
Android Botnets: What URLs are Telling Us

Andi Fitriah Abdul Kadir(B), Natalia Stakhanova, and Ali Akbar Ghorbani

Faculty of Computer Science, University of New Brunswick,
Fredericton, New Brunswick, Canada

{andi.fitriah,natalia.stakhanova,ghorbani}@unb.ca

Abstract. Botnets have traditionally been seen as a threat to personal
computers; however, the recent shift to mobile platforms resulted in a
wave of new botnets. Due to its popularity, Android mobile Operating
System became the most targeted platform. In spite of rising numbers,
there is a significant gap in understanding the nature of mobile botnets
and their communication characteristics. In this paper, we address this
gap and provide a deep analysis of Command and Control (C&C) and
built-in URLs of Android botnets detected since the first appearance of
the Android platform. By combining both static and dynamic analyses
with visualization, we uncover the relationships between the majority
of the analyzed botnet families and offer an insight into each malicious
infrastructure. As a part of this study we compile and offer to the research
community a dataset containing 1929 samples representing 14 Android
botnet families.

Keywords: Android botnet · Malware · URL · Visualization

1 Introduction

The proliferation of mobile platforms in our daily lives has quickly brought
mobile malware to the forefront of security concerns. Almost non-existent before
the official release of the Android platform in 2008, nowadays mobile malware
is a serious threat to modern mobile devices. Among them, mobile botnets are
quickly gaining the attention of the research community. The recent report pub-
lished by Sophos [2] noted the sophistication and highly stealthy nature of rapidly
appearing mobile botnets.

Although the first studies in this domain only offered proof of concept models
of mobile botnets, they identified the potential of the mobile platform for creat-
ing more sophisticated and stealthy botnets [26]. Indeed, the resource-constraint
environment of smartphones, which are unable to afford computationally inten-
sive operations presents significant challenges to the development of solutions for
their detection. Botnets in the mobile environment have to be resource-aware to
continue their operation and remain undetected. This effectively forces mobile bot-
nets to curtail their communication to a minimum and leverage alternative hard-
to-detect channels (e.g., audio/video sensors [18], SMS/MMS [16,27,19,26]).

c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 78–91, 2015.
DOI: 10.1007/978-3-319-25645-0 6



Android Botnets 79

Mobility also opens up new avenues for old attacks. Mobile phones are a rich
source of sensitive information, traditionally not available to stationary comput-
ers (e.g., location information, user’s activities). This creates an opportunity for
new context-aware mobile botnets to be able to exfiltrate information typically
not monitored by traditional detection systems. General detection of mobile mal-
ware and in particular detection of mobile botnets have been extensively studied
in the last several years [25,14,15,11,10]. Aiming to address specific features of
the existing botnets, these studies appear isolated and give patchy solutions to
an ever growing problem. This disparity stems from a lack of solid understanding
of modern mobile botnets functionality and specifics differentiating them from
their traditional counterparts. In this work we aim to address this gap and offer
an insight into the most popular mobile botnet families. We analyze 14 Android
botnet families detected in the wild since 2010. Given an unprecedented growth
of Android malware and botnets (98% of all mobile malware [13]), in this study
we focus primarily on the Android platform. Our goal is to provide a deep under-
standing of Android botnets’ characteristics that will facilitate the development
of advanced mobile botnet detection approaches.

The contribution of our work is three-fold. First, we conduct a thorough
investigation of the Android botnet families, their characteristics and communi-
cation behaviour. Second, through static and dynamic analysis, we extract and
visualize all embedded URLs, including the obfuscated URLs. During our anal-
ysis, we identify hidden encryption keys stored within the samples that allow us
to reveal previously unknown features of Android botnets which are currently
used to avoid detection. This analysis not only allows us to demonstrate the
relationships between botnet families, but also helps us to illustrate the C&C
communication patterns. Finally, we release the accumulated dataset containing
1929 botnet samples to the research community. To the best of our knowledge,
this study is the first of its kind that offers a thorough analysis of mobile botnets’
URLs on the Android platform.

