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Preface

This volume contains the papers presented at NSS 2015: The 9th International
Conference on Network and System Security held during November 3–5, 2015, in
New York City, New York, USA. NSS 2015 was organized and supported by Pace
University and New York Institute of Technology (NYIT). Since its inauguration in
2007, NSS has become a highly successful series of annual international gatherings, for
academic and industrial researchers and practitioners to exchange ideas in the area of
network and system security. Previous editions of NSS were held in: Xi’an, China
(2014); Madrid, Spain(2013); Wu Yi Shan, China (2012); Milan, Italy (2011);
Melbourne, Australia; (2010); Gold Coast, Australia (2009); Shanghai, China (2008);
and Dalian, China (2007).

The conference received 110 submissions. Each submission was carefully reviewed
by at least three, and mostly four, Program Committee members. The Program Com-
mittee decided to accept 23 full papers and 18 short papers. The program also included
three invited talks, which were given by Professor Steven M. Bellovin (Columbia
University, USA), Professor Michael Reiter (University of North Carolina at Chapel
Hill, USA), and Professor Gene Tsudik (University of California, Irvine, USA).

We would like to thank all authors who submitted their papers to NSS 2015, and the
conference attendees for their interest and support, which made the conference pos-
sible. We further thank the Organizing Committee for their time and efforts; their
support allowed us to focus on the paper selection process. We thank the Program
Committee members and the external reviewers for their hard work in reviewing the
submissions; the conference would not have been possible without their expert reviews.
We also thank the invited speakers for enriching the program with their presentations.
We thank Professor Yang Xiang, Chair of the NSS Steering Commitee, for his advice
throughout the conference preparation process. Last but not least, we thank EasyChair
for making the entire process of the conference convenient.

We hope you find these proceedings educational and enjoyable!

November 2015 Meikang Qiu
Shouhuai Xu
Moti Yung

Haibo Zhang
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Dandelion - Revealing Malicious Groups
of Interest in Large Mobile Networks

Wei Wang(B), Mikhail Istomin, and Jeffrey Bickford

AT&T Security Research Center, New York, USA
{wei.wang.2,mikhail.istomin,jbickford}@att.com

Abstract. There are an enormous number of security anomalies that
occur across the Internet on a daily basis. These anomalies are typi-
cally viewed as individual security events that are manually analyzed
in order to detect an attack and take action. Important characteris-
tics of an attack may go unnoticed due to limited manual resources.
Mobile attacks introduce further complexity by typically traversing mul-
tiple types of networks making correlation and detection even more chal-
lenging. In this paper, we propose a system Dandelion, which aims to
automatically correlate individual security anomalies together to reveal
an entire mobile attack campaign. The system also identifies previously
unknown malicious network entities that are highly correlated. Our pro-
totype system correlates thousands of network anomalies across both
the SMS and IP networks of a large US tier-1 mobile service provider,
reducing them to approximately 20 ∼ 30 groups of interest a day. To
demonstrate Dandelion’s value, we show how our system has provided
the critical information necessary to human analysts in detecting and
mitigating previously unknown mobile attacks.

1 Introduction

The landscape of attacks in mobile networks has expanded rapidly in the past
several years [3,20]. Unique features on smartphones have made attacks eas-
ier, resulting in a wide range of threats, such as voice call fraud, SMS message
phishing, spyware, and other malware driven attacks [16]. Shortened URLs and
limited screen sizes make phishing attacks a prime infection vector for mobile
devices. Attackers have also found unique ways to monetize their malicious
campaign through the use and enrollment of premium services [18] and most
recently through mobile ransomware, which has plagued many third party app
markets [19].

On the defense side, detecting an attack in mobile networks is typically com-
plicated and time consuming. Attacks typically traverse through multiple differ-
ent networks, such as voice, SMS, and the Internet. If detection only occurs in
one type of network, the complete picture of an attack may be missed. Attacks
also frequently change, rendering mitigation attempts on a single attack compo-
nent useless. The mobile network is also unique in that there is zero tolerance
for false positives when mitigating mobile attacks. Unlike simply blocking access
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-25645-0 1
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to a domain or IP address, mitigation on a mobile attack may end up canceling
phone numbers or premium short code services. For this reason, it is very crucial
that an attack is thoroughly studied and fully understood before any action is
taken. The large volume of anomalies that must be manually investigated results
in a daunting task.

There have been previous studies on detecting malicious campaigns across
the Internet [8,14]. Previous work has typically relied on traditional blacklists
to identify additional malicious relationships. In our case, the system is not
limited by only anomalies that are known to be malicious, it can begin with
potential attack components, such as third-party app download sites [16] and
newly registered domains [12], so that new emerging attacks can be revealed.
Though previous work on detecting threats in the mobile network solve certain
aspects of the problem [4,5,7,9,21], we provide a mechanism to reveal entire
attack campaigns through various types of correlation across multiple types of
network data.

Motivated by the uniqueness of the problem, we propose a system named
Dandelion. Dandelion ingests network data and security anomalies to automati-
cally detect entire attack campaigns, including previously undiscovered malicious
network entities. Correlation will be made based on relationships among network
entities, defined as phone numbers, short codes, domains, and IP addresses.
In our study, we will introduce two types of relationships, “share-user” and
“share-owner”. The “share-user” relationship correlates network entities within
an attack campaign due to the fact that they share a significant number of
infected users. Alternatively, the “share-owner” relationship correlates network
entities created by the same attacker. These relationships produce a manageable
number of groups of interest which contain network entities that are highly cor-
related to security anomalies. For example, users infected with a malicious app
may all show network communication with a common C&C server. As a result
of Dandelion, these same users are observed downloading the same application
from a third-party app market, identifying the infection vector of the attack.

The contribution of the paper is twofold. First, the system can reveal pre-
viously unknown network entities that are involved in entire attack campaigns
across multiple networks. This provides more meaningful information to human
analysts when compared to individual security anomalies. The system has
detected real malicious campaigns in a large Tier-1 US mobile network. Sec-
ondly, the system is scalable and can process billions of data records on com-
modity hardware. We will show how the system processes a large amount of data
balancing the tradeoff between computer memory and disk storage. In practice,
Dandelion reduces thousands of security anomalies across multiple networks to
20 ∼ 30 suspicious groups of interest on a daily basis. The system has success-
fully aided human analysts in detecting newly emerging malicious campaigns as
well as the evolution of existing campaigns within the mobile network. We will
present details of two real-world malicious campaigns that were discovered using
Dandelion, one that turned users into an SMS gateway and the other performing
mobile click fraud that has not been reported in any major social media.
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2 Data Overview

Dandelion uses a dataset of SMS records and IP flows collected by a large US
mobile carrier. All phone numbers are anonymized with randomized unique val-
ues to protect privacy. Each SMS record is simply a time-stamped tuple, indi-
cating the source and destination anonymized phone number. IP data records,
similarly, consists of time-stamped tuples indicating the anonymized phone num-
ber and the domain visited. We also use an internal Whois database [23] to col-
lect domain registration information used to illustrate the “share-owner” rela-
tionship. To reduce the commonality between users caused by highly popular
domains and SMS short-codes (i.e Google, 224444), we remove the corresponding
data records from our dataset via a whitelisting process. Due to required sam-
pling caused by volume constraints and whitelisting, our weekly dataset consists
of approximately 40 million unique communication edges among 8 million unique
entities. Among these, approximately 4.5 million entities represent anonymized
phone numbers and 20 thousand represent domain registration email addresses.
All other entities represent domains or IP addresses.

A list of security anomalies are used as input to the system. Categories of
security anomalies include SMS spammers, known C&C domains/IPs, phishing
sites, third-party app markets, and newly visited domains within the last 30 days.
It is important to note that security anomalies are not necessarily malicious, but
instead may represent network entities more likely to be used in an attack (i.e.
third-party app markets, newly visited domains) [12,25].

3 System

Figure 1 represents the methodology of our system which will be explained in
the following section. Dandelion begins with a large amount of SMS, IP data,
and domain registration records which represent communication and domain
ownership throughout the mobile network. Based on these records, the system
identifies strong relationships between network entities by generating a relation-
ship graph. The relationship graph is a graph in which nodes are network entities
and an edge between two nodes represents “share-user” or “share-owner” rela-
tionships. The system then identifies nodes that are highly correlated with secu-
rity anomalies through the relationship graph. This naturally reveals groups of
interest containing newly discovered network entities that are highly correlated
with security anomalies. Figure 1 summarizes how Dandelion reduces millions of
data records to approximately 20 ∼ 30 groups of interest, which is a manageable
number for humans to investigate.

3.1 Relationship Graph Generation

In this section, we will explain how Dandelion generates the relationship graph
from the data records. The relationship graph is a graph in which edges represent
the presence of relationships between nodes, not direct communication. For exam-
ple, in the relationship graph, a short code and domain name may have an edge
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Domain 
or IP
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number

registration 
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(a) Data records (b) Relationship graph (c) Groups of interest
Security  

Anomalies

Fig. 1. This figure illustrates how Dandelion begins with millions of data records and
generates a relationship graph of correlated network entities. Finally, the system reveals
several groups of interest with network entities highly correlated to security anomalies.

between them if they share a significant number of users in the communication
graph; i.e. the same users sent an SMS message to a short code and sent IP packets
to the same domain name. We define these types of edges as share-user edges. The
other type of edge in the relationship graph is a share-owner edge. Two domains
will have an edge between them in the relationship graph if they are registered with
the same email address.

Each day, Dandelion aggregates the data records from the previous seven
days to generate the relationship graph. Each edge in the relationship graph is
assigned a relationship coefficient, or edge weight, which quantitatively measures
how two entities are correlated. We compute the relationship coefficient R(a, b)
between two nodes a and b. If both a and b are domains registered under the same
email address, an edge between them is created signifying the “share-owner”
relationship with relationship coefficient set to 1. Otherwise, edges between nodes
are based on the “share-user” relationship, quantified by the Dice association
coefficient [24]. Specifically, this is depicted using the following formula:

R(a, b) =

{
1 if a and b are both domains sharing registration email

|A∩B|
min{|A|,|B|} otherwise

with |A| ≥ τ, |B| ≥ τ

where A and B represent the set of users that communicate with nodes a and
b respectively, and | · | represents the cardinality of a set. The condition of
|A| ≥ τ, |B| ≥ τ is introduced to avoid correlation between nodes that have
an insignificantly small number of users.

The Dice association coefficient, which uses the minimum cardinality of two
sets in the denominator, ensures that relationships are maintained even if a
single node is largely popular. For example, a SMS spammer may send a phish-
ing domain to thousands of users, of which only dozens may visit. By using
other similarity metrics, such as the Jaccard index, correlation between the SMS
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spammer and the phishing domain will be weakened and mistakenly left out of
the final groups of interest.

3.2 Percolation on the Relationship Graph

In this section, we will show how the system starts with various seed nodes and
propagates throughout the relationship graph to find other related nodes of inter-
est. Seed nodes are network entities that represent potential threats, identified by
security anomalies. The process will be referred to as suspiciousness percolation on
the relationship graph. Entities that are highly correlated to these seed nodes will
be revealed, displaying a holistic picture of an entire attack campaign and quickly
supplying a human analyst with valuable information. Though similar approaches
have been used in the past to propagate trustworthiness across the web, such as
TrustRank [11], Dandelion relies on various relationships, instead of just commu-
nication, to identify strongly correlated entities across multiple networks.

There are several intuitions that are taken into consideration when designing
the suspiciousness percolation algorithm. First, we percolate suspiciousness to a
neighboring node by multiplying a node’s suspiciousness by the edge’s relation-
ship coefficient. Suspiciousness is aggregated together for nodes with multiple
neighbors with a suspiciousness score higher than zero. Nodes with multiple
edges of high relationship coefficients will typically result in a higher suspicious-
ness score. Second, to avoid over-percolation, we normalize the relationship coef-
ficients across the number of edges of a node. This ensures that nodes with a
significantly large amount of edges do not introduce unrelated entities in the
final groups of interest. Lastly, we introduce a decay factor to ensure that nodes
far away from the initial seed, are less likely to be included in a group of interest.

Based on these intuitions, the suspiciousness percolation algorithm is
designed as the following. Assume we have the complete relationship graph with
N nodes, represented as an adjacency matrix T, which is square and symmetric.
An off the diagonal element tij(i �= j) equals the relationship coefficient R(i, j)
defined as the equation from section 3.1, representing the relationship correla-
tion between a node pair (i, j). Elements on the diagonal are all ones. Finally,
M seed nodes are represented as set B. We quantify the suspiciousness score
(abbreviated as score hereafter) for all nodes in the graph by a numeric vector,
represented as S, with si (for i ∈ [1, N ]) being the score for a single node i. Ini-
tially, all nodes will have zero scores, except for seed nodes which have scores of
one (si = 1 if i ∈ B). Here ll security anomalies as treated as equally important.

The off the diagonal elements in each column of the matrix T are normalized
to the sum of one so that the suspiciousness score of one node will be split among
all edges of its neighboring nodes. The elements on the diagonal will remain to be
ones. By multiplying T×S, suspiciousness is aggregated together for nodes with
multiple neighbors, thus the first intuition is satisfied. Given column j, if many
column elements are nonzeros (meaning node j has many connected nodes), then
by normalizing the column coefficients to one, each coefficient will be small,
penalizing nodes with a large amount of edges and avoiding over-percolation.
To satisfy the third intuition, we introduce a decay factor β which is a numeric
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score to reduce the impact of suspiciousness for nodes that are long distance
away (measured as the number of hops) from seed nodes. The penalty will grow
as a function of the number of hops from seed nodes as iteration increases. Lastly,
the system will favor seed nodes by adding some suspiciousness back during each
iteration via (1−β)×S0, where S0 is the initial vector of seed node elements with
a value of one. In this way, the original seed nodes will maintain a high score in
the final result. We will iteratively compute the S, as S = β×T×S+(1−β)×S0

for each iteration, to simulate suspiciousness percolating from seed nodes to all
others. The convergence is measured as the Euclidean distance of S between
two consecutive iterations. We observed that with a few number of iterations,
the suspiciousness scores will converge to a stable state. The main equation for
iteration may cosmetically resemble the TrustRank algorithm, but our definition
for T is quite different as we use the relationship graph. The final output of the
percolation algorithm is the vector S, which contains suspiciousness scores for
all nodes in the relationship graph.

3.3 Implementation

Our prototype system is running on a shared secure analysis environment that
is both limited in memory and computational resources. Fortunately, generating
the entire relationship graph is not necessary, as we only need to identify network
entities that are highly correlated with security anomalies. Based on this fact,
our prototype is implemented in a scalable way to deal with our large data set
and computational constraints.

The data structure and retrieval process is overall fairly similar to the one
described by Brin and Page in their original web search engine system [6]. As
shown in Figure 2, we keep two separate pieces of information to represent the
communication graph. The first is a file that contains all information about the
various nodes, called node records. Each record contains the node id, name, node
type, and list of neighbors. The offset of each node record from the file header
is calculated for all nodes and stored within a second data structure called the

Fig. 2. Node list loaded in memory and node records stored on disk storage.
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Fig. 3. A dandelion graph of one center node, with its rim nodes being connected
through neighbor nodes.

global node list. This data structure contains a mapping between node id and
record offset. The global node list is typically loaded into memory while the node
records are stored on disk. This type of data structure avoids having to load all
of the node information into memory in order to do our analysis.

We iteratively traverse the graph during the percolation stage and generate
relationships on the fly. The process starts with a list of seed nodes that are
obtained via the various security anomalies as mentioned in the previous sections.
Small relationship graphs, their relationship coefficients, and suspiciousness are
all iteratively generated through these seed nodes via dandelion graph generation.

The dandelion graph, is a very small communication graph consisting of a
center node, it’s neighbors, and it’s neighbor’s neighbors, which we define as a
rim node. An example of a dandelion graph is shown in Figure 3. When generat-
ing the dandelion graph, the relationship coefficient, is calculated between each
rim node and center node. Recall, that we are measuring relationships between
two nodes that share the same entity. Once we have calculated the relationship
coefficient for each pair of nodes, these values are normalized and suspiciousness
is percolated to each rim node as explained in Section 3.2. Rim nodes with a
suspiciousness value above a specific threshold are added to a work queue for
the next iteration. Dandelion graphs will be generated for each node in the work
queue iteratively until the process converges and terminates.

Once the process terminates, the traversed nodes and their edges are used to
produce groups of interest. A 2D graph is rendered with nodes of various shapes
and colors, as well as edges of different thickness, to help a human analyst clearly
distinguish entities or catch interesting patterns. Dandelion has been successfully
reducing 1500 ∼ 2000 individual security anomalies per day to approximately
25 ∼ 30 suspicious groups of interest, by analyzing 40 million data records in an
average time of 100 minutes.

4 Evaluation and Case Studies

Due to the small number of ongoing mobile threats at any given time in the
US mobile market [13], it is very difficult to evaluate the system by traditional
metrics. Even with a small number of attacks, it is highly important for mobile
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(a) (b) (c)

Fig. 4. Node suspiciousness score overview and its relationship with seed nodes.

service providers to detect and mitigate security issues that impact network
reliability and customer satisfaction. We will give concrete results to prove that
our findings are consistent with Dandelion’s design and report several real world
cases where Dandelion aided in detecting malicious activities on a Tier-1 US
mobile service provider’s network.

By experimenting with various parameters of Dandelion, we found that
the suspiciousness percolation typically converges after 4 iterations, with the
Euclidean distance between the last two iterations being less than 10−7. This
observation is similar to the study in [8] where they used the maximum iteration
of 5 to find p2p botnets. We also chose a value of 0.6 for the decay coefficient β to
limit the number of nodes introduced during the percolation process. Figure 4(a)
is the result of the suspiciousness scores for nodes after percolation in a descend-
ing order (log-scale) during a single day’s run, while other runs behave similarly.
The scores associated with the seed nodes (represented in red) are higher than
the ones for others. This is consistent with the design where a constant factor
1 − β ensures that the seed nodes are ranked highest in the end.

Figure 4(b) shows the boxplot of node suspiciousness scores for different
numbers of hops from seed nodes in the relationship graph. The mean of the
suspiciousness scores decreases as the number of hops increases. In general, the
scores between the 1st and the 3rd quartiles decrease as well. This is consistent
with our intuition that the the farther away from a seed node, the less likely
a node should be related to it. Figure 4(c) shows node suspiciousness scores
versus the number of directly connected seed nodes in the relationship graph. It
represents that as the number of directly connected seed nodes increases for a
node, its suspiciousness score increases.

4.1 Bazuc - “Free” International SMS

Our first example will demonstrate that our system can reveal interesting new
pieces of information by utilizing data sources across different communication
networks such as SMS and IP networks. In this case, customers downloaded an
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192.***.***.200

3823276505042059082

6930445400168839212

8187728843331830845

3158709122848648808

8327072724209918585

Fig. 5. The relationship graph for devices infected with Bazuc (anonymized numbers
in eclipse shape) share relationships with the same IP address (in box shape) which
represents the C&C.

application from the Google Play store 1 which advertised itself as “Earn Money
by Installing this App” [17].

What it Does: The “Bazuc Earn Money” application turns a user’s phone
into an SMS proxy and claims to pay the user a small amount of money for each
message sent. It is not clear exactly who is using the SMS proxy service, as a later
report by Lookout identified that their alternative “Free International SMS” app
was not functional 2. Around the time of investigation, SMS spam detection
algorithms identified an abnormal increase in international SMS activity for
some customers with the Bazuc application installed. We believe the SMS proxy
service was being used or resold by the authors, potentially for use in spamming
campaigns.

Analysis via Dandelion: The initial seed data for this analysis is the result
of the SMS spam detection algorithm which generates a daily report of phone
numbers with abnormal SMS behavior. The exact method and details of this
algorithm are out of scope of this paper, though it is similar to various previous
work on SMS spam detection [9,21]. Using this initial list of phone numbers
with abnormal SMS activity as seed nodes, Dandelion automatically generates
a relationship graph using both their SMS and IP traffic. On average, using a
few hundred spammers as seed nodes produces 0 ∼ 3 graphs daily.

Figure 5 shows the relationship graph for users with the Bazuc application
installed. This graph was initially of interest due to the fact that five users with
abnormal SMS activity not only share a fair number of users, but also share

1 This application was reported to Google Play due to the fact that it violates the
terms of service and is no longer available via the official application market.

2 It is important to note that we first detected this app via Dandelion in October
2013, prior to any third party reports being released.
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adscam****.net

yesa****.com

rainb****.comcompute-1.amaz*****.com

amazecell.go2****.org

tracking****.com

house2****.com

tracki****.com

clicks.mam****a.com

shopping****.com

serw.clic****.com

clicks.xmlmo******.com

ads.cpxc*****.com

click.adol****.com

adserving.cpminv******.com

pinks****.com

track.keeple*******.com

hors****.com

myroit*******.com

sanamra****@yahoo.com

yes****@yahoo.com

pinkie****.com

shopping********.com

www.tar****.net

adsps******.com

compare-e**********.net

regio******.com

priority********.com

motio*****.com

newst*****.com

clk.rele****.com

sport******.com

save****.com

tops*****.net

clip****.com

itrav*****.com

products*********.com

67.***.***.218

conte*****.com sweetn******.info

hotel-s********.com

mlp****.com

tra****.net

eurochi********.com

cdn****.com

free-te********.com

Fig. 6. Fake Flash player: a mobile click fraud with three groups of interest which
represent the evolution of the campaign over ten months. Domains in red rectangles
are download sites as seed nodes.

communication with the same IP address. It is important to note that no phone
number within the graph communicated with the central IP address during the
previous 20 days.

The common IP address shared among these spammers resulted in a need for
immediate attention. Previous study has shown that professional SMS spamming
campaigns rarely have any IP traffic, let alone communication with the same
common IP address [21]. The resulting graph more closely resembles botnet-like
behavior. Analysts working along with customer service representatives were able
to identify that the Bazuc application was the cause of this problem. Detailed
manual analysis of the application binary confirmed the central IP address as the
command and control server of the application. Though in this case, Dandelion
did not specifically identify the cause of the problem, we were able to help identify
the set of users that were potentially impacted by similar botnet-like behavior
and help analysts take action through remediation.

4.2 Yet Another Fake Flash Player - Mobile Ad Fraud

Our next case is an example of a malicious campaign that uses mobile traffic for
monetary gain. In this case, the adversaries create a botnet of mobile devices and
use them for online advertising fraud. Though not necessarily a significant impact
to the provider itself, these types of malicious campaigns can be of annoyance
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to the customer because of advertisement pop-ups and significant background
traffic, resulting in possible data overages or increased battery consumption.

What it Does: Over the past several years, there have been numerous cases of
Android malware being encapsulated under the disguise of Adobe Flash Player.
For example, the ScarePackage ransomware app claimed to be Adobe Flash
Player, but locked the device and required a user to submit a payment order to
unlock the phone [19]. Other types of “fake” Flash Players have had the ability
to send premium SMS messages or steal sensitive information off of the device.
In April 2014, Dandelion detected a similar type of malicious Flash Player appli-
cation which we have called “Yet Another Fake Flash Player”. This application
creates a botnet for use in mobile advertising fraud and to our knowledge has
not be reported in the mainstream media.

Users receive the fake flash player application either through drive by down-
loads or by clicking on a link to watch a video that “requires” flash. In some
cases, we have seen users be redirected from pornography and live sports TV
sites. When the user installs and runs the application for the first time, a back-
ground service is started and the application removes its icon from the home
screen and application tray in order to hide itself. In the background, the appli-
cation performs click fraud operations via URLs received by the command and
control server. After multiple redirects and requests, an ad click is simulated in
the background and the advertiser’s website is automatically displayed on the
user’s device, most likely frustrating the user due to frequent random pop-ups.

Analysis via Dandelion: In this example, we use a different type of security
event as the seed data to start the suspiciousness percolation. Because malicious
applications tend to reside on third party application markets, domains hosting
APK files are used as seed nodes for analysis. On average, ∼ 200 domains are
associated with third-party app downloads per day, resulting in an average of 10
groups of interest.

Over the last ten months, three different groups of interest for Yet Another
Fake Flash Player have been identified via Dandelion. Figure 6 combines these
groups of interest into one visualization. For privacy reasons, all domains have
been obfuscated for inclusion in this paper.

Three sites, pinkie****.com, mlp****.com and rainb****.com (marked in
red), were observed to host Android APK files and served as seed nodes to Dan-
delion. For example,rainb****.com hosted downloads for FlashPlayer.apk. In
this case, users who visited rainb****.com also visited various domain names
that appeared to be related to ad networks, such as click.adol****.com and
adscam****.net. Domains such as shopping****.com and house2****.com
appear to be normal websites by name, but their popularity within the network
is significantly low. Besides the share-user relationship, Dandelion also revealed
the fact that some domains were registered with the same email address. Five
domains, such as tracking****.com and pinkie****.com share the same reg-
istration email of sanamra****@yahoo.com, while another three domains share
yes****@yahoo.com.
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Based on the syntax of domain names and their relationships, we hypothe-
sized that this application was related to mobile advertisement fraud. To confirm
this suspicion, we briefly browsed some of the domains to understand their poten-
tial role in this suspicious graph. For example, shopping****.com states that
“This domain is used to track traffic and ensure its quality to our advertisers”.
Interestingly enough, tracki****.com also displays the same exact message,
while house2****.com appears to be a legitimate website, but it’s content is
unoriginal and replicated from various places on the Internet.

To confirm our hypothesis, we downloaded the application and ran it through
a static and dynamic analysis platform, which was built in-house using open
source tools [1,2]. Our analysis of the application confirmed that this graph was
indeed related to a mobile click fraud campaign. On execution, the application
connects to pinks****.com, a hard coded command and control server within
the APK binary itself. This C&C server is periodically checked and obtains
a search URL to shopping****.com. This redirects to tracki****.com which
then redirects to the advertisement network clicks.mam****a.com. From here,
the device is directed to house2****.com with a prepopulated search term, such
as partynextdoor+thirsty+download. The device is then redirected through
a series of legitimate advertisement networks until the advertiser’s website is
displayed to the user.

Our analysis helped confirm our hypothesis that this application was indeed
being used for malicious activity. Dandelion helped identify the application as
potentially suspicious and provided a list of domain names of interest that may
correlate with a malicious campaign. Manual analysis was quickened due to the
fact that the APK analysis could be easily correlated with what we observed in
the graph as Figure 6. The graph also shows other domains involved, which may
not be identified with one dynamic run. Overtime, Dandelion also allowed us to
observe changes in the this click fraud campaign and have been able to track the
various download sites and command and control servers.

5 Related Work

There have been many studies related to detecting malicious activity across
the Internet using clustering approaches [8,10,11,14,15,22]. An early work,
TrustRank [11] was proposed to combat web spam by using potentially benign
and trustworthy web pages to propagate a trust score across the web. Gu et. al.
[10] applied clustering analysis using features extracted from network traffic to
reveal groups of botnets. Li et. al. [14] crawl millions of seed URLs, both benign
and malicious, to identify previously unknown domains and IP addresses that
are dedicated to malicious web activity. Nadji et al [22] used malicious domains
and IP addresses to build a graph of malicious and related entities using histori-
cal DNS data. Under the argument of “guilty by association”, a mutual contact
graph-based clustering is proposed to detect P2P bots in network flow traffic by
Coskun et al [8]. Though similar in nature to these works, Dandelion specifically
focuses on the unique characteristics of mobile attacks, which typically span
multiple types of networks.
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There has been recent work specifically dedicated to detecting malicious
activities in mobile networks [4,5,7,9,21]. Corinna et al. proposed a pioneer
idea to combat fraudsters in mobile networks [7]. By tracking the communi-
cation graph evolving over time, the algorithm can detect fraudsters changing
from one account to another. Authors in [9] identified SMS spam with similar
content using Bloom filters, while [21] identified spammers by studying their
communication patterns compared with legitimate users. These studies aimed
to identify only one aspect of malicious activity, rather than revealing entire
malicious campaigns. Finally, closest to our work, Boggs et al. detect emergent
malicious campaigns by finding groups of abnormal entities in mobile networks
[5]. An anomalous behavior is taken into account only when a large number of
network users exhibit the same anomaly thereby reducing the false positives.
Complementary to this work, Dandelion focuses on correlating mobile network
entities together by using multiple types of relationships.

6 Limitations and Future Work

In this section, we will address several limitations that we found while testing the
system on real world data. The first limitation is that the system may include
“benign” entities in groups. Such entities could be new services emerging in
the network. Another limitation is that highly distributed attacks might avoid
detection if connectivity for each entity is significantly low. Lastly, if some stages
of an attack are related to popular entities, such as social media sites, these
entities may not appear in a group of interest. It is important to note that other
stages of this type of attack will still be revealed by Dandelion.

In the future, we would like to continue to extend Dandelion in several ways.
Once Dandelion is used by more analysts, we would like to incorporate feedback
from human analysts to remove nodes that are identified as legitimate from the
relationship graph. Newly confirmed malicious entities can also be added back
into the system to further expand the list of malicious entities. Because the
system can help observe groups over time, we would like to automatically detect
changes to attack campaigns to effectively mitigate threats as soon as possible.
For example, if a malicious domain name is blacklisted and quickly replaced by
another one, Dandelion would detect this new domain in the attack campaign.

7 Conclusion

In this paper, we propose a system that uses multiple relationships across dif-
ferent types of networks to correlate network entities and security anomalies
into groups of interest. These groups of interest represent an entire attack cam-
paign and help human analysts observe the complete picture of an attack, rather
than looking into individual anomalies one by one. Dandelion has successfully
revealed attacks in a large mobile network. The system has greatly increased the
efficiency of human analysts by shortening the time of detection and providing
information required for attack mitigation. Over time, we would like to continue
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to improve Dandelion by incorporating other sources of malicious information
as well as extend to other types of networks and data.
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Abstract. Wireless Sensor Networks (WSNs) have been substituting
for human senses to make human lives better by monitoring the environ-
ment and providing intelligence. Collected sensor data are used to make
decisions as a human does. Therefore, providing trustworthy sensor data
is crucial to make correct decisions. However, faulty sensors can give
incorrect information. In addition, since sensors are usually deployed in
unattended areas and can be compromised, cryptographic approaches
are insufficient. To address this problem, we propose a distance-based
trustworthiness assessment scheme. In our scheme, a centralized trust
assessment module outputs an absolute trust score of each sensed value
and the trust score of each sensor. The trust scores of sensed values are
calculated based on the differences of sensed values provided by a sensor
and its neighbors and the physical distances from the neighbors. Our
simulation results show that our scheme outputs practical and accurate
trust scores in a realistic environment where the sensed values of interest
gradually change over the monitored areas.

Keywords: Trustworthiness assessment in wireless sensor networks ·
Sensor trust assessment · Sensor trust management

1 Introduction

Along with the advance in sensors, network technologies and embedded devices,
sensor nodes in Wireless Sensor Networks (WSNs) have now become tiny and
inexpensive. In the near future, WSNs will behave as a digital skin providing
a virtual sense for physical environments. Collected sensed data can be utilized
for many critical tasks ranging from military tasks to civilian tasks such as
surveillance, fire detection, industrial facility monitoring and soil monitoring for
precision agriculture. In such applications, hundreds to thousands of tiny sensor
nodes are densely deployed and large amounts of sensed data are collected. The
collected sensed data are then used to make critical decisions.

However, since sensors are usually made with cheap hardware and deployed
in unattended hostile areas, they are exposed to the risks of being compromised
by attackers. Once sensor nodes are compromised, they may endanger the sys-
tem by injecting malicious false data. In addition, as pointed out in [5], in real
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 18–31, 2015.
DOI: 10.1007/978-3-319-25645-0 2
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applications, lots of incorrect sensed data are reported by faulty sensors. There-
fore, providing indications about the trustworthiness of collected data to data
users is crucial in order for these users to make correct decisions.

Approaches to score sensors or sensed data based on reputation or trust man-
agement schemes have been proposed. Such approaches can be categorized into
distributed and centralized approaches. In the distributed approaches [5,7,9],
each sensor has its own trust management module which evaluates the trust
scores of its neighbors. On the other hand, centralized approaches [6] assess the
trustworthiness of all sensors using the collected sensed data from the system
perspective. Since WSNs are self-organized and cooperatively operated in a dis-
tributed manner for networking or data aggregation, many schemes have focused
on how each sensor node builds trust scores about its neighbors. For example,
each sensor counts selfish routing misbehavior of its neighbors or compares its
sensed value with the sensed values of its neighbors. Then, each sensor node
establishes the trust scores of neighbors from its own point of view. While a
distributed approach is best suited for local decisions such as routing and data
aggregation, a centralized approach is required in order to make decisions from
the perspective of system operations. For example, by using the trust scores
about sensors, system administrators can execute corrective follow-up actions
such as replacing faulty or abnormal sensors, i.e. sensors with low trust scores,
with new sensors. In this paper, we focus on the centralized approach.

Although previous approaches provide effective methodologies for trustwor-
thiness assessment of sensors in WSNs, none of them have taken into account
the physical distances among each pair of sensors for calculating their trust
scores. In this work, we focus on the fact that the closer two sensors are, the
more consistent their sensed values are. A centralized trust assessment module
then computes absolute trust scores of sensors based on their sensed values and
their physical distances. The simulation results show that our trustworthiness
assessment scheme provides practical and accurate trust scores in realistic envi-
ronments where the sensed values of interest gradually change over the monitored
areas.

The rest of the paper is organized as follows. Section 2 discusses related
work and Section 3 introduces some motivating examples. Section 4 presents
our distance-based trustworthiness assessment scheme. Section 5 reports the
simulation results and Section 6 outlines conclusions and future work.

2 Related Work

The self-organizing nature of WSNs calls for distributed trust management
schemes [5,7,9]. Zhang et al. [9] proposed a trust-based framework for secure data
aggregation. The trustworthiness of each sensor in one cluster is evaluated by
using an information theoretic metrics under the assumption that multiple nodes
in one cluster sense the mean of the physical environment parameter of interest
independently. Probst et al. [7] presented a trust establishment scheme based
on computing statistical trust and a confidence interval around the trust based
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on direct and indirect experiences of neighbor’s behavior. Ganeriwal et al. [5]
proposed a framework by which each sensor node maintains reputation metrics
for neighbors. Using an outlier detection algorithm, the actions of neighbors
are classified as either cooperative or noncooperative and then the classification
results are given as input to a beta reputation system for the trust representation
of neighbors. Notice that such distributed schemes require additional memory
and computational resources for sensors. Furthermore, using such schemes for
already deployed WSNs is difficult since they require software updates all sensor
nodes.

Lim et al. [6] proposed a centralized scheme which evaluates the trust score
of values and nodes based on the sensed values and their provenance. The trust
score of a sensed value and the trust score of a sensor node periodically evolve
according to a cyclic framework by affecting each other. The scheme assumes
that the set of sensed values which are affected by an event can be determined.
Also, it assumes that the set of sensed values are equally affected by the event.
Based on these assumptions, the scheme calculates the mean (μ) and standard
deviation (σ) of all sensed values which are affected by the same event. Using μ
and σ, the distribution is modeled as a normal distribution N (μ, σ). Then, each
sensed value is scored based on the distribution. That is, the closer the sensed
value provided by a sensor is to the mean, the higher trust score is assigned
to the sensor. However, in ordinary monitoring applications, this approach has
four problems. First, defining an event may be impossible in many applications
or contexts. Second, determining the set of sensed values which are affected by
an event is difficult. Third, even if we can identify an event and the sensors
affected by the event, the event does not equally affect all these sensors. Fourth,
the scheme assigns relative trust scores to sensors since the scores are calculated
based on the distribution. That is, even though all sensors are working well, low
trust scores may be assigned to some sensors. These problems are discussed in
detail in Section 3.

Unlike [6], in this paper, we do not consider the provenance of a sensed value.
In [6], when a sensed value passes through intermediate sensor nodes, the trust
score of the sensed value is dominated by the worst node with the smallest trust
score since a malicious intermediate node may change the sensed value passing
the node. However, this assumption is too conservative since, as discussed in
[5], abnormal sensed values can be generated due to other reasons such as a
low voltage level, a faulty sensor module or abnormal natural phenomenon. We
believe that compromised nodes can be detected by distributed schemes [5,8]1.

None of the previous approaches take into account the correlation between
sensed values and their physical distances in the computation of the trust scores.
The physical distances between sensors are known by the system administrator
since location information of sensors as well as their sensed values are important
factors to be considered for decisions.

1 Notice that distributed schemes can be combined with centralized schemes to make
the system more robust.
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3 Motivating Examples

The typical applications of WSNs monitor large areas with hundreds or thou-
sands of sensors. In these applications, the sensed values reported by sensors at
a specific area may be very different from the sensed values reported by sensors
at a different area. For instance, consider the situation where sensors monitor
the temperature in a forest reserve as shown in Fig. 1. At night all sensors may

Fig. 1. An illustration of WSNs monitoring temperature

provide similar temperature values. However, in the daytime, the temperature
values may differ according to the presence of direct sunlight or the angle between
the sun’s rays and the surface. Assume that sensor A and B are normal, but
sensor C is abnormal. Sensor A and sensor B give a temperature of 30◦C while
most of sensors, except sensor C, give a temperature of under 30◦C. In this sit-
uation, we cannot determine the set of sensors which are affected by an event. If
possible, the sensors may not be equally influenced by the event. Nonetheless, if

Fig. 2. The topology of sensors in the Intel lab
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we define this kind of situation (without a specific event) as an ‘event’ and uti-
lize the normal distribution-based approach [6], the event will include the entire
sensed values. As a result, low trust scores will be assigned to sensor A and B
even if the values they provide are correct. Their trust scores may increase at
night since all sensors may provide similar temperature values and trust scores
are periodically re-assessed. However, the trust scores of sensor A and B will
eventually become low throughout the cyclic procedure if temperature values at
sensor A and B are higher than others in every daytime since such bad effects
are accumulated.

This phenomenon can be verified in a real test-bed experiment. We analyzed
the data collected from 54 sensors deployed in the Intel Berkeley Research lab [1].
As shown in Fig. 2, we focused on 9 sensors in three different areas. Sensor 1,
2 and 3 (cluster 1) are located in the center of the lab. Sensor 24, 25 and 26
(cluster 2) are located at the corner of the lab and sensor 52, 53 and 54 (cluster
3) are located in a conference room. Fig. 3(a) shows the temperature values of

(a) The temperature values of 9 sensors in
3 different areas

(b) The mean and standard deviation of
temperature values from 54 sensors

Fig. 3. Intel lab data from 9:13 AM to 9:32 AM

the 9 sensors from 9:13 AM to 9:32 AM and Fig. 3(b) shows the mean value and
standard deviation of temperature values generated by all sensors. The sensors in
cluster 1 output temperature values near the mean while the sensors in cluster 2
and 3 output temperature values far from the mean value. These differences are
due to various factors such as heat from PCs, the positions of air-conditioners
or heat from the sun. Such experimental results confirm two facts. First, even
though there is no specific event, some sensors output higher/lower temperature
values than the mean plus/minus the standard deviation. Therefore, sensors
in cluster 2 and 3 will get low trust scores if the normal distribution-based
approach [6] is utilized. Second, sensors which are close to each other produce
similar outputs due to the heat diffusion process. Although we did not include
the results of humidity due to the page limit, the same phenomena were observed.

In this paper, we utilize the fact that the sensed value of a sensor is consistent
with the sensed values of its neighbors. In Fig. 1, the trustworthiness of sensor
A and sensor B is supported by their neighbors, while the trustworthiness of
sensor C is not supported by its neighbors.
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4 Distance-Based Trustworthiness Assessment

In this section, we present our distance-based trustworthiness assessment for
sensors based on their sensed values and their physical distances.

4.1 Overview of the Scheme

Sensed values at a 
time t and location 

information 
Trust score calculation for 

each sensor value at a time t 
TSV(t)i for all 

sensors 

Trust score calculation for 
each sensor at a time t 

TSS(t)i for all 
sensors 

Trustworthiness assessment module Input Output 

(1) 

(2) 

Fig. 4. Overview of the trust score calculation procedure. TSV (t)i is the trust score of
the sensed value generated by sensor i at a time t. TSS(t)i is the trust score of sensor
i at a time t.

Our trustworthiness assessment has two steps. In the first step, the trust score
of each sensed value generated by sensor i at a time t, i.e., TSV (t)i, is calculated
by using as input: all sensed values at a time t, sensor location information, and
the previous trust scores. In the second step, the trust score of sensor i at a
time t, i.e., TSS(t)i, is calculated using the previous trust score of sensor i, i.e.,
TSS(t− 1)i, and TSV (t)i. The trust scores of sensors evolve through this cyclic
framework as time passes. The trust scores in our scheme range in the interval
[0,1].

4.2 Details of the Scheme

In the first step, the trust score of a sensed value generated by sensor i, TSV (t)i,
is derived by calculating the weighted mean (τ) of differences between the value
of sensor i and the values of the i’s neighbors as follows:

TSV (t)i =
1

1 + |τ | , τ =

∑n
j=0

(v(t)i−v(t)j)×TSS(t−1)β
j

dα
i,j∑n

j=0

TSS(t−1)β
j

dα
i,j

, (1)

where n is the number of neighbors of sensor i, v(t)i is the sensed value provided
by sensor i at a time t and di,j is the distance between i and j. There are two
weighting factors. One is the distance between sensor i and its neighbors and the
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other is the trust score of sensor i’s neighbors. α (≥ 0) is a system parameter
which controls the effect of di,j . The bigger α is, the larger the influence of the
neighbors which are close to i becomes. β (≥ 0) is also a system parameter which
controls the effect of the previous trust score of the neighbor, i.e., TSS(t − 1)j .
The bigger β is, the larger the influence of the neighbors with high trust scores
becomes. If α and β are 0, τ is just the mean of value differences regardless of
di,j and TSS(t−1)j , respectively. If the sensed value v(t)i is consistent with the
sensed values of its neighbor, TSV (t)i becomes close to 1. Otherwise, TSV (t)i

becomes close to 0.
In the second step, to obtain the trust score of sensor i at a time t, i.e.,

TSS(t)i, the current trust score of the sensed value provided by sensor i, i.e.,
TSV (t)i, and the previously accumulated historic score TSS(t − 1)i are taken
into account as follows:

TSS(t)i = w × TSV (t)i + (1 − w) × TSS(t − 1)i, (0 ≤ w ≤ 1), (2)

where constant w represents how fast the trust score of the sensor evolves as the
cycle is repeated. The larger w is, the more important the recent trust scores
are. In other words, if w is large, the trust score of a sensor will evolve fast. In
contrast, if w is small, the trust score of a sensor will evolve slowly. Fig. 5 shows

Fig. 5. Example scenario. Dashed lines represent neighbor relationships.

an example scenario at a time t when α and β are both 1 and w is 0.5. Assume
that the initial TSS(t)s of all sensors are 0.5 at the time t and the sensed values
do not change throughout this example. Also, assume that sensor A and sensor
B are normal, whereas sensor C is abnormal. At the time t, TSV (t)A, TSV (t)B

and TSV (t)C are 0.58, 0.25 and 0.09, respectively. Sensor A provides the sensed
value with the highest trust score since the sensed value is consistent with the
sensed values of its neighbors, whereas sensor C provides the sensed value with
the lowest trust score since the sensed value is not consistent with the sensed
values of its neighbors. Notice that TSV (t)B is much lower than TSV (t)A even
though TSV (t)B is also normal since one of its close neighbors, that is, sensor
C provides the abnormal sensed value (35◦C). However, TSV (t+δ)B eventually
becomes high as δ increases due to the following reason. TSS(t + δ)C becomes
low as δ increases and thus, when TSV (t+ δ)B is calculated, the sensed value of
sensor C is taken into account to a slight extent (see Eq. 1). In this example, at
the time t+3, TSV (t+3)A, TSV (t+3)B and TSV (t+3)C evolve to 0.58, 0.55
and 0.09, respectively. The trust score of the sensed value provided by sensor B
increases from 0.25 to 0.55, and thus the trust score of sensor B also increases.
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4.3 Minimum Trust Score of a Normal Sensed Value

Our trustworthiness assessment scheme generates absolute trust scores for sensed
values. Under the assumption that a physical phenomenon gradually changes
over a physical space, we can derive the minimum trust score of a sensed value
TSVmin produced by a normal sensor at a time specific t. To obtain TSVmin, we
consider the case in which a normal sensor i is located at the peak of a physical
phenomenon as shown in Fig. 6. For instance, imagine that a sensor is located at
a heat source such as a heater. We assume that the monitoring value decreases

Fig. 6. An illustration which shows that a normal sensor i is at the peak of the mon-
itoring values (r = 0). vmax is the highest value and r is the distance from the peak
point. U(r, t) is a monotonic increasing function of r until r ≤ R at a time t.

from the peak value, i.e., vmax, according to a monotonic increasing function
U(r, t). For instance, if U(r, t) is the heat equation, the function is a parabolic
partial differential equation describing the distribution of heat in a given region
over time [4]. For this analysis, we assume that U(r, t) equally increases in any
direction as r (≤ R) increases. R is the maximum distance within which sensors
are considered as neighbors of sensor i. We also assume that sensors are evenly
deployed and β is 0. We only consider sensors on the inside of the deployed area
since sensors at the border of the area have fewer neighbors. Then, TSV (t)i is
calculated as follows:

TSV (t)i =
1

1 + |τ ′| , (3)

τ ′ =

∫ R

0
U(r,t)×ρ×2πr

rα dr∫ R

0
ρ×2πr

rα dr
=

∫ R

0
U(r,t)
rα−1 dr∫ R

0
1

rα−1 dr
, (4)

where ρ is the density of sensors. If we set α to 1 and the maximum gradient of
U(r, t) is γ (γ > 0) at a time t, then τ ′ is less than or equal to γ×R

2 as follows:

τ ′ =

∫ R

0
U(r, t)dr∫ R

0
dr

≤
∫ R

0
γ × rdr∫ R

0
dr

=
γ × R

2
. (5)

Therefore, TSV (t)i must be greater than or equal to 2
2+γR .

TSV (t)i ≥ TSVmin =
1

1 + γR
2

=
2

2 + γR
(6)



26 J. Won and E. Bertino

For instance, if R is 70 (m) and γ is 0.05 (◦C/m), the minimum trust score of
a normal value sensor should be greater than 0.36. Therefore, if the trust score
of a sensed value is greater than 0.36, the sensed value can be considered as a
trustworthy one.

5 Simulation

In this section, we present our performance evaluation through simulations. We
first describe the simulation settings, and then present the simulation results.

5.1 Simulation Setting

We developed a simulator specialized for sensor trust assessment and focused
on the performance of our algorithm. Since the considered algorithms are purely
based on sensor readings and their locations, we did not use general network
simulators such as TOSSIM [3] and NS-2 [2].

For the simulations, 250 sensors are randomly deployed in a 400m×400m
area. n IDs are assigned to the sensors from 0 to 249 as shown in Fig. 7. Sensors
from 0 to 229 are normal, while sensors from 230 to 249 are abnormal. Each
sensor reports 100 temperature values at a time t (0 ≤ t ≤ 99). Both α and
β are set to 1 and w is set to 0.2. A temperature value of a normal sensor is
sampled from the normal distribution with the mean of 25 and the standard
deviation of 2, i.e., N (25, 2).

The maximum neighbor range R is set to 70m, which means that the neigh-
bors of sensor i are the sensors within 70m of sensor i. Sensors at the center of the
area have approximately 24 neighbors, while sensors at the corners have approx-
imately 6 neighbors. If R is too small, the accuracy of trust scores becomes low
since only a few neighbors might be taken into account in order to compute the
trust score of a sensor. As R increases, the accuracy increases with the increased
computational cost. However, if R becomes larger than a certain level, the accu-
racy improvement becomes limited since distant neighbors scarcely affect the
trust score of a sensor.

A heat source is located at (300, 300) and the mean temperature of the peak
point is set to 45◦C. From the peak point, the temperature linearly decreases with
the gradient of 0.05 (◦C/m). If the distance from the peak point is greater than
400m, the temperature does not decrease. Thus, in our simulation, TSVmin is
0.36. We varied two parameters Δmean and Δsd for abnormal sensors. Δmean and
Δsd are added to the mean and the standard deviation of the normal distribution
of a normal sensor, respectively. That is, temperature values of an abnormal
sensor are sampled from N (25 + Δmean, 2 + Δsd).

Throughout the simulations, we compare two schemes: our scheme and the
normal distribution-based scheme. The normal distribution-based scheme calcu-
lates the trust score of a sensed value based on the normal distribution which is
modeled by using all sensed values at each time as in [6,9].
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Fig. 7. Simulation topology

5.2 Simulation Result

First, we obtained the trust scores of sensors when all sensors are correctly
working, i.e, δmean = 0 and δsd = 0.

Fig. 8 shows the sorted trust scores of all sensors when the normal
distribution-based scheme is used. Even if there is no abnormal sensor, some
sensors get low trust scores since the trust scores are relative. As a result, the
administrator of the WSNs cannot distinguish whether there are abnormal sen-
sors in the network or not.

However, since our scheme outputs absolute trust scores (see Fig. 9). the
administrator of the WSNs can distinguish whether there are abnormal sen-
sors in the network or not under the assumption he/she knows the minimum
trust score. Notice that, in this scenario, 26 sensors have lower trust scores than
TSVmin (=0.36) even though all sensors are normal due to the following rea-
sons. First, the sensors are not perfectly evenly-deployed and some sensors do
not have enough neighbors. Second, the sensed values are generated with the
standard deviation of 2. Thus, the overall trust scores are lowered. In real appli-
cations, TSVmin may be estimated at the time of the initial deployment when all
sensors are working correctly. If the administrator successfully obtains TSVmin

for his/her application, he/she can distinguish normal sensors from abnormal
sensors and execute follow-up actions such as replacing sensors with trust scores
under TSVmin with new sensors.
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Fig. 8. Trust scores of sensors when the trust scores are calculated by the normal
distribution-based scheme. Sorted by the trust score (δmean = 0 and δsd = 0)

Fig. 9. Trust scores of sensors when the trust scores are calculated by our scheme.
Sorted by the trust score (δmean = 0 and δsd = 0)

Fig. 10. Trust scores of sensors when the trust scores are calculated by our scheme.
Sorted by the ID (δmean = 5 and δsd = 0)
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Fig. 11. Trust scores of sensors when the trust scores are calculated by the normal
distribution-based scheme, Sorted by the ID (δmean = 5 and δsd = 0)

Fig. 10 and Fig. 11 show the trust scores of the all sensors when our scheme
and the normal distribution-based scheme are used, respectively; δmean is set to
5 and δsd is set to 0. As shown in Fig. 10, when our scheme is utilized, the trust
scores of the sensors from 230 to 249 are distinctly lower than the trust scores
of the normal sensors. However, when the normal distribution-based scheme is
used, sensors near the peak location get low trust scores since the sensed values
provided by them are far from the mean, while sensors at the middle of the slope
get higher trust scores than others since they are close to the mean.

