A Local Projection Stabilized
Lagrange-Galerkin Method
for Convection-Diffusion Equations

Rodolfo Bermejo, Rafael Cantén, and Laura Saavedra

Abstract We present and analyze a Lagrange-Galerkin (LG) method combined
with a local projection stabilization (LPS) technique for convection dominated
convection-diffusion-reaction equations. This type of stabilization improves the
accuracy and performance of conventional LG methods when the diffusion coef-
ficient is very small. Numerical tests support the results of the numerical error
analysis.

1 Introduction

LG methods discretize the total derivative (the convective part of the equations)
backward in time along the characteristic curves of the transport operator, this is a
natural way of introducing upwinding in the discretization of the equations, but such
an upwinding may not be strong enough to suppress the spurious oscillations that
may appear when the solution is not smooth and the mesh is not fine enough. Good
properties of LG methods are the following: (1) assuming that the integrals that
appear in the formulation of LG methods are calculated exactly, it is easy to show
that LG methods are unconditionally stable in the [*-norm, therefore, they allow the
use of a large time step without damaging the accuracy of the solution; (2) unlike
the pure Lagrangian methods, LG methods do not suffer from mesh deformation;
(3) they yield algebraic symmetric systems of equations; (4) the constant C in
the error estimate is much smaller than the constant of the conventional Galerkin
methods. However, an important drawback of LG methods is the calculation of
some integrals whose integrands are functions defined in different meshes, because,
in general, such integrals can not be calculated analytically, i.e., exactly, so one
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has to use quadrature rules; this handicap is particularly serious when the diffusion
coefficient is small, for in this case the calculation of such integrals has to be done
with quadrature rules of high order to keep the method stable, see [2] and [10],
and, therefore, it may become computationally expensive. We propose in this note a
remedy to correct this drawback and to partially suppress the spurious oscillations
that consists of combining LG methods with the LPS technique introduced and
analyzed in many papers, for instance, [1, 4, 9] and [7] just to cite a few. LPS
technique is a symmetric stabilizer that fits very well in LG methods because the
combination of both yields algebraic symmetric systems of equations.

2 The Formulation of the Local Projection Stabilized
Lagrange-Galerkin Method

Let X := Hé (D), where D C R? is a bounded domain with Lipschitz boundary
dD, and (d = 1, 2, or 3). We consider the problem: find a function ¢ : [0, T] — X,
c(0) = u € X, such that forall v € X

(% v) + &(Ve, Vo) + (ac,v) = (f, v), €))]

where 2¢ = % +b-Ve,b e L0, T; W (D)), f € LX0,T;L*(D)), @ €
C([0,T];C(D)), and 0 < & <K [Ibllzeo(px(0.7))s- To guarantee the existence and
uniqueness of (1) we also assume that there is a real number 8 > 0 such that

1
o— Ediv b> g ae.inD x (0, 7). 2)

Next, we consider a regular quasi-uniform partition Dj, of D formed by simplices K,
and the finite element space X, associated with Dj,. The space X, has the following
approximation property.

Forv e H+t(D) N H(l)(D), 1 <r<m,

inf (”U - Uh||L2(D) +h|V(v— Uh)||L2(D)) <cnt! ||U||Hr+1(D) ) 3)

v €Xp

where m denotes the degree of the polynomials of X, and 7 = maxg (hk), hx being
the diameter of the element K. To apply the stabilization technique we also consider
the discontinuous finite element space G, defined on D, such that we set G,(K) :=
{qn |k: qn € Gp}. Then for each K we use the local L*>-projector mx : L*(K) —
G,(K) to define the fluctuation operator kx := id—mg, where id := L*(K) — L*(K)
is the identity operator. We shall make the following assumptions.
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Assumption A1 Let s € (0,...,m) be the degree of the polynomials of the space
Gy, the fluctuation operator ki satisfies the approximation property

kw2 < CR Wik » Yw € H'(K), 0 <1< s+ 1. “4)
A sufficient condition for Assumption A1l is Py(K) C G,(K), P;(K) being the set of
polynomials of degree at most s defined in K
Assumption A2 There is an interpolation operator j, : H> N X,(D) — X, such
that for all w € H (D), and for all K € Dy,
lw —jawl 2k + b IV 0 = i) 2y < Chig [Wllpgigy (1< T=m+1). (5

