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Abstract We present and analyze a Lagrange-Galerkin (LG) method combined
with a local projection stabilization (LPS) technique for convection dominated
convection-diffusion-reaction equations. This type of stabilization improves the
accuracy and performance of conventional LG methods when the diffusion coef-
ficient is very small. Numerical tests support the results of the numerical error
analysis.

1 Introduction

LG methods discretize the total derivative (the convective part of the equations)
backward in time along the characteristic curves of the transport operator, this is a
natural way of introducing upwinding in the discretization of the equations, but such
an upwinding may not be strong enough to suppress the spurious oscillations that
may appear when the solution is not smooth and the mesh is not fine enough. Good
properties of LG methods are the following: (1) assuming that the integrals that
appear in the formulation of LG methods are calculated exactly, it is easy to show
that LG methods are unconditionally stable in the L2-norm, therefore, they allow the
use of a large time step without damaging the accuracy of the solution; (2) unlike
the pure Lagrangian methods, LG methods do not suffer from mesh deformation;
(3) they yield algebraic symmetric systems of equations; (4) the constant C in
the error estimate is much smaller than the constant of the conventional Galerkin
methods. However, an important drawback of LG methods is the calculation of
some integrals whose integrands are functions defined in different meshes, because,
in general, such integrals can not be calculated analytically, i.e., exactly, so one
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has to use quadrature rules; this handicap is particularly serious when the diffusion
coefficient is small, for in this case the calculation of such integrals has to be done
with quadrature rules of high order to keep the method stable, see [2] and [10],
and, therefore, it may become computationally expensive. We propose in this note a
remedy to correct this drawback and to partially suppress the spurious oscillations
that consists of combining LG methods with the LPS technique introduced and
analyzed in many papers, for instance, [1, 4, 9] and [7] just to cite a few. LPS
technique is a symmetric stabilizer that fits very well in LG methods because the
combination of both yields algebraic symmetric systems of equations.

2 The Formulation of the Local Projection Stabilized
Lagrange-Galerkin Method

Let X WD H1
0.D/, where D � Rd is a bounded domain with Lipschitz boundary

@D, and (d D 1, 2, or 3). We consider the problem: find a function c W Œ0; T� ! X,
c.0/ D u 2 X, such that for all v 2 X

�
Dc

Dt
; v

�
C ".rc; rv/ C .˛c; v/ D . f ; v/; (1)

where Dc
Dt WD @c

@t C b � rc, b 2 L1.0; TI W1;1.D/d/, f 2 L2.0; TI L2.D//, ˛ 2
C.Œ0; T�I C.D//, and 0 < " � kbkL1.D�.0;T//d . To guarantee the existence and
uniqueness of (1) we also assume that there is a real number ˇ � 0 such that

˛ � 1

2
div b � ˇ a.e. in D � .0; T/: (2)

Next, we consider a regular quasi-uniform partition Dh of D formed by simplices K,
and the finite element space Xh associated with Dh. The space Xh has the following
approximation property.

For v 2 HrC1.D/ \ H1
0.D/, 1 � r � m;

inf
vh2Xh

�kv � vhkL2.D/ C h kr.v � vh/kL2.D/

� � ChrC1 kvkHrC1.D/ ; (3)

where m denotes the degree of the polynomials of Xh and h D maxK .hK/, hK being
the diameter of the element K. To apply the stabilization technique we also consider
the discontinuous finite element space Gh defined on Dh such that we set Gh.K/ WD
fqh jK W qh 2 Ghg. Then for each K we use the local L2-projector �K W L2.K/ !
Gh.K/ to define the fluctuation operator �K WD id��K , where id WD L2.K/ ! L2.K/

is the identity operator. We shall make the following assumptions.



