
Chapter 4
Algorithm Case Studies

In this chapter we present detailed descriptions of six high-performance algorithms

for the graph colouring problem. Implementations of each of these can be found

in the online suite of graph colouring algorithms described in Section 1.6.1 and

Appendix A.1. In Section 4.2 onwards we then compare the performance of these

algorithms over a wide range of graphs in order to gauge their relative strengths and

weaknesses.

4.1 Algorithm Descriptions

4.1.1 The TABUCOL Algorithm

As we mentioned in the previous chapter, since its proposal by Hertz and de Werra

in 1987, TABUCOL has been used as a local search subroutine in a number of high-

performing hybrid algorithms, including those of Avanthay et al. (2003), Dorne and

Hao (1998), Galinier and Hao (1999), and Thompson and Dowsland (2008). The

specific version of TABUCOL that we consider here is the so-called “improved”

variant, which was originally used by Galinier and Hao (1999). The various features

of this algorithm are now reviewed.

TABUCOL operates in the space of complete improper k-colourings using an

objective function that simply counts the number of clashes, as defined by f2 in

Equation (3.15). Given a candidate solution S = {S1, . . . ,Sk}, moves in the solution

space are performed by selecting a vertex v ∈ Si whose assignment to colour class

Si is currently causing a clash, and then assigning it to a new colour class S j �= Si.

Note that previous incarnations of this algorithm also allowed nonclashing vertices

to be moved between colours, though this is generally seen to worsen performance

(Galinier and Hertz, 2006).

The tabu list of the algorithm is stored using a matrix Tn×k. If, at iteration l of the

algorithm, the neighbourhood operator transfers a vertex v from Si to S j, then the
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element Tvi is set to l + t, where t is a positive integer that will be defined presently.

This signifies that the moving of v back to colour class Si is tabu (i.e., disallowed)

for t iterations of the algorithm (or, in other words, that v cannot be moved back to

Si until at least iteration l + t). Note that this has the effect of making all solutions

containing the assignment of vertex v to Si tabu for t iterations.

As is typical in applications of tabu search, in each iteration of TABUCOL the

entire set of neighbouring solutions is considered. That is, the cost of moving each

clashing vertex into all other k − 1 colour classes is evaluated. This process con-

sumes the majority of the algorithm’s execution time; however, it can be sped up

considerably through the use of appropriate data structures. To explain, let x denote

the number of vertices involved in a clash in the current solution S . This leads to

x(k−1) members in the set of neighbouring solutions N(S). (Obviously, there is a

strong positive correlation between x and the objective function, so better solutions

will tend to have smaller neighbourhoods.) A naı̈ve implementation of the TABU-

COL would set about separately performing the x(k − 1) different neighbourhood

moves and evaluating all the resulting solutions. However, this is not necessary, par-

ticularly because only two colour classes are effected by each neighbourhood move.

A more efficient approach involves making use of an additional matrix Cn×k
where, given the current solution S = {S1, . . . ,Sk}, element Cv j denotes the number

of vertices in colour class S j that are adjacent to vertex v. When an initial solution is

generated, all elements in C will need to be calculated. However, in each subsequent

iteration of TABUCOL, the act of moving a vertex v from Si to S j will result in a new

solution S′ whose cost is simply:

f2(S′) = f2(S)+Cv j −Cvi. (4.1)

Since f2(S) will already be known, this means that the cost of all neighbouring

solutions can be determined by simply scanning each row of C corresponding to

clashing vertices in S .

Once a move has been selected and performed (i.e., once v has been moved from

Si to S j), the matrix C can be updated using the procedure shown in Figure 4.1. As

shown in this pseudocode, neighbours of v are now marked as being adjacent to one

fewer vertex in colour class Si and one additional vertex in colour class S j.

UPDATE-C (v, i, j)
(1) forall u ∈ Γ (v) do
(2) Cui ←Cui −1
(3) Cu j ←Cu j +1

Fig. 4.1 Procedure for updating the matrix C once TABUCOL has moved a vertex v from colour i
to colour j. As usual, Γ (v) denotes the set of all vertices adjacent to vertex v

Having evaluated all neighbouring solutions, TABUCOL selects and performs the

non-tabu move that brings about the largest decrease (or failing that, the smallest
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increase) in cost. Any ties in this criterion are broken randomly. In addition, TABU-

COL also employs an aspiration criterion which allows tabu moves to be made on

occasion. Specifically, they are permitted if they are seen to improve on the best

solution found so far during the run. This is particularly helpful if a tabu move is

seen to lead to a solution S′ with zero cost, at which point the algorithm can halt.

Finally, if all moves are seen to be tabu, then a vertex v ∈ V is selected at random

and moved to a new randomly selected colour class. The tabu list is then updated as

usual.

In the version of TABUCOL that we use here, an initial candidate solution is con-

structed by taking a random ordering of the vertices and applying a modified version

of the GREEDY algorithm in which only k colours are permitted. Thus, if vertices are

encountered that cannot be assigned to any of the k colours without inducing a clash,

these are assigned to one of the existing colours randomly. Of course, we could use

more sophisticated constructive methods here, but it is stated by both Galinier and

Hertz (2006) and Blöchliger and Zufferey (2008) that the method of initial solution

generation is not critical in TABUCOL’s performance.

Finally, with regard to the tabu tenure, Galinier and Hao (1999) have suggested

making t a random variable that is proportional to the incumbent solution’s cost. The

idea here is that when the incumbent solution is poor, its high cost will lead to large

values for t, which will hopefully force the algorithm into different regions of the

solution space where better solutions can be found. On the other hand when the in-

cumbent solution has a low cost, the algorithm should focus on the current region by

using low values for t. Galinier and Hao (1999) suggest using t = 0.6 f2 + r, where

r is an integer uniformly selected from the range 0 to 9 inclusive. These particu-

lar settings have been used in various other applications of TABUCOL (Blöchliger

and Zufferey, 2008; Galinier and Hao, 1999; Thompson and Dowsland, 2008) and

are generally thought to give good results; however, it should be noted that other

schemes for determining t are likely to be more appropriate for certain graphs.

4.1.2 The PARTIALCOL Algorithm

The PARTIALCOL algorithm of Blöchliger and Zufferey (2008) operates in a similar

fashion to TABUCOL in that it uses the tabu search metaheuristic to seek a proper

k-colouring. However, in contrast to TABUCOL, PARTIALCOL does not consider

improper solutions; instead, vertices that cannot be assigned to any of the k colours

without causing a clash are put into a set of uncoloured vertices U . The aim of

PARTIALCOL is to thus make alterations to the partial solution S so that U can be

emptied, giving f3 = |U |= 0 and, consequently, a feasible k-coloured solution.

Because of its use of partial proper solutions, the neighbourhood operator of

PARTIALCOL is somewhat different from that of TABUCOL. Specifically, a move in

the solution space is achieved by selecting an uncoloured vertex v∈U and assigning

it to a colour class S j ∈ S . The move is then completed by taking all vertices u ∈ S j
that are adjacent to v and transferring them from S j into U . Having performed such
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a move, all corresponding elements Tu j in the tabu list are then marked as tabu for

the next t iterations of the algorithm.

In each iteration of PARTIALCOL, the complete set of |U |×k neighbouring solu-

tions is examined. The move to be performed is then chosen using the same criteria

as TABUCOL. As with TABUCOL the matrix C can again be used to speed up the

process of evaluating the neighbourhood set. In this case, the act of moving vertex

v from U to colour class S j leads to a new solution S′ whose cost is simply:

f3(S′) = f3(S)+Cv j −1. (4.2)

Once a move has been performed (that is, the vertex v ∈U has been transferred to S j
and all vertices in the set {u ∈ S j : u ∈ Γ (v)} have been moved to U), the C matrix

is updated using the procedure given in Figure 4.2.

UPDATE-C (v, j)
(1) forall u ∈ Γ (v) do
(2) Cu j ←Cu j +1
(3) if c(u) = j then
(4) forall w ∈ Γ (u) do
(5) Cw j ←Cw j −1

Fig. 4.2 Procedure for updating C once PARTIALCOL has moved vertex v from the set U to colour
j

An initial solution to PARTIALCOL is generated using a greedy process analo-

gous to that of TABUCOL. The only difference is that when vertices are encountered

for which there exists no clash-free colours, these are put into the set U . The only

other operational difference between the two algorithms relates to the calculation

of the tabu tenure t. In their original paper, Blöchliger and Zufferey (2008) use an

algorithm variant known as FOO-PARTIALCOL. Here, FOO abbreviates “Fluctua-

tion Of the Objective-function”, and indicates their use of a mechanism that alters

t based on the algorithm’s search progress. In essence, if during a run the objective

function has not altered for a lengthy period of time, it is assumed that the search has

stagnated in a particular region of the solution space and so t is increased to try to

encourage the algorithm to leave this region. Similarly, when the objective function

is seen to be fluctuating, t is slowly reduced, counteracting these effects. Note that

this scheme requires values to be assigned to a number of parameters, the meanings

of which are described by Blöchliger and Zufferey (2008). In our case, we choose

to use settings recommended by the authors and these are included in our source

code of this algorithm. We are perfectly at liberty to use other simpler schemes for

calculating t if required, however.