The rest of the paper is organized as follows: Section 2 presents the related
work on Android botnets and Section 3 discusses the collected dataset. Section
4 presents the approach we used to analyze the URLs of the Android botnets.
Section 5 presents the discovered trends. Finally, Section 6 concludes the paper
with some remarks about the implication of the work.

2 Related Work

With rapid advancement of botnets and mobile device security quickly becom-
ing an urgent necessity, researchers have focused their attention on this prob-
lem. One of the first attempts to illustrate the potential impact of a small-size
mobile botnet was offered by Traynor et al. [24]. It was quickly followed by a
series of studies introducing more advanced and powerful mobile botnet designs
capable of significant damage: Andbot, a botnet exploiting URL fluxstrat-
egy [26], Android botnet based on Google’s Cloud to Device Messaging (C2DM)
service [28], Android botnet leveraging out-of-bound communication channels



80 A.F. Abdul Kadir et al.

(i.e., audio, ambient light, and magnetic field) [18], mobile multi-targeted bot-
net [17]. Realization of mobile botnet attacks’ potential triggered the devel-
opment of defence techniques, many of which specifically targeted individual
characteristics of botnets [23,14,11,16,27,19,10,25,15].

We provide these approaches with an understanding of the Android botnet
communication characteristics and thus provide tools to improve the effectiveness
of botnet analysis. One of the techniques we employ in our study is visualiza-
tion. Visualization has been seen as beneficial in many domains including mobile
security. One of the first works in this area was offered by Barrera et al. [12]. The
authors employed visualization to observe and analyze permission usage in mali-
cious Android applications. This work was followed by Luoshi et al. [22] where
the authors used the Gephi visualization tool for detecting Android malware by
investigating the relationships between Android function calls and their paths.
The recent work by Hosseinkhani et al. [21] introduced Papilio, a new visual-
ization technique for illustrating real-world Android application permissions. In
the context of our study, we adopt visualization to investigate URLs of Android
botnets.

3 Dataset

To provide a comprehensive evaluation of Android botnets, we gathered a large
collection of Android botnet samples representing 14 botnet families. These fam-
ilies represent early and mature versions of Android botnets that are chosen
primarily due to their popularity. The summary of these families characteristics
are provided in Table 1. Our accumulated dataset combines botnet samples from
the Android Genome Malware project [30], malware security blog [1], VirusTo-
tal [3] and samples provided by a well-known anti-malware vendor. Overall, our
dataset includes 1929 samples of Android application package (APK) spanning a
period from 2010 (the first appearance of Android botnet) to 2014. This dataset
covers a large number of existing Android botnets, which reflects the current
status of Android Malware. Figure 1 illustrates the cumulative growth of sam-
ples in our dataset. We have noticed that even though the first botnet was
discovered in 2010, there are few samples that have been created earlier (this is
witnessed by the creation dates on the ZIP files) than the official discovery date
in 2008, as depicted in Figure 1. This indicates that these botnets were unknown
or unlabelled until they were discoved in 2010. We have released the accumu-
lated dataset to the research community at http://www.unb.ca/research/iscx/
dataset/index.html

4 Extracting URLs

Traditionally, URLs are either contained in the file meta-data (e.g., the appli-
cation links for updates) or embedded in malware code as plain text or obfus-
cated strings. URLs from meta-data are easily extracted with a simple regular

http://www.unb.ca/research/iscx/dataset/index.html
http://www.unb.ca/research/iscx/dataset/index.html


