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Abstract We examine a time dependent singularly perturbed convection-diffusion
problem, where the convective coefficient contains an interior layer. A smooth
transformation is introduced to align the grid to the location of the interior layer.
A numerical method consisting of an upwinded finite difference operator and
a piecewise-uniform Shishkin mesh is constructed in this transformed domain.
Numerical results are presented which indicate that the numerical approximations
converge at a rate of first order (up to logarithmic factors) uniformly in the pointwise
maximum norm.

1 Introduction

In addition to boundary layers, interior layers can appear in the solutions of
singularly perturbed problems. In the context of time dependent problems, an
additional issue with interior layers is that the location of the layer can move with
time. Here we focus on parabolic problems with moving interior layers.

Consider singularly perturbed convection-diffusion parabolic problems of the
general form: Find u such that

�"uss C aus C bu C cut D f ; .s; t/ 2 .0; 1/ � .0; T�; b; c > 0I (1a)

0 < " � 1; u.0; t/; u.1; t/; u.s; 0/ specified: (1b)

Interior layers can appear in the solutions of problem (1), if the coefficients a; b; c
or the inhomogenous term f are discontinuous [1]. Strong interior layers [1, 7] are
generated, when the convective coefficient a is discontinuous and assumed to have
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the particular sign pattern a.s; t/ > 0; s < d.t/I a.s; t/ < 0; s > d.t/. In [7] a
piecewise-linear map X W .s; t/ ! .x; t/ was introduced, which transforms the
curve �1 WD f.d.t/; t/jt 2 Œ0; T�; 0 < d.t/ < 1g into a vertical line x D d.0/.
Using this transformed domain as the computational domain, a piecewise-uniform
Shishkin mesh [3] was constructed and centered around the point x D d.0/. Under
the assumption that the convective coefficient a.s/ is discontinuous and independent
of time, the resulting numerical method was shown to be (essentially) first order "-
uniformly convergent to the solution of (1). In [4], interior layers appeared in the
solution of (1), in the case where the initial condition u.s; 0/, contained it’s own
interior layer. In the case of [4], the convective coefficient a.t/ was assumed to
be smooth, space independent and of one sign. The reduced initial condition (set
" D 0) was discontinuous at some point x D d and this discontinuity was transported
along the characteristic curve �2 WD f.d.t/; t/jt 2 Œ0; T�; d0.t/ D a.t/; d.0/ D d:g,
associated with the reduced hyperbolic problem avs C bv C cvt D f . Again, a
parameter-uniform numerical method (akin to the method analysed in [1]) was
shown [4] to be (essentially) first order uniformly convergent.

In the current paper, an interior layer appears in the solution of (1) due to the
fact that the convective coefficient a".s; t/ is assumed to be smooth, but to contain a
layer and to smoothly, but rapidly, switch from positive to negative values along
some given curve �1 within the domain. In Sect. 2, the space derivative of the
convective coefficient a" will be of order O."�1/ in a neighbourhood of �1. With this
scaling, the problem may be viewed as a linearization of the quasilinear problem
�"yxx C yyx C by C yt D f , with a moving interior layer present in the solution
y.x; t/. If the space derivative of the convective coefficient a was uniformly bounded
at the turning point, then the width of the layer would not be O."/ and an alternative
numerical method (to what is examined in this paper) would be required (see, e.g.,
[2]). For the current paper, in the limiting case of " D 0, the convective coefficient
will be discontinuous. Unlike [4, 7], a smooth transformation of the discontinuity
curve �1 is utilized here, so that the data for the transformed problem is as smooth as
the data of the original problem. Based on the theoretical results established in [6]
for a related convection-diffusion problem, restrictions are placed on the possible
admissible transformations, in order that the central assumptions on the convective
coefficient, required for the numerical analysis in [6] to apply, are satisfied. In turn,
this motivates a particular choice for the transition parameter in the layer-adapted
Shishkin mesh. Numerical results are presented for the resulting numerical method,
which suggest that the constructed numerical method is also a first order (ignoring
logarithmic effects) uniformly convergent numerical method. In previous related
papers examining interior layers [1, 4, 7], the location of the interior layer was
tracked exactly. In this paper, the fine mesh is centered at an approximate location
of the interior layer.