Fig. 12. Comparison between our scheme and the normal distribution-based scheme
when δmean varies from 0 to 20

Fig. 12 shows the number of the abnormal sensors (sensors from 230 to 249)
on the bottom 20 trust score sensor list when δmean varies from 0 to 20. When
all sensors are correctly working, in our scheme, 2 abnormal sensors are included
on the bottom 20 list. However, when δmean is only 4, our scheme includes 18
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abnormal sensors on the list and when δmean is 6, all the 20 abnormal sensors are
included on the list by our scheme. On the other hand, the normal distribution-
based scheme cannot include as many abnormal sensors on the bottom 20 list as
our scheme does. When δmean reaches 20, the normal distribution-based scheme
can include all the 20 abnormal sensors on the list.

Fig. 13. Comparison between our scheme and the normal distribution-based scheme
when δsd varies from 0 to 20

Fig. 13 shows the number of the abnormal sensors on the bottom 20 trust
score sensor list when δsd varies from 0 to 20. Similarly to the prior result, our
scheme includes more than 16 abnormal sensors on the list when δsd is larger
than or equal to 4. However, the normal distribution-based scheme includes less
than half of the abnormal sensors on the list. These results confirm that our
distance-based trust assessment scheme outperforms the normal distribution-
based scheme in realistic scenarios where the sensed value of interest gradually
changes according to the locations.

6 Conclusion and Future Work

In this paper, we propose a novel sensor trustworthiness assessment scheme using
the distances between sensors. In the cyclic framework, the trust score of a sensed
value is evaluated based on the fact the sensed values are correlated with their
positions. In the first step, the trust score of a sensed value is calculated using
the sensed values of its neighbors, their trust scores and the distances from the
neighbors. Then, the trust score of a sensor evolves at each time by taking the
new trust score of its sensed value into account. Our simulation results confirm
that our trustworthiness assessment scheme provides practical and accurate trust
scores of sensors in a realistic scenario. As future work, we plan to investigate
extensions of our approach to reliably assess sensor trustworthiness in presence
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of collusion attacks. We also plan to investigate how our approach needs to be
extended/modified with dealing with different physical phenomena.
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Abstract. Many mobile wireless networks unintentionally provide
opportunity for attackers to launch anonymous attacks or spoof other
users, often without fear of being caught. It’s often ideal for network
carriers to block all traffic from an attacker, not just the attack traffic,
for example to stop any concurrent attacks which cannot be detected by
the carrier. We present an approach to detect common attacks at the
access point, and leverage this with packet clustering to block all traffic
originating from attackers during an attack. To achieve packet clustering,
we utilize received signal strength at the access point to properly cluster
attack packets according to each unique attacker, and further classify
all other packets according to these clusters. Our approach is designed
with attacker and legitimate user mobility in mind, low memory over-
head, and is scalable to many simultaneous attackers. Our experimental
results show very high classification accuracy, sensitivity and specificity.

1 Introduction

Preventing malicious behavior is an important challenge for network carriers.
Such behavior can not only be detrimental to a carrier’s legitimate customers,
but can also be a liability issue for the carrier if such attacks are traced back to
the carrier network as the source. While in traditional networks blocking such a
malicious user may have entailed simply blocking the interface to which that user
is connected, the problem becomes more difficult in modern wireless networks,
where users are not physically connected to the network, but rather wirelessly
connected to access points (APs). To further complicate the situation, wireless
users are often mobile, such as with cellular networks, and they may hop between
different access points in the carrier network.

Mobile networks which support and serve users using public shared key, or
open networks, have additional challenges. In these networks, users are trusted
simply if they know the shared key, or users are not trusted at all. Often times
authentication reduces to mapping parameters to users, such as MAC address
or IP address. As such mappings are easily spoofed by an attacker, for example
using MAC addresses is basically an honor system type approach, it in essence
reduces the network to one which comprises anonymous users. In other words,
under a network environment of weak authentication or no authentication at
all, we can treat the users as anonymous. Not only can this result in attackers
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 32–45, 2015.
DOI: 10.1007/978-3-319-25645-0 3
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launching attacks in which the carrier network does not know the source, but
it also opens the door for attackers to spoof legitimate users during an attack.
This culminates into the question: “I, as a mobile network carrier, can detect
an ongoing attack, but I don’t know from whom the attack is originating. How
can I completely block such an anonymous attacker from my network while they
are being malicious? And can I do this without accidentally blocking legitimate
users?”

We take an approach to answer these questions by first looking back at why
some common attacks are difficult to detect accurately, and how next generation
architectures may help us to defeat the attacks in ways that are not possible in
traditional networks. Then we take a look at some additional properties of next
generation mobile networks that may help us to block all traffic from attackers
while they are launching attacks over such networks.

Our approach can be broken down into two steps. The first step is attack
detection near the sources of attacks, as opposed to the target server or edge
routers, exploiting the architecture common to next generation mobile networks.
Our approach brings the detectors as close as possible to the end users: right at
the first hop. We show how to detect with very high accuracy common flooding
attacks which rely on source IP spoofing, such as TCP SYN flooding attacks, by
using cross-layer packet header inspection, a feature of next generation mobile
networks. As TCP SYN flooding attacks are well researched in the literature,
we will use that attack class as a case study in this paper.

The second step is attacker isolation, based on clustering of the ongoing
attack(s). For this step we utilize Received Signal Strength Indicator (RSSI) to
classify all anonymous traffic through the AP as either belonging to an attacker
or to a benign user. This is achieved without the carrier network ever knowing
the identity of the attacker(s). Blocking all attacker traffic is beneficial to the
carrier network as the attacker may be launching concurrent attacks, not all
of which the network carrier may be able to detect. This approach works for
multiple attackers launching concurrent attacks, and can provide information in
terms of the total number of unique attackers launching attacks at any given
time.

We validate our approach through rigorous experimentation, which gives very
promising results, with very high classification accuracy, sensitivity and speci-
ficity both for attacker traffic and user traffic. We further show that our approach
is easily deployable, with few parameters, all of which can be tweaked within a
broad range without affecting classification accuracy significantly. This allows
for quicker deployment without optimal parameter tuning.

The rest of the paper is organized as follows: Section 2 covers relevant back-
ground, including related work. Section 3 gives an overview of our approach,
divided into detection and isolation steps. Section 4 provides a methodology of
our experimental process, results, and in-depth analysis of the results. Section
5 presents some challenges and limitations of our current approach, and finally,
Section 6 summarizes our work.
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Fig. 1. Illustration of a SYN Flooding attack. State is created each time a SYN packet
with a unique source IP address is received at the target.

2 Preliminaries

Here we define important background and discuss relevant related work.

2.1 SYN Flooding Attacks

A SYN Flooding attack is class of TCP-based denial-of-service attacks, with the
end goal of the attacker to disrupt service at the target TCP server. The attacker
accomplishes this by exploiting the natural flow of the three-way TCP connection
handshake. Under normal circumstances, a TCP connection is established using
the following high-level description:

– The client sends a SYN packet to the TCP server. The TCP server, upon
receiving this packet, creates state called a half-open connection.

– The TCP server sends back a SYN-ACK packet to the client. The TCP
server uses the source IP address of the SYN packet as the destination IP
address of the SYN-ACK packet.

– The client, upon receipt of the SYN-ACK packet, sends to the TCP server an
ACK packet. This completes the connection, and the half-open connection
state at the TCP server is deleted.

The attacker exploits the first step, by sending many SYN packets at once, with
the goal of creating one half-open connection state at the TCP server for each
SYN packet sent. To accomplish this, the attacker spoofs the source IP address
of all generated SYN packets: a different, unique source IP address per SYN
packet. If the attacker can send enough SYN packets, the half-open connection
buffer will completely fill up before some timeout period, potentially denying
service to legitimate clients trying to establish a TCP connection.

Detection of SYN flooding attacks traditionally has utilized statistical meth-
ods to model the flooding behavior. In Wang et al. [11] and Ling et al. [6], many
of the same assumptions are utilized as our approach, such as cross-layer packet
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header inspection and detector placement near the source.1 In Wang et al. [11],
SYN flooding attacks are detected by correlating SYN/FIN packet pairs. Their
approach however is reliant on the attacker not being aware of the method of
detection, and the detector can be defeated by simply generating SYN/FIN pairs
to defeat the statistical correlation. Their approach focuses specifically on TCP
SYN flooding attacks, and not on attacker isolation.

In Ling et al. [6], ratio of SYN and SYN+ACK packets at an edge router are
used to detect a possible SYN flooding attack coming from an intranet connected
to the edge router. If an anomaly is detected, then source IP addresses of poten-
tially malicious SYN packets are checked for reachability. While the approach
has low computational overhead, it maintains state, and thus an attacker could
attack the detection system not only by stateholding attacks, but by inducing
the system to ping many potential end hosts for reachability, which could result
in a detection system induced denial-of service.

Xiao et al. [13] assumes the detector at the destination TCP server. Their
approach also assumes that half-open connections are either due to network
congestion or a SYN flooding attack, and similar to Ling et al.[6] uses probing to
detect potential SYN floods from suspicious half-open connections. This implies
additional bandwidth overhead, though their approach tries to limit attacks on
the detection system by sampling a subset of half-open connections as more
half-open connections are added to the TCP server.

2.2 Received Signal Strength

Received Signal Strength Indicator, or RSSI, is a measurement, taken at a wire-
less receiver, of the perceived power of an incoming radio signal.2 RSSI mea-
surements are unitless but correspond to measurements in mW or dBm, and the
higher the value, the stronger the received signal. In the real-world, accuracy of
RSSI measurements can vary greatly from vendor to vendor [1,7].

In this paper, we refer to per-packet RSSI, defined as the RSSI measurement
taken during the preamble stage of the last 802.11 frame received which com-
prises a single IP packet. Note that additional noise present during measurement,
for example from other transmitters, should not arbitrarily affect the resulting
per-packet RSSI value, as any additional signal strong enough to do so should
result in a collision with the incoming frame and resulting loss of that frame.

Previous work using RSSI as a metric mostly falls into the category of spatial
localization [9,12]. Our work departs in that we are using RSSI not to locate the
attacker spatially, but to isolate the attacker’s traffic from the network. Sheng et
al. [8] uses RSSI measurements to detect MAC address spoofing, however their
assumptions would not be suitable in an environment where attacker mobility
is present, as any assumptions on attacker mobility could be easily defeated by
an attacker by changing their mobility patterns.
1 Here detector placement is at edge routers, which will be one hop away from possible

intranets, but usually not one hop away from the users themselves.
2 By “incoming radio signal”, we mean the strongest incoming radio signal within the

receiving band for a receiver.
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Yang et al. [14] and Faria and Cheriton [2] also use RSSI measurements to
detect attacks, but factor in mobility. Yang et al. [14] uses a binary partitioning
scheme and thresholding to detect spoofing attacks, but requires a training phase,
making real-time selective packet blocking difficult. Faria and Cheriton [2] uses
multiple concurrent RSSI values from APs and applies sets of user-defined rules
to the resulting tuples, called signalprints, to detect both spoofing and flooding
attacks, though this does not extend to attacker isolation specifically.

3 Blocking Anonymous Attackers During an Attack

We discuss our approach for blocking anonymous attackers during an attack by
breaking it down into two parts: detection of common attacks, and the isola-
tion of potential attacker traffic. Figure 2 gives an illustration of our approach
deployed on a generic mobile network.

3.1 Detecting Common Attacks at the Carrier Network

A common attack is a well-known attack whose origins are traditionally in the
global internet. These attacks normally assume that the network architecture is
that of the global internet, a static, wired network of computers. Indeed, the IP
protocol suite which drives the internet was built upon these same assumptions.

One goal of common attack detection in next-generation mobile networks is
to leverage additional information, and exploit physical constraints within these
networks to build a new set of network assumptions which can then be applied to
possibly detect such attacks. We currently build our network assumptions based
on two characteristics present in next-generation mobile networks:

– Leveraging cross-layer opportunities afforded to us through next generation
architectures that do not follow the strict separation of OSI layers [5,6,
11]. This allows us to probe specific higher layers, such as the network and
transport layers, from lower layers, such as the MAC or physical layer.

– Exploiting specific network topology present in these mobile networks. Users
wirelessly connect via access points (APs) to the network, making the APs
one hop away from the users. Placing detectors at the APs has three distinct
advantages. First, the task of attack detection is distributed to multiple
entities (APs) within the network as opposed to a centralized entity. Second,
detector placement at the APs provides opportunity for reduced overhead in
only detecting attacks feasible in their locality. Third, this placement puts
the detectors under the jurisdiction of the carrier, as opposed to possibly
many entities if placing them outside the carrier network at edge routers
[6,11]. This makes such a solution more viable to real-world deployment.

These characteristics can be applied to extract information from higher layer
packet headers at lower layers, and from a specific point in the carrier network
to classify a packet as benign or a potential attack packet (Figure 2).
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Fig. 2. Example mobile network with our approach deployed. The attacker and users
are mobile, connected to the AP shown. The AP incorporates the attack detection
step of the approach ((1) - Section 3.1), while the Packet Classifier handles packet
classification and blocking ((2) - Section 3.2).

The advantages are two-fold: first, cross-layer packet header inspection allows
lower layers a global view of an incoming packet. Second, higher layer packet
header information may have specific context at a specific point in the carrier
network, but this context may be lost by the time the packet reaches its destina-
tion. For example, if such context is in the transport layer and specific to nodes
that are not the source or destination, then cross-layer header inspection must
be leveraged to extract the contextual information.

To illustrate this approach to packet detection, we discuss a common class
of attacks: those which utilize source IP spoofing.

Attacks Utilizing Source IP Address Spoofing. This class of attacks usu-
ally falls into the category of denial-of-service attacks, and relies on the attacker
spoofing the source IP address of packets they generate, to give the appearance
of many packets from seemingly many users. The goal is to deny service to legiti-
mate users by exhaustion of some resource, for example server resources or band-
width. SYN flooding (Section 2.1) and ICMP flood attacks are two well-known
examples of denial-of-service attacks which utilize source IP address spoofing.

Our approach works in the following way. Each time an AP receives a packet,
a quick cross-layer check is applied to verify that the source IP address of the
packet is assigned to a user currently connected to that AP. Traditionally APs are
layer 2 devices, and thus do not check (or understand) layer 3 header information.
In a cross-layer environment however, no such constraint exists, and thus the
AP is trusted for layer 3 inspection. In this case, the detector only needs to
understand the layer 3 (network) header. Note that in anonymous environments,
there may be no reliable way to differentiate users, as IP addresses or MAC
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addresses can be spoofed [3]. We also do not make any assumptions that an
authentication mechanism is in place.3

If the source IP address is determined to be assigned to a user currently
connected to the AP (we call this a valid IP address), then the packet is deemed
not malicious. However, if the source IP address is determined to not belong to
any user currently assigned to the AP (an invalid IP address), then the packet
is potentially malicious. However, the following are also possible:

– If the source IP address belongs to the carrier network’s subnet, then there
is a probability that the AP may not be aware that a legitimate user is
connected to it. For example, a configuration error between APs may have
resulted in a mobile user hopping to this AP from another, but without an
exchange of state between the APs.

– If the source IP address is outside the carrier network’s subnet, then there
may be a configuration issue with the user.

To increase our confidence that a potentially malicious packet correlates to an
attack, the detector temporarily saves state related to this packet. Then within a
small window, if another packet is deemed potentially malicious, it is compared
against the previous packet state that was saved. If the source IP addresses do
not match, then we deem that an attack is underway. If the source IP addresses
match, then the temporary packet state is deleted and new state saved for the
current packet. This guarantees that the detector only stores state related to one
packet at a time, preventing stateholding attacks against the detector [4].

3.2 Isolating Attacker Traffic

While detection of the attacker’s malicious activities is good to block those activ-
ities specifically, this still won’t prevent an attacker from performing other activ-
ities, and otherwise using the network during an attack. While it may be ben-
eficial for a carrier to completely block an attacker during an attempted attack
for many reasons, one important reason is that an attacker may be launching
concurrent attacks, not all of which may be detectable by the carrier network.

In traditional wired networks, blocking an attacker completely from the first
hop is trivial. Simply block the interface which the attacker is connected on.4

However, in wireless networks, all users connected to an AP share the same
physical medium, and thus we must utilize other information to correlate an
attacker’s malicious packets with other traffic originating from the attacker. The
anonymous environment and potential mobility of users further complicates this.
The carrier network does not know where any of the users physically are located
outside the APs that they are connected to.

3 Any authentication mechanism deployed can be used to provide further information
to our approach, but an authentication mechanism may also be vulnerable to defeat,
and such a discussion is outside the scope of this paper.

4 Furthermore, when the attacker changes its logical identity, it appears as a new
interface, so the L2/L3 linkage is broken.
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To solve these problems, we employ an approach that leverages layer 1 infor-
mation provided at the AP. More specifically, each time an AP receives a packet,
providing that it is determined that an attack is underway (Section 3.1), the per-
packet RSSI value is recorded. This value is then used to classify the packet as
originating from an attacker or other. If the origination is from an attacker, then
the packet is dropped.

The Clustering Procedure. Our clustering procedure forms clusters based on
attack packet RSSI value similarity. The clusters themselves represent a single
unique attacker’s most recently transmitted attack packet; thus each cluster only
has a single data point at any given time, keeping the memory footprint low. We
don’t keep older data points because of the temporal dependency between an
attacker’s movement and transmission of packets: older packets simply do not
reflect the current mobility state of an attacker.

In an ideal environment, one in which all users are stationary and there is no
drift in RSSI measurements, clusters would only comprise members whose RSSI
values are identical. However in real-world mobile networks, we have to factor
in both attacker mobility and RSSI measurement drift [1,7].

Similarity of two attack packets require a similarity metric, to quantify the
similarity, and a similarity threshold, to provide binary classification (does an
attack belong to a cluster or not?). We formally define the similarity metric, sij ,
as

sij = |PKTRSSI
i − CLSRSSI

j |, (1)

where PKTRSSI
i is the per-packet RSSI of attack packet i we are classifying as

measured by the AP, and CLSRSSI
j is the most recent per-packet RSSI mea-

surement, taken by the AP, that was assigned to cluster j.
We formally define our similarity threshold, eij , as

eij = Δtij ∗ du + dap, (2)

where Δtij is the time difference between the timestamp of a new attack packet
i recorded at the AP and the timestamp of cluster j, du is a drift constant
which models RSSI drift due to user mobility, and dap is a drift constant related
to RSSI sampling precision at the AP. For stationary users, eij reduces to a
constant term eij = dap. An attack packet is assigned to the first cluster j in
which sij <= eij . If an attack packet does not meet this criteria for any cluster,
a new cluster is created, and the packet assigned to it.

Non-attacker packets are classified using the same approach, except we do
not actually assign them to a cluster. Only attack packets (packets detected from
the steps in Section 3.1 for example) are assigned to clusters after classification.

When attack packets are first detected for a new attack, we do not consider
these packets as comprising an attack until a certain number of sequential packets
have been assigned to the same cluster (the packets themselves are still dropped
as they are invalid). Two attack packets are considered sequential if they are
both assigned to the same cluster. We consider an attack to have started when
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Fig. 3. Illustration of the clustering procedure. An attack packet is assigned to the
first cluster j in which sij <= eij . The goal is not to find the ‘closest’ cluster, but
whether the attack packet belongs to an existing cluster or a new one. In this figure,
the solid line segments represent sij , with shorter line segments representing greater
similarity. Dashed line segments represent eij , with greater distance from attack packet
i representing a larger threshold. Visually, sij > eij if the dashed line segment for
cluster j resides between the cluster and attack packet i. Here, attack packet i would
be assigned to cluster 2. The key is that similarity alone does not determine cluster
assignment, but the relationship between packet RSSI similarity and user mobility.

the number of sequential packets observed, pnum, reaches a threshold parameter,
cpre. More formally, an attack is considered ongoing when pnum > cpre.

Clusters are not permanent: a threshold parameter, cto, is used to determine
when an attack is no longer ongoing (ceases to exist). If no new attack packets
have been assigned to a cluster within cto, then the cluster is deleted. More
formally, if an attack packet is assigned to a cluster at time t, then another
attack packet must be assigned to the same cluster at some future time tnext,
such that tnext < (t + cto).

Note that our clustering procedure is independent of the detection approach.
As long as there is some method to differentiate attack packets from all other
packets, this clustering procedure (and the traffic isolation approach in general)
can be used.

4 Experiments

Here we present our experimental methodology and results from our experiments.

4.1 Methodology

We implemented our approach in the OMNeT++ simulation framework [10].
We modeled a WiFi network with a single AP, and variable attackers and other
mobile users of the network. While WiFi networks are not next-generation in
themselves, all the basic building blocks for our required architecture are included
in OMNeT++’s Inet WiFi simulation models. We extended these models with
various support which we needed, such as cross-layer packet inspection.

We ran a total of five experiments on the simulated mobile network, each one
increasing the number of attackers and benign users. The first scenario served as
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Fig. 4. Scenario 5 at t = 0. Notice that all the attackers and users are grouped tightly
together. They all move southbound at differing velocities. The attackers are shown in
red.

a baseline, with only a single attacker. The other 4 scenarios consisted of between
1-4 attackers, and 5-8 benign users. Each scenario was executed for 120 seconds.
The parameters were set as follows: du = 0.1, dap = 0, cpre = 2, cto = 1s.

The attackers each launched SYN flooding attacks, with a start time of any-
where between 1-4 seconds. This was done intentionally to illustrate the progres-
sion of individual attacker detection (Figure 8). Both the attackers and benign
users send a steady stream of UDP traffic.

Both the attackers and benign users are mobile, with velocities randomly
selected from a uniform distribution of the range 0.2-2.5 m/s. This roughly cor-
responds to a range between a slow walk to a brisk jog. All attackers and benign
users remain at their originally selected velocities throughout a scenario.

The following list explains the metrics used for interpreting the results:

– Accuracy: The percentage of correct classifications of all traffic.
– Sensitivity: The percentage of correct classifications of traffic originating

from attackers. The complement of this is the false negative rate.
– Specificity: The percentage of correct classifications of traffic originating

from benign users. The complement of this is the false positive rate.

4.2 Experimental Results

Table 1 gives an overview of the classification tests performed against our app-
roach. Some highlights include a 100% accuracy rate when only an attacker is
present. This provides a good baseline to make sure du is set high enough to
properly put all attack packets into the correct clusters. In the case of a single
attacker, there should only be one cluster. Even as we add more attackers, and
more benign users, the accuracy, sensitivity, and specificity remain very high.

Figure 5 illustrates the eij and sij plots for the scenario 1 TCP SYN packets
from the attacker. sij correlates to the path the attacker is following, in this
case a straight line. We set du high enough as to compensate for the attacker’s
mobility, as can be seen by the relation of the sij and eij plots in Figure 5.
Setting du (or dap) too high can result in a higher false positive rate.
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Table 1. Results of 5 scenarios varying the number of legitimate users and attackers
within a basic WiFi network.

Scenario Description
Total

Packets
Accuracy Sensitivity Specificity

1
1 Attacker
0 Users

1186 100% 100% N/A

2
1 Attacker
5 Users

9080 99.912% 100% 99.899%

3
2 Attackers
5 Users

11258 97.735% 94.059% 99.406%

4
3 Attackers
5 Users

12360 98.115% 95.887% 99.513%

5
4 Attackers
8 Users

18580 99.128% 99.215% 99.086%

Fig. 5. eij (orange - top) and sij (blue - bottom) plots for scenario 1.

False positives can occur when an attacker is transmitting an attack packet at
nearly the same time as a benign user transmitting a packet, and the per-packet
RSSI readings of both packets are very close, resulting in a low sij . As can be
seen from in Figure 6, this does not occur very often, though the probability
of this occurring does increase slightly as the number of benign users increases.
Adding another point of reference, such as another AP nearby, can dramatically
lower the false positive rate.

False negatives can occur when du is set too low. For example, if we set
du = 0.2 and rerun scenario 3, our sensitivity increases from 94.059% to 98.294%.
The reason is that du cannot always fully compensate for all attacker mobility,
such as if an attacker is moving faster than anticipated, or sending attack traffic
much slower than what is expected for the attack type. The trade-off is often a
lower specificity, in this case decreasing from 99.406% to 98.798%.

Figure 8 shows the number of attacker clusters versus time, for scenario 5.
The 4 attackers start the SYN flooding attack at slightly offset start times from
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Fig. 6. eij (red - bottom) and sij (blue) versus time during scenario 3 for benign user
packets. Notice that because the sij plots are above the similarity thresholds, these
packets will not be classified as originating from an attacker.

Fig. 7. eij (red - bottom - circles) and sij (blue - squares) of a 2 second zoomed in
section of Figure 6

one another, resulting in the steep slope at the beginning of the graph. There is
a one-to-one correspondence between attackers and clusters. In cases where du
is set artificially low (or dap in some cases), many more clusters than attackers
may be created at specific times, resulting in a very large decrease in accuracy.

5 Limitations and Future Work

Our current approach is limited to blocking attacker traffic during an ongoing
attack. We are currently working on extending this approach to predict mali-
cious user traffic after an attack has ceased. This will allow for the approach to
continuing blocking multiple concurrent attacks which may actually be ongoing
after the detectable attacks have ceased.

It is possible that a carrier network’s subnet will be so large that an attacker
could successfully launch an attack only using source IP addresses that are within
this subnet. However such a technique is easily defeatable by the carrier network,
by simply giving APs access to a lookup table with all currently allocated IP
addresses and to which AP these users are currently connected to. Any mismatch
would indicate an invalid source IP address with a particular AP.
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Fig. 8. Graph of the number of clusters versus time for scenario 5. The number of
clusters corresponds to the number of unique attackers. Notice how the calculated
number of clusters remains at 4 once all 4 attackers are detected.

The accuracy of attacker traffic isolation is dependent on the physical medium
in which the wireless signals propagate, and also on the precision of the measure-
ments themselves. While dap introduces robustness to the approach, imprecise
measurements will require this parameter to be increased, which comes at a cost
of a potentially higher false positive rate.

Another limitation is the assumption that attackers will not selectively adjust
transmit power during an attack to separate their attack traffic from their benign
traffic, as seen from the AP. Various solutions are being actively explored, such
as using additional passive sensors to record RSSI measurements to supplement
the measurements from the AP. Related to this is the real-world environment in
general. We believe our approach is robust given APs which record RSSI accu-
rately and precisely, and adding passive sensors for RSSI measurement should
provide additional robustness against the non-ideal medium of the real-world.
Experimentation on our physical network testbed is planned as future work.

6 Conclusion

We introduced an approach to isolate mobile attacker traffic during attacks orig-
inating from next generation mobile networks. This approach works under the
assumption that all users of the network are either anonymous, such as networks
relying on shared public key, or can defeat any authentication scheme deployed
on the network to spoof other benign users. Our approach uses a combination of
detecting common attacks at the access points, and clustering of attack traffic
using RSSI to form clusters corresponding to unique attackers. Performing packet
classification over these clusters resulted in a vast majority of attacker-originated
traffic being successfully blocked, with very little legitimate user traffic blocked.
Our approach is scalable up to many mobile attackers and users.
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Abstract. News reports of the last few years indicated that several
intelligence agencies are able to monitor large networks or entire portions
of the Internet backbone. Such a powerful adversary has only recently
been considered by the academic literature.

In this paper, we propose a new adversary model for Location Based
Services (LBSs). The model takes into account an unauthorized third
party, different from the LBS provider itself, that wants to infer the
location and monitor the movements of a LBS user. We show that such
an adversary can extrapolate the position of a target user by just analyz-
ing the size and the timing of the encrypted traffic exchanged between
that user and the LBS provider. We performed a thorough analysis of a
widely deployed location based app that comes pre-installed with many
Android devices: GoogleNow. The results are encouraging and highlight
the importance of devising more effective countermeasures against pow-
erful adversaries to preserve the privacy of LBS users.

Keywords: Location-based services · Network traffic analysis ·
GoogleNow · Privacy · Mobile devices

1 Introduction

Modern surveillance systems that track the movements of cellphone users are
more sophisticated than ever. Intelligence agencies can easily locate the cell
tower used by a target and find his location. According to a Washington Post
article [5], it is possible to exploits security vulnerabilities in the network used
by mobile carriers around the world to provide services to their traveling cus-
tomers. This network is called the Signaling System 7 (SS7) and once access to
it is obtained, it is possible to track the location of anyone in the world and
learn whether a person is walking down a specific street, driving, or taking a
flight. When the approximate location of a target is known, stingrays [3] (or fake
towers) can be used to redirect calls, monitor Internet traffic, steal phone’s data,
and even install malware.
c© Springer International Publishing Switzerland 2015
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These attacks, however, are active and (partially) intrusive. In particular,
they are not completely stealthy and leave traces. Indeed, queries to the SS7
network can be logged and phones could be configured by experts to detect
stingrays (e.g., IMSI-Catcher Detector on Android phones). In addition, these
attacks can only be carried out in cooperation with vendors, mobile carriers, or
ISPs. Often the target is in a foreign country and special permissions or agree-
ments must be in place to be able to track his movements.

In this paper we show that it is possible to locate the position of a cellphone by
simply monitoring the traffic of certain phone applications that provide location-
based services (LBS). Clearly this is simple if the traffic is in the clear, but our
main contribution is to show that it is possible to track users even when the
traffic is properly encrypted. We believe our method will have significant impli-
cations in the way location-based services are provided. LBSs are often accessed
through apps that will be referred to as Location Based Apps or LBAs. LBAs are
used to find friends and restaurants nearby, to locate points of interest, to check
public transport timetables and even to search for deals or special offers. Several
physical retailers (e.g., Best Buy, Kohls), also deploy location-based promotions
to push notifications while the consumer is in or near the store. TripAdvisor,
Booking.com and weather forecasting applications are other examples of LBAs.

It is difficult to protect the privacy of users while at the same time pro-
vide useful LBSs. It is possible to obfuscate the exact position of a user but
these obfuscation techniques are rarely adopted by vendors (location data is too
valuable to them). Moreover, customers appreciate services or information they
receive and do not seem concerned about sharing their location data with LBS
providers.

The contribution of our paper is to show that any third party can infer
a user’s position by just analyzing the encrypted traffic from that user to the
LBS provider. This can be performed in a non-intrusive way, without leaving any
traces. For instance, an intelligence organization could monitor routers belonging
to some Autonomous System (AS) traversed by LBS’s packets and this would
be enough to infer a target’s position in a foreign country without involving
that country’s ISPs, mobile carriers, or any other local entities. Encryption or
NAT’d addresses do not help much in this scenario. Indeed, we leverage results
of previous works on analysis on encrypted traffic which already highlighted the
possibility of identifying apps installed on a device [11,22], or the presence of a
specific user within a network [23].

Another important point to consider in this context is that current LBAs
have started to adopt push technology solutions to send “the right information
at the right time” [14]. This is the maxim of the GoogleNow app which comes pre-
installed on most Android devices and provides several services that are tied to
the user’s position. Several LBAs that come preinstalled on a phone do not even
ask permission to use location data. The adoption of push technology implies
that the user is continuously tracked by the LBS provider, even when the app
runs in the background [6].
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Contributions. In this work we put forward a new privacy problem related to
LBSs. We introduce a new adversary model for LBSs and propose a technique
that unauthorized third parties may use to infer the position of a target user.
Furthermore, we analyze one of the most popular LBAs, GoogleNow, and we
show that the analysis of its encrypted network traffic reveals the position of a
user with high accuracy. This research is inevitably controversial. The method
we developed could be used to undetectably monitor movements of users and
abuse their privacy rights. However, it should be considered as a warning to the
research community to spur more research in the area and come up with effective
countermeasures.

Organization. The rest of this paper is organized as follows. In Sect. 2, we
introduce the adversary model. In Sect. 3, we detail the different phases of the
attack. In particular, Sect. 3.1 explains the method used by the adversary to
collect the relevant data from the LBS provider. Then, Sect. 3.2 details the
data analysis approach that can be used to infer user locations. Sect. 4 and 4.4
respectively report on the results achieved when analyzing GoogleNow, and on
the strategy to select the points that should be monitored by the attacker. In
Sect. 5, we review previous work. Finally, in Sect. 6 we draw the conclusions and
discuss some possible future works.

2 The Adversary Model

We assume the existence of an adversary A that can sniff the network traffic of a
mobile device. The adversary does not need to intercept the entire network traffic
but just the packets that are exchanged between the LBA and the LBS provider.
The adversary may do so by compromising one of the network devices of any
AS that routes the information between the mobile device and the LBS. We
assume that the adversary does not want to be detected, and therefore he does
not compromise the mobile device nor change the content of network packets.
It is well-known that the NSA can identify users around the world of specific
services (such as TOR) by detecting packet “fingerprints” and monitoring large
portions of the Internet. NSA accomplishes this by collaborating mainly with
US telecoms firms under various programs [4].

We assume that the adversary is able to identify and isolate the network
traffic of the user he is interested in, and, among those packets, he is able to
identify and isolate packets that are generated by the LBA. The adversary is
able to determine where discrete communications begin and end (such as the
download of updated information from the LBS). This is possible, for example, by
observing typical communication patterns of the LBA. Note that if the network
traffic is not encrypted, then our adversary may trivially inspect the packet
content and determine the location of the mobile device. Therefore, we assume
that the network traffic exchanged between the mobile device and the LBS is
encrypted via SSL/TLS. Furthermore, we assume that the LBS provider does
not use any mechanisms to protect the privacy of its users, such as k-anonymity
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cloaking, etc. This assumption is based on the fact that current LBS providers
do not implement these mechanisms.

To launch the traffic analysis attack that we consider in this paper, the
adversary must build a knowledge base that summarizes the network traffic
exchanged between the LBA and the LBS when the mobile device is located in
certain locations of interest. We assume that the adversary can collect this data
by using bogus accounts and virtual mobile devices.

3 The Attack

In this section, we detail the approach used by the adversary to infer the actual
position of a target user. The entire approach can be logically divided into two
steps: the data collection phase, and the candidate locations selection. The aim of
the data collection phase is to collect enough information from the LBS provider
to learn how different locations can be distinguished from each other. During
this phase, the adversary builds up its knowledge base that will later be used
to infer the most probable locations the target can be found in. For the sake of
simplicity, we will assume that the LBS sends the same information to all users
in the same location. Taking into account that the LBS may send personalized
information to its users is left as future work.

3.1 Data Collection

Suppose that the adversary is interested in localizing users in a given area. First,
the adversary logically divides the entire area in n subareas, and arbitrarily
chooses a point in each subarea as a representative for that location. The size of
the subareas is chosen according to the desired accuracy and the granularity of
the information provided by the LBS. Hence, the adversary comes with a set of
point locations L = {l1, l2, . . . ln}.

Then, the adversary collects data from the LBS about all the locations in L.
This can be accomplished by using the same LBA of regular users and by spoofing
the GPS coordinates pretending to be in each location li for 1 ≤ i ≤ n. The
adversary periodically performs the procedure above to learn the traffic pattern
of the LBS over time (e.g., data sent by the LBS may change according to daily
or weekly trends).

The network traffic that the adversary collects is used to build its knowledge
base. The following steps are performed during this phase:

Prefiltering: The network traffic is analyzed with a network protocol analyzer,
and only the packets directed towards, or coming from, the network of the
LBS are preserved.

Knowledge Base Record Composition: For each location li that is moni-
tored, the adversary adds a record in its knowledge base composed of the
following fields:

– Location ID (LocID for brevity in the following): An identifier of the
probed location li ∈ L.
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Table 1. Example of the adversary knowledge base, user dataset related to a user
position during time, and possible guesses.

Adversary Knowledge Base

LocID Bytes Timestamp

1 35780 1399743000

2 30780 1399743000

* * *

* * *

1 36780 1399743060

2 30784 1399743060

User Dataset

LocID Bytes Timestamp

? 35780 1399743000

? 35780 1399743020

? 36780 1399743040

? 36780 1399743060

? 30784 1399743080

? 30784 1399743100

– Bytes: The total size in bytes of the transmitted and received encrypted
packets that belong to the same TLS/SSL session.

– Timestamp: The timestamp of the first packet of the TLS/SSL session.

An example of knowledge base that the adversary would create is reported on
the left of Table 1.

3.2 Selection of the Candidate Locations

To track a user’s position, the adversary relies upon only two fields: the sum of
the exchanged bytes of a TLS/SSL session and the timestamp. This information
is derived from the header of the packets, which is not encrypted by the SSL
protocol. To learn the position of a given user U at time t0, it is enough for the
adversary to collect the communication traffic between the user’s LBA and the
LBS between time t0 − t and t0. For each TLS/SSL session, A calculates the
fields described above and creates the user dataset. This is shown on the right
of Table 1.

At any given moment, each location is potentially characterized by a fixed
amount of bytes. As such, the adversary determines the candidate locations by
analyzing those locations that have generated an amount of bytes similar to
the entries of the user dataset. Namely, suppose that A wants to determine the
position of the user U at time t0. A builds a filtered adversary knowledge base
containing only the instances of the knowledge base such that their timestamps
fall within the time frame [t0 − t, t0]. The size of the time frame depends on the
specific LBA and LBS taken into consideration, and on the typical behavior of
the user. We assume that, within the targeted time frame, the user does not
move from his location. The adversary restricts the number of possible locations
studying the statistical distribution of the filtered adversary knowledge base and
the user dataset.

In the experiments, we will consider also the case of time-misalignment
between the filtered adversary knowledge base and user dataset. This case is use-
ful when the adversary is not able to collect data during the time frame [t0−t, t0].
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In such a case, the adversary may use a different time frame [t0 − t − δ, t0 − δ],
for a given δ > 0.

The adversary may use a statistical distance measure to quantify the dis-
tance between the samples of the user dataset, and the samples of the filtered
adversary knowledge base, for each possible location. This will allow A to settle
on a list of candidate locations where the user was at time t0.

Several statistical distance measures can be used for this purpose. However, in
the experimental section, we will show that our approach is accurate even when
using a very simple distance metric. Let us indicate with x̄ the user dataset, with
ȳ the filtered adversary knowledge base, and with L the set of all possible loca-
tions. Furthermore, with the notation ȳ[li] we refer to the subset of the adversary
knowledge base ȳ related to an individual location li ∈ L. In other words, ȳ[li]
contains all the instances of the filtered adversary knowledge base such that the
field LocID is equal to li. Then the adversary will select a candidate location set
S of size k in the following way:

min
S⊆L
|S|=k

∑
li∈S

d(x̄, ȳ[li]) , (1)

where d(x̄, ȳ[li]) indicates some statistical distance measure between x̄ and ȳ[li].
In the experiments, we used the following definition of distance: d(x̄, ȳ[li]) =
|m(x̄) − m(ȳ[li])|, where m(·) is the median function. Once the size k is fixed,
Equation 1 allows to select a candidate location set S of size k, composed of the
locations li that minimize the overall distance between x̄ and ȳ[li].

4 Experiments and Results

To prove the feasibility and the accuracy of our approach, we performed a thor-
ough analysis of one of the most popular and advanced LBAs: GoogleNow.
GoogleNow is an application provided by Google which comes preinstalled with
the vast majority of Android devices [14]. It is also available on iOS, Google
Glass and even on Android Wear devices. GoogleNow is not only a LBA, but
it acts also as a personal assistant by providing personalized information to the
user. User-based and location-based information are sent together within the
same encrypted traffic. However, we will show that the use of encrypted com-
munications does not hinder the process of identifying user locations as long as
some of the GoogleNow user’s preferences are known a priori.

GoogleNow app operates regardless of the interactions with its users, and
independently determines when information should be downloaded from the LBS
server [13] (unless a refresh is forced by the user). We can therefore speculate
that GoogleNow app periodically sends the GPS location of the user to the LBS
(Google servers). The LBS then replies with the information related to the GPS
position sent by the GoogleNow app (e.g., nearby restaurants, bus stops, and/or
images of the location). We confirmed this by installing the GoogleNow app
on an Android X86 Virtual Machine (VM) and extracting the data exchanged
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between our VM and Google servers via a man-in-the-middle proxy. This exper-
iment confirmed that the GoogleNow app sends the GPS coordinates of the user
but also much more data, including the information currently displayed by the
app on the smartphone.

4.1 Data Collection of GoogleNow Data

We performed a location spoofing attack to collect the encrypted network traf-
fic exchanged by the GoogleNow app and the Google servers, and to build the
adversary knowledge base as described in Sect. 3.1. Each spoofed GPS user loca-
tion corresponds to a point the adversary is interested in monitoring. We used
the mitm-proxy software for this task [1] configured as a transparent proxy on
a network of Androidx86 Virtual Machines run in a Virtualbox hypervisor on
a Linux host. Each VM has been configured with a different user account. We
configured different preferences for each account to determine to what extent
Google personalizes the data sent to each user. Because of space restrictions, we
report on the results achieved for a single configuration of the user preferences,
that is the one where the user settled its home and work locations only. Sim-
ilar results were achieved for the other accounts that we analyzed and will be
reported in the full version of this paper.

GPS locations exchanged between the app and the server are encrypted
within SSL, thus we performed a man-in-the-middle attack. To this aim, a self-
signed certificate was copied into each VM and added to the Android’s root
certificates. In this way, the SSL traffic was decrypted and we found out that
GoogleNow uses a protocol called Protobuf as data interchange format [2]. This
protocol was designed by Google to be smaller and faster than XML. By ana-
lyzing the data structure of the protobuf messages that were intercepted by the
mitm-proxy, we were able to identify the fields that contain the latitude and lon-
gitude of the user. These fields are sent to the Google servers in all the HTTPS
requests that contains the following string within the URL: “tg/fe/request”.

We collected data about an area of two square kilometers positioned in the
center of a large European city. The adversary simulated the presence of its
dummy users in the area by moving them on a grid of 5 × 10 points (50 differ-
ent LocID in total). The location (i,j) of the grid is identified by the label i_j.
Sect. 4.4 provides the motivation behind the selection of these parameters. In
order to collect a large amount of data in a short time range, rather than chang-
ing the user position of the VM through a MockLocationProvider and then wait
for a GoogleNow genuine request, the adversary replayed a request containing
the “tg/fe/request” string in the URL several times, modifying the actual posi-
tion with every point of the grid. The network traffic intercepted by the proxy
has been used to feed the knowledge base of the adversary.

For the experiments we had to simulate the target users as well. Therefore,
during the same period of three weeks, different VMs have been configured with
distinct user accounts. Users moved into the monitored area, and their respec-
tive traffic was collected and stored separately. Clearly, this last step will not be
performed when tracing real users.
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Fig. 1. Probability Distribution of the Bytes exchanged between the GoogleNow app
and the Google servers.

4.2 Exploratory Data Analysis

In this section, we analyze the collected data to improve our understanding of the
GoogleNow traffic dataset. This exploratory data analysis is performed over the
data collected for an account that has been configured by only specifying home
and work locations. All the remaining user profiles that we analyzed show a very
similar behavior. Figure 1 reports on the probability distribution of the bytes
per SSL session exchanged between the GoogleNow app and the Google servers
during the entire monitored period. On average, 32,604 bytes were exchanged per
session, with a standard deviation of 7,518. The minimum recorded value is equal
to 80, while the maximum is equal to 83,831 bytes. The median is 31,804 bytes,
while lower and upper quartiles are equal to 27,791 and 36,520, respectively.

To determine whether the bytes exchanged between the GoogleNow app and
the Google servers might be useful to identify the actual location of the user, we
analyzed the statistical distribution of the bytes exchanged in each monitored
location. Figure 2 shows the boxplots diagram for all the 50 locations of the
adversary knowledge base. The boxes extend from the lower to the upper quartile
values of the data, with a line at the median. The whiskers extend from the
boxes indicating variability outside the lower and upper quartiles. Figure 2a
shows the statistical distribution of the bytes received in all the locations during
the entire period of collection (3 weeks). Figure 2b was obtained while analyzing
only one hour of traffic randomly selected among the three weeks. Note that
in Fig. 2a, all the locations show a similar behavior. They have a mean value
that is rarely greater than 40,000 and lesser than 20,000. The variance is very
high, and lower and upper quartiles are quite far from the median value. With
statistical distributions so similar to each other, it might be difficult to infer the
actual location of a user. We quickly realized that the time of the day has a
great influence on the information provided by GoogleNow, thus we limited the
analysis to a period of time one hour long, randomly selected among the three
weeks period. Figure 2b shows the boxplot diagram related to this subset of data.
It can be observed that almost all the locations have a very tight variance. First
and third quartile are very close to each other. Furthermore, once a particular
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(a) Analysis of the entire adversary knowledge base (3-weeks of traffic).

(b) Analysis of only a random hour of the adversary knowledge base.

Fig. 2. Statistical distribution of the bytes exchanged between the GoogleNow app
and the Google servers per monitored location.

size is selected, only a few locations may have produced it. This is the main reason
that led us to consider the time as an important parameter in our analysis.

Daily Pattern. During the exploratory data analysis, we realized that the amount
of bytes exchanged between GoogleNow and the Google servers follows a daily
pattern distribution. In particular, during daily hours it ranges from 26,000 to
32,000 bytes, whereas during the night it falls down in the interval between 22,000
and 24,000 bytes. In Sect. 4.3, we will show how this daily pattern influences the
accuracy results.

4.3 Accuracy Results

In the following, we will report on the results of the tests that we performed on
the collected dataset. All the experiments presented next represent the average
of 10,000 tests. In each test, the adversary tries to infer the position of a user.
The k-identifiability of a tested user position is defined as 1 if the actual position
of the user is within the set S of k candidate locations selected with the approach
described in Sect. 3.2. Otherwise k-identifiability is defined as 0. Thus, the k-
accuracy is the average of the k-identifiability values of each tested instance [17].
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Fig. 3. Accuracy of Locations Sets: effect upon accuracy of varying k (size of the
candidate locations set) and t (size of the time frame).

In Fig. 3, we show the k-accuracy of a user location when varying k and
t, where k is the size of the candidate locations set and t is the size of time
frame used to filter the adversary knowledge base. Observe that for k = 8, we
reach a value close to 95% with a time frame of only 20 minutes. The behavior
of the k-accuracy is asymptotic and it reaches a value close to the maximum
already at around t = 20. In other words, the adversary has to analyze only 20
minutes of traffic to reach the best accuracy performance, independently of the
value k selected. Other combinations of k and t also provide reasonable accuracy
performance. For instance, for k = 8, 5 minutes of traffic are enough to reach an
accuracy of 79%, which is quite remarkable.

In Fig. 4, we show the effect of varying δ, that is the difference of time
between the filtered adversary knowledge base and the user dataset. In general,
larger delays result in lower accuracy. However, the figure shows a cyclic behavior
that reflects the daily activity highlighted in Sect. 4.2. Thus, if the adversary
does not have in its knowledge base instances that fall in the same time frame
of the user dataset, then it is better to use a filtered knowledge base that is one
day older (1440 minutes) than one that is only 12 hours older (720 minutes).
Indeed, in the former case the accuracy is slightly below 60%, while in the latter
case it is around 12% only. The figure also shows a decrease of the peaks that
are in correspondence of every 24 hours. This is mainly due to the fact that the
information provided by the app is being constantly updated, and it becomes
obsolete after a few days.

4.4 Granularity of the Monitored Area

In the experiments that we reported in Sect. 4, the adversary monitored 50
points that were distributed within an area of two square kilometers. Each point
represented therefore a square area of 200 m2. The adversary arbitrarily chooses
one point within this square as a representative. However, the granularity of 200
m2 does not necessarily match the granularity adopted by GoogleNow: if the
granularity of GoogleNow is finer, then there are points within the area that
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Fig. 4. Accuracy of Locations Sets: Effect upon accuracy of varying δ (time delay
between the filtered adversary knowledge base and the user dataset). (k = 4, t = 60)
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have not been considered during the collection phase; on the other hand, if the
granularity of GoogleNow is coarser, then several different points may become
indistinguishable, thus impeding detection.

We performed an additional experiment to learn the granularity used by
Google services in a given area. To this aim, we run the data collection phase
using different granularities: 5, 10, 25 and 100 m2. The number of points is fixed
to 50 in all cases considered. Each square was probed once every 5 minutes and
we calculated the median of the exchanged bytes. Figure 5 shows the results
achieved for the two extreme values that we used: 5 and 100 m2. In Fig. 5a, it is
possible to easily identify three different regions with a similar amount of bytes
exchanged (they are indicated with R1, R2, R3). In Fig. 5b, a cell represents
an area of 100 m2. Even in this case there exist regions containing more than
one indistinguishable square. The shapes of these regions are irregular since they
depend on the location, on the importance, and on the number of the points of
interests that fall in those areas.

The result of this analysis is that the granularity of GoogleNow in the par-
ticular region we analyzed is dynamic and ranges from 5 m2 to 100 m2. Thus
the most appropriate granularity should be selected to find the right balance
between performance (data collection) and detection accuracy. Our experiments
were run with 200 m2 in our target region because the detection accuracy was
very high regardless and this allowed us to speed up data collection (the entire
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area could be monitored every 5 minutes) and avoid overloading GoogleNow
servers with our requests.

5 Related Work

The closest research areas to this work, are traffic analysis and location obfus-
cation. In the following, both of them will be briefly described.

Traffic Analysis is devoted to exploiting observable features in an encrypted
traffic to infer information about the content of the communication. For
instance, [9,20] leverage observables such as the timing and the exchanged bytes
to discover communication patterns that can be used to break the anonymity
or the confidentiality of the communication. The majority of the work in this
area has been conducted over HTTPS protocol [17,16,19,18], even though other
protocols such as VoIP [24] have been analyzed as well. A variety of techniques
such as Naive Bayes classifiers, Jaccard’s coefficient [17], common text mining
techniques applied to the normalized frequency distribution of observable IP
packets [16] or vector machine classifier [19] have been adopted and applied to
traffic analysis in order to identify which website the target user had accessed.
These techniques work even if the communication is encrypted or anonymized
through networks such as Tor. Indeed, [19] achieved an astonishing accuracy of
97% in these cases. Several countermeasures have also been devised [18,17,25].
They work by manipulating packet size, web object size, flow size, and the timing
of the packets to hinder traffic analysis. Unfortunately, these countermeasures
have significant performance drawbacks [17] and some of them are particularly
vulnerable to simple attacks [12] that exploit the coarse features of traffic (e.g.,
total time and bandwidth).

Location Obfuscation aims at hiding the exact geographical location of the user
from the LBSs. Considering both location information accuracy and privacy, [8]
introduces the concept of relevance which is used to protect the location infor-
mation of users together with other obfuscation operators. In [15], the authors
propose to adjust the resolution of location information along spatial or tem-
poral dimensions to meet specific anonymity constraints. In [10], a peer-to-peer
method is proposed where users cooperate to hide their real location from the LBS.
Another approach proposed in [7] consists of adding controlled noise to the user’s
location to obtain an approximate version of it which is then sent to the LBS. An
obfuscation technique is proposed in [21] for a number of sensitive data, includ-
ing IP addresses of users, this tecnique provides formal confidentiality guarantees
under realistic assumptions about the adversary’s knowledge.