A LPS Lagrange-Galerkin Method 27

Assumption A1 Let s 2 .0; : : : ; m/ be the degree of the polynomials of the space
Gh, the fluctuation operator �K satisfies the approximation property

k�KwkL2.K/ � Chl kwkHl.K/ ; 8w 2 Hl.K/; 0 � l � s C 1: (4)

A sufficient condition for Assumption A1 is Ps.K/ � Gh.K/, Ps.K/ being the set of
polynomials of degree at most s defined in K

Assumption A2 There is an interpolation operator jh W H2 \ Xh.D/ ! Xh such
that for all w 2 H1.D/, and for all K 2 Dh

kw � jhwkL2.K/ C hK kr.w � jhw/kL2.K/ � Chl
K kwkHl.K/ .1 � l � m C 1/: (5)

We define in Œ0; T� a uniform partition P�t WD 0 D t0 < t1 < : : : < tN D T
of uniform step �t such that the numerical solution to problem (1) is a mapping,
ch W P�t ! Xh, satisfying for all n, 0 � n � N � 1, the equations

8̂
<̂
ˆ̂:

.cnC1
h � cn

h ı Xn;nC1; vh/

�t
C ".rcnC1

h ; rvh/ C .˛nC1cnC1
h ; vh/

CSh.cnC1
h ; vh/ D . f nC1; vh/ 8vh 2 Xh;

(6)

where Sh.cnC1
h ; vh/ is the stabilization term given by

Sh.cnC1
h ; vh/ D

X
K

�K.�KrcnC1
h ; �Krvh/K ; (7)

�K being element-wise constant coefficients that depend on the mesh size, their
optimal values are determined by the error analysis. In (6), f nC1 denotes the
function f .�; tnC1/ and Xn;nC1, which is a shorthand notation for X.x; tnC1I tn/ unless
otherwise stated, denotes the position at time tn of a particle that at time tnC1 will
reach the point x; specifically, for s; t 2 Œtn; tnC1/ the mappings X.�; sI t/ W D ! D
can be defined by solving the system of ordinary differential equations

8<
:

dX.x; sI t/

dt
D b.X.x; sI t/; t/;

X.x; sI s/ D x 8x 2 D:

(8)

3 Error Analysis

Our concern in this paper is to estimate the error of LG methods when they are
stabilized by a local projection stabilization method, therefore to make clearer and
shorter the analysis we shall consider the exact solution of (8); nevertheless, the
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calculation of a solution of (8) by a numerical method will contribute to the error of
the local stabilized LG method, but such a contribution can be estimated using the
methodology of [3].

For u; v 2 H1
0.D/ and a.e. 0 � t � T, let us now define the time-dependent

bilinear form

a.u; vI t/ D " .ru; rv/ C .˛.�; t/u; v/ : (9)

It is easy to see that a.u; vI t/ is symmetric, continuous and coercive so that for
functions u W Œ0; T� ! H1

0.D/

.a.u; uI t//1=2 D
���"1=2ru.t/

��2

L2.D/
C ��˛1=2u.t/

��2

L2.D/

� 1
2

: (10)

is an equivalent H1
0.D/-norm, i.e.,

c2 ku.t/kH1.D/ � .a.u; uI t//1=2 � c1 ku.t/kH1.D/ ; (11)

where the constants c1 D max."1=2; ˛1=2/ and c2 D min."1=2; ˛1=2/, and
.˛1=2; ˛1=2/ D .max.x;t/ ˛.x; t/; min.x;t/ ˛.x; t//. Moreover, we define the mesh
dependent norm

jjju.t/jjj2 WD a.u; uI t/ C Sh.u; u/: (12)

We will use the following continuous and discrete time dependent norms, noting
that in the expressions that follow, when r D 0, H0.D/ D L2.D/.

Continuous norms:

kukL1.L1.D// 	 kukL1.0;TIL1.D// D ess sup0�t�T ku.t/kL1.D/ ;

kukL1.Hr.D// 	 kukL1.0;TIHr.D// D ess sup0�t�T ku.t/kHr.D/ ; r � 0;

kutkL2.L2.D// 	 kutkL2.0;TIL2.D// D
 Z T

0

����@u

@t

����
2
!1=2

:

(13)

Discrete norms:

kukl1.Hr.D// 	 kukl1.0;NIHr.D// D max0�n�N kunkHr.D/ ; r � 0;

kukl2.Hr.D// 	 kukl2.0;NIHr.D// D
�
�t
PN

nD0 kunk2
Hr.D/

�1=2

;

jjjujjjl2.0;N/ 	
�
�t
PN

nD0 jjjunjjj2
�1=2

:

(14)

