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Abstract
Meta-analysis is the statistical synthesis of results from two or more clinical 
studies that address the same issue and compare two different interventions. 
Although the combination of results of several studies in a meta-analysis can 
increase power and improve precision, caution is needed in the presence of 
between-study heterogeneity and selection bias. These two factors can impor-
tantly impact meta-analysis conclusions and hence influence decision-making. 
Several methods have been developed to appraise the between-study variation 
and the tendency of small studies to yield larger intervention effects compared to 
larger studies. This chapter presents an overall review of methods presented in 
the meta-analysis literature along with their properties.

12.1	 �Introduction

Systematic reviews and meta-analyses of well-conducted randomized controlled tri-
als (RCTs) that address the same clinical question(s) can provide the highest level 
of evidence for decision-making on interventions and are vital in the practice of 
evidence-based medicine. Although meta-analysis constitutes a valuable tool to 
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summarize study-specific results and may reduce both bias and uncertainty from 
individual studies, it widely depends on the quality, homogeneity, and freedom from 
bias of the available studies. The main two threats of the meta-analysis validity are:

	1.	  The between-study variability beyond random error, termed heterogeneity
	2.	  The phenomenon that small RCTs suggest different, often larger, intervention 

effects than large RCTs, termed “small-study effects” [1–3]

A certain degree of variability in study-specific intervention effects is almost 
always present due to chance, but additional variability might occur due to many 
reasons. These might include differences in the way studies are conducted and how 
the intervention effect estimates are measured. There are three different types of 
heterogeneity:

	1.	  Clinical heterogeneity, which is referred to as the variability in the participants, 
interventions, and outcomes

	2.	  Methodological heterogeneity, which reflects the variability in study design and 
risk of bias

	3.	  Statistical heterogeneity, which is referred to as the variability in the interven-
tion effects

Statistical heterogeneity is usually a consequence of clinical or methodological 
variability, or both, among trials, and is often called “heterogeneity” omitting the 
term “statistical.” The estimation of heterogeneity is an additional aim in meta-
analysis as it improves interpretation of results and can provide insights on the sum-
mary intervention effect predictions. One of the most widely statistical methods 
used in meta-analysis is the inverse-variance method; it uses the reciprocal of the 
within-study variances as study weights. The presence of heterogeneity affects the 
estimation of study weights and hence the estimated uncertainty of the summary 
intervention effect.

A commonly encountered association in meta-analysis is the one between the 
estimated study-specific intervention effects and the size of studies; it can be 
caused by several reasons. One possible explanation is that small studies with non-
significant results are less likely to be published, because journals and authors may 
tend to publish and submit small studies with significant results. Other explana-
tions may include selective outcome reporting (e.g., reporting outcomes with sta-
tistically significant results), heterogeneity between small and large studies (e.g., 
small studies recruit patients of high baseline risk that would largely benefit from 
the intervention), mathematical artifact between the two factors, or simply 
coincidence.

Several approaches have been proposed to estimate the between-study heteroge-
neity and small-study effects as a result of selection bias (including publication bias, 
language bias, citation bias, and reporting bias) [4–6]. This chapter includes a 
review of the graphical methods, statistical tests, and statistical measures used in 
pairwise meta-analysis to evaluate homogeneity and selection bias.
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12.2	 �Approaches for Assessing the Between-Study 
Heterogeneity

A key aim in meta-analysis is to make inferences about the between-study hetero-
geneity as its presence can have a considerable impact on the meta-analysis conclu-
sions. There are multiple approaches available to evaluate heterogeneity in 
meta-analysis, including graphical methods and statistical tests to assess its pres-
ence, statistical measures to quantify heterogeneity, and methods to estimate its 
magnitude. This section discusses several alternatives to appraise between-study 
heterogeneity in meta-analysis.

12.2.1	 �Graphical Representation of the Between-Study 
Heterogeneity

A visual inspection of graphical representations is commonly the first approach 
researchers select to assess the variation between study-specific effects due to het-
erogeneity, beyond what is expected by chance. This is an informal approach but a 
very useful way to indicate outlier studies, as well as those that might be respon-
sible for the between-study heterogeneity. In the next subsections, we present the 
graphical displays that have most commonly been used in the meta-analysis litera-
ture [7, 8].

12.2.1.1	 �Forest Plot
Forest plots (Fig. 12.1) are the most popular plots in meta-analysis; they display the 
study-specific effect estimates along with their confidence intervals, and at the bot-
tom of the plot, the meta-analysis result is provided [10–12]. The effect measure 
(e.g., odds ratio) is usually presented on the horizontal axis allowing detailed study 
data to be plotted alongside the results, such as the number of events and sample 
size for each study arm. However, some authors argue that the effect measure should 
be presented on the vertical axis as dependent variables are commonly plotted in 
statistics [13]. The size of the plotting symbol used to represent the intervention 
effect is usually selected to be proportional to the inverse of the variance of the 
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Fig. 12.1  Forest plot. Meta-analysis of three randomized controlled trials of histamine H2 recep-
tor antagonists (H2 blockers) in conjunction with acetylsalicylic acid (ASA) therapy for outcome of 
peptic ulcer (Reproduced with permission [9])
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study effect estimate. Therefore, more precise estimates (i.e., with smaller variance) 
are represented by larger plot symbols, highlighting also the amount of information 
that they contribute to the meta-analysis.

A greater variation in the study-specific intervention effects, more than it would 
be expected by chance alone, suggests there is evidence for between-study hetero-
geneity. In a forest plot, this is usually inspected by the poor overlap of the interven-
tion effects’ confidence intervals.

