer colours, we might choose to introduce a shrinking factor s > 1,

which can be used to limit the initial set of candidate colours for each vertex v to
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Lv = {1,2, . . . ,� deg(v)+1
s }. In this case Step 3(c) might now be needed if the origi-

nal contents of Lv prove insufficient. The algorithm may also need to execute for an

increased number of iterations in order to achieve a feasible solution.

Finocchi et al. (2005) also suggest an improvement to this algorithm by replacing

Step 2 with a more powerful operator. Observe in Step 2 of the first iteration of Fig-

ure 5.18 that there are two vertices tentatively coloured with colour 3. Accordingly,

neither of these vertices receives a final colour at this iteration, though it is obvious

that one of them could indeed receive colour 3 as a final colour at this point. An

improvement to Step 2 therefore operates as follows. Let G(i) = (V (i),E(i)) be the

subgraph induced by all vertices tentatively coloured with colour i. We now iden-

tify a maximal independent set for G(i) and assign all vertices in this set to a final

colour i. All other vertices in G(i) remain uncoloured. To form this independent

set, in parallel each vertex v ∈V (i) first generates a random number rv ∈ [0,1]. The

tentative colour of a vertex v is then selected as its final colour if and only if rv is

less than the random numbers chosen by its neighbours in G(i). This is equivalent to

the greedy process of randomly permuting the vertices in V (i) and then adding each

vertex v ∈V (i) to the independent set if and only if it appears before its neighbours

in the permutation.

Decentralised graph colouring problems arise in a number of practical situa-

tions, including TDMA slot assignment, wake-up scheduling and data collection

(Hernández and Blum, 2014). One noteworthy piece of research is due to Kearns

et al. (2006), who have examined the decentralised colouring of graphs representing

social networks. In their case each vertex in the graph is a human participant, and

two vertices are adjacent only if these people are judged to know one another. The

objective of the problem is for each person to choose a colour for himself or herself

only by using information regarding the colours of his or her neighbours. Partici-

pants are also able to change their colour as often as necessary until, ultimately, a

feasible colouring of the entire graph is formed. This problem has real-world im-

plications in situations where it is desirable to distinguish oneself from one’s neigh-

bours: for example, selecting a mobile phone ringtone that differs from one’s friends,

or choosing to develop professional expertise that differs from one’s colleagues. In

their research, Kearns et al. (2006) carried out a number of experiments on various

graph topologies using segregated participants. Under a time limit of five minutes,

topologies such as cycle graphs were optimally coloured quite quickly through the

collective efforts of the participants. Other, more complex graphs modelling more

realistic social network topologies were seen to present more difficulties, however.

5.6.2 Online Graph Colouring

In the online graph colouring problem, a graph is gradually revealed to an algorithm

by presenting the vertices one at a time. The algorithm must then assign each vertex

to a colour before receiving the next vertex in the sequence. In other words, an online

graph colouring algorithm receives vertices in a given ordering v1,v2, . . . ,vn and the
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colour for a vertex vi is determined by only considering the colours of the vertices in

the subgraph induced by the set {v1, . . . ,vi}. Once vi has been coloured, it generally

cannot be changed by the algorithm.

Much of the research relating to online graph colouring looks at the worst case

behaviour of algorithms on particular topologies. Let A be an online graph colouring

algorithm and consider the colourings of a graph G produced by A over all orderings

of G’s vertices. The maximum number of colours used among these colourings is

denoted by χA(G). That is, χA(G) denotes the worst possible performance of A on

G.