Next, we establish an estimate for the error en D cn � cn
h.
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Theorem 1 Let c 2 L1.0; TI H1
0.D/\HmC1.D//, ct 2 L2.0; TI H1

0.D/\HmC1.D//,
D2c

Dt2
2 L2.0; TI L2.D//, 0 < �t < �t0 < 1, and 0 < h < h0 < 1. There exists a

constant G independent of �t and h such that

kekl1.L2.D// C jjjejjjl2.0;N/ � G
�
hmC1 C p

� C "hm C �1=2hsC1

CT1=2 min
�

K4�tp
"

;
kbkL1.L1.D//�t

h ;
p

2
�

hmC1

�t C �t / C ku � jhukL2.D/ ;

(15)

where � D maxK .�K/ with �K D O.h�/ and � � 1, u D c.0/, K4 D
kbkL1.L1.D// C K5, and K5 being another constant that depends on div b.

Proof A sketch of the proof goes as follows. We decompose the error at time instant
tnC1 as

enC1 D .cnC1 � jhcnC1/ C .jhcnC1 � cnC1
h / 	 �nC1 C 	nC1

h ; (16)

then the errors kekl1.L2.D//, and jjjejjjl2.0;N/ are estimated by applying the triangle
inequality and (5) to estimate �, so we need to estimate 	h. To this end, we notice
that for all n, cn

h D cn � �n � 	n
h , so subtracting (6) from (1), and using the notation

anC1.�; �/ to denote a.�; �I tnC1/, some simple operational work yields

�
	nC1

h � 	
n
h; vh

�
C �t"

�r	nC1
h ; rvh

�C �t
�
˛nC1	nC1

h ; vh
�C �tSh

�
	nC1

h ; vh
�

D ��tanC1.�nC1; vh/ � �tSh.�nC1; vh/ � �
�nC1 � �n; vh

�

C�t

�
cnC1 � cn

�t
� Dc

Dt
jtDtnC1

; vh

�
C �tSh.cnC1; vh/;

(17)

where gn WD g.X.x; tnC1I tn/; tn/, g.�; tn/ being a generic function defined in D at
time instant tn. Letting vh D 	nC1

h , see [2], we find that .	nC1
h � 	

n
h; 	nC1

h / �
1
2
.k	nC1

h k2
L2.D/

� k	n
h k2

L2.D/
/ � �tC

2
k	n

h k2
L2.D/

, where C is a positive constant

independent of h and �t, but dependent on div b; then splitting �nC1 � �n as
.�nC1 � �n/ C .�n � �n/ yields

1
2

���	nC1
h

��2

L2.D/
� ��	n

h

��2

L2.D/

�
C �tanC1.	nC1

h ; 	nC1
h / C �tSh.	

nC1
h ; 	nC1

h /

� ��tanC1.�nC1; 	nC1
h / � �tSh.�nC1; 	nC1

h / � �tSh.cnC1; 	nC1
h /

C
3X

iD1

�
znC1

i ; 	nC1
h

�C C

2
�t
��	n

h

��2

L2.D/

(18)
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where

8̂̂
<
ˆ̂:

znC1
1 D �.�nC1 � �n/; znC1

2 D �.�n � �n/;

znC1
3 D �t

�
cnC1 � cn

�t
� Dc

Dt
jtDtnC1

�
:

(19)

Now, we estimate the terms on the right side. By Cauchy-Schwarz inequality and
Young’s inequality, ab � 


2
a2 C 1

2

b2, a; b and 
 > 0 real numbers, it follows that

�tanC1.�nC1; 	nC1
h / � �t

�
anC1.�nC1; �nC1/

�1=2 �
anC1.	nC1

h ; 	nC1
h /

�1=2

� �t

2
anC1.�nC1; �nC1/ C �t

2
anC1.	nC1

h ; 	nC1
h /:

(20)

Similarly,

�tSh.�
nC1; 	nC1

h / � �t

�
Sh.�nC1; �nC1/ C 1

4
Sh.	

nC1
h ; 	nC1

h /

�
: (21)

