
Chapter 13
Participatory Air Quality Monitoring in Urban
Environments: Reconciling Technological
Challenges and Participation

Jan Theunis, Jan Peters, and Bart Elen

13.1 The Possible Roles of Participatory Air Quality
Monitoring in Urban Environments

Whereas emissions of several air pollutants have significantly decreased in the EU
and the US in the last decades, the effects of poor air quality are still strongly felt in
urban areas (European Environment Agency 2013; U.S. Environmental Protection
Agency 2012). In urban environments, exposure to traffic pollution may trigger
health effects like cardiovascular diseases and airway inflammation. Understanding
local variation in exposure to air pollution is of major importance when trying to
assess the health effects of pollutants that are highly variable in time and space, as
is the case for traffic-related air pollutants (Setton et al. 2011). Recently, mobile
air quality measurements are used in several studies for exposure monitoring,
for high resolution mapping of the spatial variability of air pollution and for the
characterization of particulate air pollution in urban environments. However, to be
representative a lot of data have to be collected in a cost-efficient way.

Participatory monitoring and citizen science are often mentioned as ways
to collect large datasets that give useful additional information at a reasonable
cost compared to classical data collection methods. There is a growing body of
literature on participatory environmental monitoring (also called citizen sensing,
citizen science or community-based monitoring) in general and urban sensing more
specifically. Often the motivation for voluntary or participatory data collection is
rather utilitarian and driven by scientific or policy data needs. Through the efforts
of hundreds of volunteers data will be collected with a spatio-temporal granularity
that cannot be achieved by regular monitoring campaigns. The challenge then is to
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recruit volunteers who are intrinsically motivated, or to set up incentive strategies to
motivate people to participate. Successful examples exist in the field of biodiversity
monitoring. Roy et al. (2012), Conrad and Hilchey (2011) and Catlin-Groves
(2012) give extensive overviews of cases and lessons learnt in ecology and nature
conservation.

Participatory monitoring or citizen science is also believed to raise the awareness
and understanding of citizens (e.g. Snyder et al. 2013). Projects can be set up with
that specific objective in mind. Citizen science is recognized in many studies as a
way to include stakeholders and the general public in the planning and management
of local ecosystems (Conrad and Hilchey 2011). Involving organized stakeholders
and the general public in environmental assessment can also lead to better and
common understanding and awareness of the issues at stake and of the local context,
mobilisation of local knowledge, joined problem ownership, and co-creation of
solutions. Policy makers, citizens and stakeholders could set up participatory
monitoring schemes with the specific intention to create or stimulate dialogue and
provide a better basis for decision making. As such, participatory monitoring can
have an important role as a part of co-creation and transition processes towards
healthier cities. A recent report from the European Commission on Environmental
Citizen Science (Science Communication Unit, University of the West of England,
Bristol 2013) states however that few studies on public participation in science
and environmental education have rigorously assessed changes in attitude towards
science and the environment, and in environmental behaviours, and concludes that
it is difficult at this point in time to provide evidence for the influence of citizen
science on environmental policy making.

When evaluating participatory monitoring approaches we thus have to distin-
guish clearly between two types of objectives:

1. the scientific objective which focuses on the factual results of the monitoring
campaign;

2. the social learning objective which focuses on processes of creating shared
knowledge and visions, awareness and behavioural change, co-creation and
transition.

Both objectives cannot be entirely distinguished from each other, and there are
clear co-benefits. Whereas participation of people in scientific research programs
can be quite instrumental with possibly a beneficial overflow on people’s knowl-
edge, awareness and attitude towards the issues at stake, sound monitoring methods
are crucial for both objectives.

13.2 Challenges for Participatory Air Quality Monitoring

Already in Burke et al. (2006) mentioned the theoretical potential of participatory
sensing to investigate relationship between air quality and public health. In Snyder
et al. (2013) US-EPA scientists give an overview of possible changes in air
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quality monitoring due to the materialization of lower-cost, easy-to-use, portable air
pollution monitors (sensors) that provide high-time resolution data in near real-time.
Participatory monitoring techniques could be used e.g. to improve the understanding
of the relations between urban traffic, air quality and health.

Following successful examples of large scale collaborative efforts such as
OpenStreetMap or Wikipedia, bottom-up Do-It-Yourself (DIY) monitoring
approaches based on low-cost sensors and smartphone apps are appearing in
domains such as noise, air quality or radiation monitoring. Often the idea of
pervasive or ubiquitous sensing is put forward, relying on a multitude of sensors
with which data are collected in an un-coordinated almost effortless way, and on
intelligent data post processing and mining.

