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Abstract In this paper, a boundary value problem for a system of two singularly
perturbed second order delay differential equations is considered on the interval
Œ0; 2�: The components of the solution of this system exhibit boundary layers at
x D 0 and x D 2 and interior layers at x D 1. A numerical method composed of a
classical finite difference scheme applied on a piecewise uniform Shishkin mesh is
suggested to solve the problem. The method is proved to be first order convergent in
the maximum norm uniformly in the perturbation parameters. Numerical illustration
provided support the theory.

1 Introduction

Delay differential equations are common in the mathematical modelling of various
physical, biological phenomena and control theory. A subclass of these equations
consists of singularly perturbed ordinary differential equations with a delay. Such
type of equations arise frequently in the mathematical modelling of various practical
phenomena, for example, in the modelling of human pupil-light reflex [6], models of
HIV infection [1], the study of bistable devices in digital electronics [2], variational
problems in control theory [3], first exit time problems in modelling of activation of
neuronal variability [5], evolutionary biology [8], mathematical ecology [4] and in
a variety of models for physiological processes [7].

Investigation of boundary value problems for singularly perturbed linear second-
order differential-difference equations was initiated by Lange and Miura [5].
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The singularly perturbed boundary value problem for a system of delay differen-
tial equations under consideration is

Lu.x/ D �E u 00.x/C A.x/ u.x/C B.x/ u.x � 1/ D f.x/ on .0; 2/ (1)

with u D � on Œ�1; 0� and u.2/ D l; (2)

where �.x/ D .�1.x/; �2.x//T is sufficiently smooth on Œ�1; 0�: For all x 2
Œ0; 2�;u.x/ D .u1.x/; u2.x//T and f.x/ D .f1.x/; f2.x//T : E; A.x/ and B.x/ are
2 � 2 matrices. E D diag." /; " D ."1; "2/ with 0 < "1 < "2 << 1; B.x/ D
diag.b.x//; b.x/ D .b1.x/; b2.x//: For all x 2 Œ0; 2�; it is also assumed that the
entries aij.x/ of A.x/ and the components bi.x/ of B.x/ satisfy

bi.x/; aij.x/ � 0 for 1 � i ¤ j � 2; aii.x/ >
X

i¤j

jaij.x/C bi.x/j (3)

and 0 < ˛ < min
x2Œ0;2�
iD1;2

.

2X

jD1
aij.x/C bi.x//; for some ˛: (4)

Further, the functions fi.x/; aij.x/ and bi.x/; 1 � i; j � 2 are assumed to be
in C2.Œ0; 2�/: The above assumptions ensure that u 2 C D C 0.Œ0; 2�/\C 1..0; 2//\
C 2..0; 1/[ .1; 2//:

The problem (1)–(2) can be rewritten as

L1u.x/ D �E u 00.x/C A.x/ u.x/ D f.x/� B.x/ �.x � 1/ D g.x/ on .0; 1/; (5)

L2u.x/ D �E u 00.x/C A.x/ u.x/C B.x/ u.x � 1/ D f.x/ on .1; 2/; (6)

u.0/ D �.0/; u.2/ D l;u.1�/ D u.1C/ and u 0.1�/ D u 0.1C/: (7)

The reduced problem corresponding to (5), (6) and (7) is defined by

A.x/ u0.x/ D g.x/ on .0; 1/; (8)

A.x/ u0.x/C B.x/ u0.x � 1/ D f.x/ on .1; 2/: (9)

For any vector-valued function y on Œ0; 2� the following norms are introduced:
k y.x/ kD maxi jyi.x/j and k y kD supfk y.x/ kW x 2 Œ0; 2�g: For any mesh

function V on˝
N D fxjgN

jD0 the following discrete maximum norms are introduced:

k V.xj/ kD maxi jVi.xj/j and k V kD maxfk V.xj/ kW xj 2 ˝Ng:
For any function the jump at x is Œ �.x/ D  .xC/ �  .x�/:
Throughout the paper C denotes a generic positive constant, which is indepen-

dent of x and of all singular perturbation and discretization parameters. Furthermore,
inequalities between vectors are understood in the componentwise sense.
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2 Analytical Results

This section presents some analytical results related to the problem (5), (6)
and (7) which include maximum principle, stability result and the estimates of the
derivatives.