6 Conclusions

In this paper, we introduced a new adversary model for Location Based Services.
The model takes into account an unauthorized third party, different from the
LBS provider itself, that wants to infer the position of a LBS user. We ana-
lyzed one of the most popular location based apps available on Android, that is



58 G. Ateniese et al.

GoogleNow, and we have shown that our adversary can infer the position of a
user with an accuracy of almost 90% through a statistical analysis of the user’s
encrypted network traffic.
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Abstract. Some smartphone platforms such as Android have a distinc-
tive message passing system that allows for sophisticated interactions
among app components, both within and across app boundaries. This
gives rise to various security and privacy risks, including not only inten-
tional collusion attacks via permission re-delegation but also inadvertent
disclosure of information and service misuse through confused deputy
attacks. In this paper, we revisit the perils of app coexistence in the
same platform and propose a risk mitigation mechanism based on segre-
gating apps into isolated groups following classical security compartmen-
tation principles. Compartments can be implemented using lightweight
approaches such as Inter-Component Communication (ICC) firewalling
or through virtualization, effectively fencing off each group of apps. We
then leverage recent works on quantified risk metrics for Android apps to
couch compartmentation as a combinatorial optimization problem akin
to the classical bin packing or knapsack problems. We study a number of
simple yet effective numerical optimization heuristics, showing that very
good compartmentation solutions can be obtained for the problem sizes
expected in current’s mobile environments.

Keywords: Smartphone security · Permission based security ·
Malware · Collusion attacks · Risk assessment

1 Introduction

Android’s security model is substantially different from that of standard desktop
operating systems, as it was designed to better fit the architecture and intended
usage of smartphones. The device is seen as a platform with a number of avail-
able services, such as storage, networking, and a collection of sensors [1]. Access
to each service is provided through a system API freely available to apps yet
restricted with a permission system. Thus, an app must request the appropriate
permission in its manifest in order to gain access to protected API calls. Permis-
sions can be also used by apps to control interactions among components, for
instance by specifying which privileges a caller must have in order to use a com-
ponent. Recent studies by Felt et al. on the effectiveness of permission systems in
smartphone platforms conclude that they are quite effective at protecting users
[2]. However, in the case of Android it has been pointed out that apps often
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 63–77, 2015.
DOI: 10.1007/978-3-319-25645-0 5
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request a significant amount of permissions identified as potentially dangerous.
This exposes users to frequent warnings, which drastically reduces effectiveness.

Android apps are considered mutually distrusted and are isolated from each
other. Thus, each app has its own process and can access its own data only. Des-
pite this isolation, Android provides the developer with a rich inter-application
message passing system. This pursues several goals, including to facilitate com-
ponent reuse and inter-application collaboration. In Android, developers are
encouraged to leverage existing data and services offered by other apps, which
is achieved by dividing an app into components and then exchanging informa-
tion within the app boundaries—ICC, or Inter-Component Communication—
and across applications—IPC, or Inter-Process Communication. This is mostly
achieved through intents, which can be thought of as messages that allow implicit
and explicit communication among components.

The Perils of Coexistence. The Android app interaction model creates
numerous security risks [3]. A careless developer may accidentally expose func-
tionality that another (malicious) app can exploit to, for instance, trick it into
performing an undesirable action. Thus, vulnerable apps can unintentionally
provide attackers an interface to privileged resources in what is known as a con-
fused deputy attack. Additionally, in a compromised device messages exchanged
between two components could be intercepted, stopped, and/or replaced by
others, as they are generally not encrypted or authenticated.

Deliberate collusion attacks are not only possible but also quite simple to
implement. Two or more malicious apps can cooperate to violate security poli-
cies in the so-called permission re-delegation attacks [4]. Permission re-delegation
takes place when an app with sufficient permissions performs a privileged task
that is requested by another app that does not have those permissions, which
effectively undermines the user-approved permission system. To further com-
plicate matters, a sophisticated attacker might not even rely on the IPC/ICC
subsystem, but on covert channels as a substitute to the official communication
interface. This would provide colluding apps with an alternative—and most likely
unnoticed—vehicle to exchange information. Chandra et al. [5] have recently
conducted a comprehensive study of such covert channels in smartphones, show-
ing that they abound and that some of them offer reasonable bandwidth. More
generally, apps with networking privileges can also use communication channels
external to the smartphone to exchange information.

Related Work. Countering attacks that exploit inter-app communications is a
challenging task [6]. Bugiel et al. introduced in [7] a framework called TrustDroid
to separate trusted from untrusted applications into domains, firewalling ICC
messages among domains. Partly based on this concept, Samsung has recently
released the KNOX Container [8], so that apps and data inside a container
are isolated from apps outside it. According to Samsung, KNOX is intended to
facilitate the coexistence of work and personal content on the same device, this
being a more lightweight solution than using a separate virtual machine (VM)
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for each compartment. Interested readers can find in [9] an overview of recent
progress in virtualization techniques for mobile systems.

Monitoring and enforcing restrictions on app interactions has been a major
research theme almost since the first Android releases. Dietz et al. introduce in
[10] Quire, a signature-based scheme that allows developers to specify local (ICC)
and remote (RPC) communication restrictions. Other proposals such as Taint-
Droid [11], AppFence [12], or XManDroid [13] closely monitor apps to enforce
given security policies. While the first two use dynamic taint analysis to prevent
data leakage and protect user’s privacy, the latter extends Android’s security
architecture to prevent privilege escalation attacks at runtime.

Motivation and Contribution. A common theme in all the solutions dis-
cussed above is that app segregation is ultimately driven by a user-defined policy.
But delegating such a burden to users can only result in a very limited protec-
tion, since policy making is unanimously recognized as a difficult task. Users
hardly understand the repercussions of granting an app a given set of permis-
sions, let alone those of all possible combinations of apps. Furthermore, policies
will likely be user- and even context-specific, so a one-size-fits-all approach does
not seem a sensible choice either. Lastly, the problem of leveraging covert chan-
nels for command, control, and communication among colluding apps is yet to
be addressed. Isolation is generally recognized as one of the most economic and
effective ways to dismantle covert channels, but then again it is unclear which
apps should be set apart from which others without totally disrupting the very
purpose of inter-app communication.

In a related but different area, risk analysis techniques such as [14–18] have
recently gained much attention as attractive mechanisms to effectively signal
potential threats and better communicate them to final users. Most of such
techniques are essentially based on deriving a numerical score from various app
features, generally its permissions. Motivated by the discussion provided above,
in this paper we make the following contributions:

1. We argue that current risk assessment schemes based on examining apps
in isolation can only offer a limited vision of the actual risk, since they fail
to model the perils of app coexistence in security models such as that of
Android. Ideally, risk assessment should be redefined to extend its scope to
all apps residing in the platform, possibly considering dynamic contextual
variables too. To formalize this, we introduce an Unrestricted Collusion (UC)
model that captures these points in a very simple way.

2. We reuse existing risk scoring techniques and adapt them to the UC model.
Simple experiments with typical apps show that, for instance, as little as 10
apps may pose a risk level higher than that the risk obtained for 75% of
well-known malware instances.

3. We then revisit the classical idea of risk mitigation through compartmenta-
tion (as in, e.g., the Brewer-Nash model [19]), a notion that has been used
for decades both in corporations and by the intelligence community, and
is implicit in some of the works that have addressed the problem of app
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isolation. However, considering the complexities and limitations that policy
making entails, we use quantified risk metrics to formulate the problem as
a class of mathematical optimization problems known as packing problems.
This addresses the compartmentation problem in a very effective way while
reducing user involvement to a bare minimum.

4. We explore 14 heuristics for two practical settings—risk minimization given
a fixed number of compartments per mobile terminal, and minimization of
the number of compartments given a maximum tolerable risk level for each of
them. Our experimental results show that the problem is practically tractable
for the sizes involved in current mobile’s environments.

5. Lastly, we introduce a freely available online service called DroidSack that
implements app compartmentation as introduced in this paper.

2 A Quantified Risk Model for App Colocation

2.1 Risk Scoring Functions for Individual Apps

Several proposals have recently addressed the design of mechanisms to palliate
the ineffective way in which permissions are used to communicate potential risks
to the user [14]. Wang et al. introduced in [20] DroidRisk, a permission-based
quantitative risk assessment metric for Android apps. DroidRisk draws inspira-
tion from standard methods in quantitative risk assessment and associates with
each app a the risk quantity

R(a) =
∑

i

R(pi) =
∑

i

L(pi)I(pi), (1)

where R(pi) is the risk level of permission pi, L(pi) and I(pi) are the likeli-
hood and the impact of permission pi, respectively, and the sum is taken over
all requested permissions. The likelihoods L(pi) are empirically estimated by
applying Bayes’ rule to a dataset of benign and malicious apps. As for the
impacts I(pi), they are set to 1 for normal permissions and to 1.5 for dangerous
ones. These values are also empirically chosen so as to maximize discrimination
between goodware and malware.

Similar mechanisms are presented by Peng et al. in [16] and then further
explored in an extended version of that paper by Gates et al. in [17]. Here the
authors develop various risk scoring functions also based on the set of permis-
sions an app requests, including probabilistic generative models such as Basic
Naive Bayes (BNB), Naive Bayes with informative Priors (PNB), Mixture of
Naive Bayes (MNB), and Hierarchical Mixture of Naive Bayes (HMNB). The
work presented in [17] also explores a related approach in which the rarity
of permissions—computed as the logarithm of the associated probability—is
used to construct risk metrics. Each app a is modeled as a pair a = [ci,xi =
(xi,1, . . . , xi,M )], where ci is the category of the app, M is the number of per-
missions, and xi a binary vector indicating which permissions the app requests.
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Two risk metrics are introduced. The first is called the Rarity Based Risk Score
(RS) and associates with each app the number

RS(xi) =
M∑

m=1

xi,m · ln
(

N

cm

)
, (2)

where N is the total number of apps. A variant called Rarity Based Risk Score
with Scaling (RSS) is also explored. It uses scaling factors wn to penalize high
risk permissions more than low risk ones

RRS(xi) =
M∑

m=1

xi,m · wm · ln
(

N

cm

)
. (3)

Other proposals, such as the work reported in [15,18,21], introduce more
complex risk assessment mechanisms and consider factors other than permis-
sions, such as intents or the presence of native code, among others.

2.2 Extending Risk Scoring to App Compartments

Feature-Based Risk Scores. Essentially all the risk scoring mechanisms pro-
posed so far represent an app a as a feature set

a ←→ φa = {f1, . . . , fM}, (4)

where each fi is a feature associated with a particular risk factor, i.e., an aspect
of the app which is relevant when measuring the risk it poses. Permissions are,
by far, the most common risk factors considered by existing risk assessment
metrics. Thus, most risk metrics represent φa as a binary vector in which a one
in the i-th position means that the app requests permission pi, and vice versa.

Risk quantification is effectively done by some scoring function ρ(a) return-
ing, in general, a positive real number proportional to the amount of risk posed
by a. As discussed in [16], it is reasonable to assume that risk scoring functions
are monotonic. In our feature-based framework, monotonocity for a risk scoring
function ρ means that, if φa and φb are the feature sets associated with apps a
and b, then

φa ⊆ φb ⇒ ρ(a) ≤ ρ(b). (5)

That is, adding risk factors to an app does not decrease risk.

The Unrestricted Collusion (UC) Model. We now consider the problem
of measuring the risk of a set of apps {a1, . . . ,aN} running on the same device.
This strongly depends on the particular platform used. We will assume a rather
permissive co-existence model such as the one provided by Android, in which
collusion is facilitated not only by side channels, but also directly (re-delegation
attacks) and indirectly (confused deputy attacks) by the IPC subsystem. Thus,
we define an Unrestricted Collusion (UC) model as follows: in terms of risk, a set
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of apps running on the same platform can be viewed as a single app whose risk
factors are the union of the risk factors of the constituent apps. More formally:

{a1, . . . ,aN} ←→ φa1,...,aN
=

N⋃
i=1

φai
. (6)

In practical terms, the UC model states that apps can communicate with each
other without restrictions. Thus, if one of them has been granted permission to
access a particular resource, all of them can also access that resource via the
first app. We believe the UC model is reasonable for the current smartphone
ecosystem dominated by social, gaming, and sport apps that are increasingly
supporting resource sharing and other forms of interactions with each other.

Abusing notation ρ({a1, . . . ,aN}) can be computed by any feature-based
risk scoring function for individual apps by just applying it to the union of all
feature sets of the integrating apps. A priori, it is unclear what the relationship
between ρ({a1, . . . ,aN}) and {ρ(a1), . . . , ρ(aN )} should be. For example, both
DroidRisk—expression (1)—, RS—expression (2)—, and RSS—expression (3)—
are “sublinear”, in the sense that they have the subadditivity property

ρ(
N⋃

i=1

ai) ≤
N∑

i=1

ρ(ai). (7)

Note that this will not generally hold for nonlinear risk scoring, e.g, those based
on subsets of risk factors. Sublinear risk scoring functions are relevant for a class
of compartmentation heuristics developed later in Section 3.

2.3 An Empirical Analysis of Colocation Risk

We first conducted an empirical evaluation of the risk metrics discussed above
in order to assess the risk of colocated apps in the UC model. We implemented
DroidRisk [20] and the RS and RSS metrics proposed in [17]. In all cases, parame-
ters were estimated using a dataset composed of over 15K apps from the Google
Play market and over 15K malicious apps from VirusShare. Each app in the
dataset was preprocessed and transformed into its corresponding feature vector
with the permission-related information so as to train each risk model. Overall,
our results show risks distributions very similar to those reported in the origi-
nal papers and confirm that permission-based risk metrics offer a fair degree of
discrimination between goodware and malware.

We next considered the case of a platform hosting N ∈ {10, 20, 30, 40, 50}
colluding apps and measured the risk of the entire group. The choice of this
range is motivated by a 2014 report from Nielsen establishing that smartphone
owners use between 20 and 30 apps on a regular basis [22]. For each value of
N , we randomly selected a group of apps from our dataset of non-malicious
apps, computed the risk of the set, and repeated the experiment 1000 times.
Fig. 1 shows the risk using DroidRisk and RS/RSS as underlying risk metrics.
For a better understanding of the implications of colluding attacks in terms of
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Fig. 1. Quantified risk of collusion for different number of apps

quantified risk, each plot is accompanied by the risk distribution of malware.
The results suggest that, for instance, just 10 apps pose a risk level higher than
75% of the malware according to the RSS metric. The figures vary when using
DroidRisk, yet the fundamentals are the same. Overall, as the number of apps
increases so does the risk. As expected, risk growth slows down after certain
number of apps since the likelihood of acquiring more risk factors for the group
(e.g., additional permissions) gets lower.

3 Optimal Risk Compartmentation Policies

3.1 Two Compartmentation Problems

Our scheme relies on a quantified risk-driven compartmentation policy. That
means that, in principle, there are no predefined conflict of interest classes,
as in the classical Brewer-Nash model, nor any other enforceable mandatory
controls. Contrarily, compartmentation is implemented by computing the risk of
a group of apps coexisting in the same compartment and checking whether this
is acceptable or not. Note that, in doing so, compartmentation takes place with
minimal user intervention.

We consider two different settings in which app compartmentation can occur.
The first one, called the RISKPACK problem, models a scenario in which it is
feasible to define a notion of a maximum tolerable risk, this being an upper bound
to the risk that each compartment can assume. For simplicity, we assume that
all compartments have the same risk capacity. This can be straightforwardly
extended to the general case in which the user can define compartments with
different risk bounds.

Definition 1 (RISKPACK). Given a set A of N apps, for each S ⊆ A a risk
measure ρ(S) ∈ Z

+, a finite set K of N compartments, and a maximum tolerable
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risk τ ∈ Z
+ common to all compartments k ∈ K, the RISKPACK problem is to

find an integer number of compartments Z and a Z-partition S1, . . . ,SZ of the
set A such that ρ(Si) ≤ τ for all i = 1, . . . , Z. A solution is said to be optimal
if it has a minimal Z.

Note that in RISKPACK the number of available compartments is equal to
the number of apps, and it is implicitly assumed that ρ(a) ≤ τ for all a ∈ A.
That is, all apps will be eventually assigned to a compartment, the challenge
being how to use the minimum number of compartments while not exceeding
the risk capacity in none of them.

The second problem, called RISKMIN, is intended for a more practical situ-
ation, in the following sense. On the one hand, the semantics of the risk scoring
functions are often unclear. Quantified risk approaches are generally not intended
as final indicators to be communicated to users, but rather as intermediate vari-
ables to be used in a higher lever decision making process. Thus, in RISKMIN
the focus is not on each compartment’s risk value in absolute terms but rather
on minimizing it. On the other hand, instead of assuming that a pool of as
many as necessary compartments is available, we assume a fixed, and possibly
small, number of them. This is more commensurate with current smartphones’
capabilities, since it is unrealistic to assume they will soon be able to support a
substantial number of virtual machines.

Definition 2 (RISKMIN). Given a set A of N apps, for each S ⊆ A a risk
measure ρ(S) ∈ Z

+, and a finite set K of M ≤ N compartments, the RISKMIN

problem is to find a Z-partition S1, . . . ,SZ of the set A such that
Z∑

i=1

ρ(Si) is

minimal. Other target functions are possible, for example minimizing maxi ρ(Si).

For simplicity, a detailed discussion on how to introduce restrictions such as
these in our model is left out of this paper. Nonetheless, we anticipate that most
problem solving strategies would be able to deal with them straightforwardly.

Online vs Offline Packing. As in the case of many classical packing problems,
it seems reasonable to consider two versions in which compartmentation can take
place. In the online setting, apps must be installed in a compartment one at a
time, without considering which the next app(s) would be. Contrarily, in an
offline setting all apps are given upfront. It is easy to prove that the online
problem is more difficult and that there is no algorithm that always gets the
optimal solution.

3.2 Complexity Analysis and Heuristics

RISKPACK is a variant of the combinatorial optimization Bin-Packing Problem
(BPP) [23]. There is, however one significant difference: while in BPP the space in
a bin occupied by two objects is the sum of their sizes, in RISKPACK there might
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not be an straightforward relationship between the risk of two apps put together
and the risks of each one of them isolated. When the risk scoring function is
sublinear, RISKPACK reduces to the VM (Virtual Machine) packing problem
recently explored by Sindelar et al. in [24], in which several virtual machines
jointly packed in a server share memory pages and, therefore, occupy less space
than the sum of their individual sizes.

The RISKMIN problem is a variant of the Multiple Subset Sum (MSS) prob-
lem, and can be also seen as a Multiple Knapsack Problem (KPP) if com-
partments with different risk tolerances are assumed [23]. As in the case of
RISKPACK, the key difference is that risk aggregation by the scoring function
might not be additive. As discussed in the next section, this can negatively
impact the ability to develop efficient approximations.

Both RISKPACK and RISKMIN are NP-hard since they contain the BPP
and the MSS/MKP, respectively, as special cases when the risk scoring function
is strictly additive in the sense that

ρ(
N⋃

i=1

ai) =
N∑

i=1

ρ(ai). (8)

Furthermore, a direct reformulation of the results provided in [24] determines
that, for arbitrary (i.e., nonlinear) risk scoring function, RISKMIN is hard to
approximate, whereas for the case of RISKPACK the question is open. Despite
this hardness result, we will later see that standard heuristic strategies attain
sufficiently good solutions for many instances that arise in practice.

Even though BPP and MSS/MKP are known to be NP-hard, excellent solu-
tions to large instances can be obtained by relatively simple algorithms. Many
heuristics have been developed for both problems, often resulting in solvers that
provide fast but generally suboptimal solutions. We have adapted some of those
heuristics to our risk packing/minimization problems, and also explored others
commonly used in minimization problems. In total, we explored 14 different
heuristics. A short description of each of them is provided in Table 1. The imple-
mentation in all cases is straightforward.

4 Experimentation

4.1 RISKPACK

We first obtained a risk score model of our dataset for RS, RSS, and DroidRisk
as described in Section 2. Then, we computed the number of compartments
required to fit N ∈ {10, 30, 50} apps given a maximum tolerable risk τ ∈ [0, 1].
In all the risk metrics used it is possible to compute the maximum attainable
risk for a set of apps. This allows us to express risk as a percentage relative to the
maximum, which is arguably a more understandable communication instrument
for users. For each number of compartments N , we randomly selected a group
of apps from our dataset of non-malicious apps, repeating the experiment 1000
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Table 1. Heuristics for the RISKPACK and RISKMIN problems.

Heuristic Description

R
IS

K
P
A

C
K

NF
Next Fit. When processing the next app, see if it fits in the same compartment

as the last app. Start a new empty compartment if it does not.

FF
First Fit. As NF but rather than checking just the last compartment, check all

previous compartments.

BF
Best Fit. Place the app in the tightest compartment, i.e., in the spot so that the

smallest residual risk is left.

CF
Cheapest Fit. Place the app in the compartment in which it causes the lowest

risk increment.

FFD
First Fit Decreasing. Offline analog of FF. Sort the apps in decreasing order of

risk and then apply FF.

BFD
Best Fit Decreasing. Offline analog of BF. Sort the apps in decreasing order of

risk and then apply BF.

CFD
Cheapest Fit Decreasing. Offline analog of CF. Sort the apps in decreasing order

of risk and then apply CFD.

R
IS

K
M

IN

HC

Hill Climbing. Start with a random assignment of apps to compartments. Pick

one app randomly and move it to a randomly chosen compartment. Keep it

there if the overall risk decreases; otherwise undo the move. Repeat until no

improvement is achieved for L consecutive moves.

MR Minimum Risk. Place the app in the compartment with minimum risk.

B�
Best Risk. Place the app in an empty compartment, if any. Otherwise, place it

in a compartment in which it causes no risk increment, if possible. Otherwise,
place it where it causes the highest risk increment.

CR�
Cheapest Risk. Place the app in an empty compartment, if any. Otherwise, place

it in a compartment in which it causes no risk increment, if possible. Otherwise,

place it where it causes the lowest risk increment.

MRD�
Minimum Risk Decreasing. Place the app in an empty compartment, if any.

Otherwise, place it in a compartment in which it causes no risk increment, if

possible. Otherwise, place it in the compartment with lowest risk.

BRD� Best Risk Decreasing�. Offline analog of B�. Sort the apps in decreasing order

and then apply B�.

CRD� Cheapest Risk Decreasing�. Offline analog of C�. Sort the apps in decreasing

order and then apply C�.

times, testing all heuristics described in Table 1 for the selected group of apps.
Due to space restrictions, Fig. 2 only shows the results reported using RSS and
DroidRisk (DR). RS yields very similar results to RSS.

Results show that apps can be segregated into a small number of compart-
ments with a very low risk tolerance each. For instance, 10 apps require just
2-4 compartments for a maximum risk tolerance of 1%-2%, increasing to around
10 compartments for 50 apps. Interestingly, the risk vs. number of compart-
ment relation is not linear: while a massive risk reduction can be done with just
2 or 3 compartments, further reducing the risk translates into an exponential
increase on the number of compartments. Additionally, note that the number
of compartments strongly depends on the risk metric used. For instance, a user
that could only afford a 2% of the overall risk when installing 10 apps requires
around 2 compartments with RSS but over 8 with DroidRisk. Some heuristics
such as FF and FFD consistently outperform across settings and in all scenarios.
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Fig. 2. Solutions for the RISKPACK problem using different heuristics: number of
compartments used for a maximum tolerable risk τ .

These heuristics are known to behave well in classical combinatorial packing
problems, so this does not come as a surprise.

4.2 RISKMIN

We tested RISKMIN solvers using the same experimental setting described
above. Based on this, we computed the risk reported by the platform given
a fixed amount of compartments. For the sake of simplicity, we assume that the
risk of the platform is determined by the compartment with higher risk. Fig. 3
shows the results obtained using RSS and DroidRisk (DR). As in the case of
RISKPACK, the overall risk can be effectively minimized even when using a
small number of compartments. From all heuristics tested, MRD, MR, and HC
perform better than the others. Note the duality among the curves in Figs. 2
and 3. Unlike RISKPACK, however, the performance of the different heuristics
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Fig. 3. Solutions for the RISKMIN problem using different heuristics: residual risk vs.
number of available compartments.

varies significantly. For instance, MRD� achieves a risk of 10−2 with 30 apps and
10 compartments in DroidRisk (DR), while BR� attains about 0.13 in the same
setting.

4.3 DroidSack: An Online Compartmentation Service

We have implemented a freely available online service called DroidSack that
offers app compartmentation as introduced in this paper. The service is exposed
through a REST HTTP-based API publicly available1. The API comprises two
services, GET RISKPACK and GET RISKMIN, which implement solvers for the two
problems. In the current version, apps are provided through their full names
from the Google Play market. The service connects to the market, retrieves

1 http://www.seg.inf.uc3m.es/DroidSack

http://www.seg.inf.uc3m.es/DroidSack
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the app, and extract the manifest to compute the risk. Candidate solutions are
returned as JSON objects. Detailed instructions on how to use it along with a
basic HTML interface for manual usage are provided in the URL given above.

5 Conclusions and Future Work

In this paper, we have revisited the security problems derived from app coexis-
tence in mobile platforms such as Android. To counter them, we have adopted a
compartmentation approach driven by a quantified risk assessment metric. We
have introduced a collusion model that facilitates extending existing risk met-
rics for smartphone apps to sets of apps. We have then posed two combinatorial
optimization problems for two practical settings and discussed our experimental
results with simple yet effective numerical optimization heuristics. Overall, our
results suggest that very good compartmentation solutions can be obtained quite
efficiently for the sizes expected in current’s mobile environments.

Our proposal presents a number of limitations that should be tackled in future
work. For instance, we deliberately do not consider app collusion via Internet.
We believe that, although a perfectly valid mechanism to share resources, this
problem should be addressed by different means—e.g., by system-level monitor-
ing and firewalling. Similarly, we have only considered permissions as the only
type of risk factor, since it is the most common feature used by existing risk
assessment metrics. However, considering additional aspects of an app such as
IPC calls might provide a more precise assessment of the risk and should be
further studied. Finally, dynamic reallocation policies, as opposed to re-solving
the problem again with different inputs, might be worth-exploring. For example,
such reallocation policies would be interesting when using context-driven risk
measures in which the risk of an app changes as the context varies.

Acknowledgments. We are very grateful to the anonymous reviewers for constructive
feedback and insightful suggestions. This work was supported by the MINECO grant
TIN2013-46469-R (SPINY: Security and Privacy in the Internet of You) and the CAM
grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks).

References

1. Suarez-Tangil, G., Tapiador, J.E., Peris, P., Ribagorda, A.: Evolution, detection
and analysis of malware for smart devices. IEEE Communications Surveys & Tuto-
rials 16(2), 961–987 (2014)

2. Felt, A.P., Greenwood, K., Wagner, D.: The effectiveness of application permis-
sions. In: USENIX Web Application Development. WebApps 2011, p. 7 (2011)

3. Chin, E., Felt, A., Greenwood, K., Wagner, D.: Analyzing inter-application
communication in android. In: Mobile Sys., Apps., and Services, pp. 239–252. ACM
(2011)

4. Felt, A., Wang, H., Moshchuk, A., Hanna, S., Chin, E.: Permission re-delegation:
attacks and defenses. In: USENIX Security Symposium, pp. 1–16 (2011)



76 G. Suarez-Tangil et al.

5. Chandra, S., Lin, Z., Kundu, A., Khan, L.: Towards a systematic study of the
covert channel attacks in smartphones. Univ. of Texas, Technical report (2014)

6. Fang, Z., Han, W., Li, Y.: Permission based android security: Issues and counter-
measures. Computers & Security 43, 205–218 (2014)

7. Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.R., Shastry, B.: Prac-
tical and lightweight domain isolation on android. In: Security and Privacy in
Smartphones and Mobile Devices. SPSM 2011, pp. 51–62. ACM, New York (2011)

8. Samsung: White paper: An overview of samsung knox (April 2013). http://
www.samsung.com/es/business-images/resource/white-paper/2014/02/Samsung
KNOX whitepaper-0.pdf

9. Jaramillo, D., Furht, B., Agarwal, A.: Mobile virtualization technologies. In:
Virtualization Techniques for Mobile Systems, pp. 5–20. Springer (2014)

10. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: QUIRE: lightweight
provenance for smart phone operating systems. In: USENIX Security, p. 16 (2011)

11. Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A.:
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: USENIX OS Design and Implementation, pp. 1–6 (2010)

12. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids
you’re looking for: retrofitting android to protect data from imperious applications.
In: Computer and Communications Security, pp. 639–652. ACM (2011)

13. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.: Xmandroid: A
new android evolution to mitigate privilege escalation attacks. Technical report,
Technische Universitat Darmstadt (2011)

14. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices. SPSM 2011, NY, USA, pp. 3–14
(2011)

15. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accu-
rate zero-day android malware detection. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, pp. 281–294. ACM
(2012)

16. Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C.,
Molloy, I.: Using probabilistic generative models for ranking risks of android apps.
In: Computer and Communications Security, pp. 241–252. ACM (2012)

17. Gates, C., Li, N., Peng, H., Sarma, B., Qi, Y., Potharaju, R., Nita-Rotaru, C.,
Molloy, I.: Generating summary risk scores for mobile applications. IEEE Trans-
actions on Dependable and Secure Computing 11(3), 238–251 (2014)

18. Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., Zhang, X.: Exploring permission-
induced risk in android applications for malicious application detection. IEEE
Transactions on Information Forensics and Security 9(11), 1869–1882 (2014)

19. Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: IEEE Symposium
on Security and Privacy, Oakland, CA, USA, 206–214 (1989)

20. Wang, Y., Zheng, J., Sun, C., Mukkamala, S.: Quantitative security risk assessment
of android permissions and applications. In: Wang, L., Shafiq, B. (eds.) DBSec
2013. LNCS, vol. 7964, pp. 226–241. Springer, Heidelberg (2013)

21. Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: Mast: triage for market-scale
mobile malware analysis. In: Security and Privacy in Wireless and Mobile Net-
works. WiSec 2013, pp. 13–24. ACM, NY (2013)

http://www.samsung.com/es/business-images/resource/white-paper/2014/02/Samsung_KNOX_whitepaper-0.pdf
http://www.samsung.com/es/business-images/resource/white-paper/2014/02/Samsung_KNOX_whitepaper-0.pdf
http://www.samsung.com/es/business-images/resource/white-paper/2014/02/Samsung_KNOX_whitepaper-0.pdf


Compartmentation Policies for Android Apps 77

22. Nielsen: Smartphones: so many apps, so much time (July 2014). (last visited
October 2014)

23. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. J. Wiley & Sons (1990)

24. Sindelar, M., Sitaraman, R.K., Shenoy, P.J.: Sharing-aware algorithms for vir-
tual machine colocation. In: ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 367–378 (2011)



Android Botnets: What URLs are Telling Us

Andi Fitriah Abdul Kadir(B), Natalia Stakhanova, and Ali Akbar Ghorbani

Faculty of Computer Science, University of New Brunswick,
Fredericton, New Brunswick, Canada

{andi.fitriah,natalia.stakhanova,ghorbani}@unb.ca

Abstract. Botnets have traditionally been seen as a threat to personal
computers; however, the recent shift to mobile platforms resulted in a
wave of new botnets. Due to its popularity, Android mobile Operating
System became the most targeted platform. In spite of rising numbers,
there is a significant gap in understanding the nature of mobile botnets
and their communication characteristics. In this paper, we address this
gap and provide a deep analysis of Command and Control (C&C) and
built-in URLs of Android botnets detected since the first appearance of
the Android platform. By combining both static and dynamic analyses
with visualization, we uncover the relationships between the majority
of the analyzed botnet families and offer an insight into each malicious
infrastructure. As a part of this study we compile and offer to the research
community a dataset containing 1929 samples representing 14 Android
botnet families.

Keywords: Android botnet · Malware · URL · Visualization

1 Introduction

The proliferation of mobile platforms in our daily lives has quickly brought
mobile malware to the forefront of security concerns. Almost non-existent before
the official release of the Android platform in 2008, nowadays mobile malware
is a serious threat to modern mobile devices. Among them, mobile botnets are
quickly gaining the attention of the research community. The recent report pub-
lished by Sophos [2] noted the sophistication and highly stealthy nature of rapidly
appearing mobile botnets.

Although the first studies in this domain only offered proof of concept models
of mobile botnets, they identified the potential of the mobile platform for creat-
ing more sophisticated and stealthy botnets [26]. Indeed, the resource-constraint
environment of smartphones, which are unable to afford computationally inten-
sive operations presents significant challenges to the development of solutions for
their detection. Botnets in the mobile environment have to be resource-aware to
continue their operation and remain undetected. This effectively forces mobile bot-
nets to curtail their communication to a minimum and leverage alternative hard-
to-detect channels (e.g., audio/video sensors [18], SMS/MMS [16,27,19,26]).

c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 78–91, 2015.
DOI: 10.1007/978-3-319-25645-0 6
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Mobility also opens up new avenues for old attacks. Mobile phones are a rich
source of sensitive information, traditionally not available to stationary comput-
ers (e.g., location information, user’s activities). This creates an opportunity for
new context-aware mobile botnets to be able to exfiltrate information typically
not monitored by traditional detection systems. General detection of mobile mal-
ware and in particular detection of mobile botnets have been extensively studied
in the last several years [25,14,15,11,10]. Aiming to address specific features of
the existing botnets, these studies appear isolated and give patchy solutions to
an ever growing problem. This disparity stems from a lack of solid understanding
of modern mobile botnets functionality and specifics differentiating them from
their traditional counterparts. In this work we aim to address this gap and offer
an insight into the most popular mobile botnet families. We analyze 14 Android
botnet families detected in the wild since 2010. Given an unprecedented growth
of Android malware and botnets (98% of all mobile malware [13]), in this study
we focus primarily on the Android platform. Our goal is to provide a deep under-
standing of Android botnets’ characteristics that will facilitate the development
of advanced mobile botnet detection approaches.

The contribution of our work is three-fold. First, we conduct a thorough
investigation of the Android botnet families, their characteristics and communi-
cation behaviour. Second, through static and dynamic analysis, we extract and
visualize all embedded URLs, including the obfuscated URLs. During our anal-
ysis, we identify hidden encryption keys stored within the samples that allow us
to reveal previously unknown features of Android botnets which are currently
used to avoid detection. This analysis not only allows us to demonstrate the
relationships between botnet families, but also helps us to illustrate the C&C
communication patterns. Finally, we release the accumulated dataset containing
1929 botnet samples to the research community. To the best of our knowledge,
this study is the first of its kind that offers a thorough analysis of mobile botnets’
URLs on the Android platform.

The rest of the paper is organized as follows: Section 2 presents the related
work on Android botnets and Section 3 discusses the collected dataset. Section
4 presents the approach we used to analyze the URLs of the Android botnets.
Section 5 presents the discovered trends. Finally, Section 6 concludes the paper
with some remarks about the implication of the work.

2 Related Work

With rapid advancement of botnets and mobile device security quickly becom-
ing an urgent necessity, researchers have focused their attention on this prob-
lem. One of the first attempts to illustrate the potential impact of a small-size
mobile botnet was offered by Traynor et al. [24]. It was quickly followed by a
series of studies introducing more advanced and powerful mobile botnet designs
capable of significant damage: Andbot, a botnet exploiting URL fluxstrat-
egy [26], Android botnet based on Google’s Cloud to Device Messaging (C2DM)
service [28], Android botnet leveraging out-of-bound communication channels
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(i.e., audio, ambient light, and magnetic field) [18], mobile multi-targeted bot-
net [17]. Realization of mobile botnet attacks’ potential triggered the devel-
opment of defence techniques, many of which specifically targeted individual
characteristics of botnets [23,14,11,16,27,19,10,25,15].

We provide these approaches with an understanding of the Android botnet
communication characteristics and thus provide tools to improve the effectiveness
of botnet analysis. One of the techniques we employ in our study is visualiza-
tion. Visualization has been seen as beneficial in many domains including mobile
security. One of the first works in this area was offered by Barrera et al. [12]. The
authors employed visualization to observe and analyze permission usage in mali-
cious Android applications. This work was followed by Luoshi et al. [22] where
the authors used the Gephi visualization tool for detecting Android malware by
investigating the relationships between Android function calls and their paths.
The recent work by Hosseinkhani et al. [21] introduced Papilio, a new visual-
ization technique for illustrating real-world Android application permissions. In
the context of our study, we adopt visualization to investigate URLs of Android
botnets.

3 Dataset

To provide a comprehensive evaluation of Android botnets, we gathered a large
collection of Android botnet samples representing 14 botnet families. These fam-
ilies represent early and mature versions of Android botnets that are chosen
primarily due to their popularity. The summary of these families characteristics
are provided in Table 1. Our accumulated dataset combines botnet samples from
the Android Genome Malware project [30], malware security blog [1], VirusTo-
tal [3] and samples provided by a well-known anti-malware vendor. Overall, our
dataset includes 1929 samples of Android application package (APK) spanning a
period from 2010 (the first appearance of Android botnet) to 2014. This dataset
covers a large number of existing Android botnets, which reflects the current
status of Android Malware. Figure 1 illustrates the cumulative growth of sam-
ples in our dataset. We have noticed that even though the first botnet was
discovered in 2010, there are few samples that have been created earlier (this is
witnessed by the creation dates on the ZIP files) than the official discovery date
in 2008, as depicted in Figure 1. This indicates that these botnets were unknown
or unlabelled until they were discoved in 2010. We have released the accumu-
lated dataset to the research community at http://www.unb.ca/research/iscx/
dataset/index.html

4 Extracting URLs

Traditionally, URLs are either contained in the file meta-data (e.g., the appli-
cation links for updates) or embedded in malware code as plain text or obfus-
cated strings. URLs from meta-data are easily extracted with a simple regular

http://www.unb.ca/research/iscx/dataset/index.html
http://www.unb.ca/research/iscx/dataset/index.html
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Table 1. Android botnet characteristics
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Botnet
Family

Year
Market
Origin

C&C
Type

Target
Country

Propagation and
Attack Types

Wroba 2014 3rd-party SMS/HTTP Korea ✓ ✓ ✓

Pletor 2014 3rd-party SMS/HTTP ✓ ✓

Sandroid 2014 3rd-party SMS MiddleEast ✓ ✓ ✓

NotCompatible 2014 forged site HTTP ✓ ✓

MisoSMS 2013 3rd-party Email Korea ✓ ✓ ✓

Bmaster 2012 3rd-party HTTP China ✓ ✓ ✓

RootSmart 2012 3rd-party HTTP China ✓ ✓ ✓

TigerBot 2012 3rd-party SMS ✓ ✓ ✓

AnserverBot 2011 official HTTP ✓ ✓ ✓

DroidDream 2011 official HTTP ✓ ✓ ✓ ✓ ✓

NickySpy 2011 3rd-party SMS ✓ ✓

PJapps 2011 3rd-party HTTP ✓ ✓

Geinimi 2010 3rd-party HTTP China ✓ ✓ ✓

Zitmo 2010 3rd-party SMS Europe ✓ ✓ ✓ ✓

Fig. 1. The yearly breakdown of the collected Android botnet families

expression-based search. We refer to these extracted meta-data URLs as built-
in URLs. To obtain URLs, we employ both static and dynamic analyses. The
combination of static and dynamic analyses is necessary here as many botnets
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Table 2. Overview of the extracted URLs

Botnet Family Total samples
Static analysis(URL) Dynamic analysis(URL)

Similar URL
Total Unique Total Unique

Anserverbot 244 903 130 289 974 115 21
Bmaster 6 148 69 4480 43 7
DroidDream 363 6 451 850 4 443 219 502 21
Geinimi 264 1 548 406 342 760 181 11
MisoSMS 100 450 60 179 907 224 9
NickySpy 199 5 402 411 34 303 171 24
NotCompatible 76 72 200 24 10 875 5 0
PJapps 244 4 783 676 182 932 200 13
Pletor 85 307 37 17 181 12 8
Rootsmart 28 486 16 64 14 0
Sandroid 44 1 305 218 2 566 179 11
TigerBot 96 555 47 6 188 35 4
Wroba 100 2 372 31 NA NA NA
Zitmo 80 7 648 74 158 508 138 26

Total 1 929 104 558 3 049 5 672 957 1 819 155

Fig. 2. Relationships between 4 713 URLs extracted from the botnet dataset

(especially with advanced capabilities) will hide URLs from static analysis. A
sophisticated botnet would hide its malicious intent and avoid putting C&C
URLs as meta-data. Dynamic analysis, on the other hand, forces a botnet sample
to reveal these hidden URLs.

In the static analysis, we have customized scripts that leverage regular expres-
sions and keywords such as http, password, key, DES. We looked at the similar
keyword pattern between each family. For instance, searching the const-string
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keyword can give us more results of URLs than the plain http keyword. By exam-
ining the existing pattern for each botnet family, we managed to extract even
the encoded URLs. This is obtained by using binary code searching. Search-
ing binary code, however, requires disassembly of APK file and analysis of .dex
file bytecode. Using the baksmali disassembler, we retrieved bytecode from each
sample and string portion of its data section. We referred to domains and IP
addresses extracted from the data section part of the code as C&C URLs. To
confirm the discovery of the C&C URLs, we followed several patterns from the
existing reports such as the use of port 8080 in their communications (which can
be clearly seen in the URLs).

The dynamic analysis was conducted using Anubis [9], a web-based malware
analysis tool. Anubis provides both static and dynamic analysis reports which
cover the following aspects of APK files: activities, services, broadcast receivers,
required permissions, used permissions, features, URLs, file operations, network
operations, crypto operations, started services, and native libraries loaded. In
this research, we focus primarily on the analysis of the URLs. We have extracted
all the URLs from the collected xml files generated by Anubis except for the
Wroba family (due to the Anubis startup-dependency issues). Following the
described procedure, we extracted over 5 million of URLs (5, 777, 515) from
our collected dataset (see Table 2). This resulted in 4 868 unique URLs; 155 of
them are overlapping, which reduces the overall unique URLs to 4 713. Among
them, we discovered 47 are the C&C URLs and the remaining 4 666 are the
built-in URLs. Visualizing this information gives a high-level understanding of
the relationships between botnet families. This is clearly seen in Figure 2 that
displays all the unique URLs extracted from the 14 botnet families. As the visual-
ization shows, there is a significant sharing of URL resources between seemingly
isolated botnet families.

5 Analyzing URL Patterns

5.1 Resource Sharing among Botnet Families

One interesting aspect of the analyzed botnet families is the sharing of resources,
i.e., not only the same URLs are being reused within and across families, but
also encryption keys employed to obfuscate these addresses. Moreover, they are
also sharing the same nameservers as shown in Figure 3.

Built-in vs C&C URLs. The sharing of URLs is clearly visible in Venn diagrams
illustrating the relationships between the built-in and C&C URLs. While there
is no overlap between C&C and built-in URLs, there is a clear reuse within each
category. For instance, as Figure 4 shows, all the families are linked to each
other through a significant reuse of built-in URLs. This might be an indication
of legitimate resources being a main vehicle of botnet malware. This is also
confirmed by the scanning results, as only a minor portion of these built-in
URLs are malicious. It should be noted that the same pattern exists between
the built-in and C&C URLs, which shows that the DroidDream is a subset of
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Fig. 3. Examples of nameservers sharing of C&C domains for the Geinimi Family

Fig. 4. Built-in and C&C URL relationships

the PJapps family. Based on this finding, we can infer that even though there is
no URL similarity between the built-in and C&C URLs, they employ the same
pattern, which might be an indication that the DroidDream family is actually
the evolution of the PJapps family.

Interfamily Relationships. We observed the following types of relationships
between employed addresses within the same family:

– one-to-one: when an APK file is associated with a single URL.
– one-to-many: when an APK file contains many URLs
– many-to-many: when many APK files are associated with many URLs.

Figure 5 illustrates these types of C&C URL-relationships. For instance,
PJapps adopted a one-to-one relationship where it uses a single URL to pull
down a command. Geinimi botnet uses a one-to-many relationship to make sev-
eral attempts to connect to multiple C&C servers (up to 10 distinct URLs).
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Fig. 5. Types of C&C URL-relationships discovered

AnserverBot, on the other hand, employed the many-to-many relationship where
various APK files used the same set of URLs (up to 3 distinct URLs) to commu-
nicate with C&C servers. However, we also noticed that some families such as
PJapps and DroidDream adopted multiple relationships in communicating with
their C&C servers.

Furthermore, there is also a significant relationship between the C&C URLs
and their encryption pattern within the same family. For instance, all of 365
APK files in the DroidDream family adopted the same technique for encrypting
the C&C URLs. This botnet family stored the hardcoded URLs in the same
folder and defined the key to decrypt these URLs in the Java code with the
keyword of PASSWORD CRYPT KEY. A previous report by McAfee in 2011 [4]
discovered that DroidDream variants save the encrypted configuration using the
file name prefer.dat in the Asset folder. The samples we analyzed use sense.tcd
and small.use to store the same DES decryption/encryption key as before -
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DDH#X%L. This indicates that the botmasters have changed the configuration
file without changing the encryption pattern (file path and key). Specifically,
we discovered that 253 APK files stored their configuration in sense.tcd file, 148
samples saved their encrypted configuration in prefer.dat file, and only 4 samples
used the small.use file. All of these 405 APK files linked to the same set of URLs
(up to 7 distinct URLs) and adopted the many-to-many URL relationship. This
demonstrates that botnets commonly recycle their resources.

Intrafamily Relationships. In our analysis we also discovered a significant rela-
tionship between the C&C URLs from different families. By searching and visu-
alizing the encryption, we found 101 APK files of the PJapps family applied
the same encryption technique as DroidDream, 88 of them stored their encryp-
tion configuration in the prefer.dat and another 13 APK files used the sense.tcd
file.Both used the same DES decryption/encryption key as before, DDH#X%L.
To further investigate, we checked these APKs with VirusTotal to see the results
of its detection. The results are diverse as different APKs showed a different
detection ratio. However, we noticed that some vendors such as Sophos con-
sistently detect these APKs as PJapps, while other vendors such as F-secure
declared these APKs as DroidDream. As both families appeared in the same
year, we infer that this is an example of malware evolution where the botmasters
replicate the APK file and repackage with improved techniques to evade detec-
tion. By scrutinizing the newest samples of DroidDream and PJapps, we found
a new pair of DES decryption/encryption keys (pG3N0̃8f? and G#R%AP̂H? )
which are different from the previously seen keys. None of these keys matches the
encrypted files (prefer.dat, small.use, sense.tcd). We suspect that this is another
improvement employed by the bot master in the newer versions of malware.

Moreover, there is also a significant relationship between the C&C URLs
and their proxy information within the same family. By visualizing the proxy
numbers, we noted that the same set of URLs shares the same proxy numbers.
For example, all of the 7-set C&C URLs in a DroidDream family use the same
proxy numbers in uploading (proxy number 7) and feeding (proxy number 9)
the C&C server. On the other hand, a different 2-set of URLs is also linked
to another proxy (proxy number 2). Specifically, this proxy information comes
together with the C&C URLs that we have decrypted using DES encryption.

5.2 C&C Addresses Obfuscation

One of the techniques employed by Android malware to prevent detection and
the subsequent analysis is the obfuscation of C&C servers’ addresses. There
have been a number of methods reported in the past (e.g., plain text Java file in
the DroidKungFu family [30]). Here we offer an overview of the techniques we
observed in Android botnets.

Encryption. Note that as well as the AnserverBot family that used encoding
scheme to dodge detection as previously reported by Zhou and Jiang [30], other
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Table 3. Overview of the employed encryption techniques

Botnet Family Total Encrypted URL
Encryption types

Rot-10 XOR DES AES Base64

AnserverBot 141 2 0 32 99 8

Bmaster 11 0 7 0 4 0

DroidDream 104 9 1 11 78 5

Geinimi 46 4 0 10 29 3

MisoSMS 2 0 0 0 1 1

NotCompatible 145 0 0 32 113 0

Nickispy 4 0 0 0 1 3

PJapps 27 11 0 7 1 8

Pletor 81 0 0 0 81 0

Rootsmart 25 0 0 0 25 0

Sandroid 2 0 0 0 9 2

TigerBot 23 0 0 0 0 23

Wroba 3 0 0 0 3 0

Zitmo 11 0 0 3 8 0

Total 625 26 8 95 452 53

families such as Geinimi, PJapps, and DroidDream have also adopted an encryp-
tion algorithm in their APK Botnet. A summary of the encrypted URLs and
their corresponding encoding algorithms is given in Table 3.

In essence, AnserverBot adapts the popular Base64 scheme with a custom
index table. PJapps customized this encoding scheme, employing Base64 with
a pattern of skipping every other letter in strings. DroidDream on the other
hand, employed both encoding and encrypting techniques such as XOR cipher,
ROT-10 cipher, Advanced Encryption Standard (AES), and Data Encryption
Standard (DES) algorithm provided with its three different keys of encryption:
DDH#X%LT?, pG3N0̃8f?, and G#R%AP̂H?.

Exploiting DNS. Another interesting finding of C&C URL pattern is on the
Domain Name System (DNS). We found that the C&C URLs exploit its DNS
by adopting the Domain Generation Algorithm (DGA) and the URL obfusca-
tion techniques. Table 4 lists 3 types of URL obfuscation techniques commonly
used by attackers [20]. Accordingly, the C&C URLs in the collected dataset used
the following types: Type I - obfuscating the host with an IP address, Type III
- obfuscating with the large hostname, and, Type IV - unknown or misspelled
domain. However, the behavior of Type II - obfuscating the host with another
domain is not found in our dataset. In a similar way, the C&C URLs are used
the DGA technique as rendezvous points with their C&C servers. As such, out of
47 C&C URLs that we have extracted, 33 of them have employed the DGA. For
example in the DroidDream family, the domain names of the C&C URLs (http://
ju5o.com/zpmq.jsp,http://mlo6.com/owxnf.jsp,http://ya3k.com/bksy.jsp) con-
tain both random characters and numbers, which indicates the use of DGA.

http://ju5o.com/zpmq.jsp, http://mlo6.com/owxnf.jsp, http://ya3k.com/bksy.jsp
http://ju5o.com/zpmq.jsp, http://mlo6.com/owxnf.jsp, http://ya3k.com/bksy.jsp
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Table 4. Commonly used URL obfuscation techniques

TYPE Descriptive examples Family

I http://184.105.245.17:8080/GMServer/GMServlet&PJapps

III http://91.cookier.co.cc:8080/jk center/91/ad.xml AnserverBot

IV www.qoewsl.com:8080; Geimini

Utilizing Public Blog. A previous technical report of AnserverBot in 2011 [29]
claimed that Anserverbot was the first one in Android Malware history that used
public blogs as its C&C servers to deliver commands to bot clients. According
to the authors, if the connection to the C&C server is not successful, the botnet
will start connecting to the public blog for the updated C&C server and then use
this as a new C&C server. Moreover, the information about new C&C servers
is being published on a public blog (as encrypted postings) and the C&C URLs
are hard-coded using Base64 scheme (with a custom index table). Based on this
information, we employed customized scripts that leverage regular expressions
to search for C&C URLs. Through this search, we extracted 830 C&C URLs (8
unique URLs) from the 243 APKs of the AnserverBot family that exploit public
blogs. As Figure 5 shows, all these APKs have adopted many-to-many relation-
ships. For instance, both of these URLs from baidu.com and 91.cookier.co.cc link
to the same 175 APKs. This shows that the AnserverBot has a limited number
of public blogs to be used as C&C servers.

5.3 Detection of Botnet Samples

All of the analyzed samples were collected from various sources and initially
labeled as botnet malware. To measure the effectiveness of modern anti-virus
scanners we analyzed the collected samples using the VirusTotal service [3].
Since the VirusTotal service incorporates a large selection of anti-virus scanners,
which use different detection strategies, we identify the number of scanners that
detect our samples as botnet, together with their average detection rate. The
results are encouraging as the majority of our samples were recognized correctly
with a few exceptions. For example, a low detection rate, 86%, was obtained for
Sandroid family that appeared fairly recently (in 2014). All the older families,
for the most part, were detected. Note that none of the families were recognized
by all existing anti-virus solutions.