It has been shown by Lovász et al. (1989) that if G is a bipartite graph with n
vertices, then there exists an online algorithm A such that

χA(G)≤ 2log2 n. (5.2)

Kierstead and Trotter (1981) have also shown that if G is an interval graph then there

exists an online algorithm A such that

χA(G)≤ 3χ(G)−2. (5.3)

Studies of online colouring have also focussed on the behaviour of the GREEDY

algorithm, which, we recall, operates by assigning each vertex to the lowest indexed

colour seen to be feasible (see Section 2.1). Bounds noted by Gyárfás and Lehel

(1988) include

χGREEDY(G)≤ χ(G)+1 (5.4)

if G is a split graph (i.e., a graph that can be partitioned into one clique and one

independent set),

χGREEDY(G)≤ 3

2
χ(G)+1 (5.5)

if G is the complement of a bipartite graph, and

χGREEDY(G)≤ 2χ(G)−1 (5.6)

if G is the complement of a chordal graph.

Empirical work by Ouerfelli and Bouziri (2011) has also suggested that instead

of following the GREEDY algorithm’s strategy of assigning vertices to the lowest

indexed feasible colour, it is often beneficial to assign vertices to the feasible colour

containing the most vertices. This is because such a heuristic will often aid the for-

mation of larger independent sets in a solution, ultimately helping to reduce the

number of colours used in the final solution.

A real-world application of online graph colouring is presented by Dupont et al.

(2009). Here, a military-based frequency assignment problem is considered in which

wireless communication devices are introduced one by one into a battlefield envi-

ronment. From a graph colouring perspective, given a graph G = (V,E), the prob-

lem starts with an initial colouring of the subgraph induced by the subset of vertices

{v1, . . . ,vi}. The remaining vertices vi+1, . . . ,vn are then introduced one at a time,
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with the colour (frequency) of each vertex having to be determined before the next

vertex in the sequence is considered. In this application the number of available

colours is fixed from the outset, so it is possible that a vertex v j (i < j ≤ n) might

be introduced for which no feasible colour is available. In this case a repair operator

is invoked that attempts to rearrange the existing colouring so that a feasible colour

is created for v j. Because such rearrangements are considered expensive, the repair

operator also attempts to minimise the number of vertices that have their colours

changed during this process.

5.6.3 Dynamic Graph Colouring

Dynamic graph colouring differs from decentralised and online graph colouring in

that we again possess a global knowledge of the graph we are trying to colour.

However, in this case a graph is also able to randomly change over time via the

deletion and introduction of vertices, and/or the deletion and introduction of edges.

We must therefore re-solve the problem at each stage.

A practical application of dynamic graph colouring might occur in the timetabling

of lectures at a university (see Section 1.1.2 and Chapter 8). To begin, a general

set of requirements and constraints will be specified by the university and an ini-

tial timetable will be produced. However, on viewing this draft timetable, circum-

stances might dictate that some constraints need to be altered, additional lectures

need to be introduced, or other lectures need to be cancelled. This will result in a

new timetabling problem that needs to be solved, with the process continuing in this

fashion until a finalised solution is agreed upon.

More generally, a dynamic graph colouring problem can be defined by a sequence

of graphs G = (G1,G2, . . . ,G|G|), where a solution to each graph Gi ∈ G will need to

be produced within a limited time frame before the next graph Gi+1 is considered.

One of the main issues to consider here is the level of similarity between two succes-

sive graphs Gi and Gi+1 in this sequence. If Gi and Gi+1 are seen to be quite alike,

then it may be beneficial to use the solution generated for Gi as a starting solution

for Gi+1. However, if the differences are larger, then it may be more appropriate to

simply colour Gi+1 from scratch.

5.7 List Colouring

The list colouring problem, like the (vertex) graph colouring problem, involves as-

signing colours to each vertex of a graph such that no pair of adjacent vertices are

assigned to the same colour. However, in addition to this, when a problem is spec-

ified, individual vertices are also allocated their own list of permissible colours to

which they can be assigned.
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Defined more precisely, the list colouring problem gives us a graph G = (V,E)
and also a set Lv of permissible colours for each vertex v∈V . The sets Lv are usually

referred to as a “lists”, giving the problem its name. The task is to now produce

a feasible colouring of G (that is, a colouring that is both proper and complete),

with the added restriction that all vertices only be coloured using colours appearing

in their corresponding lists: that is, ∀v ∈ V, c(v) ∈ Lv. If a k-colouring exists for

a particular problem instance of the list colouring problem, we say that the graph