12.2.1.2	 �Galbraith Plots
Galbraith (or radial) plots (Fig. 12.2) are often used to present the results of studies 
in a meta-analysis and to informally assess between-study heterogeneity [15, 16]. 
The plot is a scatter plot of the standardized study-specific intervention effects, i.e., 
the estimated effect measures (e.g., log-odds ratio) divided by their standard errors 
(SE) (or equivalently the z-score) on the y-axis, against their inversed SEs on the 
x-axis. Each study is represented by a single point, and a regression line is drawn 
corresponding to the pooled fixed-effect meta-analysis estimate. Therefore, the 
slope of the regression is as an estimate of the intervention effect, when there are no 
small-study effects. In addition, the 95  % confidence region of the through-the-
origin regression line is depicted by the area between the two lines drawn at a verti-
cal distance of ±2  above and below the regression line. Under the assumption that 
all studies estimate a common (fixed) intervention effect, we expect that the major-
ity (95 %) of study points lie within this confidence region.

Using this graphical representation, studies outside this region contribute to 
between-study heterogeneity, and the imprecise (small 1/SE, or large SE, or small 
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Fig. 12.2  Galbraith plot. Log-odds ratio for ischemic heart disease in trials of serum cholesterol 
reduction by type of intervention (Reproduced with permission [14])
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studies) intervention effects lie close to the y-axis, whereas precise intervention 
effects will be situated further away.

12.2.1.3	 �L’Abbé Plot
L’Abbé plots (Fig.  12.3) facilitate the examination of whether the intervention 
effects across studies are homogeneous, but they can be used for dichotomous out-
come data only [18]. This type of plot presents the risks (or odds) in the intervention 
group on the y-axis against those of the control group on the x-axis and often 
includes the diagonal line of equality and a regression line. The diagonal line of 
equality indicates that the risks in the control and intervention groups are equal 
within trials, and the regression line represents the risk ratio (or odds ratio), which 
is estimated by pooling the results in the meta-analysis. It is advisable that the study 
points are presented according to the precision of the intervention effect estimates 
(or study size) to make the plot more informative [7].

The plot can be used to infer the presence of heterogeneity, specifically where 
trials are widely spread around the regression line. In the absence of heterogeneity, 
study points should lie closely around the regression line.

12.2.1.4	 �Baujat Plot
Baujat plots (Fig. 12.4) are used to identify studies that influence the overall inter-
vention effect and impact on the magnitude of the heterogeneity [19]. The rationale 
is that excluding an influential study will affect the meta-analytic estimate, and 
hence this plot assesses which studies cause the between-study heterogeneity and 
the greatest shifts in the overall intervention effect. The plot presents the contribu-
tion of each study to the Cochran Q-statistic (see Sect. 12.2.2.1) on the x-axis against 
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the influence of each study. The influence of each study is defined as the standard-
ized squared difference between the overall intervention effects with and without 
the ith study under the fixed-effect model, on the y-axis. Studies lying on the upper 
right corner of the plot are the most influential with the highest contribution to the 
total heterogeneity.

12.2.2	 �Statistical Tests for the Evaluation of the  
Between-Study Variance

The most commonly used method to assess the homogeneity assumption in meta-
analysis is to carry out a statistical test. Several tests for this evaluation have been 
suggested in the literature, including the “generalized Cochran Q,” Wald, likelihood 
ratio, and score tests [20, 21]. A popular choice for the between-study homogeneity 
assessment in meta-analyses is the Cochran Q-statistic (see Sect. 12.2.2.1) [22]. It 
has been suggested that among the aforementioned homogeneity tests, the Cochran 
Q-statistic performs best in terms of type I error for meta-analyses with large studies 
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(e.g., with arm size greater than 640) [21]. The Cochran Q-statistic belongs to the 
“generalized Cochran between-study variance statistics” family [23], with

	
Q a ya i i a= −( )∑ m

2

, 	

where yi is the observed intervention effect (e.g., log-odds ratio), index i refers to the 
ith study with i k= …1, ,  ai the weight assigned to each study, and ma i i ia y a= ( )∑ ∑  
the overall intervention effect. Jackson showed that Qa has a ck-1

2  distribution as a 
linear combination of independent central χ1

2 random variables [24].

12.2.2.1	 �Cochran Q-Statistic
The standard test widely used in meta-analysis, is the Cochran Q-statistic testing the 
hypothesis that all studies share a common true effect (μ) or equivalently that the 
between-study variance (τ2) is zero [22]. The Cochran Q-statistic is a special form 
of the “generalized Cochran between-study variance statistic” for a vi i= 1/ ,  with vi 
the within-study variance in study i k= ¼1, . Hence, the Q-statistic is the weighted 
sum of squared differences between the observed study-specific effects and the 
overall effect across studies derived under the fixed-effect model. Under the null 
hypothesis, H0

2 0:t = , the Q-statistic follows approximately a χ2-distribution with 
k -1  degrees of freedom and a critical region Q k a> − −( )c 1 1 2

2
, / ,  where a is the confi-

dence level. Several efforts have been done to define the distribution of the 
Q-statistic, including Biggerstaff and Tweedie approximating Q with a gamma dis-
tribution, and Biggerstaff and Jackson deriving the exact distribution, when t 2 0¹  
[25, 26].

It has been shown that the power of the test to detect heterogeneity depends on 
the number and size of studies, as well as the magnitude of the true between-study 
variance [21]. Simulation studies suggest that the test has low power when the total 
information available in the meta-analysis is low (e.g., sparse data, small size and 
number of studies), and hence a nonsignificant result might erroneously be inter-
preted as absence of between-study heterogeneity [21, 27]. It is therefore recom-
mended that reviewers use 0.10 as a cutoff level of significance instead of the usual 
0.05 [28, 29]. However, a higher cutoff value increases type I error and the risk of 
drawing false-positive results. The Q-statistic may suggest significant heterogeneity 
when many studies are included in the meta-analysis and particularly when their 
sample sizes are very large (see, e.g., Barbui et al. that included over 15,000 partici-
pants from 135 studies) [30]. The power of the test may also be limited when the 
study sizes differ substantially or a single study is a lot larger when compared with 
the others in the analysis [27].