Android Botnets 81

Table 1. Android botnet characteristics

B
a
ck

d
o
o
r

D
a
ta

T
h
ef

t
D

ri
v
e-

b
y

D
ow

n
lo

a
d

E
x
p
lo

it
te

ch
n
iq

u
e

In
fe

ct
ed

S
M

S
M

o
b
il
e

B
a
n
k
in

g
A

tt
a
ck

R
a
n
so

m
w

a
re

R
ep

a
ck

a
g
ed

A
p
p
li
ca

ti
o
n

S
o
ci

a
l
E

n
g
in

ee
ri

n
g

T
ro

ja
n
is

ed
A

p
p
li
ca

ti
o
n

Botnet
Family

Year
Market
Origin

C&C
Type

Target
Country

Propagation and
Attack Types

Wroba 2014 3rd-party SMS/HTTP Korea ✓ ✓ ✓

Pletor 2014 3rd-party SMS/HTTP ✓ ✓

Sandroid 2014 3rd-party SMS MiddleEast ✓ ✓ ✓

NotCompatible 2014 forged site HTTP ✓ ✓

MisoSMS 2013 3rd-party Email Korea ✓ ✓ ✓

Bmaster 2012 3rd-party HTTP China ✓ ✓ ✓

RootSmart 2012 3rd-party HTTP China ✓ ✓ ✓

TigerBot 2012 3rd-party SMS ✓ ✓ ✓

AnserverBot 2011 official HTTP ✓ ✓ ✓

DroidDream 2011 official HTTP ✓ ✓ ✓ ✓ ✓

NickySpy 2011 3rd-party SMS ✓ ✓

PJapps 2011 3rd-party HTTP ✓ ✓

Geinimi 2010 3rd-party HTTP China ✓ ✓ ✓

Zitmo 2010 3rd-party SMS Europe ✓ ✓ ✓ ✓

Fig. 1. The yearly breakdown of the collected Android botnet families

expression-based search. We refer to these extracted meta-data URLs as built-
in URLs. To obtain URLs, we employ both static and dynamic analyses. The
combination of static and dynamic analyses is necessary here as many botnets



82 A.F. Abdul Kadir et al.

Table 2. Overview of the extracted URLs

Botnet Family Total samples
Static analysis(URL) Dynamic analysis(URL)

Similar URL
Total Unique Total Unique

Anserverbot 244 903 130 289 974 115 21
Bmaster 6 148 69 4480 43 7
DroidDream 363 6 451 850 4 443 219 502 21
Geinimi 264 1 548 406 342 760 181 11
MisoSMS 100 450 60 179 907 224 9
NickySpy 199 5 402 411 34 303 171 24
NotCompatible 76 72 200 24 10 875 5 0
PJapps 244 4 783 676 182 932 200 13
Pletor 85 307 37 17 181 12 8
Rootsmart 28 486 16 64 14 0
Sandroid 44 1 305 218 2 566 179 11
TigerBot 96 555 47 6 188 35 4
Wroba 100 2 372 31 NA NA NA
Zitmo 80 7 648 74 158 508 138 26

Total 1 929 104 558 3 049 5 672 957 1 819 155

Fig. 2. Relationships between 4 713 URLs extracted from the botnet dataset

(especially with advanced capabilities) will hide URLs from static analysis. A
sophisticated botnet would hide its malicious intent and avoid putting C&C
URLs as meta-data. Dynamic analysis, on the other hand, forces a botnet sample
to reveal these hidden URLs.

In the static analysis, we have customized scripts that leverage regular expres-
sions and keywords such as http, password, key, DES. We looked at the similar
keyword pattern between each family. For instance, searching the const-string



Android Botnets 83

keyword can give us more results of URLs than the plain http keyword. By exam-
ining the existing pattern for each botnet family, we managed to extract even
the encoded URLs. This is obtained by using binary code searching. Search-
ing binary code, however, requires disassembly of APK file and analysis of .dex
file bytecode. Using the baksmali disassembler, we retrieved bytecode from each
sample and string portion of its data section. We referred to domains and IP
addresses extracted from the data section part of the code as C&C URLs. To
confirm the discovery of the C&C URLs, we followed several patterns from the
existing reports such as the use of port 8080 in their communications (which can
be clearly seen in the URLs).

The dynamic analysis was conducted using Anubis [9], a web-based malware
analysis tool. Anubis provides both static and dynamic analysis reports which
cover the following aspects of APK files: activities, services, broadcast receivers,
required permissions, used permissions, features, URLs, file operations, network
operations, crypto operations, started services, and native libraries loaded. In
this research, we focus primarily on the analysis of the URLs. We have extracted
all the URLs from the collected xml files generated by Anubis except for the
Wroba family (due to the Anubis startup-dependency issues). Following the
described procedure, we extracted over 5 million of URLs (5, 777, 515) from
our collected dataset (see Table 2). This resulted in 4 868 unique URLs; 155 of
them are overlapping, which reduces the overall unique URLs to 4 713. Among
them, we discovered 47 are the C&C URLs and the remaining 4 666 are the
built-in URLs. Visualizing this information gives a high-level understanding of
the relationships between botnet families. This is clearly seen in Figure 2 that
displays all the unique URLs extracted from the 14 botnet families. As the visual-
ization shows, there is a significant sharing of URL resources between seemingly
isolated botnet families.