G is “k-chooseable”. The “choice number” χL(G) then refers to the minimum k for

which G is k-chooseable. Note that the chromatic number of a graph χ(G)≤ χL(G).
List colouring problems have obvious applications in areas such as timetabling

where, in addition to scheduling events into a minimal number of timeslots (as we

saw in Section 1.1.2), we might also face constraints of the form “event v can only

be assigned to timeslots x and y”, or “event u cannot be assigned to timeslot z”. List

colouring, stated as a decision problem, is also NP-complete because it generalises

the graph colouring problem itself. That is, all k-colouring problems can be easily

converted into an equivalent list colouring decision problem of deciding whether G
is k-chooseable by simply setting Lv = {1,2, . . . ,k}, ∀v ∈V .

In practice, algorithms for the graph colouring problem can often be used for de-

ciding whether a graph is k-chooseable, beyond those for which Lv = {1,2, . . . ,k}, ∀v∈
V . More specifically, graph colouring algorithms can be used to tackle any list

colouring problem for which our chosen k ≥ |L|, where L is defined as the union

of all lists: L =
⋃

v∈V Lv. Imagine we have a list colouring problem defined on a

graph G for which k ≥ |L| is satisfied. First, we create a new graph G′ by copying

the vertices and edges of G and then adding k additional vertices, which we label

u1,u2, . . . ,uk. Next we add edges between all
(k

2

)
pairs of these additional vertices

so that they form a complete graph Kk. This implies that any feasible colouring of

G′ must use at least k different colours. Without loss of generality, we can assume

that c(ui) = i for 1 ≤ i ≤ k. Finally we then go through each vertex v in G′ that came

from the original graph G and consider its colour list, adding an edge between v and

ui if colour i /∈ Lv. This has the effect of disallowing v from being assigned to colour

i as required.
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Fig. 5.19 Illustration of how a list colouring problem (a) can be converted into an equivalent
graph colouring problem (b), whose colouring then represents a feasible solution to the original
list colouring problem (c)
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Figure 5.19 demonstrates this process. In this example k = |L|= 4, meaning that

four additional vertices u1, . . .u4 are added (larger values for k are also permitted).

The colouring produced for the extended graph G′ also uses four colours, which

is the chromatic number in this case. However, we also observe that none of the

vertices originating from G are actually coloured with colour 1 in this example;

hence we deduce that G is actually 3-chooseable, as shown in Figure 5.19(c).

5.8 Equitable Graph Colouring

Another extension to the graph colouring problem is the equitable colouring prob-

lem, where we seek to establish a feasible colouring of a graph G such that the sizes

of the colour classes differ by at most 1. In other words, we seek to establish a fea-

sible k-colouring so that exactly n mod k colour classes contain �n/k� vertices, and

the remainder contain exactly �n/k vertices.

Examples of equitable graph colouring problems occur quite naturally as exten-

sions to the general graph colouring problem. In university timetabling for example,

it might be desirable to minimise the number of rooms required by balancing the

number of events per timeslot (see Section 1.1.2). Another application can be found

in the creation of table plans for large parties. Imagine, for example, that we have n
guests who are to be seated at k equal-sized tables, but that some guests are known

to dislike each other and therefore need to be assigned to different tables. In this case

we can model the problem as a graph by using vertices for guests, with edges occur-

ring between pairs of guests who dislike each other. An extension to this application

is the subject of Chapter 6.

Let G = (V,E) be a graph with n vertices, a maximal degree Δ(G), and an inde-

pendence number α(G).

Definition 5.6 If V can be partitioned into k colour classes S = {S1, . . . ,Sk} such
that Si is an independent set and ||Si| − |S j|| ≤ 1 ∀i �= j, then S is said to be an
equitable k-colouring of G.