We define in [0, 7] a uniform partition P, ;=0 =1 <t < ... <ty =T
of uniform step Az such that the numerical solution to problem (1) is a mapping,
cpt Pa — Xp, satisfying forall n, 0 < n < N — 1, the equations

n+1 n n,n+1
C —cloX™T v
(© hAt ") + S(VCZ‘H, V) + (ot"HcZ“, vy)
(6)

+Sh(CZ+l, Uh) = (fn+1, Uh) Vvh (S] Xh,

where Sh(cZH, vy,) is the stabilization term given by

Su(eft v = Z tx (kg Ve kg Vup)k, (7
K

Tx being element-wise constant coefficients that depend on the mesh size, their
optimal values are determined by the error analysis. In (6), f**! denotes the
function f (-, t,41) and X""*1 which is a shorthand notation for X (x, ty+1; t,) unless
otherwise stated, denotes the position at time #, of a particle that at time #,4; will
reach the point x; specifically, for s,t € [t,, t,+1) the mappings X(-,s;7) : D — D
can be defined by solving the system of ordinary differential equations

dX(x,s;1) .
T = b(X(x, S5 t)’ t)’ (8)

X(x,s;8) =x VxeD.

3 Error Analysis

Our concern in this paper is to estimate the error of LG methods when they are
stabilized by a local projection stabilization method, therefore to make clearer and
shorter the analysis we shall consider the exact solution of (8); nevertheless, the
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calculation of a solution of (8) by a numerical method will contribute to the error of
the local stabilized LG method, but such a contribution can be estimated using the
methodology of [3].

For u,v € Hé (D) and a.e. 0 < t < T, let us now define the time-dependent
bilinear form

a(u,v;t) =& (Vu, V) + (a(-, Hu, v) . 9)

It is easy to see that a(u, v;t) is symmetric, continuous and coercive so that for
functions u : [0, T] — H}(D)

=

(at, 1) = ([["2Vu) | 1oy + @200 12 ) (10)

is an equivalent HOl (D)-norm, i.e.,

o2 [u@® oy < (@l 10)? < er u@® |y - (1)
where the constants ¢; = max(¢/2,@"?) and ¢; = min(¢"/2 «'/?), and
@'’?, ol ) = (maxy oe(x, 1), ming ) ot (x, £)). Moreover, we define the mesh

dependent norm
u@I|* := a(u, u; 1) + Su(u, ). (12)
We will use the following continuous and discrete time dependent norms, noting

that in the expressions that follow, when r = 0, H(D) = L*(D).
Continuous norms:

||“||L00(L°°(D)) = ||M||L00(0,T;L°°(D)) = €8S SUPy<;<7 ”“(t)“LOO(D)’
[l oo (i py) = MNutll Lo 0,717 p)) = €88 SUPo<i<r Ul prpy - 7= 0, (13)
Ty |2 1/2
||“t||L2(L2(D)) = ||“t||L2(o,T;L2(D)) = (/ 8_ ) .
0 t
Discrete norms:
||M||1°°(Hr(1))) = ”"‘”PO(O,N;H’(D)) = MaXp<n<N ”“n”HV(D)’ r=0,
1/2
_ N 2
||”||12(Hr(u)) = ”u”lz(O,N;H’(D)) = (AthZO ||”n||Hr(D)) , (14)

172
N 2
il = (A0 o lllP)

Next, we establish an estimate for the error ¢” = ¢" — cj.
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Theorem 1 Letc € L®(0,T; H)(D)NH" (D)), ¢, € L*(0, T; H}(D)NH"™ (D)),
2

D
D—; € LZ(O, T;LZ(D)), 0 < At < Atg < 1,and 0 < h < hy < 1. There exists a
constant G independent of At and h such that

lellise g2y + llelllnon < G (™ + T+ eh™ + o'/ 2p !

(15)
+T"/2 min (K:f' w «/5) W AL+ = il 2
where T = maxg (tx) with tg = OW)and vy > 1, u = ¢(0), Ky =

bl oo oo (py) + K5, and Ks being another constant that depends on div b.

