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Abstract  Ready-to-eat vegetable food refers to minimally processed fruits and 
vegetables, which have undergone treatments of mild intensity, without the altera-
tion sensorial characteristics such as freshness. This type of product is ready for 
consumption: in recent years, it has emerged as a growing reality as it responds to 
consumers’ needs by offering new services (convenience food). Given the direct 
consumption, the producer must associate a high quality of the product. This food, 
normally fresh and without added preservatives, is exposed to chemical and micro-
biological alterations; as a result, it is surely associated with a reduced shelf life. 
Even if these products receive some degree of minimal technological process-
ing before market distribution, the used processing technology may be not suffi-
cient, in most cases, with reference to microbiological stability and the complete 
removal of pathogens. Numerous techniques are currently been used in order to 
reduce microbiological and chemical spoilage, including chlorine washing, irra-
diation and modified atmosphere packaging. This chapter concerns recent updates 
about correlated technologies, including new recyclable trays, and correlated 
chemical and physical modifications of ready-to-eat packed products: the ‘respira-
tion’ of vegetables, colorimetric modifications and other sensorial alterations.

Keywords  Enzymatic browning  ·  Ethylene  ·  Lactic acid bacteria  ·  Microbial 
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H2O2	� Hydrogen peroxide
LAB	� Lactic acid bacteria
MAP	� Modified atmosphere packaging
N2	� Nitrogen
O2	� Oxygen
ppm	� Parts per million
POD	� Peroxidase
PAL	� Phenylalanine ammonia lyase
PPO	� Polyphenoloxidase
RTE	� Ready-to-eat
RNA	� Ribonucleic acid
UV	� Ultraviolet light
Aw	� Water activity

3.1 � Introduction

In recent years, the demand for minimally processed and ready-to-eat (RTE) fresh food 
products has increased dramatically in developed countries. The main reason is sub-
stantially correlated with the offer of a suitable choice for contemporary lifestyles: RTE 
products provide incorporated services (convenience food) to consumers. Moreover, 
the awareness of benefits of a diet rich in fruits and vegetables has simultaneously risen 
with clinical investigations and the epidemiological research. In particular, recent stud-
ies have associated the consumption of vegetable foods to a reduced risk of cardiovas-
cular, chronic and neurological diseases, as well as some kinds of cancer (Ragaert et al. 
2004; Su and Arab 2006). As a matter of fact, RTE foods contain high levels of micro-
nutrients, fibres and antioxidants, including carotenoids and flavonoids.

Minimally processed vegetable foods are fruits and vegetables which have 
undergone treatments of mild intensity with the aim of increasing their functional-
ity. On the other hand, these processing techniques do not alter sensorial features, 
such as freshness, and the expected nutritional quality (Allende et al. 2006). The 
initial quality of produce before processing has high relevance when speaking of 
the final RTE product. In fact, vegetables are in a raw state and ready for con-
sumption. Consequently, these foods require very special attention because of their 
peculiar physiological, enzymatic and respiratory features. In addition, the prob-
lem of microbiological risks for consumers’ health has to be considered.

3.2 � Shelf Life and Processing

Generally, vegetable foods are known to be among the most perishable edible 
products. In fact, they display a high water activity (Aw) together with a neutral to 
slightly acidic pH value and higher carbohydrate contents with respect to proteins 
(Ramos et al. 2013).
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In addition, minimally processed vegetable foods differ from traditional and 
intact products both for their physiology and their handling and storage require-
ments. As a matter of fact, processing procedures include very often cutting, slic-
ing, shredding, dicing, peeling, washing and other procedures; these steps can 
affect the final storage life (Siddiqui et al. 2011). Washing water serves to reduce 
microbial contaminations because of the presence of sanitising agents such as 
chlorine (Sect. 3.5.1) and other chemicals (Gurnari 2015a, b).

First of all, some fruits and vegetables require the peeling step because of 
the necessity of removing inedible parts. Subsequently, chopping operations are 
required with the aim of facilitating prompt consumption. The disruption of tissues 
and cells integrity caused by processing can decrease shelf life.