Lemma 1 Let conditions (3) and (4) hold. Let  D . 1;  2/
T be any function in

C such that  .0/ � 0  .2/ � 0; L1 � 0 on .0; 1/; L2 � 0 on .1; 2/ and
Œ �.1/ D 0; Œ 0�.1/ � 0 then  � 0 on Œ0; 2�:

Proof Let i�; x� be such that  i�.x�/ D min
iD1;2; x2Œ0;2�  i.x/. If  i�.x�/ � 0; there is

nothing to prove. Suppose therefore that  i�.x�/ < 0: Then x� … f0; 2g;  00
i� .x

�/ �
0: If x� 2 .0; 1/ then .L1 /i�.x�/ < 0; which is a contradiction. And if x� 2 .1; 2/
then .L2 /i�.x�/ < 0; which is also a contradiction.

Because of the boundary values, the only other possibility is that x� D 1: In
this case, the argument depends on whether or not  i� is differentiable at x D 1:

If  0
i�.1/ does not exist then Œ 0

i� �.1/ ¤ 0 and since  0
i�.1�/ � 0;  0

i�.1C/ � 0;

it is clear that Œ 0
i� �.1/ > 0; which is a contradiction. On the other hand, let  i�

be differentiable at x D 1: As
2X

jD1
ai�j.x/ j.x/ < 0 and all the entries of A.x/ and

 j.x/ are in C.Œ0; 2�/; there exist an interval Œ1 � h; 1/ on which
2X

jD1
ai�j.x/ j.x/ <

0: If  00
i� .Ox/ � 0 at any point Ox 2 Œ1 � h; 1/; then .L1 /i�.Ox/ < 0; which is a

contradiction. Thus we can assume that  00
i�.x/ < 0 on Œ1 � h; 1/: But this implies

that  0
i�.x/ is strictly decreasing on Œ1 � h; 1/: Already we know that  0

i�.1/ D 0

and  0
i� 2 C..0; 2//; so  0

i�.x/ > 0 on Œ1 � h; 1/: Consequently the continuous
function i�.x/ cannot have a minimum at x D 1; which contradicts the assumption
that x� D 1: ut

As a consequence of the maximum principle, there is established the stability
result for the problem (1)–(2) in the following

Lemma 2 Let conditions (3) and (4) hold. Let  be any function in C ; such that
Œ �.1/ D 0 and Œ 0�.1/ D 0; then for each i D 1; 2 and x 2 Œ0; 2�;

j i.x/j � max
˚k  .0/ k; k  .2/ k; 1

˛
k L1 k; 1

˛
k L2 k� :

Proof Let M D maxfk  .0/ k; k  .2/ k; 1
˛

k L1 k; 1
˛

k L2 kg: Define two
functions �˙.x/ D Me ˙ .x/ where e D .1; 1/T : Using the properties of A.x/ and
B.x/ it is not hard to verify that �˙.0/ � 0; �˙.2/ � 0;L1�˙.x/ � 0 on .0; 1/
and L2�˙.x/ � 0 on .1; 2/: Moreover Œ�˙�.1/ D ˙Œ �.1/ D 0 and Œ�˙0

�.1/ D
˙Œ 0�.1/ D 0: It follows from Lemma 1 that �˙.x/ � 0 on Œ0; 2�: ut
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Standard estimates of the solution of (1)–(2) and its derivatives are contained in
the following

Lemma 3 Let conditions (3) and (4) hold. Let u be the solution of (1)–(2). Then for
all x 2 Œ0; 2� and i D 1; 2;

ju.k/i .x/j � C "
� k
2

i .jju.0/jj C jju.2/jj C jjfjj/ ; for k D 0; 1 and

ju.k/i .x/j�C "
� .k�2/

2

1 "�1
i .jju.0/jjCjju.2/jj C jjfjj C "

k�2
2

1 jjf .k�2/jj/; for k D 2; 3; 4:

Proof The proof is by the method of steps. First, the bounds of u and its derivatives
are estimated in Œ0; 1�: Next, these bounds of u and its derivatives are used to get the
estimates in Œ1; 2�: Applying Lemma 3 of [9], the estimates of derivatives of u on
Œ0; 1� follow and using the procedure adopted in the proof of Lemma 3 of [9], it is
not hard to derive estimates of derivatives of u on Œ1; 2�: ut

The Shishkin decomposition of the solution u of (1)–(2) is u D v C w where the
smooth component v is the solution of