In Part 1 of this volume Theunis et al. deal extensively with the availability,
cost and quality of environmental sensors and monitors. Although several projects,
research groups or companies recently developed light-weight devices, integrating
low-cost gas sensors, GPS and mobile phones, the authors conclude that for
air quality monitoring—stationary or mobile—no sensors or monitoring devices
are available at this point in time that would allow such pervasive effortless
data collection either because of inherent quality issues or because of their cost.
Proper use of available low-cost sensors still requires important multidisciplinary
development efforts.

Air quality monitoring strategies further have to deal with a complex mixture
of gases and particles that is highly variable in space and time. Figure 13.1
shows results of an extensive mobile air quality monitoring campaign in Antwerp
to assess the exposure of cyclists to ultrafine particles (UFP) and black carbon
(BC) (Peters et al. 2014). The same route was measured in repeated continuous
measurement runs (up to 258 times) at different times of the day during 11 days
with a resolution of 1 s. The measurements were aggregated to fixed points every
10 m using GPS data and a Gaussian weighing function. The hourly averages clearly
illustrate the spatial variation and the intraday variation of these components at
different locations. Single measurements (or mobile measurement runs) are subject
to additional variability, e.g. due to specific events, such as a car passing by, and
thus have very limited value in assessing air quality at a specific location.

Figure 13.2 shows the daily variation for black carbon during this measurement
campaign. It is clear from these data that drawing general conclusions on air quality
based on the measurements of just 1 day, or comparing results from two locations
that were measured on different days doesn’t make sense.

Different air pollutants also show different spatio-temporal patterns. Spatial
variability is much higher for ultrafine particles or black carbon, that are directly
related to fresh engine exhaust, than for PM10 which is for a large part the result
of physico-chemical transformation processes (Peters et al. 2013). Differences in
pollution patterns are even more pronounced when comparing e.g. ozone and NO2

that even show antagonistic behavior, as freshly emitted NO from vehicles reacts
with ozone to form NO2. As a result, at days with overall high O3 concentrations,
O3 concentrations tend to be lower in urban areas with a lot of traffic.
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8 – 9 am 11 – 12 am

UFP concentration (PNC, particles/cm³)

8 – 9 am 11 – 12 am

BC concentration (µg/m3)

Fig. 13.1 Differences in air pollution at different hours of the day along a cycling route in urban
environment. Displayed are hourly averages from 8 to 9 am (left) and from 11 to 12 am (right)
at 10 m resolution of ultrafine particle number counts (PNC) (on top) and black carbon (BC)
concentrations (below) (adapted from Peters et al. 2014)

Monitoring strategies thus have to set clear goals on which components will be
monitored, over which area and which time frame. Selection of pollutants to be
monitored depends on the issues at stake. Monitoring strategies further have to take
into account the spatial and temporal variability of pollution. Finally, the results of
monitoring campaigns have to be interpreted in the light of this complexity. All this
requires a reasonable level of basic knowledge on air pollution. The role of expertise
cannot be underestimated, in assessing the quality of sensing devices, in setting up
a monitoring campaign, as well as in the interpretation of the results. Based on
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Fig. 13.2 Differences in air pollution for different days along a cycling route in urban environ-
ment. The boxplots show the black carbon (BC) concentrations aggregated at 10 m resolution
(adapted from Peters et al. 2014)

a series of qualitative interviews with scientists who participated in the ‘OPAL’
portfolio of citizen science projects that has been running in England since 2007,
Riesch and Potter (2014) stress the need for clear goals, careful design of projects
and appropriate quality assurance methods. Because of its inherent complexity, this
is undoubtedly the case for participatory air quality monitoring.

13.3 Framework and Guidelines for Participatory
Air Quality Monitoring

The potential for participatory environmental monitoring crucially depends on three
strongly interdependent factors: the availability, quality and cost of monitoring tools
(sensors, apps, : : : ), sound data collection and data processing methods, and finally
the participation of volunteers.