We also looked at the maliciousness of the extracted URLs. Out of the 4
713 URLs (built-in and C&C) we extracted, 516 of them were detected as mali-
cious: 27 out of 47 C&C URLs and 489 out of 4 666 built-in URLs. Surprisingly,
some benign domains such as maps.google, news.google, and Androids-market
were detected as malicious when provided as complete URLs. As expected, not
all the C&C URLs considered as malicious are up-to-date. Considering the first
appearance of some of these botnets (2010), we assume that the domain names
might be reused by someone else for legitimate purposes. In this study, we are
not conducting further analysis on these particular C&C domain names. How-
ever, if we look into the domain-level, most of the non-malicious URLs have

http://184.105.245.17:8080/GMServer/GMServlet & PJapps
http://91.cookier.co.cc:8080/jk_center/91/ad.xml
www.qoewsl.com:8080;
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adopted the DGA technique in their DNS. To further illustrate the malicious
URL relationships, we visualized these URLs based on their families.

We also cross-checked the extracted URLs with several well-known black-
lists [5,8,7,6] as listed in Table 5. Interestingly, we found no matches with the
extracted URLs. Even though many of the analyzed families are date back to
2010 and 2011, these botnet URLs are still not a part of these blacklists. Another
point to make here is the reuse of the URLs; as our analysis shows, although
Android botnets share many URLs, all of them are different from those used by
other malware.

Table 5. Cross-check with blacklists

Name Total URL/domain Total URL Detected

Malware Domain Blocklist 24 070 0

Shalla Blacklist 179 593 0

URL Blacklist 242 548 0

Zeus Tracker 785 187 0

Total 1 231 398 0

6 Conclusion

In this work, we have looked at improved methods of Android botnet behavioural
analysis based on URL analysis. We have also shown the major differences
between Android botnet URLs and the benign ones and showed their relationship
with blacklists and anti-virus scanners. We have discovered that Android botnets
tend to encrypt various types of data including the URLs of C&C servers, the
method names to be invoked, the file path of the payloads, and even the content
of the payloads to prevent them from being reverse engineered. We confirmed
that the mobile botnets are evolving and becoming more sophisticated; thus, the
samples from 2012 till the recent ones are more dynamic. Most of the URLs of
these samples are hard coded in the Malware but created on the fly. However, by
focusing on the string pattern extraction and visualization through static and
dynamic analysis, we have managed to extract and decode these URLs. Through
this study, we were able to identify the variety of encryption techniques used by
bot masters. This is achieved by extracting the strings and visualizing each apk
file from its botnet family as well as the mappings between the URLs.
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Abstract. Extensive use of third party IP cores (e.g., HDL, netlist)
and open source tools in the FPGA application design and develop-
ment process in conjunction with the inadequate bitstream protection
measures have raised crucial security concerns in the past for reconfig-
urable hardware systems. Designing high fidelity and secure methodolo-
gies for FPGAs are still infancy and in particular, there are almost no
concrete methods/techniques that can ensure trust in FPGA applica-
tions not entirely designed and/or developed in a trusted environment.
This work strongly suggests the need for an anomaly detection capa-
bility within the FPGAs that can continuously monitor the behavior of
the underlying FPGA IP cores and the communication activities of IP
cores with other IP cores or peripherals for any abnormalities. To cap-
ture this need, we propose a technique called FIDelity Enhancing Secu-
rity (FIDES) methodology for FPGAs that uses a combination of access
control policies and behavior learning techniques for anomaly detection.
FIDES essentially comprises of two components: (i) Trusted Wrappers, a
layer of monitors with sensing capabilities distributed across the FPGA
fabric; these wrappers embed the output of each IP core i with a tag
τi according to the pre-defined security policy Π and also verifies the
embeddings of each input to the IP core to detect any violation of poli-
cies. The use of tagging and tracking enables us to capture the normal
interactions of each IP core with its environment (e.g., other IP cores,
memory, OS or I/O ports). Trusted Wrappers also monitors the sta-
tistical properties exhibited by each IP core module on execution such
as power consumption, number of clock cycles and timing variations to
detect any anomalous operations; (ii) a Trusted Anchor that monitors the
communication between the IP cores and the peripherals with regard to
the centralized security policies Ψ as well as the statistical properties
produced by the peripherals. To thwart an adversary from tampering
or disabling the proposed security components during the deployment
stage, our architecture generates a secure bitstream blob consisting of
the IP cores, Trusted Wrappers and Trusted Anchor, secured using pub-
lic key cryptography. We implemented FIDES architecture on a Xilinx
Zynq 7020 device running a red-black system comprising of sensitive and
non-sensitive IP cores. Our results show that the FIDES implementation
leads to only 1-2% overhead in terms of the logic resources per wrapper
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and incurs minimal latency per wrapper for tag verification and embed-
ding. On the other hand, as compared to the baseline implementation,
when all the communications within the system are routed to the Trusted
Anchor for centralized policy checking and verification, a latency of 1.5X
clock cycles is observed; this clearly manifests the advantage of using
distributed wrappers as opposed to centralized policy checking.

1 Introduction

Due to the size, weight and power (SWaP) advantages, FPGA (Field Pro-
grammable Gate Array) devices are the primary source for both computation and
communication tasks in various mission and safety critical embedded systems
such as smart grid, embedded and network encryption, avionics, tactical radios,
satellite communications, finance and banking, and homeland security. While the
benefits of FPGAs are great, hardware security is now emerging as a serious con-
cern for FPGAs due to the extensive use of third party IP cores/functions (e.g.,
HDL, netlist), open source tools (e.g., CAD) and unauthenticated configura-
tion bitstreams in the application design and development process. For instance,
efforts [22], [17], [2] show how one can exploit various vulnerable stages of the
hardware lifecycle to inject stealthy malwares (‘Trojans’) into the ASIC and
FPGA devices. Evidence of the existence of Trojans in the forms of backdoors in
military grade and wireless communication devices are also shown in [21]. Typi-
cally, an FPGA application encompass a collection of intellectual property (IP)
cores and soft-core processors which are in turn glued together to implement
specific functionalities within a system. In many cases, the IP cores (available in
the form of HDL, netlist or bitstream) are procured from multiple third-party
vendors with varying trust levels which provides ample opportunities for an
adversary to inject hardware Trojans. A successful triggering of one such Trojan
could create chaos in civilian infrastructure (aerospace, transportation or energy
domain), sabotage critical military applications and missions, disable missile and
weapon systems, leak sensitive information or provide backdoor access to highly
secure systems. Enforcing hardware security at the device level and system level
is very critical, which in turn has motivated defense agencies such as DARPA and
IARPA to launch innovative programs such as Supply chain Hardware Integrity
for Electronics Defense (SHIELD) [6] and Trusted Integrated Chips (TIC) [15].

Besides these programs, a handful of research efforts along the tangents of
detecting and identifying the Trojans in hardware have been proposed. The
techniques presented in works such as UCI [10], VeriTrust [25], FANCI [23] and
HaTCh [9] essentially focus on the idea of identifying and flagging unused or
suspicious Trojan wires within a design. In HaTCh [9], for instance, authors use
functional testing on the IP cores to identify all the list of unused wire combi-
nations and augments additional tagging circuitry to the IP cores so as to keep
track of the suspicious wires; as soon as a malicious wire is activated, the tagging
circuitry will raise an exception to prevent the Trojan from depicting malicious
behavior. A major drawback with all these approaches is the assumption that the
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source code of the IP core design is available to the end consumers in HDL/netlist
format and hence, often neglect the scenarios where the consumers have access
only to the configuration bitstreams (“hard IP cores”). Proof-Carrying Codes
[16] are also proposed where the IP vendor will construct a formal proof of the
design adhering to certain security properties, which will be later verified by IP
consumer to ensure that design is free from modifications. The proof is used to
detect anomalies if the design has been tampered during deployment. However,
this approach does not deal with trust in the source code, as the proof can be
generated for malicious code. Besides the overhead involved in creating huge
proofs for even smaller codes, loop holes can also occur while defining many
security properties.

In contrary to above efforts, the concepts presented in [1], [11], and [3]
assumes a “blackbox” methodology where no assumption is made on the avail-
ability of the source code and are perhaps closest to our design. In [1], authors
propose an application-dependent security infrastructure monitoring datapath
signals for illegal behaviors. This approach adds reconfigurable Design-for-
Enabling-Security (DEFENSE) logic to the functional design to implement a
centralized run-time security monitor. The hardware-based monitors are con-
figurable finite-state machines (FSMs) that check the current set of signals for
the properties specified by the designer. Huffmire et al. [11] propose a memory
protection mechanism by designing and implementing policy-driven memory pro-
tection techniques using reconfigurable hardware. Their work develops an access
policy language that precisely describes the fine-grained memory separation of
modules on an FPGA and a policy compiler that converts the specified memory
access policies into enforcement hardware modules. This memory access pol-
icy mechanism is then integrated into the hardware-based centralized reference
monitor to detect malicious memory accesses at run-time. The use of centralized
monitors not only affects the scalability of the security mechanisms in [12], [13],
[14] but also makes it vulnerable to classic communication attacks such as spoof-
ing, Man-in-the-Middle (MITM) that enables an attacker to spoof or tamper the
signals/messages to the centralized monitor, as indicated by [20], [18]. Another
drawback of these approaches is the inability to identify the malicious IP cores
that conforms to the access control policies but deviates from the normal execu-
tion behavior; e.g., a malicious encryption IP core instead of encrypting the data
when triggered leaks the secret key. In such scenarios, monitoring the normal
execution behavior of IP cores and peripherals such as number of clock cycles,
total power consumption in real-time can be used to detect any abnormalities.

Motivation and Contribution. The addition of third party IP cores and
the use of open source tools in the design and development process renders
an FPGA application vulnerable to hardware Trojan based attacks. There are
currently no concrete methods/techniques that can be easily instrumented into
the FPGAs and provide trust guarantees in FPGA applications which are not
completely developed in a trusted environment. The security methods currently
available have the following shortcomings: (a) requires low level knowledge of
the IP core design; (b) vulnerable to traditional communication attacks such
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as spoofing and MITM; (c) centralized approach; and (d) inability to detect
functional behavior deviation. Moreover most existing solutions overlook the
communication activities and functional behavior of IP core which in turn plays
an important role in actually carrying out the attack. This paper addresses
such a significant loophole by proposing a secure communication framework and
behavior monitoring module that can reliably thwart hardware Trojan based
attacks.

Motivated by the shortcomings in the existing works, we strongly argue the
need for an anomaly detection capability within the FPGAs that can be easily
instrumented with the application and continuously monitor the underlying IP
core behavior and also the access activities of IP cores with other IP cores or
peripherals for any signs of abnormalities. To capture this need, we propose a
technique called FIDelity Enhancing Security (FIDES) methodology for FPGAs
that uses a combination of access control policies and behavior learning tech-
niques for anomaly detection. FIDES essentially comprises of two components:
(i) Trusted Wrappers, a layer of monitors with sensing capabilities distributed
across the FPGA fabric; these wrappers stamp the output of each IP core i
with a tag τi according to the pre-defined security policy Πi and also verifies
the embeddings of each input to the IP core to detect any violation of policies.
The use of tagging and tracking enables us to capture the generalized interac-
tions of each IP core with its environment (e.g., other IP cores, memory, OS
or I/O ports). Trusted Wrappers also monitors the statistical properties exhib-
ited by each IP core functions on execution such as power consumption, number
of clock cycles and timing variations to detect any anomalous operations; (ii)a
Trusted Anchor that monitors the communication between the IP cores and the
peripherals with regard to the centralized security policies Ψ and the statistical
properties produced by the peripherals.

We prototyped FIDES architecture on a Xilinx Zynq 7020 device, that con-
sists of a hard fused ARM core and an Artix FPGA. The Trusted Wrapper is
implemented in hardware logic and monitors the communication and execution
behavior of IP core in a distributed manner. The Trusted Anchor is mapped to
the ARM core and controls the communication of the IP cores with the external
peripherals (enabled to thwart leakage of sensitive information) and provides
behavioral monitoring of the peripherals (enabled to thwart covert attacks). We
target FIDES architecture on a Xilinx Zynq 7020 device implemented with a
red-black system comprising of sensitive and non-sensitive IP cores. Our results
show that FIDES implementation leads to only 1-2% overhead in terms of the
logic resources/wrapper and incurs minimal latency/wrapper for tag verification
and embedding. On the other hand, as compared to the baseline implementation,
when all the communications within the system are routed to the Trusted Anchor
for centralized policy checking and verification, a latency of 1.5X clock cycles is
observed; this clearly manifests the advantage of using distributed wrappers as
opposed to centralized policy checking
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To the best of our knowledge, we first design and implement a distributed
and secure anomaly detection framework for FPGAs that can identify abnormal
FPGA behaviors (hardware Trojans) in real-time.

Roadmap: Section 2 provides the detailed description of the FIDES method-
ology along with the description of the adversary/threat model and the system
design of the distributed information model. The hardware implementation of
the FIDES architecture is described in Section 3 with the results presented in
Section 4. Section 5 concludes this work.

2 Proposed Security Framework

This paper proposes a novel, distributed and secure methodology for enhancing
trust in FPGA applications designed or developed under untrusted environments
called FIDES (FIDelity Enhancing Security methodology) named after the Greek
God of Trust. FIDES essentially relies on the use of two major approaches: (a)
decentralized information flow control (DIFC) model that enables safe and dis-
tributed information flows between various elements of FPGA such as IP cores,
physical memory and registers by annotating/tagging each data item with its
sensitivity level and the identity of the participating entities; and (b) statisti-
cal learning techniques that learns the normal functional behavior of IP cores,
peripherals defined as conformant core behavior (CCB) during the FPGA appli-
cation integration/testing stage and leverages the learned CCB model to detect
any anomalous behavior deviations in run-time.

In the sequel, we will initially present the adversary and threat model and
then discuss the detailed FIDES system design in section 2.2. Table 1 presents
the summary of various notations used for describing the FIDES design.

Table 1. Table of Notations

Notation Meaning
< Core >s

i Sensitive IP core i
< Core >ns

i Non-sensitive IP core i
Wi Trusted Wrapper assigned to < Core >i

T A Trusted Anchor
Πi User-defined policies for < Core >i

Ψ User-defined policies at T A
τi Tags assigned to < Core >i

σi < Core >i functional behavior signature
MS ,MN Sensitive and Non-sensitive memory regions

α Characteristics of IP core (S,N , E)

2.1 Adversary and Threat Model

Majority of the efforts show that various layers of the FPGA lifecycle rang-
ing from design to final deployment stage are vulnerable to Trojan intrusions.
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This work assumes trusted FPGA application integration and testing stage how-
ever untrusted design, development and deployment stage due to the immense
involvement of the third party IP cores, CAD tools and also, easily accessible
FPGA configuration bit streams. With this assumption, a more realistic adver-
sary model is considered: (i) at design and development stage, the Trojan might
be present in the third party IP core or CAD tool, or might be inserted by a rogue
designer during the design process; (ii) at deployment stage, the Trojan might be
injected into the FPGA configuration bitstream. A handful of works along the
lines of cryptographic defenses (e.g., use of bitstream signatures [5], design obfus-
cation [4]) have been proposed to thwart tampering attacks on FPGA bitstream.
FIDES architecture will leverage those existing defenses based on asymmetric
cryptography.

Embedded systems often contains a mixture of critical and non-critical appli-
cations residing on the same platform. Any intentional or accidental fault on the
operation of the critical application could have an impact on safety, or could
cause large financial or social loss. It is therefore necessary to thwart the non-
critical components from interrupting or compromising the critical operations.
This paper considers a similar scenario called the red-black system implemented
in FPGA that will encompass multiple IP cores procured from various third
party vendors with different sensitivity levels. In such a system, two distinct
kinds of IP core (Core) sensitivity levels are considered: (a) IP core that accesses
and processes critical and sensitive information (e.g., network encryption) called
sensitive core (< Core >s

i ) and (b) IP core that accesses and processes less crit-
ical and sensitive information called non-sensitive core (< Core >ns

i ).
Proper segregation between the sensitive and non-sensitive operations should

be realized so that an untrusted IP core will be thwarted from accessing the
shared resources (e.g., memory, peripherals) and transmit the information to
the outside world via a covert channel (e.g., secret unnoticeable channels) or a
normal channel (e.g., send sensitive cryptographic information by mixing with
the noise levels or encrypting with the attacker-known keys). With regard to the
red-black system design, we derive the attack scenarios given by ([A1] - [A4])
and propose the security policy requirements addressed by ([R1] - [R4]).

Attack Scenarios

A1. < Core >s
i accesses the critical and sensitive information and export the

information to the outside world
A2. < Core >ns

i accesses the critical and sensitive information and export the
information to the outside world

A3. < Core >ns
i uses trusted < Core >s

j as a conduit (a Man-in-the-middle) to
access sensitive regions and export the information to the outside world

A4. Malicious IP core spoof as a legitimate core and access application resources
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Security Requirements

R1. < Core >ns
i shall be prevented from accessing and processing the sensitive

information
R2. Cores shall be restricted from accessing the peripherals directly to limit

export of data.
R3. The information flow between < Core >ns

i and < Core >s
i shall be restricted

or performed in the presence of a security officer.
R4. The statistical properties of each < Core >i shall be measured and monitored

to detect any anomalous functional behavior deviations

2.2 System Design

Initialization phase: During the FPGA application integration/testing stage,
the following components will be generated by the end consumer: (a) Trusted
Wrapper (Wi) - a thin layer of hardware logic that interface with each IP core
< Core >i and manages/monitors the communication activities of < Core >i

with other cores (< Core >j , where j �= i); (b) Trusted Anchor (T A) - a cen-
tralized security officer, implemented in ARM, that manages/monitors the com-
munication of the IP cores with the external world (I/O Peripherals) according
to the pre-defined security policy Ψ ; (c) Tagged Physical Memory - a partitioned
memory with tags annotated to the data denoting their sensitivity level; and (d)
Secure Bitstream Blob - a cryptographically signed bitstream blob containing
Wi; ∀i ∈ S, where S represents the set of IP cores and T A modules with the
private key (K-) of the end consumer; the signed blob together with the public
key (K+) will be loaded into the memory. A hash of the (K+) will be also loaded
into the trusted region within the processor to thwart any attempts to modify
the bitstream signatures. The use of cryptographic signatures will prevent an
adversary from subverting the protection schemes included within the configu-
ration bitstream. The complete architecture of FIDES is presented in Figure 1.
FIDES specifically provides three functionalities:

– Prevention: The use of asymmetric cryptographic signatures prevents
unauthorized tampering of bitstreams (disabling or modifying the protection
schemes) built with the proposed protection schemes (Trusted Wrappers and
Anchor).

– Detection: The combination of Trusted Wrappers and Trusted Anchor
detects any unauthorized communication (e.g., non-sensitive IP core access-
ing sensitive memory regions or communicating with sensitive IP cores) and
anomalous execution of IP cores and peripherals.

– Response: On detection of an attack, the framework responds by logging
the details of the attack in the Logging buffer and communicating to the
external world for further diagnostics.

FIDES specifically prevents unauthorized modification of bitstreams through
the use of asymmetric cryptographic signatures and detects any unauthorized
communication and execution behavior of IP cores and peripherals through the
use of Trusted Anchor and Trusted Wrappers. In the sequel, we present the
various approaches used by FIDES to enable these security protections.
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Fig. 1. FIDES Architecture

Decentralized Information Flow Model. FIDES uses tag-based information
flow control methodology to achieve decentralized and safe flow of information
between various elements in the system [19]. In order to do so, during the initial-
ization phase, each Trusted Wrapper Wi will be assigned a tag (τi) that reflects
the characteristics (α) of the information handled by the ¡Core¿i and also the
identity (i) of the participating entity (e.g., IP Core identity).

Initialization phase: Wi ⇐ τi; τi =< α, i >

Where α = (S,N , E). Here S,N and E denotes sensitive, non-sensitive and
empty tokens respectively. The value of α will be assigned based on the following
policies:

– < Core >s
j |Wj ⇐ < S, j >, < Core >ns

j |Wj ⇐ < N , j >: The IP cores
< Core >s

i and < Core >ns
i will be labeled with S and N tokens, respec-

tively, depending on the characteristics of the information handled. In cases
where an IP Core processes both sensitive and non sensitive information, the
wrapper will be assigned a S token.

– Tagged physical memory: The physical memory regions M will be parti-
tioned into sensitive and non-sensitive regions by tagging with S and N
tokens denoted by MS and MN , respectively. The memory regions can be
also tagged with the identity i of the owner to enable horizontal access con-
trol protection, if needed. Alternatively speaking, under horizontal access



Unraveling the Security Puzzle: A Distributed Framework 103

control protection < Core >s
i will be prevented from accessing the memory

space belonging to < Core >s
j , though both cores are tagged with S.

– P ⇐ < E >: The I/O peripherals (external world), denoted by P, will be
labeled with empty tokens (E). This approach of assigning empty tokens will
prevent the IP cores from releasing the sensitive information to the external
world as tagging based information flow rule requires an IP core to hold an
E token to release the information to the peripherals.

Since the system is distributed and each entity is not aware of the tag of oth-
ers, the messages exchanged between the entities is labeled appropriately by
the Trusted Wrappers. Then the receiving wrappers will use the tagging based
information flow rules to determine whether to accept or reject the messages.
Enforcing tags on the messages also ensures that the information will be always
prefixed with a tag when stored in temporary or permanent memory locations
and only components that follows the tagging-based information flow rules can
access the information.

Tagging-Based Information Flow Rule Aka ‘DIFC’. The information
labeled with the tag of τj =< αj , j > can flow to τk =< αk, k >, only if the tags
of τj is included in τk. We define the partial order � (pronounced can flow to)
for two tags τj and τk as

τj � τk; if αj = αk and (j, k) ∈ Πk

Where Πk is the security policy defined at the IP core k. The security policy
Πi essentially captures the authorized set of communications for each IP core i
based on the design specifications. The above equation mainly states that core
k can accept the data from core j only if the security policy defined at k (Πk)
allows the communication from core j and the characteristics token α at both j
and k matches. Under this rule the following communication will be prevented.

τj = (< S, j >) � τk = (< N , k >)
τj = (< N , j >) � τk = (< S, k >)

τj = (< S, j >) � P =< E >

τj = (< N , j >) � P =< E >

While the above rules prevent the contaminated cores from communicating with
other cores or releasing the information, it would also make it implausible for
any legal communication activities or any sensitive data to get out of the system.
Therefore, DIFC supports tag declassification capability (denoted by ↓) which
enables the higher tags to declassify to lower tag to receive information; espe-
cially, we consider the following two scenarios:
(a) IP cores that process both sensitive and non-sensitive information labeled with
tag S - We provide an ability for Wi;∀i∈S to declassify its tag from S to N such
that S ↓ N . To up the privilege back to S, the < Core >s

i |Wi will communicate
with T A initially and T A will set the privilege of Wi back to S, only if security
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policy at T A allows. If Wi is allowed to up its privilege without contacting T A,
it can be leveraged by a non-sensitive compromised IP core to defeat the sys-
tem. As an example, consider the attack where a < Core >ns

i uses < Core >s
j

as a conduit (a Man-in-the-middle) to access sensitive memory areas and export
the information to the outside world. If in the absence of T A , the < Core >s

j

will declassify to N to receive data from the < Core >ns
j and up its privilege

back to S token to access the sensitive regions; once accessed, the IP core will
declassify its privilege to N to export the information to < Core >ns

j . To avoid
such attack scenarios, we impose the following constraint: a Wi can declassify
only after receiving an explicit request from T A;
(b) IP core that exports the data to the external world (I/O peripherals) - To
export the data, declassification privileges are assigned to T A (declassify the
label from S/N to E) based on the pre-defined security policies, Ψ at T A. The
Ψ essentially captures the authorized set of peripherals for each IP core based
on the design specifications.

Remark #1: This paper does not consider the presence of Trojans on intercon-
nect. Existing efforts can be leveraged to build secure and trustworthy intercon-
nects such as the time based techniques in [7] to detect malicious interconnect
operations or the use of secure checksums, e.g., Message Authentication Codes
(MACs) [8], to prevent the Trojans within the interconnect modifying or spoofing
the messages.

Remark #2: The security of the proposed FIDES design depends on the policies
defined by the user, Π and Ψ . This paper assumes that the policies are generated
by the end consumer based on the design specifications and requirements.
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Behavior Monitoring. Besides labeling and monitoring the communication
activities, to boost the trust in an FPGA application, the characteristics of
the underlying tagged IP cores and peripherals (P) will be also observed and
used by the Trusted Wrappers for identifying malicious behaviors and decision
making (e.g., forward/drop the message, report to T A). This technique allows
to identify the malicious IP cores that conforms to the access control policies
but deviates from the normal execution behavior; e.g., a malicious IP core that
performs erroneous computations on the input data. As each IP core exhibit
different statistical properties on execution (e.g., power consumption, number of
clock cycles, and timing variations), Trusted Wrappers will use these properties
to determine the normal functional execution behavior of IP cores defined as
conformant core behavior (CCB). In Figure 2, we show that each IP core exhibits
distinct behavior such as number of clock cycles during its execution. Therefore
in the FPGA application integration and testing stage, for each < Core >i, we
compute a signature, denoted by σi, that captures these statistical properties.
Together with the tag (τi), during the learning phase each wrapper Wi will be
assigned σi as follows:

Learning phase: Wi ⇐ σi

In the run-time phase, Wi will monitor the statistical properties produced by
< Core >i and compares with the already learned signature σi. If the difference
between the expected and observed behavior exceeds a user-defined threshold,
Wi flags the observation as “anomalous” and informs T A for further actions.
Similar to Trusted Wrapper, T A will also monitor the behavior of external
peripherals to detect any anomalous leaking of information. The intuition behind
using statistical properties for malicious behavior/anomaly detection comes from
[20], [18] where a combination of several statistical properties such as power
consumption, clock cycles, called the Hardware Trojan Detection Metric (HDM),
can be used to detect malicious IP core operations.

Remark #3: In this paper, we do not address heat or power-based Trojans.
However, we can easily extend our work with metrics that can detect these
Trojans.

Security Proofs. We here show with proofs on how FIDES can detect and
prevent the attack scenarios presented in [A1]- [A4].

A1. < Core >s
i accesses the critical and sensitive information and export the

information to the outside world using either of the two approaches: (a)
covert channel (secret and unnoticeable) and (b) obfuscate (mixing the data
with random noise) the information and transport via normal channels:

Proof. (a) < Core >s
i accesses the critical and sensitive information from

the memory( MS) and forward the information to the T A. Since the covert
channel is not an authorized peripheral for < Core >s

i , T A will reject the
information according to the pre-defined policies Ψ . (b) As obfuscation leads
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to noticeable changes from the learned signature σi, wrapper Wi will flag
< Core >s

i as anomalous and informs T A about the observation.

A2. < Core >ns
i accesses the critical and sensitive information and export the

information to the outside world

Proof. This attack will fail as tagging based information flow rule restricts
< Core >ns

i tagged with N tag from accessing the sensitive memory regions
such that MS

� τi =< N , i >

A3. < Core >ns
i uses trusted < Core >s

j as a conduit (a Man-in-the-middle) to
access sensitive regions and export the information to the outside world

Proof. As tagging based information flow rule either prevents < Core >ns
i

tagged with N tag from accessing the sensitive IP cores (τi = (< N , i >) �

τj = (< S, j >)) or forces < Core >s
j to declassify its tag from S to N , this

attack fails.

A4. Malicious IP core spoof as a legitimate core and access application resources

Proof. As each IP core < Core >i is integrated with Wi, all the communi-
cations originating from < Core >i will be appropriately labeled with the
tag τi =¡α, i¿ which will prevent a malicious IP core from impersonating as
a valid IP core.

3 Hardware Implementation of FIDES

The communication framework in FPGA-based systems plays a critical role in
supporting the hardware Trojan attacks and hence it is necessary to understand
the existing bus-based protocols in the FPGA platform. FPGA-based systems
with soft core processors consisted of interconnects such as Avalon in case of
Altera and the processor local bus (PLB) in case of Xilinx. With the introduction
of hard fused ARM cores in FPGA devices, AXI interconnect serves as the
primary protocol for communication between the ARM core and the different IP
cores [24]. The AXI protocol is a subset of the ARM Advanced Microcontroller
Bus Architecture (AMBA) and the different AXI4 interfaces are compared in
Table 2. The selection of AXI protocol allows a designer to focus only on the
IP behavior and not the IP interconnect, when targeting different FPGA-ARM
platforms. The AXI4-Lite interface is the most area efficient and best suited for
control logic data transfer.

Table 2. AXI4 interfaces

Features AXI4 AXI4-Lite AXI4-Stream
Type High-performance and

memory mapped interface
Register-style interface Non-address based high

speed streaming interface
Data transfer 256 cycles 1 cycle unlimited cycles
Data width 32-1024 bits 32-64 bits unlimited bytes
Application Embedded, memory Control logic DSP, video
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In case of Xilinx systems, the ARM core is referred to as the processing
system (PS), while the FPGA fabric consisting of reconfigurable gates is called
the programmable logic (PL). The IP cores are bundled with the AXI4-Lite
interface by the IP Packager tool in Xilinx’s Vivado Design suite. Each IP core
is wrapped with a AXI wrapper, which configures the data transfer into the
IP core using custom register interfaces. These memory mapped registers are
configured as write registers for input ports and read registers for the output
ports of the IP core. The AXI wrapper initializes these registers to a default size
of 32 bits. By default, the AXI wrapper is configured to initialize write registers
for the IP core’s inputs and the IP core’s outputs are routed to external I/O
peripherals.

The Trusted Wrapper W1 shown in Figure 3 is the top-level interface to the IP
core ¡Core¿1. Each of the IP core’s I/O port is assigned a tag τi, which is mapped
to a register from the AXI4 wrapper. Since the IP core’s output is also monitored
by W1, the AXI wrapper is modified to incorporate read registers for the output
ports. If the output port is directly connected to an external peripheral, the
additional read registers for the output port preserves a copy of the data and
its tag. Thus the T A supervises the data being transferred through the external
I/O peripherals and is able to provide behavioral monitoring. In summary, the
Trusted Wrapper W1 consists of the following register configurations:

– Write registers for the input ports of the IP core,
– Write registers for tagging the input ports,
– Read registers for monitoring the IP core’s output ports,
– Read registers for tagging the IP core’s output ports,
– Read register for declassification of data transfer depending on the security

policy framed for the IP core,
– Write register for providing the modified output label based on the tempo-

rary downgrade of the security policy access of the IP core.

IP Core 
<Core>1

Input1

Input2

Output1

Reg1

Reg2

Reg3

Reg4

Reg5

Reg6

tag τ1

tag τ2

tag τ3

Trusted Wrapper W1 

IP Core 
<Core>1

Input1

Input2

Output1

IP core 
transformation 
using FIDES

Fig. 3. Trusted Wrapper mechanism for an IP Core

The Trusted Wrapper is embedded into the IP core during the Xilinx Vivado
tool’s IP Packaging and Configuration step. This ensures that the IP core’s
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tagging functionality is available when instantiating the IP core in other designs.
The trusted anchor T A is implemented on the ARM core, as it can easily monitor
the data transfer through the AXI interconnect to the I/O peripherals, thus
enabling communication and behavioral monitoring of peripherals.

4 Results

The FIDES algorithm is prototyped on the MicroZed Xilinx Zynq-based Z7020
FPGA development board. The Zynq 7020 consists of a dual core ARM proces-
sor and a Xilinx Artix FPGA with 85K logic cells. Both the baseline and the
FIDES implementations are synthesized and implemented using Xilinx Vivado
tool. The Vivado tool provides the logic resource utilization of the complete
design and also provides a definition file. The definition file is mapped using Xil-
inx SDK to execute the software algorithm implementation. Figure 4 shows the
resource utilization obtained from Xilinx Vivado after embedding the IP core in
the Trusted Wrapper. The Trusted Wrapper does not consume much resources
and only increases the logic resource (LUTs and FF) utilization by about 1-2%
as compared to the baseline implementation. The ARM core is also embedded
with timers to measure latency between the IP cores. The timers provide 1 ns
(nanosecond) resolution as the ARM core is clocked at 1 GHz.

Figure 5 shows the latency incurred by incorporating FIDES into the existing
system. To clearly understand the latency overhead of our FIDES scheme, we
implemented two cases, as given by the algorithms 1 and 2 below.

The latency measurement taken for two different IP cores crypto core and
(64-point) Fast Fourier Transform (FFT) core, with regard to the Procedures 1
(denoted by ‘no declassification’ legend in figure) and 2 (denoted by ‘declassifi-
cation’ legend in figure). In case of Procedure 1, as the communication is between
two non-sensitive IP cores, no declassification messages were sent to T A; the T A is
contacted only once to export the data outside. Since the message passing through
the AXI interconnect between the Trusted Wrapper and the T A contributes to the
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Algorithm 1. Communication flow between non-critical IP cores
1: < Core >ns

i → Trusted Wrapper Wi

2: Trusted Wrapper Wi → Trusted Wrapper Wj

3: Trusted Wrapper Wj → < Core >ns
j

4: No declassification/classification messages sent from Wi and Wj → to T A

latency more as compared to the tag verification, we observed minimal latency for
scenarios related to Procedure 1. On the other hand, in case of communication
between non-sensitive and sensitive IP cores (or mismatched tags), depicted by
Procedure 2, T A is contacted multiple times for declassification and classification
of privileges which in turn led to an increase in latency (≈ 1.5X clock cycles). From
the results, we also note that the existing centralized communication framework
for policy checking and verification can incur a larger overhead as opposed to the
proposed distributed wrapper scheme since the data communication through the
AXI Interconnect incurs a significant latency.

Algorithm 2. Communication flow between critical and non-critical IP
cores

1: < Core >ns
i → Trusted Wrapper Wi

2: Trusted Wrapper Wi � Trusted Wrapper Wj

3: Request for declassification sent to T A by Wj

4: T A changes the privileges of Wj from S ↓ N , if policy allows
5: Trusted Wrapper Wi → Trusted Wrapper Wj

6: Trusted Wrapper Wj → < Core >s
j

7: T A up the privileges of Wj from N ↑ S, on completion
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5 Conclusions

In this paper, we present the FIDelity Enhancing Security (FIDES) methodol-
ogy for FPGAs to enhance trust in FPGA operations that are not completely
designed or developed in a trusted environment. The security measures currently
available for FPGAs have a number of shortcomings such as (a) require low level
knowledge of the IP core design; (b) vulnerable to bus communication attacks; (c)
centralized design; and (d) failure to detect hardware Trojans that deviate from
normal functional behavior. We addressed a significant loophole present in these
existing solutions by proposing a secure communication framework and behavior
monitoring module that can reliably detect and prevent hardware Trojan based
attacks. We implemented FIDES on the Xilinx Zynq 7020 device for a red-black
system consisting of critical and non-critical IP cores. Our results yielded a
1-2% increase in hardware resources and 1.5X increase in latency (worst case
scenario where all the communications happen between the Trusted Wrapper
and Trusted Anchor) as compared to the baseline implementation. We observe
that the resource utilization and latency results can be further optimized by
clustering the IP cores into groups that share same characteristics, which will
be addressed in future work.
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Abstract. Security of embedded devices today is a critical requirement
for the Internet of Things (IoT) as these devices will access sensitive infor-
mation such as social security numbers and health records. This makes
these devices a lucrative target for attacks exploiting vulnerabilities to
inject malicious code or reuse existing code to alter the execution of
their software. Existing defense techniques have major drawbacks such
as requiring source code or symbolic debugging information, and high
overhead, limiting their applicability. In this paper we propose a novel
defense technique, DisARM, that protects against both code-injection
and code-reuse based buffer overflow attacks by breaking the ability for
attackers to manipulate the return address of a function. Our approach
operates on arbitrary executable binaries and thus does not require com-
piler support. In addition it does not require user interactions and can
thus be automatically applied. Our experimental results show that our
approach incurs low overhead and significantly increases the level of secu-
rity against both code-injection and code-reuse based attacks.

Keywords: Internet of Things · Return oriented programming · Control
flow integrity · Security · Malware · Embedded systems

1 Introduction

Recently, everything from refrigerators to sprinkler systems has evolved into
smart devices that are pervasively connected to the Internet and powered by
embedded processors. These devices are known collectively as the Internet of
Things (IoT). Due to their positioning they have the potential to become more
prominent in everyday lives than mobile phones. Cisco’s Internet Business Solu-
tions Group estimated 12.5 billion connected devices in existence globally as of
2010 with that number doubling to 25 billion by 2015 [15]. However, whereas on
one side of the IoT will make possible many novel applications, such as in smart
and connected health, on the other side IoT may increase the risk of data privacy
breaches and cyber security attacks. A recent study by HP about the most pop-
ular devices in some of the most common IoT niches reveal an alarmingly high
average number of vulnerabilities per device [14]. On average, 25 vulnerabilities
were found per device. For example 80% of devices failed to require passwords
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of sufficient complexity and length, 70% did not encrypt communications to
the Internet and local networks, and 60% contained vulnerable user interfaces
and/or vulnerable firmware [14]. Several attacks have already been reported in
the past on several other embedded systems such as the ones deployed in cars
[10,42,45] and sensor networks [31]. We can expect similar attacks to be carried
out against IoT embedded devices. Securing embedded devices is thus a critical
fundamental step in securing the IoT.

In this paper, we focus on two forms of attacks that exploit buffer over-
flows on IoT embedded devices, namely code-injection and code reuse attacks.
These attacks form a substantial portion of all security attacks due to the fact
that buffer overflow vulnerabilities are so common and easy to exploit. Original
buffer overflow exploits involved the injection of malicious code [2]. This allows
the attacker to subvert the execution of the target program and take control.
However, the wide adoption of the W ⊕ X protection technique by which all
writable addresses are non-executable and vice-versa has rendered code injec-
tion attacks ineffective. By contrast, recent code-reuse attacks, such as return-
oriented programming (ROP) [36], do not require code injection. These attacks
allow an attacker to easily modify the execution path of the target program by
reusing existing executable code that primarily exists in the application binary
and shared libraries such as libc. In code-reuse, the attacker identifies small
sequences of instructions, called gadgets, that end in a ret instruction. By
carefully placing a sequence of return addresses on the stack, the attacker can use
these gadgets to perform arbitrary computation. ROP attacks have continued
to evolve to utilize gadgets that end in both jmp or call instructions [9].

Since code-reuse based attacks rely on detailed knowledge about the location
of code in the executable and libraries, the intuitive solution is to randomize
process memory images. Address obfuscation [4] and ASLR [34] are two well-
known randomization techniques against such attacks. However, they suffer from
the major drawback of small randomization spaces and have been shown to
be vulnerable on 32-bit architectures [39,41]. In considering a new protection
technique, we start with two observations. First, the main shortcoming of earlier
randomization-based approaches is insufficient entropy, thus making brute-force
attacks feasible. Second, the critical step of a buffer overflow attack is to overwrite
the return address in order to manipulate the value of the program counter ( PC).

Our protection technique, referred to as DisARM, introduces a validation
technique upon any interaction with the PC, (i.e. ret, call, or jmp instruc-
tion). Our validation technique consists of inserting a static check statement
before any critical instruction to verify that the program is in the correct state.
This invalidates the ability for an attacker to redirect the execution of the target
program. By utilizing a hashmap of target addresses XORed with the correct
PC values a constant time look up is performed upon our constructed hashmap
to validate that the program is in the correct state. Upon a failed validation
attempt we force the program to exit, thus stopping an attack. Our protection
technique has several advantages. First it stops both forms of buffer overflow
attacks with minimal overhead. Second it can be applied to any ELF binary
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without requiring the source code of an application. Finally it offers an alterna-
tive to approaches that dynamically monitor critical data sections such as return
addresses.

We are not the only researchers to investigate binary modifications for buffer
overflow attack mitigation. As discussed in section 2.3, the other approaches
suffer from one or more of the following limitations. First, none of the pro-
posed defense techniques is able to mitigate both code injection and ROP based
attacks. Second, some of the existing defenses require source code access or
other additional information that is generally not available. Third, the overhead
of DisARM is constant when compared to the dynamic techniques that incur
overhead throughout the execution of the target application. DisARM addresses
these limitations and provides a strong and efficient defense techniques against
buffer overflow attacks.

As with any defense technique, there are always costs that must be considered.
In our proposed defense technique, there is a one time overhead when applying Dis-
ARM to the target binary and a runtime overhead during the process execution.
We have evaluated the time to apply DisARM to compiled binaries on a selection
of commonly used applications and Linux coreutils, showing that the perfor-
mance penalty for DisARM is reasonable in the average case. Our work demon-
strates that, although DisARM imposes certain performance costs, its success in
thwarting buffer overflow attacks makes DisARM a feasible approach for embed-
ded systems that prioritize execution integrity over optimal performance.

The remainder of this paper is structured as follows. We start by surveying
buffer overflow attack and proposed defenses in Section 2. In Section 3, we intro-
duce the target platform for DisARM and describe our approach in more detail.
Section 4 discusses the implementation details of DisARM. Section 5 shows the
results from various experiments performed to evaluate our approach. Finally
we conclude in Section 6.

2 Background and Related Work

In this section we start with a brief summary of attacks based on buffer overflows
and existing defense techniques, and then introduce our target platform.

2.1 Code Injection

Code injection attacks are one of the first publicized exploits utilizing a vulner-
able buffer. This form of exploit allows the execution of arbitrary code under
the attacker’s control, potentially allowing the attacker to seize control of an
entire program or even an entire system (through exploitation of vulnerable tar-
gets with elevated privileges). In order to accomplish this, an attacker injects
malicious code into a vulnerable target and then redirects the execution to the
injected code [2]. In order to perform such form of attack, several prerequisites
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must be met. First, the targeted program must have a memory corruption vul-
nerability. Second, there must be a writable and executable region of memory.
Third there must be a way to redirect the processor to execute the injected
code. The first and third requirements are generally met through a buffer over-
flow that allows the attacker to push arbitrary code onto the stack and then
overwrite the stack return address to redirect to control the attack payload. The
second requirement requires finding an area of memory that can both be writ-
ten to and executed. The processor then begins to execute the attack payload,
granting the attacker control of the current thread.

2.2 Code Reuse

Return oriented programming (ROP) is a technique that evolved from buffer
overflow attacks. As discussed in Section 2.1 previous attacks depended on the
presence of an executable stack. However the adoption of W ⊕ X (also known
as Data Execution Prevention – DEP) under which a memory page is either
writable or executable, but not both at the same time, has made such attacks
ineffective. Code reuse attacks [36] bypass DEP protection. Instead of executing
injected code, attackers identify small sequences of instructions, called gadgets,
that end in a ret instruction. By carefully constructing a sequence of addresses
on the software stack, an attacker can manipulate the ret instruction to jump
to any gadget to perform arbitrary computations. Code reuse techniques work in
both word-aligned architectures like RISC [8] and unaligned CISC architectures
[36]. These techniques have been shown to be able to perform privilege esca-
lation in Android [17], create rootkits [28], and even inject code into Harvard
architectures [22]. Additionally the same technique has been used to manipulate
other instructions, such as jmp, and their variants [6,9,13].

2.3 Defense Techniques

Several defense techniques for mitigating buffer overflow attacks have been pro-
posed. As mentioned before, DEP is the most widely used. However there are a
lot of ARM based microcontrollers that do not support DEP as this protection
technique was only introduced in ARMv6 and newer architectures [3].

Address obfuscation [4] and ASLR [34] are two well-known defense tech-
niques against ROP attacks. However, they suffer from small randomization and
have been shown to be vulnerable on 32-bit architectures [37,39]. Instruction
set randomization (ISR) [29], another well known defense technique, has also
been shown to have similar limitations [41]. Several fine grained randomiza-
tion techniques have been proposed as a defense against code-reuse attacks such
as ILR [26], In-place randomization [33], STIR [43], Marlin [25], XIFER [20],
Librando [27], Code Shredding [40], ASR [24], Genesis [44], nop-insertion [23]
and Bhatkar et al. [5]. Though these defenses have low overhead, they are consid-
erably more invasive in that they require extensive program restructuring which
often lead to instability in larger binaries. Also those techniques are not able to
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account for different optimization levels of binaries and are unable to protect
against code-injection based attacks.

Compiler based solutions that create code without return instructions have
also been proposed [30,32]. However those solutions are unable to handle ROP
variants such as jump oriented programming [6] attacks. Another mitigation
tactic for code reuse attacks is to detect and terminate the attack as it occurs.
Examples of these include DROP [11], DynIMA [18], CCFIR [47], CFL [7],
ROPdefender [19], [12] and [48]. The dynamic monitoring approach used by
these techniques make them unsuitable for our target platform where the pro-
cessor is limited in comparison to its x86 variants.

Lastly there have been techniques proposed to reinforce the control flow on
ARM. Two most notable utilities are MoCFI [16] and control-flow restrictor [35].
However these techniques are both unsuitable for our application. While they
are able to reinforce the control flow integrity of a target application, the over-
head incurred by the verification is far too great. Within MoCFI, the CPU
overhead of the verification grows in relation to the number of jumps as it must
traverse the binary graph that is included within the binary after MoCFI has
been applied [16]. Pewny takes a different approach by integrating itself within
the compiler eliminating the need for disassembly and construction of a control
flow graph but the verification process is very long [35]. For each valid target
of 1 to n, a comparison is made at the end of the function before the final
jump instruction. This incurs a large CPU overhead within recursive functions
or loops making at worst up to n function calls. As discussed later DisARM,
addresses these issues through the usage of a hashmap.

2.4 Challenges in Securing Embedded Devices

In most x86 based defenses it is acceptable to introduce performance overhead
of a factor of 2x [11,18,19]. This however is not the case with embedded devices
since these devices have low power and very limited resources available. These
limited resources include CPU cycles, memory and code size. These were the
factors considered in the design of DisARM.

With respect to the limited cycles available, the modifications done to the
target binary cannot require too much computation. The reason is that different
embedded systems have strict deadlines that must be met and typically operate
at very high CPU and memory usage already. Therefore any defense implemen-
tation cannot have a large performance impact due to possible interrupts or
deadlines that must be met in the protected applications.

x86 vs ARM. The x86 architecture’s calling convention is set up to mainly
use two instructions, one to call a function and one to return from it. The call
and ret assembly instructions are the instructions that control the flow for an
application. In addition, there are jump instructions that allow the execution
to jump to an address stored in a register. The ARM architecture has many
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differences in the way in which the flow is controlled. The ARM architecture
does not have call or ret instructions but it has something similar. The ARM
assembly includes the use of a linking register, lr, that is updated when a
function is called with the branch and link instruction bl. This works exactly
like a call instruction, with the difference that the return address is stored into
the lr register, instead of being pushed onto the stack as in x86. It is thus up
to the programmer or compiler to make sure that the value is not lost.

Within the strategy that the ARM architecture utilizes there is a special case
to highlight. If the function being utilized does not have any further function
calls, it will not ever have an lr register update. In order then for these functions
to ‘return’, they branch on the value stored in lr by executing the instruction bx
lr. This implies that the value in lr has not changed since the beginning of the
function. Due to this, even if there were a vulnerability within such a function,
the attacker would not be able to redirect the control since the lr register is
never pushed onto the stack. However this is not the case for extended nested
function calling for which the compiler has to push lr onto the stack in order
to preserve the return address. Through the combination of pushing lr onto
the stack and branching, we get the same effect as a call in x86.

In order to return from a function, the ARM processor pops the value of
the lr register that is on the stack into either the lr register or the PC. Once
such action is executed, the program will start to execute the instruction at the
address referenced by the old value of the lr register which is the address from
where the function was called from. By contrast in x86 the ret instruction both
pops off the stack the address to which the execution has to jump and jumps
to such address. Such characteristic of ARM simplifies our defense techniques.
Within DisARM we only need to look for and verify any instruction that pops
values into the lr register or the PC as these are the entry points into the
execution flow of the program.

3 DisARM Defense Technique

We now describe our DisARM defense technique to mitigate buffer overflow
based attacks targeting the Raspberry Pi platform. DisARM uses a fine-grained
analysis of the binary to find all critical interactions that manipulate the hard-
ware PC and verifies any change to the PC before the change is applied. For each
such critical instruction, we insert a verification block immediately before the
critical instruction in order to evaluate whether the target address is valid with
respect to the current instruction the program is executing. If the target address
fails the verification, the program is forced to exit (see Figure 2). Our technique
prevents the attacker from successfully utilizing an overwritten return address
to begin a buffer overflow attack. We now introduce our basic assumptions for
a buffer overflow attack scenario and then present the details of DisARM.
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Fig. 1. Example of a critical instruction Fig. 2. Example execution of a DisARM’d
binary

3.1 Enabling Factors and Attack Assumptions

Based on our survey of buffer overflow based attacks and defenses, we have
identified distinct characteristics and requirements for a successful exploit. The
fundamental assumption and enabling factor such attacks is as follows:

The attacker is able to modify the return address of the exploited function.
That is, if an attacker overflows a buffer, the attacker is able to force the exe-
cution to return to a different address than intended and either inject or reuse
existing code.

Given this we assume that the vulnerable application must have a buffer
overflow or heap overflow vulnerability that can be leveraged by the attacker
to inject an exploit payload. Such payload may either contain native machine
code to be executed or a string of gadget addresses previously identified by the
attacker. The attacker is assumed to have access to the target binary that has
undergone DisARM processing. The attacker is also assumed to be aware of the
functionality of DisARM. Our approach protects against both remote and local
exploits as long as the attacker is not able to modify the target binary while
being executed.

3.2 Target Platform

The platform targeted in these attacks is the single board computer Raspberry
Pi. This is a popular example of an embedded platform and a prime example of
the hardware used in IoT devices. Raspberry Pi is based on an ARM11 32-bit
RISC processor clocked at 700 MHz which implements the ARMv6k architecture.
The ARM11 microprocessor is a Von Neumann Architecture processor. In this
architecture, a processor has one physical signal and storage for instructions and
data. This allows the processor to load instructions or read/write values from the
same section of memory. This is a critical factor in allowing code injection based
attacks. In addition, the program space in ARM is 32-bit word aligned with fixed
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instruction length. Thus, within DisARM we do not have to handle unintended
instruction sets from jumping amidst of a variable length instruction. For the
purpose of DisARM we look at the ARM instruction set and not the Thumb or
Thumb2 instruction set that ARM processors are also compatible with.

3.3 Critical Instructions

Since DisARM reinforces the execution path of a given binary by inserting a
verification block before a critical instruction, we must first define what is a
critical instruction. A critical instruction is one that takes input from the stack
and leads to an update to the PC. In the ARM architecture critical instructions
are all the instructions of the form pop {...,pc} or pop {...,lr}, which
are instructions that remove the next X values off the top of the stack and
immediately set the PC to the last of these values (in the pop pc case) or later set
the PC to the value popped bx lr. No other instructions need to be monitored
as discussed in Section 2.4 because of the fact that the ARM architecture is a
RISC architecture. An example of a piece of code containing a critical instruction
is shown in Figure 1. The code in figure 1 is a code snippet from Apache with
a pop instruction that updates the values of both registers r4 and pc before
the conclusion of the varbuf cleanup function.