Definition 5.7 The smallest k for which an equitable k-colouring of G exists is the
equitable chromatic number, denoted by χe(G).

Like the graph colouring problem, the equitable graph colouring problem is

known to be NP-complete. This follows from the fact that the problem of deciding

whether a graph G is k-colourable can be converted into an equitable k-colouring

problem by simply adding an appropriate number of isolated vertices to G. Hence

the equitable graph colouring problem generalises the standard graph colouring

problem. An alternative proof is also due to Furmańczyk (2004), who shows that

the problem of deciding whether χe(G) ≤ 3 is NP-complete, even when G is the

line graph of a cubic graph.

Because a feasible equitable k-colouring of a graph G is also a feasible k-

colouring of G, it is obvious that χ(G)≤ χe(G). In some cases however, this bound



5.8 Equitable Graph Colouring 143

can be very poor. Consider star graphs, for example, which comprise a vertex set

V = {v1, . . . ,vn} and an edge set E = {{v1,vi} : i ∈ {2, . . . ,n}}. These are a type

of bipartite graph and therefore feature a chromatic number of 2. However, it is ob-

vious that v1 must be assigned a different colour to all other vertices; hence, in an

equitable colouring all other colour classes must contain a maximum of two ver-

tices. The equitable chromatic numbers of star graphs are therefore calculated as

�(n−1)/2�+1, as illustrated in Figure 5.20.

Fig. 5.20 The equitable chromatic numbers for star graphs with n = 5,6,7, and 8 are 3, 4, 4, and
5 respectively

A better lower bound for equitable chromatic numbers on general graphs is out-

lined by Furmańczyk (2004). Suppose that G is equitably coloured, with vertex v
assigned to colour 1. The number of vertices coloured with colour 1 is therefore at

most α(G−Γ (v)−{v})+ 1. Since this colouring is equitable, the number of ver-

tices coloured with any other colour is then at most α(G−Γ (v)−{v})+2. Hence:⌈
n+1

α(G−Γ (v)−{v})+2

⌉
≤ χe(G) (5.7)

For example, using a star graph with n = 8 whose internal vertex v1 is coloured with

colour 1, this gives
⌈

8+1
0+2

⌉
= 5. Note, however, that this bound requires a graph’s

independence number to be calculated, which is itself an NP-hard problem.

With regard to upper bounds on χe(G), it is known that any graph can be equi-

tably k-coloured when k ≥ Δ(G)+1. Hence:

Theorem 5.15 (Hajnal and Szemerédi (1970)) Let G be a graph with maximal
degree Δ(G). Then χe(G)≤ Δ(G)+1.

This fact was initially conjectured by Erdős (1964), with a formal proof being pub-

lished six years later by Hajnal and Szemerédi (1970). Shorter proofs of this theo-

rem have also been shown by Kierstead and Kostochka (2008) and Kierstead et al.

(2010). The latter publication also presents a polynomial-time algorithm for con-

structing an equitable (Δ(G)+ 1)-colouring. This method involves first removing

all edges from G and dividing the n vertices arbitrarily into Δ(G) equal-sized colour

classes. In cases where n is not a multiple of Δ(G), sufficient isolated vertices are

added. The vertices are then considered in turn and, in each iteration i, the edges

incident to vertex vi are added to G. If vi is seen to be adjacent to another vertex in

its colour class, it is moved to a different feasible colour class, leading to a feasi-

ble colouring with up to Δ(G)+1 colours. If this colouring is not equitable, then a
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polynomial-length sequence of adjustments are made to reestablish the balance of

the colour classes.

