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Abstract The work deals with numerical simulation of transonic turbulent flow in
turbine cascades taking into account transition to turbulence. The Favre-averaged
Navier-Stokes equations are closed by the SST eddy-viscosity turbulence model
or by explicit algebraic Reynolds stress turbulence model (EARSM) with the � -�
transition model of Lodefier and Dick. The mathematical model is solved by implicit
AUSM-type finite volume method. The implementation of transition model does
not require case specific input under the assumption that the whole thickness of
boundary layer is contained in the same block of multi-block grid, which can easily
be fulfilled in the cases considered. The results are shown for 2D tip profile turbine
cascade and 2D and 3D SE1050 turbine cascade.

1 Introduction

The mathematical modeling of turbulent flow in turbine cascades serves as design
tool as well as improves the understanding of complicated flow patterns typical
of these flows. Mathematical models based on the Favre-averaged Navier-Stokes
equations present acceptable accuracy at acceptable computational cost, however,
the accuracy is influenced by turbulence model and its capability to predict bypass
transition to turbulence. Correct prediction of turbulent boundary layer is important
for heat exchange between blade and fluid and also can influence the losses e.g. by
interaction with shock waves which is different on laminar boundary layer. Common
two-equation eddy-viscosity turbulence models usually predict too early start of
transition and then the transition is too fast. This problem is further emphasized by
over-prediction of the turbulent energy production on the leading edge of the blade
which has its origin in the eddy-viscosity assumption. Some ad hoc remedies of the
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later problem has been proposed e.g. by Kato, Launder [3] or Medic, Durbin [10].
Better option is the use of more elaborate constitutive relation for turbulent stress as
is the explicit algebraic Reynolds stress model (EARSM), e.g. the variant by Wallin
[13] which is also used in this work. However the transition still requires explicit
triggering. Considering transition models based on transport equations which seem
more general than algebraic ones, the models contain equation for an intermittency
variable and also for other auxiliary variable or variables. More recent examples
are 3-equation model by Walters and Cokljat [14] or 2-equation model by Menter,
Langtry [6]. Also 1-equation model is proposed by Durbin [1]. These models
have “local” form enabling easy implementation especially on parallel computers.
However they also share disadvantage of containing transition criteria implicitly.
Any non anticipated mechanism of transition requires re-calibration of the model.
In this work we apply the � -� model of Lodefier, Dick [7] and Kubacki et al
[5] instead. The model contains transition criteria explicitly and any new criterion
can be added easily. The downside is that the model distinguishes free-stream and
boundary layer and thus is not local. Nevertheless we show for typical 3D cascade
geometry that when using multi-block grids the model is block-local and does not
require case-specific input under assumption that the whole thickness of boundary
layer is contained in one block, at least in region where transition occurs. This can
be easily achieved with suitable O-type grid around the blade.

2 Mathematical Model and Numerical Method

2.1 Mathematical Model

The mathematical model of turbulent flow is based on Favre-averaged Navier-
Stokes (NS) equations, see e.g. Wilcox [15]. The system consisting of continuity,
3 momentum and energy equations can be written in 3D in Cartesian coordinates as
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where V is control volume, ni outer unit normal vector components on its surface,
t time, � density, ui velocity vector components, E total energy per unit volume,
H D E C p=� is total enthalpy and p static pressure. The normal velocity uc D uini.
Summation convention is used for repeated indices. Equation of state for perfect gas
is prescribed in the form

E D 1
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with the ratio of specific heats � D 1:4 and k being turbulent energy. The molecular
stress tensor and heat flux vector respectively are assumed in the form
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where ıij is the Kronecker delta. The dynamic viscosity � and Prandtl number
satisfy

� D const; Pr D const: (7)

The effect of turbulent fluctuations is present by the Reynolds stress tensor �ij and
turbulent heat flux qt

i, which need to be modeled. An eddy viscosity model assumes
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where �t is eddy viscosity and the turbulent Prandtl number is set Prt D 0:91. In a
k-! model, the eddy viscosity �t � �k=!. The k-! system can be written
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where the turbulent production Pk D �ij
@ui
@xj