In fact, wounded tissues undergo enhanced deterioration; as a result, derived 
products have a very short shelf life: 4–7 days, depending on the initial quality, the 
initial microbial load and the used processing technology (Watada and Qi 1999). 
However, various factors can influence the extent of disruption and senescence 
during cutting process: in particular, the size of vegetable pieces, the sharpness of 
cutting blades and mechanical properties of the product have to be carefully stud-
ied (Siddiqui et al. 2011).

3.3 � Chemical and Biochemical Mechanisms of Spoilage

Minimally processed fruits and vegetables have different physiological rates if 
compared with intact products: their metabolism is accelerated similarly to the 
observed situation of stressed plant tissues. Even minimal processing can lead to 
an increase in respiration, ethylene production, water loss, microbiological repli-
cation, as well as enzymatic browning, formation of volatiles, loss of chlorophyll 
and lipid oxidation (Toivonen and DeEll 2002). These modifications influence 
directly the appearance of the final product; unfortunately, the consumer’ approach 
is first focused on the estimation of appearance, colour and texture (Wismer 2009).

Ethylene has been reported to increase in minimally processed vegetable foods 
even if this phenomenon is dependent on intrinsic factors (i.e. climacteric vs. non-
climacteric produce). Temperature has also an effect on the induction of ethyl-
ene production: for instance, it has been found in cantaloupes stored at very low 
temperatures. In this situation, the suppression wound-induced ethylene has been 
recognised (Madrid and Cantwell 1993). Generally, ethylene increases ripening, 
senescence and textural modifications by means of the stimulation of enzymatic 
activity; enzymes can be peroxidase (POD) and polyphenoloxidase (PPO) as well 
as phenolic compounds (Saltveit 1999). The initiation of wound ethylene response 
starts usually within 1 hour; the maximum rate is achieved between 6 to 12  h 
(Abeles et al. 1992).

In turn, ethylene stimulates the respiration rate: consequently, a notable 
enhancement of the tricarboxylic acid cycle, the electron transport chain and 
starch breakdown can be observed. In fact, post-harvest vegetables are living 

3.2  Shelf Life and Processing
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tissues similar to normal vegetables; therefore, these tissues utilise reserve energy 
during ageing. For instance, respiration rates have been reported to increase 
in baby carrots by two–threefolds after peeling and slicing (Simõ et  al. 2011). 
In agreement, tissues with high respiration rates and low energy reserve have a 
shorter shelf life (Eskin 1990). However, the augmented respiration is not only due 
to the enhancement of aerobic respiration: the role of α-oxidation of long-chain 
fatty acids with the production of carbon dioxide (CO2) has been also proposed as 
synergic cause (Rolle and Chism 1987).

Moreover, minimally processed products are more susceptible to water loss 
because peeling and cutting operations expose interior tissues. As a consequence, 
the peridermal tissue—which acts as a protection against excessive transpiration—
is removed and surface-to-volume ratios are forced to increase (Toivonen and 
DeEll 2002). The decrease in water leads to a loss of turgor, reducing the firmness 
of the products and hence the consumer’s acceptance.

Another factor correlated with the consumer’s evaluation of vegetable foods is 
enzymatic browning. This phenomenon is primarily caused by

(a)	 Cell disruption, which activates metabolic pathways, ultimately leading to the 
synthesis of enzymes and substrates, and by

(b)	 Loss of cellular compartmentation, which brings cell units together.

Phenylalanine ammonia lyase (PAL) is one of the key enzymes in phenylpro-
panoid metabolism and is wound induced. As a matter of fact, PAL produces vari-
ous phenolic compounds, which are then oxidised in reactions involving POD and 
PPO (Barry-Ryan and O’Beirne 1998). POD, widespread in plant cells, is iron-
porphyrin organic catalyst with a notable role in browning through two possible 
routes. The first of these mechanisms involves the formation of hydrogen peroxide 
(H2O2) during the oxidation of phenolic compounds, whereas the second reaction 
route utilises quinonic forms as substrates (Richard-Forget and Gauillard 1997).