In the following paragraphs we will propose a pragmatic framework for par-
ticipatory air quality monitoring that deals with these three aspects, and illustrate
it with practical examples (Fig. 13.3). We will illustrate how participatory air
quality monitoring can have an added value in the scientific process—in improving
facts and knowledge, and how participatory monitoring campaigns (bottom-up
approaches) can be conducted by lay people. Although we acknowledge the possible
role of participatory monitoring in processes of awareness creation or decision
making, we will not address these issues in detail. However, we do believe that
the proposed framework is also applicable in these cases.
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Fig. 13.3 Conceptual framework for participatory air quality monitoring

13.3.1 Defining Research Question and Monitoring Objectives

As with all monitoring exercise, the research questions are central to each participa-
tory monitoring exercise. The research questions will determine which components
will have to be monitored, over which area and which time frame. For a monitoring
campaign to be effective research questions have to be made explicit and specific.
Research questions can be defined by policy makers, scientists, stakeholders or the
society at large (Fig. 13.3).

A lot of data and information on air quality is already available, some of it in
the scientific community, some of it for the general public. The first step is thus
to understand what is already known and available. Then research questions can
be refined, and efforts can be focused on the possible added value of participatory
monitoring campaigns, i.e. compared to official permanent monitoring networks.
Spatio-temporal variability might be well covered for some pollutants by the official
monitoring networks. E.g. the official monitoring networks will capture day-to-day
and intraday variability of PM10 or O3 quite well, and will be able to provide most
answers regarding their spatial variability. The highest added value for participatory
monitoring lies in monitoring those components that have a strong micro-level
spatial variation, that are health-relevant and/or that are not monitored in official
monitoring stations. Therefore, additional monitoring efforts in urban areas are more
relevant for black carbon, ultrafine particles or NOx than for PM10, PM2.5 or ozone
(see also Theunis et al. in Part 1 of this volume). We do acknowledge that Do-It-
Yourself monitoring can also have an important didactic effect, even if it does not
add much to the existing data or knowledge. However, also in those cases learning
will be most efficient when these exercises are combined with discussions with
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experts. Otherwise the danger of misinterpreting data or re-inventing the wheel is
real.

Defining clear research questions, and developing a sound monitoring strategy
based on clear objectives, in a clear spatial and temporal framework, is the first
step in a successful monitoring campaign. We can broadly distinguish three types of
objectives: monitoring specific events or locations, systematic mapping of areas or
personal exposure assessment.

One can be interested in the effects of specific events that are clearly confined in
space and time, such as changes in air quality during road works. Events can also be
recurrent, e.g. one can be interested in the occurrence of peak concentrations caused
by trucks or buses passing by at a certain location. In this case both the magnitude
of the peaks as well as the frequency at which they occur can be of interest. It is
also possible that the focus is on one specific location, e.g. a school or a busy traffic
intersection. In most of these cases a stationary monitoring approach will be most
suited.

Several objectives can be pursued by systematically mapping an area: getting an
overview of the air pollution in an area for verification of legal norms or health
impact assessment, identifying pollution hot spots and relating them to specific
sources, or comparing air pollution on different routes. Representativeness of the
maps is a crucial issue, and should be in line with the research questions, e.g.
average annual concentrations or average concentration in a holiday period, average
pollutant concentration during peak hours or during off peak hours. In this case
monitoring strategies can rely on stationary monitoring networks the density of
which should be in line with the spatial variability of the pollutant at stake, or on
repeated mobile measurements (Peters et al. 2013; Van den Bossche et al. 2015).

Finally, one can be mainly interested in the level of pollution people are
personally exposed to during (part of) their daily activities. People can be interested
in their individual exposure. But, one can also be interested in the personal exposure
of subgroups of people, such as children or cyclists, possibly during specific
activities, e.g. while going to school or work. In this case people can be carrying
personal air pollution monitors and simultaneously record their whereabouts and
activities (Dons et al. 2011). When repeated, these personal exposure data can
give rise to more generalized personal exposure patterns which can be used for
optimising personal choices or policy measures.

13.3.2 Sensors

The quality of the sensing devices is a clear, but often overlooked aspect in par-
ticipatory air quality monitoring. Several research groups have developed portable
devices, integrating commercially available low-cost gas sensors, GPS and mobile
phones (Dutta et al. 2009; Zappi et al. 2012), but according to our knowledge and
experience virtually none of these sensors can be used as such to measure outdoor air
quality. Snyder et al. (2013) indicate that many commercially available sensors have
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not been challenged rigorously under ambient conditions, including both typical
concentrations and environmental factors. An important deal of the complexity, and
associated high cost, of air quality monitoring devices is exactly related to the fact
that they have to be highly sensitive, component-specific and independent from
external environmental conditions (i.e. weather effects). An overview of the state
of the art is given by Theunis et al. in Part 1 of this volume.