12.2.2.2	 �Generalized Q-Statistic
Similarly to Cochran Q, the generalized Q-statistic (Qgen) is a special form of the 
“generalized Cochran” between-study variance statistic for a vi i= +( )1 2/ t . The 
Qgen-statistic is the weighted sum of squared differences between the observed 
study-specific effects and the overall effect derived under the random-effects model. 
Under the null hypothesis that the true between-study variance is equal to a certain 
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amount ( ),t 0
2 0≥  Qgen follows a χ2-distribution with k -1  degrees of freedom and a 

critical region: Q k agen > − −( )c 1 1 2
2

, / .
To the best of our knowledge, the properties of the test have not been examined, 

providing an avenue for further work.

12.2.2.3	 �Cochran Q-Statistic Adjusted for Small-Study Effects
Rücker et al. extended Cochran Q-statistic by adjusting for small-study effects [31]. 
We call “small-study effects” the tendency of small studies to show larger intervention 
effects compared to the larger studies (see also Sect. 12.4). This can be derived by

	

Q a y
s

a
a i i a

a

i

Adj Adj ,= − −








∑ m

$
2

	

where ma

Adj
 is the summary intervention effect adjusted for small-study effects with 

a vi i= 1/  and ŝa represents a potential small-study effect. The Qa
Adj measures the 

residual variation with respect to a fixed-effect model allowing for small-study 
effects, and compared to the Cochran’s Q-statistic, it holds that Q Qa

Adj £ . Under the 
null hypothesis of no between-study heterogeneity, Qa

Adj follows a χ2-distribution 
with k - 2  degrees of freedom and a critical region: Qa k a

Adj > − −( )c 2 1 2
2

, / .
In the presence of small-study effects, it is suggested to use Qa

Adj to assess the 
remaining between-study heterogeneity [31]. The main limitation of the Cochran’s 
Q-statistic adjusted for small-study effects is that it depends on the choice of the 
estimation method for τ2 (see Sect. 12.2.4).

12.2.3	 �Statistical Measures to Quantify Between-Study Variance

The statistical tests discussed in Sect. 12.2.2 are only useful for testing the exis-
tence of heterogeneity, but do not quantify the extent of heterogeneity. To date, 
several statistical measures have been suggested for the quantification of the degree 
of variability in a meta-analysis that is explained by between-study differences 
rather than by random error [32–34]. As for every point estimate, apart from quan-
tifying between-study heterogeneity using a statistical measure, it is important to 
quantify its corresponding uncertainty too. Confidence intervals provide informa-
tion on the precision and the range of values that reflect the statistical measure for 
heterogeneity. Methods for constructing the confidence intervals include the vari-
ance estimates recovery method [35, 36], the method using the distribution of Qa-
statistic [24–26, 32], the method based on the statistical significance of Q [32], the 
method based on the between-study variance estimator (see Sect. 12.2.4) [5, 32, 
37], and the method using a nonparametric bootstrap approach [32].

12.2.3.1	 H2 Index
H2 index (also known as Birge ratio) [38] has been presented by Higgins and 
Thompson [32] and shows the excess of the observed Q over its expected value, 
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E Q k( ) = -1 . The measure reflects the relationship of between- and within-study 
variance and can be obtained by

	

H
Q

k
2

2 2

21
=

−
=

+t s
s

$DL

	

where t$DL2  is the estimated between-study variance using the DerSimonian and 
Laird [39] estimator and s 2

 is the “typical” within-study variance:
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The statistic takes values within the range (1, ¥), and in the absence of between-
study heterogeneity, it equals 1. Higgins and Thompson [32] suggest that there is no 
universal rule to define thresholds for ‘low,’ ‘moderate,’ and ‘high’ heterogeneity 
for H2. However, they suggest that values greater than 1.5 may show considerable 
heterogeneity, and values lower than 1.2 may show moderate to low heterogeneity.

12.2.3.2	 I2 Index
The I2 index reflects the percentage of the total variability in a set of effect measures 
that is due to between-study variability beyond what is expected by within-study 
error. The “generalized I2 statistics” family [37] can be expressed as

	

I 2
2

2 2=
+
t

t s
$

$ 	

where t$ 2  is the estimated between-study variance using one of the methods sug-
gested in the literature (see Sect. 12.2.4) [5]. The I2 index can be expressed as a 
percentage ranging from 0 to 100 %, where a value of 0 % indicates no observed 
heterogeneity. The Cochrane Handbook advises avoiding the use of specific thresh-
olds for the interpretation of the I2 statistic as they may be misleading. A general 
guideline to its interpretation is the following [3]:

• From 0 to 40 %, may not be important.
• From 30 to 60 %, may represent moderate heterogeneity.
• From 50 to 90 % may represent substantial heterogeneity.
• From 75 to 100 %, may represent considerable heterogeneity.
• Note that should these guidelines be used with caution, and always interpret the 

I2 index along with its confidence interval.

I2 Index Based on Cochran Q-Statistic
The I2 based on Cochran Q-statistic is the most popular statistic and is usually  
the default method to quantify heterogeneity in most meta-analysis software.  
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The method is a special form of the “generalized I2 statistics” using the DerSimonian 
and Laird approach [39] (see Sect. 12.2.4.1):

	

IDL
DL

DL

.2
2

2 2=
+

t
t s

$

$ 	

Alternatively, the method can be presented as

	
I

H

H

Q k

QDL
2

2

2

1 1
=

-
=

- -( )
	

in terms of either H2 or Cochran’s Q-statistic and its degrees of freedom ( )k −1 . The 
I2 statistic should be interpreted with caution when the number and size of studies 
in the meta-analysis are small (e.g., for fewer than ten studies in the meta-analysis 
and studies with fewer than 100 participants) [34, 40, 41]. Simulation studies have 
shown that IDL

2  increases with increasing study size [40, 41] and that it is associated 
with low power when a small number of studies are included in the meta-analysis 
[34]. Empirical evidence suggests care is also needed with the interpretation of IDL

2  
when a meta-analysis includes roughly fewer than 500 events and that 95 % confi-
dence intervals for IDL

2  have on average a good coverage [42].