, the ˛; ˇ; ˇ�; �k; �! are model

coefficients and CD a cross-diffusion term, CD � .@k=@xi/.@!=@xi/. In this work
the SST variant of k-! model is use, see Menter [11].
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To take most advantage of the k-! solution, an explicit algebraic Reynolds stress
model (EARSM) can be used having advantage especially in 3D. In the EARSM
model proposed by Wallin [12], the Reynolds stress is given by

�ij D aij�k C 2

3
�kıij; (11)
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and II˝; IV are invariants formed from Sij; ˝ij. The coefficients ˇj are taken from
Hellsten [2] where also the k-! system is used for turbulent scales prediction.

In order to model bypass transition to turbulence, the two-equation model of
Lodefier and Dick [7] is used. The eddy viscosity is multiplied by turbulence
weighting factor

�T D maxŒmin.� C �; 1/; 0�; (12)

where � is near-wall intermittency and � free-stream intermittency. The governing
equations are
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with boundary conditions in the inlet: � D 0; � D 1, in the outlet: @�=@n D
@�=@n D 0 and on the wall: @�=@n D 0; � D 0.

The � is zero in the boundary layer. The � is first zero everywhere and starts
to increase to 1 in the turbulent boundary layer as soon as the starting function Fs

is activated. In laminar part Fs D 0. When a transition criterion is satisfied, the
Fs D 1. Currently Mayle and Abu-Ghannam, Shaw criteria are used, see [5, 9].
They depend on free stream turbulence level, boundary layer thickness and pressure
gradient. The transition on the separation bubble (at shock wave) is not considered.
The intermittency �T multiplies the turbulent stress and also scales the production
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term in k-equation according to:

FGPk � minŒ1:0; max.�T ; 0:1/�ˇ��!k; (15)

FG D B C .1: � B/�0:75
T ; B D 0:056Tu; (16)

where Tu is local turbulence intensity, Tu D 100
p

2k=3=U, where U is magnitude
of local velocity.

Solving the above systems of equations, the domain contains 1 period of turbine
cascade. Subsonic flow in normal direction is assumed in the inlet as well as in the
outlet. Then we prescribe in the inlet: flow angle, total density and total pressure.
In the outlet, the mean value of static pressure is fixed which determines the flow
regime.

2.2 Numerical Solution

For spatial discretization we use a cell centered finite volume method with quadri-
lateral (in 2D) or hexahedral (in 3D) finite volumes composing a structured grid.
The numerical inviscid flux is computed by the AUSMPW+ splitting [4]. The
higher order of accuracy is achieved by linear interpolation in the direction of grid
lines with e.g. van Leer limiter. The discretization of diffusive flux is central. The
approximation of cell face derivatives needed in diffusive terms uses octahedral
dual finite volumes constructed over each face of primary volume – the vertices
are located in vertices of primary face and in centers of adjacent primary volumes.
For time discretization, the implicit backward Euler scheme is employed where
the steady residual at new time level is approximated by linear extrapolation. The
Jacobi matrices of the flux are obtained as derivatives of discrete expressions for
flux with respect to nodal values from the stencil of implicit operator. We chose
7-point stencil, which leads to block 7-diagonal system of linear equations (not
considering boundary conditions). The size of a block equals to the number of
coupled equations. Numerical solutions of some 3D cases of incompressible flow
are given in [8].

2.3 Remarks to the Implementation of Transition Model

The transition model source terms depend on laminar or turbulent state of boundary
layer. Therefore the distinction is needed if the finite volume is inside boundary layer
and then if a transition criterion is met. The edge of boundary layer is indicated by
magnitude of vorticity vector small enough. The threshold is 1 % of its maximum
on normal to the wall, where maximum in attached boundary layer is on the wall.
This distance is then further increased by 30 %.
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In 3D, only corners with meeting 2 walls are considered (which is the case of
present simulation). Then the evaluation of source terms proceeds in grid planes
perpendicular to the walls. Each finite volume is assigned either to boundary layer
or free stream. Near the corner, however, the magnitude of vorticity is close to zero.
Therefore the boundary layer edge is found as intersection point of extrapolation
of the 2 still well defined boundaries layers. All points in the corner area are
then assigned the free-stream parameters and boundary layer thickness from this
intersection.