4.1 Algorithm Descriptions 83

4.1.3 The Hybrid Evolutionary Algorithm (HEA)

The third algorithm that we shall consider is the hybrid evolutionary algorithm

(HEA) of Galinier and Hao (1999). The HEA operates by maintaining a popula-

tion of candidate solutions that are evolved via a problem-specific recombination

operator and a local search method. Like TABUCOL, the HEA operates in the space

of complete improper k-colourings using cost function f2.

The algorithm begins by creating an initial population of candidate solutions.

Each member of this population is formed using a modified version of the DSATUR

algorithm for which the number of colours k is fixed at the outset. To provide di-

versity between members, the first vertex is selected at random and assigned to

the first colour. The remaining vertices are then taken in sequence according to the

maximum saturation degree (with ties being broken randomly) and assigned to the

lowest indexed colour class Si seen to be feasible (where 1 ≤ i ≤ k). When vertices

are encountered for which no feasible colour class exists, these are kept to one side

and are assigned to random colour classes at the end of this process. Upon construc-

tion of this initial population, an attempt is then made to improve each member by

applying the local search routine.

As is typical for an evolutionary algorithm, for the remainder of the run the al-

gorithm evolves the population using recombination, mutation, and evolutionary

pressure. In each iteration two parent solutions S1 and S2 are selected from the

population at random, and copies of these are used in conjunction with the recombi-

nation operator to produce one child solution S′. This child is then improved via the

local search operator, and is inserted into the population by replacing the weaker of

its two parents. Note that there is no bias towards selecting fitter parents for recom-

bination; rather evolutionary pressure only exists due to the offspring replacing their

weaker parent (regardless of whether the parent has a better cost than its child).

Parent S1 Parent S2 Offspring S ′ Comments

1) {{v1,v2,v3}, {{v3,v4,v5,v7}, {} To start, the offspring solution S = /0.
{v4,v5,v6,v7}, {v1,v6,v9},
{v8,v9,v10}} {v2,v8,v10}}

2) {{v1,v2,v3}, {{v3}, {{v4,v5,v6,v7}} Select the colour class with most vertices and copy it
{v8,v9,v10}} {v1,v9}, into S ′. (Class {v4,v5,v6,v7} from S1 in this case.)

{v2,v8,v10}} Delete the copied vertices from both S1 and S2.

3) {{v1,v3}, {{v3}, {{v4,v5,v6,v7}, Select the largest colour class in S2 and copy it into S ′.
{v9}} {v1,v9}} {v2,v8,v10}} Delete the copied vertices from both S1 and S2.

4) {{v9}} {{v9}} {{v4,v5,v6,v7}, Select the largest colour class in S1 and copy it into S ′.
{v2,v8,v10}, Delete the copied vertices from both S1 and S2.
{v1,v3}}

5) {{v9}} {{v9}} {{v4,v5,v6,v7}, Having formed k colour classes, assign any missing
{v2,v8,v10,v9}, vertices to random colours to form a complete
{v1,v3}} but not necessarily proper offspring solution S.

Fig. 4.3 Example application of the Greedy Partition Crossover of Galinier and Hao (1999), using
k = 3
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The recombination operator proposed Galinier and Hao (1999) is the so-called

Greedy Partition Crossover (GPX). The idea behind GPX is to construct offspring

using large colour classes inherited from both parent solutions. A demonstration

of how this is done is given in Figure 4.3. As shown, the largest (not necessarily

proper) colour class from the parents is first selected and copied into the offspring

(ties are broken randomly). In order to avoid duplicate vertices occurring in the

offspring at a later stage, these copied vertices are then removed from both parents.

To form the next colour, the other (modified) parent is then considered and, again,

the largest colour class is selected and copied into the offspring, before these vertices

are removed from both parents. This process is continued by alternating between the

parents until the offspring’s k colour classes have been formed.

At this point, each colour class in the offspring will be a subset of a colour class

existing in one or both of the parents. That is:

∀Si ∈ S′ ∃S j ∈ (S1 ∪S2) : Si ⊆ S j (4.3)

where S′, S1, and S2 represent the offspring, and the first and second parents respec-

tively. However, some vertices may be missing in the offspring (as is the case with

vertex v9 in Figure 4.3). This issue is resolved by assigning the missing vertices to

random colour classes.

Once a complete offspring solution is formed, it is then modified and improved

via a local search procedure before being inserted into the population. For this pur-

pose the TABUCOL algorithm is used for a fixed number of iterations I using the

same tabu tenure scheme as described in Section 4.1.1. In their original paper,

Galinier and Hao (1999) present results for a small sample of problem instances

and manually tune I for each case. In our case we choose not to follow this strategy

and require a setting for I to be determined automatically by the algorithm. We also

need to be wary that if I is set too low, then insufficient local search will be carried

out on each newly created solution, while an I that is too high will result in too much

effort being placed on local search as opposed to the global search carried out by

the evolutionary operators. Ultimately we choose to settle on I = 16n, which corre-

sponds roughly to the settings used in the most successful runs reported by Galinier

and Hao (1999). In all cases, we also use a population size of 10, as recommended

by the authors.

4.1.4 The ANTCOL Algorithm

Like the HEA, the ANTCOL algorithm of Thompson and Dowsland (2008) is an-

other metaheuristic-based method that combines global and local search operators,

in this case using the ant colony optimisation (ACO) metaheuristic.

ACO is an algorithmic framework that was originally inspired by the way in

which real ants determine efficient paths between food sources and their colonies.

In their natural habitat, when no food source has been identified, ants tend to wan-
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der about randomly. However, when a food source is found, the discovering ants

will take some of this back to the colony leaving a pheromone trail in their wake.

When other ants discover this pheromone, they are less likely to continue wander-

ing at random, but may instead follow the trail. If they go on to discover the same

food source, they will then follow the pheromone trail back to the nest, adding their

own pheromone in the process. This encourages further ants to follow the trail. In

addition to this, pheromones on a trail also tend to evaporate over time, reducing the

chances of an ant following it. The longer it takes for an ant to traverse a path, the

more time the pheromones have to evaporate; hence shorter paths tend to see a more

rapid build-up of pheromone, making other ants more likely to follow it and deposit

their own pheromone. This positive feedback eventually leads to all ants following

a single, efficient path between the colony and food source.

As might be expected, initial applications of ACO were aimed towards problems

such as the travelling salesman problem and vehicle routing problems, where we

seek to identify efficient paths for visiting the vertices of a graph (see for example

the work of Dorigo et al. (1996) and Rizzoli et al. (2007)). However, applications to

many other problems have also been made.

The idea behind the ANTCOL algorithm is to use ants to produce individual can-

didate solutions. During a run each ant produces its solution in a nondeterministic

manner, using probabilities based on heuristics and also on the quality of solutions

produced by previous ants. In particular, if previous ants have identified features

that are seen to lead to better-than-average solutions, the current ant is more likely

to include these features in its own solution, generally leading to a reduction in the

number of colours during the course of a run.

A full description of the ANTCOL algorithm is provided in Figure 4.4. As shown

in the pseudocode, in each cycle of the algorithm (lines (3) to (19)), a number of

ants each produce a complete, though not necessarily feasible, solution. In line (16)

the details of each of these solutions are then added to a trail update matrix δ and,

at the end of a cycle, the contents of δ are used together with an evaporation rate ρ
to update the global trail matrix t.

At the start of each cycle, each individual ant attempts to construct a solution

using the procedure BUILDSOLUTION. This is based on the RLF method (see Sec-

tion 2.4) which, we recall, operates by building up each colour class in a solution

one at a time. Also recall that during the construction of each class Si ∈ S , RLF

makes use of two sets: X , which contains uncoloured vertices that can currently be

added to Si without causing a clash; and Y , which holds the uncoloured vertices that

cannot be feasibly added to Si. The modifications to RLF that BUILDSOLUTION

employs are as follows:

• In the procedure a maximum of k colour classes is permitted. Once these have

been constructed, any remaining vertices are left uncoloured.