I2 Index Based on Generalized Q-Statistic
The I2 based on generalized Q-statistic is a special form of the “generalized I2 sta-
tistics” expressed as [37]

	

IPM
PM

PM

2
2

2 2=
+

t
t s

$

$ 	

where t$PM2  is the estimated between-study variance using the Paule and Mandel 
estimator (see Sect. 12.2.4.1) [5, 43]. A simulation study suggested that the confi-
dence interval for IPM

2  is wider compared to those of IDL
2  and that IPM

2  maintains 
coverage close to the nominal level in contrast to IDL

2  method [37].

12.2.3.3	 R2 Index
An alternative to H2 and I2 measures is the R2 statistic that describes the quadratic 
inflation in the confidence interval for the summary intervention effect under the 
random-effects model compared to that from the fixed-effect model

	

R2 =
( )
( )

Var

Var

RE

RE

m

m 	

where mRE  is the overall intervention effect under the random-effects model with 
weights a vi i= +1 2/( )t$  and mFE  the overall intervention effect under the fixed-
effect model with weights a vi i=1/ . The statistic takes values within the range  
(1, ¥), and 1 suggests identical inferences under the two meta-analysis models and 
homogeneity across the study-specific effects. It should be noted that R2 and H2 are 
equal when all study-specific estimates have equal precision. Since R2 is a function 
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of t$ 2  alone (the weights are assumed to be known), one approach to estimate the 
confidence interval for R2 is via the calculation of the confidence interval for τ2. 
However, note that approaches based on the Cochran’s Q-statistic may not be appli-
cable for constructing confidence intervals for R2.

12.2.3.4	 D2 Index
Wetterslev et al. proposed the D2 statistic to quantify the relative variance when 
we change from the random-effects model to the fixed-effect model [33]. The 
statistic is interpreted as the proportion of the between-study heterogeneity in 
meta-analysis relative to the total model variance of the included studies and is 
given by

	

D
R

2
21
1

=
( ) − ( )

( ) = −
Var Var

Var

RE FE

RE

m m

m 	

or equivalently

	

D
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+
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$
,
	

where

	
s

t m
m m

$
D
2

2

=
( )( )

( ) − ( )
Var

Var Var
FE

RE FE 	

is the sampling error. Although D2, similar to I2, is interpreted as a percentage (tak-
ing values between 0 and 1), a simulation study suggested that D2 is equal to or 
greater than I2, irrespective of the chosen effect measure and number of studies in 
the meta-analysis [33].

12.2.3.5	 G2 Index
Rücker et al. proposed an alternative statistic, called G2, to measure between-study 
heterogeneity while adjusting for small-study effects (see also Sect. 12.4) [31]. The 
statistic can be obtained by
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where yiAdj are the study-specific intervention effect estimates adjusted for small-

study effects, y v y
i i i
Adj

RE

Adj
RE
Adj= + +( ) −( )m t t m$ $2 2/ , with m RE

Adj  the summary inter-

vention effect under the random-effects model and adjusted for small-study effects, 
and a vi i= 1/ .
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The G2 statistic is closely related to the Q-statistic adjusted for small-study 
effects (see Sect. 12.2.2.3), and it is suggested to quantify heterogeneity in the pres-
ence of small-study effects [31]. Similarly to I2 and D2, G2 is interpreted as a per-
centage (taking values between 0 and 1) and reflects the proportion of the variability 
in the intervention effect that is not explained under the fixed-effect model that 
allows for the presence of small-study effects.

12.2.4	 �Estimating the Between-Study Variance

An important aspect in meta-analysis is to quantify the extent of between-study 
heterogeneity. The DerSimonian and Laird (DL) between-study variance estimator 
is the most commonly implemented approach and is the default approach in many 
statistical software (e.g., RevMan) [39, 44]. However, its use has often been criti-
cized because the method may underestimate the true between-study variance, 
thereby producing narrow confidence intervals (CIs) for the overall intervention 
effect, especially for a small number of studies (e.g., k <10) [45]. Hence, several 
alternative methods have been proposed that vary in popularity and complexity. The 
estimators for τ2 are categorized as closed form and iterative methods, and their 
families presented in the literature to date are:

	1.	  The method of moments estimators (e.g., DL and Paule and Mantel (PM)) 
[39, 43]

	2.	  The maximum likelihood estimators (e.g., maximum likelihood (ML) [20, 46] 
and restricted maximum likelihood (REML) [46])

	3.	  The model error variance estimators (e.g., Sidik and Jonkman method) [47]
	4.	  The Bayes estimators (e.g., Rukhin Bayes, full Bayes) [48, 49]
	5.	  The bootstrap estimators [50]

It has been shown that estimating the between-study variance in meta-analyses 
including only a few studies is particularly inaccurate [50–52]. Therefore, it is rec-
ommended to quantify the uncertainty around the point estimates to avoid mislead-
ing results. Again, several options exist to quantify the uncertainty in the estimated 
amount of the between-study variance [20, 24, 53].

In this chapter, we briefly describe the most popular estimators for the between-
study variance, as well those recommended for the most frequently encountered 
meta-analysis. For a comprehensive overview of methods used for estimating the 
between-study variance and its uncertainty, see Veroniki et al. [5].

12.2.4.1	 Approaches for the Between-Study Variance Point Estimate

Method of Moments Estimators
The generalized method of moments (GMM) estimator [23] can be derived by 
equating Qa (see Sect. 12.2.2) and its expected value:
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The method of moments estimators presented in the following subsections is a spe-
cial case of the GMM estimator with varying weights ai.

DerSimonian and Laird (DL)
This method is the most frequently used approach for the estimation of the between-
study variance, and many software programs have DL as the default method. The 
DL estimator is a non-iterative method and is a special case of the GMM estimators 
with study weights a vi i= 1/ .