It is notable that Theorem 5.15 above is similar to Theorem 2.5 from Chapter 2

which states that for any graph G, χ(G) ≤ Δ(G)+ 1. Meyer (1973) has gone one

step further to even conjecture a form of Brooks’ Theorem (2.7) for equitable graph

colouring: every graph G has an equitable colouring using Δ(G) or fewer colours

with the exception of complete graphs and odd cycles. Recall, however, that the

problem of determining an equitable k-colouring for an arbitrary k and graph G is

still NP-complete, implying the need for approximation algorithms and heuristics

in general. One simple approach for achieving approximate equitable k-colourings

(for k ≤ Δ(G)) can be achieved via a simple modification of the DSATUR algorithm:

starting with k empty colour classes, take each vertex in turn according to DSATUR’s

heuristics and assign it to the feasible colour class containing the fewest vertices,

breaking ties randomly.

Figure 5.21 summarises results achieved by this algorithm for random graphs

G500,p, using p = 0.1, 0.5 and 0.9, for a range of suitable k-values. For comparison’s

sake, the results of a second algorithm are also included here. This operates in the

same manner except that vertices are assigned to a randomly chosen feasible colour.

The cost here is simply the difference in size between the largest and smaller colour

classes in a solution. Hence a cost of 0 or 1 indicates an equitable k-colouring.

Figure 5.21 clearly demonstrates that, for these graphs, the policy of assigning

vertices to feasible colour classes with the fewest vertices brings about more equi-

tably coloured solutions. We also see that the algorithm consistently achieves equi-

table colourings for the majority of k-values with the exception of those close to the

chromatic number, and those where k is a divisor of n. For the former case, the low

number of available colours restricts the choice of feasible colours for each vertex,

often leading to inequitable colourings. On the other hand, when k is a divisor of

n the algorithm is seeking a solution with a cost of 0, meaning that the last vertex

considered by the algorithm must be assigned to the unique colour class contain-

ing one fewer vertex than the remaining colour classes. If this colour turns out to

be infeasible (which often seems to be the case), this vertex will then need to be

assigned to another colour class, resulting in a solution with a cost of 2. Note, how-

ever, that it might be possible to further improve these solutions by, for example,

applying a local search algorithm with appropriate neighbourhood operators such

as Kempe chain interchanges and pair swaps. An approach along these lines for a

related problem is the subject of the case study presented in Chapter 6.

5.9 Weighted Graph Colouring

Further useful extensions of the graph colouring problem can be achieved through

the addition of numeric weights to a graph. Typically, the term “weighted graph

colouring” is used in situations where the vertices of a graph are allocated weights.

However, the term is also sometimes used for problems where edges are weighted,
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Fig. 5.21 Quality of equitable solutions produced by the modified DSATUR algorithms on random
graphs with n = 500 for, respectively, p = 0.1, 0.5 and 0.9. All figures, are the average of 50
instances per k-value. Error bars show one standard error either side of these means
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and for the multicolouring problem. These are considered in turn in the following

subsections.

5.9.1 Weighted Vertices

A natural formulation of the weighted graph colouring problem is as follows. Let

G(V,E,w) be a graph for which each vertex v ∈ V is given a nonnegative integer

weight wv. Given a fixed number of colours k, our task is to identify a proper (but

perhaps partial) solution S = {S1, . . . ,Sk} that maximises the objective function:

f (S) =
k

∑
i=1

g(Si) (5.8)

where g(Si) = ∑v∈Si wv. For this problem, if χ(G)≤ k then an optimal solution will

obviously feature a cost of ∑v∈V wv, corresponding to a feasible graph colouring so-

lution. On the other hand, if k < χ(G), then the problem involves finding an optimal

subset of vertices V ′ ⊂V , where V ′ =
⋃k

i=1 Si.

It is straightforward to show that this formulation is NP-hard by noting that any

instance of the graph colouring problem can be transformed into this weighted vari-

ant by setting wv = 1 ∀v ∈ V . If, in addition to this, k = 1, then the problem is also

equivalent to the NP-hard maximum independent set problem.