Notation Throughout this paper C denotes a generic constant which is independent
of " and all mesh parameters.
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2 Continuous Problem

Consider singularly perturbed linear parabolic problems, posed on the domain ˝ WD
.0; 1/ � .0; T�, of the form

�"Quss C Qk.s; t/ Q�".s; t/Qus C Qb.s; t/Qu C Qc.s; t/Qut D Qf .s; t/; .s; t/ 2 ˝I (2a)

Qk.s; t/ � ˛1 > 0; Qb.s; t/ � ˛2 > 0; Qc.s; t/ � ˛3 > 0; .s; t/ 2 ˝I (2b)

Qu.0; t/ D �L.t/; Qu.1; t/ D �R.t/; Qu.s; 0/ D Q�0.s/I (2c)

Q�".s; t/ WD tanh.
q.t/ � s

"
/; 0 < q.t/ < 1; 8tI (2d)

where for each value of t, the convection coefficient .Qk Q�"/.s; t/ has a single zero at
s D q.t/ and this point may vary with time. The data is assumed to be sufficiently
regular so that the solution u 2 C 4C� .˝/. In this problem, the convective coefficient
is positive to the left of the curve � WD f.q.t/; t/; t � 0g and it is negative to the right.
This results in an interior layer forming in the vicinity of the curve � . Below we
deploy a coordinate transformation so that in the transformed domain the location
of the interior layer lies within O."/ of a fixed point in time.

Consider maps X W .s; t/ 7! .x; t/ of the form X.s; t/ D .�.s; t/; t/. Below we
will design invertible maps � W ˝ 7! Œ0; 1� so that

�.0; t/ D 0; �.q.t/; t/ D q.0/; �.1; t/ D 1;

� W Œ0; q.t/� � Œ0; T� 7! Œ0; q.0/� and � W Œq.t/; 1� � Œ0; T� 7! Œq.0/; 1�:

Moreover, we assume that the inverse map ��1 is a polynomial in x. Hence, if
u.x; t/ WD Nu.s; t/ and since �.s; t/ D x, we have that

@Qu
@t

D � st

sx

@u

@x
C @u

@t
;

@Qu
@s

D 1

sx

@u

@x
I @2 Qu

@s2
D � sxx

s3
x

@u

@x
C 1

s2
x

@2u

@x2
:

Using a map of this form, the differential equation (2a) will transform into

L"u WD �"uxx C .a" C "g/ux C s2
x.bu C cut/ D .s2

x f /.x; t/; .x; t/ 2 ˝; (3a)

where a" WD .ksx/.�" � st
c

k
/ and g WD sxx

sx
: (3b)

To ensure the map is invertible and that s.0; t/ D 0; s.1; t/ D 1, we require that
sx.x; t/ > 0 for all .x; t/ 2 ˝ . Since s.x; t/ is assumed to be a polynomial in x, and
given that s.q.0/; t/ D q.t/ with 0 < q.t/ < 1, it follows that there exists a smooth
positive function r.x; t/ such that

q.t/ � s.x; t/ D .q.0/ � x/r.x; t/; r.x; t/ � ˇ > 0; .x; t/ 2 N̋ :
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Using this fact and ze�z � 2e�z=2; z � 0, one can deduce that

�
�

@ma"

@tm

�
�

˝
� C; m D 1; 2; 3:

Thus by aligning the coordinate system along the direction of the layer movement
(along the curve � ), the time derivatives of the convective coefficient a".x; t/ are
"-uniformly bounded. Observe that the time derivatives of the convective coefficient
Q�".s; t/ are not, in general, "-uniformly bounded in the original .s; t/ coordinate
system. However, the space derivatives in the transformed variables do depend
adversely on the singular perturbation parameter as

�
�

@ia"

@xi

�
�

˝
� C"�i; i D 1; 2; 3; 4:

In general, the point at which the convective coefficient a".x; t/ is zero, is not
always located at x D q.0/. However, if jcstk�1j < 1; t � T; 0 � x � 1

then for " sufficiently small the coefficient a".x; t/ will be zero within an O."/�
neighbourhood of x D q.0/. Hence, we restrict the problem class being examined
by imposing the following two constraints on the data. The q.t/; T are restricted so
that there exists a smooth inverse mapping s W Œ0; 1� � Œ0; T� ! Œ0; 1� such that

sx.x; t/ > ˇ0 > 0; jcst

k
.x; t/j 6 ˇ1 < 1; 8 .x; t/ 2 Œ0; 1� � Œ0; T�; (3c)

s.0; t/ D 0; s.1; t/ D 1; s.q.0/; t/ D q.t/: (3d)

Under these constraints and for sufficiently small ", there exists a unique d.t/ 2
.0; 1/ such that

a".d.t/; t/ D 0 and jd.t/ � q.0/j � C"; for all t 2 Œ0; T�:

Moreover, the sign pattern of the convective coefficient a" is essentially preserved
as

.d.t/ � x/a".x; t/ > 0; x 62 .d.t/ � C"; d.t/ C C"/:

Using the equality

@a"

@d

@d

@t
C @a"

@t
D 0

we deduce that jd0.t/j � C" and by repeating the differentiation we conclude that

jd.m/.t/j � C"; m D 1; 2; 3:
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Hence, in the transformed domain, the location of the interior layer lies within an
O."/-neighbourhood of the initial point x D q.0/ at all values of time. In the original
domain, the position of the turning point of the convective coefficient is explicitly
know (as s D q.t/), but in the computational domain the position of the turning
point is only approximately known as x D d.t/; d.t/ 2 .q.0/�C"; q.0/CC"/. Note
further, that due to the nature of the convective coefficient, although a".d.t/; t/ D 0,
we have that a".d.t/ ˙ C"; t/ D O.1/.

3 Bounds on the Continuous Solution

In this section, the solution is decomposed into the sum of a discontinuous regular
component and a discontinuous layer component. We obtain a pointwise bound
on the singular component, which identifies the rate of exponential decay of the
singular component within the interior layer. This rate depends both on the location
of the curve � and the particular choice of transformation s, introduced in the
previous section.

Lemma 1 For the solution u of (3) we have the following bounds

�
�
�

@jCmu

@xj@tm

�
�
� 6 C"�.jCm/; 0 � j C 2m � 4:

Proof The bound on kuk is established using a maximum principle. Use the
stretched variables � WD .x � q.0//="; 	 WD t=" and the a priori bounds [5, pg. 320,
Theorem 5.2] to deduce the bounds on the partial derivatives of the solution. ut

For all points in ˝ n � , define the differential operator

L"u WD �"uxxC.a0C"g/uxCs2
x.buCcut/; a0.x; t/ WD ksx

8

<

:

C.1 � st
c

k
/; x < q.0/;

�.1 C st
c

k
/; x > q.0/

Observe that the convective coefficient in the operator L" is discontinuous across
the curve � .

Lemma 2 For sufficiently small ", there exists functions r˙.t/ such that the
solutions v˙ of the problems

L"v
� D f .x; t/; .x; t/ 2 ˝� WD .0; d.t// � .0; T�;

v�.x; 0/ D �.x/; 0 � x � d.t/; v�.0; t/ D �L.t/; v�.d.t/; t/ D r�.t/; 0 < t � T;

L"v
C D f .x; t/; .x; t/ 2 ˝C WD .d.t/; 1/ � .0; T�;

vC.x; 0/ D �.x/; d.t/ 6 x 6 1; vC.1; t/ D �R.t/; vC.d.t/; t/ D rC.t/; 0 < t � T;
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are, respectively, in C 4C� .˝
˙

/ and satisfy the bounds

�
�
�

@jCmv˙

@xj@tm

�
�
�

˝
˙

� C.1 C "2�.jCm//; 0 � j C 2m � 4:

Proof As in [6]. ut
We now define the interior layer components w˙ 2 C 4C� .˝

˙
/ as

w˙.x; t/ WD u.x; t/ � v˙.x; t/; .x; t/ 2 ˝
˙

;

which satisfy the problems

L"w˙.x; t/ D .a0.x; t/ � a".x; t//vẋ .x; t/; .x; t/ 2 ˝˙I (4a)

w�.0; t/ D 0; w�.d.t/; t/ D .u � v�/.d.t/; t/; t � 0I (4b)

w�.x; 0/ D 0; 0 < x < d.t/; wC.x; 0/ D 0; d.t/ < x < 1I
wC.1; t/ D 0; wC.d.t/; t/ D .u � vC/.d.t/; t/; t � 0: (4c)

Observe that

jL"w
˙.x; t/j � Ce� 2ˇjx�q.0/j

" :

Lemma 3 Assume that ˛1ˇ0 � 2ˇ. The solutions w˙ of the problems specified
in (4) satisfy the following pointwise bounds

ˇ
ˇ
ˇw˙.x; t/

ˇ
ˇ
ˇ
˝

˙
� Ce� 


2" jq.0/�xj; where 
 WD ˛1ˇ0.1 � ˇ1/:

Proof We outline how to establish the bound in the region ˝�. For " sufficiently
small, there exists a C1 such that for all t � 0, and x 2 .0; d.t/ � C1"/

a".x; t/ D sxk.tanh
r.q.0/ � x/

"
� stc

k
/ � ˛".x; t/ > 0;

where ˛".x; t/ WD ˛1ˇ0.tanh
ˇ.q.0/ � x/

"
� ˇ1/; x � d.t/

Since jzjsech2z � C; 8z, we have that

�2"
@˛"

@x
C ˛2

" D A2 tanh2 ˇ.q.0/ � x/

"
C .Aˇ1/

2

C A.2ˇsech2 ˇ.q.0/ � x/

"
� 2Aˇ1 tanh

ˇ.q.0/ � x/

"
/; A WD ˛1ˇ0
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D A2.tanh2 z C ˇ2
1/ C A.2ˇsech2z � 2Aˇ1 tanh z/;

where z WD ˇ.q.0/ � x/

"

D A2ˇ2
1 C 2Aˇ C A.A � 2ˇ/ tanh2 z � 2A2ˇ1 tanh z

� A2.1 � ˇ1/2; if A � 2ˇ:

Consider the following layer function

B.x; t/ WD "�1e� R d.t/
sDx

˛".s;t/
2" ds dp; x � d.t/I

and noting that
R t

0
tanh x dx D t C log..1 C e�2t/=2/ � t � log 2, we have that

Z d.t/

sDx
˛".s; t/ds � A

�
Z q.0/

sDx
tanh.

ˇ.q.0/ � x/

"
/ � ˇ1 dx

� C O."/

� A.1 � ˇ1/.d.t/ � x/ C O."/:

Using the above lower bound, we have that

C1e� A.1�ˇ1/
" .d.t/�x/ 6 e� 1

"

R d.t/
sDx ˛".s;t/ ds 6 C2e� A.1�ˇ1/

" .d.t/�x/

ˇ
ˇ
ˇ
@B

@t
.x; t/

ˇ
ˇ
ˇ � CB.x; t/; as jd0.t/j � C":

Using these bounds, for " sufficiently small, one can deduce that

L"B � .
A2.1 � ˇ1/

2

4"
� C/B � A2.1 � ˇ1/

2

8"
B

where we have also used the fact that a" � ˛" � �C"; x 2 .d.t/ � C1"; d.t//. Hence
we can choose C so that CB.x; t/ � w�.x; t/ � 0; .x; t/ 2 ˝�. ut