PPO is a tetramer that contains four atoms of copper per molecule and cataly-
ses the hydroxylation of monophenols to o-diphenols. PPO can also further cata-
lyse the oxidation of o-diphenols with the consequent production of o-quinones. 
As a result, quinones can react with non-enzymatic reactions with other quinones, 
amino acids or proteins. The result is a melanin pigment, responsible for the well-
known black to brown colour. Another enzyme involved in senescence is lipoxy-
genase, an iron-containing enzyme that catalyses the oxidation of polyunsaturated 
fatty acids in lipids containing a cis-cis-1,4-pentadiene structure (Lamikanra 
2002). Therefore, lipoxygenase generates free radicals with the ability of provok-
ing further membrane rupture; the structural lipidic membrane is degraded. In 
addition, lipoxygenase is responsible for production of certain volatiles: involved 
biochemical pathways are usually triggered by cell damage.

As a matter of fact, plants produce secondary metabolites in response to 
wounding: these secondary compounds may affect dramatically the perceived 
odour. Each vegetable species is believed to synthesise its own characteris-
tic volatile pattern (Pichersky et  al. 2006), even if phenylpropanoid and polyke-
tide phenolics, aldehydes, alcohols and terpenoids are the main compounds. 
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Sulphur-containing compounds may also accumulate during time as a result of the 
loss of cellular compartmentation. Enzymes such as cysteine sulfoxide lyase can 
oxidise various substrates and convert these compounds into sulphur-containing 
molecules which may be responsible for off-odours. Peculiar examples can be 
methanethiol, dimethyl disulfide and allyl isothiocyanate in cut cabbage tissues 
(Chin and Lindsay 1993; Dan et al. 1997).

Furthermore, discoloration can also occur with a general loss of green colour, 
due to chlorophyll degradation. Two enzymes are considered responsible for chlo-
rophyll breakdown: chlorophyllase and magnesium dechelatase. Two alternative 
alternative pathways have been reported at present, both resulting in the formation 
of a common product: pheophorbide a, an olive-brown compound, which is the 
precursor of the colourless product in a reaction mediated by pheophorbide a oxy-
genase (Toivonen and Brummell 2008).

Finally, the residential microbial flora also affects the quality of vegetable prod-
ucts through spoilage and/or with possible risks for consumers’ health. Processing 
operations can provide further opportunities for microbial contaminations; in addi-
tion, they can also cause leaking of small molecular weight compounds and cel-
lular fluids from damaged tissues. In fact, microbial growth is usually higher in 
fresh-cut products with respect to the whole product. As a result, spoilage may 
occur: peculiar signs are loss of texture, brown colours, production of off-odours 
and soft rot.

3.4 � Microbiological Quality

Vegetable food possess a natural saprophyte microflora deriving from soil, water, 
insects and consisting of bacteria, yeasts, moulds that find favourable pH and Aw 
conditions. As a consequence, microbial flora tends to increase during all post-har-
vesting stages.

The number and species of microorganisms can vary depending on the type of 
produce and growing conditions; however, normal counts usually range from 103 
to 109 colony forming units/g, with a general predominance of Gram-negative bac-
teria in vegetables, and of yeasts and moulds in fruits (Oliveira et al. 2010). Even 
biofilms may occur in vegetable leaves, mainly composed of environmental spe-
cies which may act either preventing adhesion to plant surfaces by other bacteria. 
Alternatively, pathogens may be embedded in their matrix, hence decreasing the 
efficacy of sanitising treatments.

The dominant microflora in vegetables is composed of Pseudomonas, gener-
ally up to 50–90 % (Arvanitoyannis and Stratakos 2010). The most abundant spe-
cies appear to be Pseudomonas fluorescens, P. putida and P. cepacia, whose role 
as spoilage microorganisms is notable. As a matter of fact, they can synthetise 
enzymes—also under refrigeration conditions—such as pectinases, cellulases, gly-
coside hydrolases and lipoxygenase, in addition to well-recognised proteolytic and 
lipolytic activities (Heard 2002). Pectic substances are very abundant in vegetable 

3.3  Chemical and Biochemical Mechanisms of Spoilage
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cell walls. Chemically, these compounds are linear chains of α-(1–4)-linked d-galac-
turonic acid, with carboxyl groups either esterified (pectin) or non-esterified  
(pectic acid) with methanol.