3.4 Preprocessing Phase

As mentioned above, DisARM operates at the instruction granularity to rein-
force the control flow of the target application. This requires us to identify the
critical instructions, within the user defined functions, that require verification.
In the preprocessing phase, the ELF binary is thus parsed to extract the critical
instructions and their location.

3.5 Hashmap Construction Phase

Once the instructions and their locations have been identified, a key is calculated
from the target address ⊕ PC value. Since the number of keys per binary is
static, the most efficient solution is to use a hash function that minimizes the
number of collisions. The straight-forward solution would be to use a crypto-
graphic hash function but as discussed in section 2.4, CPU cycles are limited.
This would not allow for the calculation of a cryptographic hash within every
verification block. Instead, due to the nature of the data set, we utilize a mini-
mum perfect hash function (MPHF). The algorithm we use in the generation of
a minimum perfect hash is as follows:

1. Given key K and square array S of dimension t, place each key in S at
location (x,y), where x = K / t, y = K mod t.

2. Sort each row in S in descending order according to the number of elements
it contains.
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Fig. 3. Verification Block Assembly Fig. 4. Example of MPHF construction
process over a sample set of keys

3. Slide each row within S of an amount A such that no column has more than
one entry. Record the shift amount in an array R.

4. Collapse S into a linear array C.

Thus the hash function uses t and the displacement A calculated in step 3
to locate K such that index = R[x] + y and H(K) = C[index]. For example,
if we were to validate the key 15, x = 2 (15 / 6 by integer division) and y = 3
(15 mod 6). Then the index of the key would be at location index = 8 + 3 = 11
(R[2] + 3). As it stands C[11] does in fact equal the key value of 15.

By using the MPHF we can construct a hashmap resulting in the mini-
mum number of collisions over the set of keys storing the target addresses to
be validated within the verification blocks. Upon completion of the hashmap
generation, the offset array R and hashmap array C are then appended to the
binary in the .disarm section.

3.6 PC Lock Phase

After constructing the hashmap, we must lock down each instruction that
updates the PC from the stack. To do this we insert our verification block before
each critical instruction. By doing this, the relative offsets between instructions
are changed and this may affect branch instructions. The reason is that the
original destination address for branch instructions is a relative address. Thus,
when verification blocks are inserted during the PC lock phase, the targets of
these branch instructions are no longer valid and must be corrected to point to
the desired location. This is achieved by performing offset patching as discussed
next.
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3.7 Patching Phase

Upon completion of the PC lock phase, the target binary needs to be patched
in multiple areas. Due to the additions made in the .text section for the
verification blocks and the addition of data for the hashmap in the .disarm
section, the ELF header needs to patched in addition to all branch and load
instructions within the .text section that have been shifted during the PC
Lock Phase. Within the ELF header, both the program header and the section
header table need to be patched to account for their new locations.

After completing the ELF patching, each relative load and branch instruction
offset by the modifications needs to be patched to point to the proper location.
This is achieved by performing patching as the DisARMed binary is generated.
During this process, we utilize the information gathered earlier during the Pre-
processing Phase such as the original target location of load and branch. With
this information and the number of verification blocks installed, we can calculate
the new relative offsets for each branch/load instruction to properly patch the
binary. This is discussed in more detail in section 4.4

4 Implementation Details

We have implemented a DisARM prototype that can operate on any C based
ELF binary without requiring its source code. The implementation was done for
32-bit ARMv6 architecture on a system running the Raspbian operating system
[21]. The implementation of DisARM involved two major components. The first
component consists of preprocessing and constructing the hashmap. The second
component deals with applying the verification blocks to the PC and patching
the binary. We discuss the details of DisARM implementation below.

4.1 Preprocessing

Before we can reinforce the binary, we need to identify the critical instructions
and every instruction that will be affected by the installation of the verification
blocks. This includes locating all load, relative jump branches, function calls,
returns and relative load instructions as these will all needed to be patched. In
addition, while parsing the binary, to find these instructions we track the number
and location of each critical instruction. To accomplish this we utilized a java
based elf parsing library [46]. This library allows us to read in the entire ELF
binary and represent it objectually, thus allowing us to easily update the right
sections of the file. However this library does not have all the functionality that
we were looking for. In its stock form it treated the .text section as a block
of bytes. We extended this library to also parse each individual instruction byte
by byte in order to identify all the information needed for the patching phase.
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4.2 Hashmap Construction Phase

In this stage, the hashmap to be utilized in the verification blocks is constructed.
The first step is to take each PC value and target address of a critical instruction
found, XOR their values to generate a key for that pair, and add them to the key
list. After generating all keys that will be used in the hashmap, we can construct
the MPHF as described by the algorithm in section 3.5. Once both the MPHF
and the hashmap are generated, the two arrays (offset array R and flattened
hashmap C) are appended to the binary within their own section.

4.3 PC Lock Phase

Upon completion of the hashmap construction phase, we must install the ver-
ification blocks at the critical instructions to reinforce the program flow of the
target binary. Each critical instruction is read in ascending order and wrapped
in the verification block, as shown in figure 3. Each verification block utilizes
multiple constants that are used during its execution. These include the MPHF
t value, the location of the offset table, and the location of the hashmap. During
this phase we also track how many verification blocks there were previous to the
currently installed block as this information is utilized in the patching phase.

The challenge in this phase was designing and constructing a verification
block that does not depend on any external resources aside from the global
hashmap and offset table in order to perform that validation. To accomplish
this, we followed the same methodology that GCC compiler uses during com-
pilation. Each constant used within the verification block is appended to the
end of the verification block after the final branch. This way they are available
as immediate values that can be loaded into registers during the execution of a
verification block. In addition since each verification block is going to be the pri-
mary source of runtime overhead, it had to be minimized. To accomplish this we
replaced the expensive division operations with multiplications using magic num-
ber constants that provided the same functionality while also hand-optimizing
the entire verification process. This reduced the verification block size down to
25 instructions for a combined total of 34 cycles of execution.

4.4 Patching Phase

In this stage all patching is performed in the same pass when the DisARMed
binary is written. This is done by using the information available from the pre-
processing stage. As we process the new binary, whenever a load, relative jump
branches, function calls, return or relative load instruction is encountered, we
compare the instruction’s location within the new binary to the previous binary.
If there is a difference due to the installation of a verification block, we generate
a patch that will then point the specified instruction to the correct location.
However there is a special case with relative load as a relative load instruction
and an instruction loading a constant into a register have the exact same sig-
nature. To distinguish between these instructions, we analyze the value being
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‘loaded’ into the specified register. If the value is within the program space then
the instruction is a relative load and it needs to be patched.

Upon completing the patching for all instructions identified by the prepro-
cessing stage, we must patch the ELF header. The reason is that due to the
installation of the verification blocks, the .text section has grown which offsets
all subsequent sections ( .fini, .data, .rodata etc etc...). In addition, we need
to insert an additional entry in the program header of the ELF file to recognize
the new .disarm section we include. This section contains the hashmap and
offset table, generated by the hashmap construction phase (see section 4.2).
Finally, a patch is applied within the ELF header to the location of start as
its location may have shifted during the installation of verification blocks in the
.text section.

5 Evaluation

We now describe various experiments that we performed to evaluate the Dis-
ARM technique. These experiments test the effectiveness of DisARM and also
the performance overhead incurred due to the PC verification. These experi-
ments were performed on a Raspberry Pi Model B+ with 512MB of RAM. This
Raspberry Pi Model had W ⊕ X and ASLR enabled during our experiments.
We used coreutils binaries, some commonly used application binaries (see
figure 5) and byte-unixbench [1] benchmarks to conduct various experiments.
In addition to measuring the overhead of instrumenting binaries to apply the
DisARM technique, we utilized a Windows 8.1 Machine with an i7 processor
and 8GB of RAM. To launch attacks against DisARM-protected binaries, we
use ROPgadget (v5.3) [38], an attack tool that automatically creates exploit
payload for ROP attacks by searching for gadgets in an application’s executable
section.

5.1 Effectiveness

First, we tested the effectiveness of DisARM using a test application that has
a buffer overflow vulnerability. The application, elf-ARM-ls is a test binary
as part of the ROPgagdet test binaries. We used ROPgadget on this target
application and found 1392 unique gadgets. These were sufficient to craft a
code exploit payload. When this exploit payload was provided as an input to
the unprotected binary, and we were able to redirect the execution. Next, we
applied DisARM to this application to lock down the PC and ran the ROPgadget
again to find the new locations of the gadgets. We then executed the DisARM-
binary with the new payload and it failed. This highlights the crucial factor of
buffer overflow attacks that require them to successfully manipulate the PC by
overwriting return addresses.
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Fig. 5. Target Applications used in the evaluation of DisARM

5.2 DisARM Utility Overhead

When an application is being deployed to an IoT device, DisARM identifies all
critical instructions for verification blocks to be installed, and every instruction
that will be affected by the installation of the verification blocks that is used
later in the patching phase. This computation is unique to each binary. The
next phase involves generating the hashmap from all the critical instructions
found and the installation of the verification blocks. The last phase involves
patching all instructions that were affected by this instrumentation. DisARM
processing cost is the combined overhead of all four phases. We measure DisARM
processing overhead on the same set of binaries (see figure 5) used throughout
the evaluation.

Our first evaluation of DisARM was to measure the execution overhead of
applying it to each test application. We noticed that there was a direct correla-
tion to the number of verification blocks being installed within the application
and the total runtime of DisARM. Our average runtime was 193.5 seconds over
our sample applications. This is due to the fact that we tested on multiple large
binaries that had 3000+ verification blocks installed such as Perl, and Python.
However the median execution time 5.23 seconds. This is quite reasonable as
the larger the target application, the more processing is required for DisARM to
reinforce the control flow. Notice that this overhead is incurred only once. Since
DisARM modifies the binary so that each critical instruction is secured, it does
not need to be run before every execution of the application.

5.3 Efficiency

Due to the hashmap that DisARM utilizes in the verification process, as dis-
cussed in section 3, DisARMed binaries incur a runtime memory overhead.
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Table 1. DisARM memory overhead

Binary Original Memory # of Verification Additional Memory % increase
Usage Blocks Usage (KB)

Apache 3.6 MB 1287 19.11 0.518

Bash 2.7 MB 2766 63.88 2.310

sftp 332 KB 215 7.95 2.395

Git 524 KB 3983 87.04 16.611

Gzip 220 KB 156 7.34 3.336

Make 110 KB 346 10.37 9.427

Nano 852 KB 817 19.05 2.236

Tar 206 KB 891 17.64 8.563

Vim 1.2 MB 5836 148.03 12.047

Lighttpd 1.2 MB 369 17.32 1.410

Perl 2.8 MB 3509 470.41 16.407

Nginx 1.1 MB 1845 46.79 4.154

Python 3.2 MB 6270 368.87 11.257

Monkey 152 KB 650 18.58 12.224

This overhead is constant per binary due to the fact that each hashmap is
unique to the target application. We evaluated the memory efficiency of Dis-
ARM by taking 14 common applications (see figure 5), we expect to be widely
used in IoT devices, and measured their idle memory usage. Unfortunately for
some of the target applications it was not possible to measure the idle memory
usage since the memory usage of the application directly correlated to size of its
input. Our results, reported in Table 1 show a maximum of 17%, median of 4.1%
and an average of 7% increase in memory at runtime. The reason is that, the
size of the hashmap directly correlates to how many functions there are within
the application and how often they are utilized. We found this overhead to be
acceptable as in most tested applications there was less then an average of 10%
increase in memory usage.

5.4 Code Size

In addition to the memory overhead, we measured the increase in code size of
these applications. The increases is due to the modifications we had made to
the applications in order to insert the verification blocks and hashmap. We thus
wanted to see if there were significant changes in code size. Our results, reported
in table 2 show that the code sizes do not significantly increase. As shown in
table 2 there is a maximum of 0.21% increase in code size with a median of
0.1% and an average of 0.13%. The reason is that DisARM does not require
any special compiler flags to be enabled on target binaries and can operate
at any optimization level thus taking advantage of all existing code reduction
techniques.
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Table 2. DisARM Code Size

Binary Original Size DisARM Size % increase
(MB) (MB)

Apache 1.5 1.66 0.10

Bash 2.5 2.86 0.14

sftp 0.30 0.34 0.10

Git 5.6 6.11 0.09

Gzip 0.261 0.28 0.09

Make 0.51 0.56 0.09

Nano 0.499 0.60 0.21

Tar 1.2 1.31 0.09

Vim 5.7 6.47 0.13

Lighttpd 0.631 0.67 0.09

Perl 1.5 1.87 0.56

Nginx 2.8 3.00 0.09

Python 6.7 7.37 0.15

Monkey 3.9 3.97 0.02

5.5 DisARM Runtime Overhead

We measured the runtime overhead of DisARMed binaries to see if the applica-
tion of DisARM greatly affects the execution time of a binary. For this purpose we
use the byte-unixbench binaries. We used the benchmark scores of the stock bina-
ries as a baseline to compare with DisARMed benchmarks. We applied DisARM
to each benchmark and took the average of scores from each run. We observed
that the benchmark scores were not greatly affected by the application of Dis-
ARM to the binaries. The average score generated from the stock Unixbench is
78.4 with a median of 78.8 as opposed to the DisARMed Unixbench which has
an average of 76.2 and a median of 76.4. The reason is that each verification
block installed consists of only 25 instructions which equates to an additional
34 cycles. This equates to an additional 48 nanoseconds of execution time per
function with the processor clocked at 700 MHz. These results support our initial
claim of minimal runtime overhead per DisARMed binary.

6 Conclusions and Future Work

In this paper, we proposed a verification technique to defend against buffer over-
flow attacks. This approach installs verification blocks at critical instructions pre-
venting the attacker from manipulating return addresses. We have implemented
a prototype of our approach and demonstrated that it is successful in defeat-
ing buffer overflow attacks crafted using automated attack tools. We have also
evaluated the effectiveness of our approach and showed that the effort to exploit
DisARM is significantly high. Based on the results of our analysis and implemen-
tation we argue that fine-grained verification is both feasible and practical as a
defense against these persistent buffer overflow based attack techniques. Future
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work will evaluate the effectiveness of this strategy on CISC architectures, such
as x86, in addition to exploring techniques that would allow us to apply Dis-
ARM to a binary that has been stripped of all symbol information making the
deployment of DisARM even more seamless.
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Abstract. We analyze the threat of DDoS-for-hire services to low and
medium power cloud-based servers or home users. We aim to investi-
gate popularity and availability of such services, their payment mod-
els, subscription pricing, complexity of the generated attack traffic and
performance.

1 Introduction and DDoS-as-a-Service Description

Our research aims to provide a comprehensive analysis of the Distributed Denial
of Service as a Service (DDoSaaS) phenomenon. We evaluate the threat that
DDoSaaS poses to low to medium power cloud-based servers or home users. Our
goal is to measure the performance of generated attacks and properties of attack
traffic, investigate financial aspect of the services, evaluate service popularity and
compare their source codes. The information we collected allows us to conduct
a grounded assessment of DDoSaaS risks for cloud providers and common users.

DDoSaaSs often present themselves as stress testing services (often called
booters or stressers), willing to test the resistance of a chosen target to Dis-
tributed Denial of Service (DDoS) attacks. The services are accessed via websites
that require prior registration. Common features of a DDoSaaS website are: it is
in English, lists prices in US dollars and is easily retrievable through mainstream
search engines. According to [1], the websites are frequently accessed through
aggregated booter lists (e.g., top10stressers.com, thebestbooters.com), hacker
sites (e.g., hackforums.net, hackbulletin.com) or Skype resolvers that translate
Skype nicknames to latest IP addresses (e.g., iskyperesolve.com, skypegrab.net).

The websites frequently contain a Terms Of Service page, where service oper-
ators disclaim any responsibility for damages caused by users of the service.
However, service operators do not check whether a customer is ordering attacks
on targets under her supervision. Most common DDoSaaS customers are online
gamers who seek to gain a competitive advantage over their opponents [2].

When ordering an attack, the customer has to specify a target URL or an
IP address, length of the attack (limited by paid subscription, see Section 6.2)
and an attack type. These values are inserted into a web form on the stresser
webpage and submitted to a back-end server. The server evaluates the request
and orders attack servers to initiate an attack.

Most services are very customer friendly. The main webpage contains dash-
boards with news for customers, such as newly available attack types or bandwidth
increases and basic service statistics. A ticketing system is usually prepared for cus-
tomers to report bugs and any issues. Many services even claim 24/7 support via
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 130–143, 2015.
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instant messaging channels and offer occasional promo actions, such as subscrip-
tion discounts or free trials.

The bandwidth available for attacks is usually advertised in the order of sev-
eral gigabits per second or more (e.g., Anonymous Stresser 5 Gbit/s, Quantum
Booter 15 Gbit/s). DDoSaaS employs a limited number of powerful servers that
send attack traffic. The traffic is usually subsequently amplified by unsuspecting
poorly configured intermediaries. DDoSaaSs also quickly adopt newly discovered
attack methods. We have encountered sites offering attacks that were amplified
through recently discovered vulnerabilities in Joomla content management sys-
tem, Microsoft SQL Server or SSDP protocol.

The current modus operandi of DDoSaaS provides a good level of anonymity
for both providers and technically knowledgeable users. Payments can be sent by
anonymous cryptocurrencies (see Section 6.1), attack traffic has spoofed source
IP addresses and webpages can be accessed through anonymization proxies.

Section 2 outlines the details of our dataset. Section 3 analyzes the proper-
ties of recorded attack traffic. Section 4 provides analyses of aggregated leaked
databases of DDoSaaSs. Section 5 investigates DDoSaaS source code. Section 6
discusses the economic aspects of DDoSaaS. Summary of relevant previous work
is provided in Section 7. Section 8 concludes our paper.

2 Dataset Description

The list of domains that we investigated with respect to DDoSaaS contains 542
records. This list was constructed from searches for keywords such as booter,
stresser, ddos-for-hire or ddosaas. These searches were run at Google search
engine, YouTube and Hackforums.net site. In order to confirm that a particular
domain is hosting a DDoSaaS website, at least one of the following conditions
must have been fulfilled:

– The website behind the domain name is still accessible and belongs to a
DDoSaaS service.

– A snapshot of the index webpage exists at a third party store (e.g., Google
cache, CloudFlare cache, web.archive.org, etc.). The snapshot shows that the
index webpage belonged to a DDoSaaS service.

– The domain name was mentioned on a hacker forum in a discussion about
DDoSaaS services to be running and serving customers.

We confirmed 423 websites to be associated with DDoSaaS, 84 of which were
accessible at some point during our investigation. We were able to create user
accounts on 71 of them, to list supported payment methods from 82 and to list
available subscription offers from 62 of them.

Most detailed information about the popularity of DDoSaaS can be extracted
from leaked databases. Similarly, the internal working of DDoSaaS websites is
best evaluated from the website source code. We have collected 53 archives of
DDoSaaS website source code and separate 31 database files that have been
released to sites such as pastebin.com or leakforums.org.
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Database files contain records about user accounts, attacks and payments. We
aggregated attack records and user records from multiple databases in order to
build a comprehensive view which is not specific to any given DDoSaaS service.
Unfortunately, only one payment database file was available for quantitative
analysis. An aggregated summary of the databases is provided in Table 1.

The source code archives contain a total of 23,443 files with 13,983 unique
MD5 hashes. Aggregated statistics of source code is listed in Table 2. Each
archive has an associated name of a stresser whose files it supposedly contains.
However, in most cases we were unable to verify that the archive is indeed
related to the announced stresser, except for trivial checks such as verifying the
logo image.

Table 1. Database files summary.

Database Booters Records

Attack logs 17 153,578
User logs 31 90,962
Payment logs Quantum 16,990

Table 2. Source code files summary.

File extension Files MD5s

png/gif/jpg 14,676 8,770
php 4,094 2,285
js 1,832 1,227
html/htm 431 316
other/no ext 2,410 1,385

Total 23,443 13,983

In order to analyze the properties of attack traffic, we created a high per-
formance virtual server on Amazon Elastic Compute Cloud (EC2). The virtual
machine was configured with 4 virtual CPUs running on Intel Xeon core, 15 GB
RAM and SSD storage. The server was connected with at least 1 Gbit/s line.
Operating system was Ubuntu Trusty 14.04. The server was hosting a dummy
webpage that imitated a webpage of a gaming clan. Attack traces were recorded
with tcpdump command-line packet analyzer. Traffic records were collected for
300 seconds starting just prior to an attack launch, while the attack itself was
executed for 30 s.

A total of 272 attacks were recorded from 16 DDoSaaSs. Attacks were
launched against the server between December 2014 and April 2015. Attacks
were directed either to the server IP address or to the hosted dummy webpage.
Every attack method was tested twice in order to increase the chance of succesful
attack traffic recording (see Section 3.1). All attack traces along with supporting
documents are available at DDoS-Vault repository [3].

Detailed listing of tested services, global rank of their web pages [1], esti-
mated monthly visits, numbers of created accounts and number of performed
attacks can be found in Table 3. We focused on highly popular, extensively used
DDoSaaSs with many users. Statistics show that DDoSaaSs are used by tens of
thousands of users and are responsible for a staggering number of DDoS attacks.
Our 272 recorded attacks are listed by attack classes and source DDoSaaSs in
Table 4.



Service in Denial – Clouds Going with the Winds 133

3 Traffic Analysis

3.1 Attack Success Rate

An attack was considered succesful if its power exceeded predefined bitrate and
packet rate limits (see below) and if the real attack type corresponded to the
attack type requested by the customer. Power is a key metric of a flooding
denial-of-service attack. It is expressed by a bitrate or a packet rate. Bitrate
determines the capability to flood network links towards the victim network
with an undesired traffic. A high packet rate can cause failures at network devices
between attack sources and the victim (e.g., firewall, proxy, office router).

Since DDoSaaSs are primarily used against home connections and small
servers, the limits were set in accordance with average Internet connection speeds
as listed in Q4 2014 report from Akamai [4]. An attack power was deemed suffi-
cient if the average bandwidth exceeded 25 Mbit/s or if the average packet rate
exceeded 20,000 packets per second during the 30 s attack period.

Columns Bit and Packet in Table 4 show the percentage of recorded attacks
of a chosen booter that surpass respective attack power limits. Approximately
51% of all attacks, regardless of source booter, failed to exceed either power limit.
Approximately 43% did not even reach 1 Mbit/s. Such attacks can be considered
ineffective against any target.

We also observe significant differences in attack power success rate of different
booters. There are numerous potential reasons why a DDoSaaS attack strength is
low: underprovision of resources, scams, malfunction of backend stressing infras-
tructure, DDoS-prevention measures at ISP network and/or cloud infrastructure.

We could not identify any time relations between attacks that fail to reach
the desired power. We compared attack bitrates and packet rates between each
two attacks with the same attack method on the same booter. Out of 135 pairs
of such attacks, both attacks failed to exceed the bitrate/packet rate limits at
60 pairs and one attack failed to exceed the limits at 18 pairs. For example, two
DNS amplification attacks were executed at hornystress.me in the span of three
hours. The first attack failed to generate any harmful traffic while the second
attack reached up to 380 Mbit/s of incoming traffic.

Differences between attack launch times in these 18 pairs oscillate between
one hour and three days. Other attacks were also succesfully executed in the
meantime at the same booter. Therefore, we believe that a combination of fac-
tors is behind power drops. Issues at the side of DDoSaaS are not solely respon-
sible. As a consequence, the success rate of attacks against home connections or
cloud providers without a DDoS protection may be significantly higher. Further
research will be needed to evaluate the conditions that affect the attack power.

A customer specifies the requested attack type. However, collected traffic
records did not always correspond to the requested type. Potential reasons include:
maintaining public image (booters claim to have capabilities that they actu-
ally lack), malfunction of backend stressing infrastructure or unwillingness to
use non-spoofed attacks. The column Type in Table 4 shows the percentage of
attacks whose dominant portion of traffic corresponds to the customer request.
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Table 3. Booter statistics for February 2015. Global ranks and monthly visit estimates
were collected from [1]. Total user account and executed attack statistics were collected
directly from dashboards at stresser web pages where available.

Booter Global rank Est. visits Accounts Attacks

anonymous-stresser.com 571,894 25,000
booter.in 258,375 55,000 6,324 22,635
booter.io 464,756 35,000 9,336 45,073
connectionstresser.com 319,831 40,000 17,444 180,751
destressbooter.com 659,154 25,000
hornystress.me 297,124 70,000 16,310
ipstresser.com 45,082 420,000
legion.cm 1,254,496 10,000 10,393
networkstresser.com 215,904 100,000 28,523
networkstresser.net 20,417
powerstresser.com 169,402 130,000 10,197 44,273
quantumbooter.net 323,716 55,000
ragebooter.com 314,984 50,000 14,022 12,148
restricted-stresser.info 1,821,164 5,000
titaniumstresser.net 79,299 310,000 305,494
vdos-s.com 689,739 20,000 17,452

Table 4. Recorded attacks.

Attack class Booter success (%)

DDoSaaS UDP TCP HTTP Bit Packet Type

anonymous-stresser.com 8 2 16 15 19 100
booter.in 10 6 0 50 56 63
booter.io 8 4 0 50 67 83
connectionstresser.com 10 2 0 67 50 100
destressbooter.com 20 0 2 5 0 73
hornystress.me 18 14 2 32 44 76
ipstresser.com 14 2 6 59 82 100
legion.cm 2 0 8 0 0 80
networkstresser.com 12 2 0 86 86 21
networkstresser.net 10 5 0 0 0 100
powerstresser.com 4 4 0 0 0 100
quantumbooter.net 5 4 0 56 78 100
ragebooter.com 10 6 0 31 6 75
restricted-stresser.info 8 4 18 21 29 100
titaniumstresser.net 4 2 4 100 50 100
vdos-s.com 4 12 0 63 88 88

Total attacks 147 69 56

Class success (%)
Bit 57 17 7

Packet 42 55 18
Type 72 100 100
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An aspect of DDoSaaS quality is the speed with which an attack is launched
after it is requested by the customer. We measured the time between an attack
order and the timestamp of first incoming attack traffic packet. Average time to
start an attack was 7 seconds and 80% of the attacks started in 10 seconds or
less. Such a rapid response is especially important for gamers, who represent a
large portion of DDoSaaS customers.

3.2 Attack Power

A histogram of measured bitrates of attacks in our dataset is shown in Table
5. Bitrate only rarely exceeds 1 Gbit/s. The attack types most likely to reach
a high bitrate are CHARGEN and DNS. TCP-based and HTTP-based attacks
showed a poor bitrate performance. Succesful NTP and SSDP attacks have the
clearest power boundaries around 400 Mbit/s and 300 Mbit/s respectively.

Table 5. Recorded attack bitrate histogram.

Class Type
Bitrate (Mbit/s)

Total
25 200 400 600 800 1000 >1000

HTTP HTTP 52 0 0 4 0 0 0 56
TCP SYN 42 3 1 1 0 0 0 47
TCP TCP 15 7 0 0 0 0 0 22
UDP CHARGEN 9 2 7 6 3 0 2 29
UDP DNS 8 6 6 3 2 2 2 29
UDP NTP 16 1 6 7 0 0 0 30
UDP Other 16 1 3 0 0 0 0 20
UDP SSDP 14 5 15 5 0 0 0 39

An attack packet rate histogram is given in Table 6. Attack types associated
with the high packet rate are SYN, TCP, SSDP and NTP. TCP SYN attacks
exhibit below-average values both for bitrate and packet rate, because this attack
is based on the exhaustion of victim connection state table buffer.

Table 6. Recorded attack packet rate histogram.

Class Type
Packet rate (packets per second)

Total
20k 40k 60k 80k 100k 120k >120k

HTTP HTTP 46 7 3 0 0 0 0 56
TCP SYN 21 7 10 5 3 0 1 47
TCP TCP 10 3 2 0 2 1 4 22
UDP CHARGEN 19 8 2 0 0 0 0 29
UDP DNS 18 6 2 0 1 0 2 29
UDP NTP 17 0 0 2 2 3 6 30
UDP Other 16 2 2 0 0 0 0 20
UDP SSDP 15 2 2 2 4 8 6 39
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Overall, even succesful DDoSaaS attacks were not powerful enough to cause a
denial-of-service effect against a cloud-based server with high resources. However,
the attack power of succesful attacks may be sufficient to saturate uplinks of
low- to mid-range servers or at least cause a degradation of service if the traffic
reaches the server itself. Conversely, more than 40% of all attacks would fail to
overwhelm even home connections with 1 Mbit/s or less download speed.

3.3 Attack Traffic Properties

Tables 7 and 8 show values of most common attack traffic source ports and packet
lengths. The booters column specifies how many booters contained the listed
feature values in their attack traffic. The traffic column indicates the percentage
of all traffic in an appropriate attack class that has the respective property.
Source ports clearly show that UDP-based attack employ amplifiers, hence the
traffic is incoming from well-known ports. Conversely, TCP-based attacks rely
on simple IP spoofing and their traffic source ports are evenly distributed. Due
to a low number of useable HTTP attack traffic samples, this attack type has
been excluded from further research.

Table 7. Most frequent packet lengths.

Attack type Length (B) Booters % traffic

CHARGEN 57 7/9 5%
DNS 4044 4/10 9%
NTP 468 9/11 99%
SSDP 296 10/11 6%
SYN 40 14/14 93%
TCP 40 3/4 99%

Table 8. Most frequent source ports.

Attack type Port Booters % traffic

CHARGEN 19 7/9 92%
DNS 53 10/10 54%
NTP 123 9/11 99%
SSDP 1900 10/11 90%
SYN 80 11/14 22%
TCP 80 3/4 <1%

Table 9 lists some of the manually chosen key unique identifiers that distin-
guish the attack traffic from the benign traffic. Interesting are similar domain
names in DNS amplification attacks. Since a domain name is not inherent to
an attack type, we assume that DDoSaaS operators either rent their back-end
infrastructure from other providers or buy attack scripts on an open market.
Both of these approaches have been known to be used for other service types [5].

Table 9. Application-layer artifacts.

Class Type Artifact type Values Booters

UDP DNS Query domain name fkfkfkfz.guru 2/10
UDP DNS Query domain name doleta.gov 2/10
UDP SSDP HTTP Location IGD.xml 8/11
UDP SSDP HTTP Location rootDesc.xml 8/11
UDP NTP Request code MON GETLIST 9/11
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NTP traffic in our dataset shows to be extremely homogenous. All attack
packets come from port 123/UDP, carry NTP payload with request code 42
(MON GETLIST) and IP length 468 bytes. These signs are consistent with a
well-documented NTP vulnerability CVE-2013-5211. NTP amplification attacks
based on MON GETLIST command were analysed by Czyz et al. in [6].

Predominant SSDP attack variant is fairly new, first observed in July 2014
[7]. The attack is amplified by unpatched home routers and smart appliances.

SYN attacks have a standard well-understood form. Incoming attack traffic
has spoofed source IP addresses, packet length 40 B and SYN flag set. Anomalous
were TCP window sizes where in 86% of cases values were set to 0.

We can see that attack traffic even from different DDoSaaS shows remarkable
similarities, such as packet lengths or application-layer artifacts. The traffic is
simple, constructed for maximum attack effectiveness rather than for stealthi-
ness. By using attack reflectors, the DDoSaaS operators sacrifice the capabil-
ity to randomize attack traffic properties (e.g., packet lengths, source ports,
header field values) and circumvent advanced victim DDoS protection solutions.
DDoSaaS operators have no control over reflectors, therefore the final attack
traffic exhibits a high degree of uniformity, because reflectors are configured to
respond with standard, non-randomized responses. It is fairly easy to config-
ure rules for packet filters to drop or throttle most of the attack traffic. Since
the primary DDoSaaS targets are home connections or low-end servers without
trained security teams who would react to evolving attacks, we do not expect
any sudden increase in the use of detection avoidance techniques in the future.

4 Database Analysis

We have collected records from leaked databases of 31 services. The statistics
presented are based on aggregated records of databases as specified in Table 1.

Table 10 shows more than 75% of attacks performed by stressers are at
most 10 minutes long. Our aggregated records therefore support the results of
Karami and McCoy [2]. Unsurprisingly, most common lengths of actual boots
are equivalent to subscription maximum booter lengths (Table 11). Therefore,
we can assume that DDoSaaS customers execute attacks for the maximum boot
length available to them.

Table 12 shows that UDP-based flooding attacks have a significantly higher
popularity than TCP-based or HTTP-based attacks. This is likely to be caused,
at least partially, by DDoSaaS operators who set UDP attacks as the default
option. UDP is also preferable due to its amplification factor. Protocols such as
CHARGEN, NTP, SSDP or DNS are frequently exploited by DDoSaaS opera-
tors to increase the impact on victims without having to increase the attacker’s
available bandwidth. TCP-based attacks are almost exclusively variations of
SYN flooding. Somewhat surprising is popularity of RUDY and Slowloris attacks
compared to generic HTTP GET/POST/HEAD flooding.

In 84% of attacks, the target port of the attack was 80 (HTTP), followed
by ports 3074 (Xbox LIVE), 6005 (BMC Software), 25565 (Minecraft/MySQL),
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Table 10. Boot lengths histogram.

Interval (s) Attacks

0 – 100 40,836
101 – 200 27,971
201 – 400 31,940
401 – 600 2,649
601 – 800 2,753

801 – 1000 6,650
1001 – 1200 4,076

>1201 19,671

Total 136,546

Table 11. Boot lengths popularity.

Length (s) Attacks Booters

300 20,866 16
120 18,414 16
60 12,570 17

600 12,557 16
250 6,843 11
100 5,749 16

1800 5,280 10
90 5,205 11

500 5,093 14

53 (DNS) and 27015 (GoldSrc game engine). Port 80 is often used by DDoSaaS
as a default value, probably because it is rarely filtered by firewalls. Conversely,
several representatives of gaming services in the list of most popular target ports
confirm the prominent role of gamers among DDoSaaS customers [2].

Table 12. Attack types popularity.

Type Category Attacks Booters

UDP UDP 69,635 11
ESSYN TCP 19,744 3
NTP UDP 19,416 2
SSYN TCP 13,714 10
RUDY HTTP 6,310 8
TCP TCP 4,648 5
Slowloris HTTP 2,958 8
UDPLAG UDP 2,929 7
DRDOS unknown 2,816 4

Table 13. Victim IP geolocation.

Country Attacks

US 53,509
FR 15,811
UK 9,239
CA 6,901
DE 6,317
NL 4,962
AU 4,465
SE 2,622
Other 34,861

Geographic location of victim IP addresses suggests that DDoSaaSs are used
primarily against North American and European targets (Table 13). Almost 39%
of attacks are aimed at the US IP space, FR accounts for 11% and UK for 7%.

We analyzed the payment database records of the Quantum booter from
September 2012 to March 2014. The database contains records related to 10,269
paying customers out of 20,695 registered. Mean payment was approximately
21 USD, with median and mode both 8 USD. Total income during the period
exceeds 220,000 USD, while monthly income averages at 12,000 USD. That is a
significantly higher income than the income reported from the twBooter analysis
[2] (see 7). We expect that the prospect of such future income, coupled with few
barriers to entry (see Section 5) will lead to an increasing number of DDoSaaS
sites in the future.
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5 Website Source Code Analysis

DDoSaaS webpages are built with PHP and common frameworks, such as Boot-
strap, jQuery, jQuery UI, jQuery Sparklines, Modernizr, prettyPhoto or Raphael
according to our screening of 65 unique live websites.

We collected code from 53 DDoSaaS websites and analyzed them for similari-
ties. All sites used PHP scripts, usually supported by the MySQL database. Each
site consisted of 105 PHP source code files on average. We calculated the MD5
hashes of all PHP files and found 94 PHP files that were shared/reused (each)
by at least 3 sites. We manually analyzed all the 94 shared files to understand
their role and divided them into 7 categories. Table 14 summarizes our findings.
Most shared source codes are files handling user management and CAPTCHA.

Table 14. Shared source codes categories.

Category Files Category description

user management 39 Managing user accounts and passwords, user logins
CAPTCHA 11 CAPTCHA
index pages 10 Index/home page + news/messages
lib 10 CCS, JavaScript, ...
attack management 7 Attack management + statistics...
PayPal 6 PayPal payments
misc 11 IP geolocation, IP logging, database access etc.

Finding similarities in source code files is not always trivial. The crypto-
graphic hash algorithm MD5 can only find perfectly identical files. Even a slight
change, such as rewriting an email address in a support ticket submission form,
makes MD5 matching impossible. Therefore, we decided to also use the spamsum
algorithm implemented in the ssdeep program [8]. The spamsum algorithm cal-
culates context triggered piecewise hashes based on the FNV (Fowler/Noll/Vo)
hash algorithm. The algorithm was used to find similarities in the source code
of the 53 previously mentioned websites. We calculated how many source files
across various sites have their ssdeep hash similarity score higher than 95. On
average, each site shares at least one ssdeep hash with 7.45 other sites and has
46.5 ssdeep (>95) similarity relationships (i.e., shared similar files).

We have identified 9 similarity clusters. All websites in a cluster share 10 or
more files with ssdeep similarity higher than 95. These 9 clusters were formed by
25 websites. Another 20 sites shared some of their files with others, but without
distinctive partners. The remaining 9 sites did not share any similarities.

Such similarity might indicate that the same, or similar, teams are behind
multiple services. Another reason might be simple code reuse. As the function-
ality required by most of the websites for a DDoS services is very similar, and
as the source code of many web sites has leaked to the public, the coders of the
web sites will be tempted to reuse the existing code. Availability of source code
will lead to an easier establishment of new DDoSaaSs.
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6 Economics

6.1 Payment Methods

Desired properties of payment methods supported by DDoSaaS are user friend-
liness for technically unskilled users, anonymity for both seller and buyer and
low fees, because exchanged payments are usually fairly small. Service providers
also prefer payment methods that do not support payment revocation.

In December 2014, we analyzed payment methods supported by 82 DDoSaaS
providers and found 19 different payment systems. The most popular system
was PayPal, which was supported by 63 DDoS services, followed by Bitcoin (42)
and Google Wallet (21). Contrary to findings in [5], WebMoney was not among
supported payment systems of any DDoSaaS.

We have noticed a distinct move towards the support of cryptocurrencies dur-
ing our research. Cryptocurrencies are anonymous, decentralized, gaining pop-
ularity among the general population, subjected to only limited regulation and
payments cannot be revoked as soon as they are included in the blockchain.
Bitcoin is now a widely accepted payment method among DDoSaaSs, but we
also encountered support for Omnicoin, Litecoin and Dogecoin, mostly thanks
to aggregating payment gateways such as GoCoin or CoinPayments.

Direct use of credit cards is very rare, supported by only 3 services. However,
online payment services that allow the user to transfer money from his credit card
or bank account to the service account are still common. Paypal, Skrill, Starpass,
4Virtuals, Okpay and Dwolla all fit into this category. With the exception of
PayPal, at least one of these services was supported by 11 DDoSaaSs.

6.2 Subscriptions

DDoSaaS services provide a variety of subscriptions for different prices. Subscrip-
tions are characterized by price, currency, subscription length, maximal boot
time, attack concurrency and available attack bandwidth. Surprisingly, available
attack bandwidth is rarely advertised. Some DDoSaaS services employ client-
based botnets as their attack infrastructure. Limited knowledge about band-
width and availability of particular hosts makes it difficult for service providers
to estimate real available bandwidth at any given moment. Attack concurrency
is similarly obscured by most services, although generally only one attack is
permitted at a time if not otherwise stated.

Subscriptions are time-bound. During the subscription, a customer may ini-
tiate an arbitrary number of attacks. Monthly subscriptions are most popular,
with more than 95% services offering these, followed by lifetime subscriptions
offered by 66%. Price for monthly subscription varies between 1.99 and 35 USD
for the cheapest and from 7.5 to 289 USD for the most expensive subscription.

Figure 1 shows samples of monthly subscriptions in USD. We can see that the
boot length/price ratio does not converge to a common value. Monthly subscrip-
tion with the same boot length can be ordered for considerably different prices at
different services. Oppositely, increasing attack concurrency clearly increases the
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Fig. 1. Monthly subscriptions. Light rhombuses mark subscriptions with one concur-
rent attack. Dark squares mark subscriptions with two or more concurrent attacks.
Graph scale is logarithmic.

price of subscription. A combination of low subscription prices with unlimited
attacks during the duration of subscription makes the per-attack price poten-
tially extremely low.

In the case of payments via cryptocurrencies, subscriptions are activated
automatically. When purchasing a subscription, the customer is offered several
payment methods. Once the payment is successfully finished, the customer’s
requested subscription is activated without any further intervention from an
operator. In the case of cryptocurrencies, automated subscriptions decrease the
initial time for the customer to be able to launch attacks to a couple of hours
at most. Elimination of a direct contact channel between the customer and the
DDoSaaS operator also results in increased privacy for both parties.

7 Related Work

The first academic paper that focused solely on DDoSaaS services was published
by Karami and McCoy in 2013 [2]. The authors analyze the leaked database of
the twBooter service and execute several simple attacks against their server. Key
revelations are that the attack traffic is generated by servers, attack strength is
sufficient to disrupt low to medium-sized web sites, primary service customers
are gamers who prefer short attack lengths and most frequent targets are either
game servers or game forums.

Yu et al. discuss the threat of DDoS attacks against cloud-based servers as a
resource competition problem [9]. They observe that even though the cloud has
enough resources to overcome DDoS attacks, the resources are not distributed as
needed by customers. Specifically, virtual machine instances are usually reserved
with fixed computational, memory and bandwidth limits. A DDoS attack may
cause that these limits are exceeded, overwhelming the target instance.
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The crimeware-as-a-service (CaaS) business model was investigated by Sood
and Enbody [5]. In the CaaS model, roles for service creators and service oper-
ators are divided. The authors emphasize the importance of crime forums for
advertising and e-currencies for exchange. Web Money is cited as an online pay-
ment system that is used extensively in the underground market. DoS attack
order is described as a process when key communication between the seller and
buyer takes place on an IRC channel.

Investigation into DDoS-for-hire services was highly publicized by articles
that have been published by a well known computer security expert Brian Krebs
(e.g., [10,11]), who was also fairly successful in tracking several service owners.
Krebs argues that most stresser services are operated by US citizens who possess
a limited knowledge, rely on PayPal payment system and hide their webpages
behind the CloudFlare content delivery network. The author also points out that
the source code of DDoSaaS web pages may be frequently reused.

Shortly before submission of our paper, Santanna et al. published two stud-
ies about DDoSaaS [12,13]. Our and their studies are complementary. In [12],
authors analyze properties of 7 DNS-based and 2 CHARGEN-based DDoSaaS-
generated attacks directed against a university network. Compared to their
study: (1) We analyze the attacks from the perspective of a cloud-based server.
(2) Our scope includes many more independent attacks with a greater variety
of attack types. (3) We estimate the attack success rate and evaluate also the
application layer traffic properties. Oppositely, [12] complements our paper with
the investigation into the geolocation of reflectors and the discussion of a com-
petition between various DDoSaaSs.

Second paper by Santanna et al. focuses on the analysis of booter databases
[13]. The paper provides an extensive overview of DDoSaaS user/customer
behavior, which fits in with our analysis of economical aspect of DDoSaaS, as
well as information about the user location. Our aggregated database with more
sources and more records also confirms observations of Santanna et al. that
most attacks are shorter than 10 minutes and UDP-based attacks are the most
popular.

8 Conclusions

Over the years, DDoS-for-hire services have matured into user friendly services
with a wide customer base that extends beyond technically savvy users. Main
advancements are automated subscription activation, automated attack execu-
tion and support for anonymous payment methods such as Bitcoin. The three
key findings of our research are as follows:

– Attacks generated by DDoSaaSs are not overly powerful with bitrates only
sporadically exceeding 1 Gbit/s.

– Attack traffic has a low complexity, does not employ randomization and
shares similarities even between various DDoSaaSs.

– More than a third of attacks were not fully blocked by a cloud provider.
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We believe that the threat of DDoSaaS will increase in time, mainly due to a low
price, open advertisement, achievable anonymity and a service model that makes
these services quickly and widely accessible to many potential customers. In the
same time, the number of DDoSaaS services will grow, due to freely available
source code and low initial entry costs when compared to potential earnings.

All collected attack traces are available at DDoS-Vault project webpage [3].
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Abstract. Graphical passwords (GPs) are considered as one promising
solution to replace traditional text-based passwords. Many GP schemes
have been proposed in the literature such as PassPoints, DAS, Cued
Click Points, GeoPass and so on. These schemes reported promising per-
formance in their studies in the aspects of security and usability, however,
we notice that these GP schemes may suffer from the issue of multiple
password memory. In our first user study, it is identified that this issue
has indeed become a big challenge. In real-world applications, users usu-
ally have to remember and maintain more than one password in differ-
ent scenarios, thus, it is very essential to develop a better GP scheme
to solve this issue. In this paper, we focus on map-based GPs and pro-
pose a scheme of RouteMap for better multiple password memory, which
allows users to draw a route on a map as their secrets. In our second
user study with 60 participants, it is found that users can achieve better
performance using RouteMap in terms of multiple password memory, as
compared with two similar schemes. Our effort attempts to complement
existing studies and stimulate more research on this issue.

Keywords: User authentication · Multiple password memory ·
Graphical passwords · Map passwords · Security and usability

1 Introduction

For user authentication, text-based passwords should be the most commonly
used method over the past few decades, where users have to input correct textual
strings for registration and authentication. However, it has long been recognized
that traditional text-based passwords are suffered from many issues associated
with their security and usability [24,25]. For instance, users are hard to remember
their passwords for a long time, especially complex and random passwords. Due
to the long-term memory (LTM) limitations, users are likely to choose simple
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strings, which would significantly degrade the level of authentication security.
The recent study shows that this situation would be even worse than previously
believed (i.e., little variation in guessing difficulty) [1].

In this case, graphical passwords (GPs) have been proposed as a promising
alternative to text-based passwords. It is known that people generally have better
memory and recognition for images than textual strings [15,17]. This observation
has motivated a large number of graphical password schemes, which involve users
recognizing images or reproducing a drawing on images. For example, Jermyn
et al. [11] designed DAS, a graphical password that allowed users to draw their
own passwords on a 2D grid. Wiedenbeck et al. [23] then proposed PassPoints,
a system that allowed users to click on any place on an image in creating their
passwords. Later, Chiasson et al. [2] proposed a click-based graphical password
scheme called Cued Click Points (CCP), which consists of one click-point per
image for a sequence of images. The next image displayed is based on the previous
click-point so that users could receive immediate implicit feedback and decide
whether they are on the correct path.

Motivations. In real-world scenarios, people often have more than one password
in hand, as they have to manage different accounts such as email accounts,
commercial used accounts, social networking accounts, etc. Due to this, a good
GP scheme should be easy for users to remember multiple passwords. However,
we notice that multiple password memory has become an issue for current GP
schemes, in which users are hard to remember all created GPs after some time.
In this work, we focus on this issue and have two targets as follows.

– T1. The first target is to investigate whether users can remember multiple
graphical passwords based on existing GP schemes.

– T2. The second target is to design a graphical password scheme for better
multiple password memory.

Contributions. In order to achieve these two goals, we mainly conduct two user
studies in this work. The first one evaluates two popular GP schemes: DAS and
PassPoints. We then design a map- and route-based graphical password scheme
called RouteMap, which allows users to draw a route on a map as their passwords.
Afterwards, the second user study is conducted to investigate the performance
of RouteMap, as compared to the state-of-the-art schemes. The contributions of
this work can be summarized as follows.

– We first conduct a user study to explore whether users are able to remember
multiple graphical passwords using DAS and PassPoints. These two schemes
are selected due to their popularity and simplicity. It is found that multiple
password memory has become an issue that cannot be ignored.

– We then focus on map-based GPs and design RouteMap, a map- and route-
based GP scheme that allows to draw a route on a world map. This scheme
aims to provide better multiple password memory and is different from pre-
vious schemes as we apply distinct rules of password creation.
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– We further conduct another user study with 60 participants to investigate
the performance of RouteMap as compared with two other similar schemes.
Experimental results indicate that our scheme can achieve better perfor-
mance in the aspect of multiple password memory.

The remaining parts of this paper are organized as follows. In Section 2, we
review related work regarding graphical passwords, especially map-based graph-
ical passwords. Section 3 describes our first user study relating to multiple pass-
word memory based on DAS and PassPoints. In Section 4, we introduce our
proposed RouteMap in detail and conduct another user study to explore its
performance. Finally, we conclude our work with future directions in Section 5.

2 Related Work

2.1 GP Classification

Graphical password schemes can be classified into three folders [3,19]:
recognition-based scheme (i.e., recognizing images), pure recall-based scheme
(i.e., reproducing a drawing without a hint) and cued recall-based scheme (i.e.,
reproducing a drawing with hints).

– Recognition-Based GPs. The recognition-based schemes require users to
select one or more images from a large set. For instance, the application
of PassFaces [16] requires users to recognize a set of human faces during
authentication. The scheme of Story [5] requires users to recognize a set of
images such as people and food from a large image pool.

– Pure Recall-Based GPs. The pure recall-based GPs usually ask users to draw
something on an image as their passwords. A typical example of these GPs
is DAS [11], which requires users to draw on a grid. Similarly, the scheme of
Pass-Go [21] requests users to select intersections on a grid as a way to input
a password. Based on Pass-Go, Android unlock patterns have been developed
on Android phones, which are a tuned application requiring users to unlock
their phones by inputting correct patterns.1 Several similar schemes can be
referred to [7,12].

– Cued Recall-Based GPs. This kind of graphical passwords demands users
to click on a sequence of points to construct their secrets. The system of
PassPoints belongs to this category where users have to recall a sequence
of five selected points. As another example, Chiasson et al. [4] designed
Persuasive Cued Click-Points (PCCP), which requires users to click a point
on each of a sequence of background images.

The current GP schemes are mainly based on the actions of choice, click and
draw, so that some combined schemes have also been developed like [13]. Several
analyses and studies on GPs can be referred to [6,10,14]

1 https://www.berkeleychurchill.com/software/android-pwgen/pwgen.php.

https://www.berkeleychurchill.com/software/android-pwgen/pwgen.php.
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2.2 Map-Based Graphical Passwords

The initial idea of using digital map as a graphical password first appeared in [8],
but not much details were given. Then, Spitzer et al. [18] developed an imple-
mentation of CCP that combined the graphical approach with user’s familiarity
with navigating through Google maps. In their work, users are presented with
an image of the United States and simply click to where the key destination is
located, using an approach of zooming levels. Their results with over 50 partic-
ipants indicated that 60% of the users rated the system as easier to remember
than text in terms of memorability.