Noting that Sh.�
nC1; �nC1/ � P

K �K

��r�nC1
��2

L2.K/
and using Assumption A2 it

follows that

�tSh.�
nC1; 	nC1

h / � C�t
X

K

�Kh2m
K

��cnC1
��2

HmC1.K/
C �t

4
Sh.	

nC1
h ; 	nC1

h /: (22)

Similarly,

�tSh.cnC1; 	nC1
h / � �t

�
Sh.cnC1; cnC1/ C 1

4
Sh.	nC1

h ; 	nC1
h /

�
; (23)

using Assumption A1 with l D s C 1 it follows that

�tSh.cnC1; 	nC1
h / � C�t

X
K

�Kh2.sC1/
K

��cnC1
��2

HmC1.K/
C �t

4
Sh.	nC1

h ; 	nC1
h /

(24)

To estimate
�
z1; 	nC1

h

�
, we note that by virtue of the Cauchy-Schwarz inequality

ˇ̌
ˇ̌Z

D

�Z tnC1

tn

�tdt

�
	nC1

h dx

ˇ̌
ˇ̌ �

����
Z tnC1

tn

�tdt

����
L2.D/

��	nC1
h

��
L2.D/

; (25)
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hence, using Young’s inequality yields

�
z1; 	nC1

h

� � 3
2

k�tk2
L2.tn;tnC1;L2.D// C �t

6

��	nC1
h

��2

L2.D/

� Ch2.mC1/ kctk2
L2.tn;tnC1;HmC1.D//

C �t
6

��	nC1
h

��2

L2.D/
:

(26)

Next, by a Taylor expansion along the curves X.x; tnC1; t/ it follows that

��znC1
3

�� D �t

 Z
D

ˇ̌
ˇ̌ 1

�t

Z tnC1

tn

.t � tn/
D2c

Dt2
dt

ˇ̌
ˇ̌2 dx

!1=2

� �tp
3

3=2
����D2c

Dt2

����
L2.tn;tnC1IL2.D//

;

(27)

then by using both the Cauchy-Schwarz and Young’s inequalities yields

ˇ̌
.znC1

3 ; 	nC1
h /

ˇ̌ � 1

2
�t2

����D2c

Dt2

����
2

L2.tn;tnC1IL2.D//

C �t

6

��	nC1
h

��2

L2.D/
: (28)

To bound the term .znC1
2 ; 	nC1

h / we use Lemma 7 of [2] and obtain the following
estimates:

Estimate 1:

.znC1
2 ; 	nC1

h / � ���n � �n ı Xn;nC1
��

L2.D/

��	nC1
h

��
L2.D/

� �t min

�
K1 kr�nkL2.D/ ; K2

��� �n

�t

���
L2.D/

���	nC1
h

��
L2.D/

� 3
2
�t min

�
K2

1 kr�nk2
L2.D/ ; K2

��� �n

�t

���2

L2.D/

�
C �t

6

��	nC1
h

��2

L2.D/
;

(29)

where K1 D K3 kbkL1.L1.D//, and K2 and K3 being constants depending on div
b. Noticing that by virtue of Assumption A2 we can set

min

�
K2

1 kr�nk2
L2.D/ ; K2

��� �n

�t

���2

L2.D/

�

� C min

�
kbk2

L1.L1.D//�t2

h2 ; 2

�
h2.mC1/

�t2 kck2
l1.0;NIHmC1.D// ;

(30)
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then one gets the estimate

.znC1
2 ; 	nC1

h / � C�t min

�
kbk2

L1.L1.D//�t2

h2 ; 2

�
h2.mC1/

�t2 kck2
l1.0;NIHmC1.D//

C�t
6

��	nC1
h

��2

L2.D/
:

(31)
Estimate 2
A second estimate, see [6], is the following

.znC1
2 ; 	nC1

h / � ���n � �n ı Xn;nC1
��

H�1

��r	nC1
h

��
L2.D/

� �tK4 k�nkL2.D/

��r	nC1
h

��
L2.D/

;

(32)

where H�1 is the dual of H1
0.D/, K4 D kbkL1.L1.D// CK5, and K5 being another

constant that depends on div b. By using again A2 we obtain that

.znC1
2 ; 	nC1

h / � C�t
�

K2
4�t2

"

�
h2.mC1/

�t2
kck2

l1.0;NIHmC1.D//

C�t"
4

��r	nC1
h

��2

L2.D/
:

(33)

Next, substituting the estimates calculated above into (18), adding from n D 0 to
N � 1 and arguing as in [2] we find out that the estimates of .znC1

2 ; 	nC1
h / give the

term

min

 
K2

4 �t2

"
;

kbk2
L1.L1.D// �t2

h2
; 2

!
h2.mC1/

�t2
kck2

l1.0;NIHmC1.D//
: (34)

Then the application of Gronwall inequality and the triangle inequality, as we say
at the beginning of the proof, yields the estimate (15).