• The first vertex to be assigned to each colour class Si (1 ≤ i ≤ k) is chosen ran-

domly from the set X .

• In remaining cases, each vertex v is then assigned to colour Si with probability
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ANTCOL (G = (V,E))
(1) tuv ← 1 ∀u,v ∈V : u �= v
(2) k = n
(3) while (not stopping condition) do
(4) δuv ← 0 ∀u,v ∈V : u �= v
(5) best ← k
(6) foundFeasible ← false
(7) for (ant ← 1 to nants) do
(8) S ←BUILDSOLUTION(k)
(9) if (S is a partial solution) then

(10) Randomly assign uncoloured vertices to colour classes in S
(11) Run TABUCOL

(12) if (S is feasible) then
(13) foundFeasible ← true
(14) if (|S| ≤ best) then
(15) best ← |S|
(16) δuv ← δuv +F(S) ∀u,v : c(u) = c(v)∧u �= v
(17) tuv ← ρ × tuv +δuv ∀u,v ∈V : u �= v
(18) if (foundFeasible=true) then
(19) k ← best−1

Fig. 4.4 The ANTCOL algorithm. At termination, the best feasible solution found uses k + 1
colours

Pvi =

⎧⎪⎨
⎪⎩

τα
vi ×ηβ

vi

∑u∈X (τα
ui ×ηβ

ui)
if v ∈ X

0 otherwise

(4.4)

where τvi is calculated

τvi =
∑u∈Si tuv

|Si|
. (4.5)

Note that the calculation of τvi makes use of the global trail matrix t, meaning

that higher values are associated with combinations of vertices that have been

assigned the same colour in previous solutions. The value ηvi, meanwhile, is

associated with a heuristic rule which, in this case, is the degree of vertex v in the

graph induced by the set of currently uncoloured vertices X ∪Y . Larger values

for τvi and ηvi thus contribute to larger values for Pvi, encouraging vertex v to

be assigned to colour class Si. The parameters α and β are used to control the

relative strengths of τ and η in the equation.

The ANTCOL algorithm also makes use of a “multi-sets” operator in the BUILD-

SOLUTION procedure. Since the process of constructing a colour class is proba-

bilistic, the operator makes ν separate attempts to construct each colour class. It

then selects the one that results in the minimum number of edges in the graph in-

duced by the set of remaining uncoloured vertices Y (since such graphs will tend to

feature lower chromatic numbers).
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On completion of BUILDSOLUTION, the generated solution S will be proper, but

could be partial. If the latter is true, all uncoloured vertices are assigned to random

colour classes to form a complete, improper solution, and TABUCOL is run for I
iterations. Details on the solution are then written to the trail update matrix δ using

the evaluation function:

F(S) =
{

1/ f2 if f2 > 0

3 otherwise.
(4.6)

This means that higher-quality solutions contribute larger values to δ , encouraging

their features to be included in solutions produced by future ants.

The parameters used in our application, and recommended by Thompson and

Dowsland (2008), are as follows: α = 2, β = 3, ρ = 0.75, nants = 10, I = 2n, and

ν = 5. The tabu tenure scheme of TABUCOL is the same as in previous descriptions.

4.1.5 The Hill-Climbing (HC) Algorithm

In contrast to the preceding four algorithms, the Hill-Climbing (HC) algorithm of

Lewis (2009) operates in the space of feasible solutions, with the initial solution

being formed using the DSATUR heuristic. During a run, the algorithm operates on a

single feasible solution S = {S1, . . .S|S|} with the aim of minimising |S|. To begin, a

small number of colour classes are removed from S and are placed into a second set

T , giving two partial proper solutions. A specialised local search procedure is then

run for I iterations. This attempts to feasibly transfer vertices from colour classes in

T into colour classes in S such that both S and T remain proper. If successful, this

has the effect of increasing the cardinality of the colour classes in S and may also

empty some of the colour classes in T , reducing the total number of colours being

used. At the end of the local search procedure, all colour classes in T are copied

back into S to form a feasible solution.

The first iteration of the local search procedure operates by considering each

vertex v in T and checking whether it can be feasibly transferred into any of the

colour classes in S . If this is the case, such transfers are performed. The remaining

iterations of the procedure then operate as follows. First, an alteration is made to

a randomly selected pair of colour classes Si,S j ∈ S using either a Kempe chain

interchange or a pair swap (see Definitions (3.1) and (3.2)). Since this will usually

alter the make-up of two colour classes,1 this then raises the possibility that other

vertices in T can now also be moved to Si or S j. Again, these transfers are made

1 Note that in some cases a Kempe chain will contain all vertices in both colour classes: that is,
the graph induced by Si ∪S j will form a connected bipartite graph. Kempe chains of this type are
known as total, and interchanging their colours serves no purpose since this only results in the two
colour classes being relabelled. Consequently total Kempe chains are ignored by the algorithm.
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if they are seen to retain feasibility. The local search procedure continues in this

fashion for I iterations.

On completion of the local search procedure, the independent sets in T are copied

back into S to form a feasible solution. The independent sets in S are then ordered

according to some (possibly random) heuristic, and a new solution S′ is formed

by constructing a permutation of the vertices in the same manner as that of the

Iterated Greedy algorithm (see Section 3.2.1) and then applying the GREEDY algo-

rithm. This latter operation is intended to generate large alterations to the incumbent

solution, which is then passed back to the local search procedure for further opti-

misation. Note that none of the stages of this algorithm allow the number of colour

classes being used to increase, thus providing its hill-climbing characteristics.

As with the previous algorithms, a number of parameters have to be set with this

algorithm, each that can influence its performance. The values used in our experi-

ments here were determined in preliminary tests and according to those reported by

Lewis (2009). For the local search procedure, independent sets are moved into T
by considering each Si ∈ S in turn and transferring it with probability 1/|S|. The

local search procedure is then run for I = 1,000 iterations, and in each iteration the

Kempe chain and swap neighbourhoods are called with probabilities 0.99 and 0.01

respectively. Finally, when constructing the permutation of the vertices for passing

to the GREEDY algorithm, the independent sets are ordered using the same 5:5:3

ratio as detailed in Section 3.2.1.

4.1.6 The Backtracking DSATUR Algorithm

The sixth and final algorithm considered in this chapter is the backtracking approach

of Korman (1979). Essentially, this operates in the same manner as the basic back-

tracking approach discussed in Section 3.1.1, though with the following modifica-

tions:

• The initial order of the vertices is determined by the DSATUR algorithm. Hence

vertices with the fewest available colours are coloured first, with ties being bro-

ken by the degrees, and further ties being broken randomly.

• After performing a backward step, vertices are dynamically reordered so that the

next vertex to be coloured is also the one with the fewest available colours. If the

vertex has no feasible colours available, the algorithm takes a further backward

step.

An example run-through of this algorithm is shown in Figure 4.5. This should

be interpreted in the same manner as Figure 3.1. Note that a number of parameters

can be set when applying this algorithm, some of which might alter the performance

quite drastically. These include specifying the maximum number of branches that

can be considered at each node of the tree and prohibiting branching at certain levels

of the tree. In practice, it is not obvious how these settings might be chosen a priori

for individual graphs, so in our case we opt for the most natural configuration, which
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Fig. 4.5 Example run of the backtracking algorithm of Korman (1979)

is to simply attempt a complete exploration of the search tree.2 This means that the

algorithm is exact under excess time, though of course such run-lengths will not be

possible in most cases.

4.2 Algorithm Comparison

In this section we now compare the above six algorithms using a selection of dif-

ferent graph types. As with our comparison of constructive algorithms in Chapter 2,

we begin by considering random graphs. We then go on to consider a further type

of artificially generated graph, the flat graph, before looking more closely at sets of

graphs arising in two real-world practical problems, namely university timetabling

and social networking.

As with our previous experiments, computational effort for these algorithms is

measured by counting the number of constraint checks (see Section 1.6.1). Due to

the operational differences of the algorithms, during a run solution quality is mea-

2 These parameters can be altered in the implementation, however.
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sured by simply observing the smallest number of colours used in a feasible solution

up until that point. Note that because TABUCOL, PARTIALCOL and the HEA op-

erate using infeasible solutions, settings for k are also required which might then

need to be modified during a run. In our case initial values are determined by ex-

ecuting DSATUR on each instance and setting k to the number of colours used in

the resultant solution. During runs, k is then decremented by 1 each time a feasible

k-colouring is found, with the algorithms being restarted. In all trials a computation

limit of 5×1011 constraint checks was imposed. This value is chosen to be deliber-

ately high in order to provide some notion of excess time in the trials. Example run

times (in seconds) using this computation limit are given in Table 4.6 later.