Pectic substances are used by many microorganisms as energy source, resulting 
in enzymatic liquefaction of these compounds and consequently in tissue softening 
(Chen 2002). Involved enzymes are pectinases: these compounds exist in a wide 
variety of forms and are classified according to the reaction. In detail, should the 
mechanism of action involve β-elimination or hydrolysis, two categories would be 
considered: pectinesterases and depolymerising enzymes. Pectinesterases catalyse 
a de-esterification reaction of pectin resulting in pectate and methanol, whereas 
the second type of enzymes is able to cleave the pectinic chain, thereby releasing 
shorter portions (Sakai et al. 1993).

A peculiar enzyme, cellulose, catalyses the decomposition of cellulose, spe-
cifically by hydrolysis of the 1, 4-β-d-glucosidic bond. Basically, cellulases break 
down the cellulose molecule into monosaccharides such as glucose, or shorter 
chain of oligosaccharides. These enzymes are used by bacteria with the aim of 
obtaining short soluble sugars as food resources: they are divided into three gen-
eral major types, based on the type of catalysed reaction:

•	 Endocellulases, which cleave internal bonds at random sites, thus creating new 
chain ends

•	 Exocellulases or cellobiohydrolases, which cleave two to four monomers from 
one end of the chain, producing cellobiose and/or glucose

•	 Cellobiases or β–glucosidases, which can hydrolyse exocellulase products into 
single monosaccharides (Singh and Hayashi 1995).

Enterobacteriaceae are well represented: generally, the most reported life 
forms are Enterobacter, Pantoea and Serratia. With the notable exception of 
Erwinia carotovora, a well-known plant pathogen, these bacteria are environmen-
tal microbes, encompassing a wide variety of ecological niches (Caponigro et al. 
2010). Their role in the spoilage process has not been so well examined until now: 
consequently, more research would be needed at present.

Lactic acid bacteria (LAB) such as Lactobacillus, Leuconostoc and 
Pediococcus are also commonly found. LAB may affect the observed shelf life 
of fresh-cut products during storage (Stiles and Holzapfel 1997) through their 
fermentative metabolism (souring of products and gas production in anaero-
bic conditions). Finally, fermentative yeasts like Kloeckera, Saccharomyces and 
Hanseniaspora may cause spoilage in damaged fruits and salads, growing at low 
temperatures (Barnett et al. 2000).

Beside environmental microflora, human pathogens may also be conveyed by 
fresh produce. In fact, these products have been increasingly involved in food-
borne outbreaks by bacterial, viral and parasitic pathogens. Among most common 
bacterial infectious agents, Salmonella spp. is a main concern with respect to the 
number of reported situations; on the other side, other species can be a major con-
cern with concern to the severity of caused diseases.
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For instance, the Gram-positive psychrophilic bacterium Listeria monocy-
togenes can determine listeriosis in pregnant women, elderly and immunosup-
pressed subjects. Consequences include gastroenteritis, meningitis, septicemia, 
abortion and death also.

Another dangerous bacterium with food safety and public health implications, 
Escherichia coli, has to be considered. In fact, aside from commensal strains, 
many different enteropathogenic strains are reported: enterotoxigenic, enteropath-
ogenic and enterohaemorrhagic E. coli are the ones involved in foodborne out-
breaks (Caruso and Parisi 2015). In particular, enterohaemorrhagic (EHEC) E. coli 
have been increasingly linked to the consumption of fresh vegetable foods. The 
main symptom of EHEC infections is hemorrhagic colitis; hemolytic uremic syn-
drome and other potentially lethal complications may also arise.

Viruses such as Norovirus and Hepatitis A virus and parasites, as Cyclospora, 
Cryptosporidium and Toxoplasma, can be a notable concern (Heard 2002) because 
of their involvement in foodborne outbreaks (contamination of foods from water 
and sewage). Moreover, RTE salads may be also a vehicle for the dissemination of 
antibiotic-resistant bacteria with clinical interest and genes that can be acquired by 
other opportunistic pathogens (Campos et al. 2013).