Proof A sketch of the proof goes as follows. We decompose the error at time instant
Iny1 as

en+1 — (Cn+1 _jhcn+1) + (l-hcn+1 _ CZ_H) = pn+1 + 9;11+1’ (16)
then the errors [le||;c0 ;2(p))> and |[le[[|,,o.n) are estimated by applying the triangle
inequality and (5) to estimate p, so we need to estimate 6;,. To this end, we notice

that forall n, ¢, = ¢" — p" — 0, so subtracting (6) from (1), and using the notation
a"*1(-,-) to denote a(-, -; 1,4 1), some simple operational work yields

(9;;“ —0,, v,,) + Ate (VO Vo) + At (107t vy) + Aty (671 vr)

— —Al‘an+1(,0n+l, Uh) _ AtSh(pn+1, Uh) _ (pn+1 _ﬁn’ Uh)

C"+l —En DC
+ At (— - |t=tn+1’vh) + AtSi(c", vp),

At Dt
(17)
where g" = g(X(x, ty+1: 1), 1), g(-, t,) being a generic function defined in D at
—n
time instant #,. Letting v, = 9 , see [2], we find that (9,:"“ -6, 9;‘“) >
2(||9"+1||L2(D) ||9”||L2(D) A’C||9"||L2(D), where C is a positive constant

independent of i and At, but dependent on div b; then splitting p"*! — 5" as

(0"t = p") + (p" — p") yields

(10 Loy = 1601 ay) + A6 67 + Ay @+ 6+

< —Ata"+l(p"+l, 9;11+1) _ AtSh(p'H'l, 9;1+1) _ AtSh(C"+l, 9;11+1)

(D)
(18)

3
+Z n+l 9n+l + At“erL“LZ
i=1
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where
A == —p". Z =—("-7").
1
w1 M- Dc (19)
G =AN b= )

Now, we estimate the terms on the right side. By Cauchy-Schwarz inequality and
Young’s inequality, ab < %az + 2_1§b2, a, b and ¢ > 0 real numbers, it follows that

At (o1, 9:+1) < At (an+l(pn+l’pn+l))l/2 (an+1(9}:z+1’ 9}:1+1))1/2

At At (20)
< 761n+1(,0n+1,,0n+1) + 7an+l(921+1’ 9;1+l)‘
Similarly,
1
AtSy(p"th ot < At (Sh(p"“, P+ 7S 9;:“)) : 1)

Noting that S,(p"*!, p"+1) < > 1k |V *! ”22(1() and using Assumption A2 it
follows that

At
+ Tsh(e,’:“, o;th. (22

ArS (" 05 < CALY wh | s
K

Similarly,
1
AtSy(c"t, 0ty < At (Sh(c"“, I + Zsh(e,?“, 6,?“)) : (23)

using Assumption Al with [ = s + 1 it follows that

2

At
e T SO

AtSh(c”+1, 0,',”'1) < CAIZ tKhi(H_l) ||c”+1|
" (24)

To estimate (z;, 6;+"), we note that by virtue of the Cauchy-Schwarz inequality

41 In+1
/ ( / p,dt) 0t dx / it
D th th

=

163 2oy - (25)
2(D)
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hence, using Young’s inequality yields

(Zl’ QZH) = %”Pt”LZ(r,, w200 T 5 ”9n+1“L2(D)

(26)
m n+1
S ChZ( +l) ”C’”Lz(t,, tat1 H’”'H(D)) + 6 |9 ||L2(D) .
Next, by a Taylor expansion along the curves X(x, ,,+1, 7) it follows that
1/2
ru-‘rl ch 2
ntl||
“Z3 “ At (/ ‘— — tn)ﬁdt dx
27
At”z D%c
=V loe Pl i20)
then by using both the Cauchy-Schwarz and Young’s inequalities yields
D*c At 2
(Zn-f—l 9n+l) < Al‘ 4+ = 9n+l ) (28)
| = D7 |2 6 165" 2o

To bound the term (z”+l GZ“H) we use Lemma 7 of [2] and obtain the following
estimates:

Estimate 1:
(le1+1’ 9;:+1) < ”pn _ pn o Xt ||L2(D) H 9;1+1 HLZ(D)
: n 0" n+1
< avmin (& 190K | 5]y ) 160

I /\

n 2
saimin (K196 oy K |5 ) + 210
(29)

where K1 = K3 |[b[ ;00 1,00(p))» and K> and K3 being constants depending on div
b. Noticing that by virtue of Assumption A2 we can set

2
LZ(D))

||b||ic>0(Loo(D Ar? 2(m—+1)
: ) h
f len ( h2 ) 2 At2 ||C”l°°(0,N;H”’+1(D)) 5

min (KE 190" o 2 | %

(30)
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then one gets the estimate

2 2
+1 pn+l . ”b”LOO(LOO(D))At p2(m+1) 2
(257,60, 7") < CArmin ( - 2) 5 el o o1 o)

)
+3 10 ) -
(3D
Estimate 2
A second estimate, see [6], is the following
@G+ 6T < ||Pn —ploXxmtl ”H—l HV%H HLZ(D)