Simulation studies have suggested that the DL method performs well when the 
true between-study variance is small or close to zero and the number of studies in 
the meta-analysis is large, whereas when τ2 is large, DL produces estimates with 
significant negative bias [37, 47, 52, 54–56]. The negative bias that has been reported 
with respect to the DL estimator seems to be something related to using effect size 
measures based on 2 × 2 table data (e.g., odds ratios, risk ratios), where problems 
arise when using very large τ2 values in simulation studies. In particular, very large 
τ2 can lead to extreme values of the effect size measure, at which point many tables 
will include zero cells and the accuracy and applicability of the inverse-variance 
method becomes questionable. Jackson et  al. evaluated the efficiency of the DL 
estimator asymptotically and showed that DL is inefficient when the studies included 
in the meta-analysis are of different sizes and particularly when τ2 is large [57]. 
However, they suggested that the DL estimator performs well and can be efficient 
for inference on the summary effect when the number of studies included in the 
meta-analysis is large. The confidence interval for the between-study variance when 
using the DL method can be ideally estimated using the Jackson’s method [24], as 
they are based on the same statistical principle and are naturally paired.

Paule and Mandel (PM)
Paule and Mandel [43] proposed to profile the generalized Q-statistic (see 
Sect. 12.2.2.2) until Qgen equals its expected value (i.e., E Q k( )gen = −1). The PM 
estimator is an iterative method and a special case of the GMM estimator with 
a vi i= +1 2/( )t .

Rukhin et al. showed that when assumptions underlying the method do not hold, 
the method is more robust than the DL estimator, which depends on large sample 
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sizes [58]. It has been shown that the PM method has upward bias for a small num-
ber of studies and heterogeneity and downward bias for large number of studies and 
heterogeneity [52], but generally the method is less biased than its alternatives. One 
simulation study suggested that PM outperforms the DL and REML (see below) 
estimators in terms of bias [59]. Panityakul et al. [59] showed that the PM estimator 
is approximately unbiased for large sample sizes, and Bowden et al. [37] in their 
empirical study showed that as heterogeneity increases, t$PM2  becomes greater than 
t$DL2 . The uncertainty around the between-study variance using the PM method can 
be ideally estimated using the Q-profile method [53], as they are based on the same 
statistical principle and are naturally paired.

Maximum Likelihood Estimators
The maximum likelihood estimators are iterative methods and are derived after 
maximizing the (restricted) log-likelihood function [20, 60]. A limitation of the 
methods is that their success to converge to a solution depends on the selection of 
the maximization technique (e.g., Newton-Raphson, expectation-maximization 
algorithm).

Maximum Likelihood (ML)
The method is asymptotically efficient and can be obtained by iterating
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until they converge and do not change from one iteration to the next. The study 

weights are derived under the random-effects model, w vi i, /RE ML= +( )1 2t$ . An ini-

tial estimate of t$ML
2  can be decided a priori as a plausible value of the heterogeneity 

variance, or it can be estimated with any other non-iterative estimation method. 
Each iteration step requires nonnegativity.

Simulation studies have suggested that although the ML estimator is efficient, it 
exhibits large negative bias for large τ2 when the number and size of studies are 
small (e.g., for fewer than 10 studies and fewer than 80 participants in each study) 
[50–52, 56, 59]. It has been shown that the ML method is more efficient than PM, 
and REML methods, but exhibits the largest amount of bias [51, 52, 60, 61]. 
However, because of the large amount of bias, it is recommended avoiding the ML 
estimator [56, 59]. The confidence interval for the between-study variance when 
using the ML method can be ideally computed using the profile likelihood method 
[1], as they are based on the same statistical principle and are naturally paired.
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Restricted Maximum Likelihood (REML)
The REML method is often used to correct for the negative bias produced by the 
ML method and can be obtained by
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with study weights derived under the random-effects model, w vi i, /( )RE REML= +1 2t$  
[39, 52]. The estimator is calculated by an iterative process with a nonnegative ini-
tial estimate. Again, each iteration step requires nonnegativity.

Simulation studies suggested that the REML method underestimates the true 
between-study variance, especially when the data are sparse [47, 52, 54, 56, 62]. For 
dichotomous outcome data, it was shown that the REML estimator is less biased, 
but less efficient than the DL estimator [51, 52]. For continuous data, it has been 
suggested that the REML estimator is less efficient than the ML estimator and com-
parable to DL estimator [56]. An empirical study [63] with dichotomous outcome 
data showed that the REML estimator can be smaller or larger in magnitude than the 
DL method. REML is recommended when large studies are included in the meta-
analysis [56]. The uncertainty around the between-study variance when using the 
REML estimator can be ideally estimated using the profile likelihood method [20].

Bayes Estimators

Full Bayes (FB)
The FB approach takes into account the uncertainty of all parameters (including τ2) 
in the results. Several investigators claim that in practice the differences between 
frequentist and Bayesian approaches appear to be small [60, 64]. The FB method 
uses non-informative priors to approximate a likelihood-based analysis. When the 
number of studies is large, the choice of the prior does not have a major influence 
on the results since they are data driven. The choice of prior is particularly important 
though when the number of studies is small, as it may impact on the estimated 
between-study variance and hence on the overall intervention effect [65, 66].

A simulation study compared 13 different prior distributions for the heterogene-
ity variance and suggested that the results might vary substantially when the number 
of studies is small [65]. The study showed that, in terms of bias, none of the distribu-
tions considered performed best for all meta-analysis scenarios. More specifically, 
inverse-gamma, uniform, and Wishart distributions for the between-study variance 
all perform poorly when the number of studies is small (<10) and produce estimates 
with substantial bias. An inverse-gamma prior with small hyper-parameters is often 
considered to be an approximately non-informative prior, but it was shown that 
inferences can be sensitive to the choice of hyper-parameters [67, 68]. Informative 
priors were recently proposed for the between-study variance using the log-odds 
ratio and standardized mean difference effect measures, and these might 
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considerably improve estimation when few studies are included in the meta-analysis 
[69–71]. The uncertainty around the between-study variance when using the FB 
estimator can be ideally estimated using Bayesian credible intervals.