Later, several map-based graphical passwords appeared in 2012. Georgakakis
et al. [9] proposed a GP scheme called NAVI, where the credentials of a user are
his username and a password formulated by drawing a route on a pre-defined
map. They provided an analysis regarding the strength of the password, but no
any user study was provided. Sun et al. [20] proposed a map-based GP authen-
tication system called PassMap, in which a password consists of a sequence of
2 click-points selected on a world map. Their user study showed that PassMap
passwords are easy to memorize in practice. Thorpe et al. [22] later designed
GeoPass, a digital map-based authentication scheme, where a user chooses a
place as his or her password. In the user study, they found that 97% of the users
were able to remember their location password over the span of 8-9 days and
most without any failed login attempts. It is worth noting that PassMap and
GeoPass are very similar in that secrets are constructed by clicking one or two
places on a world map (e.g., Google map).

In this work, we focus on map-based GPs and show how to handle the
issue of multiple password memory. Our designed RouteMap is more similar to
NAVI [9], since both schemes require users to draw a route on a map. However,
RouteMap is different from NAVI, because we apply distinct rules of password
creation. More specifically, the creation of a route is different (i.e., the route
in RouteMap is drawn using straight lines). In addition, we evaluate the perfor-
mance of RouteMap in a user study while there are no any results reported in [9].
Our results aim to complement the existing literature regarding this topic.

3 Multiple Graphical Password Memory

In this section, we conduct a user study with 50 participants to explore the issue
of multiple password memory. According to the popularity and simplicity, we
choose two existing GP schemes: DAS and PassPoints. The former is a pure
recall-based GP, where users can draw their secrets on a grid. The latter is a
cued recall-based GP, where users have to remember a sequence of several clicks.
All participants are volunteers and have no background of information security
(i.e., no participant has taken any courses related to information security before).
The information of participants is shown in Table 1.

Methodology. Both schemes are implemented on the same computer settings
and we introduced our objectives to all participants in advance. Two examples



RouteMap 151

Table 1. Detailed information of participants in the user study.

Age Range Male Female Occupation Male Female

18-25 8 9 Senior people 3 2

25-35 8 8 Students 16 12

35-45 4 3 Researchers 3 3

45-55 2 3 Engineers 3 3

55-60 3 2 Business people 2 3

1

2

3

4

5

(a) DAS (b) PassPoints 

Fig. 1. Two graphical password schemes: (a) DAS and (b) PassPoints.

of these systems are depicted in Figure 1 (a) and Figure 1 (b), and the scheme
details can be referred to [11,23]. To avoid bias, we set a file including all steps
in the lab study and gave a detailed description to participants based on the
same steps (i.e., how to use these two example systems).

Before the study, every participant can have 3 trails to get familiar with the
example systems. In the study, we require all participants to create 5 passwords
for each scheme and each password corresponds to a scenario as follows: the
first password is created for an email account (personal use), the second one is
created for a bank account, the third one is created for another email account
(commercial use), the fourth one is created for a forum account and the last one
is created for a social networking account. The detailed steps in each experiment
are shown as below:

– Experiment1. This experiment requires each participant to create 5 DAS
passwords.
• Step 1. Creation: creating a password following the rules of DAS.
• Step 2. Confirmation: confirming the password by drawing the same

secrets in the correct place. If users incorrectly confirm their password,
they can retry the confirmation or return to Step 1.

• Step 3. Login: logging in the system with the created passwords. Users
can cancel an attempt if they noticed an error.

• Step 4. Feedback: All participants are required to complete a feedback
form about the password creation and confirmation.
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Table 2. Success rate for login to DAS and PassPoints after three weeks.

Experiment1 (DAS) Successful Login Experiment2 (PassPoints) Successful Login

1st time 132/250 (52.8%) 1st time 123/250 (49.2%)

2nd time 163/250 (65.2%) 2nd time 150/250 (60.0%)

3rd time 176/250 (70.4%) 3rd time 167/250 (66.8%)

DAS (Age in [18, 35]) Successful Login PassPoints (Age in [18, 35]) Successful Login

1st time 98/165 (59.4%) 1st time 80/165 (48.5%)

2nd time 108/165 (65.5%) 2nd time 105/165 (63.6%)

3rd time 115/165 (69.7%) 3rd time 114/165 (69.1%)

DAS (Age in [35, 45]) Successful Login PassPoints (Age in [35, 45]) Successful Login

1st time 12/35 (34.3%) 1st time 13/35 (37.1%)

2nd time 22/35 (62.9%) 2nd time 20/35 (57.1%)

3rd time 27/35 (77.1%) 3rd time 25/35 (71.4%)

DAS (Age in [45, 60]) Successful Login PassPoints (Age in [45, 60]) Successful Login

1st time 21/50 (42.0%) 1st time 20/50 (40.0%)

2nd time 33/50 (66.0%) 2nd time 25/50 (50.0%)

3rd time 34/50 (68.0%) 3rd time 28/50 (56.0%)

– Experiment2. This experiment requires each participant to create 5 Pass-
Points passwords.

• Step 1. Creation: creating a password following the rules of PassPoints.
• Step 2. Confirmation: confirming the password by drawing the same

secrets in the correct place. If users incorrectly confirm their password,
they can retry the confirmation or return to Step 1.

• Step 3. Login: logging in the example system with the created passwords.
Users can cancel an attempted login if they noticed an error.

• Step 4. Feedback: All participants are required to complete a feedback
form about the password creation and confirmation.

Each participant will finish these two experiments in the same day. After
three weeks, we require all participants to return and input all created passwords
for these two schemes. Later, we provide another feedback form for participants
about their password memory.

Results. In this user study, our main purpose is to explore whether users are able
to remember and manage multiple graphical passwords. Therefore, we mainly
describe and analyze users’ performance after three weeks. The success rates of
login to DAS and PassPoints within three attempts are described in Table 2.
Three trails are determined based on the observation that most hosts or network
accounts do not allow an authentication error more than three times. We have
several major observations as below:

– Overall Performance. It is seen that participants can only achieve a suc-
cess rate of 52.8% and 49.2% for DAS and PassPoints at the first attempt,
respectively. After three trails, the success rate can be increased to 70.4%
and 66.8%, respectively.
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Table 3. Several main questions and relevant scores in the user study.

Questions Score (average)

1. I could easily remember DAS passwords after one month 4.5

2. I could easily remember PassPoints passwords after one month 4.2

3. Are you willing to use DAS passwords in practice 3.2

4. Are you willing to use PassPoints passwords in practice 4.7

5. I can manage multiple DAS passwords 3.5

6. I can manage multiple PassPoints passwords 4.3

– Age Impact. In Table 2, we also presents the results according to three age
groups. It is notice that participants who are aged from 35 to 45 can achieve
the best performance in the experiments, while the success rate is not higher
than 80% after three attempts (where the rate is 77.1% for DAS and 71.4%
for PassPoints). Overall, it is found that younger participants have some
advantages in multiple password memory.

Based on the results, it is found that participants did not show satisfied capa-
bility in remembering these two GP schemes. To investigate this issue, we collect
the feedback forms and present some key questions/feedback in Table 3. Ten-
point Likert scales were used in each feedback question where 1-score indicates
strong disagreement and 10-score indicates strong agreement.

It is seen that participants cannot remember these two GPs for a long time,
where the average scores of the first and the second question are lower than 5.
In addition, most participants are not willing to use these GPs in real-world
applications. Similarly, most participants feel it is difficult to remember multiple
GPs. We informally interviewed most participants and find two major reasons:
(1) for DAS, it is not easy to link the graphical password to corresponding
accounts and (2) for PassPoints, it is easily to forget the click-points when
creating more than 3 passwords. Up to 80% participants reported that they
have more than 5 different textual passwords in use.

Discussions. This is an initial study which can be improved in the aspects of
involved users and GP numbers, while the results indeed indicate that multiple
password memory has become a challenging issue for current graphical pass-
words. In this case, we argue that this issue should be given more attention
when designing a graphical password scheme and it is crucial to develop GP
schemes targeting for better multiple password memory.

4 RouteMap for Better Multiple Password Memory

Based on the study and feedback above, we have two other findings: (1) a back-
ground image can help users to remember their secrets, and (2) users should be
provided with a few guidelines for creating their GPs. In this section, we describe
our proposed RouteMap in detail and conduct a user study to investigate its per-
formance, as compared with two similar schemes.



154 W. Meng

(a) RouteMap with sight 

(b) RouteMap without sight 

Fig. 2. RouteMap: (a) a pattern with sight and (b) a pattern without sight.

4.1 RouteMap

Our designed RouteMap is a kind of map-based graphical passwords, which
allows users to draw a route on a map. There are three main reasons why we
choose a map to build a GP scheme for better password memory.

– Map-based graphical passwords such as PassMap and GeoPass can provide
large password space (e.g., 236.9forGeoPass).

– Map can be easily zoom in or zoom out, so that users can choose a back-
ground image which they feel suitable.

– Previous studies show that map-based GPs have good usability (i.e., GeoPass
shows that 97% participants can remember their passwords over a span of
8-9 days).

Our Scheme. As described earlier, RouteMap allows users to draw a route
on a map (e.g., Google map). To enhance the memory, RouteMap allows users
to choose a road-based map or a satellite map to draw their passwords. This
because different people may have their own preference in background. In this
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work, we call it as sight. In Figure 2, we present two examples of RouteMap
patterns with and without sight.

Taking Figure 2 (b) as an example, for this pattern, a user needs to click on
the playground first, then move and click on a park and another playground, and
finally click and stop at a sport center. Thus, a RouteMap pattern will include
sight information, first click-point and the whole moved places. To summarize,
our scheme is different from other similar schemes in the following aspects.

– RouteMap allows users to choose whether to use sight or not, which aims
to improve users’ memory by placing them in a preferred environment. This
selection will be included in the final pattern stored in the system.

– RouteMap only allows users to draw straight lines between different places.
This aims to improve the usability, as it is noted that drawing curves is not
easy for authentication using mouse input (i.e., consuming more time).

– RouteMap provides a simple guideline for users, which recommends users to
create a route based on their existing memory such as tours and visits. It
is found that tour-route or visit-route is private for users, but may enhance
the memory of various clicks in a pattern.

Implementation. We built a prototype system of RouteMap in our lab envi-
ronment, which is similar to the design of PassMap and GeoPass. To fetch a
real world map, we utilize Java scripts and Google Maps API, and our system
can provide move (drag), zoom in, zoom out and search functions. When users
zoom in or zoom out the map, RouteMap will report the zoom levels. For the
search function, users can use it to shift to a specific area quickly and use zoom
in or zoom out to locate a proper area. Afterwards, users can create a password
by clicking a place and moving the mouse to click on the next places. Based on
the prior work [14], we set the error tolerance to a 21× 21 pixel box around the
place they clicked. For the other similar schemes, the error tolerance of GeoPass
was set to the same 21 × 21 pixel while PassMap was set to 20 × 20 pixel.

In this case, our system is able to record users’ inputs and construct a pattern
like {Sight, zoom level, the sequence of clicked places}. The value of sight is
either 0 (not selected) or 1 (selected). The initial zoom level is set to 2 and
the maximum level is 18. After clicking on a place, our system will record its
coordinate information. It is worth noting that in order to enhance memory, a
red arrow will be shown in RouteMap when users move mouse from one clicked
place to another (see Figure 2).

4.2 User Study

To explore the performance of RouteMap in the aspect of multiple password
memory, we further conduct a user study with 60 participants, among which 50
of them are from the former study. The time gap between the first study and
this study is one month. The newly joined 10 participants are also volunteers
and have no any background in information security. The detailed information
of participants is described in Table 4.
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Table 4. Detailed information of participants in the second user study.

Age Range Male Female Occupation Male Female

18-25 10 11 Senior people 4 2

25-35 8 9 Students 17 15

35-45 5 4 Researchers 5 4

45-55 4 3 Engineers 3 3

55-60 4 2 Business people 4 3

In the study, we randomly divided 60 participants into two groups, named
Group1 and Group2, and compare RouteMap with PassMap and GeoPass,
respectively. More specifically, Group1 will focus on RouteMap and PassMap,
while Group2 will focus on RouteMap and GeoPass. The implementation details
of PassMap and GeoPass can be referred to [20,22]. Similar to our study above,
to avoid bias, we train all the participants based on the same steps on how to
use these example systems.

Before the study, every participant has 3 trails to get familiar with the
example systems. For example, participants in Group1 will create passwords for
RouteMap and PassMap. In the user study, we require all participants to create
5 passwords for each scheme in their group and each password corresponds to
an account: the first password is created for an email account (personal use), the
second one is created for a bank account, the third one is created for another
email account (commercial use), the fourth one is created for a forum account
and the last one is created for a social networking account. The detailed steps
in each experiment are shown as below:

– Experiment G1. Group1 conducts this experiment, in which each participant
is required to firstly create 5 passwords for PassMap and then create 5
passwords for RouteMap after one hour rest.

– Experiment G2. Group2 conducts this experiment, in which each partici-
pant is required to firstly create 5 passwords for GeoPass and then create 5
passwords for RouteMap after one hour rest.
Both experiments follow the same steps, which are described as below:

• Step 1. Creation: creating a password following the related rules.
• Step 2. Confirmation: confirming the password by drawing the same

secrets in the correct place. If users incorrectly confirm their password,
they can retry the confirmation or return to Step 1.

• Step 3. Login: logging in the example system with all created passwords.
Users can cancel an attempted login if they noticed an error.

• Step 4. Feedback: All participants are required to complete a feedback
form about the password creation and confirmation.

All participants have to finish the experiments in the same day. To compare
the results with the previous study, after three weeks, we later invite all par-
ticipants to return and input all created passwords based on their own groups.
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Table 5. Login success rate for Group1 and Group2 after three weeks.

Experiment G1 (PassMap) Successful Login Experiment G1 (RouteMap) Successful Login

1st time 113/150 (75.3%) 1st time 133/150 (88.7%)

2nd time 125/150 (83.3%) 2nd time 137/150 (91.3%)

3rd time 128/150 (85.3%) 3rd time 140/150 (93.3%)

Experiment G2 (GeoPass) Successful Login Experiment G2 (RouteMap) Successful Login

1st time 122/150 (81.3%) 1st time 134/150 (89.3%)

2nd time 128/150 (85.3%) 2nd time 136/150 (90.7%)

3rd time 133/150 (88.7%) 3rd time 141/150 (94.0%)
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Fig. 3. Success rates for each age groups in the study.

After finishing this session, we give a feedback form to each participant regarding
their password memory.

Results. In this study, our target is to investigate the multiple password memory
of RouteMap by comparing it with similar schemes. The login success rates for
Group1 and Group2 within three attempts are presented in Table 5. Our key
observations are reported as below:

– Overall Performance. As compared with the results in Table 2, it is seen
that participants perform much better in this study. Group1 can achieve
a success rate of 75.3% and 88.7% for PassMap and RouteMap at the first
attempt, respectively. After three attempts, the success rate can be increased
to 85.3% and 93.3%. On the other hand, Group2 can achieve a success
rate of 81.3% and 89.3% for GeoPass and RouteMap at the first attempt,
respectively. Then, the success rate can be elevated to 88.7% and 94% after
three attempts.

– Age Impact. It is easily imagine that the results for each age group would
be improved, since the overall login success rate increases. Figure 3 indicates
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Table 6. Several main questions and relevant scores in the user study.

Questions Score (average)

1. I could easily remember PassMap passwords after one month 7.3

2. I could easily remember GeoPass passwords after one month 8.1

3. I could easily remember RouteMap passwords after one month 9.0

4. Are you willing to use PassMap passwords in practice 7.8

5. Are you willing to use GeoPass passwords in practice 8.5

6. Are you willing to use RouteMap passwords in practice 8.9

7. I can manage multiple PassMap passwords 7.1

8. I can manage multiple GeoPass passwords 7.8

9. I can manage multiple RouteMap passwords 8.7

that younger participants have advantages in memory while the success rate
of senior people also increases a lot.

According to these observations, it is found that participants are able to bet-
ter remember multiple passwords for these schemes, while our scheme can outper-
form the other two schemes with a higher success rate. The major reason is that
RouteMap leads users to draw a route where they have experienced before. The
experience actually enhances the relationship between different clicked places,
so that users can have a better memory capability.

To validate the observations, the major questions and relevant scores (feed-
back) are presented in Table 6. Ten-point Likert scales were used in each feed-
back question where 1-score indicates strong disagreement and 10-score indicates
strong agreement.

It is visible that most participants gave positive feedback for remembering
these map-based passwords, in which RouteMap receives the highest score of
9.0 among them. Most participants report that the route defined in RouteMap
can improve their memory of created passwords, due to the correlation between
these clicked places. Based on this, participants are also willing to use the map-
based passwords in practice such as their email accounts and social networking
accounts, where RouteMap obtains the highest score of 8.9. Moreover, it is seen
that most participants believe that they can manage multiple RouteMap pass-
words with the highest score of 8.7, as compared with the other two schemes
(with a score of 7.1 and 7.8, respectively). On the whole, it is considered that
RouteMap can provide better multiple password memory for users.

4.3 Further Discussions

This work mainly focuses on the two defined targets, so that we leave some
aspects such as security analysis in our future studies. In this part, we briefly
analyze RouteMap in the aspects of security and usability.

– Security Aspect. As mentioned above, RouteMap is a kind of map-based
passwords and allows users to click several places on a map in constructing
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a route as passwords. Intuitively, the password space is generally not lower
than GeoPass (one clicked place on a map), but due to the relationship
between different clicked places, there is not a direct increase by clicking
more places. We will provide a full security analysis in our future work.

– Usability Aspect. Based on our studies and participant feedback, RouteMap
obtains higher scores than the other two schemes, so we consider it has
good usability. We also informally interviewed most participants and most
participants prefer RouteMap instead of the other schemes. It is worth noting
that the other two map-based schemes also obtain good feedback, when
comparing the scores between Table 3 and Table 6.

– Multiple Password Memory. Our study results indicate that users have better
performance in multiple password memory using RouteMap. It is noted that
users memory can be enhanced by correlating the clicked places. To explore
this issue, an even larger study will be performed in our future work.

5 Conclusion

In this paper, our first purpose is to explore whether users can remember mul-
tiple graphical passwords for two existing and popular GP schemes. Based on
the study results, it is identified that multiple password memory has become a
big challenge. To solve this issue, we design RouteMap, a map- and route-based
graphical password scheme, in which users can draw a route on a Google map
as their secrets. To investigate its performance, we further conduct another user
study with 60 participants and find that RouteMap can enhance multiple pass-
word memory for users, as compared with two similar schemes. Our effort aims
to complement existing studies and stimulate more research in this area.

There are lots of future directions including providing a more specific analy-
sis on password space and involving more participants in the future evaluation.
Future work could also include conducting a thorough security analysis and eval-
uate the scheme in an adverse environment (i.e., an attacker has some knowledge
about the user and build a map password dictionary).
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Abstract. Internet applications use SSL to provide data confidential-
ity to communicating entities. The use of encryption in SSL makes it
impossible to distinguish between benign and malicious connections as
the content cannot be inspected. Therefore, we propose and evaluate a
set of indicators for malicious SSL connections, which is based on the
unencrypted part of SSL (i.e., the SSL handshake protocol). We provide
strong evidence for the strength of our indicators to identify malicious
connections by cross-checking on blacklists from professional services.
Besides the confirmation of prior research results through our indicators,
we also found indications for a potential (not yet blacklisted) botnet on
SSL. We consider the analysis of such SSL threats as highly relevant
and hope that our findings stimulate the research community to further
study this direction.

Keywords: SSL · Malicious connection indicators · Handshake analysis

1 Introduction

The Transport Layer Security (TLS) and its predecessor the Secure Socket Layer
(SSL) are the de-facto standard protocols for secure communication over the
Internet.1 They provide end-to-end security that guarantees data confidentiality,
integrity and authenticity to the communicating entities. In particular, they pro-
vide protection against possible active Man-in-the-Middle (MitM) attacks, where
the attacker has the control over the entire network. Most of the services that
handle sensitive data use SSL to protect the confidentiality of their users’ data. In
the past years, many papers have been published on SSL that assess its reliability
and identify potential vulnerabilities. Some general analyses on characteristics
of SSL traffic have shown several practical problems related to its infrastructure.
Holz et al. [1] report issues regarding the usage of X.509 certificates: errors within

1 For the remaining of the paper, we refer to both as SSL.
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certificate chains, absence of certificate subjects, common usage of expired cer-
tificates, etc. Amman et al. [2] have highlighted the complexity of the entire
SSL infrastructure by stating that many specifications are left to interpretation
while features aiming to improve weaknesses are still poorly implemented. Other
works instead focused more on the security vulnerabilities of SSL. For instance,
Amman et al. [3] analyze SSL traffic to understand the trust relationships among
Certificate Authorities (CA) and to detect transparent MitM attacks. In such
attacks, the attacker tries to compromise CAs with the goal of being able to gen-
erate a valid certificate for any domain and to start a MitM attack. The authors
conclude their work stating that the certificate structure does not give enough
information to be able to distinguish between malicious and benign certificates.
Georgiev et al. [4] present a security analysis on SSL library implementations for
non-browser software, identifying several vulnerabilities that make many appli-
cations vulnerable to MitM attacks. In [5], Fahl et al. introduce MalloDroid, a
tool for Android apps used to detect SSL implementation vulnerabilities to MitM
attacks, identifying more than 1000 potentially vulnerable apps. Although the
SSL protocol (its most recent version, TLS 1.2) is considered to be secure from
a theoretical perspective, it still shows several practical issues. In response to
such problems, researchers started to propose security enhancements, which are
not yet widely implemented in current applications [10]. Conti et al. developed
MITHYS [6], a proxy for Android applications that addresses the SSL vulner-
abilities examined in [5] and [4], and that guarantees MitM protection against
rogue access points. Bates et al. [8] propose CERTSHIM, a lightweight retrofit
that patches SSL implementations against several SSL vulnerabilities, including
those highlighted in [4]. Holz et al. [9] suggest Crossbear, a system that detects
MitM attacks on SSL/TLS over the Internet, collecting data in a centralized
system from several online probes, which works on browsers.

In contrast to all existing works, we investigate SSL with a focus on mali-
cious connections. Previous works have analyzed SSL connections assuming the
client is benign. We define a connection as malicious when both end points of the
communication are controlled by the attacker. A possible scenario is data exfil-
tration, where a compromised machine communicates with an external server,
owned by the attacker, over an SSL channel in order to bypass security mea-
sures and to camouflage within normal traffic. Botnets are an example of such
a scenario.

Our main contributions are the following: (1) we present an initial study on
malicious connections within SSL network traffic, by looking at the SSL hand-
shake protocol, (2) we found good indicators for malicious connections using
unencrypted information exchanged during the SSL handshake, (3) we verify
prior research findings [1,3,4,10] with our newly found indicators, and (4) we
discovered the presence of malicious connections examining our indicators within
the network traffic of an international university and of an international finan-
cial corporation. Within the IT infrastructure of the university we found 34
connections that show the same communication patterns (e.g., expired certifi-
cates), where 10 of the associated IP addresses are blacklisted by a professional
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service, called ThreatStop [16]. Furthermore, analyzing the network traffic of the
financial corporation we found two other malicious connections, also blacklisted.
Moreover, we found one of these analyzed malicious connections (i.e., the IP
address of the server) way before ThreatStop itself and four of them are marked
as potential botnets. We consider this a significant result as it shows the strength
of our indicators. We hope that our work stimulates the research community to
further study these new findings.

2 Our Approach and Assumptions

Our goal is to identify a set of features based on the SSL handshake protocol
that could indicate the presence of malicious connections within SSL traffic. In
our approach, we first select a set of features to analyze within SSL traffic that
we think can help us to indicate connection misbehaviors. After an evaluation
of this set of features on real data, we identify those that are more promising as
maliciousness indicators. Our approach is based on two assumptions:

1. The encrypted part of the SSL protocol is assumed to be secure, meaning
that we cannot inspect it.

2. Malware authors have complete control over the client and server applica-
tions, therefore they can easily avoid following the SSL standards, and make
their “own rules” creating broken SSL connections (e.g., do not properly
authenticate application connections).

The first assumption has two positive side-effects: whatever analysis we do,
it will (1) respect data confidentiality, and (2) be lightweight as we only focus on
the initialization of the SSL connection (i.e., in the SSL handshake) and because
we do not have to use complex algorithm to analyze our features. The negative
side-effect of assumption (1) is that it is not possible to examine the content of the
payload message in order to verify the maliciousness of a connection. The second
assumption implies an enforcement of authentication checks on SSL connections
at network level. This is done because browsers do not check the validity of SSL
connections generated by applications running on the background. The drawback
of the second assumption is that malicious connections would not be identified
whenever they follow correctly the specifications of the protocol.

Selecting features from the handshake protocol is not a novel approach. In
2014, Pukkawanna et al. [7] proposed different classifiers to automatically assess
the security of SSL servers, analyzing handshake protocol features. However,
their work focuses only on the security parameters of the server and not on the
parameters of the client. The authors use information from the Server Hello
and Certificate messages of the protocol. To achieve our goal, we consider also
characteristics of the Client Hello message (e.g., server name) and we relate
them with those from other messages (e.g., fourth feature in Section 2) in order
to evaluate the behaviour of both communicating parties.
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Selected Set of Features. The first feature that we have selected is the valid-
ity of the X.509 certificates. With this feature, we want to check if the certificate
is valid, self-signed, revocated, etc. The validity of the certificate can help us
to detect misbehaviors, because for normal benign traffic we do not expect to
see expired certificates during the authentication phase, neither we expect to
see facebook.com to use a self-signed certificate. This feature is commonly used
by researchers when analyzing the security of SSL. For instance, self-signed cer-
tificates are used in [6] to identify vulnerable applications to MitM attacks.
However, in our case we do not restrict our attention to self-signed certificates,
because malicious connections can also be authenticated with expired, valid or
revocated certificates.

Our second feature is the release date of the certificate, especially for self-
signed certificates. This feature is appropriate in the context of malicious soft-
ware, where the lifetime of web domains is short. Therefore, we assume that
criminals could generate new self-signed certificates either for each connection
or for a short period of time (e.g., one day). We focus on self-signed certificates
because they are easy and cheap (i.e., free) to generate and seem more suitable
considering the lifetime of domains, unlike expensive commercial certificates.

Our third feature is the existence of mutual-authentication. SSL provides the
option for a server to require client authentication (e.g., CertificateRequest and
CertificateVerify messages). This feature can be leveraged by criminals in the
context of a peer-to-peer botnet, in order to avoid external peers to infiltrate
within their system.

Our fourth feature is the relation between the SSL extension server name,
which is included in the Client Hello message, and the subjects (i.e., Subject
and subjectAltName X.509 certificate fields) of the X.509 certificate. This is the
typical browser authentication check that verifies whether the certificate is valid
for the domain requested by the client or not. Whenever there is a mismatch, the
connection should be considered untrusted, and potentially vulnerable to MitM
attacks (e.g., in the case of DNS poisoning [4], where the attacker can redirect
a user from a website to another).

Our fifth feature is the Levenshtein distance between the server name and a
list of the 100 most visited websites, whenever a self-signed certificate is encoun-
tered during the handshake. When a user connects to a server (e.g., www.google.
com) he should expect to receive a valid certificate, and not a self-signed certifi-
cate valid for a similar domain (e.g., www.gogle.com), otherwise it could be a
symptom of a MitM attack.

The sixth feature is the structure of the server name string. A current trend in
botnets is to use Domain Generation Algorithms (DGAs)[11] to generate many
random domain names that can be exploited as rendezvous point with botnet
servers. Therefore, we want to check whether these strings can be identified as
random-looking domains or not. This feature is not new in literature and it has
been previously used in the context of HTTP [14].

Finally, our seventh feature is the format of the server name string, which
should have a DNS hostname format as described in the specifications of the

facebook.com
www.google.com
www.google.com
www.gogle.com
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SSL extensions [15]. This protocol field represents the domain the client wants
to connect to, therefore we do not expect to see weird values or strings that could
represent an exchange of messages, perhaps used by criminals as commands.

A summarized description of the features is shown in Table 1.

3 Architecture and Implementation

The architecture of our system is shown in Figure 1. The system takes as input
the network traffic and first filters it through a packet analyzer module that
recognizes the SSL traffic and stores it on the disk as pcap (packet capture)
files. Those files are then given as input to Bro [12], an open source network
analysis framework that we use to analyze the traffic. This analysis on SSL
connections is based on our own Bro scripts that implement the aforementioned
set of features. Once Bro has analyzed the whole traffic, it outputs a set of log
containing the connections that, according to our features, might indicate the
presence of malicious behavior.

In our implementation we use tcpdump [17] as packet analyzer. We filter the
traffic on port 443 (i.e., we analyze on HTTPS in our implementation). Once
the data is stored on the disk, we run an offline analysis over captured data
using Bro. The first feature (see Table 1) uses an already existing script for the
Bro’s framework, called validate-certs.bro [2], which uses the Mozilla root store
as trusted base. All the other features are implemented by us through Bro’s
scripting language, except for the sixth feature related to DGA domains, which
uses an n-gram technique [13] to determine the level of randomness of a string.

4 Analysis of Selected Features

The selection of features is based on our assumptions (see Section 2), therefore
we analyze them to see whether they can be useful as indicators of malicious
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connections or not. In a second step, we discuss the findings of our analyzed
features on the SSL network traffic. We ran two different analysis. The first is
done on 300 GB of SSL traffic. The goal of this analysis is to define which of the
proposed features are helpful to determine the presence of malicious connections.
The second evaluation is tailored to the outcomes of the previous analysis and
is applied to a different dataset of 1 TB of SSL traffic. The set of features in
the second evaluation is smaller as it only includes those features that we have
identified as good indicators. In both analyses, our implementation examines
only SSL connections that successfully completed the handshake protocol (i.e.,
the Finished message is sent [18]). A connection represents a unique instance of
a successful handshake. Therefore, connections are not unique for each pair of
hosts.

Datasets. We ran our first analysis on the network traffic of an international
university2. This analysis is done by mirroring the whole traffic of the gateway
of the university network to our own server. The traffic is then filtered and
analyzed by our system. Our analyzed dataset is collected at the end of May
2014 (from 26th to 29th of May) and consists of 300 GB of SSL traffic. The
second dataset, of 1 TB of traffic has been collected between the 8th and the
28th of July 2014. The goal of this second analysis is to further investigate
the malicious connections previously identified.

4.1 Insignificant Features

Our first analysis on 300 GB of SSL traffic has shown that the release date of the
certificate (F2), the existence of mutual authentication (F3) and the Levensthein
distance for self-signed certificates (F5) do not seem to indicate the presence of
malicious connections. Feature F2 has not shown any evidence of malicious con-
nections. We have identified several certificates with a release date close to the
establishment of the connections (e.g., less than 10 minutes), but they were all
related to TOR connections, because the certificate subjects matches a typical
pattern for TOR certificates (see Section 4.3), therefore they cannot be con-
sidered malicious. We found 262 certificates generated 10 minutes before the
connection was established, 276 released within 1 day before the connection and
6589 generated more than 1 day before the connection. We found 198 connec-
tions, unrelated to TOR, that provided certificates with a release date of less
than 1 day, however none of these connections had further indications that they
could be considered malicious. Therefore, we consider this feature not relevant
for our purposes. Mutual authentication (F3) is not commonly used within SSL
communications. Analyzing our dataset of 891110 SSL connections, just 0.38%
(i.e., 3386 connections) use CertificateRequest and CertificateVerify messages
during the SSL handshake. 78.8% of such connections are authenticated with a
valid certificate and the large majority of them are generated by the Apple Push

2 The university has approximately 12.000 students and employees (combined).
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Notification Service. None of these connections that are using mutual authenti-
cation are malicious, therefore we mark also this feature as insignificant. Lastly,
we did not find any connection authenticated with a self-signed certificate where
the Levensthein distance between the subject and the 100 most visited websites
indicate a similar domains. Thus, we consider the Levensthein distance as an
insignificant feature as well.

4.2 Indicating Features

In our analysis, we have found that the certificate chain validation (F1), the
relation between server name and certificate subject (F4), the structure of the
server name string (F6) and its format (F7) seem to be indicators for malicious
connections. During our first analysis we have found 5 different malicious con-
nections, and all these features can be potential indicators. In addition, we found
one of these IP addresses before the professional service ThreatStop [16] marked
it as malicious. This fact shows the strength of our identified indicators of mali-
cious connections. The certificate chain validation (F1) has shown that 71% of
the certificates in our dataset is properly verified as a valid certificate. 21.5%
of the certificates instead do not provide their issuer. The amount of self-signed
certificates (including those having self-signed certificates in chain) is equiva-
lent to 0.8%. The amount of expired certificates we have encountered is 0.01%,
while the rest 6.7% of the certificates was not validated by the Bro script (i.e.,
validate-certs.bro [2]). We consider this feature to be a possible indicator because
in the malicious connections we have found, none of them use a properly vali-
dated certificate, as shown in Figure 2. In particular, 3 of these connections use
an expired certificate from Amazon. Considering the small amount of expired
certificates we have found in all our dataset, and the patterns of these malicious
communications, we think this feature could be a helpful indicator.

The second indicating feature is the relation between server name and cer-
tificate subject (F4). If it is not properly enforced it can lead to a connection
vulnerable to MitM attacks. In our entire dataset, 83.2% of the connections
use the TLS Server name extension. 98% of these connections provide a proper
certificate for the requested domain by the client. This is never true for TOR
connections, where the server name never matches (100% of the cases) the certifi-
cate subject. Nonetheless, we consider this feature as a potential maliciousness
indicator because, as shown in Figure 2, all the malicious connections we found
present a mismatch between server name and certificate subject.

The third indicator is the structure of the server name string. TOR connec-
tions have shown a clear pattern of random second level domain (SLD), also
confirmed by [2]. Two of the malicious connections we analyzed have a ran-
dom server name (see Figure 2). These are outgoing connections from a TOR
node within the university network. We think this feature can be helpful as an
indicator.

Lastly, the fourth indicator is the format of the server name string. 0.02%
of SSL connections in our dataset have a server name with a format different
from the DNS hostname, which is the standard defined by the RFC6066 [15].
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156 connections have the IP address of the server, as a server name value. While
111 connections have random values (e.g., 01cf645e.32fa6d90). Considering that
3 malicious connections out of 5 have a server name string that does not follow
the standard (e.g., they have IP addresses as server name), we include this feature
in our set of indicators (see Figure 2).

We give to our features a different level of strength, which depends on how
many times they are encountered within the set of malicious connections. As
shown in Table 1, F1 and F4 have a value 5/5, which means that in all the 5
malicious connections these features were present. F6 and F7 have a lower level
of strength since they are present just in 2 and 3 cases ,respectively, within the
malicious connections. A more detailed representation is depicted in Figure 2.

Table 1. Descriptive summary of the selected features. The features used as malicious
indicators and their level of strength are identified.

F# Feature Description
Malic.
Indic.

Indicator
Strength

F1
Certificate chain

validation
Typical validation chain

of X.509 certificates
X 5/5

F2
Certificate time

generation
Check the time from certificate

generation and connection
- 0/5

F3
Certificate request
& Certificate verify

Check if mutual authentication
has been requested

- 0/5

F4
Server name belong to

certificate subject
Check if the certificate is correct
for the requested server name

X 5/5

F5
Levensthein distance for

self-signed certificate
Check if famous domains provide

self signed certificates
- 0/5

F6
Random generated server

name domain
Check whether the server domain

is random or not
X 2/5

F7
Format of server name

domain
Check whether the server domain

follow the DNS hostname standard
X 3/5

Fig. 2. Detailed representation of the analyzed indicating features with format: [% of
dataset], [feature value], ([found in x-many malicious connections]).

01cf645e.32fa6d90
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4.3 Application

Malicious Connections. We identified 5 malicious connections within the
SSL traffic. We verified their maliciousness using the public blacklist service
offered by ThreatStop [16], a professional service that provides a blacklist of
known criminal addresses. If the IP addresses are not blacklisted, we do not
consider the connection as malicious. The connections have been analyzed using
ThreatStop few days after the traffic has been captured, and this verification
process has been done only once. Therefore, it is possible that our indicators
would have identified more malicious connections, whose IP addresses were not
yet blacklisted. We have chosen ThreatStop for two main reasons: (1) it is a
professional service, meaning that the blacklist is always updated and properly
maintained and (2) it focuses on threats that match our scenario such as criminal
malware or botnets, which can be used for data exfiltration.

Two of these connections have IP addresses linked to SPAM activities (TOR
connection), but do not share any pattern. The other three connections instead
show exactly the same patterns: the servers use an expired certificate of Ama-
zon to authenticate themselves (valid for the following domains www.amazon.
com, uedata.amazon.com, amazon.com, amzn.com, www.amzn.com), and they
have their destination IP address as server name field. Additionally, in the same
dataset 3 other connections have been found using these same communication
patterns. However, the IP addresses are not blacklisted, thus we cannot consider
them to be malicious, although they seem very likely to be malicious due to the
exact same characteristics.

We have ran a second analysis with a new dataset of 1TB of SSL traffic to
investigate the malicious connections that we have found. In this analysis, we
found another 28 connections that have the same patterns, but different IPs.
In total, we have observed 34 connections over 14 different countries, where 10
of them have IPs labeled as malicious by ThreatStop [16] and all connections
with the same source (i.e., a host inside the university network). Additionally, all
these IP addresses, few weeks after being identified, were not reachable anymore
on their port 443, as if the service was shutdown. Considering the following facts:
(1) an expired certificate of Amazon.com has been used by several blacklisted
IPs, (2) the location of these servers was spread all over Europe, and (3) the short
lifetime of their services, we believe that what we have found can be considered
a (not yet blacklisted) botnet. Another fact is that two of these IP addresses
are also marked by ThreatStop as potential botnet. It is interesting to note
that only 10 out of 34 IPs are blacklisted, although they share the same traffic
characteristics. These connections have been identified due to the presence of
features F1, F4 and F7. F1 identified that the certificate used by the server was
expired. F7 showed that the format of the server name field was not following
the DNS standard but was using an IP address. Finally, F4 showed that the
server name and subject were not matching.

Looking at the features, it seems that the server name field plays an important
role in identifying malicious connections. Not only the format of the domain, but
also its relation with the subject of the certificate, which we believe is the main

www.amazon.com
www.amazon.com
uedata.amazon.com
amazon.com
amzn.com
www.amzn.com
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part of authentication of the server because it shows whether the answer of
the server (i.e. certificate) matches the request of the client (i.e., server name).
The randomness of the domain name seems also to be useful. Perhaps, using
a more sophisticated technique to detect random domains could improve its
impact as an indicator. Not surprisingly, also the validity of the certificate seems
to be relevant. Malicious connections use certificates that are either expired or
self-signed. Therefore, identifying connections that are not identified by proper
validated certificates, can be an indicator.

Therefore, we believe our indicators analyze malicious traffic from a new and
different perspective. During this second analysis, we have also found three other
malicious connections (i.e., blacklisted by ThreatStop [16]) coming from the TOR
exit node. Therefore, considering the two TOR malicious connections identified
in the 300 GB of SSL traffic, we found a total of 5 malicious connections within
TOR network traffic. The features present in these connections were F1, F4 and
F6. In these cases the certificates were self-signed, therefore F1 was triggered.
F6 identified them as malicious connections due to their “random looking” SLD.
Lastly, F4 showed that the provided certificate was not valid to authenticate the
requested server name.

Connections Vulnerable to MitM Attacks. Although our analysis focuses
on malicious connections, the selected features allowed us to identify other mis-
behaviours, which weaken the security of SSL connections. We identified 5326
connections (0.6% of the entire dataset) that are potentially vulnerable to MitM
attacks, due to a bad implementation of the authentication mechanism (i.e., the
requested domain is not contained in the list of subjects of the certificate). 1251
of these connections are authenticated with valid certificates. Several of these
misconfigurations are related to Akamai, a well known Content Distribution
Network that provides its customers a single SSL certificate valid for different
domains (e.g., *.akamaihd.net [3]). Also the Google Project SDPY, an open net-
working protocol for transporting web content, does not follow the specifications
of SSL correctly, using hash values (e.g., 01cf645e.32fa6d90) as the server name
in the ClientHello request. With this outcome we confirm, as discussed in [4],
that there are still several web applications using SSL in a wrong way. However,
we apply a further analysis on these connections, and determined we can group
the misconfiguration into two sets: light and heavy. A light misconfiguration is
when the SLD of the server name matches with the SLD of the certificate sub-
ject, but there is a mismatch between subdomains (e.g., example.website.com
and fake.website.com). We called them light because for an attacker it is hard
to create a MitM attack, since he should generate or “steal” a certificate with
the same SLD and a different subdomain, or he should compromise a CA and
release a certificate with same SLD and different subdomain. A heavy misconfig-
uration is when the SLD of the server name is different from the SLD domain of
the certificate subject (e.g., www.example.com and www.malicious.com). In this
case the connection can be easily attacked by a MitM, because the certificate is
not verified to match with the requested domain.

*.akamaihd.net
01cf645e.32fa6d90
example.website.com
fake.website.com
www.example.com
www.malicious.com
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TOR. Analyzing the randomness of domains we encountered several TOR con-
nections within the HTTPS traffic. We identified a simple pattern to distinguish it
from normal HTTPS traffic: ServerName= www.[randomstring].com AND Sub-
ject=www.[randomSLD].net AND certificate validation=”Unable to get Certifi-
cate Issuer”. This is a constant pattern in all TOR communications over port 443.
All the TOR connections (i.e., 7127) have this pattern. Moreover, we were able to
identify an exit node which was generating a lot of TOR traffic within the Uni-
versity network. Amman et al. [2] in their work, arrived at the same conclusions,
with a very similar pattern:where Issuer andSubjectmatch the patternCN=www.
[randomstring].[tld]. Both patterns successfully identify connections among TOR
nodes. The TOR exit node presents within the university network is responsible
for two of the malicious connections that we have found in our analysis. The server
name is a random string, typical characteristic of TOR traffic. In these two cases,
the connections were exiting the onion network, therefore the certificate provided
by the real destination was not respecting the pattern of TOR nodes.

Financial Corporation. We analyzed the indicating features (see Section 4.2)
in a further scenario. The dataset in this case is approximately 2 TB of network
traffic, which has been captured over a period of two weeks, from the 23rd of
March to the 9th of April 2015, within the infrastructure of an international
financial corporation. Figure 3 shows a simplified architecture of our approach
for data collection. The network traffic of client networks is mirrored to our
solution, deployed on one of their machines. The traffic seen by our system is
previously filtered by state-of-the-art security solutions deployed by the com-
pany that prevent clients to communicate with malicious domains. Moreover,
the gateway firewall is a state-of-the-art solution capable of inspecting the SSL
traffic. It does this decrypting the traffic, analyzing it and re-encrypting it and
finally forwarding it towards its destination. However, the inspection is based
on certain criteria, therefore not all the traffic is inspected. This firewall highly
limits the number of connections analyzed by our system, because it uses self-
signed certificates to re-encrypt the traffic, therefore the handshake that our
system analyzes is not the original and features like F1 and F4 can be altered.
For this reason, we filter these connections: we analyze the handshake of those
connections that were not inspected by the firewall.

The analysis of the financial corporation network has also revealed vulnera-
ble connections to MitM (i.e., heavy misconfiguration). We have identified 129
connections, where 118 provide an expired certificate (115 are connections to
the same website). The remaining 11 connections have a self signed certificate in
chain. We were also able to identify 14 TOR connections, despite the fact that
the network traffic was filtered through a blacklisting mechanism to block TOR
traffic. This result remarks how blacklisting solutions are not perfect. Lastly,
we have identified two malicious connections. They share the same IP address,
which is blacklisted by ThreatStop [16] as a potential botnet. Considering the
well-protected infrastructure where the malicious connections have been iden-
tified, we believe this result underlines the strength of our indicators for the
identification of malicious connections over SSL.

www.[randomstring].com
www.[randomSLD].net
www.[randomstring].[tld]
www.[randomstring].[tld]
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Fig. 3. High-Level representation of the data capturing within the Financial Corpora-
tion network

5 Limitations and Future Works

As we mentioned in the introduction, our work is an initial analysis of SSL mali-
cious connections and it still has its limitations. First of all, the weight of our
features has been computed from a small number of observation during the anal-
ysis of the first dataset. Although it can give an intuition about the effectiveness,
because during the second analysis we found more malicious connections having
such indicators, a more extensive validation should be done. This can be real-
ized through an analysis of additional traffic. Another limitation of this work is
that the set of features might be under fitting. There could be more handshake
features that could be helpful in identifying malicious connection. Moreover, it
is possible that more malicious connections have not been identified due to a
limited set of indicators. Indeed, in the first analysis we ran ThreatStop against
the subset of connections containing at least one of our indicators. This was a
design decision, because it does not seem sensible to evaluate our indicators over
connections that were not including them. As future work, extending the set
of features is a necessary step. The features proposed by Pukkawanna et al. [7]
could be used as helpful reference. The usage of machine learning techniques
could also be useful in the analysis. Our judgement on the maliciousness of a
connection heavily relies on the ThreatStop service. Therefore, it is possible that
more connections were malicious and we did not consider them because they were
not blacklisted by ThreatStop. This is a typical drawback of using blacklisting.
This might be improved using additional sources to verify the maliciousness of
IP addresses. Lastly, the design and implementation of an intrusion detection
system based on an extension of our work (e.g. with additional indicators) can
be considered as interesting future work.
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6 Conclusion

We presented a set of indicators of malicious connections for SSL. Analyzing
the network traffic of an international university and a secured network of an
international financial corporation with our indicators, we have identified sev-
eral malicious connections. In the university setting we have found in total (see
Section 4.3): 5 connections related to TOR traffic, and 10 connections that share
the same communication patterns and use an expired certificate of Amazon for
authentication. In the financial corporation we have identified 2 malicious con-
nections. All these connections have IP addresses blacklisted by ThreatStop [16].
One of these IP addresses was blacklisted after we have identified it, and 4
addresses are associated with botnet activities. Furthermore, we have identi-
fied 24 other connections that are also using the expired certificate of Amazon
and share the same traffic characteristics but are not blacklisted (yet). Hav-
ing 34 connections sharing these characteristics, we strongly believe that we
have found a potential botnet on SSL. Nonetheless, we have also verified several
results of prior research on the identification of many vulnerable SSL connections
to MitM attacks, but by using a different method. This work is not intended as
an intrusion detection system, although our indicators, through further valida-
tion, could potentially be part of such a system. A deeper understanding and
further research is needed to turn our work into an intrusion detection system.
We consider this as future work. The goal of this work is to identify features that
could indicate malicious behaviors. We believe this set of indicators is a good
starting point. Further extensions are still needed, as we suggested in Section 5.
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Abstract. Fingerprint orientation field, representing the fingerprint
ridge-valley structure direction, plays an essential role in fingerprint pre-
processing tasks. Orientation field is able to be reconstructed by either
non-parameterized or parameterized methods. In this paper, we propose
a new parameterized approach for orientation field modeling. The pro-
posed algorithm minimizes a composite model including three constraints
corresponding to a least square data fitting term, a total variation reg-
ularization and a L1 sparse regularization. This model has been shown
to be very effective for fingerprint orientation field reconstruction. Fur-
thermore, its effectiveness has been proven by several experiments. First,
the experiments on poor-quality fingerprint images are conducted. Visual
comparisons demonstrate the robustness of the proposed method when
processing noisy fingerprint images. Then, as another application of the
proposed model, its resultant sparse representation is employed for fin-
gerprint indexing. The experiments on FVC 2000 DB2a and FVC 2002
DB1a datasets show the superior performance of the proposed model for
fingerprint indexing.

1 Introduction

Fingerprint has been broadly used as an unique characteristic for personal recog-
nition in security and forensic community. In fingerprint image, orientation field
(OF) is an important feature to represent the direction of ridge-valley struc-
tures. For example, OF is applied to tune Gabor filter directional parame-
ters for enhancement of ridge-valley structures. Accordingly, detailed features
such as minutiae can be accurately extracted based on the well enhanced ridge-
valley segments. However, numerous fingerprint images in real world are more or
less contaminated by structural noise. Therefore, the incomplete and corrupted
ridge-valley structures of these noisy fingerprint images are unsatisfactory for
subsequent processing tasks. To recover the disconnected ridge-valley patterns,
OF-driven contextual filtering is a preprocessing step prior to following feature
extraction. Consequently, OF has to be estimated as perfectly as possible.

OF estimation methods can be generally categorized into two groups: (i) non-
parameterized methods; and (ii) parameterized models. The non-parameterized
techniques have been intensively studied during the past decades. For example, a
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 176–187, 2015.
DOI: 10.1007/978-3-319-25645-0 12
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directional filtering scheme was proposed for ridge-valley structure enhancement
[1]. Therein, partial derivatives along x− and y− directions were calculated for
ridge-valley orientation estimation. Such method can work well for high-quality
fingerprint images (e.g. rolled and plain fingerprints), however, for poor-quality
prints (e.g. latent fingerprints), this method is not capable to yield reliable orien-
tation information. To strengthen the robustness resisting structural noise, the
orientation estimation was conducted by short time Fourier transform (STFT)
[2]. The local Fourier analysis is able to capture the frequency response of the
ridge-valley patterns. Therefore, the dominant frequency components in Fourier
magnitude spectrum offers a powerful tool for ridge-valley orientation estima-
tion. However, this technique can only work under the following assumption:
even the structural noise corruption could be severe, the ridge-valley structures
would still be salient to guarantee the capture of the dominant frequency com-
ponents. However, such assumption is difficult to be satisfied for poor-quality
fingerprint images. For further improvement of the noise robustness, an OF
template matching and correction approach was developed recently [6]. Such
technique applies dictionary learning strategy to construct a large-scale OF tem-
plate library. Then, using the learned OF templates for the replacement of the
incorrect OF fragments depending on context similarity is conducted. However,
the context similarity computation is unreliable since the initially estimated OF
information could be incorrect.

In contrast to the non-parameterized approaches, the parameterized models
have the following advantages:

– Noisy OF Purification: A modeling process can be regarded as a denoising
process, which means the noisy OF obtained at the initial step can be purified
through the modeling procedure;

– OF Decomposition and Reconstruction: A modeling process can be
regarded as a signal decomposition and composition process, which means
the OF can be projected on a set of basis functions and then reconstructed
based on a linear combination of appropriate coefficients and selected basis
functions.

Using the parameterized model to depict the fingerprint OF can be traced
back to [3]. Therein, the fingerprint OF was modeled by a set of 2D Fourier
basis functions (namely classical FOMFE model). After FOMFE modeling pro-
cess, the initially estimated noisy OF can be adaptively corrected and fitted to
the ridge-valley structure directions. Later, a smooth extension approach based
on FOMFE model was developed to interpolate the orientation information for
partial fingerprint images [4] [5]. Motivated by FOMFE model, furthermore,
more basis functions were developed for fingerprint OF modeling [7] [8] [9]. For
example, instead of the utilization of 2D Fourier basis functions, Legendre poly-
nomial basis functions are employed for OF modeling [7]. Then, 2D discrete
cosine basis functions are also adopted [8] [9]. Although the currently developed
parameterized models have achieved fairly good performance for fingerprint OF
modeling, the exploitation of the OF representation over predefined basis func-
tions is still an open problem. Also, such OF representation, as an useful tool
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for fingerprint indexing, can be further investigated. In this paper, we propose
a new parameterized model for OF modeling by means of sparse representa-
tion. As the outcome of the proposed model, the sparse OF representation is
then used for fingerprint indexing. Due to the sparse nature of the resultant OF
representation, the intrinsic patterns of noisy OF can be captured. In contrast
to the dense OF representation (e.g. obtained from the classical FOMFE), the
sparse OF representation has the following advantages:

– Better Anti-noise Property: A sparse modeling has been proven to be a
very powerful strategy to cancel noise effect in image denoising tasks;

– Intrinsic OF Patterns Capture: A sparse modeling process can be
regarded as a pattern retrieval process, which means the OF can be decom-
posed into a few essential patterns. These decomposed essential patterns
corresponds to some basis functions;

– Less Storage Needed: A sparse representation is able to save more storage
space, since the most coefficients in the sparse representation vector are zeros.