The multiplicity of bacteria and pathogens found in these products suggests 
that washing and disinfection procedures may be not sufficient to ensure a good 
microbiological quality, highlighting the necessity of implementing more efficient 
post-harvesting decontamination methods.

3.5 � Methodologies to Improve Quality

Physiological and microbial-induced modifications in appearance and quality of 
minimally processed vegetable foods can be slowed down and minimised through 
a multi-phase approach, combining pre-harvest, pre- and post-processing treat-
ments and management procedures. Obviously, the primary objective is to prevent 
microbial contamination and extend shelf life of food products; because of the 
intrinsic difficulty, various techniques, above all chemical and physical ones, are 
available at present.

3.5.1 � Chemical Methods

Among sanitising agents, chloride-based rinses are the most widely used in the 
produce industry. Chlorine compounds are usually utilised in a concentration 
range between 50 and 200 parts per million (ppm) for less than 5 min (Rico et al. 
2007). Theoretically, chlorine is more efficient at acidic pH levels, but usually it is 
used at pH between 6.0 and 7.5; the reason is the necessity of minimising machin-
ery corrosion (Beuchat 2000). Although observed the advantages (reduction of 

3.4  Microbiological Quality
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microbial counts), chlorine can lead to the formation of chlorine vapours or chlo-
rinated by-products, that may have potential harmful health effects (Parish et  al. 
2003). Therefore, chlorine dioxide (ClO2) has been introduced as an alternative 
to chlorine, as it does not form noxious chloramine compounds. Moreover, this 
chemical has a higher oxidation capacity: about 2.5 times greater than normal 
chlorine. ClO2 has also shown (Ramos et al. 2013):

(a)	 A higher level of penetration with respect to the liquid agent
(b)	 A high efficacy against pathogens, acting on cellular aminoacids and ribonu-

cleic acid (RNA).

H2O2 has a strong oxidising power leading to the generation of cytotoxic reactive 
oxygen species, hydroxyl radicals above all. H2O2 has hence a notable bactericidal 
activity: it is used up to 80 ppm in washing water (Alexandre et al. 2012).

Organic acids (e.g. ascorbic, lactic, citric and tartaric acid) are also frequently 
used as antimicrobial agents, as they have a role in environmental and intracellu-
lar pH reduction, anion accumulation and damage of membrane permeability and 
transport (Beuchat 2000). Ascorbic acid is frequently used as antioxidant in fruits 
and vegetables because of its antioxidant activity which prevents browning and 
inhibits polyphenol oxidase reactions.

Ozone is a potential method for extending shelf life of fresh commodities, due 
to its high reactivity and penetrability. It can be used both in water and in gas form 
where higher concentrations—around 20,000 ppm—can be reached even if gase-
ous ozone is considered to be more effective (Klockow and Keener 2009). Ozone 
has shown various advantages, including decomposition in non-toxic products, 
reduction in enzyme activity, decomposition of some pesticides and reduction in 
the oxygen demand. On the other hand, this agent has also some side effects, as it 
rapidly disappears; moreover, ozone is reported to be associated with lower crispi-
ness and colour degradation (Guzel-Seydim et al. 2004; Rico et al. 2006).

Calcium-based additives (e.g. calcium lactate) are also used for products 
with a high senescence index. In fact, calcium helps in maintaining firmness by 
interacting with cell walls and middle lamella pectins to form calcium pectate. 
Furthermore, calcium-based solutions have been shown to reduce chlorophyll and 
protein loss, as well as inhibit tissue senescence (Smout et al. 2005).

Lastly, electrolysed water is utilised for its bactericidal effect. Generally, it is 
generated by the electrolysis of water containing dissolved sodium chloride. This 
process leads essentially to the production of gaseous hydrogen and hydroxide ions 
at the cathode, hence forming an alkaline solution consisting of sodium hydrox-
ide. At the anode, chloride and hydroxide ions are oxidised to gaseous chlorine, 
hypochlorous acid, hydrochloric acid and hypochlorite ions. Should the forma-
tion of these compounds be allowed, acidic electrolysed water (AEW) would be 
obtained with a pH value between 2.1 and 4.5. Despite its strong bactericidal activ-
ity, AEW has shown adverse effects on produce quality because of pH values and 
high oxidation-reduction potentials (Rico et al. 2007; Wang et al. 2004). On the con-
trary, pH can be raised to neutral values (i.e. neutral electrolysed water): this solu-
tion does not affect colours and the general appearance of products (Izumi 1999).
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3.5.2 � Physical Methods

In recent years, different physical technologies are emerging as processing appli-
cations in the food industry.