12.3	 �Possible Causes and Approaches to Deal 
with Heterogeneity

Despite the best efforts of investigators to construct a dataset of carefully selected 
studies where the homogeneity assumption would hold, an imbalance in the distribu-
tion of effect modifiers might arise resulting in between-study heterogeneity. The 
identification of the causes of heterogeneity may help to account for such variation 
in the results thereby aiding in the interpretation of existing data, as well the planning 
of future studies. Between-study heterogeneity may be due to clinical and/or meth-
odological heterogeneity, biases, and chance [3, 72]. Clinical heterogeneity suggests 
that a possible variability in intervention or patient-level characteristics, or in out-
comes studied, can influence the intervention effect. Methodological heterogeneity 
refers to the variability across studies due to study design or quality (e.g., inadequate 
randomization or allocation concealment, high dropout rates, intention-to-treat ver-
sus per-protocol analyses). In addition to biases captured by methodological hetero-
geneity, there are other biases that might cause between-study heterogeneity, 
including selection or funding biases. It is also possible that outlier studies show 
extreme results due to chance (e.g., studies with small sizes and/or event rates).

Quantifying the amount of between-study heterogeneity and exploring its sources 
are among the most important aspects of meta-analysis. When heterogeneity is 
identified, the first step researchers should follow is to check the data included in the 
meta-analysis for potential data abstraction errors. If no errors are found and 
between-study variability beyond chance is still evident, a different choice in effect 
measure may improve homogeneity. Empirical studies have shown that relative 
measures (e.g., odds ratio, risk ratio) are associated with less heterogeneity than 
absolute measures (e.g., risk difference) [73–75]. Heterogeneity might also be due 
to intervention effect modifiers. This exploration might include applying subgroup 
or meta-regression analyses adjusting the estimated intervention effects accord-
ingly. It should be noted that the use of individual patient data in meta-analysis 
allows for a thorough investigation of potential sources of heterogeneity and a better 
evaluation of both within- and between-study heterogeneity, avoiding the assump-
tion that a relationship between groups holds between individuals as well [76, 77]. 
For small to moderate amount of heterogeneity (for a general guideline, see 
Sect.  12.2.3.2), one can apply the random-effects model assuming that the true 
study-specific effects are not identical but come from the same distribution. Under 
the random-effects model, the between-study variation is taken into account in the 
meta-analysis results, but this is not a remedy for heterogeneity as it still exists.

To facilitate the interpretation of the meta-analysis’ result capturing both between-
study variance and variance of summary intervention effect, a prediction interval of 
the possible intervention effect in an individual setting can be calculated [78–80].  
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A prediction interval indicates the range of values for the true intervention effect 
when a future study is conducted and can be obtained by
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where t a k1 2 2− −/ ,  is the 100(1 2- a / ) % quantile of the tk-2  distribution. A prediction 
interval can be calculated when at least three studies are included in the 
meta-analysis.

12.4	 �Methods to Appraise Small-Study Effects

The association between size and effect of the studies included in a meta-analysis 
should be explored, as the presence of selection bias and small-study effects may 
lead to meaningless conclusions. Funnel plots and statistical tests based on funnel 
plot asymmetry are popular in meta-analysis for assessing small-study effects. 
Several methods have been suggested to adjust for small-study effects, including the 
trim-and-fill method, the Copas selection model, and various regression-based 
approaches (for a review, see Mavridis and Salanti) [6].

12.4.1	 �Graphical Representation of Small-Study Effects

Funnel plots facilitate the visual examination for detecting bias or heterogeneity, 
and often it is not possible to distinguish between the two. A funnel plot (see 
Fig. 12.5) is a scatter plot of the study-specific intervention effect estimates against 
a measure of precision or study size. In agreement with forest plots (see Sect. 12.2.1.1) 
and in contrast to conventional scatter plots, the intervention effect estimates are 
usually plotted on the x-axis, whereas the study size or precision is plotted on the 
y-axis [82–84]. It is recommended to plot the SE (or 1/SE) of the intervention effect 
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Fig. 12.5  Funnel plot. Example of symmetrical funnel plot (Reproduced with permission [81])
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on the vertical axis, rather than study size, as study power is based on several other 
factors apart from sample size alone (e.g., number of events, standard deviation) 
[84], and these are summarized by SE. The plot usually includes a triangular 95 % 
confidence region and a vertical line corresponding to summary intervention effect 
under the fixed-effect model. In the absence of bias and heterogeneity, 95 % of the 
studies are expected to lie within the triangular region and be scattered symmetri-
cally around the summary intervention effect. In such a case, the plot resembles a 
symmetrical and inverted funnel. Small studies are expected to lie at the bottom of 
the graph and widely spread around the summary intervention effect compared to 
larger studies. It is advisable to draw funnel plots when ten or more studies are 
available in the meta-analysis [7].

An asymmetric funnel plot suggests there is a relationship between the study-
specific effect measure and precision, which might be due to selection bias (includ-
ing publication bias, language bias, citation bias, and reporting bias), small-study 
effects, heterogeneity, sampling variation, or chance [10]. An inappropriate choice 
of effect measure might also result in an asymmetrical funnel plot. It should be 
noted that some effect measures (e.g. log-odds ratios and standardized mean differ-
ences) are correlated with their SEs, and this may produce artificial funnel plot 
asymmetry. In the presence of small-study effects, the funnel plot will be asym-
metrical with small studies missing at the bottom right corner (for an efficacy out-
come, and at the left corner for a safety outcome) suggesting an unfavorable effect. 
Some argue that the visual interpretation of a funnel plot is a subjective issue, and 
sometimes it is difficult to distinguish between symmetry and asymmetry [85, 86].