(32)

< AtKa 10"l 120 [ve,! ||L2(D) ,

where H™! is the dual of Hy(D), K4 = |[b| ;o 1.00(p)) + K5, and K5 being another
constant that depends on div b. By using again A2 we obtain that

41 pntil K2ARY p2n+1) 2
Zg l} 9/? ) 5 CAt( 48 ) A2 ||C||l°°(0,N;H”’+1(D))

(33)
el AR

Next, substituting the estimates calculated above into (18), adding from n = 0 to
N — 1 and arguing as in [2] we find out that the estimates of (37", 67 1") give the
term

K2A2 |Ibllfooooipy AP\ h20m+D
min( b bl Z00 (100 (py) 2

2
A 3 l’l2 At2 ”C”loo(O,N;H’”JFI(D)) . (34)

Then the application of Gronwall inequality and the triangle inequality, as we say
at the beginning of the proof, yields the estimate (15).

4 Numerical Examples

Example 1 In this example, borrowed from [8], we consider the domain D =
(0,1)? and the partition Dj, generated from a uniform square mesh of size & by
dividing the squares using the diagonals from the left lower corner to the right
upper corner. The prescribed solution is c(x,) = tcos(xy?) for the parameters
e =108 b=(2,-1),a = 1 and T = 1. The non-homogenous Dirichlet
boundary conditions and the forcing term f are chosen such that the prescribed
solution satisfies (1). The finite element spaces used in this example are: X;, =
{on € C°D) : wilx € PPP(K)Y and G, = {gi € L2(D) : qulx € Po(K)}.
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Table 1 Error for different h [Err. o =100n [Err, e = 100 [Err. o = h
meshes with Az = 0.0001
1/8 | 3.07E—06 3.03E—06 2.79E—06
1/16 | 1.53E—06 1.50E—06 1.37E—06
132 | 7.60E—07 7.32E—07 6.76E—07
1/64 | 3.67E—07 3.51E—07 3.36E—07
1/128 | 1.74E—07 1.69E—07 1L67E—07

We show in Table 1 the error Err; 1= (At ZLVZO €|l — cZHiﬂ(D)) v for different
values of / and tg. Since the time step is so small, then the errors represented in
the table can be considered spatial errors. By simple inspection we notice that the
numerical solution is not sensitive to the value of ¢, and Err; = O(h) according to
Theorem 1 because, in this case with m = 1, the term that controls the error estimate
hm+1 _ ||b||l°°(L°°(D)) At hm-l—l _ O(hm)

At h At '

Example 2 In this example, taken from [5], D := (0, 1)? and the partition D}, is
formed by triangles obtained by dividing uniform squares of size & by diagonals
that go from the left upper corner to the right lower corner. The velocity field
b(x,y) = V¢, where ¢(x,y) = (1 — cos2mx)(1 — cos2my). The streamlines of
the velocity converge to a sink at the center of D along trajectories that become
parallel to the diagonal that joins the left upper corner with the right lower corner.
The initial condition u(x, y) represents a transition from #(0,0) = O to u(1,1) =1
according to the rule

bl ;00 (100 (py) At
i 1)

. . Ar
is mln(Tg,

0 if £<0,
u(x,y) = %(1 —cosmé), 0 <& <1, (35)
1 if 1 < §,

where § = x+y—1/2. The Dirichlet boundary conditions c(-, f) = u(-) are imposed
for all 0 < ¢t < T. The forcing term f = 0, the diffusion coefficient ¢ = 0.001
and the reaction term o« = 0. The finite element spaces used in this example are:
X, = {Uh (S CO(B) . Uh|K (S Pz(K)} and Gh = {qh S Lz(D) . thK (S] P()(K)}, and
tx = h%. Figure 1 represents the cross section u(x, 1/2, 1) calculated in the mesh
h = 1/32 and with the time step Ar = h/2. Comparing this figure with Figure 6
of [5], where the same cross sections of the solutions calculated by the conventional
LG method and the Euler implicit-quadratic finite element method are represented,
we see that at least for this example the LPS-LG method yields much better results
than those methods because much of the spurious oscillations have been killed and
the interior boundary layer is well resolved even with a relatively coarse mesh. The
amplitudes of the overshoot and undershoot, which appear in the figure, are £0.031
respectively.
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Fig. 1 Section ¢;(x,y =1/2,t = 1) forh = 1/32 and At = h/2
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