
A Scalable Multiparty Private Set Intersection

Atsuko Miyaji1,2,3(B) and Shohei Nishida1

1 Japan Advanced Institute of Science and Technology, Nomi, Japan
{miyaji,shohei-n}@jaist.ac.jp

2 Japan Science and Technology Agency (JST) CREST, Tokyo, Japan
3 Graduate School of Engineering, Osaka University, Suita, Japan

Abstract. Both scalability and flexibility become crucial for privacy
preserving protocols in the age of Big Data. Private Set Intersection
(PSI) is one of important privacy preserving protocols. Usually, PSI is
executed by 2-parties, a client and a server, where both a client and a
server compute jointly the intersection of their private sets and at the end
only the client learns the intersection and the server learns nothing. From
the scalable point of view, however, the number of parties are not limited
to two. In this paper, we propose a scalable and flexible multiparty PSI
(MPSI) for the first time: the data size of each party is independent
to each other and the computational complexity is independent to the
number of parties. We also propose d-and-over MPSI for the first time.

1 Introduction

Both scalability and flexibility become crucial for privacy preserving protocols
in the age of Big Data. Private Set Intersection (PSI) is one of important privacy
preserving protocols. PSI is executed by 2 parties, a client and a server, where
both compute jointly the intersection of their private sets and, at the end, only
the client learns the intersection and the server learns nothing. From the scalable
point of view, however, the number of parties are not limited to two. This is why
a multiparty PSI (MPSI) [8,14] becomes important. However, both are far from
scalability: the computational complexity depends on the number of parties, and
the data size of each party is equal to each other in [14] and [8] computes only
the approximate number of intersection.

In this paper, we propose a scalable and flexible MPSI: the data size of
each party is independent to each other and the computational complexity is
independent to the number of parties. Furthermore we also propose a new notion
of d-and-over multiparty PSI (d-and-over MPSI) for d ≤ n. A d-and-over MPSI
means to compute securely

⋂≥d
Sj =

⋃
n≥�≥d(Sj1 ∩· · ·∩Sj�

), where Si is a set of
Pi. Let us think the following scenario: There are n shops Pi in a shopping mall
whose customers’ list is Si. Shops think to promote number of customers each
other and plan to have a promotion campaign. In the promotion campaign, a

This study is partly supported by Grant-in-Aid for Scientific Research (C)
(15K00183) and (15K00189).

c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 376–385, 2015.
DOI: 10.1007/978-3-319-25645-0 26

A Scalable Multiparty Private Set Intersection 377

shop Pi wants to know customers who joins an intersection of 3-and-over shops
including Pi without learning any information about customers that are not in
the intersection. Such a scalable MPSI has, however, not proposed yet as far as
authors know.

This paper is organized as follows. Section 2 summarises security assump-
tion and building blocks used in our proposal. Section 3 explains the previous
results. Then, after investigating set operations required in the case of n parties
in Section 4, we propose concrete schemes of MPSI and d-and-over MPSI in
Section 5. Comparison with the previous MPSI [14] is shown in Section 6.

2 Preliminary

This section summarises security assumption and building blocks used in our
proposal.

2.1 Security Assumption

We describe two standard adversary models [10]: semi-honest adversaries and
malicious adversaries. In semi-honest adversaries model, all players act according
to their prescribed actions in the protocol. If a protocol is secure in a semi-honest
model, then no player gains information about other player’s private input sets,
other than what can be deduced from the result of the protocol. On the other
hand, in malicious adversaries model, an adversary player can behave arbitrarily.
In particular, we cannot hope to prevent a malicious player from refusing to
participate in the protocol, substituting an input with an arbitrary value, and
aborting the protocol prematurely.

The security assumptions used in our protocol are defined as follows.

Definition 1 (DDH Assumption). Let Fp be a finite field, g ∈ Fp with prime
order q and size of q is �. The DDH(Decisional Diffie-Hellman) problem is hard
in G if, for any efficient algorithm A, there exists ε > 0 and the following
probability is satisfied: |Pr[x, y ← {0, 1}� : A(g, gx, gy, gxy) = 1] − Pr[x, y, z ←
{0, 1}� : A(g, gx, gy, gz) = 1]| < ε.