4 Numerical Examples

Example 1 In this example, borrowed from [8], we consider the domain D D
.0; 1/2 and the partition Dh generated from a uniform square mesh of size h by
dividing the squares using the diagonals from the left lower corner to the right
upper corner. The prescribed solution is c.x; t/ D t cos.xy2/ for the parameters
" D 10�8, b D .2; �1/, ˛ D 1 and T D 1. The non-homogenous Dirichlet
boundary conditions and the forcing term f are chosen such that the prescribed
solution satisfies (1). The finite element spaces used in this example are: Xh D
fvh 2 C0.D/ W vhjK 2 P bubble

1 .K/g and Gh D fqh 2 L2.D/ W qhjK 2 P0.K/g.
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Table 1 Error for different
meshes with �t D 0:0001

h Err1; �K D 100h Err1; �K D 10h Err1; �K D h

1/8 3.07E�06 3.03E�06 2.79E�06

1/16 1.53E�06 1.50E�06 1.37E�06

1/32 7.60E�07 7.32E�07 6.76E�07

1/64 3.67E�07 3.51E�07 3.36E�07

1/128 1.74E�07 1.69E�07 1.67E�07

We show in Table 1 the error Err1 WD
�
�t
PN

nD0 �kcn � cn
hk2

H1.D/

�1=2

for different

values of h and �K . Since the time step is so small, then the errors represented in
the table can be considered spatial errors. By simple inspection we notice that the
numerical solution is not sensitive to the value of �K , and Err1 D O.h/ according to
Theorem 1 because, in this case with m D 1, the term that controls the error estimate

is min. �tp
"
;

kbkl1.L1.D//�t

h ; 1/
hmC1

�t
D kbkl1.L1.D// �t

h

hmC1

�t
D O.hm/.

Example 2 In this example, taken from [5], D WD .0; 1/2 and the partition Dh is
formed by triangles obtained by dividing uniform squares of size h by diagonals
that go from the left upper corner to the right lower corner. The velocity field
b.x; y/ D r�, where �.x; y/ D .1 � cos 2�x/.1 � cos 2�y/. The streamlines of
the velocity converge to a sink at the center of D along trajectories that become
parallel to the diagonal that joins the left upper corner with the right lower corner.
The initial condition u.x; y/ represents a transition from u.0; 0/ D 0 to u.1; 1/ D 1

according to the rule

u.x; y/ D
8<
:

0 if  < 0;
1
2
.1 � cos �/; 0 �  � 1;

1 if 1 < ;

(35)

where  D xCy�1=2. The Dirichlet boundary conditions c.�; t/ D u.�/ are imposed
for all 0 � t � T. The forcing term f D 0, the diffusion coefficient " D 0:001

and the reaction term ˛ D 0. The finite element spaces used in this example are:
Xh D fvh 2 C0.D/ W vhjK 2 P2.K/g and Gh D fqh 2 L2.D/ W qhjK 2 P0.K/g, and
�K D h2. Figure 1 represents the cross section u.x; 1=2; 1/ calculated in the mesh
h D 1=32 and with the time step �t D h=2. Comparing this figure with Figure 6
of [5], where the same cross sections of the solutions calculated by the conventional
LG method and the Euler implicit-quadratic finite element method are represented,
we see that at least for this example the LPS-LG method yields much better results
than those methods because much of the spurious oscillations have been killed and
the interior boundary layer is well resolved even with a relatively coarse mesh. The
amplitudes of the overshoot and undershoot, which appear in the figure, are ˙0:031

respectively.
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Fig. 1 Section ch.x; y D 1=2; t D 1/ for h D 1=32 and �t D h=2
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