4.2.1 Artificially Generated Graphs

According to Definition 2.15, random graphs are generated such that each pair of

vertices is made adjacent with probability p. For the following experiments we used

values of p ranging from 0.05 (sparse) to 0.95 (dense), incrementing in steps of 0.05,

with n ∈ {250,500,1000}. Twenty-five instances were generated in each case.

The second type of artificial graph we consider are flat graphs. These are pro-

duced by taking a graph G = (V,E = /0) and then partitioning the n vertices into

q almost equi-sized independent sets (i.e., each set contains either �n/q or �n/q�
vertices). Edges are then added between pairs of vertices in different independent

sets with probability p in such a way that the variance in vertex degrees is kept to a

minimum.

It is well known that q-coloured solutions to flat graphs are quite easy to achieve

for most values of p. This is because for lower values for p, problems will be

under-constrained, perhaps giving χ(G)< q, and making q-coloured solutions eas-

ily identifiable. On the other hand, high values for p can result in over-constrained

problems with prominent global optima that are easily discovered. Hard-to-solve

q-colourable graphs are known to occur for a region of p’s at the boundary of these

extremes, commonly termed the phase transition region (Cheeseman et al., 1991;

Turner, 1988). Flat graphs, in particular, are known to have rather pronounced phase

transition regions because each colour class and vertex degree is deliberately similar,

implying a lack of heuristic information for algorithms to exploit.

For our experiments, flat graphs were generated using publicly available software

designed by Joseph Culberson which can be downloaded at web.cs.ualberta.ca/∼joe/

coloring. Graphs were produced for q ∈ {10,50,100} using various settings of p in

and around the phase transition regions. In each case we used n = 500, implying

approximately 50, ten, and five vertices per colour respectively. Twenty instances

were generated in each case.

Note that according to the structure of random graphs, vertex degrees are char-

acterised by the binomial distribution B(n−1, p). This means that the standard de-

viation of the vertex degrees, calculated
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σ =
√
(n−1)p(1− p), (4.7)

does not exceed 15.8 in this test set of random graphs. It also implies that the degree

coefficient of variation (CV), which is defined as the ratio of the standard deviation

to the mean σ/μ , never exceeds 28% (being maximised at n = 250, p = 0.05).

In a similar fashion, flat graphs are constructed such that variance in degrees is

minimised, and for our generated instances this means that the CV never exceeds

28.5%. Compared to many of the more real-world graphs considered later, these

values imply a rather high level of vertex homogeneity (i.e., vertices tend to “look

the same”), helping to explain some of the following results.

4.2.1.1 Performance on Random Graphs

Table 4.1 shows the number of colours used in solutions produced by the six algo-

rithms for random graphs with edge probability p = 0.5 and varying numbers of

vertices. The results indicate that for the smaller graphs (n = 250), the TABUCOL,

PARTIALCOL and HEA algorithms produce solutions with fewer colours than the

remaining algorithms.3 However, no statistical difference between these three algo-

rithms is apparent. For larger graphs however, the HEA produces the best results,

allowing us to conclude that, for n = 500 and n = 1,000, the HEA algorithm is able

to produce the best solutions across the set of all graphs and their isomorphisms

under this particular computation limit.

Table 4.1 Summary of results produced at the computation limit using random graphs Gn,0.5

Algorithma

n TABUCOL PARTIALCOL HEA ANTCOL HC Bktr

250 28.04± 0.20 28.08 ± 0.28 28.04 ± 0.33 28.56 ± 0.51 29.28 ± 0.46 34.24 ± 0.78
500 49.08 ± 0.28 49.24 ± 0.44 47.88 ± 0.51 49.76 ± 0.44 54.52 ± 0.77 62.24 ± 0.72

1000 88.92 ± 0.40 89.08 ± 0.28 85.48 ± 0.46 89.44 ± 0.58 101.44 ± 0.82 112.88 ± 0.97

a Mean plus/minus standard deviation in number of colours, taken from runs across 25 graphs.

Moving on to other densities, the graphs shown in Figure 4.6 summarise the mean

solution quality achieved by the six algorithms on all random graphs generated. In

each figure, the bars show the number of colours used in solutions produced by

DSATUR and the lines then give the proportion of this number used in the solutions

of the six algorithms. Note that all algorithms achieve a reduction in the number

of colours realised by DSATUR, though in all but the smallest, sparsest graphs, the

backtracking algorithm exhibits the smallest margins of improvement, apparently

due to the high levels of vertex homogeneity in these instances, which makes it

difficult for favourable regions of the search tree to be identified.

3 As in Chapter 2, statistical significance is claimed here according to the nonparametric Related
Samples Wilcoxon Signed Rank test (for pairwise comparisons), and the Related Samples Fried-
man’s Two-way Analysis of Variance by Ranks (for group comparisons). For the remainder of this
chapter statistical significance is claimed at the 1% level.
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Fig. 4.6 Mean quality of solution achieved on random graphs using n = 250, 500, and 1,000
(respectively) for various edge probabilities p. All points are the mean of 25 runs on 25 different
instances

It is clear from Figure 4.6 that TABUCOL, PARTIALCOL, and the HEA in partic-

ular, produce the best results for the random graphs. For n = 250 these algorithms

produce mean results that, across the range of values for p, show no significant

difference among one another, perhaps indicating that the achieved solutions are
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consistently close to the optimal solutions. For larger graphs however, the HEA’s

solutions are seen to be significantly better, though its rates of improvement are

slightly slower than those of TABUCOL and PARTIALCOL, as illustrated by Fig-

ure 4.7. Similar behaviour during runs was also witnessed with the smaller random

instances.
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Fig. 4.7 Run profiles on random graphs of n = 1,000 with edge probabilities p = 0.25, 0.5, and
0.75 respectively. Each line represents a mean of 25 runs on 25 different instances
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Overall, the patterns shown in Figure 4.6 indicate that the HEA’s strategy of ex-

ploring the space of infeasible solutions using both global and local search operators

is the most beneficial of those considered here. Indeed, although the HC algorithm

also uses both global and local search operators, here its insistence on preserving

feasibility implies a lower level of connectivity in its underlying solution space,

making navigation more restricted and resulting in noticeably inferior solutions.

Figure 4.6 also reveals that ANTCOL does not perform well with large sparse

instances, though it does become more competitive with denser instances. The rea-

sons for this are twofold. First, the degrees of vertices in sparse graphs are naturally

lower, reducing the heuristic bias provided by η and perhaps implying an over-

dominant role of τ during applications of BUILDSOLUTION (see Equation (4.4)).

Secondly, sparse graphs also feature greater numbers of vertices per colour—thus,

even if very promising independent sets are identified by ANTCOL, their recon-

struction by later ants will naturally depend on a longer sequence of random trials,

making them less likely. To back these assertions, we also repeated the trials of

ANTCOL using the same local search iteration limit as the HEA, I = 16n. How-

ever, though this brought slight improvements for denser graphs, the results were

still observed to be significantly worse than the HEA’s, suggesting the difference in

performance indeed lies with the global-search element of ANTCOL in these cases.

4.2.1.2 Performance on Flat Graphs

Similar patterns are also revealed when we turn our attention towards the perfor-

mance of the six algorithms with flat graphs, as shown in Figure 4.8. Again, we

see that the HEA, TABUCOL, and PARTIALCOL exhibit the best performance on in-

stances within the phase transition regions, with the HC and backtracking algorithms

proving the least favourable. One pattern to note is that for the three values of q, the

HEA tends to produce the best-quality results on the left side of the phase transi-

tion region, but PARTIALCOL produces better results for a small range of p’s on the

right side. However, this difference is not due to the “FOO” tabu tenure mechanism

of PARTIALCOL, because no significant difference was observed when we repeated

our experiments using PARTIALCOL under TABUCOL’s tabu tenure scheme. Thus,

it seems that PARTIALCOL’s strategy of only allowing solutions to be built from

independent sets is favourable in these cases, presumably because this restriction

facilitates the formation of independent sets of size n/q—structures that will be less

abundant in denser graphs, but which also serve as the underlying building blocks

in these cases.

Another striking feature of Figure 4.8 is the poor performance of ANTCOL on

the right side of the phase transition regions. This again seems to be due to the

diminished effect of heuristic value η , which in this case is due to the variance

in vertex degrees being deliberately low, making it difficult to distinguish between

vertices. Furthermore, in denser graphs fewer combinations comprising n/q vertices

will form independent sets, decreasing the chances of an ant constructing one. This

reasoning is also backed by the fact that ANTCOL’s poor performance lessens with
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Fig. 4.8 Mean quality of solution achieved with flat graphs of n = 500 with q = 10, 50, and 100
(respectively) for various edge probabilities p. All points are the mean of 20 runs on 20 different
instances
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larger values of q where, due to there being fewer vertices per colour, the reproduc-

tion of independent sets is dependent on shorter sequences of random trials.