L1v D g on .0; 1/; v.0/ D u0.0/; v.1�/ D .A.1//�1.f.1/�B.1/�.0//; (10)

L2v D f on .1; 2/; v.1C/ D .A.1//�1.f.1/� B.1/ u0.0//; v.2/ D u0.2/
(11)

and the singular component w is the solution of

L1 w D 0 on .0; 1/; L2 w D 0 on .1; 2/ with

w.0/Du.0/�v.0/; w.2/ D u.2/�v.2/; Œw �.1/D�Œv �.1/ and Œw 0�.1/ D �Œv 0�.1/:
(12)

The singular component is given a further decomposition

w.x/ D Qw.x/C Ow.x/ (13)

where Qw is the solution of

�E Qw 00.x/C A.x/ Qw.x/ D 0 on .0; 1/; Qw.0/ D w.0/; Qw.1/ D K1; Qw D 0 on .1; 2�

and Ow is the solution of

�E Ow 00.x/C A.x/ Ow.x/C B.x/ Ow.x � 1/ D 0 on .1; 2/;

Ow.1/ D K2; Ow.2/ D w.2/; Ow D 0 on Œ0; 1/:

Here, K1 and K2 are vector constants to be chosen in such a way that the jump
conditions at x D 1 are satisfied.
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Bounds on the smooth component and its derivatives are contained in the
following

Lemma 4 Let conditions (3) and (4) hold. Then for i D 1; 2 and for all x 2
Œ0; 2�; jv.k/i .x/j � C; for k D 0; 1; 2 and jv.k/i .x/j � C.1C "

1� k
2

i /; for k D 3; 4:

Proof The proof is by the method of steps. Applying Lemma 4 of [9], the estimates
of derivatives of v on Œ0; 1�� follow. Now consider Œ1C; 2�: On this interval v
satisfies L2v.x/ D f.x/ or L1v.x/ D f.x/ � B.x/ v.x � 1/: Using the bounds of
v and its derivatives on Œ0; 1�� and the procedure adopted in the proof of Lemma 4
of [9] for the operator L1; it is not hard to derive the estimates of derivatives of v on
Œ1C; 2�: ut

The layer functions Bl
1;i;B

r
1;i;B

l
2;i;B

r
2;i;B1;i;B2;i; i D 1; 2; associated with the

solution u; of (1)–(2), are defined by

Bl
1;i.x/ D e�x

p

˛=
p
"i ; Br

1;i.x/ D e�.1�x/
p

˛=
p
"i ; B1;i.x/ D Bl

1;i.x/C Br
1;i.x/; on Œ0; 1�;

Bl
2;i.x/ D e�.x�1/

p

˛=
p
"i ; Br

2;i.x/ D e�.2�x/
p

˛=
p
"i ; B2;i.x/ D Bl

2;i.x/C Br
2;i.x/;

on Œ1; 2�:

Definition 1 For Bl
1;1;B

l
1;2; let x� be the point defined by

Bl
1;1.x

�/
"1

D Bl
1;2.x

�/
"2

:

Then
Br
1;1.1 � x�/

"1
D Br

1;2.1 � x�/
"2

;
Bl
2;1.1C x�/

"1
D Bl

2;2.1C x�/
"2

and
Br
2;1.2 � x�/

"1
D Br

2;2.2 � x�/
"2

:

The existence, uniqueness and the properties of x� can be verified as in [9, 10].
Bounds on the singular component w of u and its derivatives are contained in the

following

Lemma 5 Let conditions (3) and (4) hold. Then there exists a constant C such that
for i D 1; 2 and for x 2 Œ0; 1�;

jwi.x/j � C B1;2.x/; jw 0
i .x/j � C

2X

qDi

B1;q.x/p
"q

; jw 00
i .x/j � C

2X

qDi

B1;q.x/

"q
;

jw.3/i .x/j � C
2X

qD1

B1;q.x/

"
3
2
q

; j"iw
.4/
i .x/j � C

2X

qD1

B1;q.x/

"q
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and for x 2 Œ1; 2�; jwi.x/j � C B2;2.x/; jw 0
i .x/j � C

2X

qDi

B2;q.x/p
"q

;

jw 00
i .x/j � C

2X

qDi

B2;q.x/

"q
; jw.3/i .x/j � C

2X

qD1

B2;q.x/

"
3
2
q

; j"iw
.4/
i .x/j � C

2X

qD1

B2;q.x/

"q
:

Proof The proof is by the method of steps. First, the bounds of w and its derivatives
are estimated in Œ0; 1�: Next, these bounds of w and its derivatives are used to get
the estimates in Œ1; 2�:

We now derive the bound on w on Œ0; 1�: By using the barrier functions �˙.x/ D
C B1;2.x/e ˙ w.x/; where e D .1; 1/T ; and Lemma 1 of [9] to the operator L1;
the estimates of w on Œ0; 1� follow. By using the mean value theorem it is easy
to find that jw 0

1.x/j � C "�1=2
1 B1;2.x/ and jw 0

2.x/j � C "�1=2
2 B1;2.x/: In particular

jw 0
i .0/j � C "�1=2

i and jw 0
i .1/j � C "�1=2

i ; i D 1; 2:

By using the barrier functions �˙.x/ D

2

64
C1

�
"

�1
2

1 B1;1.x/C "
�1
2

2 B1;2.x/

�

C2"
�1
2

2 B1;2.x/

3

75 ˙

w 0.x/ and Lemma 1 of [9] to the operator L1; the estimates of w 0 on Œ0; 1� follow.
The bounds on w 00; w .3/ and w .4/ are derived by similar arguments. By using these
same techniques and the bounds of w and its derivatives on Œ0; 1�; the bounds on w
and its derivatives are derived on Œ1; 2�: ut

3 Improved Estimates

In the following lemma sharper estimates of the smooth component are presented.

Lemma 6 Let conditions (3) and (4) hold. Then the smooth component v of the
solution u of (1)–(2) satisfies for i D 1; 2; k D 0; 1; 2; 3 and for x 2 Œ0; 1�;

jv.k/i .x/j � C

0

@1C
2X

qDi

B1;q.x/

"
k
2

�1
q

1

A and for x 2 Œ1; 2�; jv.k/i .x/j � C

0

@1C
2X

qDi

B2;q.x/

"
k
2

�1
q

1

A :

Proof Here also the proof is by the method of steps. Applying Lemma 6 of [9], the
estimates of the derivatives of v on Œ0; 1� follow. Next for x 2 Œ1; 2�; the bounds on
the derivatives of v are derived using the procedure adopted in the proof of Lemma
6 of [9] and the bounds of the derivatives of v in the interval Œ0; 1�: ut
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4 The Shishkin Mesh

A piecewise uniform Shishkin mesh with N mesh-intervals is now constructed on

Œ0; 2� as follows. Let ˝N D ˝1
N [˝2

N where˝1
N D fxjg

N
2 �1

jD1 ; ˝2
N D fxjgN�1

jD N
2 C1

and x N
2

D 1: Then ˝1
N D fxjg

N
2

jD0; ˝2
N D fxjgN

jD N
2

; ˝1
N [ ˝2

N D ˝
N D

fxjgN
jD0 and � N D f0; 2g: As the solution exhibits overlapping layers at x D 0 and

x D 2 and interior overlapping layers at x D 1; a Shishkin mesh is constructed to
resolve these layers. The interval Œ0; 1� is subdivided into 5 sub -intervals as follows
Œ0; �1�[.�1; �2�[.�2; 1��2�[.1��2; 1��1�[.1��1; 1�: The parameters �r; r D 1; 2;

which determine the points separating the uniform meshes, are defined by �2 D
minf1

4
;
2
p
"2p
˛

ln Ng and �1 D minf�2
2
;
2
p
"1p
˛

ln Ng:
On the sub -interval .�2; 1 � �2� a uniform mesh with N

4
mesh points is placed

and on each of the sub -intervals Œ0; �1�; .�1; �2�; .1 � �2; 1 � �1� and .1 � �1; 1�;

a uniform mesh of N
16

mesh points is placed. Similarly, the interval .1; 2� is also
divided into 5 sub -intervals .1; 1C�1�; .1C�1; 1C�2�; .1C�2; 2��2�; .2��2; 2�
�1� and .2��1; 2�; using the same parameters �1 and �2. In particular, when both the

parameters �1 and �2 take on their lefthand value, the Shishkin mesh ˝
N

becomes
a classical uniform mesh throughout from 0 to 2. In practice, it is convenient to take

N D 16k; k � 2: From the above construction of ˝
N
; it is clear that the transition

points f�r; 1 � �r; 1 C �r; 2 � �rg; r D 1; 2; are the only points at which the mesh-
size can change and that it does not necessarily change at each of these points. The
following notations are introduced: hj D xj � xj�1; hjC1 D xjC1 � xj and if xj D �r

then h�
j D xj � xj�1; hC

j D xjC1 � xj; J D fxj W hC
j ¤ h�

j g:

5 The Discrete Problem

In this section, a classical finite difference operator with an appropriate Shishkin
mesh is used to construct a numerical method for (1)–(2) which is shown later to be
essentially first order parameter-uniform convergent.