Accurate portable instruments are now available for components such as ultrafine
particles and black carbon. They can be used by non-specialist users (Buonocore
et al. 2009; Dons et al. 2011), but they are expensive which limits their widespread
use. Approaches based on these kind of instruments will thus rely on the availability
of these instruments at some kind of central repository (at a government agency,
a scientific institute or a non-governmental organization). Further below we will
illustrate examples of such an approach.

Efforts to use low-cost sensing devices result in additional technical complexity
(and cost) at device level or in complex calibration or data processing algorithms,
which again bring them into the realm of technical and scientific expertise which is
not readily available for the general public but which could be made available for
use through some kind of central repository.

13.3.3 Data Collection and Processing

Monitoring strategies depend both on the available monitoring devices and the
defined research questions. At this point in time the availability and cost of
monitoring devices does not yet allow large-scale effortless data collection. Clear
research questions are therefore essential to focus efforts, and monitoring strategies
have to de adapt accordingly. In this context we can roughly distinguish between
stationary monitoring and mobile monitoring.

Stationary monitoring refers to measurements at one specific location over
a well-defined time window with a fixed measurement instrument. The spatial
coverage may range from one specific location to the coverage of a spatial grid.
Stationary measurements are well suited for monitoring specific events or locations,
or for following up large scale temporal trends, i.e. for pollutants with limited
spatial variability. Spatial representativeness depends on the number of deployed
measurement devices (which is related to the cost of the devices, and to practical
considerations such as safety, permanent power supply or available space, i.e. in
busy streets or at intersections) in comparison to the extent of the area that is
monitored and the spatial variability of the pollutant.

Mobile monitoring has gained attention with the onset of portable monitoring
devices. Mobile monitoring refers to the collection of data along a route. For
example, a volunteer performing measurements while commuting to and from his
work is performing a mobile data collection. As such systematic spatio-temporal
datasets from a route (e.g. a number of streets) over a well-defined time frame
(e.g. during the morning peak hours) are acquired. Mobile monitoring allows to
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increase the spatial coverage of measurements, but at the expense of temporal
representativeness (see below).

Mobile data collection can be performed in a targeted or an opportunistic
way. In a targeted data collection scheme, volunteers deliberately plan and carry
out measurements with a specific purpose in mind. They concentrate efforts in
a well-defined area (e.g. a number of streets) over a specific time frame (e.g.
during the morning peak hours) in an attempt to get a representative picture of
reality. Literature examples of targeted data collection approaches using fixed
routes are Hagler et al. (2010), Hsu et al. (2014), Pattinson et al. (2014) and
Peters et al. (2014). These examples did not involve volunteers in conducting the
measurements but results from these studies concerning the targeted monitoring
approach can be extrapolated to participatory monitoring actions with limited
numbers of participants. Obviously, with increasing numbers of participants the
argument for using a targeted approach to guarantee a good coverage becomes less
stringent.

In an opportunistic data collection scheme, on the contrary, measurements are
collected by volunteers in their normal daily routines. This can be city wardens,
parking wardens, street cleaners, bike couriers or postman, but as well commuters
that cycle every day to work. The participant does not decide on measurement loca-
tion and time from his/her interest to monitor a given event. They do not envisage
to cover a specific period of time, nor a specific location or route. Opportunistic
data collection (ideally) requires measurement devices that measure continuously
without any intervention of the user. The planning, efforts and commitment for
opportunistic data collection can be relatively low, but it will result in a (possibly)
sparse and biased dataset, and entails additional challenges in data quality control,
data processing and interpretation. Usefulness of the data will depend very much on
the fact whether or not the volunteers cover the same routes and places regularly,
and whether all locations and time periods of interest are sufficiently covered.

Data processing of the collected data is needed for various reasons: (1) data
cleaning and validation with screening algorithms to remove erroneous measure-
ments, (2) data processing to reshape, rescale, filter, smooth or aggregate the mobile
data into meaningful, research question-specific data, and (3) data analysis. For
mobile measurements the data validation should be performed on both the air quality
as the GPS data. In case of GPS failure for short periods, which is sometimes
observed in cities due to shading effects, interpolation algorithms may be used to
estimate GPS locations based on previous and following measurements. Errors in air
quality data may have different causes ranging from sensor failure to inappropriate
use of the sensing device. The selection of data processing strategies depends on the
experimental design and research questions driving the analysis.