This formulation of the weighted graph colouring problem arises in practical sit-

uations where a limited number of colour classes are available and where the colour-

ing of certain vertices is considered more important than others. For example, in an

exam timetabling problem we may be given a fixed number of timeslots (colours),

and we might want to prioritise the assignment of larger exams (higher weighted

vertices) to the timetable while also making sure that clashing exams (adjacent ver-

tices) are not assigned to the same timeslots. One simple heuristic for this problem

is to employ the GREEDY algorithm using a fixed number of colours k and an or-

dering of the vertices v1,v2, . . . ,vn such that wv1
≥ wv2

≥ . . .≥ wvn . Algorithms that

explore the space of partial proper solutions are also naturally suited. For example,

we might make use of the PARTIALCOL algorithm while seeking to minimise the

objective function ∑v∈U wv, where U =V −⋃k
i=1 Si is the set of uncoloured vertices

(see Section 4.1.2).

Another well-known formulation of the weighted graph colouring problem in-

volves taking a graph G(V,E,w) as above, and then determining a feasible colour-

ing S = {S1, . . . ,Sk} that minimises Equation (5.8) using g(Si) = max{wv : v ∈ Si}.

A practical example of this occurs in the scheduling of fixed-time jobs to timeslots.

Imagine, for example, that we are given a set of jobs V , each with a processing time

wv ∀v ∈V . Imagine further that these jobs are to be scheduled into k timeslots, and

that the jobs assigned to a particular timeslot will be carried out simultaneously;

hence, the duration of a timeslot Si is set at max{wv : v ∈ Si}. Finally, also suppose
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that some pairs of jobs u,v are incompatible and cannot be assigned to the same

timeslot. Such pairs correspond to edges {u,v} ∈ E.

In this formulation it is obviously in our interest to try and assign vertices with

large weights to the same colour classes. Similarly, it also makes sense in many cases

to reduce the number of colours being used by increasing the number of colour

classes Si for which Si = /0. Demange et al. (2007), however, have noted that the

optimal number of nonempty colour classes for a particular graph G may well be

larger than χ(G), though it will also always be less than or equal to Δ(G)+1.

As with the previous example, this problem formulation is seen to be NP-hard

by observing that any instance for which wv = 1 (∀v ∈V ) is equivalent to the stan-

dard graph colouring problem. Furthermore, the problem remains NP-hard even for

interval graphs (Escoffier et al., 2006) and bipartite graphs (Demange et al., 2007).

For the bipartite case, Demange et al. (2007) have provided an algorithm with ap-

proximation ratio of 4rw/(3rw +2) (where rw = max{wv:v∈V}
min{wv:v∈V} ). They also prove that

optimal solutions for bipartite graphs can be found in polynomial time whenever

|{wv : v∈V}| ≤ 2. For general graphs, an approximation algorithm is also suggested

that operates as follows. As before, let G = (V,E,w) be a graph with weighted ver-

tices and g(Si) = max{wv : v ∈ Si}.

1. Construct a graph with weighted edges Ḡ = (V,E ′,w′) where Ḡ is the comple-

ment of G, and for any edge {u,v} ∈ E ′, w′
uv = wu +wv −g({wu,wv}).

2. Compute a maximum weighted matching M∗ of Ḡ .

3. For each edge in M∗, colour the end points with a new colour.

4. Colour any remaining vertices with their own new colour.

G = (V, E, w) M* Solution 

3 1 

2 2 

4 
3 

2 1 
1 

3 1 

2 2 

4 

G = (V, E’, w’) 

Fig. 5.22 Illustration of the algorithm of Demange et al. (2007)

An example of this process is shown in Figure 5.22. The matching M∗ can be de-

termined in polynomial time using methods such as the blossom algorithm (Kol-

mogorov, 2009). Note that each colour class in the solution is an independent set,

but that these are limited to contain a maximum of two vertices. Indeed, in graphs

where no independent set contains more than two vertices (such as the complement

of a bipartite graph), this algorithm guarantees the optimal. In further work, Hassin

and Monnot (2005) have shown that, for any graph, this process produces a solu-

tion whose objective function value never exceeds twice the optimum. They also

show that the same approximation ratio applies when g(Si) takes other forms such

as g(Si) = min{wv : v ∈ Si} and g(Si) =
1
|Si| ∑v∈Si wv. Malaguti et al. (2009) have

also proposed a number of IP-based methods for this problem similar in spirit to
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those discussed in Section 3.1.2. In particular, they propose the use of heuristics for

building up a large sample of independent sets, and then use an IP model similar to

that of Section 3.1.2.1 to select a subset of these. Local search-based methods based

on Kempe chain interchanges and pair swaps also seem to be naturally suited to this

problem.