In this paper, we propose a new OF reconstruction method based on the
combination of three constraints, which incorporates a least square data fit-
ting term, a total variation regularization and a L1 sparse regularization. For
solving this multi-constrained model, a Composite Splitting Algorithm (CSA) is
introduced. The rest of this paper is organized as follows: in Section 2, the multi-
constrained model and its numerical solution are introduced; in Section 3, the
experiments for poor-quality fingerprint images’ OF modeling are conducted and
visual comparisons with the classical FOMFE model are demonstrated. Later,
the experiments for fingerprint indexing by exploiting the sparse representation
are conducted; in Section 4, the conclusion and future research directions are
given.

2 Proposed Model and Numerical Solution

2.1 Proposed Multi-constrained Model

OF is represented by a 2D matrix containing local ridge-valley directions esti-
mated at each block-wise locations of a given fingerprint image. In modeling
process, initial estimation of OF is performed as the first step. The initial OF
information is expected to be obtained as accurately as possible. However, the
initially estimated OF is more or less noisy in real applications, since the initial
estimation (or say initial measurement) is usually contaminated by the noise.
To be explicit, the initially estimated OF can be decomposed into the following
two components:

O = Ô + N (1)

where O is observed noisy fingerprint OF, Ô is noise-free OF and N is noise.
For the noise-free OF reconstruction, we formulate the following optimization

problem as the proposed multi-constrained model:
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Ô = arg min
O

{
1
2‖O − Φγ‖2 + α‖O‖TV + β‖γ‖1

}
(2)

where Φ is a set of predefined basis functions, γ is a sparse representation vector,
α and β are two positive parameters to balance the total variation regularization
‖·‖TV and the L1 sparse regularization ‖·‖1.

The motivation to involve TV term ‖·‖TV is based on the fact that the
piecewise smooth OF of fingerprint image should have small total variations.
The TV term is defined as follows:

‖O‖TV =
∑

i

∑
j

(
(∇1Oij)

2 + (∇2Oij)
2
)

(3)

where ∇1 and ∇2 denote the forward finite difference operators on x− and y−
directions, respectively.

Also, the generally smooth fingerprint OF can be sparsely represented by
the basis functions. That is, L1 term ‖·‖1 should be as sparse as possible. The
relationship between the orientation field O and the sparse representation γ is
denoted as follows:

γ = HO (4)

where H =
(
ΦT Φ

)−1
ΦT .

2.2 Proposed Numerical Solution

Both TV regularization and L1 regularization in the proposed model are nons-
mooth. Therefore, the formulated minimization problem in Equation (2) is very
difficult to solve. The conjugate gradient descent method and partial derivative
technique are used to solve it. However, they are very inefficient and impracti-
cal for fast fingerprint OF modeling. In this case, the computation becomes the
bottleneck to prevent the proposed model from being applied to efficient and
effective fingerprint OF reconstruction.

Based on the CSA technique, in this paper, we propose an efficient numeri-
cal algorithm to address the minimization problem in Equation (2) by using the
combination of variable and operator splitting techniques. We decouple the com-
posite problem in Equation (2) into two subproblems by: (i) firstly separating
variable O into two variables {O1, O2}; (ii) then performing operator splitting
to minimize TV regularization and L1 regularization subproblems over {O1, O2}
respectively; and (iii) finally yielding the solution O by linear combination of
{O1, O2}. This computational procedure follows a standard CSA framework,
which has been developed and tested in [15].

To be explicit, the proposed CSA-based numerical algorithm is outlined in
Algorithm 1. In Step 2, Oini stands for the initially estimated OF, which can
be computed by the gradient-based method [1] [10]. t and r are intermediate
variables during the proposed iterative optimization process. [l, u] is the range
of O. In the case of fingerprint OF modeling, O = [Ocos, Osin]T where Ocos =
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cos(2Θ) and Osin = sin(2Θ), respectively (Θ denotes the ridge-valley direction
angle). In Step 4, Og is updated by gradient descent technique as follows:

Og = rk − ρ∇f(rk) = rk − ρ(rk − Φγk) (5)

where f
(
rk

)
= 1

2

∥∥rk − Φγk
∥∥2 and γk = Hrk. To compute γk, Orthogonal

Matching Pursuit (OMP) method is adopted [11].
In Step 5 and 6, the computation of O1 = proxρ(2α‖Og‖TV ) and O2 =

proxρ(2β‖HOg‖1) can be efficiently implemented by Fast Iterative Shrink-
age Threshold Algorithm (FISTA) [16]. In Step 8, the function Ok

new =
proj(Ok

old, [l, u]) is defined as follows:

Ok
new =

⎧⎪⎨
⎪⎩

Ok
old, l ≤ Ok

old ≤ u

l, Ok
old < l

u, Ok
old > u

(6)

Due to the efficiency and effectiveness of the CSA framework, the fingerprint
OF modeling problem in Equation (2) can be properly addressed in terms of the
reconstruction accuracy and computation complexity. The experimental results
in the following section demonstrate its superior performance compared with the
state-of-the-art method for fingerprint OF modeling and fingerprint indexing.

Algorithm 1.. CSA-Based Numerical Solution for The Proposed Model in Equa-
tion (2)
1: Inputs:

ρ = 1/L, α, β, t1, r1, l, u

2: Initialize:
L = 1, α = 0.001, β = 0.005, t1 = 1, r1 = Oini, l = −1, u = 1

3: for k = 1 to K do
4: Og ← rk − ρ(rk − Φγk)
5: O1 ← proxρ(2α‖Og‖TV )
6: O2 ← proxρ(2β‖HOg‖1)
7: Ok ← (O1 + O2)/2
8: Ok ← proj(Ok, [l, u])

9: tk+1 ← (1 +
√

1 + 4(tk)2)

/
2

10: rk+1 ← Ok +
((

tk − 1
)/

tk+1
) (

Ok − Ok−1
)

11: end for
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3 Experiments

3.1 Fingerprint OF Reconstruction Experiment

The fingerprint images used in this experiment are collected from FVC 2000
DB2a, FVC 2002 DB1a and NIST SD14, respectively. Some fingerprint images
are illustrated in Figure 1.

(a) (b) (c)

Fig. 1. Some fingerprint images for OF modeling experiment: (a) FVC 2000 DB2a; (b)
FVC 2002 DB1a; and (c) NIST SD14.

In this experiment, the classical FOMFE model and our proposed multi-
constrained model are used for fingerprint OF reconstruction. The parameters
of the classical FOMFE model are tuned as follows: block size w = 8 and basis
function order h = 5. For the proposed model, the predefined basis functions Φ,
block size w = 8, and basis function order h = 5 are maintained the same as
the classical FOMFE model’s. The sparse regularization controller sr = 20% is
tuned. That is, the length of the sparse representation vector γ is (2h+1)2 = 121,
therefore sr = 20% means that 24 out of 121 coefficients are nonzeros while the
remaining coefficients are zeros.

Since no ground truth exists for the evaluation of the reconstructed finger-
print OF, the objective error measurement cannot be easily yielded and it is
difficult to assess the quality of the reconstructed OF in a quantitative way [12]
[13]. Instead, the quality of the reconstructed OF has to be assessed by means
of visual inspection. The reconstructed OF obtained from the classical FOMFE
model and the proposed multi-constrained model are shown in Figures 2, 3 and
4. The dense representation and the sparse representation obtained by the clas-
sical FOMFE model and the proposed model are shown in Figure 5, respectively.
Figures 2, 3 and 4 demonstrate that the proposed model is able to generate more
reliable and less noisy OF than the classical FOMFE model, especially when the
fingerprint images being processed are in poor quality. Figure 5 shows that the
proposed model is more effective to capture prominent OF patterns based on
limited basis functions and associated projective coefficients.
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Fig. 2. The reconstructed OF for a high-quality fingerprint image in FVC 2000 DB2a:
(a) initially estimated OF [1]; (b) classical FOMFE model [3]; and (c) proposed model.
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Fig. 3. The reconstructed OF for a poor-quality fingerprint image in FVC 2002 DB1a:
(a) initially estimated OF [1]; (b) classical FOMFE model [3]; and (c) proposed model.
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Fig. 4. The reconstructed OF for a poor-quality fingerprint image in NIST SD14: (a)
initially estimated OF [1]; (b) classical FOMFE model [3]; and (c) proposed model.
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Fig. 5. The dense and sparse representations for fingerprint OF in Figure 4: (a) dense
coefficient vector obtained by the classical FOMFE model (cos); (b) dense coefficient
vector obtained by the classical FOMFE model (sin); (c) sparse coefficient vector
obtained by the proposed model (cos); and (d) sparse coefficient vector obtained by
the proposed model (sin).

3.2 Fingerprint Indexing Experiment

Fingerprint indexing experiments are conducted on FVC 2000 DB2a and FVC
2002 DB1a, since both datasets are broadly used for the performance evalua-
tion of the fingerprint indexing [14]. FVC 2000 DB2a consists of 800 fingerprint
images collected from 100 fingers by using a capacitive fingerprint scanner (each
finger contains 8 different impressions). Also, FVC 2002 DB1a includes 800 fin-
gerprint images captured from 100 fingers by using an optical fingerprint scanner
(each finger contains 8 different impressions). In this experiment, the first impres-
sions are chosen as the query samples, while the remaining seven impressions are
gathered as a background library. Therefore, 100 images of first impressions are
selected as the query samples meanwhile 700 images of other impressions are
assembled to form the background database. For both FVC 2000 DB2a and
FVC 2002 DB1a, the same data preparation procedure is applied.

To evaluate the fingerprint indexing performance, a Cumulative Match Char-
acteristic (CMC) plot is adopted. The CMC plot indicates the Identification Rate
(IR) against the Penetration Rate (PR). For example, given a query fingerprint,
it is compared against the whole background database. Accordingly, its one-to-
one similarities are computed and queued in descending order. pr = 10% means
that the mated fingerprint corresponding to the query fingerprint appears at
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Fig. 6. Indexing Performance Evaluation on FVC 2000 DB2a and FVC 2002 DB1a
(Average CMC: CMC): (a) FVC 2000 DB2a; and (b) FVC 2002 DB1a.

Table 1. Indexing Performance Evaluation on FVC 2000 DB2a and FVC 2002 DB1a
(Average PR: pr)

FOMFE [3] Proposed Model
sr = 10% sr = 20% sr = 30%

FVC 2000 DB2a 14.36% 15.00% 13.72% 13.84%
FVC 2002 DB1a 6.80% 7.68% 6.28% 6.56%
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Table 2. The Comparison with Other Minutiae-based Indexing Methods (Average PR:
pr)

Minutiae Quadruplets [18] Minutiae Triplets [17] Proposed Model

FVC 2000 DB2a 26% 22% 13.72%
FVC 2002 DB1a 11.8% 9.9% 6.28%

70th in the similarity queue, since the length of the similarity queue equals to
the size of the background database (10% × 700 = 70).

This experiment assesses the indexing performance between two different
OF models: the classical FOMFE model [3] and the proposed model. Therein,
the representation coefficient vectors of the two models are employed as the
features for fingerprint indexing. For the classical FOMFE model, its parameters
are tuned as follows: block size w = 8 and basis function order h = 5. For
the proposed model, the predefined basis functions Φ, block size w = 8, and
basis function order h = 5 are maintained the same as the classical FOMFE
model’s. To further investigate the effect of the sparse regularization controller
sr, three different values sr = 10%, sr = 20% and sr = 30% are tested. The
statistics of the indexing performance, such as the average CMC (CMC) plots
and the average PR (pr) values, are obtained on both FVC 2000 DB2a and FVC
2002 DB1a datasets. These results are demonstrated in Figure 6 and Table 1,
respectively.

Figure 6 and Table 1 show that the proposed model performs better than
the classical FOMFE model in terms of CMC and pr. That is, the better per-
formance is achieved, since the proposed model’s CMC curves are closer to the
left upper corner and its PR values keep lower. This evidences the superiority
of the proposed model when it is exploited for fingerprint indexing. The varia-
tion of the parameter sr can not significantly influence the experimental results.
Compared with the effects of sr = 10% and sr = 30%, the selection of sr = 20%
can yield better results.

Table 2 exhibits the indexing results when the proposed model is compared
with minutiae-based techniques on both FVC 2000 DB2a and FVC 2002 DB1a
datasets [17] [18]. The proposed model can achieve much better performance by
using the same criterion: average PR pr.

4 Conclusion

In this paper, a new OF modeling technique is developed by the minimization of
a multi-constrained optimization problem. The proposed model integrates a least
square data fitting term, a total variation regularization and a L1 sparse regular-
ization. Such composite optimization problem, due to its nonsmooth nature, is
difficult to be solved. According to the CSA framework, we propose an efficient
and effective numerical solution to address this challenging problem. The exper-
imental results demonstrate the superiority of the proposed model when it copes
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with the noisy fingerprint OF. The visual comparison of the reconstructed OF
shows that the proposed model performs better than the classical FOMFE model
when handling the poor-quality fingerprint images. Furthermore, the sparse rep-
resentation, obtained by the proposed modeling process, is exploited for finger-
print indexing. The indexing experiment demonstrates the superior performance
of the proposed model. Future work can be proceeded in following two directions:
(i) developing new basis functions, or even directly learning the basis functions
from a given noisy OF; and (ii) involving new constraints to formulate new
models and then developing new numerical solvers for new models.
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Abstract. Access control facilitates controlled sharing and protection
of resources in an enterprise. However, given the ubiquity of collabora-
tive applications and scenarios, enterprises no longer function in isola-
tion. Being able to measure policy similarity and integrate heterogeneous
policies appropriately is an essential step towards secure interoperation.
Existing approaches for measuring policy similarity are based on comput-
ing similarity between different components of the access control policy.
However, this does not provide a pathway for integrating policies, and
may not sufficiently take the security context into account. In this paper,
we propose a holistic change detection approach that enables policy sim-
ilarity evaluation and policy migration. Our approach more comprehen-
sively takes into account different access control semantics to compute
policy similarity and finds the common organizational policy with the
least cost.

Keywords: Access control · Policy similarity · Policy migration ·
Change detection

1 Introduction

Today, access control is critical to any enterprise. Essentially, any resource of
value needs to be protected from inappropriate access. These protection require-
ments are typically stated as access control policies, which faciliate the protection
as well as controlled sharing of all resources. Indeed, all modern enterprises have
effective access control policies specified and enforced. While individual access
control policies serve to protect organizational resources in isolation, this does
not address the challenges raised by collaboration. With collaborative platforms
such as cloud computing, service oriented architectures, and the like, sharing of
resources (e.g., data, knowledge, services, etc.), is often necessary to carry out
the tasks at hand. Even if organizations are inclined to such sharing to meet a
common objective, they would still like to ensure that their own access control
policies are enforced while sharing resources. Indeed, having a common access
control policy is often a prerequisite to resource sharing. Alternatively, an orga-
nization A may be willing to share a resource with another organization B only
if their corresponding policies are somewhat similar.
c© Springer International Publishing Switzerland 2015
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This requires having the ability to identify (and quantify) the similarity
between policies, and reconcile the differences in an appropriate fashion. Since
every organization may have its own perspective in terms of the sensitivity of
different resources (as one organization may value a certain resource more than
another), different constraints and authorizations may have varying degrees of
importance to different organizations. The need for measuring similarity may
also arise within a single organization. Specifically, when an access control pol-
icy changes, the security administrators as well as the owners of the resources
may want to know how similar is the new policy with respect to the earlier one.
Whether it is within an organization or across organizations, a policy similarity
measure can give the sense of security risk involved in moving to the new state.

In general, it is quite complex to determine if two policies are similar, and
to identify and resolve their differences. Lin et al. [10] have proposed a policy
similarity metric based on computing the structural similarity between different
components of the access control policies by making a one-to-one comparison.
While this enables similarity computation and serves as an initial filtering step,
it is not effective from the perspective of multi-policy management, including
merging and composition of policies. Security semantics such as the sensitiv-
ity of resources from an organizational perspective also need to be taken into
account. In this paper, we identify key requirements for similarity evaluation
from an access control perspective, and propose a formal framework based on
change detection that enables policy similarity computation, and other multi-
policy management operations such as policy migration.

Our similarity measurement is based on computing the security impact in
transitioning from one policy to the other. In effect, this is directly correlated to
the number of common accesses between two policies. The smaller the number
of common accesses, the larger the transition (and associated cost). Therefore,
this well represents the notion of similarity as the extent to which the policies
are in agreement over the set of possible accesses. Additionally, it provides a
pathway for transitioning from one organizational policy to another.

The rest of the paper is organized as follows. Section 2 discusses the require-
ments for effective policy similarity evaluation and shows the limitations of exist-
ing work with concrete examples. Sections 3 and 4 present our approach to policy
similarity measurement and policy migration. Section 5 reviews the related work.
Section 6 concludes the paper and discusses future work.

2 Problem Motivation and Requirements

We aim to address a family of related problems in the multi-policy environ-
ment. Before developing an appropriate solution, we would like to identify the
contextual parameters and factors, along with the requirements for an effective
solution. Essentially, our goal is to enable policy similarity evaluation and pol-
icy migration. Here, policy similarity evaluation gives a single scalar value that
defines how similar the group of underlying policies are. A value of 0 indicates
that none of the policies have anything in common, while a value of 1 indicates,
that all of the underlying policies express the exactly same authorization set.
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In policy migration, out of all of the given policies, we would like to identify the
policy with the lowest cost of migration – i.e., the policy to which all of the other
policies can be transformed with least cost. This is useful in the cases where one
of the existing policies must be chosen as the common operating policy.

For the rest of this section, we will assume the following notation: policies are
composed of permit and deny rules. Each rule states the set of subjects, s, that
are allowed (or denied) access to the set of resources, r, for the set of actions,
a, when satisfying any one of the set of conditions, c. Thus, R1 : Permit, {S1 –
S5}, {R1 – R3, R7 – R10}, {A1}, {C1} indicates that the subjects S1 to S5 should
be permitted access to the resources R1 – R3 and the resources R7 – R10, for
action A1 when condition C1 is satisfied.

2.1 Lin et al. Policy Similarity Scoring Metric

Before going into the detailed problem requirements and motivatory example, we
first give a brief overview of the work of Lin et. al[10,18], which is very closely
related to the work in this paper. They propose a policy similarity measure
for measuring the similarity between two policies. The similarity measure takes
into account the policy structure typical of XACML. Given two policies, the
similarity score computation algorithm first categorizes the rules based on their
effects, which results in a set of Permit Rules (denoted as PR) and a set of Deny
Rules (denoted as DR). Each single rule in the first policy is then compared with
a rule in the second policy that has the same effect, and a similarity score of two
rules is obtained. The similarity score is computed using hierarchy distance and
numerical distance, and used to find one-to-many Φ mappings that determine
for each permit/deny rule in one policy which of the rules in the other policy
are very similar. Weights are used to allow emphasis on the importance of a
target or condition similarity. The Φ mappings are used to calculate the rule set
similarity scores, which are based on categorical and numerical predicates (in
essence, the similarity between the rule elements – subjects, resources, actions,
and conditions). Finally, the scores obtained for the different components of the
policies are aggregated according to a weighted combination in order to produce
an overall similarity score. We now look at why this work does not fully capture
the semantics of policy comparison.

2.2 Transition Cost

Typically, the process of policy comparison is initiated due to some underlying
motive, such as the security administrator wishing to merge two policies into one,
or trying to figure out what is the transition cost of replacing one security policy
with another. For all such cases, a policy similarity metric that is well correlated
with the transition cost is essential. While the metric for policy similarity in
[10] gives a notion of the difference between the policies (and, as such is useful
to figure out if two policies are widely varying or very similar), it is not very
effective from the perspective of transitioning between policies. Measuring the
similarity between two policies simply on the basis of element level comparison
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gives us no way to judge the degree of effort required to resolve the two policies
into a coherent whole.

Instead, we measure the similarity of two policies P1 and P2 as the cost of
transitioning from one policy to the other. Note that this cost is organization-
dependent, i.e., it varies depending on how the organization rates the different
subjects, objects, etc. Clearly, the lower the transitioning cost, the more similar
are the policies. The intuition behind this is that, such a similarity computation
would actually reflect the effort needed to resolve and come up with a coherent
policy. In effect, the transition cost is directly correlated to the number of com-
mon accesses between two policies. Therefore, this well represents the notion of
similarity as the extent to which the policies are in agreement over the set of
possible accesses.

With this as a premise, in this section, we first point out that one should take
the following three conditions into consideration when computing the similarity:
(1) the cost of transitioning from one rule to the other by taking into consid-
eration the cardinality of an element in the rule, the sensitivity of the element
and its location in the hierarchy. (2) distinguishing between the different opera-
tions in the transition cost, such as deletion, insertion and moving an element.
(3) Finally, when multiple policies are present, we need to have the ability to
migrate to a single existing policy with least migration cost.

Apart from transition cost, similarity can also be judged from another per-
spective. Indeed, Lin et al.[10] state another intuitive notion of policy similarity
– “if the similarity score of policies P1 and P2 is higher than that of policies P1
and P3, it implies that P1 and P2 may yield the same decisions to a larger com-
mon request set than P1 and P3 will do”. This is also a very appealing notion of
similarity. However, the specific metric proposed in [10] does not always satisfy
this. Consider the following example which illustrates this point:

P1: R11: Permit,{S1}{R1}{A1}{C1}; R12: Permit,{S5}{R1 – R100}{A2}{C2}
P2: R21: Permit,{S1 – S3}{R1}{A1}{C1}; R22: Permit,{S5}{R1 – R100}{A2}{C2}
P3: R31: Permit,{S1}{R1}{A1}{C1}; R32: Permit,{S5 – S6}{R1 – R100}{A2}{C2}

Further, assume that for the above example, all of the subjects are hierar-
chically unrelated (and the same for resources, actions, and conditions). Now, if
we compute the similarity according to [10], the similarity between P1 and P2
is determined by the similarity between rules R11 and R21 (since rules R12 and
R22 are exactly the same). This is equal to 1/3 (|{S1}|/|{S1 – S3}|). On the
other hand, the similarity between P1 and P3 is determined by the similarity
between rules R12 and R32 (since rules R11 and R31 are identical). This is equal
to 1/2 (|{S5}|/|{S5 – S6}|). Clearly, similarity(P1, P3) > similarity(P1, P2).
However, if we consider in terms of common access decisions, for P1 and P2, 101
out of the 103 accesses result in exactly the same decisions, where as for Policies
P1 and Policy P3, only 101 accesses out of 201 result in the same decision. By
the intuitive notion of similarity, the similarity between P1 and P3 should have
been lower than the similarity between P1 and P2, which however, is not the
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case. While this problem exists irrespective of security semantics, this is further
exacerbated when we take into account the nature of security.

Cascading (or effect of operations). As discussed above, the similarity met-
ric of [10] does not take into account any changes that are to be made to the
policies after they have found to be similar. Assuming there is an environment
where collaboration is the critical reason for finding two similar policies, the dis-
tance metric needs to accurately model the security costs of adding or deleting
subjects, resources, actions, or conditions in a particular policy. This leads to a
problem we call “cascading” – i.e., what are the policy-wide effects of adding or
deleting a subject / resource / action / condition, and the security cost associated
with the change. The following example shows that this cost can be significantly
different between two policies, even within the same organizational system.

P1: R11: Permit,{S1, S2}{R1, R2}{A1}{C1}
P1′: R11: Permit,{S0, S1, S2}{R1, R2}{A1}{C1}
P2; R21: Permit,{S1 – S3}{R1 – R3}{A1, A2}{C1}
P2′: R21: Permit,{S0 – S3}{R1 – R3}{A1, A2}{C1}

The only difference between P1 and P1′ is the addition of S0. Similarly, the
only difference between P2 and P2′ is also the addition of S0. However, the cost
of P1 to P1′ is proportional to 2 ∗ 1 ∗ 1 = 2, where as the cost of P2 to P2′ is
proportional to 3 ∗ 2 ∗ 1 = 6. Thus, when an element is added into (or deleted
from) a rule, the security effect is different based on the context such as:

– cardinality – i.e., the number of other elements in the rule (i.e., the total
effect is |S| × |R| × |A| × |C|) (as shown in the above example).

– sensitivity of the element (i.e., adding subject si could be much worse from
the security standpoint than adding subject sj).

– location in the hierarchy – if a hierarchy exists, the location of the element
in the hierarchy makes a difference (an element at a higher level ends up
affecting much more than an element at a lower level)

Security Effect of Element Insertion v/s Deletion. Typically, the secu-
rity impact of element insertion versus that of element deletion is quite different
depending on the context. An element insertion in a permit rule typically broad-
ens the scope of possible accesses (thus making the system state more insecure),
while an element deletion reduces the scope of possible accesses. The situation
is the reverse for deny rules. Thus, an element insertion in a deny rule reduces
the scope of access as against an element deletion which increases the scope of
possible accesses. The net security effect also varies based on what entities are
involved. Thus adding access to a sensitive resource will lead to higher security
cost than adding access to a less sensitive resource.

This cost is further exacerbated in the case when element moves between
rules. For example, if an element moves from a permit to a deny rule or vice



196 J. Vaidya et al.

versa, the net security effect is significantly higher, since there is a direct conflict
between the two policies. To see this, consider the following 3 policies:

P1: R11:Permit,{S1}{R1, R2}{A1}{C1}
P2: R21:Permit,{S1}{R1}{A1}{C1}
P3: R31:Permit,{S1}{R1}{A1}{C1}; R32:Deny,{S1}{R2}{A1}{C1}

Compare P1 with P2. The only difference between rules R11 and R21 is that
resource R2 is dropped. In contrast, when looking at P1 and P3, the difference is
that resource R2 is dropped from the permit rule and actually is in an identical
deny rule. If all elements are atomic (i.e., R2 cannot be further subdivided), both
of these situations are actually exactly the same, since the access decision on R2

with respect to S1, A1, and C1 is exactly the same. However, assume that R1 and
R2 denote two composite resources with overlapping privilege sets (for example,
R1 = {p1, p2, p3}, and R2 = {p3, p4, p5}). In this case, while the situation for
p1, p2, p4, p5 is actually the same, the situation for p3 is actually different. When
P1 is replaced by P2, access by S1 to p3 for action A1 in condition C1 is still
permitted (since R1 is in the permit rule). However, when P1 is replaced by P3,
access by S1 to p3 for action A1 in condition C1 is denied (since R2 is in the deny
rule, and assuming that deny overrides permit). Clearly, the similarity between
P1 and P3 should be lower than the similarity between P1 and P2. However,
[10] does not take this into consideration.

2.3 Composing Multiple Policies into a Coherent Whole

When multiple organizational systems are required to evaluate and agree on a
single global policy in order to enable collaboration, a simple similarity metric
that only gives the distance between two policies is not sufficient. In this case, it
is necessary to evaluate the rules from all of the policies and compose them into
a set that satisfies the requirements for each and every system, such that the
resulting policy is the optimum in terms of security costs and ensuring ability
to access the requested information.

Indeed, when composing the global policy from the local policies, we may
choose to migrate to one of the local policies. Assuming that each side weighs
subjects / resources / actions / conditions differently, and adds / deletes differ-
ently, the cost for moving from one policy to another is not symmetric. There-
fore, when migrating to one of the local policies, the policy that incurs the lowest
migration cost overall should be chosen.

3 Policy Similarity Evaluation

A similarity metric should be able to evaluate the similarity between two policies
based on the access control environment. Essentially, the goal of the metric is
to evaluate how similar two policies are in terms of access decisions (whether
permit or deny). Our similarity evaluation metric is based on change detection,
which is discussed below, followed by a presentation of the actual approach.
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3.1 Change Detection Using XyDiff

Change detection is the procedure of detecting the changes between two docu-
ments. This can be useful for version control tools, merging different documents,
mobile synchronization, etc. While most of the original work in change detection
has focused only on computing differences between flat files or images, there
has been follow on work that looks at change detection for structured data such
as trees and XML documents[16]. Since access control policies can be naturally
expressed in XACML, which is essentially XML, we can use change detection
tools written specifically for XML to identify policy differences.

In our approach, we use a tool called XyDiff [5], developed at INRIA, which
is a very efficient and scalable diff program developed specifically for XML that
provides output very close to optimal in terms of quality (since the actual prob-
lem is NP-hard, it is infeasible to efficiently obtain the optimal solution).XyDiff
takes two XML documents as input and produces a “delta” file that describes the
modifications between two XML documents in terms of a sequence of operations
for transforming one document into another. These operations include insert
node operation and delete node operations. A node is identified by its position
in the XML tree. In the context of XACML policies, a node in the insert/delete
operation can be a rule or an element in the rule. An element can be a subject
element, resource element, action element or condition element. Table 1 depicts
a formal grammar for the delta output provided by XyDiff.

Table 1. Grammar for the delta output

change → operation [rule | element] NodeIndex
operation → Insert | Delete
rule → effect [elemS]+ [elemR]+ [elemA]+ [elemC]∗

effect → Permit | Deny
element → Subject | Resource | Action | Condition

As an example, consider the following two policies along with their associated
XML trees shown in Figure 1.

P1: R11: Permit,{S1}{R1, R2}{A1}{C1}; R12: Deny,{S5}{R5}{A2}{C2}
P2: R21: Permit,{S1, S2}{R1}{A1}{C1}

(a) P1 (b) P2

Fig. 1. XML representation of the two policies
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XyDiff returns the following δ from P1 to P2: 1) Insert S2 NodeIdx1, 2)
Delete R2 NodeIdx2, and 3) Delete R12 NodeIdx3, where NodeIdxi lists the
position in the tree where change i should occur.

3.2 Approach

While XyDiff strives to generate the delta output with minimum number of
operations, it does not take into account the security costs of the operations.
Thus, while it effectively minimizes the transition cost (in terms of operations),
it does not directly take into account the security impact. Therefore, to model
the security impact, we have to assign a security cost to every change detected,
as well as assign security penalties when special cases occur. Once the costs for
all of the changes are computed, the absolute distance between the two policies
can be computed. Note that when computing the distance between two policies
P1 and P2, even though the number of delta operations is the same regardless of
whether we compute it from P1 to P2 or vice versa, the weighted distance between
them can be different based on each organization’s perspective (since they may
weigh different subjects, resources, etc. differently). We ensure that our similarity
measure is symmetric by averaging the costs from both directions. However, it is
still necessary to normalize the measure to enable comparison across policies. The
main question is what factor to normalize by? Ideally, we should be normalizing
by the number of unique access evaluations in the universe – i.e., if we assume
that every policy (either implicitly or explicitly) specifies the access decision for
every combination of subject, resource, actions, and conditions, then the size of
the access control matrix is given by (|S| × |R| × |A| × |C|), and this can be
used as the normalization factor. Unfortunately, this is generally infeasible to
calculate (you cannot explicitly lay out all conditions unless they are explicitly
stated in the policy). Therefore, instead, we simply consider the universe to
be composed of all of the unique subjects, resources, actions, and conditions
enumerated across all of the policies to be evaluated. Note that when counting
conditions, we simply count all unique conditions without worrying about how
they may be related or impact each other (for example, even though one may
consider a condition such as 〈Time in between 6:00 AM - 9:00 AM〉 to be closer
to the condition 〈Time in between 9:00 AM - 12:00 PM〉 versus the condition
〈Time in between 12:00 PM - 6:00 PM〉, we simply assume that the distance is
the same). The alternative would be to create a complete hierarchy of conditions,
along with specifying granularities by which they should be considered (i.e., time
in increments of a second, filesize in increments of 1k, etc). This would simply
make the process more complex. Therefore, for the sake of simplicity, we ignore
this, though it can easily be taken into consideration.

Thus, the procedure to calculate similarity is as follows: First, we simply
enumerate all unique subjects, resources, actions, and conditions across all the
policies to calculate the normalization factor. Then for all pairs of policies, we
call the subprocedure Costs to calculate the cost of transforming from one policy
to the other. The Costs algorithm (given in Algorithm 2) simply uses the XyDiff
algorithm to calculate the delta to transform from one policy to the other. Each
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Algorithm 1. Policy Similarity Evaluation
Require: n Organizations Org1, . . . , Orgn each with respective policy P1, . . . , Pn

Require: wi, Orgi’s set of weights
1: totalDistance ← 0
2: numSubjects ← |Subject(P1) ∪ · · · ∪ Subject(Pn)|
3: numObjects ← |Object(P1) ∪ · · · ∪ Object(Pn)|
4: numActions ← |Actions(P1) ∪ · · · ∪ Actions(Pn)|
5: numConds ← |Conditions(P1) ∪ · · · ∪ Conditions(Pn)|
6: normalizationFactor ← numSubjects×numObjects×numActions×numConds

7: for i = 1 . . . n do
8: for ∀j ∈ [1, n], s.t.j �= i do

9: totalDistance ← totalDistance +
costs(Pi,Pj ,wi)

normalizationFactor

10: end for
11: end for
12: avgdistance ← totaldistance

n(n−1)

13: avgsimilarity ← 1 − avgdistance

Algorithm 2. Costs(Px, Py, w) {Return the cost of transforming from Px to Py

assuming the entity weights w}
Require: Two policies Px, Py

Require: Weights w on all entities
1: tcost ← 0
2: δ ← XyDiff(Px, Py)
3: for each change operation e in δ do
4: Security cost ce ← ωe ∈ w
5: CascadePenalty ← ComputeCascadePenalty(e)
6: MovePenalty ← DetectConflictingMove(e)
7: ce ← ce × (CascadePenalty + MovePenalty)
8: tcost ← tcost + ce
9: end for

10: return tcost

change operation is then weighted as per the organization’s weighting. After this,
the cascade penalty is calculated to compute the total number of accesses that
are impacted by this change. Following this, a move penalty gets added if an
explicit permit has been replaced by an explicit deny or vice versa. The costs
for all change operations are added together to give the total cost. When this
cost is returned, it is then normalized and added to the total distance. Finally,
since n(n − 1) total distances are calculated, we divide by n(n − 1) to give
the average distance. The average similarity is then simply 1 − avgdistance. If
we would only like to compute the similarity of a pair of policies based on one
organization’s perspective, then their distance is directly given by the normalized
transition costs based on that organizations entity weightage, from which the
similarity can be directly computed. There is no need to calculate the average
similarity/distance. Algorithm 1 gives the details.
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Example 1. We now go through an example to illustrate this process. Consider
three organizations Org1, Org2, Org3, each with a policy P1, P2, P3 respectively,
as given below:
P1: R11: Permit,{S1}{R1, R2}{A1}{C1}; R12: Deny,{S5}{R5}{A2}{C2}
P2: R21: Permit,{S1, S2, S4}{R1}{A1}{C1}; R22: Deny,{S5, S6}{R5}{A2}{C2}
P3: R31: Permit,{S2, S3}{R2}{A1}{C1}; R32: Deny,{S5}{R4, R5}{A2}{C2}

Now assume, that the weights each organization places on subjects, resources,
actions, and conditions are as follows: Assume that Org1 places equal impor-
tance on all subjects. Since there are six subjects, the weight of each subject
is 1/6 = 0.167. For Org2 and Org3, assume that while the weights of sub-
jects, S1, S3, S4, S5 and S6 are the same, but for S2, the weight is triple that of
the others. Since the total weight should be one, the corresponding weights for
S1, S3, S4, S5 and S6 is 0.125 and that of S2 is 0.375. All organizations weigh all
resources, actions, and conditions equally. Therefore, since there are only four
resources, the weight of each resource is 1/4 = 0.25. Finally, since there are two
actions and two conditions, therefore the weight of each is 1/2 = 0.5.

Now, consider the similarity computation process in Algorithm 1. The nor-
malizationFactor is 6 × 4 × 2 × 2 = 96. Supposing we want to calculate only
the similarity between P1 and P2 from Org1’s perspective. This can be done as
follows: First δ(P1, P2) is computed, which results in the following four change
operations: e1: delete R2 from R11; e2: insert S2 into R11; e3: insert S4 into
R11; e4: insert S6 into R12. Now, the security cost of S2, S4, and S6 from Org1’s
perspective is 0.16, while the cost of R2 is 0.25. There is no move penalty for
any of the four change operations. The cascade factor for e1 is 1 × 1 × 1 = 1.
Similarly, the effective cascade factor for e2, e3, and e4 is also 1. Therefore, the
total cost for performing the delta is 0.25 + 0.16 + 0.16 + 0.16 = 0.73. Thus,
the normalized distance from Org1’s perspective is 0.73/96 = 0.0076 and the
normalized similarity is 1 − 0.0076 = 0.9924.

Similarly, the similarity between P1 and P3 from Org1’s perspective can
be calculated as follows: δ(P1, P3) consists of the following: e1: delete R1 from
R11; e2: delete S1 from R11; e3: insert S2 into R11; e4: insert S3 into R11; e5:
insert R4 into R12. The security cost of S1, S2, S3 is 0.16 and that of R1 and
R4 is 0.25. The cascade factor for e1, e2, e3, e4, and e5 is 1. Therefore, the total
cost for performing the delta is 0.25 + 0.16 + 0.16 + 0.16 + 0.25 = 0.98. Thus,
the normalized distance from Org1’s perspective is 0.98/96 = 0.0102 and the
normalized similarity is 1 − 0.0102 = 0.9898. Clearly, P1 and P2 are closer than
P1 and P3 from Org1’s perspective.

We can similarly, compute the similarity of P1 and P2 from Org2’s perspec-
tive. All of the calculations remain as above, except for the different weightage
of the subjects (and inversion of the operations – insert becomes delete and
vice versa, which does not affect the similarity computation). Therefore, the
total cost for performing the delta between P1 and P2 from Org2’s perspec-
tive is 0.25 + 0.375 + 0.125 + 0.125 = 0.875. Thus, the normalized distance
from Org2’s perspective is 0.875/96 = 0.0091 and the normalized similarity is
1 − 0.0091 = 0.9908.
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Similarly, the total costs for all of the other deltas can be calculated and are
summarized below: The cost of transitioning between P2 and P3 from Org2’s
perspective: 0.125+0.125+0.25+0.25+0.125+0.125+0.25 = 1.25. Since Org2’s
weights and Org3’s weights are the same, the cost of transitioning between P3

and P2 from Org3’s perspective is also 1.25, giving a normalized distance of
0.0130 and a normalized similarity of 0.9870. Finally, the cost of transitioning
between P3 and P1 from Org3’s perspective is: 0.25+0.125+0.375+0.125+0.25 =
1.125, giving a normalized distance of 0.0117 and a normalized similarity of
0.9883.

Thus, the overall average distance is 0.0076 + 0.0102 + 0.0091 + 0.0130 +
0.0117 + 0.0130 = 0.0108, with an average similarity of 0.9892.

3.3 Metric Property

Note that the avgdistance computed by Algorithm 2 is a metric, since it satisfies
all of the axioms required:

– avgdistance is non-negative, assuming that all of the weights and penalties
are non-negative.

– avgdistance(Pi, Pj) = avgdistance(Pj , Pi), since we take the average of the
cost in both directions.

– avgdistance(Pi, Pi) = 0, since the δ will be 0
– avgdist(Pi, Pj) ≤ avgdist(Pi, Pk) + avgdist(Pk, Pj), as per theorem 1.

Theorem 1. avgdistance(Pi, Pj) ≤ avgdistance(Pi, Pk) + avgdistance(Pk, Pj).

Proof. Assume that the δ between Pi and Pj is given by δij , the δ between Pi

and Pk is given by δik, and the δ between Pk and Pj is given by δkj . Now,
for every operation e ∈ δij , e must be in either δik (Pk is identical to Pj for
the combination of subject, resource, action, and condition enclosed in e) or in
δkj (Pk is identical to Pi for the combination of subject, resource, action, and
condition enclosed in e). Thus, assume we separate δij into δ1ij and δ2ij , where
δ1ij is composed of all operations of δij included in δik, while δ2ij is composed of
all operations of δij included in δkj . Now,

avgdist(Pi, Pj) =
∑

∀e∈δij

costs(e) =
∑

∀e∈δ1
ij

costs(e) +
∑

∀e∈δ2
ij

costs(e) (1)

avgdist(Pi, Pk) =
∑

∀e∈δik

costs(e) =
∑

∀e∈δik∩δ1
ij

costs(e) +
∑

∀e∈δik−δ1
ij

costs(e) (2)

avgdist(Pk, Pj) =
∑

∀e∈δkj

costs(e) =
∑

∀e∈δkj∩δ2
ij

costs(e) +
∑

∀e∈δkj−δ2
ij

costs(e) (3)

From eqns (1), (2) and (3), we can see that avgdist(Pi, Pk) +
avgdist(Pk, Pj) = avgdist(Pi, Pj) +

∑
∀e∈δik−δ1

ij
costs(e) +

∑
∀e∈δkj−δ2

ij
costs(e)

≥ avgdist(Pi, Pj) �	
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Fig. 2. Policy Migration Process

Algorithm 3. Policy Migration
Require: n Organizations Org1, . . . , Orgn each with respective policy P1, . . . , Pn

Require: wi, Orgi’s set of weights
1: ∀i,j∈[1,n],s.t.i�=jcosti,j ← Costs(Pi, Pj , wi)
2: for i = 1 . . . n do
3: TotalCosti ← 0
4: for j = 1 . . . n, j �= i do
5: TotalCosti ← TotalCosti + costj,i
6: end for
7: end for
8: GlobalPolicyIndex ← i, where ∀j, j �= i, TotalCosti ≤ TotalCostj
9: ∀j �= GlobalPolicyIndex, Result ← δ(Pj , PGlobalPolicyIndex)

4 Policy Migration

In this section, we will now look at the problem of policy migration. Given a set of
policies, the key aim of migration is to find the one policy that has the minimum
transition cost across all of the policies. We want to find a global policy in a given
set of n policies such that the cost of migrating all policies in the set to the global
policy is the minimum. In formal notation, given a set of policies {P1, .., Pn} and
the set of policy change operations {δ(Pi, Pj)} (∀1 ≤ i, j ≤ n, i �= j). For any
policy transition operation e, let ce be the corresponding cost. Then the cost of
migrating all policies to Pj is the sum of the cost ce of each operation e in the
set ∪n

i=1,i �=jδ(Pi, Pj). If this cost is minimum, Pj is the required global policy to
which each policy is migrated.

The key idea is similar to the case of similarity evaluation. We again use the
XyDiff tool[5] to detect the changes between the policies. As before, while XyDiff
strives to generate the delta output with minimum number of operations, it does
not take into account the security costs of the operations. Therefore, similar
to earlier, we have to assign a security cost to every change detected, as well
as assign security penalties when special cases occur. Once the costs for all of
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the changes are computed, the policy composition algorithm then computes the
appropriate composite policy with minimum cost. The key question is how this
is done? For this, consider a simple case where we have two policies (P1 and P2)
owned by two different organizations (Org1 and Org2 respectively). Assume that
the only difference between the two policies is that of a single rule – i.e., the two
policies are identical except for the presence of one rule (say, R1) in one of the
policies (say, P1). When migrating to a joint policy, if P2 is chosen to be the joint
policy, then R1 must be deleted from P1. Alternatively, if P1 is chosen to be the
joint policy, then R1 must be added to P2. The critical point is to realize that the
cost of this can be different based on each organization’s perspective. Thus, to
find the optimum policy, it is necessary to compare the cost of deleting R1 from
P1’s perspective versus the cost of adding R2 from P2’s perspective. Whichever
cost is lower guides the choice of the global migration policy. Generalizing this
to multiple changes, the cost of migrating to a policy is given by the sum of the
costs of performing each change (add or delete) from the migrating organization’s
perspective. Generalizing this to multiple organizations and policies, whenever
there are multiple policies, the cost of migrating to a policy is given by the sum
of the costs of performing each change (add or delete) for all of the migrating
organizations. Based on this, the overall procedure is as depicted in Figure 2.
For every pair of policies, the Costs subprocedure (Algorithm 2) is used to get
the transition cost from one policy to the other. Now, the cost of migrating to
each policy is calculated based on the delta from all of the other policies as well
as those organizational weights. Finally, the policy with the minimum transition
cost is chosen as the global migration policy. The corresponding delta gives the
transition path. Algorithm 3 gives the details.

Example 2. We now reexamine Example 1 to illustrate the process of policy
migration. As before, all of the transition costs are calculated. Now, the cost of
migrating to Policy P1 is given by sum of the cost of transitioning from P2 and
P3. Thus, TotalCost1 = 0.875+1.125 = 2. Similarly, TotalCost2 = 0.73+1.25 =
1.98. Finally, TotalCost3 = 0.98 + 1.25 = 2.23. Since TotalCost2 is the lowest,
policy P2 is the optimal policy for migration and δ(P1, P2) and δ(P3, P2) give
the migration paths.

5 Related Work

There exists significant research in the area of policy composition [2–4,13]. How-
ever, little work exists on policy similarity. Koch et al. [9] propose a graph trans-
formation based approach for comparing different policy models. While they
present detailed examples, no specific algorithm has been presented. While this
work remained at a conceptual level, on the other hand, Fisler et al. [7] devel-
oped a software tool for analyzing RBAC policies specified in XACML. This tool
can verify policy properties and analyze differences between versions of policies.
Backes et al. [2] propose an approach for checking refinement of privacy policies,
which can be considered relevant to policy similarity because it checks if one
policy is a subset of another.
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Other relevant related research is in the area of policy conflict detection
[11,14]. More recent work by Agrawal et al. [1] proposes an approach to deter-
mine satisfiability of boolean expressions corresponding to different policies, and
develops a tool to check if a new policy can be added to a set of policies. Maz-
zoleni et al. [12] proposed a policy integration approach, in which they considered
the policy similarity problem, but is limited to identifying policies specified on
the same attribute. The most recent work by Lin et al. [10,18] is the most closely
related work to this paper, which has been discussed in Section 2. This work does
not fully capture the necessary semantics for policy comparison, and also cannot
be directly used for policy migration.

There is also significant work done on policy reconciliation in the context of
secure interoperation in a multiorganizational environment [6,8,11,17]. However,
this is not directly relevant to this paper and also does not consider policy
similarity.

6 Conclusions and Future Work

The primary contribution of this paper is to propose a holistic change detection
approach to policy similarity evaluation and policy migration. Compared to the
state of the art, our approach more comprehensively takes into account different
access control semantics in computing policy similarity. In the future, we plan
to extend our work to also provide a reconciliation strategy for organizations
to transition their local policy to an optimal collaborative policy. We also plan
to take into account more advanced constraints such as static and dynamic
separation of duties.
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Abstract. A major barrier to the adoption of cloud Infrastructure-as-a-
Service (IaaS) is collaboration, where multiple tenants engage in collab-
orative tasks requiring resources to be shared across tenant boundaries.
Currently, cloud IaaS providers focus on multi-tenant isolation, and offer
limited or no cross-tenant access capabilities in their IaaS APIs. In this
paper, we present a novel attribute-based access control (ABAC) model
to enable collaboration between tenants in a cloud IaaS, as well as more
generally. Our approach allows cross-tenant attribute assignment to pro-
vide access to shared resources across tenants. Particularly, our tenant-
trust authorizes a trustee tenant to assign its attributes to users from
a trustor tenant, enabling access to the trustee tenant’s resources. We
designate our multi-tenant attribute-based access control model as MT-
ABAC. Previously, a multi-tenant role-based access control (MT-RBAC)
model has been defined in the literature wherein a trustee tenant can
assign its roles to users from a trustor tenant. We demonstrate that MT-
ABAC can be configured to enforce MT-RBAC thus subsuming it as a
special case.

Keywords: Attribute-based access control · Distributed access control ·
Multi-tenant · Authorization federation · Security

1 Introduction

Cloud computing has dramatically altered the delivery of IT infrastructure and
resources to organizations. Characteristics such as on-demand self service and
resource pooling, provide flexibility and dynamicity at scale for cloud service
consumers [16]. The benefits of cloud computing have been well documented in
the literature and proven in the marketplace.

Cloud service providers (CSPs) segregate the resources and customer’s data
into tenants to protect data privacy and integrity. Tenants are isolated containers
with tenant-specific virtual computing environments. Each tenant corresponds
to an organization, a department of an organization, or an individual who uses
cloud services. In this scenario, each tenant is considered as a cloud customer
with resources whose integrity and privacy must be protected. The focus on
tenant isolation diminishes the scope for collaboration across tenants.
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 206–220, 2015.
DOI: 10.1007/978-3-319-25645-0 14
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At the dawn of cloud systems, the multi-tenancy concern was resource seg-
regation, whereas recent enterprise cloud adoption has raised the issue of multi-
tenancy resource sharing. The drive for multi-tenant collaboration arises from at
least two distinct directions. First, a large organization may utilize multiple ten-
ants for security and reliability, where each tenant can represent a department.
For example, an organization’s financial department processes sensitive financial
data while its marketing department publishes open information to the public,
so they need to be isolated but yet may need controlled collaboration. Second,
distinct enterprises may have collaborative tasks across their corresponding ten-
ants. Current cloud Infrastructure-as-a-service (IaaS) providers such as Amazon
EC2 [1] or OpenStack [2] offer limited or no cross-tenant access [14].

In this paper we present a novel attribute-based access control model to
enable collaboration between tenants in cloud systems. Our scope is limited
to cross-tenant collaboration in a single cloud. This allows us to focus more
on collaborative access control models, and defer consideration of cross-cloud
integration issues.

To motivate the problem, consider the example illustrated in Figure 1, which
depicts an organization with multiple tenants in a cloud service provider. We
use HP as an organization with multiple locations and departments. In such
organizations it is not feasible to locate all data and users into one tenant due to
different security and reliability levels required as well as management barriers.
Also, adding accounts for users across each collaborating tenant is impractical.

Fig. 1. A Multi-Tenant Collaboration
Example

A practical approach for the cloud
service provider is to support collabo-
ration mechanisms across trusted ten-
ants. Users in one tenant can access
resources in another tenant consis-
tent with cross-tenant trust relation-
ships. It is natural for software devel-
opment, testing, and support teams
to collaborate. Software developers
such as Alice can access cross-tenant
resources in Software Testing and
Software Support tenants to per-
form their assigned tasks. Enabling
seamless collaboration across tenants
is essential for the overall organiza-
tion. Similar scenarios arise for cross-
organization collaboration.

Current cloud IaaS providers such
as Amazon or Rackspace provide
intra-tenant access control using vari-
ations of the well-known role-based
access control (RBAC) [6,20] approach. In RBAC access to a resource is
based upon role-membership of the requesting user and resource-permission.
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The notion of multi-tenant RBAC has been proposed to support multi-tenant
collaboration in single cloud [24,26] or multi-cloud [17] environments.