4.2.2 Exam Timetabling Problems

Our first set of “real world” problem instances in this comparison concerns graphs

representing university timetabling problems. As we saw in Section 1.1.2, timetabling

problems involve assigning a set of “events” (exams, lectures, etc.) to a fixed num-

ber of “timeslots”, and a pair of events “conflict” when they require the same single

resource: e.g., there may be a student or lecturer who needs to attend both events, or

the events may require use of the same room. As a result conflicting events need to

be assigned to different timeslots. Under this constraint, timetabling problems can

be modelled as graph colouring problems by considering each event as a vertex,

with edges occurring between pairs of events that conflict. Each colour then repre-

sents a timeslot, and a feasible colouring corresponds to a complete timetable with

no conflict violations.

In practice, universities will often have a predefined number of timeslots in their

timetable and their task will be to determine a feasible solution using fewer or

equal timeslots. In many cases however, it might be difficult to ascertain whether

a timetable with a given number of timeslots is achievable for a particular problem,

or it may be desirable to use as few timeslots as possible, particularly if it provides

extra time for marking, or allows for a shorter teaching day. Here we concern our-

selves with the latter problem, and use a well-known set of real-world timetabling

problems compiled by Carter et al. (1996). This set contains 13 exam timetabling

problems encountered in various universities from across the globe during the 1980s

and 1990s.

Degree
Instance n Density Min;Med;Max Mean μ CV (σ/μ)
hec-s-92 81 0.415 9; 33; 62 33.7 36.3%
sta-f-83 139 0.143 7; 16; 61 19.9 67.4%
yor-f-83 181 0.287 7; 51; 117 52 35.2%
ute-s-92 184 0.084 2; 13; 58 15.5 69.1%
ear-f-83 190 0.266 4; 45; 134 50.5 56.1%
tre-s-92 261 0.180 0; 45; 145 47 59.6%
lse-f-91 381 0.062 0; 16; 134 23.8 93.2%
kfu-s-93 461 0.055 0; 18; 247 25.6 120.0%
rye-s-93 486 0.075 0; 24; 274 36.5 111.8%
car-f-92 543 0.138 0; 64; 381 74.8 75.3%
uta-s-92 622 0.125 1; 65; 303 78 73.7%
car-s-91 682 0.128 0; 77; 472 87.4 70.9%
pur-s-93 2419 0.029 0; 47; 857 71.3 129.5%

Table 4.2 Details of the 13 timetabling instances of Carter et al. (1996)
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A summary of these problem instances is provided in Table 4.2. The names of

the graphs start with a three-letter code denoting the name of the university. This is

followed by an “s” or “f” specifying whether the problem occurred in the summer

or fall semester, and this is then followed by the year. We see that the set contains

problems ranging in size from n = 81 to 2,419 vertices, and densities of 2.9% up to

41.5%.

It is also known that many of these problem instances feature high numbers of

rather large cliques. As Ross et al. (2003) have noted:

Consider the instance kfu-s-93, by no means the hardest or largest in this set. It involves
5,349 students sitting 461 exams, ideally fitted into 20 timeslots. The problem contains two
cliques of size 19 and huge numbers of smaller ones. There are 16 exams that clash with
over 100 others.

Colours at Cut-off: Mean (best)
Instance TABUCOL PARTIALCOL HEA ANTCOL HC Bktr

hec-s-92 17.22 (17) 17.00 (17) 17.00 (17) 17.04 (17) 17.00 (17) 19.00 (19)
sta-f-83 13.35 (13) 13.00 (13) 13.00 (13) 13.13 (13) 13.00 (13) *13.00 (13) [100%, <0.1%]
yor-f-83 19.74 (19) 19.00 (19) 19.06 (19) 19.87 (19) 19.00 (19) 20.00 (20)
ute-s-92 10.00 (10) 10.00 (10) 10.00 (10) 11.09 (10) 10.00 (10) 10.00 (10)
ear-f-83 26.21 (24) 22.46 (22) 22.02 (22) 22.48 (22) 22.00 (22) *22.00 (22) [100%, 0.7%]
tre-s-92 20.58 (20) 20.00 (20) 20.00 (20) 20.04 (20) 20.00 (20) 23.00 (23)
lse-f-91 19.42 (18) 17.02 (17) 17.00 (17) 17.00 (17) 17.00 (17) *17.00 (17) [100%, 1.3%]
kfu-s-93 20.76 (19) 19.00 (19) 19.00 (19) 19.00 (19) 19.00 (19) 19.00 (19)
rye-s-93 22.40 (21) 21.06 (21) 21.04 (21) 21.55 (21) 21.00 (21) 22.00 (22)
car-f-92 39.92 (36) 32.48 (31) 28.50 (28) 30.04 (29) 27.96 (27) *27.00 (27) [100%, 8.2%]
uta-s-92 41.65 (39) 35.66 (34) 30.80 (30) 32.89 (32) 30.27 (30) 29.00 (29)
car-s-91 39.10 (32) 30.20 (29) 29.04 (28) 29.23 (29) 29.10 (28) 28.00 (28)
pur-s-93 50.70 (47) 45.48 (42) 33.70 (33) 33.47 (33) 33.87 (33) 33.00 (33)

Total 341.05 (315) 302.36 (294) 280.16 (277) 286.84 (281) 279.20 (276) 282.00 (282)
Rank (6) (5) (2) (4) (1) (3)

Table 4.3 Summary of algorithm performance on the 13 timetabling instances of Carter et al.
(1996). All statistics are collected from 50 runs on each instance. Asterisks in the rightmost column
indicate where the backtracking algorithm was able to produce a provably optimal solution. In
these cases, the square brackets indicate the % of runs where this occurred, and the average % of
the computation limit that this took

Table 4.3 summarises the results achieved at the computation limit with the six

graph colouring algorithms. Note that in contrast to the artificial instances from the

previous section, the worst overall performance now occurs with those methods re-

lying solely on local search: that is, TABUCOL and to a lesser extent PARTIALCOL.

Indeed, we find that these methods are often incapable of achieving feasible solu-

tions even using the initial setting for k determined by DSATUR.4 The cause of this

poor performance seems to lie in the fact that, as shown in Table 4.2, the degree co-

efficient of variations (CVs) of these 13 problems are considerably higher than that

of the artificially generated instances seen in the previous subsection. The effects

4 Consequently, the reported results for TABUCOL and PARTIALCOL in Table 4.3 are produced
using an initial k generated by executing the GREEDY algorithm with a random permutation of the
vertices.
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of this are shown in Figure 4.9 where, compared to a random graph of a similar

size and density, the differences in cost between neighbouring solutions vary much

more widely. This suggests a more “spiky” cost landscape in which the use of local

search mechanisms in isolation is insufficient, exhibiting a susceptibility to becom-

ing trapped at local optima.
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Fig. 4.9 Cost-change distributions for a random graph (n = 500, p = 0.15, CV= 10.7%, using
k = 16) and timetable graph car-f-92 (n = 543, p = 0.138, CV= 75.3%, using k = 27). In all cases
samples are taken from candidate solutions with costs of 8

Table 4.3 also shows that the most consistent performance with these graphs is

achieved by the HC and HEA algorithms (no significant difference between the

two methods across the instances is apparent). This demonstrates that the issues

of using local search in isolation are alleviated by the addition of a global search-

based operator. On individual instances, the relative performances of HC and HEA

do seem to vary, however. With the problem instances car-f-92 and car-s-91, for

example, the HEA’s best observed solutions are determined within approximately

1% of the computation limit, while HC’s progress is much slower. On the other

hand, with instances such as rye-s-93, HC consistently produces the best observed

results in less that 0.3% of the computation limit, suggesting that its operators are

somehow suited to this instance. This issue is considered further in Section 4.4.1.

In contrast to the artificially generated graphs seen earlier, we also observe that

the backtracking algorithm is quite competitive with these instances. For four of the

problem instances the algorithm has managed to find and prove the optimal solu-

tions in all runs using a small fraction of the computation limit; however, these do

not correspond to the smallest instances as we might have expected. In addition, the
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algorithm has produced the best average performance out of all algorithms with the

four largest problem instances, seeming to contradict the often-held belief that com-

plete algorithms are only suitable for graphs with less that 100 vertices or so (see

Section 3.2). It seems in these cases that the large degree CVs characterise an abun-

dance of heuristic information that is being successfully exploited by the algorithm.