2.2 Bloom Filter

A Bloom filter [2], denoted by BF, is a space-efficient probabilistic data structure,
that is used to test whether an element x is included in a set S. False positive
matches are possible, but false negatives are not, thus a Bloom filter has a 100%
recall rate. Elements can be added to the set, but not removed. A Bloom filter is
an array of m bits that can represent a set S with at most w elements. A Bloom
filter uses a set of k independent uniform hash functions H = {H0, ...,Hk−1},
where Hi : {0, 1}∗ −→ {0, 1, · · · ,m − 1}(0 ≤ ∀i ≤ k − 1). Here after, we denote
a Bloom filter parametrised (m, k) by BFm,k(S) that encodes a set S. Let us
explain how BF is constructed, which is given by const.BF (see Algorithm 1):

378 A. Miyaji and S. Nishida

output BFm,k(S) for input of a set S. Initially, all bits in the array are set to
0. To insert an element x ∈ S into the filter, the element is hashed using k
hash functions to get k index numbers. Bits at these indexes are set to 1, i.e.
set BFm,k[Hi(x)] = 1 for 0 ≤ i ≤ k − 1. To check if an item y is in S, we
execute check.BF (see Algorithm 2): y is hashed by k hash functions, and all
locations where y is hashed are checked. If any bit at the locations is 0, y is not
in S, otherwise y is probably in S. However, a false positive is possible, i.e. it is
possible that y is not in the set S, but all BF[Hi(y)] are set to 1. The false positive

probability p is [3]: p =
{

1 − (
1 − 1

m

)kw
}k

≈ {
1 − e−kw/m

}k
. For a given m

and w, the value of k that minimizes the false positive probability is: k = m
w ln 2.

When e−kw/m = 1/2, the false positive probability p = (1/2)k ≈ (0.6185)m/w.
The number z of 0 bits in a Bloom filter for a set S is strongly concentrated
around its expectation m(1 − 1/m)k|S| [3]. Therefore, given z, m and k, the size
of S is given approximately to |S| = ln(z/m)

k ln(1−1/m) .

Algorithm 1. const.BF(S)
Require: A set S
Ensure: A Bloom filter BFm,k(S)
1: for i = 0 to m − 1 do
2: BFm,k[i] ← 0
3: end for
4: for all x ∈ S do
5: for i = 0 to k − 1 do
6: j = Hi(x)
7: if BFm,k[j] = 0 then
8: BFm,k[j] ← 1
9: end if

10: end for
11: end for

Algorithm 2. check.BF(BF, Sq)
Require: A Bloom filter BFm,k(S), a set Sq

Ensure: A set S∩(= S ∩ Sq)
1: generates the empty set S∩ = {}
2: for all x ∈ Sq do
3: for i = 0 to k − 1 do
4: j = Hi(x)
5: end for
6: if all BFm,k[j] = 1 then
7: add x to the set S∩
8: end if
9: end for

2.3 Additive Homomorphic Encryption

An additive homomorphic encryption is important tool to deal with encrypted
data. One of typical additive homomorphic encryption is Paillier encryption[16].
In our scheme, an additive homomorphic encryption is used for matching, and,
thus exponential ElGamal encryption [4] is enough and more efficient than Pail-
lier encryption. In fact, results of decryption in ex-ElGamal can distinguish
whether two message m1 and m2 are equal although it can not decrypt a mes-
sage itself. Furthermore, ex-ElGamal can be extended to decrypt a ciphertext
distributedly, where n parties Pi(1 ≤ i ≤ n) jointly decrypt, which consists of
three functions:

Key Generation:
Let Fp be a finite field, g ∈ Fp with prime order q. Each party chooses xi ∈ Zq

A Scalable Multiparty Private Set Intersection 379

randomly and computes yi = gxi (mod p), then y =
∏n

i=1 yi (mod p) is a public
key and each xi is a share for a party to decrypt a ciphertext.

Encryption: Enc[m] → (u, v)
For a message m ∈ Zq with a public key y, choose r ∈ Zq randomly, compute
both u = gr (mod p) and v = gmyr (mod p), then output (u, v) as a ciphertext
of m.

Decryption: dis.Dec[(u, v)] → gm

Each party computes zi = uxi (mod p) and z =
∏n

i=1 zi (mod p) jointly and
decrypt the ciphertext as gm = v/z (mod p).

Both ex-ElGamal encryption and the above distributed version have the
following features: (1)an additive homomorphism for messages m1,m2 ∈ Zp :
Enc(m1)Enc(m2) = Enc(m1 + m2). (2) a scalar homomorphism for message m
and k ∈ Zq: Enc(m)k = Enc(km).