5 Analyzing URL Patterns

5.1 Resource Sharing among Botnet Families

One interesting aspect of the analyzed botnet families is the sharing of resources,
i.e., not only the same URLs are being reused within and across families, but
also encryption keys employed to obfuscate these addresses. Moreover, they are
also sharing the same nameservers as shown in Figure 3.

Built-in vs C&C URLs. The sharing of URLs is clearly visible in Venn diagrams
illustrating the relationships between the built-in and C&C URLs. While there
is no overlap between C&C and built-in URLs, there is a clear reuse within each
category. For instance, as Figure 4 shows, all the families are linked to each
other through a significant reuse of built-in URLs. This might be an indication
of legitimate resources being a main vehicle of botnet malware. This is also
confirmed by the scanning results, as only a minor portion of these built-in
URLs are malicious. It should be noted that the same pattern exists between
the built-in and C&C URLs, which shows that the DroidDream is a subset of



84 A.F. Abdul Kadir et al.

Fig. 3. Examples of nameservers sharing of C&C domains for the Geinimi Family

Fig. 4. Built-in and C&C URL relationships

the PJapps family. Based on this finding, we can infer that even though there is
no URL similarity between the built-in and C&C URLs, they employ the same
pattern, which might be an indication that the DroidDream family is actually
the evolution of the PJapps family.

Interfamily Relationships. We observed the following types of relationships
between employed addresses within the same family:

– one-to-one: when an APK file is associated with a single URL.
– one-to-many: when an APK file contains many URLs
– many-to-many: when many APK files are associated with many URLs.

Figure 5 illustrates these types of C&C URL-relationships. For instance,
PJapps adopted a one-to-one relationship where it uses a single URL to pull
down a command. Geinimi botnet uses a one-to-many relationship to make sev-
eral attempts to connect to multiple C&C servers (up to 10 distinct URLs).



Android Botnets 85

Fig. 5. Types of C&C URL-relationships discovered

AnserverBot, on the other hand, employed the many-to-many relationship where
various APK files used the same set of URLs (up to 3 distinct URLs) to commu-
nicate with C&C servers. However, we also noticed that some families such as
PJapps and DroidDream adopted multiple relationships in communicating with
their C&C servers.

Furthermore, there is also a significant relationship between the C&C URLs
and their encryption pattern within the same family. For instance, all of 365
APK files in the DroidDream family adopted the same technique for encrypting
the C&C URLs. This botnet family stored the hardcoded URLs in the same
folder and defined the key to decrypt these URLs in the Java code with the
keyword of PASSWORD CRYPT KEY. A previous report by McAfee in 2011 [4]
discovered that DroidDream variants save the encrypted configuration using the
file name prefer.dat in the Asset folder. The samples we analyzed use sense.tcd
and small.use to store the same DES decryption/encryption key as before -



86 A.F. Abdul Kadir et al.

DDH#X%L. This indicates that the botmasters have changed the configuration
file without changing the encryption pattern (file path and key). Specifically,
we discovered that 253 APK files stored their configuration in sense.tcd file, 148
samples saved their encrypted configuration in prefer.dat file, and only 4 samples
used the small.use file. All of these 405 APK files linked to the same set of URLs
(up to 7 distinct URLs) and adopted the many-to-many URL relationship. This
demonstrates that botnets commonly recycle their resources.