Peters et  al. proposed a modified version of the conventional funnel plot, in 
which extra contours representing the statistical significance of each study are added 
(see Fig.  12.6) [87]. This may aid visual interpretation by suggesting that if the 
missing studies come from a “nonsignificance area,” then asymmetry may be due to 
selection bias. However, if the missing studies come from a “significance-area” or 
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mortality after myocardial infarction. Example of asymmetrical funnel plot (Reproduced with per-
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there is a certain direction of the intervention effect, then asymmetry is probably 
due to factors other than selection bias [81].

12.4.2	 �Tests for Small-Study Effects and Selection Bias

12.4.2.1	 Funnel Plot-Based Tests
Apart from assessing for small-study effects using a visual inspection of funnel 
plots, several tests have been suggested to statistically assess funnel plot asymme-
try. The tests are categorized as (1) rank-correlation tests or (2) linear regression 
tests. Begg and Mazumdar used a nonparametric rank-correlation method for the 
examination of the association between the standardized intervention effect esti-
mates and their SEs [88]. When small studies (with large SEs) tend to have larger 
intervention effect estimates compared to the larger studies, the test identifies a cor-
relation between the two factors. However, the test is associated with low power, 
and Begg suggests using a very liberal significance level (such as 0.10) [89]. 
Gjerdevik and Heuch suggested modification of Begg test based on Spearman rho 
and Kendall tau, to improve type I and II error rates; they suggested that the test 
based on Spearman rho is preferred for small datasets [90]. Egger et al. proposed a 
more powerful test compared to Begg test to assess the funnel plot asymmetry based 
on a regression analysis of Galbraith plot (see also Sect. 12.2.1.2) [83]. The test is 
based on the weighted linear regression of the standardized intervention effect 
(z-score) against study precision, with weights equal to the inverse of the variance. 
The intercept of the regression is used to measure asymmetry; specifically if it is 
estimated to be statistically significantly different from 0, then there is evidence of 
selection bias, and a negative intercept would suggest small-study effects are pres-
ent. Tang and Liu suggested an alternative test using a linear regression of interven-
tion effect estimate on 1/ n , with weights n the study size [91].

Several modifications of the tests have been presented in the literature, which 
apply to dichotomous outcome data only. More specifically, for group correlation, 
the test by Schwarzer et al. could be used [92]. For linear regression, several modi-
fications have been proposed including those by Macaskill et al. [93], Harbord et al. 
[94], Peters et al. [95], and the “arcsine” test by Rücker et al. [96]. For all aforemen-
tioned tests, the cutoff P-value 0.10 is considered to infer asymmetry in the funnel 
plot.

More specifically, the test proposed by Macaskill et al. is a linear regression of 
the intervention effect estimate on n, with weights mEmNE/n, where mE and mNE rep-
resent the total number of events and nonevents, respectively [93]. Harbord et al. 
[94] presented a modified version of the test proposed by Egger et al. [83], based on 
the efficient score ( Z a m n n= - E E / ) and its variance (V n n m m n n= −E C E NE / ( )2 1 ) of 
the log-odds ratio, where nE and nC are the sample sizes of the experimental and 
control groups, respectively. Peters et  al. [95] suggested a slightly modified test 
compared to Macaskill et al. [93] test using the log-odds ratio effect measure and a 
linear regression of intervention effect estimate on 1/n, with weights mEmNE/n, for a 
better control of type I error. Schwarzer et al. [92] suggested a rank-correlation test 
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for sparse data, using mean and variance of the noncentral hypergeometric distribu-
tion and avoiding correlation between log-odds ratio and its SE. However, for large 
between-study heterogeneity, the test has low power compared to the other tests 
[92]. Although the tests by Harbord et al. [94], Peters et al. [95], and Schwarzer 
et  al. [92] have been presented using the odds ratio effect measure, they can be 
applied for other effect measures too. However, for a dichotomous outcome and the 
log-odds ratio or log-risk ratio, the intervention effect is statistically dependent on 
its variance, and hence tests based on these two factors might erroneously suggest 
the small-study effects’ presence. Rücker et al. [96] suggested a test based on arc-
sine transformation of observed risks avoiding false-positive results when a large 
intervention effect or substantial between-study heterogeneity is present. In contrast 
to the other tests, the one suggested by Rücker et al. [96] can model studies with 
zero events in both arms.

Sterne et al. [81] advise using regression tests to address selection bias and 
small-study effects as they have larger power compared to rank tests as well as 
avoiding tests for funnel plot asymmetry if all studies are of similar sizes and 
hence of similar SEs. The Egger test has greater power for continuous outcomes 
than for dichotomous outcomes and is suggested for testing for funnel plot asym-
metry. For dichotomous outcomes, the Harbord, Peters, and Rücker tests are sug-
gested, as they have greater power compared to the other tests and avoid the 
mathematical association between log-odds ratio and its SE (this is also known 
as “regression to the mean”). It should be noted though that the performance of 
the tests deteriorates as the between-study heterogeneity increases. A general 
recommendation is to select one of the Harbord, Peters, and Rücker tests for 
small heterogeneity (t 2 0 1< . ) and to use Rücker test for large heterogeneity 
(t 2 0 1> . ) [3, 81].

12.4.3	 �Adjusting Intervention Effect Estimates for Small-Study 
Effects

12.4.3.1	 Trim-and-Fill Method
The trim-and-fill method is a nonparametric method and aims to correct for funnel 
plot asymmetry due to small-study effects. The method is a four-step process:

	1.	  The smaller studies are “trimmed” (i.e., removed) so that a symmetrical funnel 
plot is produced.

	2.	  The summary intervention effect from the “trimmed” funnel plot is estimated.
	3.	  The omitted studies are returned to the funnel plot and their “missing counter-

parts” are imputed or “filled” as their mirror images.
	4.	  An adjusted overall intervention effect with its corresponding confidence inter-

val is estimated using the complete set of studies [97, 98].

This is a nonparametric method and provides an estimate of both the number of 
missing studies and of the summary intervention effect adjusted for selection bias. 
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Although no assumptions are required about the mechanism leading to selection 
bias, the trim-and-fill method assumes that the small-study effect is solely caused by 
selection bias and that in truth there should be a symmetric funnel plot. However, 
the adjusted intervention effect should be interpreted with caution as it is not neces-
sarily the intervention effect that would have been observed in the absence of selec-
tion bias.