Modified atmosphere packaging (MAP) is still commonly used in the food 
industry as preservation technique and consists in the alteration of the normal air 
composition, usually by lowering oxygen (O2) percentage and replacing it with 
CO2 or nitrogen (N2). The gas modification is reached either actively, by flushing a 
gas mixture before sealing, or passively. However, gas composition will inevitably 
be modified in both cases during the commercial life of MAP products, due to res-
piration and film permeability to gases (Sivertsvik et al. 2002).

CO2 and N2 concentrations vary depending on the type of product and on pro-
cessing methods. MAP extends storage life of both whole and processed com-
modities of about 50–400 % by reducing ethylene production, respiration rates and 
other metabolic activities (Ramos et al. 2013). Moreover, MAP delays enzymatic 
browning and growth of aerobic bacteria, even if excessively reduced O2 concen-
trations may lead to the overgrowth of anaerobes with fermentative metabolism 
and consequent off-odours. The increase of microbial counts ascribed to potential 
pathogens has to be also considered.

Irradiation is an innovative and very effective method of decontamination: the 
application of this technology is gradually increasing at a global level. Irradiation is a 
physical treatment that consists in exposing foods to an energy source such as gamma 
rays and X-rays. It is effective against microorganisms because it ionises atoms, 
removing electrons from their orbits with the generation of free radicals. This process 
destabilises essential cellular macromolecules such as proteins, deoxyribonucleic acid 
(DNA) and RNA (Kundu et al. 2014), hence delaying also senescence. On the other 
side, irradiation treatments are essentially safe from the toxicological point of view 
when speaking of consumers’ health. Moreover, adequate doses do not compromise 
organoleptic and nutritional quality of irradiated foods (Ahn et al. 2004).

The irradiation of foodstuffs can be performed by means of gamma rays, emit-
ted by sources of caesium-137, cobalt-60 or, alternatively, by electron beams. The 
formation of radicals and their spread depend on Aw values of the irradiated food: 
the treatment is reported to be less effective in anhydrous and frozen products. On 
the other hand, irradiation is not widely accepted by consumers; in addition, it 
may produce some textural alteration.

Ultraviolet light (UV) is used as antimicrobial agent because of its direct dam-
age to DNA: in fact, UV rays cause the production of pyrimidine dimers, a dis-
ruption in the genetic sequence. UV light is subdivided into three different types 
according to wavelengths:

•	 UV-A rays (range: from 315 to 400 nm)
•	 UV-B light (range from 280 to 315 nm)
•	 UV-C, also named ‘far UV’ rays (range from 100 to 280 nm).

3.5  Methodologies to Improve Quality
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UV light, especially UV-C rays, is commonly used because of the inexpensive-
ness of equipment and the induction of the synthesis of health-promoting mole-
cules such as anthocyanins and stillbenoids (Cantos et al. 2001). However, it has to 
be noted that the application of UV light has various limitations. For instance, this 
technology can increase respiration rate of the produce and induce lignification-
like processes (Ramos et al. 2013).

High pressure processing (HPP) is another method for the inactivation of 
microorganisms and enzymes: the technology is based essentially on the applica-
tion of elevated pressures (100–1000 MPa) on foods. Although a high pressure is 
achieved, flavours and the general nutritional quality appear to remain unchanged, 
even if this method shows some adverse effects on vegetables. In fact, high pres-
sures can damage the integrity of porous products due to the intrinsic compression 
and expansion cycle of the process (Palou et al. 2000). In addition, another limita-
tion that can become a notable concern for traders is the expensiveness of the tech-
nological system.