Intrafamily Relationships. In our analysis we also discovered a significant rela-
tionship between the C&C URLs from different families. By searching and visu-
alizing the encryption, we found 101 APK files of the PJapps family applied
the same encryption technique as DroidDream, 88 of them stored their encryp-
tion configuration in the prefer.dat and another 13 APK files used the sense.tcd
file.Both used the same DES decryption/encryption key as before, DDH#X%L.
To further investigate, we checked these APKs with VirusTotal to see the results
of its detection. The results are diverse as different APKs showed a different
detection ratio. However, we noticed that some vendors such as Sophos con-
sistently detect these APKs as PJapps, while other vendors such as F-secure
declared these APKs as DroidDream. As both families appeared in the same
year, we infer that this is an example of malware evolution where the botmasters
replicate the APK file and repackage with improved techniques to evade detec-
tion. By scrutinizing the newest samples of DroidDream and PJapps, we found
a new pair of DES decryption/encryption keys (pG3N0̃8f? and G#R%AP̂H? )
which are different from the previously seen keys. None of these keys matches the
encrypted files (prefer.dat, small.use, sense.tcd). We suspect that this is another
improvement employed by the bot master in the newer versions of malware.

Moreover, there is also a significant relationship between the C&C URLs
and their proxy information within the same family. By visualizing the proxy
numbers, we noted that the same set of URLs shares the same proxy numbers.
For example, all of the 7-set C&C URLs in a DroidDream family use the same
proxy numbers in uploading (proxy number 7) and feeding (proxy number 9)
the C&C server. On the other hand, a different 2-set of URLs is also linked
to another proxy (proxy number 2). Specifically, this proxy information comes
together with the C&C URLs that we have decrypted using DES encryption.

5.2 C&C Addresses Obfuscation

One of the techniques employed by Android malware to prevent detection and
the subsequent analysis is the obfuscation of C&C servers’ addresses. There
have been a number of methods reported in the past (e.g., plain text Java file in
the DroidKungFu family [30]). Here we offer an overview of the techniques we
observed in Android botnets.

Encryption. Note that as well as the AnserverBot family that used encoding
scheme to dodge detection as previously reported by Zhou and Jiang [30], other



Android Botnets 87

Table 3. Overview of the employed encryption techniques

Botnet Family Total Encrypted URL
Encryption types

Rot-10 XOR DES AES Base64

AnserverBot 141 2 0 32 99 8

Bmaster 11 0 7 0 4 0

DroidDream 104 9 1 11 78 5

Geinimi 46 4 0 10 29 3

MisoSMS 2 0 0 0 1 1

NotCompatible 145 0 0 32 113 0

Nickispy 4 0 0 0 1 3

PJapps 27 11 0 7 1 8

Pletor 81 0 0 0 81 0

Rootsmart 25 0 0 0 25 0

Sandroid 2 0 0 0 9 2

TigerBot 23 0 0 0 0 23

Wroba 3 0 0 0 3 0

Zitmo 11 0 0 3 8 0

Total 625 26 8 95 452 53

families such as Geinimi, PJapps, and DroidDream have also adopted an encryp-
tion algorithm in their APK Botnet. A summary of the encrypted URLs and
their corresponding encoding algorithms is given in Table 3.

In essence, AnserverBot adapts the popular Base64 scheme with a custom
index table. PJapps customized this encoding scheme, employing Base64 with
a pattern of skipping every other letter in strings. DroidDream on the other
hand, employed both encoding and encrypting techniques such as XOR cipher,
ROT-10 cipher, Advanced Encryption Standard (AES), and Data Encryption
Standard (DES) algorithm provided with its three different keys of encryption:
DDH#X%LT?, pG3N0̃8f?, and G#R%AP̂H?.

Exploiting DNS. Another interesting finding of C&C URL pattern is on the
Domain Name System (DNS). We found that the C&C URLs exploit its DNS
by adopting the Domain Generation Algorithm (DGA) and the URL obfusca-
tion techniques. Table 4 lists 3 types of URL obfuscation techniques commonly
used by attackers [20]. Accordingly, the C&C URLs in the collected dataset used
the following types: Type I - obfuscating the host with an IP address, Type III
- obfuscating with the large hostname, and, Type IV - unknown or misspelled
domain. However, the behavior of Type II - obfuscating the host with another
domain is not found in our dataset. In a similar way, the C&C URLs are used
the DGA technique as rendezvous points with their C&C servers. As such, out of
47 C&C URLs that we have extracted, 33 of them have employed the DGA. For
example in the DroidDream family, the domain names of the C&C URLs (http://
ju5o.com/zpmq.jsp,http://mlo6.com/owxnf.jsp,http://ya3k.com/bksy.jsp) con-
tain both random characters and numbers, which indicates the use of DGA.