Indeed, for the four largest instances, all of the solutions reported in Table 4.3 were

actually found in less than 2% of the computation limit, implying that the algorithm

quickly arrives at the correct regions of the search tree. However, counterexamples

in which the backtracking algorithm consistently produces the worst performance

can also be seen in Table 4.3, such as with the smallest instance, hec-s-92.

Finally, we also note the sporadic performance of ANTCOL with these instances.

For all but the four largest problems, ANTCOL’s best solutions equal those of the

other algorithms; however, its averages are less favourable, particularly compared

to the HEA and HC algorithms. Consider, for example, the results of ute-s-92 in the

table. This problem is consistently solved using ten colours by all methods except

ANTCOL, which often requires 11 or 12 colours. In fact, we find that for instances

such as these, ANTCOL’s performance depends very much on the quality of solu-

tions produced in the first cycle of the algorithm. Due to the low vertex degrees (and

reduced influence of η that results), Equation (4.4) is predominantly influenced by

the pheromone values τ; however, if an 11- or 12-colour solution is produced dur-

ing the first cycle, features of these suboptimal solutions are still used to update the

pheromone matrix t, making their reoccurrence in later cycles more likely. The up-

shot is that ANTCOL is rarely seen to improve upon solutions found in the initial

cycle of the algorithm with these instances.

4.2.3 Social Networks

Our final set of experiments in this chapter involves graphs representing social net-

works. Social networks consist of “nodes” (usually individual people) that are “tied”

by some sort of inter-dependency such as friendship or belief. Here we consider

the social networks of school friends, compiled as part of the USA-based National

Longitudinal Study of Adolescent Health project (Moody and White, 2003). The

colouring of such networks might be required when we wish to partition the stu-

dents into groups such that individuals are kept separate from their friends, e.g., for

group assignments and team-building exercises (see also Section 1.1.1).

To construct these networks, surveys were conducted in various schools, with

each student being asked to list all of his or her friends. In some cases, students

were only allowed to nominate friends attending the same school, while in others

they could include friends attending a “sister school” (e.g., middle-school students

could include friends in the local high school), leading to single-cluster and double-

cluster networks respectively. In the resultant graphs, each student is represented by

a vertex, with edges signifying a claimed friendship between the associated individ-

uals (see Figure 4.10). Note that in the original data, edges signifying friendships
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are both directed and weighted; however, in our case directions and weights have

been removed to form a simple graph.

Fig. 4.10 Illustration of a double-cluster social network collected in the National Longitudinal
Study of Adolescent Health project (Moody and White, 2003)

Degree
Instance n Density Min;Med;Max Mean μ CV (σ/μ)
Single-Cluster
#1 380 0.021 0; 8; 23 8.1 50.5%
#2 542 0.013 0; 7; 35 7.1 61.7%
#3 563 0.013 0; 7; 23 7.3 55.4%
#4 578 0.015 0; 8; 24 8.8 52.7%
#5 626 0.013 0; 7; 30 7.8 58.7%
#6 746 0.010 0; 7; 28 7.3 58.6%
#7 828 0.008 0; 6; 23 6.2 59.3%
#8 877 0.009 0; 7; 29 7.8 58.2%
#9 1229 0.003 0; 4; 17 4.1 54.6%
#10 2250 0.002 0; 4; 25 4.3 78.0%
Double-Cluster
#11 291 0.027 0; 8; 21 7.8 54.6%
#12 426 0.018 0; 7; 26 7.5 56.2%
#13 457 0.016 0; 7; 23 7.4 58.8%
#14 495 0.017 0; 8; 22 8.5 46.8%
#15 569 0.017 0; 9; 34 9.4 50.9%
#16 586 0.016 0; 9; 30 9.6 48.4%
#17 689 0.010 0; 6; 22 6.8 62.0%
#18 795 0.011 0; 9; 24 8.7 53.7%
#19 1089 0.007 0; 8; 29 8.1 57.9%
#20 1246 0.007 0; 9; 33 8.6 54.4%

Table 4.4 Details of the 20 social networks used

Pajek
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In our tests we took a random sample of ten single-cluster networks and ten

double-cluster networks from the Adolescent Health data set. Summary statistics of

these graphs are given in Table 4.4. These figures indicate that the vertex degrees

are far lower that the timetabling graphs from the previous section, with the highest

degree across the whole set being just 29. Consequently, the densities of the graphs

are also much lower.

Colours at Cut-off: Mean (best)
Instance TABUCOL PARTIALCOL HEA ANTCOL HC Bktr

Single-Cluster
#1 8 (8) 8 (8) 8 (8) 8.15 (8) 8 (8) 8 (8)
#2 6 (6) 6 (6) 6 (6) 6.76 (6) 6 (6) *6 (6) [100%, <1%]
#3 7 (7) 7 (7) 7 (7) 7.45 (7) 7 (7) 7.02 (7)
#4 8 (8) 8 (8) 8 (8) 8.75 (8) 8 (8) 8 (8)
#5 8 (8) 8 (8) 8 (8) 8.41 (8) 8 (8) 8 (8)
#6 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) *6 (6) [90%, <1%]
#7 6 (6) 6 (6) 6 (6) 6.38 (6) 6 (6) 6 (6)
#8 8 (8) 8 (8) 8 (8) 8.23 (8) 8 (8) 8 (8)
#9 6 (6) 6 (6) 6 (6) 6.10 (6) 6 (6) 6 (6
#10 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) *5.38 (5) [52%, <1%]
Double-Cluster
#11 6 (6) 6 (6) 6 (6) 6.70 (6) 6 (6) 6.02 (6)
#12 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) *5 (5) [96%, 4%]
#13 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) *6.32 (6) [46%, 1%]
#14 7 (7) 7 (7) 7 (7) 7.46 (7) 7 (7) *7 (7) [42%, <1%]
#15 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) *7 (7) [100%, <1%]
#16 10 (10) 10 (10) 10 (10) 10.13 (10) 10 (10) 10 (10)
#17 7 (7) 7 (7) 7 (7) 7.28 (7) 7 (7) 7 (7)
#18 6 (6) 6 (6) 6 (6) 6 (6) 6 (6) *6.14 (6) [86%, 1%]
#19 7 (7) 7 (7) 7 (7) 7.65 (7) 7 (7) 7.13 (7)
#20 7 (7) 7 (7) 7 (7) 7.69 (7) 7 (7) 7.02 (7)

Total 136 (136) 136 (136) 136 (136) 142.14 (136) 136 (136) 137.03 (136)
Rank (1) (1) (1) (6) (1) (5)

Table 4.5 Summary of algorithm performance on the 20 Social Networks. All statistics are col-
lected from 50 runs on each instance. Asterisks in the rightmost column indicate where the back-
tracking algorithm was able to produce a provably optimal solution. In these cases, the square
brackets indicate the % of runs where this occurred, and the average % of the computation limit
that this took

As before, each algorithm was executed 50 times on each instance. The relatively

straightforward outcomes of these trials are summarised in Table 4.5. Here, we see

that the number of colours needed for these problems ranges from five to ten, though

no obvious correlations exist to suggest any links with instance size, density, or the

presence of clusters. We also see that the HEA, HC, TABUCOL, and PARTIALCOL

methods have all produced the best observed (or optimal) solutions for all instances

in all runs. It seems, therefore, that the underlying structures and relative sparsity of

these graphs make their solving relatively “easy” with these algorithms.

In addition, for six of the instances, the backtracking algorithm has managed to

find provably optimal solutions, though this does not occur in all runs. Indeed, when

this does happen, it seems to occur early in the process (<5% of the computation

limit), suggesting that the random elements of the algorithm can have a large ef-

fect on the structure of the search tree. We also observe the poor performance of
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ANTCOL, which seems to be due to the negative performance features noted in the

previous subsection, with a high-quality solution either being produced very quickly

(in the first cycle), or not at all.

4.3 Conclusions

As we have seen, the results of the comparison above reveal a complicated picture,

with different algorithms outperforming others on different occasions. This suggests

that the underlying structures of graphs are often critical in an algorithm’s resultant

performance. In terms of overall patterns we offer the following observations:

• Algorithms that rely solely on local search (in this case TABUCOL and PAR-

TIALCOL) often struggle with instances whose cost landscapes are “spiky”, com-

monly characterised by high coefficient of variations (CVs) in vertex degrees. On

the other hand, these methods do show more promise when the degree CV is quite

low, such as with random and flat graphs, suggesting that they have a natural ap-

titude for navigating spaces in which neighbouring solutions feature costs that

are often close or equal to that of the incumbent.