3 Previous Works

This section overviews prior works on PSI between a server and a client and
MPSI among n parties. In PSI, let server and client data sets be S = {s1, ..., sv}
and C = {c1, ..., cw}, where |S| = v and |C| = w. In MPSI, we assume that the
number of each party’s set is equal to each other for simplicity.

PSI Protocol Based on Polynomial Evaluation: Main idea is to represent
elements in C as roots of a polynomial, and send its encrypted polynomial to
a server; evaluate it on elements in S, which introduced by Freedman [9] for
the first time. This is secure against semi-honest adversaries under a public key
encryption. The computational complexity is O(vw) exponentiations, and com-
municational complexity is O(v + w). The computational complexity is reduced
to O(v log log w) exponentiations by using balanced allocations technique [1].
Kissner and Song extended protocols to MPSI [14]. The computational com-
plexity is O(nw2) exponentiations and communicational complexity is O(nw)
and it is secure against semi-honest and malicious adversaries (in the random
oracle model) using generic zero-knowledge proofs.

PSI Protocol Based on DDH: Main idea is to apply DDH assumption
[6]: after presenting each data by hash value {h(si)} and {h(ci)}, the client
sends a set of {h(ci)ri} encrypted by a random number ri; the server sends back
{h(ci)rri} and {h(si)r} for a random number r, finally the client evaluate S∩C by
decrypting to {h(ci)r}. This is secure against semi-honest adversaries under DDH
assumption. The total computational complexity is O(v + w) exponentiations
and the total communicational complexity is O(v+w). The security is enhanced
to against malicious adversaries in the random oracle model in [5] by using
blind signature. Any extension to MPSI based on DDH, however, has not been
proposed.

PSI Protocol Based on Bloom Filter: PSI based on Bloom filter is pro-
posed in [15] for the first time by just executing AND of Bloom filters of server

380 A. Miyaji and S. Nishida

and client. This protocol, however, is not secure because Bloom filter itself leaks
information about other party’s set. In [13], the security is enhanced by combin-
ing Bloom filters with the Goldwasser Micali encryption [11]. In a semi-honest
version, the computational complexity is both O(kw) hash operations and O(m)
public key operations and the communicational complexity is O(m), where (m, k)
is a parameter of Bloom filter. Another protocol combined Bloom filter, Obliv-
ious transfer extension [12,17], and garbled Bloom filter constructed newly is
proposed [7]. The main difference between Bloom filter and garbled Bloom filter
is that a Bloom filter is 1-bit array while a garbled Bloom filter is a λ-bit array.
To add an element x ∈ S to a garbled Bloom filter, x is split into k shares with
λ bits using the XOR-based secret sharing (x = x1

⊕
...

⊕
xk) and mapped xi

into an index of Hi(x). To query an element y, all bit strings at Hi(y) is XOR
them together. If the result is y, then y is in S, otherwise y is not in S. The
client uses Bloom filter BF(C) and the server uses garbled Bloom filter GBF(S).
Then, if an element x is in C ∩S, then for every position i it hashes to, BF(C)[i]
must be 1 and GBF(S)[i] must be xi. Thus, the client evaluates C ∩ S. The
computational complexity is O(kw) hash operations and O(m) public key oper-
ations and communicational complexity is O(m), where the number of public
key operations can be changed to O(λ) by using Oblivious transfer extension.
This is secure against semi-honest adversaries under secure Oblivious transfer
protocol. Another research computes the approximate number of multiparty set
union in [8]. However, MPSI based on Bloom filter has been proposed.

4 Multiparty Set Intersection

We investigate what set operations are required in the case of n parties. Let us
investigate the following scenarios: There are n medical institutions Pi whose
patient list is Si. Patients often use several medical institutions. Each medical
institution Pi wants to find common patients without learning any information
about patients that are not in Si. That is, P1 wants to know patients who uses
2-and-over medical institutions including Pi without learning any information
about patients that are not in Pi, which is denoted by ∩≥2Sj [1].