http://ju5o.com/zpmq.jsp, http://mlo6.com/owxnf.jsp, http://ya3k.com/bksy.jsp
http://ju5o.com/zpmq.jsp, http://mlo6.com/owxnf.jsp, http://ya3k.com/bksy.jsp


88 A.F. Abdul Kadir et al.

Table 4. Commonly used URL obfuscation techniques

TYPE Descriptive examples Family

I http://184.105.245.17:8080/GMServer/GMServlet&PJapps

III http://91.cookier.co.cc:8080/jk center/91/ad.xml AnserverBot

IV www.qoewsl.com:8080; Geimini

Utilizing Public Blog. A previous technical report of AnserverBot in 2011 [29]
claimed that Anserverbot was the first one in Android Malware history that used
public blogs as its C&C servers to deliver commands to bot clients. According
to the authors, if the connection to the C&C server is not successful, the botnet
will start connecting to the public blog for the updated C&C server and then use
this as a new C&C server. Moreover, the information about new C&C servers
is being published on a public blog (as encrypted postings) and the C&C URLs
are hard-coded using Base64 scheme (with a custom index table). Based on this
information, we employed customized scripts that leverage regular expressions
to search for C&C URLs. Through this search, we extracted 830 C&C URLs (8
unique URLs) from the 243 APKs of the AnserverBot family that exploit public
blogs. As Figure 5 shows, all these APKs have adopted many-to-many relation-
ships. For instance, both of these URLs from baidu.com and 91.cookier.co.cc link
to the same 175 APKs. This shows that the AnserverBot has a limited number
of public blogs to be used as C&C servers.

5.3 Detection of Botnet Samples

All of the analyzed samples were collected from various sources and initially
labeled as botnet malware. To measure the effectiveness of modern anti-virus
scanners we analyzed the collected samples using the VirusTotal service [3].
Since the VirusTotal service incorporates a large selection of anti-virus scanners,
which use different detection strategies, we identify the number of scanners that
detect our samples as botnet, together with their average detection rate. The
results are encouraging as the majority of our samples were recognized correctly
with a few exceptions. For example, a low detection rate, 86%, was obtained for
Sandroid family that appeared fairly recently (in 2014). All the older families,
for the most part, were detected. Note that none of the families were recognized
by all existing anti-virus solutions.

We also looked at the maliciousness of the extracted URLs. Out of the 4
713 URLs (built-in and C&C) we extracted, 516 of them were detected as mali-
cious: 27 out of 47 C&C URLs and 489 out of 4 666 built-in URLs. Surprisingly,
some benign domains such as maps.google, news.google, and Androids-market
were detected as malicious when provided as complete URLs. As expected, not
all the C&C URLs considered as malicious are up-to-date. Considering the first
appearance of some of these botnets (2010), we assume that the domain names
might be reused by someone else for legitimate purposes. In this study, we are
not conducting further analysis on these particular C&C domain names. How-
ever, if we look into the domain-level, most of the non-malicious URLs have

http://184.105.245.17:8080/GMServer/GMServlet & PJapps
http://91.cookier.co.cc:8080/jk_center/91/ad.xml
www.qoewsl.com:8080;


Android Botnets 89

adopted the DGA technique in their DNS. To further illustrate the malicious
URL relationships, we visualized these URLs based on their families.

We also cross-checked the extracted URLs with several well-known black-
lists [5,8,7,6] as listed in Table 5. Interestingly, we found no matches with the
extracted URLs. Even though many of the analyzed families are date back to
2010 and 2011, these botnet URLs are still not a part of these blacklists. Another
point to make here is the reuse of the URLs; as our analysis shows, although
Android botnets share many URLs, all of them are different from those used by
other malware.