Van den Bossche et al. (2015) used the same dataset described in 2 (Peters et al.
2014) to develop data processing methods, and draw conclusions on the results
that can be expected from limited sets of repeated mobile measurement runs. After
allocating all data to street segments of a specific length (i.e. 50 m), they apply a
trimmed mean for each segment to reduce the effect of extreme events. Background
normalization is applied to account for the day-to-day variability in air pollution.
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They conclude that mapping at a high spatial resolution is possible, but a lot of
repeated measurements are required: depending on the location 24–94 repeated
measurement runs (median of 41) are required to map black carbon concentrations
at a 50 m resolution with an uncertainty of 25 %.

Brantley et al. (2014) provide a framework to determine spatial trends of near
source air pollution. To minimize the impact of sporadic proximate exhaust, local
exhaust plumes are isolated using time-series analysis techniques. Then background
estimations are made to isolate local from background components. Including
background areas in the sampling routes is one way to obtain background values.
Baseline estimations from time series statistics is another approach (Van Poppel
et al. 2013; Brantley et al. 2014). Finally, temporal or spatial smoothing is often
applied to reduce variation. Temporal smoothing (e.g. 15-s moving average) leads
to spatial blurring of the mobile measurements, whereas spatial smoothing is used
to aggregate measurements from different times, potentially made under different
conditions, to a spatial entity (e.g. a street section or a city block).

13.3.4 Participation

The success of the monitoring strategies will depend highly on the participation
of volunteers, i.e. the number of people that can be involved, their (intrinsic or
extrinsic) motivation, and the level to which the latter is in line with the objectives
and needed data collection efforts. Some monitoring strategies are clearly more
demanding than others. Targeted mobile monitoring campaigns will require highly
committed participants who are prepared to spend time and efforts to repeatedly
cover the targeted monitoring area on the appropriate moments. The planning,
efforts and commitment for opportunistic data collection on the other hand can be
relatively low, but depend on the user-friendliness of the devices, i.e. the capability
for continuous measurements with minimal intervention of the user. In practice
monitoring campaigns can be a mix of both with targeted monitoring efforts
complementing opportunistic data where needed.

13.4 Participatory Mobile Air Quality Monitoring

13.4.1 Mobile Air Quality Monitoring

Air pollution monitoring on mobile platforms is increasingly applied for exposure
monitoring. Mobile measurements are frequently applied as a complementary tool
to the stationary air quality measurements at fixed locations, because fixed stations
are not capable to depict the full spatial distribution of air pollution over the extent
of an urban area. Monitoring instruments have already been installed on all kinds of
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mobile platforms, such as trams, buses, cars, bicycles or backpacks. Two tracks
in using mobile measurements for exposure assessment are encountered in the
literature. The larger number of exposure studies applies personal monitoring by
directly equipping the study subjects with portable integrated sampling equipment
or real-time monitors (see e.g. Dons et al. 2011). A second group of studies
addresses the potential of using mobile measurements to construct air pollution
maps at a high spatial (and temporal) resolution and to derive exposure to pollutants
from these maps (see Pattinson et al. 2014; Van den Bossche et al. 2015).

Deriving high-resolution maps from mobile data requires large quantities of data
to represent the range of possible meteorological and traffic conditions (Padró-
Martínez et al. 2012) and to aggregate very localized spatio-temporal snap-shots into
broader-scale pollution maps. Peters et al. (2014) showed that mobile monitoring
can give additional insights in spatial variability and exposure assessment, at a
resolution of street level and even within-street level. To be representative and
useful for personal or community decision making, mobile measurements have to
be repeated regularly, data have to be aggregated over relevant time frames and
locations, and carefully interpreted using data handling and expert knowledge to
filter out inaccuracies. To increase comparability and reduce the number of repeated
runs, measurements can be normalized with air quality data at background locations.
These methodological issues are thoroughly addressed in Brantley et al. (2014),
Peters et al. (2013), Van Poppel et al. (2013) and Van den Bossche et al. (2015).
Both targeted and opportunistic participatory monitoring schemes can have an
important role in collecting these large datasets as we will illustrate in the following
paragraphs.