Let us formalize intersections of n parties. As we have seen the above
scenario, intersections of all parities and d-and-over parties for ∀d(≤ n) are
necessary, which are called MPSI and d-and-over MPSI, respectively. Here, d-
and-over MPSI is denoted by

⋂≥d
Sj =

⋃
n≥�≥d(Sj1 ∩ · · · ∩ Sj�

). For exam-
ple, given 4 party-set S1 = {g, h, i, j, f, n, o, k}, S2 = {a, h, n,m, b, i, o, �},
S3 = {f, n, o, k, e,m, l, d}, and S4 = {b, i, o, l, c, j, k, d}. Then MPSI is {o}; and
3-and-over MPSI is given by

⋂3
Si = {i, k, �, n, o}. Then, intersection of 3-and-

over MPSI given to each Pi is ∩≥3Sj [1] = {i, k, n, o}, ∩≥3Sj [2] = {i, �, n, o},
∩≥3Sj [3] = {k, �, n, o}, and ∩≥3Sj [4] = {i, k, �, o}.

Let us discuss how to achieve MPSI and d-and-over MPSI. If we apply PSI to
achieve MPSI, the computation and communication complexity seems to depend
to the number of parties, which exactly happens to [14]. On the other hand, if we
apply MPSI to achieve a d-and-over MPSI, we would need to execute MPSI in

A Scalable Multiparty Private Set Intersection 381

nCd times, which is rather wastefulness. This is why it is necessary to construct
MPSI and d-and over MPSI directly. On the other hand, privacy issues on MPSI
and d-and-over MPSI are informally give as follows.
MPSI Privacy: An MPSI scheme is party-private if any party Pi learns no

information about elements of other parties’ set except elements in ∩Sj .
d-and-over MPSI Privacy: A d-and-over MPSI scheme is party-private if

any party Pi learns no information about elements of other parties’ set except
elements in ∩≥dSj [i].

5 Scalable Multiparty PSI

Our schemes of MPSI and d-and-over MPSI will be presented after describing
protocol intuition briefly.

5.1 Protocol Intuition

The following notations are used in our two protocols.

– Pi: i-th party, where the number of parties is n
– D: dealer who does not know anything about inputs or outputs
– Si = {si,1, si,2, · · · , si,wi

}: a set of Pi, where |Si| = ωi

– ∩Sj or ∩≥dSj : intersection of all or d-and-over parties out of n
– ∩≥dS[i]: intersection of d-and-over parties possessed by Pi, ∩≥dS ⊂ Si

– Enc/dis.Dec: distributed ex-ElGamal encryption/decryption by all Pi

– m: size of Bloom filter
– H = {H0, ...,Hk−1}: set of hashes used in Bloom filter, where k is #H.
– � = [�, · · · , �] (1 ≤ � ≤ n): an m-dimension array, where all strings in the

array are set to �
– BFm,k(Si) = [BFi[0], · · · ,BFi[m − 1]]: Bloom filter on a set Si

– IBFm,k(∪Si) = [
∑n

i=1 BFi[0], · · · ,
∑n

i=1 BFi[m − 1]]: integrated Bloom filter
of n sets {Si}, where

∑n
i=1 BFi[j] presents the sum of all parties’ array.

– IBFm,k(∪Si) \ � = [
∑�

i=1 BFi[0] − �, · · · ,
∑n

i=1 BFi[m − 1] − �](1 ≤ � ≤ n):
�-subtraction from IBFm,k(∪Si).

Our scheme is flexible for the data size of party, and, thus, the data size of
each party is independent to each other. We introduce a dealer D to reduce the
computational complexity of parties. D can be outsourced since it does not know
anything about Si or |Si|. A distributed ex-ElGamal encryption among n-party
is used to achieve all computation without knowing Si themselves and at the end
decryption is jointly done. In both protocols, each Pi constructs BFm,k(Si) for a
set Si and encrypts each array by Enc. All encrypted Bloom filters are securely
added by a dealer D without decrypting. These procedures are executed in both
MPSI and d-and-over MPSI. In MPSI, D encrypts a randomized n-subtraction of
IBFm,k(∪Si), r(IBFm,k(∪Si) \ n). If x ∈ ∩Si, the corresponding array locations
in an encrypted array where x is mapped by k hashes is an encryption of 0; an

382 A. Miyaji and S. Nishida

encryption of randomized value otherwise. In d-and-over MPSI, D computes a
randomized encryption of �-subtraction of r(IBFm,k(∪Si) \ �) for d ≤ � ≤ n. If
x ∈ ∩�S for d ≤ ∃� ≤ n, the corresponding array locations in IBFm,k(∪Si) \ j for
� ≤ ∃j ≤ n where x is mapped by k hashes is an encryption of 0; an encryption of
randomized value otherwise. An difference from MPSI is that the corresponding
array locations in IBFm,k(∪Si)\� is not a necessary encryption of 0 even if x ∈ ∩�S.