Table 5. Cross-check with blacklists

Name Total URL/domain Total URL Detected

Malware Domain Blocklist 24 070 0

Shalla Blacklist 179 593 0

URL Blacklist 242 548 0

Zeus Tracker 785 187 0

Total 1 231 398 0

6 Conclusion

In this work, we have looked at improved methods of Android botnet behavioural
analysis based on URL analysis. We have also shown the major differences
between Android botnet URLs and the benign ones and showed their relationship
with blacklists and anti-virus scanners. We have discovered that Android botnets
tend to encrypt various types of data including the URLs of C&C servers, the
method names to be invoked, the file path of the payloads, and even the content
of the payloads to prevent them from being reverse engineered. We confirmed
that the mobile botnets are evolving and becoming more sophisticated; thus, the
samples from 2012 till the recent ones are more dynamic. Most of the URLs of
these samples are hard coded in the Malware but created on the fly. However, by
focusing on the string pattern extraction and visualization through static and
dynamic analysis, we have managed to extract and decode these URLs. Through
this study, we were able to identify the variety of encryption techniques used by
bot masters. This is achieved by extracting the strings and visualizing each apk
file from its botnet family as well as the mappings between the URLs.

Acknowledgments. This research has been partially supported by the New
Brunswick Innovation Foundation under research grant RAI 2015-090. The authors
also gratefully acknowledge funding from International Islamic University Malaysia
(IIUM) and would like to thank Alip Aswalip for sharing the malware samples.



90 A.F. Abdul Kadir et al.

References

1. Mobile malware mini dump. http://contagiominidump.blogspot.ca/ (accessed
April 1, 2015)

2. Security threat trends. https://www.sophos.com/en-us/threat-center/medialibrary
/PDFs/other/sophos-trends-and-predictions-2015.pdf (accessed August 1, 2015)

3. Virus total. https://www.virustotal.com/en/ (accessed June 12, 2015)
4. Android malware: Past, present, and future. http://www.locked.com/sites/

default/files/android-malware-past-present-future-wp.pdf (accessed June 7, 2015)
5. Malware Blocklist. http://www.malwaredomains.com/ (accessed March 5, 2015)
6. Shalla’s blacklists. http://www.shallalist.de/ (accessed March 5, 2015)
7. Url blacklist. http://www.urlblacklist.com/ (accessed March 5, 2015)
8. Zeus tracker. https://zeustracker.abuse.ch/blocklist.php (accessed March 5, 2015)
9. Anubis: web-based malware analysis for unknown binaries. https://anubis.iseclab.

org/ (accessed May 30, 2015)
10. Abdelrahman, O.H., Gelenbe, E., Görbil, G., Oklander, B.: Mobile network

anomaly detection and mitigation: the NEMESYS approach. In: Information
Sciences and Systems 2013, pp. 429–438. Springer (2013)

11. Alzahrani, A.J., Ghorbani, A.A.: SMS mobile botnet detection using a multi-agent
system: research in progress. In: Proceedings of the 1st International Workshop on
Agents and CyberSecurity, pp. 2:1–2:8. ACM, New York (2014)

12. Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A.: A methodology
for empirical analysis of permission-based security models and its application to
Android. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, pp. 73–84. ACM, New York (2010)

13. Chebyshev, V., Unuchek, R.: Mobile malware evolution. https://securelist.
com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/
(accessed March 5, 2015)

14. Choi, B., Choi, S.K., Cho, K.: Detection of mobile botnet using VPN. In: Pro-
ceedings of the 2013 Seventh International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, pp. 142–148. IEEE Computer Society,
Washington (2013)

15. Feizollah, A., Anuar, N.B., Salleh, R., Amalina, F., Maarof, R.R., Shamshirband,
S.: A study of machine learning classifiers for anomaly-based mobile botnet detec-
tion. Malaysian Journal of Computer Science 26(4) (2014)

16. Geng, G., Xu, G., Zhang, M., Yang, Y., Yang, G.: An improved SMS based het-
erogeneous mobile botnet model. In: 2011 IEEE International Conference on Infor-
mation and Automation (ICIA), pp. 198–202, June 2011

17. Hamon, V.: Android botnets for multi-targeted attacks. Journal of Computer Virol-
ogy and Hacking Techniques, 1–10 (2014)

18. Hasan, R., Saxena, N., Haleviz, T., Zawoad, S., Rinehart, D.: Sensing-enabled chan-
nels for hard-to-detect command and control of mobile devices. In: Proceedings of
the 8th ACM SIGSAC Symposium on Information. Computer and Communica-
tions Security, pp. 469–480. ACM, New York (2013)