13.4.2 Case Study: Exploring Healthy Cycling Routes

In Ghent, a local environmental organization called the Gents Milieufront (GMF),
wanted to investigate traffic-related air pollution on some important cycling routes.
They set up a targeted monitoring campaign during 2 weeks on a selection of urban
roads with a total length of roughly 18 km split up in three routes (Fig. 13.4a). On
each of these routes a total of 15 repeated continuous measurement runs was carried
out.

To collect the data they used airQmap (www.airqmap.com). airQmap is a
platform to collect mobile black carbon measurements and to process them into
street-level black carbon (BC) exposure maps. airQmap has been designed with
usability, autonomy and continuity in mind. It causes minimal nuisance for the
person conducting the measurements. This is required to allow unskilled volunteers
to collect mobile BC measurements.

airQmap contains a data acquisition part and a data transmission part. The first
part consists of a small bag with a GPS (Locosys Genie GT-31) and a portable
black carbon monitor (AethLabs microAeth model AE51). The second part is a
home station with a netbook and custom-made, easy to use software to read out the

http://www.airqmap.com/


266 J. Theunis et al.

Fig. 13.4 (a) Overview of the monitoring routes: routes were sampled between 8 and 9 AM
(green), between 14 and 15 PM (blue), and between 17 and 17.30 PM (red) and (b) BC
concentration map: street-level average BC concentrations (in ng/m3) (available at http://www.
airqmap.com/ghent.html)

measurement devices, keep their clocks synchronized and transmit the data over the
Internet.

Data are stored in a central database. Data processing algorithms and visualiza-
tion tools are linked to the database. The data processing is a cascade of different
steps to reduce the noise in the data (using the ONA algorithm, Hagler et al. 2011),
to carry out background normalization to account for day-to-day differences in
background concentrations, to validate GPS and BC data, to project the data on
a street map, and to aggregate the data to street average concentrations (spatial
smoothing by averaging measurements per street). The processed data are plotted
on an interactive map showing the street average BC concentrations for streets with
sufficient numbers of observations. Street statistics can be viewed by clicking on
the streets. In addition, a coverage map is build showing the number of repetitions,
i.e. the number of distinct measurement series, per street. The maps are shown in a
web application (http://www.airqmap.com/ghent.html) and are accessible from most
current GIS software through the open OGC WMS service standard.

The selection of volunteers to do the mobile monitoring was organized by GMF.
GMF also proposed the measurement routes and a final time schedule was made up
in a coordinated and targeted way, taking into account the need for repetitions. A
total of approximately 75,000 validated individual measurement points was obtained
in a period of one month and a half (26/09/2012–12/11/2012). The measurements
were assigned to 181 unique streets, but to a significant number of these streets
only few measurements were allocated. This happens, for example, at cross-roads
where adjoining streets are crossed and few measurements may get attributed to
these streets. Therefore the data analysis and visualization makes use of a threshold
for the number of measurements per street as a criterion for inclusion in the
assessment. The BC concentrations at these streets were compared and allowed
for the identification and ranking of streets and zones according to the measured
pollution levels. By comparing street averaged BC values with the BC values

http://www.airqmap.com/ghent.html
http://www.airqmap.com/ghent.html
http://www.airqmap.com/ghent.html
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obtained at urban background locations, i.e. urban green or park, the impact of
local traffic contributions can be estimated. Results were explained by looking
at the street topology (openness, presence/absence of separate biking lanes) and
traffic volumes. Healthier alternative commuting routes with lower exposure to BC
were recommended based on this research. In conclusion, the targeted approach
with fixed sampling routes and timings resulted in a high number of repeated
measurements in a selection of streets with limited resources (i.e. 1 sampling
system, brief monitoring period). Knowledge about the monitoring routes and the
way the sampling is performed directly results in lower data rejection in the data
validation step.

13.4.3 Case Study: Opportunistic Air Quality Monitoring
by City Wardens in Antwerp

In Antwerp a case study was set up in collaboration with the city authorities to
explore the possibility to map urban air quality based on an opportunistic monitoring
campaign. Three teams of city wardens patrolling through the city during a
12 month period used airQmap (2012-07-02 until 2013-06-28). The air quality
was monitored on 110 days. The city wardens did not follow predefined routes,
they just carried out measurements during their daily tasks. They have a delin-
eated area in which they operate, so in that sense their monitoring efforts were
confined to a specific neighbourhood. The monitoring efforts were confined in
time predominantly to working hours and weekdays. So, although monitoring did
not follow predefined routes, space and time coverage was restricted and far from
random.