• One obvious advantage of the backtracking algorithm is its ability to produce

provably optimal solutions. This has occurred for a number of the real-world

problem instances considered in our trials, including some rather large instances;

however, predicting when this will happen seems difficult. For graphs that are

more “regular” in structure, such as the random and flat instances, the perfor-

mance of the backtracking algorithm is also significantly worse than that of the

other approaches.

• Across the trials, HEA has proved to be by far the most consistent of the six

approaches. We suggest this is due to a combination of the following attributes:

– The HEA operates in the space of infeasible solutions. Unlike the HC algo-

rithm, which only permits changes to a solution that maintain feasibility, the

strategy of allowing infeasible solutions seems to offer higher levels of con-

nectivity (and thus less restriction of movement) within the solution space,

helping the algorithm to navigate its way towards high-quality solutions more

effectively.

– The HEA makes use of global as well as local search operators. On many

occasions TABUCOL performs poorly when used in isolation; however, the

HEA’s use of global search operators in conjunction with TABUCOL seems to

alleviate these problems by allowing the algorithm to regularly escape from

local optima.

– The HEA’s global search operators are robust. Unlike ANTCOL’s global

search operator, which sometimes hinders performance, the HEA’s use of re-

combination in conjunction with a small population of candidate solutions

seems beneficial across the instances. This is despite the fact that across all

of our tests, recombination was never seen to consume more than 2% of the
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available run time. Note in particular that the GPX operator does not consider

any problem-specific information in its operations (such as the connectivity

or degree of vertices), yet it still seems to strike a useful balance between (a)

altering the solution sufficiently, while (b) maintaining useful substructures

formed in earlier iterations of the algorithm.

One of our intentions in this comparison has been to test the robustness of our six

algorithms by executing them blindly on each problem instance. As we have seen,

this has involved using the same parameter values (or methods for calculating them)

across all trials. However, it should be noted that different settings may lead to better

results in some cases. A broader issue concerns how me might go about reliably pre-

dicting the performance of a particular graph colouring algorithm on a previously

unseen graph. Accurate predictions would obviously be useful here because, given a

particular graph, we would then be able to apply the most appropriate method from

the available portfolio of algorithms. Work in this area with this chapter’s six algo-

rithms has been carried out by Smith-Miles et al. (2014), who use machine learning

to classify the types of graph that the different algorithms are seen to perform well

with. This information is then used to help predict the best performing algorithm on

future unseen problem instances.

Finally, as with Chapter 2, this chapter’s comparison has been carried out using

a platform independent measure of computational effort. In terms of CPU time,

Table 4.6 shows the relative run times of the algorithms for a small sample of graphs.

Perhaps the most striking feature is that the HEA is among one of the quickest to

execute, a fact that further endorses the method. On the other hand, the ANTCOL

and the HC algorithms seem to require significantly more time, apparently due to

the computational overheads associated with their BUILDSOLUTION and Kempe

chain operators respectively.

n = 250 500 1000

TABUCOL 1346 1622 1250
PARTIALCOL 1435 1372 1356
HEA 1469 1400 1337
ANTCOL 4152 3840 4349
HC 5829 5473 5320
Bktr 6328 4794 3930

Table 4.6 Time (in seconds) to complete runs of 5× 1011 constraint checks with random graphs
Gn,0.5 using a 3.0 GHz Windows 7 PC with 3.87 GB RAM
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4.4 Further Improvements to the HEA

We now conclude this chapter by looking at some of the individual elements of the

HEA and proposing some ideas as to how its performance might be further improved

in some cases.

4.4.1 Maintaining Diversity

In general, an important factor behind the behaviour of an evolutionary algorithm

(EA) is the level of diversity that is maintained within its population during a run.

Typically, in early iterations of an EA the diversity of a population will be high, al-

lowing the algorithm to consider many different parts of the solution space. This is

often known as the “exploration” phase of the algorithm. As the population evolves

over time this diversity then generally falls as the algorithm “homes in” on promis-

ing regions of the solution space and seeks to search within these areas more thor-

oughly. This is often called the “exploitation” phase.

It is clear that when applying an EA to a computational problem, a suitable bal-

ance will need to be established between exploration and exploitation. A fall in

diversity that is too slow is undesirable because the algorithm will devote too much

energy into broadly scanning the whole solution space, as opposed to intensively

searching specific regions within it. On the other hand, a fall in diversity that is too

rapid can also be problematic because the EA will spend too much time focussing

on limited regions of the solution space. The latter issue is often called premature
convergence.

To examine the issue of diversity with the HEA for graph colouring, let us first

define a metric for measuring the distance between two candidate solutions.

Definition 4.1 Given a solution S , let PS = {{u,v} : u,v∈V ∧u �= v∧c(u) = c(v)}.
The distance between two solutions S1 and S2 can then be evaluated using the Jac-
card distance measure on the sets S1 and S2. That is:

D(S1,S2) =
|PS1

∪PS2
|− |PS1

∩PS2
|

|PS1
∪PS2

| . (4.8)

This distance measure gives the proportion of vertex pairs (assigned to the same

colour) that exist in just one of the two solutions. Consequently, if the solutions S1

and S2 are identical, then PS1
∪PS2

=PS1
∩PS2

, giving D(S1,S2) = 0. Conversely,

if no vertex pair is assigned the same colour, PS1
∩PS2

= /0, implying D(S1,S2)= 1.

Given this distance measure, we are also able to define a population diversity

metric. This is defined as the mean distance between each pair of solutions in the

population.

Definition 4.2 Given a population of solutions defined as a multiset S= {S1,S2, . . .,
S|S|}, the diversity of S is calculated:
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Diversity(S) =
1(|S|
2

) ∑
∀Si,S j∈S:i< j

D(Si,S j). (4.9)

When applying the HEA to the graphs considered in this chapter, we found that

satisfactory levels of diversity were maintained in most cases. However, for some

of the timetabling problem instances we also observed that large colour classes of

low-degree vertices are often formed in early stages of the algorithm, and that these

quickly come to dominate the population, causing premature convergence. Indeed,

as can be seen in Table 4.3, the HEA often produces inferior results with these

problems.

One method by which population diversity might be prolonged in EAs is to make

larger changes (mutations) to an offspring in order to increase its distance from its

parents. However, this must be used with care, particularly because changes that are

too large might significantly worsen a solution, undoing much of the work carried

out in previous iterations of the algorithm. For the HEA, one obvious way of mak-

ing more changes to a solution is to increase the iteration limit of the local search

procedure. However, although this might allow further improvements to be made to

a solution, it might also slow the algorithm unnecessarily.

An alternative method for maintaining diversity might be to alter the HEA’s re-

combination operator so that it works exclusively with proper colourings. As noted

in Section 4.1.3, the GPX operator considers candidate solutions in which clashes

are permitted; however, in practice this could allow large colour classes containing

clashes to be unduly promoted in the population, when perhaps the real empha-

sis should be on the promotion of large independent sets. Consequently, we might

refine the GPX operator by first removing all clashing vertices from each parent

before performing recombination. This implies that, before assigning missing ver-

tices to random colours, an offspring will always be proper. A further effect is that

a greater number of vertices will usually need to be recoloured because the vertices

originally removed from the parents may also be missing in the resultant offspring.

Hence the resultant offspring will tend to be less similar to its parents.

If the above option is chosen, then before randomly reassigning missing vertices

to colours, we also have the opportunity to alter the partial proper solution using

Kempe chain interchanges. Recall from Theorem 3.1 that this operator, when ap-

plied to a proper solution, does not introduce any clashes. Thus we are provided

with a mechanism by which we can make changes to a solution without compro-

mising its quality in any way.

To illustrate the potential effects of this latter scheme, Figure 4.11 shows the

levels of diversity that exist in the HEA’s population for the first 3,000 iterations

of a run using the timetabling graph car-s-91, which has a chromatic number of 28.

When using the original HEA, the population has converged at around 500 iterations

and, as we saw in Table 4.3, the algorithm produces solutions using more than 29

colours on average. On the other hand, by applying a series of random Kempe chain

moves (2k moves per iteration in this case), population diversity is maintained at a

much higher level. In our tests this modification enabled the algorithm to determine

optimal 28-colourings in all runs.
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Fig. 4.11 Population diversity using a population of size 10 with the timetabling problem instance
car-s-91, using k = 28

We should note that using Kempe chain interchanges in this way is not always

beneficial, however. For instance, similar tests to the above were also carried using

random and flat graphs. When using a suitably low value for k in these cases, we

found that the Kempe chain interchange operator was usually unable to alter the

underlying structures of solutions because its application nearly always resulted in

colour relabellings (or in other words, the bipartite graphs induced by each pair of

colour classes in these solutions were nearly always connected, giving total Kempe

chains). As an aside, it would be interesting to investigate whether this property in

a solution gives any clues as to how close it is to the optimal solution.