For parallel implementation it is desirable that the model be local. This is not
satisfied when free-stream values or boundary layer thickness are parameters of
the model. However the present work uses multi-block grids where it is natural to
distribute the work block-wise. Then if the whole thickness of the boundary layer
is contained within one block, the evaluation is block-local. This requirement often
can be easily satisfied.

3 Computational Results

The 2D simulation is first shown on the tip profile cascade with outlet Mach number
M2is D 1:425. The tip cascades exhibit low setting angle which brings some features
of flow-field typical for isolated profile e.g. closed supersonic region on the suction
side. The intermittency � used with SST turbulence model is shown in Fig. 1. The
transition on the upper side occurs earlier than on the lower side, as can be seen also
on the wall shear stress in Fig. 2, where negative values of �w correspond to upper
side (not recirculation). The influence of transition on Mach number is marginal,
see Fig. 3. The influence of transition on kinetic energy loss is also small: the loss
coefficient is 6:14 % in fully turbulent simulation and 5:90 % in simulation with
transition.

Fig. 1 Tip profile cascade, isolines of intermittency �
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Fig. 2 Tip profile cascade, static pressure and shear stress on the blade surface, influence of
transition

Fig. 3 Tip profile cascade, isolines of Mach number (red – supersonic, blue – subsonic). Above:
no transition, below: with model of transition

The 3D transitional flow is shown on well known geometry of the SE1050 turbine
cascade with prismatic extension into third dimension. The span is equal to chord
length (100 mm) and walls are considered on the sides. The isentropic outlet Mach
number is 1.012 and the Reynolds number from chord length 1:2 � 106. The grid
has 1:36 � 106 finite volumes with 152 steps in span-wise direction. The grid is
refined near walls with minimum wall normal thickness approx. 0.0007 mm. The
time step is 10�6 s. The EARSM model has been used together with the model of
transition. The Fig. 4 shows intermittency � near the surface (in first layer of finite
volumes). It shows that the transition starts on the side walls and near the corners on
the suction side of the blade. The pressure side (not shown) is laminar. The flow in
mid-plane only starts the transition to turbulence in front of trailing edge but does
not reach fully turbulent state there (red color). The influence of transition on the
Mach number near the surface is shown in Fig. 5.
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Fig. 5 3D SE1050 cascade, Mach number near the surface. Left: fully turbulent, right: with
transition

The transition on the SE1050 in the mentioned regime occurs late and only on the
suction side also for infinite span (i.e. 2D case), as shown in Fig. 6. The influence of
transition is visible on the surface shear stress shown in Fig. 7. One can see that the
pressure side boundary layer again is practically laminar. The influence of transition
on the Mach number isolines is minimal, see Fig. 8. The influence of transition on
kinetic energy loss is consequently also small: 5:57 % in fully turbulent simulation
and 5:45 % in simulation with transition.
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Fig. 6 2D SE1050 cascade, isolines of intermittency �
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Fig. 7 2D SE1050 cascade, static pressure and shear stress on the blade surface, influence of
transition

4 Conclusions

The work presented simulations of 2D and 3D turbulent flow through turbine cas-
cades with eddy-viscosity and EARSM turbulence models complemented with the
� -� model of transition to turbulence. The mathematical model is solved by implicit
AUSM finite volume method on multi-block structured grids. The implementation
of transition model does not rely on explicit prescription of boundary layer edge
and is adaptive as long as the whole thickness of boundary layer is contained in
one block, which is typically O-grid around the blade (consisting of several blocks
in tangential direction). Also the treatment of corners is automatic. The physical
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Fig. 8 2D SE1050 cascade, isolines of Mach number (red – supersonic, blue – subsonic). Left: no
transition, right: with transition

correctness of transition prediction in the flow in convex corner however still needs
to be confirmed by measurement. The results are shown for 2D tip profile cascade
with very small setting angle and for more classical SE1050 cascade in 2D and
3D. The results exhibit qualitatively correct behavior but quantitatively need to be
confirmed by a detailed measurement.
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