5.9.2 Weighted Edges

In many cases it is more convenient to apply weights to the edges of a graph as

opposed to the vertices, allowing us to express levels of preference for assigning

vertices to different (or the same) colours. One interpretation involves taking a graph

G(V,E,w) for which each edge {u,v} ∈ E is allocated an integer weight wuv. Given

a fixed number of colours k, our task is to then identify a complete (but perhaps

improper) solution S = {S1, . . . ,Sk} that minimises the objective function:

f (S) =
k

∑
i=1

∑
u,v∈Si:{u,v}∈E

wuv (5.9)

Here, if ∀{u,v} ∈ E, wuv > 0, then any solution for which f (S) = 0 corresponds to

a feasible k-coloured solution.

This sort of formulation is applicable in areas such as university timetabling and

social networking. For the former, imagine, as before, that we wish to assign events

(vertices) to timeslots (colours), but that there are insufficient timeslots to feasibly

accommodate all events. In order to form a complete timetable, this means that

some clashes will be necessary; however, some types of clashes may be deemed less

critical than others. For example, if two clashing events only have a small number of

common students, then we may allow them to both be assigned to the same timeslots

(with alternative arrangements then being made for the people affected). On the

other hand, if two events contain a large number of common participants, or if the

same instructor is required to teach them both, then such a clash would be far less

desirable. Appropriate weights added to the corresponding edges can be used to

express such preferences.

Note that due to the nature of this problem’s requirements, algorithms that search

the space of complete improper solutions will often be naturally suitable here. In

Chapter 6 an application along these lines will be made to the problem of partition-

ing members of social networks, where edge weights are used to express a level of

“liking” or “disliking” between pairs of individuals.
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5.9.3 Multicolouring

Another problem that is sometimes referred to as “weighted graph colouring” is the

NP-hard graph multicolouring problem. In this case we are given a graph G(V,E,w)
for which each vertex v ∈V is allocated a weight wv ∈ {1,2, . . .}. The task is to then

assign wv different colours to each vertex v such that (a) adjacent vertices have no

colours in common, and (b) the number of colours used is minimal.

Multicolouring has practical applications in areas such as frequency assignment

problems where, in some cases, it is desirable for devices to be able to transmit

and receive messages on multiple frequencies as opposed to just one (Aardel et al.,

2002). McDiarmid and Reed (2000) have shown that this problem is polynomially

solvable for bipartite and perfect graphs, but that it remains NP-hard for triangu-

lar lattice graphs and their induced subgraphs, which have practical applications in

cellular telephone networks. They also suggest a suitable polynomial-time approxi-

mation algorithm for the latter topology.

Note that the graph colouring problem is a special case of the multicolouring

problem for which wv = 1 ∀v ∈ V . On the other hand, any instance of the multi-

colouring problem can also be converted into an equivalent graph colouring prob-

lem by replacing each vertex v ∈ V with a clique of size wv, and then connecting

every member of the clique to all neighbours of v in G. This method of conversion

allows us to use any graph colouring algorithm (such as those from Chapter 4) with

the graph multicolouring problem, though it also increases the number of vertices to

colour by a factor of ∑v∈V wv/n. Consequently, graph multicolouring is often stud-

ied as a separate computational problem, for which the backtracking algorithm of

Caramia and Dell’Olmo (2001) and the IP branch-and-price method of Mehrotra

and Trick (2007) are prominent examples.
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