Correct allocation of the data to their spatial position on the maps proved to
be much more challenging than in the targeted monitoring case (4.2). No a priori
knowledge on the tracks that are monitored is available. Also, data are not only
taken outdoors. The occurrence of indoor measurements led to increased missing
GPS values and GPS errors. This resulted in considerable loss of data compared
to the targeted approach. In the data validation, approximately 2/3rd of the data
is rejected based on uncertain geographical information. Still a large amount of
data is still available (222 h) from 540 different streets. Measurements were mostly
made on weekdays between 9 am and 4 pm (Fig. 13.5). Distributions were quite
inhomogeneous. On Monday and Friday, the amount of data was approximately half
the amount of the other weekdays. Important differences are also observed between
the different hours of the day.

The BC concentration map that is obtained after data processing and by using
a minimum of 10 monitoring episodes on 10 different days per street is shown
in Fig. 13.6. Background rescaling was performed based on reference BC data to
rescale the measurements over time, i.e. to account for variations in the background
BC concentration. Data analysis also took into account the variations in BC
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Fig. 13.5 Distribution of the measurements over the days of the week (a) and the hours of the day
(b)

Fig. 13.6 Overview of street-averaged BC concentrations (in ng/m3) in Antwerp based on
opportunistic data collection by city wardens (available at http://www.airqmap.com/cityGuards.
html)

concentration per street by using quartile statistics (first and third quartile for low
and peak concentrations respectively). Given the opportunistic nature of this case
study a quite homogeneous coverage of the area was obtained. Of course, the city
wardens operated in well-confined areas in the city mostly during working hours
on weekdays resulting in repeated measurements on several locations. Still, further
analysis of these data is needed to investigate the impact of spatial and temporal
biases in the measurements on the resulting street-level averages.

This experiment was set up with minimal involvement of research staff during
the data collection. Having a consistent data set over the long period of time of
12 months turned out to be less evident. A lot of measurements were collected in

http://www.airqmap.com/cityGuards.html
http://www.airqmap.com/cityGuards.html
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the first few weeks after which the number of measurement gradually dropped. It
increased again in the last 2 months of the campaign after some reminders to the
city wardens by the research staff. Good usability of the monitoring equipment is
crucial. Tasks which look simple at first such as making sure the battery of the
measurement device is recharged, changing a filter, or turning of measurement
devices after completion of the measurement day seem to go wrong regularly. A
little to our surprise, most problems didn’t arise in the beginning of the project but
after some time, maybe due to decreased motivation. The volunteers in this case
study did seem to conceive the monitoring as an extra task to their daily job. When
monitoring actions grow from community concerns, decreased motivation may be
less of an issue. An additional challenge is the privacy of the volunteers. For each
second of the measurement days the precise location of the persons is recorded, but
this level of detail about their location cannot be made public. A certain level of data
anonymization is needed before the results can be made public.

13.5 Conclusions

A conceptual model is provided to frame participatory monitoring initiatives in
regard of the sensor availability, the methodology followed to do the monitoring and
the form and degree of participation. The interplay between sensors, methodology
and participation is determined by well-defined research questions that need to be
addressed.

For air quality monitoring, it is possible to set-up sensor networks or mobile
monitoring campaigns to investigate the urban air quality at a high spatial res-
olution. However, measurement equipment is expensive, and the integration into
a mobile platform with GPS tracking and data communication facilities is not
readily available. Also the advanced data processing currently forms a barrier for
its widespread use in participatory science. Nevertheless, literature and the case
studies highlighted in this chapter indicate the potential for (mobile) participatory
air quality monitoring. Tools exist that allow to get a detailed view on the street
level exposure to traffic-related pollution (BC) of cyclists and pedestrians in
urban environments based on targeted or opportunistic measurements. Systematic
differences in exposure in streets of interest can be detected with a relatively short
targeted measurement approach.

At this point in time it seems difficult to rely on a strategy with only low-cost sen-
sors for air quality monitoring in which data are collected, processed and interpreted
almost effortlessly. Proper combination of sensors and additional contextual data,
and careful interpretation of the resulting data require expert knowledge. However,
community participation and citizen science can play an important role in large
scale data collection with low cost sensors, in more targeted data collection with
sophisticated portable sensors, and in providing relevant contextual information and
interpretation. The complexity of air quality research asks for a community science
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approach in which citizen scientists and regular scientists work closely together to
answer specific research questions.
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