Note that within this book’s suite of graph colouring algorithms, the HEA con-

tains run-time options for outputting the population diversity and for applying

Kempe chain interchanges in the manner described above. (Refer to the algorithm

user guide in Appendix A.1 for further information.)

4.4.2 Recombination

Since the proposal of the GPX by Galinier and Hao (1999), further recombination

operators based on their scheme have also been suggested, differing primarily on

the criteria used for deciding which colour classes to copy to the offspring. Porum-

bel et al. (2010), for example, suggest that instead of choosing the largest available

colour class at each stage of the recombination process, classes with the least num-
ber of clashes should be prioritised, with class size and information regarding the

degrees of the vertices then being used to break ties. Lü and Hao (2010a), on the

other hand, have proposed extending the GPX operator to allow more than two par-

ents to play a part in producing a single offspring. In this multi-parent operator,

offspring are constructed in the same manner as the GPX, except that at each stage
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the largest colour class from multiple parents is chosen to be copied into the off-

spring. The intention behind this increased choice is that larger colour classes will

be identified, resulting in fewer uncoloured vertices once the k colour classes have

been constructed. In order to prohibit too many colours being inherited from one

particular parent, the authors make use of a parameter q, specifying that if the ith
colour class in an offspring is copied from a particular parent, then this parent should

not be considered for a further q colours. Note that GPX is simply an application of

this operator using two parents with q = 1.

Another method of recombination with the graph colouring problem involves

considering the individual assignments of vertices to colours as opposed to their par-

titions. Here, a natural way of representing a solution is to use a vector (c(v1),c(v2),
. . . ,c(vn)), where c(vi) gives the colour of vertex vi. However, it has long been

argued that this sort of approach has disadvantages, not least because it leads to a

solution space that is far larger than it needs to be, since any solution using k colours

can be represented in k! ways (refer to Section 1.4.1). Furthermore, authors such as

Falkenauer (1998) and Coll et al. (1995) have also argued that “traditional” recom-

bination schemes such as 1-, 2-, and n-point crossover with this representation have

a tendency to recklessly break up building blocks that we might want promoted in a

population.

 1 2 3 4 5
1  0 0 2 0 0
2 0 0 0 2 0
3 2 0 0 0 0
4 0 2 0 1 0
5 0 0 0 0 1

Parent 1 

(1, 4, 3, 4, 3, 5, 2, 2, 4, 1) 
 

Partition S1 

S1,1 = {v1, v10} 
S1,2 = {v7, v8} 
S1,3 = {v3, v5} 
S1,4 = {v2, v4, v9} 
S1,5 = {v6} 

Parent 2 

(3, 2, 1, 2, 1, 5, 4, 4, 4, 3) 
 

Partition S2 
S2,1 = {v3, v5} 
S2,2 = {v2, v4} 
S2,3 = {v1, v10} 
S2,4 = {v7, v8, v9} 
S2,5 = {v6} 

Wi,j = |S1i ∩ S2j | 

Parent 2 relabelled 
(1, 4, 3, 4, 3, 5, 2, 2, 2, 1) 

Fig. 4.12 Example of the relabelling procedure proposed by Coll et al. (1995). Here, parent 2 is
relabelled 1 → 3, 2 → 4, 3 → 1, 4 → 2, and 5 → 5

In recognition of the perceived disadvantages of the assignment-based represen-

tation, Coll et al. (1995) have proposed a procedure for relabelling the colours of

one of the parents before applying one of these “traditional” crossover operators.

Consider two (not necessarily feasible) parent solutions represented as partitions:

S1 = {S1,1, . . . ,S1,k} and S2 = {S2,1, . . . ,S2,k}. Now, using S1 and S2, a complete

bipartite graph Kk,k is formed. This bipartite graph has k vertices in each parti-

tion, and the weights between two vertices from different partitions is defined as

Wi, j = |S1,i ∩ S2, j|. Given Kk,k, a maximum weighted matching can then be deter-

mined using any suitable algorithm (such as the Hungarian algorithm (Munkres,

1957) or Auction algorithm (Bertsekas, 1992)), and this matching can be used to

relabel the colours in one of the parents. Figure 4.12 gives an example of this pro-

cedure and shows how the second parent can be altered so that its colour labellings

maximally match those of the first parent. In this example we see that the colour
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classes {v1,v10}, {v3,v5}, and {v6} occur in both parents and will be preserved in

any offspring produced via a traditional operator such as uniform crossover. How-

ever, this will not always be the case and will depend very much on the best matching

available in each case.

An interesting point regarding the structure of solutions and the resultant effects

of recombination has also been raised by Porumbel et al. (2010). Specifically, they

propose that when solutions involve a small number of large colour classes (such

as solutions to sparse graphs), good quality solutions will tend to occur through

the identification of large independent sets, perhaps suggesting that the GPX and

its multi-parent variant are naturally suited in these cases. On the other hand, if a

solution involves many small colour classes, quality seems to be determined more

through the identification of good combinations of independent sets.

Parent S1 

S1,1 = {v1, v10} 
S1,2 = {v7, v8} 
S1,3 = {v3, v5} 
S1,4 = {v2, v4, v9} 
S1,5 = {v6} 

Parent S2 
S2,1 = {v1, v9} 
S2,2 = {v7} 
S2,3 = {v3, v5} 
S2,4 = {v2, v4, v8} 
S2,5 = {v6, v10} 

Offspring S’ 
S’1 = {v1, v10} 
S’2 = {v7, v8} 
S’3 = {v3, v5} 
S’4 = {v2, v4, v8} 
S’5 = {v6}   Uncoloured = {v9} 

Fig. 4.13 Demonstration of the GGA recombination operator. Here, the colour classes in parent 2
have been labelled to maximally match those of parent 1

To these ends a further recombination operator for graph colouring is also pro-

posed by Lewis (2015) which, unlike GPX, shows no bias towards offspring inher-

iting larger colour classes, or towards offspring inheriting half of its colour classes

from each parent. An example of this operator is given in Figure 4.13. Given two

parents, the colour classes in the second parent are first relabelled using Coll et al.’s

procedure from above. Using the partition-based representations of these solutions,

a subset of colour classes from the second parent is then selected randomly, and

these replace the corresponding colours in a copy of the first parent. Duplicate ver-

tices are then removed from colour classes originating from the first parent, and any

uncoloured vertices are assigned to random colour classes. Tests by Lewis (2015)

indicate that this recombination operator can produce marginally better solutions

than the GPX operator when colour classes are small (approximately five vertices

per colour), though worse results are also seen to occur in other cases.

Note that the recombination operators listed in this subsection are also included

as run-time options within this book’s suite of graph colouring algorithms (see Ap-

pendix A.1).

4.4.3 Local Search

Finally, from the analyses in this chapter it is apparent that graph colouring algo-

rithms such as the HEA usually benefit when used in conjunction with an appro-
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priate local search procedure. For algorithms operating in the space of complete

improper solutions, this has often been provided by the TABUCOL algorithm. The

tabu search metaheuristic seems to be very suitable for this purpose because, by ex-

tending the steepest descent algorithm, it allows rapid improvements to be made to

a solution.
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Fig. 4.14 Example run profiles of TABUCOL and an analogous SA algorithm using a random graph
G1000,0.5 with k = 86. Here the SA algorithm uses an initial value for t = 0.7, with z = 500,000

To contrast this, consider the rates of improvement achieved by an analogous

simulated annealing algorithm that uses the same neighbourhood operator as TABU-

COL but which follows the pseudocode given in Figure 3.5. For this algorithm,

values need to be determined for the initial temperature t, the cooling rate α , and

the frequency of temperature updates z. Figure 4.14 compares the run profile of

TABUCOL to this simulated annealing algorithm on an example random graph. It

can be seen that TABUCOL quickly reduces the objective function (Equation (4.1)),

while the SA approach takes much longer. In addition, the SA algorithm seems quite

sensitive to adjustments in its parameters, with inappropriate values potentially hin-

dering performance. On the other hand, it is well known that when the temperature

is reduced more slowly, runs of SA tend to produce better quality solutions (van

Laarhoven and Aarts, 1987). Hence, with extended run times SA may have the po-

tential to produce superior solutions to TABUCOL in some cases.
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