In [6] a similar class of problems to the problem class (3) was studied. A
numerical method was constructed and shown to be (essentially) first order "-
uniformly convergent on a suitably constructed Shishkin mesh. This motivates the
choice of numerical method in this paper. The choice of the transition parameter
in the mesh is dictated by the bounds established in this section. A proof of an
associated error bound for the numerical method presented in Sect. 4, as applied to
problems of the form (2), would require some modifications in the analysis in [6].
Due to space restrictions, we do not discuss these modifications here.
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4 Numerical Method

A numerical approximation QUI.s; t/ to the solution of (2) is generated by discretizing
the transformed problem (3) (with an upwind finite difference method) to generate a
discrete nodal solution U.xi; tj/. which is interpolated (using bilinear interpolation)
to produce a global approximation UI.x; t/ and then this is subsequently transformed
back to the original domain to produce QUI.s; t/. To capture the interior layer we will
design a layer-adapted piecewise uniform mesh.

The discrete problem is: Find a mesh function U such that:

LN;M
" U.xi; tj/ D sxf .xi; tj/; .xi; tj/ 2 ˝N;M

" ; (5a)

U.0; tj/ D u.0; tj/; U.1; tj/ D u.1; tj/; U.xi; 0/ D u.xi; 0/; (5b)

LN;M
" WD �"ı2

x C .a" C "g/Dx C sxbI C sxcDt (5c)

ı2
x Z.xi; tj/ WD DC

x Z.xi; tj/ � D�
x Z.xi; tj/

.hiC1 C hi/=2
; hi WD xi � xi�1 (5d)

.ADxZ/.xi; tj/ WD 1
2

�

.A C jAj/D�
x C .A � jAj/DC

x

�

Z.xi; tj/; (5e)

where DC
x and D�

x are the standard forward and backward finite difference operators

in space, respectively. We define the piecewise-uniform Shishkin mesh ˝
N;M
" by

�1 WD min fq.0/

2
; 2"



ln Ng; �2 WD min f1 � q.0/

2
; 2"



ln Ng; (6a)

H0 WD 4
N .q.0/ � �1/; h WD 2

N .�1 C �2/; H1 WD 4
N .1 � q.0/ � �2/; k D T

M ;

(6b)

˝
N;M
" WD

8

ˆ̂

<̂

ˆ̂

:̂

.xi; tj/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

xi D H0i; 0 6 i 6 N
4
;

xi D x N
4

C h.i � N
4
/; N

4
< i 6 3N

4
;

xi D x 3N
4

C H1.i � 3N
4

/; 3N
4

< i 6 N;

tj D jk; 0 6 j 6 M D N;

9

>>>=

>>>;

(6c)

where the parameter 
 in (6b) is defined in the statement of Lemma 3.

5 Numerical Experiments

Let us consider the following particular map, whose inverse is of the form

s.x; t/ D x � A.t/.x.1 � x//; A.t/ WD q.0/ � q.t/

q.0/.1 � q.0//
: (7)



Convection–Diffusion Problem Containing a Time-Varying Interior Layer 229

The transformed differential equation (3a) can be written in the form

a".x; t/ WD tanh
�

r.x;t/
"

.q.0/ � x/
�

� st; g.x; t/ D 2A.t/
sx

; (8a)

sx D 1 C A.t/.2x � 1/; st D A0.t/x.x � 1/; r.x; t/ WD q.t/
q.0/

C A.t/x: (8b)

Imposing the constraints from the previous sections on the particular map (7) yield

jq.t/ � q.0/j 6 .1 � ˇ0/q.0/.1 � q.0//; ˇ0 > 0 I (9a)

kck�1kjq0.t/j < 4ˇ1q.0/.1 � q.0//; ˇ1 < 1 I (9b)

r.x; t/ � min
0�t�T

f q.t/

q.0/
;

1 � q.t/

1 � q.0/
g D ˇ � 0:5ˇ0I (9c)

which are more stringent than the natural constraint of 0 < q.t/ < 1; 0 � t 6 T.
As an example from the problem class (3), let us examine

q.t/ D 1
2

C mt.1 � t/; f .x; t/ D t.2 C t/ cos.�x/; (10a)

c D b � 1; u.x; 0/ � 0; (10b)

u.0; t/ D t2; u.1; t/ D �t2; t 6 T D 1: (10c)