Simulation studies have shown that the method performs well in the presence of 
selection bias, but it underestimates the intervention effect when there is large 
between-study heterogeneity and no selection bias [99, 100].

12.4.3.2	 Selection Models
To evaluate the potential impact of missing studies on the results of a meta-analysis, 
selection models have been suggested that account for the mechanism by which 
studies are published. Selection models assume that missing studies are not missing 
at random, and the observed studies are due to certain characteristics (e.g., sample 
size, quality of design) that increase their propensity for publication. These models 
associate each observed study with an a priori probability to be published, and then 
estimate the summary intervention effect from the distribution of the observed 
sample.

A popular selection model in meta-analysis is the one developed by Copas [101], 
in which the probability that a study is observed depends on its SE. Although selec-
tion models correct effect estimates for selection bias, they have not been widely 
used probably because of their complexity, the large number of studies needed and 
the strong modeling assumptions about the severity of selection bias (i.e., that the 
factor causing small-study effects is selection bias). Copas [101] suggested apply-
ing a sensitivity analysis so that the researcher has the full picture of the estimated 
values of the intervention effect (and its uncertainty) under a range of assumptions 
about the severity of selection bias. It has been alternatively suggested to use expert 
opinion to inform the probabilities of publication [102]. A Copas selection model 
accounts for the correlation between the observed intervention effect and the prob-
ability that a study is published, which is:

	1.	  Zero in the absence of selection bias.
	2.	  Positive for a large intervention effect and large propensity for publication (e.g., 

for safety outcomes).
	3.	  Negative for a large intervention effect and small propensity for publication 

(e.g., for efficacy outcomes; harms are less likely to be studied in trials and hence 
less likely to be published) [101, 103, 104].

Empirical studies using large collections of meta-analyses with dichotomous 
data suggest that the Copas selection model is preferable than the trim-and-fill 
method, as the latter produces systematically larger SEs and P-values [105, 106].
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12.4.3.3	 Extrapolation Methods
Extrapolation approaches model the relationship between the observed intervention 
effects and a measure of their uncertainty (e.g., SE). Stanley [107] and Copas and 
Malley [108] are early proponents of the regression-based approaches, with Stanley 
[107] adjusting the estimated intervention effect and Copas and Malley [108] adjust-
ing the P-values for small-study effects. The approach suggested by Moreno et al. 
[109, 110] regresses the study-specific effects against their precision and computes 
the “unbiased” intervention effect as the extrapolation of the regression line to pre-
dict the intervention effect in a study with infinite sample size (or zero SE). The 
slope of the meta-regression is used to test for funnel plot asymmetry (see also 
Sect. 12.4.2.1), and the intercept is interpreted as the estimated intervention effect 
of a study with infinite sample size and hence infinite precision, adjusted for selec-
tion bias.

A key concern in these methods, as already stated in Sect. 12.4.2.1, is the math-
ematical association between some effect measures (e.g., log-odds ratio) and its SE, 
which might erroneously suggest the presence of small-study effects. Also, the per-
formance of these methods depends on the variability of the meta-analysis’ study 
sizes; if, for example, all studies are small, then the methods will not perform well. 
The regression-based methods, as any meta-regression model, suffer from lack of 
power to detect existing associations when few studies are available and in the pres-
ence of substantial heterogeneity. Simulation studies suggest that extrapolation 
within funnel plots outperform the trim-and-fill method, but still the adjusted effect 
estimates should be interpreted with caution [4, 109].

12.5	 �Moderators and Confounders

The impact of moderators and confounders is best viewed in light of the prior sec-
tions on heterogeneity issues and small-study effects, as any meaningfully impor-
tant moderator or confounder is likely going to have an impact on homogeneity and 
symmetry of effects. The typical approaches to moderator and confounders include 
subgroup analyses and regression methods, which can be undertaken in the context 
of meta-analysis as well as more comprehensive overviews of reviews. As always, 
it remains important to recognize the presence of clustering and to minimize, espe-
cially in umbrella reviews, the risk of duplicate entry of trials with multiple arms as 
this may have a biasing effect on the accuracy and precision of the overall 
estimates.

12.6	 �Discussion

This chapter illustrates a vast range of approaches to evaluate the presence and esti-
mate the magnitude of between-study heterogeneity as well as a wide variety of 
methods to test and adjust for small-study effects, which can easily be extrapolated 
to the analysis of key moderators and confounders. Heterogeneity and selection bias 
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are two of the greatest threats in meta-analysis and may lead to meaningless and/or 
overoptimistic intervention effect estimates. Researchers should routinely address 
and explore reasons for their presence and assess the extent to which these may 
influence the meta-analysis results.

Recent methodological research supports use of the random-effects model when 
completing a meta-analysis because it accounts for the between-study heterogene-
ity [3, 111, 112]. The random-effects model is considered more realistic than the 
fixed-effect model in most contexts. The new methodologies in meta-analysis help 
us incorporate heterogeneity and adjust for small-study effects and general funnel 
plot asymmetries as parts of the modeling that can also be reflected in the results. 
As presented in this chapter, both heterogeneity and selection bias can be examined 
using graphical methods, statistical tests, subgroup, and meta-regression 
analyses.

When selection bias is present, it is advisable that researchers make efforts to 
reduce (or if possible to eliminate) it, such as identifying unpublished or difficult to 
locate material from the “gray” literature for potential inclusion in the meta-analysis 
[113]. Also, exploration of heterogeneity should always take place when conduct-
ing a meta-analysis but should be interpreted with caution if individual participant 
data is not used in the statistical modeling. When few studies are included in a meta-
analysis, we suggest conducting a sensitivity analysis using a variety of methods for 
addressing heterogeneity and small-study effects, before reaching definitive 
conclusions.
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