The discrete two -point boundary value problem is now defined to be

LNU.xj/ D �E ı2U.xj/C A.xj/U.xj/C B.xj/U.xj � 1/ D f.xj/ on ˝N;

U.xj � 1/ D �.xj � 1/ for xj 2 ˝1
N and U D u on � N :

(14)

The problem (14) can be rewritten as,

LN
1 U.xj/ D �E ı2U.xj/C A.xj/U.xj/ D g.xj/ on ˝1

N ;

LN
2 U.xj/ D �E ı2U.xj/C A.xj/U.xj/C B.xj/U.xj � 1/ D f.xj/ on ˝2

N ;

U D u on � N ; D�U.xN=2/ D DCU.xN=2/;
(15)
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where ı2Y.xj/ D 2

xjC1 � xj�1
˚
DCY.xj/� D�Y.xj/

�
;DCY.xj/ D Y.xjC1/ � Y.xj/

xjC1 � xj

and D�Y.xj/ D Y.xj/ � Y.xj�1/
xj � xj�1

:

This is used to compute numerical approximations to the solution of (1)–(2). The
following discrete results are analogous to those for the continuous case.

Lemma 7 Let conditions (3) and (4) hold. Then, for any mesh function Y; the
inequalities Y � 0 on � N ;LN

1 Y � 0 on ˝1
N ; LN

2 Y � 0 on ˝2
N and

DCY.xN=2/ � D�Y.xN=2/ � 0 imply that Y � 0 on ˝
N
:

Proof Let i�; j� be such that Yi�.xj�/ D min
i;j

Yi.xj/ and assume that the lemma is

false. Then Yi�.xj�/ < 0. From the hypotheses it is clear that j� ¤ 0; N: Suppose
xj� 2 ˝1

N : Yi�.xj�/�Yi� .xj��1/ � 0; Yi�.xj�C1/�Yi�.xj�/ � 0; so ı2Yi�.xj�/ � 0:

It follows that .LN
1 Y/i�.xj�/ < 0; which is a contradiction. If xj� 2 ˝2

N ; a similar
argument shows that .LN

2 Y/i�.xj�/ < 0; which is a contradiction. Because of the
boundary values, the only other possibility is that xj� D xN=2: Then D�Yi� .xN=2/ �
0 � DCYi�.xN=2/ � D�Yi�.xN=2/; by the hypothesis. Then .LN

1 Y/i�.x N
2 �1/ < 0; a

contradiction. ut
An immediate consequence of this is the following discrete stability result.

Lemma 8 Let conditions (3) and (4) hold. Then, for any mesh function Y satisfying
DCY.xN=2/ D D�Y.xN=2/; jYi.xj/j � maxfjjY.x0/jj; jjY.xN/jj; 1˛ k LN

1 Y k˝1N ;
1
˛

k LN
2 Y k˝2N g; for each i D 1; 2 and 0 � j � N:

Proof Let M D maxfjjY.x0/jj; jjY.xN/jj; 1
˛

k LN
1 Y k˝1N ; 1

˛
k LN

2 Y k˝2N g: Define
two functions Z˙.xj/ D Me ˙ Y.xj/ where e D .1; 1/T : Using the properties of
A.xj/ and B.xj/; it is not hard to find that Z˙.xj/ � 0 for j D 0;N; LN

1 Z˙.xj/ �
0 for xj 2 ˝1

N and LN
2 Z˙.xj/ � 0 for xj 2 ˝2

N : At j D N
2
; DCZ˙.xN=2/ �

D�Z˙.xN=2/ D ˙.DCY.xN=2/ � D�Y.xN=2// D 0: Hence by Lemma 7, Z˙ � 0

on ˝
N
: ut

6 Error Estimate

Analogous to the continuous case, the discrete solution U can be decomposed into
V and W which are defined to be the solutions of the following discrete problems