Ultrasound technology has also been studied because of its application in food 
science: it is environmentally sustainable and considered one of the new ‘green’ 
technologies (Chemat et  al. 2011). In detail, high-intensity ultrasound (low fre-
quencies from 20 to 100 kHz) is used in order to inactivate bacteria and enzymes. 
Basically, ultrasounds in a liquid medium can determine the production of high 
energy amounts through the compression and expansion of particles of the treated 
medium (Butz and Tauscher 2002). Its bactericidal activity depends on the cavita-
tion phenomenon: in other words, the formation, growth and subsequent collapse 
of bubbles are observed during the treatment. The result is the creation of a local-
ised mechanical energy that causes disruption of cellular walls and membranes. 
In addition, free radicals and highly reactive molecules such as protons, hydrox-
ide ions and H2O2 are generated by means of a peculiar reaction, water sonolysis, 
thus targeting DNA and lipid membranes (Bermúdez-Aguirre et al. 2011; Rastogi 
2011).

Enzyme inactivation could be due to the breakage of hydrogen bonds and van 
der Waals interactions through polypeptide chains, with the consequent disruption 
of secondary and tertiary enzyme structures and hence of biological functions (São 
Jose et al. 2014). Ultrasound technology has proved to be more effective in disag-
gregating microbial biofilms and accessing surfaces that are difficult to reach with 
respect to other disinfection methods. On the other hand, a large-scale usage is 
still being discussed: at present, best results for disinfection are provided by uti-
lising ultrasound in combination with other technologies and agents such as per-
acetic acid (Gao et al. 2014; São José and Vanetti 2012).

Lastly, another innovative option is the realisation of innovative packaging 
materials (active or ‘smart’ packaging) by means of the use of active agents of var-
ious types: ions, enzymes, fungicides, organic acids, ethanol, etc. The final aim is 
to improve food safety and quality.
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As a matter of fact, active packaging strategies include principally

•	 Addition of volatile antimicrobial agents as ethanol generators, oxygen and 
moisture absorbers into packages

•	 Incorporation of bioactive agents into packaging polymers. Examples: silver 
ions into polyethylene, polypropylene and butadiene styrene

•	 Use of antimicrobial polymers such as chitosan and polylysine (cationic poly-
mers) that interact directly with cell membranes (Appendini and Hotchkiss 
2002).

3.5.3 � Biological and ‘Generally Recognized as Safe’ 
Methods

Because of the increased consumer concern about the toxicological safety of 
chemicals and synthetic additives, the request for ‘Generally Recognized As Safe’ 
(GRAS) substances or natural food preservative is rising.

Research has been carried out on biocontrol agents, specific species of bac-
teria which are known for their antagonistic potential on pathogens: LAB. 
Biocontrol bacteria are strong competitors for physical space and nutrients; they 
may generate diverse antimicrobial metabolites such as bacteriocins (Sagong 
et al. 2011).

Bacteriocins are proteinaceous toxic compounds with either a broad or a nar-
row spectrum of inhibition. Numerous bacteriocins have been tested for their 
application as food preservatives: some of these compounds are already commer-
cially available such as nisin. They can be added in concentrated preparations or 
produced in situ by LAB starter cultures. In addition, bacteriocins have been used 
in polymers (bioactive food packaging materials).

Another promising strategy concerns the use of essential oils because of their 
own antioxidant properties. These organic substances, derived from spices and 
other plants, are attracting interest for their potential in enhancing storage life 
as antimicrobial agents. For instance, oregano (Origanum vulgare) and thyme 
(Thymus vulgaris) oils contain two strong antibacterial compounds, carvacrol and 
thymol, respectively. Many essential oils have been recognised as GRAS at pre-
sent; however, their practical application is still limited because of the altering 
effect on food organoleptic properties (Oussalah et al. 2006).

Edible coating films are now being recognised for their potential applications. 
First of all, these coatings can remarkably delay sensorial modifications (appear-
ance and aroma) during storage. Moreover, these materials can act as carriers of 
active compounds as antimicrobials, nutrients and anti-browning agents. A wide 
variety of substances can be used in edible films including lipids, resins, polysac-
charides and proteins, either individually or combined. Some of the most used 
compounds are vegetable starch, fruit wax, gum, pectin, carboxymethyl cellulose, 
chitosan, alginates and carrageenan.

3.5  Methodologies to Improve Quality
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