5.2 MPSI and d-and-over MPSI

First, we present MPSI, MPSI consists of 4 phases: initialization, Pi’s Bloom
filter construction, D’s Encryption of n-subtraction of IBFm,k(∪Si), and, finally,
Pi’s MPSI computation. As system parameters, a finite field Fp and a base-
point g ∈ Fp with order q for a distributed ex-ElGamal encryption (Enc,
dis.Dec), given to Pi and D, but both const.BF(S) and check.BF(BF, Sq)
are given to only Pi. When we encrypt or randomize a vector such as a
Bloom filter BFm,k = [a0, · · · , am−1], each location is encrypted or random-
ized independently: Enc(BFm,k) = [Enc(a0), · · · ,Enc(am−1)] or rBFm,k =
[r0a0, · · · , rm−1am−1] by r = [r0, · · · , rm−1] ∈ Z

m
q , respectively.

Initialization: Pi executes the following:

1. Generate a secret key xi ∈ Zq and compute a public key yi = gxi ∈ Zq and
broadcast yi to other parties.

2. Compute an n-party public key y =
∏

i yi whose secret key is x =
∑

xi.

BFm,k(Si) construction: Pi executes the following:

1. Do const.BFm,k(Si) −→ BFm,k(Si) = [BFi[0], · · · ,BFi[m−1]] (Algorithm 1).
2. Encrypt each array of BFm,k(Si) by using Ency with a public key y:

Ency(BFm,k(Si)) = [Ency(BFi[0]), · · · ,Ency(BFi[m − 1])].
3. Send Ency(BFm,k(Si)) to D.

Encryption of n-subtraction of IBFm,k(∪Si): D executes the following:

1. Encrypt IBFm,k(∪Si) by Ency without knowing IBFm,k(∪Si) as follows:
Ency(IBFm,k(∪Si)) =

∏n
i=1 Ency(BFm,k(Si)).

2. Encrypt IBFm,k(∪Si) \ n randomized by r = [r0, · · · , rm−1] ∈ Z
m
q :

Ency(r(IBFm,k(∪Si) \ n)) = (Ency(IBFm,k(∪Si)) · Ency(−n))r,
where Ency(−n) = [Ency(−n), · · · ,Ency(−n)].

3. Broadcast Ency(r(IBFm,k(∪Si) \ n)) to Pi.

MPSI computation: Pi executes the following:

1. All Pi jointly decrypt Ency(r(IBFm,k(∪Si) \ n)).
2. Execute check.BFm,k(r(IBFm,k(∪Si) \ n), Si) −→ ∩Si and output ∩Si.

Correctness of MPSI follows from the fact that if an element x is included in
∩Si, the corresponding array locations in Ency(r(IBFm,k(∪Si) \ n)) where x is
mapped by k hashes is an encryption of 0, which are decrypted to 1;an encryption
of randomized value otherwise.

A Scalable Multiparty Private Set Intersection 383

Next, we present d-and-over MPSI. Procedures of d-and-over MPSI is the
same as that of MPSI until D computes Ency(IBFm,k(∪Si)). So, we describe
after D computes Ency(IBFm,k(∪Si)).
Encryption of �-subtraction of IBFm,k(∪Si): D executes the following:

1. Encrypt IBFm,k(∪Si)\� randomized by r = [r0, · · · , rm−1] ∈ Z
m
q (d ≤ � ≤ n):

Ency(r(IBFm,k(∪Si) \ �)) = (Ency(IBFm,k(∪Si)) · Ency(−�))r.
2. Broadcast {Ency(r(IBFm,k(∪Si) \ �))}� (d ≤ � ≤ n) to Pi.

d-and-over MPSI computation: Pi executes the following:

1. All Pi jointly decrypt {Ency(r(IBFm,k(∪Si) \ �))}�.
2. Let CBF� be an m-array for d ≤ � ≤ n, where an array is set to 1 if and only

if the corresponding array of rIBFm,k(∪Si) \ � is 1, and others are set to 0.
3. Set CBF = CBF� ∨ · · · ∨ CBFn.
4. Execute check.BFm,k(CBF, Si) −→ ∩≥dS[i] and output ∩≥dS[i].