This example has been designed so that the level one compatibility conditions
(i.e. u 2 C0. N̋ / and .Lu"/.0; 0/ D f .0; 0/; .Lu"/.1; 0/ D f .1; 0/) at the points
.0; 0/; .1; 0/ are satisfied. Then all the constraints (9), on the allowed time variation
on the interior layer location, are met if

jmj < 1; ˇ0 WD 1 � jmj; ˇ1 WD jmj; ˇ D 1 � 0:5jmj � 0:5ˇ0:

Hence we take 
 WD .1 � jmj/2:

We estimate the order of convergence using the double mesh principle [3]. The
linear interpolants of the numerical solutions on the coarse and fine mesh will be
denoted by UN;M

I and U2N;2M
I respectively. We compute the maximum global two-

mesh differences dN;M
" and the uniform global differences dN;M from

dN;M
" WD max

˝N;M[˝2N;2M

ˇ
ˇ
ˇ.UN;M

I � U2N;2M
I /.xi; tj/

ˇ
ˇ
ˇ ; dN;M WD max

S"

dN;M
" ;

where S" WD f20; 2�1; : : : ; 2�20g: From these values we calculate the corresponding
computed orders of global convergence qN;M

" and the computed orders of uniform
global convergence qN;M using

qN;M
" WD log2

�

dN;M
" =d2N;2M

"

�

; qN;M WD log2

�

dN;M=d2N;2M
�

: (11)
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Table 1 Computed rates of convergence, (11), generated from applying the numerical scheme (5),
(6) to test problem (8), (9) and (10) for sample values of m, N and "

" N=32 N=64 N=128 N=256 N=512 N=1024 N=2048

m D 0:25

2�10 0.77 0.60 0.72 0.79 0.83 0.85 0.87

2�15 0.73 0.62 0.72 0.79 0.83 0.85 0.87

2�20 0.73 0.62 0.72 0.79 0.83 0.85 0.87

qN;M 0.72 0.63 0.73 0.79 0.83 0.85 0.87
m D 0:5

2�10 1.20 0.55 0.74 0.81 0.84 0.82 0.87

2�15 1.19 0.56 0.74 0.81 0.84 0.82 0.87

2�20 1.19 0.56 0.74 0.81 0.84 0.82 0.87

qN;M 1.09 0.68 0.74 0.82 0.84 0.77 0.84
m D 0:75

2�10 0.38 0.56 0.97 0.82 0.67 0.81 0.89

2�15 0.36 0.54 0.96 0.92 0.66 0.88 0.89

2�20 0.35 0.54 0.96 0.93 0.66 0.88 0.89

qN;M 0.30 0.73 0.97 0.82 0.67 0.81 0.89
m D 0:9

2�10 0.45 0.57 0.84 1.40 0.61 1.01 1.01

2�15 0.12 0.19 0.28 0.39 0.55 0.93 1.08

2�20 0.10 0.19 0.28 0.39 0.55 0.93 1.09

qN;M 0.32 0.13 0.31 0.51 0.55 0.93 1.07

0
0.5

1
0

1

−1

0

1

s

t

Fig. 1 Numerical approximation to solution of (8), (9) and (10); with m D 0:5 using the numerical
method (5), (6) for " D 2�12 and N D 128 transformed to the s and t variables using the map (7)

For all " 2 S" the computed orders of uniform convergence qN;M for test problem (8),
(9) and (10) for sample values of m; N are given in Table 1. A selection of particular
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values of global convergence qN;M
" ; " D 2�10; 2�15; 2�20 are also presented. Observe

that as the parameter m approaches the limiting value of 1, the number of mesh
points (N) must be sufficiently large before the asymptotic rate of convergence is
established. Nevertheless, for the sample values of m examined, one observes rates
of global convergence tending to rates corresponding to an error bound of the form
N�1 ln N. A sample computed solution is displayed in Fig. 1, where the interior layer
is visible.
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