LN
1 V.xj/ D g.xj/; xj 2 ˝1

N ; V.0/ D v.0/; V.xN=2�1/ D v.1�/;
LN
2 V.xj/ D f.xj/; xj 2 ˝2

N ; V.xN=2C1/ D v.1C/; V.2/ D v.2/
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and

LN
1 W.xj/ D 0; xj 2 ˝1

N ; W.0/ D w.0/; LN
2 W.xj/D0; xj 2 ˝2

N ; W.2/Dw.2/;
D�V.xN=2/C D�W.xN=2/ D DCV.xN=2/C DCW.xN=2/:

The error at each point xj 2 ˝
N

is denoted by e.xj/ D U.xj/ � u.xj/: Then
the local truncation error LNe.xj/; for j ¤ N=2; has the decomposition LNe.xj/ D
LN.V � v/.xj/C LN.W � w/.xj/: The error in the smooth and singular components
are bounded in the following

Theorem 1 Let conditions (3) and (4) hold. If v denotes the smooth component
of the solution of (1)–(2) and V the smooth component of the solution of the
problem (15), then, for i D 1; 2; j ¤ N=2;

j.LN
1 .V � v//i.xj/j � C .N�1 ln N/2; 0 � j � N=2 � 1; (16)

j.LN
2 .V � v//i.xj/j � C .N�1 ln N/2; N=2C 1 � j � N: (17)

If w denotes the singular component of the solution of (1)–(2) and W the singular
component of the solution of the problem (15), then, for i D 1; 2; j ¤ N=2;

j.LN
1 .W � w//i.xj/j � C .N�1 ln N/2; 0 � j � N=2 � 1; (18)

j.LN
2 .W � w//i.xj/j � C .N�1 ln N/2; N=2C 1 � j � N: (19)

Proof As the expression derived for the local truncation error in V and W and the
estimates for the derivatives of the smooth and singular components are exactly in
the form found in [9], the required bounds hold good. ut

Define, for i D 1; 2; a set of discrete barrier functions on ˝
N

by

!i.xj/ D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

˘
j
kD1.1C .

p
˛hk=

p
2"i//

˘
N=2
kD1.1C .

p
˛hk=

p
2"i//

; 0 � j � N=2;

˘N�1
kDj .1C .

p
˛hkC1=

p
2"i//

˘N�1
kDN=2.1C .

p
˛hkC1=

p
2"i//

; N=2 � j � N:

(20)

It is not hard to see that,

!i.0/ D 0; !i.1/ D 1; !i.2/ D 0 and !1.xj/ < !2.xj/ for any 0 � j � N;
(21)

.LN
1!/i.xj/ > �˛ !i.xj/C

iX

lD1
ail.xj/ !i.xj/C

2X

lDiC1
ail.xj/; (22)
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.LN
2!/i.xj/ � �˛ !i.xj/ C

iX

lD1
ail.xj/ !i.xj/C

2X

lDiC1
ail.xj/C bi.xj/; (23)

and .DC � D�/!i.xN=2/ � � Cp
"i

: (24)

It is to be noted that

j.DC � D�/ei.x N
2
/j � C

h�

"i
(25)

where h� D h�
N=2 D hC

N=2:

We now state and prove the main theoretical result of this paper.

Theorem 2 Let u.xj/ be the solution of the problem (1)–(2) and U.xj/ be the
solution of the discrete problem (14). Then,

k U.xj/� u.xj/ k� C N�1 ln N; 0 � j � N:

Proof Consider Zi.xj/ D C1N�1 ln N CC2
h�

p
"i

!i.xj/˙ei.xj/; i D 1; 2; 0 � j � N;

where C1 and C2 are constants. Then,

ŒLN
1 Z�i.xj/ D C1

2X

lD1
ail.xj/N

�1 ln N C C2
h�

p
"i

ŒLN
1! �i.xj/˙ ŒLN

1 e �i.xj/: (26)