19. Hua, J., Sakurai, K.: A SMS-based mobile botnet using flooding algorithm. In:
Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 264–279.
Springer, Heidelberg (2011)

20. Le, A., Markopoulou, A., Faloutsos, M.: Phishdef:url names say it all. In: 2011
Proceedings IEEE INFOCOM, pp. 191–195. IEEE (2011)

http://contagiominidump.blogspot.ca/
https://www.sophos.com/en-us/threat-center/medialibrary/PDFs/other/sophos-trends-and-predictions-2015.pdf
https://www.sophos.com/en-us/threat-center/medialibrary/PDFs/other/sophos-trends-and-predictions-2015.pdf
https://www.virustotal.com/en/
http://www.locked.com/sites/default/files/android-malware-past-present-future-wp.pdf
http://www.locked.com/sites/default/files/android-malware-past-present-future-wp.pdf
http://www.malwaredomains.com/
http://www.shallalist.de/
http://www.urlblacklist.com/
https://zeustracker.abuse.ch/blocklist.php
https://anubis.iseclab.org/
https://anubis.iseclab.org/
https://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/
https://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/


Android Botnets 91

21. Loorak, M.H., Fong, P.W.L., Carpendale, S.: Papilio: Visualizing Android
Application Permissions. Computer Graphics Forum 33(3), 391–400 (2014).
http://diglib.eg.org/EG/CGF/volume33/issue3/v33i3pp391-400.pdf

22. Luoshi, Z., Yan, N., Xiao, W., Zhaoguo, W., Yibo, X.: A3: automatic analysis of
android malware. In: 1st International Workshop on Cloud Computing and Infor-
mation Security. Atlantis Press (2013)

23. Pieterse, H., Olivier, M.: Android botnets on the rise: trends and characteristics.
In: Information Security for South Africa (ISSA), pp. 1–5, August 2012

24. Traynor, P., Lin, M., Ongtang, M., Rao, V., Jaeger, T., McDaniel, P., La Porta, T.:
On cellular botnets: measuring the impact of malicious devices on a cellular network
core. In: Proceedings of the 16th ACM Conference on Computer and Communica-
tions Security, pp. 223–234. ACM, New York (2009)

25. Vural, I., Venter, H.: Mobile botnet detection using network forensics. In:
Berre, A.J., Gómez-Pérez, A., Tutschku, K., Fensel, D. (eds.) FIS 2010. LNCS,
vol. 6369, pp. 57–67. Springer, Heidelberg (2010)

26. Xiang, C., Binxing, F., Lihua, Y., Xiaoyi, L., Tianning, Z.: Andbot: towards
advanced mobile botnets. In: Proceedings of the 4th USENIX Conference on Large-
scale Exploits and Emergent Threats, p. 11. USENIX Association, Berkeley (2011)

27. Zeng, Y., Shin, K.G., Hu, X.: Design of SMS commanded-and-controlled and p2p-
structured mobile botnets. In: Proceedings of the Fifth ACM Conference on Secu-
rity and Privacy in Wireless and Mobile Networks, pp. 137–148. ACM, New York
(2012)

28. Zhao, S., Lee, P.P.C., Lui, J.C.S., Guan, X., Ma, X., Tao, J.: Cloud-based push-
styled mobile botnets: a case study of exploiting the cloud to device messag-
ing service. In: Proceedings of the 28th Annual Computer Security Applications
Conference, pp. 119–128. ACM, New York (2012)

29. Zhou, Y., Jiang, X.: An analysis of the Anserverbot trojan. Tech. rep., Technical
report, NQ Mobile Security Research Center (2011)

30. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: 2012 IEEE Symposium on Security and Privacy (SP), pp. 95–109, May 2012

http://diglib.eg.org/EG/CGF/volume33/issue3/v33i3pp391-400.pdf

	Android Botnets: What URLs are Telling Us
	1 Introduction
	2 Related Work
	3 Dataset
	4 Extracting URLs
	5 Analyzing URL Patterns
	5.1 Resource Sharing among Botnet Families
	5.2 C&C Addresses Obfuscation
	5.3 Detection of Botnet Samples

	6 Conclusion