Correctness of d-and-over MPSI follows from the fact that if an element x ∈ ∩�S
for d ≤ ∃� ≤ n, the corresponding array locations in IBFm,k(∪Si)\j for � ≤ ∃j ≤
n where x is mapped by k hashes is an encryption of 0, which are decrypted to
1; an encryption of randomized value otherwise.

The security of both protocols is given as follows, whose proof will be pre-
sented in the final paper.

Theorem 1. If the Decisional Diffie-Hellman assumption holds, then both
MPSI and d-and-over are secure against semi-honest adversary.

6 Comparison

Table 1 compares the computational and communicational complexity of our pro-
tocol with [14]. Each protocol is secure against semi-honest adversaries without
the trusted third party under each security assumption of employed public key
encryption: [14] uses Paillier encryption (Decisional Composite Residue (DCR))
and our protocols use ex-ElGamal encryption (DDH). Bloom filter parameters
(m, k) used in our protocol are set as follows: k = 80 and m = 80ω/ ln 2, where
ω is the maximum |Si| = ωi. Then, the false positives probability is given by
p = 2−80. Pi’s dominant computational complexity is Bloom filter construction
and MPSI or d-and-over MPSI computation, which is O(ωi) and doesn’t depend
on the number of parties unlike [14]. D’s dominant computational complexity
is n-subtraction of IBFm,k(∪Si), which is O(nω) in both MPSI and d-and over
MPSI. Our scheme is flexible for the data size of party, and, thus, the data size
of each party is independent to each other. An approach to compute approxi-
mate number of MPSI is proposed in [8] by using features of Bloom Filter. Our
protocol can be converted to compute easily approximate number of | ∩ Sj | or
| ∩≥d S[i]|.

384 A. Miyaji and S. Nishida

Table 1. Comparison of MPSI

Protocol [14] Our protocol

Computational complexity O(nω2) Pi : O(ωi), D : O(nω)

Communicational complexity O(nω) O(nω)

Number of input data |S1| = ... = |Sn| any

Privacy S1, ..., Sn S1, ..., Sn, |S1|, ..., |Sn|

7 Conclusion

In this paper, we have proposed a scalable and flexible multiparty PSI (MPSI).
We have also proposed a new notion of d-and-over MPSI and presented a con-
crete protocol. Our schemes are flexible: data size of each party is independent
to each other. We also introduce a dealer D to reduce the computational com-
plexity of parties, who acts as opposed to the trusted third party and does not
know anything about inputs or outputs (including its size), and, it thus can
be outsourced. Thanks to D, Pi’s, computational complexity is O(ωi), which
doesn’t depend on the number of parties unlike [14].

References

1. Azar, Y., et al.: Balanced allocations. SIAM journal on computing 29(1), 180–200
(1999)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

3. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.
Internet mathematics 1(4), 485–509 (2004)

4. Cramer, R., et al.: A secure and optimally efficient multi-authority election scheme.
European transactions on Telecommunications 8(5), 481–490 (1997)

5. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010)

6. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010)

7. Dong, C., et al.: When private set intersection meets big data: an efficient and
scalable protocol. In: ACMCCS 2013, pp. 789–800. ACM (2013)

8. Egert, R., Fischlin, M., Gens, D., Jacob, S., Senker, M., Tillmanns, J.: Privately
computing set-union and set-intersection cardinality via bloom filters. In: Foo, E.,
Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 413–430. Springer, Heidelberg
(2015)

9. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set
intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

10. Goldreich, O.: Secure multi-party computation. Manuscript, Preliminary version
(1998)

A Scalable Multiparty Private Set Intersection 385

11. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of computer and sys-
tem sciences 28(2), 270–299 (1984)

12. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

13. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryp-
tion. In: ACMCCS 2012, pp. 85–86. ACM (2012)

14. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

15. Many, D., et al.: Fast private set operations with sepia. Technical Report 345 (2012)
16. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer,
Heidelberg (1999)

17. Rabin, M.O.: How to exchange secrets with oblivious transfer. Tech. Memo, TR-81
(1981)

	A Scalable Multiparty Private Set Intersection
	1 Introduction
	2 Preliminary
	2.1 Security Assumption
	2.2 Bloom Filter
	2.3 Additive Homomorphic Encryption

	3 Previous Works
	4 Multiparty Set Intersection
	5 Scalable Multiparty PSI
	5.1 Protocol Intuition
	5.2 MPSI and d-and-over MPSI

	6 Comparison
	7 Conclusion
	References