Using (22) in (26) and Theorem 1,

ŒLN
1 Z�i.xj/

� C1

2X

lD1
ail.xj/N

�1 ln N C C2
h�

p
"i

"
�˛ !i.xj/C

iX

lD1
ail.xj/!i.xj/C

2X

lDiC1
ail.xj/

#

˙ C N�1 ln N

D C1

2X

lD1
ail.xj/N

�1 ln N C C2
h�

p
"i

"
iX

lD1
ail.xj/� ˛

#
!i.xj/CC2

h�
p
"i

2X

lDiC1
ail.xj/

˙ C N�1 ln N:
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Let �i.xj/ D
 

iX

lD1
ail.xj/� ˛

!
!i.xj/C

2X

lDiC1
ail.xj/; i D 1; 2: Then choosing C1 >

C2jj�jj C C; ŒLN
1 Z�i.xj/ � 0; on ˝N

1 ; for i D 1; 2: For xj 2 ˝N
2 ;

ŒLN
2 Z�i.xj/ D C1

 
2X

lD1
ail.xj/C bi.xj/

!
N�1 ln NCC2

h�
p
"i

ŒLN
2! �i.xj/˙ŒLN

2 e �i.xj/:

(27)

Using (23) in (27) and Theorem 1,

ŒLN
2 Z�i.xj/

� C1

 
2X

lD1

ail.xj/C bi.xj/

!
N�1 ln N

CC2
h�

p
"i

2

4�˛ !i.xj/C
iX

lD1

ail.xj/!i.xj/C
2X

lDiC1

ail.xj/C bi.xj/

3

5˙ C N�1 ln N

D C1

 
2X

lD1

ail.xj/C bi.xj/

!
N�1 ln N

CC2
h�

p
"i

"
iX

lD1

ail.xj/ � ˛

#
!i.xj/C C2

h�

p
"i

2

4
2X

lDiC1

ail.xj/C bi.xj/

3

5˙ C N�1 ln N:

Let �i.xj/ D
 

iX

lD1
ail.xj/ � ˛

!
!i.xj/ C

2X

lDiC1
ail.xj/ C bi.xj/; i D 1; 2: Then

choosing C1 > C2jj�jj C C; ŒLN
2 Z�i.xj/ � 0; on ˝N

2 ; for i D 1; 2: Further,

DCZi.1/� D�Zi.1/ � �C2
Ch�

"i
˙ C

h�

"i
; using (24) and (25)

� 0:

Also, using (21), for i D 1; 2; Zi.0/ � 0; Zi.2/ � 0: Therefore, using Lemma 7 for
Z; it follows that Zi.xj/ � 0 for i D 1; 2; 0 � j � N: As, from (21), !i.xj/ � 1

for i D 1; 2; 0 � j � N; for N sufficiently large, k U � u k� CN�1 ln N: ut

7 Numerical Illustration

The parameter-uniform convergence of the numerical method proposed in this paper
is illustrated through an example presented in this section.



194 M. Mariappan et al.

Example Consider the BVP

�Eu 00.x/C A.x/u.x/C B.x/u.x � 1/ D f.x/; for x 2 .0; 2/;

u.x/ D 1; for x 2 Œ�1; 0�; u.2/ D 1; where E D diag."1; "2/; A.x/ D�
4 �1

�1 5

�
; B.x/ D diag.�0:5; �0:5/; f.x/ D .1; 1/T :

The maximum pointwise errors and the rate of convergence for this BVP are
presented in Table 1. The solution of this problem for "1 D 2�13; "2 D 2�11 and
N D 2048 is portraited in Fig. 1.

Table 1 Values of maximum pointwise errors DN
" and DN ; order of convergence pN ; error

constant CN
p ; order of " -uniform convergence p� and " -uniform error constant CN

p� for

"1 D �

16
; "2 D �

4
and ˛ D 2:4999

Number of mesh points N

� 128 256 512 1024 2048

20 0.398E�03 0.202E�03 0.102E�03 0.510E�04 0.255E�04

2�3 0.146E�02 0.738E�03 0.369E�03 0.185E�03 0.923E�04

2�6 0.442E�02 0.204E�02 0.104E�02 0.522E�03 0.261E�03

2�9 0.407E�02 0.290E�02 0.178E�02 0.102E�02 0.572E�03

2�12 0.407E�02 0.290E�02 0.178E�02 0.102E�02 0.572E�03

DN 0.442E�02 0.290E�02 0.178E�02 0.102E�02 0.572E�03

pN 0.606EC00 0.702EC00 0.799EC00 0.841EC00

CN
p 0.244EC00 0.244EC00 0.228EC00 0.200EC00 0.170EC00

Computed order of "-uniform convergence, p� D 0:6064957

Computed "-uniform error constant, CN
p� D 0:2441407

 0.3
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Fig. 1 Solution profile
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