RBAC has been the dominant access-control paradigm for over two decades.
Nevertheless, various limitations of RBAC have been recognized over this period
and increasingly there is a push to move towards attribute-based access con-
trol [9,10,18] in general. ABAC advantages over RBAC specifically in cloud
computing have been discussed in the literature [5]. A user’s access to a resource
in ABAC depends on the relative values of the user and resource attributes. An
attribute is simply a name:value pair. Attributes are used to represent security-
relevant properties of users and resources. We anticipate that CSPs will incor-
porate ABAC features in addition to their currently implemented RBAC.

Our contribution in this paper is to develop a multi-tenant ABAC model with
cross-tenant trust. To our knowledge this is the first work to consider cross-tenant
attribute assignment in ABAC in a multi-tenant context.

The remainder of this paper is organized as follows. Section 2 introduces our
core ABAC model entities and attribute functions in a single tenant model. In
Section 3, our multi-tenant ABAC (MT-ABAC) model is proposed and specified.
In section 4, we review the multi-tenant RBAC model from the literature and
demonstrate how it can be configured in MT-ABAC. Section 5 discusses related
work and section 6 gives our conclusions.

2 ABAC0 Model

In this section, we present our core ABAC model which we designate as ABAC0.
This model is designed to be sufficient for our purpose in developing MT-ABAC
and is not intended to be a comprehensive ABAC model. ABAC has been defined
in various ways in the literature, usually for some specific purpose. Our model
is specifically motivated by the previously defined ABACα model [11] and is
compatible with the recently defined NIST ABAC framework [9].

Core ABAC0 model element sets and functions are illustrated in Figure 2,
which includes three basic components: users (U), objects (O), and actions (A).
Attributes are properties associated with users and objects which we represent
by UATT and OATT respectively. Users and objects are collectively called enti-
ties. Authorization predicates (Auth) express access rules in the system which
evaluate user attributes against object attributes and render a decision to permit
or deny access to the requested resource with respect to the specific action.

Each attribute is a function which takes users or objects as input and returns
a value from the attribute’s range (we use the terms range and scope inter-
changeably). For example, a user attribute function such as Role ∈ UATT maps
u1 ∈ U to a value cloud admin. Depending upon attribute type each attribute
function will return a single value or a set of values. An atomic-valued attribute
will return one value while a set-valued attribute will return a subset of values
within its defined scope.
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Fig. 2. Core ABAC0 Model Struc-
ture.

A user can be a human or non-person
entity, such as an application, making
requests to perform actions on an object.
We consider a user (u ∈ U) to be a per-
son for simplicity. Each user is represented
by a finite set of user attributes (UATT )
such as name, salary, clearance, role, etc.
User attribute function values are specified
by security architects at system creation or
modification time.

Objects are system resources for which
access should be protected such as files,
applications, virtual machines (VMs), etc.
Objects are associated with attribute func-
tions (OATT ) representing resource proper-
ties such as risk level, location, and clas-
sification. At creation or modification time
object attributes might be constrained by the
attributes of creating user in the system, for
example, a new VM object can inherit attributes such as VM owner from corre-
sponding user attributes such as user id. The details of such constraints are not
material for our purpose in this paper, hence we do not explicitly model them.
The approach of ABACα [11] in this regard could be adapted to ABAC0.

Actions are allowed operations in the system. These operations typically
include create, read, update and delete. We use the terms actions and operations
interchangeably. An action is applied to an object by a user. The term action is
more commonly used in ABAC whereas operation is more common in the RBAC
literature. An RBAC permission is defined to be an object, operation pair, which
terminology we also use in this paper.

Actions are evaluated by authorization policy to enable access of a user to
an object. Authorization policy is expressed as a propositional logic predicate
for each action in the system, which takes as input a user and an object. Based
on the values of the user and object attributes the authorization predicate for a
given action returns true or false.

We formalize the above in the following definition, specifying sets, functions
and authorization policy language.

Definition 1. Core ABAC0 is defined by the basic component sets, functions
and authorization policy language given below.

– U and O represent finite sets of existing users and objects respectively.
– A represents a finite set of actions available on objects. Typically A =

{create, read, update, delete}.
– UATT and OATT represent finite sets of user and object attribute functions

respectively.
– For each att in UATT ∪ OATT , Scope(att) represents the attribute’s scope,

a finite set of atomic values.
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– attType : UATT ∪ OATT → {set, atomic}, specifies attributes as set or
atomic valued.

– Each attribute function maps elements in U and O to atomic or set values
as follows.

∀uatt ∈ UATT.uatt : U →
{

Scope(uatt) if attType(uatt) = atomic
2Scope(uatt) if attType(uatt) = set

∀oatt ∈ OATT.oatt : O →
{

Scope(oatt) if attType(oatt) = atomic
2Scope(oatt) if attType(oatt) = set

– For each a ∈ A, Authorizationa(u : U, o : O) is a propositional logic predi-
cate, defined using the following language:

• ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ) | ¬ϕ | ∃x ∈ set.ϕ | ∀x ∈ set.ϕ | set 	 set |
atomic ∈ set | atomic ∇ atomic

• set ::= setuatt(u) | setoatt(o)
• atomic ::= atomicuatt(u) | atomicoatt(o)
• 	 ::= ⊂ | = | ⊆ | ⊆
• ∇ ::= < | = | ≤
• setuatt ∈ {uatt | uatt ∈ UATT ∧ attType(uatt) = set}
• setoatt ∈ {oatt | oatt ∈ OATT ∧ attType(oatt) = set}
• atomicoatt ∈ {oatt | oatt ∈ OATT ∧ attType(oatt) = atomic}
• atomicuatt ∈ {uatt | uatt ∈ UATT ∧ attType(uatt) = atomic}

Core ABAC0 is a simplified version of ABACα [11], suitable for our purpose
in this paper. In particular it eliminates subjects as being distinct from users as
is in ABACα, and simply treats them to be equivalent.

3 Multi-Tenant ABAC0 Model

In this section we build upon ABAC0 to formulate a multi-tenant attribute-based
access control model enabling cross-tenant collaboration which we designate as
MT-ABAC0. The model structure is depicted in Figure 3, adding the tenant (T )
entity in addition to the users and objects of core ABAC0. Tenants are isolated
operation domains leased by cloud service consumers.

Each user and each object is uniquely owned by a single tenant. For this pur-
pose the model requires each user to have a system defined attribute userOwner
which is a many-to-one atomic-valued function from users U to tenants T . Note
that the arrowhead indicate the many side of the function while the absence of
an arrowhead represents the one side. Likewise the model requires each object
to have a system defined attribute objOwner which similarly is a many-to-one
atomic-valued function from objects O to tenants T .

Further, each user attribute and each object attribute is also uniquely owned
by a single tenant, depicted respectively by the many-to-one atomic-valued func-
tions uattOwner and oattOwner in Figure 3. The crucial concept is that each
tenant is responsible for assigning values to attributes that it owns. With iso-
lated tenants, a user can have assigned values only for those attributes owned
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Fig. 3. Multi-Tenant ABAC0 Model Structure.

by the user’s owning tenant. We will see that, with appropriate trust relation-
ship between tenants, users belonging to one tenant can be assigned values for
attributes belonging to a different tenant. In our model for objects, we require
that an object can have assigned values only for those attributes owned by the
object’s owning tenant. It is not possible for an object to be assigned values for
attributes that belong to a tenant that does not own that object, regardless of
tenant trust relationships. In summary cross-tenant attributes can be assigned
to users under appropriate trust relationships but not to objects.

We define trust as a required attribute function trustedTenants mapping
trustor tenant to trustee tenants which we refer to as tenant-trust. This is a
many-to-many set-valued function. We use “�” to represent the tenant-trust
relation where TA � TB signifies that TB ∈ trustedTenants(TA), i.e., TB is
trusted by TA. In such cases we say TA is the trustor tenant and TB the trustee
tenant. We have the following definition for tenant-trust.1

Definition 2. If TA � TB, Tenant TB is authorized to assign values for TB’s
user attributes to Tenant TA’s users. Tenant TA controls tenant-trust existence
while TB controls cross-tenant attribute assignments.

In general � is required to be a reflexive relation but is not required to be
symmetric, anti-symmetric or transitive.

In light of the above definitions, we need to clarify the validity of attributes
for users and objects. User attribute functions now become partial functions,
because valid attribute values for a given user can only be assigned to certain user
attributes. Specifically, a user u can be assigned a value for attribute uatt only if

1 More generally different kinds of trust could be considered as discussed in Section 3.1.
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uattOwner(uatt) = userOwner(u) ∨
uattOwner(uatt) ∈ trustedTenants(userOwner(u))

Similarly object attributes are also partial functions which are defined only for
object attributes which are from the object’s owner tenant. Specifically, an object
o can be assigned a value for attribute oatt only if

oattOwner(oatt) = objOwner(o)
In other words trust enables cross-tenant assignment of user attributes but does
not impact object attributes.

Finally, each authorization predicate must verify the compatibility of user
and object attribute ownership. For this reason, any user attribute uatt or object
attribute oatt used in a action’s authorization predicate with respect to a par-
ticular user u and object o, must satisfy the following condition.

uattOwner(uatt(u)) = oattOwner(oatt(o)) ∨
oattOwner(oatt(o)) ∈ trustedTenants(uattOwner(uatt(u)))

The above considerations lead to the following definition.

Definition 3. Multi-tenant ABAC0 is defined by the following enhancement and
modifications to core ABAC0.

– U , O, and A are defined as in core ABAC0.
– T represents a finite set of existing tenants.
– UATT , OATT , Scope, and attType are defined as in core ABAC0.
– userOwner : (u : U) → T , required attribute function mapping user u to

owner tenant t.
– objOwner : (o : O) → T , required attribute function mapping object o to

owner tenant t.
– MATT = {uattOwner, oattOwner}, required meta-attribute functions.

• uattOwner : (uatt : UATT ) → T , meta attribute function, mapping
user attribute uatt to attribute owner tenant t.

• oattOwner : (oatt : OATT ) → T , meta attribute function, mapping
object attribute oatt to attribute owner tenant t.

– trustedTenants : (t : T ) → 2T , required attribute function, mapping tenant
t to powerset of trusted T , called tenant-trust, written as � where t1 � t2
iff t2 ∈ trustedTenants(t1) (i.e., trustor tenant t1 trusts trustee tenant t2).
Trustee tenant t2 can assign its attribute values uattt2 to users ut1 from
trustor tenant t1 where t2 ∈ trustedTenants(userOwner(u)).

– Each attribute function uatt ∈ UATT is modified to be a partial function.

∀uatt ∈ UATT.uatt : U ↪→
{

Scope(uatt) if attType(uatt) = atomic
2Scope(uatt) if attType(uatt) = set

uatt(u : U) is defined only if (uattOwner(uatt) = userOwner(u)) ∨
(uattOwner(uatt) ∈ trustedTenants(userOwner(u))).

– Each attribute function oatt ∈ OATT is modified to be a partial function.

∀oatt ∈ OATT.oatt : O ↪→
{

Scope(oatt) if attType(oatt) = atomic
2Scope(oatt) if attType(oatt) = set

OATT (o : O) is defined only if oattOwner(oatt) = objOwner(o).
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– ∀a ∈ A, Authorizationa(u : U, o : O) is a propositional logic predicate (using
language defined in ABAC0), with the additional required condition that
uattOwner(uatt(u)) = oattOwner(oatt(o)) ∨ oattOwner(oatt(o)) ∈ trusted-
Tenants(uattOwner(uatt(u))) which must always be included in conjunction
with all other requirements.

3.1 Concept of Tenant Trust

In a tenant trust relation, in general there are two issues: (i) who controls trust
relation’s existence, and (ii) who has the authority to issue cross-tenant assign-
ments. Together these characterize the trust type. In this paper, for simplicity,
we adopted a specific definition of trust where trustee tenant is authorized to
assign its attribute values to trustor tenant’s user attributes which is analogous
to the type-β tenant-trust of [24–26]. In this section, we briefly discuss trust
types analogous to the type-α and type-γ tenant-trust types of [24–26].

In type-α trust, the trustor is responsible to establish the trust relation-
ship with the trustee, as well as assigns the trustor’s attributes to the trustee’s
users. We use �α to show this trust type where TA �α TB indicates that
TB ∈ trustedTenants(TA). With this notation, type-α tenant-trust is defined
as follows.

Definition 4. If TA �α TB, Tenant TA is authorized to assign values for TA’s
user attributes to Tenant TB’s users. Tenant TA controls tenant-trust existence
and cross-tenant attribute assignments.

In type-α trust, valid attribute values for given users are from owner tenants
and trustor tenants. A user is assigned a value for an attribute uatt only if

uattOwner(uatt) = userOwner(u) ∨
userOwner(u) ∈ trustedTenants(uattOwner(uatt))

Each authorization predicate in type-α must satisfy following user and object
attribute ownership condition.

uattOwner(uatt(u)) = oattOwner(oatt(o))∨
uattOwner(uatt(u)) ∈ trustedTenants(oattOwner(oatt(o)))

In type-γ trust, by trusting a tenant, trustor authorizes trustee to assign its
attribute values to trustee tenant user attributes.We use �γ to represent type-γ
tenant-trust where TA �γ TB signifies that TB ∈ trustedTenants(TA). We define
type-γ trust as follows.

Definition 5. If TA �γ TB, Tenant TB is authorized to assign values for TA’s
user attributes to Tenant TB’s users. Tenant TA controls tenant-trust existence
while TB controls cross-tenant attribute assignments.

Type-γ user attribute assignment and authorization predicate conditions are
similar to above mentioned conditions in type-α. Type-γ differs from type-α, in
which participating tenant has cross-tenant attribute assignment authority.

In relation to figure 1, when software development (SD) tenant trusts software
testing (ST) tenant with type-β, it authorizes ST tenant to assign its attribute
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values to software developers such as Alice to access resources in ST tenant. In
type-α and Type-γ tenant-trust enables ST users such as John to access resources
in SD tenant, where in type-α SD tenant assigns its attributes to John and in
type-γ ST tenant assigns SD attribute values to its user John.

4 MT-ABAC0 Model Covering MT-RBAC0

In this section we first give a definition of multi-tenant RBAC (MT-RBAC0)
adapted from various slightly different but related models given in [24–26]. We
then show how MT-RBAC0 can be configured in MT-ABAC0.

4.1 Multi-Tenant RBAC0 Model

MT-RBAC0 model element sets and relations are illustrated in Figure 4, show-
ing the six components: tenants (T ), users (U), roles (R), operations (OPS),
objects (OBS), and permissions (PRMS). A user is an individual which is
associated with a single tenant via UO relation. We recognize role as a job func-
tion associated with a single tenant while a tenant has multiple roles. Objects
are tenant resources in the system (each object has a single owner tenant) which
are coupled with operations. In RBAC, permissions are operation, object pairs
indicating operations on objects.

MT-RBAC0 model is defined in terms of users, roles, and objects owned by
tenants. These ownership relations are many-to-one representing tenant owner-
ship which is depicted as user-ownership (UO), role-ownership (RO), and object-
ownership (OO) in figure 4.

As core to RBAC, user assignment (UA) and permission assignment (PA)
relations enable assignment of users and permissions to roles. Tenant-trust (TT )

Fig. 4. Multi-Tenant RBAC0 Model Structure.
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identifies a many-to-many trust relation between tenants. Similar to MT-ABAC0

we use � to show trust between two tenants such TA and TB as TA � TB means
trustor tenant TA trusts, trustee tenant TB . With this specification, we define
tenant-trust relation as follows.

Definition 6. If TA �TB, Tenant TB is authorized to assign Tenant TA’s users
to TB’s roles.

In such trust relation, trusting a tenant enables trustee to assign trustor’s users
to its set of roles. This type of trust is intuitive in a sense that resource owners
control access to their shared resources while user domains control their users’
access by granted authority over trust relation continuation.

With existence of trust between tenants, user assignment is defined as many-
to-many user relation mapping users to roles, if and only if users and roles
owned by the same tenant or user owner tenant trusts object owner tenant. We
express user assignment condition as owner user(u) = owner role(r) (where
owner user returns owner tenant of user u and owner role returns role r owner
tenant) or owner user(u) � owner role(r). Permission assignment is a many-
to-many relation which maps permissions to roles requiring both elements owned
by the same tenant.

Each user is assigned to one or many roles within their resident ten-
ants or trusted tenants. The function assigned user roles returns the roles
assigned to a user. The permissions available to a user, are permissions
assigned to roles (permissions available to a role are expressed by function
assigned permissions) that are available to a user which are given by func-
tion authorized user permissions. Function authorized user permissions desig-
nates set of permissions available to each user in the system. We formally define
MT-RBAC0 as follows.

Definition 7. Multi-tenant RBAC0.

– TENANTS, USERS, ROLES, OPS, and OBS (tenants, users, roles,
operations, and objects respectively).

– t ∈ TENANTS, u ∈ USERS, r ∈ ROLES, op ∈ OPS, and ob ∈ OBS.
– PRMS = OPS × OBS , the set of permissions.2

– UO ⊆ USERS×TENANTS, a many-to-one user-to-tenant owner relation.
– RO ⊆ ROLES×TENANTS, a many-to-one role-to-tenant owner relation.
– OO ⊆ OBS × TENANTS, a many-to-one object-to-tenant owner relation.
– owner user : (u : USERS) → TENANTS, the mapping of user u into its

owner tenant. Formally: owner user(u) = t where (u, t) ∈ UO.
– owner role : (r : ROLE) → TENANTS, the mapping of role r into its

owner tenant. Formally: owner role(r) = t where (r, t) ∈ RO.
– owner object : (ob : OBS) → TENANTS, the mapping of object ob into its

owner tenant. Formally: owner object(ob) = t where (o, t) ∈ OO.

2 This is slightly different from NIST standard model where PRMS = 2(OPS×OBS),
and more appropriate for our purpose.
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– TT ⊆ TENANTS × TENANTS, is a many-to-many reflexive relation on
TENANTS called tenant trust relation, written as � where t1 � t2 (trustor
tenant t1 trusts trustee tenant t2) only if all users of t1 can be assigned to
roles of t2.

– trustee tenants : (t : TENANTS) → 2TENANTS, the mapping of ten-
ant t into a set of trusted tenants. Formally: trustee tenant(t) = {t′ ∈
TENANTS | t � t′}.

– UA ⊆ USERS×ROLES, a many-to-many mapping user-to-role assignment
relation requiring that (u, r) ∈ UA ⇒ owner user(u) = owner role(r) ∨
owner user(u) � owner role(r).

– PA ⊆ PRMS × ROLES, a many-to-many mapping permission-to-role
assignment relation requiring that ((op, ob), r) ∈ PA ⇒ owner object(ob) =
owner role(r).

– assigned roles : (op : OPS, ob : OBS) → 2ROLES, the mapping of object
operation pair (op, ob) into a set of roles. Formally: assigned roles(op, ob) =
{r ∈ ROLES | ((op, ob), r) ∈ PA}.

– assigned user roles : (u : USERS) → 2ROLES, the mapping of user u
into a set of roles. Formally: assigned user roles(u) = {r ∈ ROLES |
(u, r) ∈ UA}.

– assigned permissions : (r : ROLES) → 2PRMS, the mapping of role r into
a set of permissions. Formally: assigned permissions(r) = {p ∈ PRMS |
(p, r) ∈ PA}.

– authorized user permissions : (u : USER) → 2PRMS, the mapping of user
u into a set of permissions. authorized user permissions(u) =⋃
r∈assigned user roles(u)

assigned permissions(r).

4.2 Configuring MT-RBAC0 to MT-ABAC0

We show configuring MT-RBAC0 in MT-ABAC0 by adding role as an attribute
function. Once roles become attributes, the consideration that roles are col-
lections of permissions no longer applies since they are merely attribute val-
ues. Consequently, we must define appropriate object attributes and authoriza-
tion predicates in MT-ABAC0. To represent user assigned roles in MT-RBAC0

(assigned user roles function), we use a set-valued attribute function userRole.
However users may be assigned roles owned by distinct tenants, for this purpose
we identified user attributes as userRolej where j represents tenants.

In order to represent permission assignment, we define attribute function
objRole as a set-valued attribute function. Attribute objRole captures roles
related to each object in RBAC (permissions assigned to roles represented by
assigned roles function). In RBAC each object is owned by a tenant and cou-
pled with a set of operations, for this reason we designate object attributes as
objRolei,k where i is an operation in RBAC and k is owner tenant. The scope of
both userRole and objRole attributes are the same as defined set of role names
ROLES. We represent role ownership (RO) in RBAC by atomic-valued meta-
attributes, uattOwner and oattOwner respectively mapping user and object
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role attributes (userRole and objRole) to owner tenants. In the presence of
roles attributes, authorization policy evaluates user and object respective role
name attributes to be equal as well as user and object attributes ownership.

The summary of above is formalized as follows.

Definition 8. A given MT-RBAC0 instance is configured in MT-ABAC0 as
follows.

– U = USERS, O = OBS, A = OPS = {a1, ..., an} where n = |A|, and
T = TENANTS = {t1, ..., tm} where m = |T |.

– UATT = {userRolej | j = 1, ..., |T |}.
– OATT = {objRolei,k | i = 1, ..., |A|, k = 1, ..., |T |}.
– userOwner : (u : U) → T , required attribute function, mapping user u to

owner tenant t. Formally: userOwner(u) = owner user(u).
– objOwner : (o : O) → T , required attribute function, mapping object o to

owner tenant t. Formally: objOwner(o) = owner object(o).
– userRolej : (u : U) → 2ROLES where tj ∈ T , attribute function, mapping

user u to powerset of ROLES. Formally: userRolej(u) = {r ∈ ROLES |
r ∈ assigned user roles(u) ∧ owner role(r) = tj}.

– objRolei,k : (o : O) → 2ROLES where ai ∈ A and tk ∈ T , attribute func-
tion, mapping object o for operation ai to powerset of ROLES. Formally:
objRolei,k(o) = {r ∈ ROLES | r ∈ assigned roles(ai, o) ∧ owner role(r) =
tk}.

– MATT = {uattOwner, oattOwner}.
• uattOwner : (userRolej : UATT ) → T , meta attribute function, map-

ping user role attribute userRolej to attribute owner tenant tj. Formally:
uattOwner(userRolej) = tj.

• oattOwner : (objRolei,k : OATT ) → T , meta attribute function, map-
ping object role attribute objRolei,k for operation ai to attribute owner
tenant tk. Formally: oattOwner(objRolei,k) = tk.

– trustedTenants : (t : T ) → 2T , attribute function, mapping tenant t to
powerset of trusted T . Formally: trustedTenants(t) = trustee tenants(t).

– Authorizationi (u : U, o : O) =
∨

k=1,...,|T |
[userRolek(u) ∩ objRolei,k(o) =

∅ ∧ (tk = userOwner(u) ∨ tk ∈ trustedTenants(userOwner(u))].

5 Related Work

Several attribute-based access control models and systems have been proposed.
In [9,10], ABAC and its functional components, implementation, and opera-
tion considerations are illustrated. This serves as an overview of components
rather than considering modeling issues. Jin et al. [11] proposed ABACα model,
designed to cover simple forms of DAC [21], MAC [19], and RBAC [6,20]. While
this provides a realistic family of attribute-based models within single tenant
environments, it does not consider collaboration and multi-tenancy issues. Smari
et al. [22] investigated trust and privacy in collaborative management systems.
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They extend attributes associated with objects and subjects to address trust
and privacy issues. Although collaboration is considered, multi-tenancy has not
been addressed.

Other approaches extending RBAC with combination of attributes and roles
have been studied widely. Kuhn et al. [13] presented a spectrum of possible
methods to combine RBAC and ABAC, specifically a policy-enhanced RBAC
to accommodate attribute based features. However, the attributes are limited to
user-centered attributes. In RABAC [12], authors integrate roles and attributes
using a role centric approach. Parameterized role [3], object sensitive role [7],
and attributed role [27] have also been proposed in this context.

Recent work on multi-tenancy collaboration such as CTTM [24] and OSAC-
DT [25] extends RBAC to inherit its benefits towards collaboration. CTTM
enables trust between tenants in a single cloud and OSAC-DT which is closely
related to CTTM further extends it towards compatibility with OpenStack [2]
platform. Tang [23] specifies a multi-tenant attribute based access control
enabling cross-tenant access for subjects. Our model differs in structure and
cross-tenant access where attribute value assignment enables such collaboration.

In order to benefit the RBAC capabilities in multiple organizations, prior
extensions such as ROBAC [29] and GB-RBAC [15] have been proposed. ROBAC
manages authorization in multiple organizations which is comparable to multi-
tenancy, however organization collaboration is not considered in this context. In
GB-RBAC collaboration is allowed among groups, yet it lacks the administration
management since the administrator can not manage users in the groups. Role-
based delegation [4,8,28] models have been proposed to permit collaboration,
however chained delegation relations are not dynamic and flexible enough to be
deployed in multi-tenant collaborative environments since trust relations in such
collaborations are dynamic.

6 Conclusion

We presented a multi-tenant attribute-based access control model for resource
sharing, where collaboration is enabled through cross-tenant attribute value
assignments supported by the cloud service provider. In our proposed approach,
we identified trust as a required attribute for tenants where trustee tenants are
authorized to assign attribute values to trustor tenants’ user attributes. In our
approach, we eliminated attribute conflicts in presence of attribute assignments
by isolating attributes to tenants. We believe our approach is applicable to other
types of trust beyond presented trust types. A potential future work is to extend
this model to address various types of trust. Another future research is extend-
ing our model to multi-cloud environments. Finally, our vision is to develop an
implementation within current cloud platforms.

Acknowledgement. This research is supported by NSF Grant CNS-1111925 and
CNS-1423481.
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Abstract. Over the last several years, sophisticated access control mod-
els have been proposed to take into account different dimensions such as
time, space, role, context, attribute, etc. These enable specification of
fine grained access control policies that can better express evolving orga-
nizational needs. However, there is no comprehensive solution that can
uniformly specify, evaluate, maintain and analyze this multitude of poli-
cies in a consistent fashion. In this paper, we show that specifying and
enforcing access control policies of multiple granularities and dimensions
can be transformed into the problem of storing and querying data at
multiple granularities and dimensions. Specifically, we develop a unified
schema to represent several standard access control policies and show
how they can be automatically evaluated. We have implemented the sys-
tem in Oracle, and evaluated its scalability.

1 Introduction

Owing to the growing application needs and changing environment, access con-
trol research has evolved significantly in the past few decades. This has led to
broadening of the set of access control parameters by including novel attributes
based on mobility, context, location, time, role, etc. Several models and research
prototypes exist today that embody these concepts. In some cases, the more com-
plicated models expand upon and enhance earlier ones, while others represent a
rethinking of the fundamental manner in which access control should be done.
These different access control models often attempt to enhance the expressive
power by enabling specification of fine grained access control policies [20]. As
a result, organizations can more precisely specify any high level abstract pol-
icy they wish to enforce or accurately comply with regulations such as HIPAA,
FERPA, SOX and PCI. While it seems desirable to have highly granular access
control from this perspective, the cost of managing, evaluating and maintaining
the same could be prohibitively high. In a recent panel discussion [19], one of
the specific questions discussed was “at what cost should we strive for a perfect,
fine-grained policy?”
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Fig. 1. System Architecture

Despite the number of highly granular access control models that exist in
research literature, very few have found deployment in real life. This is due to
the difficulty in specifying, enforcing and maintaining policies at different gran-
ularities in a usable fashion. Currently, access control is implemented through a
careful examination of the stated policies and then choosing the most suitable
tool available and configuring it manually. Suppose, certain resources are pro-
tected under one policy (say, Discretionary Access Control) and other resources
are protected under a different policy (say, Role Based Access Control), one
either has to have two separate security systems in place, or need to transform
one policy into the other so that it can be enforced with the chosen tool. More-
over, it is also possible that some resources are protected under more than one
security policy. Additionally, there could be certain policies that are specific to
an organization and cannot be specified using a standard model. Such policies
are often implemented as application code. All these factors make specification,
management and enforcement of security policies difficult.

Ferraiolo and Atluri [11] first discussed the need for a meta-model. Follow-
ing this, Barker [4] proposed an access control meta-model along with a logic
language for describing the same. While Barker’s work is a step in the direc-
tion of resolving the issue of multitude of access control models, it is limited to
addressing the problem of specification alone. It does not take into account the
policy evaluation and enforcement aspects. Flexibility is a key desirable feature,
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wherein applications can pick and choose the access control policy and its level
of granularity, as necessary for different situations, users and resources. There-
fore, what is needed is a comprehensive and flexible modeling methodology that
allows for specification and evaluation at different granularity and dimensions.
In this paper, we propose a comprehensive solution that provides all of these
features.

Our key insight is that, while the multiple granularities, models and applica-
tion domains make effective access control complex when viewed from a security
perspective, the challenge of multi-resolution data has been effectively tackled by
the database community, through the notion of a data warehouse. In this paper,
we map the access control problem to the data warehouse environment, thus
enabling specification and evaluation of flexible access control policies through
data warehousing technology. Specifically, we demonstrate this with a commer-
cially available data warehouse product, namely, Oracle. In particular, we show
how Discretionary Access Control (DAC) [14,17], Mandatory Access Control
(MAC) [7], Role Based Access Control (RBAC) [13] and Temporal Role Based
Access Control (TRBAC) [5] policies can be specified in a unified manner and
evaluated using the query processing ability of Oracle. Since Oracle is a gen-
eral purpose software product that was not developed with modeling of access
control systems in mind, we expect to face some performance issues. Hence, an
extensive performance analysis using simulated data sets has been done, and we
present these results in the paper.

The rest of the paper is organized as follows. Section 2 presents the overall
data warehouse framework for specifying and enforcing access control policies.
Section 3 shows how DAC, MAC, RBAC and TRBAC policies can be speci-
fied in this framework, while Section 4 describes how access requests are evalu-
ated. Section 5 discusses our implementation in Oracle and presents the results
of experimental evaluation. Related work is surveyed in Section 6 and finally,
Section 7 concludes the paper, providing directions towards future research.

2 Framework

Figure 1 depicts the overall architecture of our proposed access control system
that embeds data warehousing technology. The different policy bases at the
bottom represent the different types of access control policies of each unit within
an organization. These may be multi-granular and multi-dimensional in nature.
While the specification module allows these policies to be specified in the data
warehouse, the maintenance module ensures that changes to the local policies be
reflected at the warehouse level. When users submit access requests, these are
verified by the evaluation module. The administrator interface is meant to help
the administrator specify and visualize the policies as well as visualize the results
of making changes in the policies. Before going into the detailed discussion of how
multi-granular and multi-dimensional access control policies can be specified and
evaluated using data warehouse technologies, we first present a brief overview of
data warehouses.
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Fig. 2. Unified Schema for representing DAC, MAC and RBAC Access Control Policies

A data warehouse is a collection of integrated, subject-oriented databases,
where each unit of data is relevant to some moment in time [9]. It is a repository
of information that was extracted, integrated, summarized, and stored from mul-
tiple sources in order to support analysis queries of users. To facilitate complex
analysis and visualization, a data warehouse employs a multi-dimensional model
to capture all the dimensions of interest. These dimensions together uniquely
form a set of numeric measures that are the objects of analysis. They may also
be hierarchical.

The typical data models employed to specify a schema using which multi-
dimensional data is stored are: star schema, snowflake schema, and the fact
constellation schema. While star schema is the simplest among the three, the
other two schemas are normalized, meaning that data can be stored in a less
redundant fashion. Under the star schema, the database consists of a single
fact table and one table for each dimension. The dimension tables are usu-
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Fig. 3. Schema for representing Temporal RBAC Policies

ally de-normalized to provide symmetric access to the fact table. On the other
hand, in snowflake schema, dimension tables are normalized, especially since
de-normalization introduces scope for inconsistency, which will have a negative
impact on the system integrity. It may, however, be noted that many of the data
warehouse extensions/toolkits of commercial database management systems like
Oracle, support multi-dimensional visualization of data from star schema only
with a well-defined fact table. In order to meet both these requirements, in this
paper, we have developed a suitable schema for supporting various access control
models, which we discuss in the following section.

3 Policy Specification

Since DAC, MAC and RBAC along with its temporal extension TRBAC are
some of the basic access control models, in this section, we present a unified
schema for specifying policies supported by these models. Note that while our
discussion below is limited to the four above-mentioned models only, in principle,
more complex access control systems such as GTRBAC [16], STARBAC [2], etc.,
can also be modeled in the same framework.

Figures 2 and 3 present the unified schema that we have developed to specify
DAC, MAC, RBAC and TRBAC policies in a consistent and integrated fashion.
For the sake of clarity, the TRBAC scheme is shown separately in Figure 3. To
enable unification of the four access control models, we use a common set of
notations. For example, we use the term user to denote a subject (DAC and
MAC terminology) as well as a user (RBAC and TRBAC terminology). Simi-
larly, in RBAC and TRBAC, permissions are defined as operations on objects,
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whereas DAC and MAC use the term right to denote possible modes of accessing
an object. In the unified models shown in Figures 2 and 3, we represent permis-
sions as rights on objects. Thus, for representing the DAC policies, the relations
User, Object, Right and Right assignment are used. Of these, the relation Right
contains all the different generic rights supported by a particular system. The
relation Right assignment acts as the fact table, while the other three relations
serve as the dimension tables in the data warehousing terminology.

MAC models like the Bell-LaPadula model make use of security levels and
categories for both users and objects. Each user belongs to only one security
level and so does each object. However, each user or each object could belong to
multiple categories. Owing to this, the security level is directly captured in the
relations User and Object, whereas their categories are captured in the relations
User category and Object category, respectively. In order to ensure normalization
for avoiding potential inconsistencies, the descriptions for security levels and
categories are stored in the relations Security level and Category, respectively. It
may be noted that, had we wanted to use strictly a star schema design, we would
have de-normalized the User and Object relations to store the categories in them
as well. Since, in MAC, there is no direct assignment of rights on objects to users,
rather, they get appropriate read and write rights by virtue of their respective
security levels and categories, there is no explicit fact table for modeling MAC.

The rest of the relations in the schema shown in Figure 2 are used to
specify RBAC policies. The proposed schema supports the basic RBAC model
(RBAC0 as mentioned in [23]) as well as role hierarchy and various types
of constraints (respectively RBAC1 and RBAC2 of [23]). The primary rela-
tions used to model RBAC0 are User, Role, Permission, User role assignment,
Permission role Assignment and Permission object assignment. Of these, the
User role assignment and Permission role assignment relations respectively
capture the user assignment (UA) and permission assignment (PA) relations
of RBAC, while Permission object assignment maintains the definitions of the
various permissions in terms of the operations (rights) on different objects. Each
user can belong to one or more roles and each role can have one or more permis-
sions associated with it. A single permission can represent one or more operations
on objects. The fact tables relevant for RBAC, thus, are User role assignment,
Permission role assignment and Permission object assignment. The role hierar-
chy is maintained in the relation named Role hierarchy.

RBAC supports a variety of constraints, which can be used to specify different
types of access control policies. One of the most important policies supported by
RBAC is Separation of Duty (SoD), which is enforced through mutually exclusive
roles. Our schema captures the SoD requirements in the relation named Mutu-
ally exclusive roles. At a more granular level, SoD can be provided by specifying
mutually exclusive permissions in the Mutually exclusive permissions relation.
RBAC also supports pre-requisite constraints and cardinality constraints [23].
Four types of cardinality constraints are supported in the proposed schema.
These are: maximum number of users that can be assigned to each role (column
Role user cardinality value of the Role relation), maximum number of permis-
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sions that can be assigned to each role (column Role permission cardinality value
of the Role relation), maximum number of roles that can be assigned to each user
(column User role cardinality value of the User relation) and maximum number
of roles that can be assigned to each permission (column Permission role cardina
lity value of the Permission relation). Finally, the relations Prerequisite user role
and Prerequisite permission role are used to define policies on pre-requisite roles
for users and permissions, respectively.

TRBAC [5], an extension of the RBAC model, imposes temporal constraints
on each role by restricting the set of time intervals during which the role can
be enabled. It is specified in a Role Enabling Base (REB) and is expressed as
〈[begin, end], P 〉, where P is a periodic expression denoting an infinite set of
periodic time intervals, while begin and end are date expressions respectively
imposing lower and upper bounds on the set of time intervals represented by P .
Each periodic expression is written in terms of a set of Calendars. Enabling or
disabling of a role r is captured using an event expression of the form enable r or
disable r along with the corresponding periodic expression. In Figure 3, the rela-
tion REB role assignment serves as the fact table linking each role with its REB
entry. The various periodic events are specified in the relation Role enabling base,
which when joined with the other relations shown in the figure, returns the var-
ious time intervals during which any given role is enabled or disabled and the
corresponding priority.

As in the case of DAC and MAC, for RBAC and TRBAC also, we normal-
ize the dimension tables to ensure protection against possible inconsistencies
that might otherwise creep in, if a pure star schema design is used. To sup-
port multi-granular access control, we use a relation named Object hierarchy for
representing hierarchy among objects like file-folder-drive-disk, etc.

4 Policy Evaluation

Once the policies have been appropriately specified, the next related issue is
that of policy evaluation and aggregation. Some examples of how different access
control requests using DAC, RBAC and TRBAC can be expressed in the form
of queries are given below. Similar queries can be framed for MAC as well.

First, consider the case where the administrator wants to know the com-
plete set of DAC privileges (rights) various users have on different objects. The
corresponding query can be written as follows:

Query: Q1

SELECT DISTINCT ra.user_id, user_name, ra.object_id, object_name,

ra.right_id, right_name

FROM user, object, right, right_assignment ra

WHERE ra.user_id = user.user_id AND ra.object_id = object.object_id

AND ra.right_id = right.right_id;

If a particular user (denoted by #u) requests an access that exercises a
particular right (denoted by #r) on a particular object (denoted by #o), the
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following query needs to be executed. If it returns zero, the access is denied;
otherwise, the access is granted.

Query: Q2

SELECT COUNT(*) FROM right_assignment ra WHERE ra.user_id = #u

AND ra.object_id = #o AND ra.right_id = #r;

Next, we consider RBAC related queries. In an RBAC system employing the
schema shown in Figure 2, consider that the administrator wants to retrieve the
complete role hierarchy of the organization. The following query can be used to
get the result.

Query: Q3

WITH recursive_rh (rk, rpk) AS

(SELECT role_id, role_parent_id FROM role_hierarchy

WHERE role_parent_id IS NULL UNION ALL

SELECT rh.role_id, rh.role_parent_id

FROM role_hierarchy rh, recursive_rh rrh

WHERE rh.role_parent_id = rrh.rk)

SELECT DISTINCT rk, rpk FROM recursive_rh ORDER BY rk;

In the above recursive query Q3, the complete role hierarchy is traversed
using the relation role hierarchy, which is joined with itself through the attributes
role id and role parent id. While this form of the query returns the role hierarchy
in terms of the ids of various roles and their parents, these ids could be further
joined with the role relation to obtain the corresponding role names as well.

For enforcing access control in RBAC, consider the situation in which a user
#u requests an access that exercises a right #r on an object #o (and hence the
corresponding permission is r on o), the following query needs to be executed.
If it returns zero, the access is denied; otherwise, the access is granted.

Query: Q4

WITH recursive_rh (rk, rpk) AS

(SELECT rh.role_id, rh.role_parent_id

FROM role_hierarchy rh, user_role_assignment ura

WHERE rh.role_parent_id = ura.role_id

AND ura.user_id = #u UNION ALL

SELECT rh.role_id, rh.role_parent_id

FROM role_hierarchy rh, recursive_rh rrh

WHERE rh.role_parent_id = rrh.rk)

SELECT COUNT(*) FROM (SELECT poa.object_id, poa.right_id

FROM permission_object_assignment poa

WHERE poa.permission_id IN (SELECT pra.permission_id

FROM permission_role_assignment pra WHERE pra.role_id IN

(SELECT rk from recursive_rh UNION

SELECT role_id FROM user_role_assignment WHERE user_id = #u)))

WHERE object_id = #o AND right_id = #r;

Similar to the way the role hierarchy has been used recursively in the above
two queries to find all the roles assigned to a user (directly or indirectly), the
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object hierarchy can also be used to determine the objects that can be accessed
by a user (either the user directly has the requisite right on the object or has the
requisite right on another object higher up in the object hierarchy). This can be
done using the query shown below, thus depicting the ability of the proposed
framework to handle multi-granular access control policies.

Query: Q5

WITH recursive_oh (ok, opk) AS

(SELECT object_id, object_parent_id FROM object_hierarchy

WHERE object_parent_id IS NULL UNION ALL

SELECT oh.object_id,oh.object_parent_id FROM object_hierarchy oh,

recursive_oh roh WHERE oh.object_parent_id = roh.ok)

SELECT COUNT(*) FROM

(SELECT object_id, right_id FROM permission_object_assignment poa,

recursive_oh roh WHERE roh.ok = poa.object_id AND permission_id IN

(SELECT permission_id FROM permission_role_assignment pra,

user_role_assignment ura

WHERE ura.user_id = #u AND ura.role_id = pra.role_id))

WHERE object_id = #o AND right_id = #r;

In contrast to the above five queries, for TRBAC queries, we not only need to
check whether the user has the requisite rights on an object, the current time of
access should also satisfy the conditions during which the corresponding roles are
enabled. If we denote the current system time as SYSDATE, the corresponding
year, month, week, day and hour can be easily extracted by using built-in func-
tions in the database management system providing data warehousing support
including Oracle.

Query: Q6

Augment Query Q4 with:

AND EXISTS

(SELECT * FROM recursive_rh rrh, reb_role_assignment rra,

role_enabling_base reb WHERE rrh.rk = rra.role_id

AND rra.role_enabling_id = reb.role_enabling_id

AND (SYSDATE BETWEEN start_year AND end_year))

AND (SELECT EXTRACT (MONTH FROM SYSDATE) FROM dual) IN

(SELECT month_id FROM recursive_rh rrh, reb_role_assignment rra,

month WHERE rrh.rk = rra.role_id

AND rra.role_enabling_id = month.role_enabling_id)

AND (SELECT TO_CHAR(SYSDATE, ’W’) FROM dual) IN

(SELECT week_id FROM recursive_rh rrh, reb_role_assignment rra,

week WHERE rrh.rk = rra.role_id

AND rra.role_enabling_id = week.role_enabling_id)

AND (SELECT TO_CHAR(SYSDATE, ’D’) FROM dual) IN

(SELECT day_id FROM recursive_rh rrh, reb_role_assignment rra,

day WHERE rrh.rk = rra.role_id

AND rra.role_enabling_id = day.role_enabling_id)

AND EXISTS

(SELECT * FROM recursive_rh rrh, reb_role_assignment rra,
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role_enabling_base reb, hour WHERE rrh.rk = rra.role_id

AND rra.role_enabling_id = reb.role_enabling_id

AND rra.role_enabling_id = hour.role_enabling_id

AND TO_CHAR(SYSDATE,’HH24’)>= hour_id

AND TO_CHAR(SYSDATE,’HH24’)<=(hour_id+duration));

The above query first finds the roles associated with the given user either
directly or through the role hierarchy and then checks if any of those roles allows
the requested access, and finally, whether those roles are currently enabled as
specified in the REB (relation Role enabling base and its other associated rela-
tions in Figure 3). It effectively utilizes Query Q4 as a sub-query and additionally
checks for the role enabling conditions.

Table 1. Data Set Details showing the Number of Rows in various Relations

Data Sets #Users #Objects #Rights #Roles #Permissions #Perm Role #User Role
Assignments Assignments

Data Set 1 100 100 5 10 150 150 200
Data Set 2 500 500 10 50 750 750 1000
Data Set 3 500 1000 10 50 1500 1500 1000
Data Set 4 1000 5000 10 100 7500 7500 2000
Data Set 5 5000 25000 10 100 40000 40000 10000

As mentioned before, the goal of this work is to provide a unified framework
for specifying and enforcing different kinds of access control policies. Assume
that the different units of an organization have already implemented DAC, MAC,
RBAC or TRBAC policies independently. The data needs to be suitably popu-
lated from the various units in the schema shown in Figures 2 and 3. If a unified
access is to be given when a user #u makes an access request in a certain mode
(i.e., he wants to exercise right #r) on a certain object (say #o), the individual
policies will be evaluated. The final decision whether to actually provide the
requested access or not will depend on a meta policy about how to combine the
existing ones. For example, if the meta policy is that a user would be given access
if at least one of DAC, MAC, RBAC and TRBAC allows him access, then we
have to evaluate the DAC query Q2, the RBAC query Q4 or Q5 depending on
the granularity of access, the TRBAC query Q6 and the applicable MAC query
(not shown here for brevity, can be built in a similar manner). If any of the
queries allows access, the request will be granted. Implementation of other pol-
icy combination mechanisms like “Allow access if all the policies allow access”,
“Allow access if majority of the policies allow access”, etc., would be a simple
extension of this concept.

While we have primarily focused on evaluation of administrative and user
queries, other queries to check for violation of Separation of Duty, Cardinality
constraint and Pre-requisite constraint can be easily developed on the schema
of Figures 2 and 3.
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5 Experimental Evaluation

In this section, we present implementation details along with results of experi-
ments on the scalability of the proposed approach. The schemas shown in Figures
2 and 3 of Section 3 were instantiated as database tables in Oracle 12c on a 3.10
GHz Intel i5 machine having 4 GB RAM running 64 bit Windows 7 operating
system. Oracle Analytic Workspace Manager is used for defining, maintaining
and visualizing the data cubes.

In Table 1, we show the details of five synthetic data sets with different
feature sizes that we have created. From Data Set 1 to Data Set 5, sizes of
various relations in terms of their number of rows increase. In the table, we show
the main relations that affect the query execution time. The other relations are
populated based on the data included in the ones shown here. In Data Set 1,
the relations User, Object and Right have respectively 100, 100 and 5 rows. The
number of rows in the relation Right assignment is such that each subject at least
has one right on an object and each object is accessible to at least one subject in
some mode. It may be noted that, the number of possible generic rights has not
been varied to a large extent across the data sets since there is usually a limited
number of such operations possible in a system. For example, for access control
in an operating system, the possible rights could be read, write, own, execute
and append, while there would be rights like select, insert, update, delete, grant
and revoke in a database system, irrespective of the number of users.

In order to emulate real-world situations, we have considered up to four
levels in the role hierarchy for each of the data sets. Further, every role has been
considered to be included in at least one role hierarchy. The choice for the sizes
of the various parameters shown in Table 1 was made as follows. The number
of users was varied from 100 to 5000 representing small to large organizations.
The number of permissions was chosen in a way that every object was included
in at least one permission for access in one of the valid number of ways specified
in the form of rights. The number of roles was kept at 10% of the number of
users for Data sets 1 to 4. For Data set 5 (with 5000 users), we have the same
number of roles as Data set 4 (with 1000 users) since, beyond a certain point,
the number of roles in an organization does not increase even if there are more
number of users. On an average, two roles were considered per user for all the
data sets. However, while assigning roles to users, it was ensured that every user
belongs to at least one role and some of the users are assigned to more than two
roles. Assignment of permissions to roles was also done in a similar manner.

For every data set, each of the six queries Q1-Q6 was executed 30 times with
different inputs (Queries 1 and 3 do not need any input parameter, but were still
run for 30 times to average out the effect of other system processes). Table 2
shows the results of executing the six queries. The average execution time in
seconds over the 30 samples is reported in the table. It is observed that, even for a
50 fold increase in the number of users, 250 fold increase in the number of objects
and more than 250 fold increase in the number of permissions, the execution
time of the queries does not increase significantly. Query 1, which is the most
expensive, returning all the rights of all the users on all the objects, also runs in
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Table 2. Query Execution Time (seconds)

Data Sets Query 1 Query 2 Query 3 Query 4 Query 5 Query 6

Data Set 1 0.05 0.01 0.01 0.02 0.03 0.06
Data Set 2 0.09 0.01 0.01 0.02 0.03 0.06
Data Set 3 0.13 0.02 0.01 0.03 0.03 0.07
Data Set 4 0.23 0.03 0.02 0.05 0.04 0.08
Data Set 5 0.47 0.04 0.03 0.06 0.05 0.09

less than 0.5 second for data set 5. The actual enforcement queries (Q2, Q4, Q5
and Q6) run in less than 0.15 second. It may be noted that, Q2 (DAC enforcement
query) takes less time than Q4 and Q5 (RBAC enforcement query) as well as
TRBAC enforcement query Q6, since the RBAC and TRBAC queries consider
the entire role/object hierarchy to determine whether the requested access may
be given to the user or not. On the other hand, DAC directly checks for the
availability of the requisite right in a single relation. It may, thus, be concluded
that the proposed framework is quite scalable from small to large organizations
employing DAC, RBAC or TRBAC. We have not separately reported the results
for MAC, which are also of the same order as the other two.

6 Related Work

To cater to today’s new applications and environments, traditional access con-
trol models have been incorporated with a number of attributes including those
based on the mobility, context, location, time, role, etc., resulting in a spectrum
of access control models including: Discretionary Access Control (DAC) [14,17],
Mandatory Access Control (MAC) [7], Role Based Access Control (RBAC) [13],
and temporal, geospatial and mobile data authorization models. In addition,
several variants of RBAC have been proposed that extend RBAC in tempo-
ral, spatial and spatio-temporal dimensions, thereby providing access control at
higher levels of granularity. These include temporal RBAC (e.g., TRBAC [5]
and GTRBAC [16]), spatial RBAC (e.g., Geo-RBAC [8] and LRBAC [21]) and
spatio-temporal RBAC models [1,26] (e.g., STRBAC [22] and STARBAC [2]).

There are attempts to develop unified policy languages to specify different
types of policies. For example, the OASIS standard eXtensible Access Control
Markup Language (XACML) [24] and the Ponder policy specification language
[10] provide partial solution to meet general policy specification needs. XACML
is both a policy language as well as an access control decision request/response
language (both encoded in XML). The former describes general access control
requirements, while the latter can be used to address queries like whether a given
action should be allowed, and also to interpret the result. XACML suffers from
the drawback that its Policy Decision Point (PDP) is stateless, thus limiting
the kind of policies that can be meaningfully specified and enforced. On the
other hand, Ponder is a declarative object oriented language used to specify
security and management policies for distributed object systems. Policies are
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expressed in its specification language and enforcement is done by mapping into
the chosen access control mechanisms. This, effectively, separates a policy from
its implementation.

In response to questions raised by Ferraiolo and Atluri in a panel discussion at
SACMAT 2008 [11] about an access control meta model to unify the large variety
of existing access control policies, Barker proposed a meta model for access con-
trol and demonstrated that several access control models can be instantiated as
special cases of this meta model [4]. Barker advocates that existing access control
models are essentially based on a small number of primitive notions, and states
that the degree of overlap among existing access control models is significant.
He demonstrates that multiple access control models can be expressed in terms
of these primitive notions, and states that new access control models can be
developed by simple combination of the access control primitives in novel ways.
Several competing proposals have been made for defining a general, declarative
framework that can specify a variety of access control policies. This includes the
RT family of role-trust models [18], FAF language [15] and SecPAL [6]. Beyond
providing a unifying model as these proposals do, the policy machine [12] also
presents a meta-model for specifying generic access control policies, and offers a
mechanism for implementing the unifying model.

However, all these attempts are limited only to the specification of differ-
ent types of access control and to some extent their enforcement. They do not
address the issue of multiple granularities as well as configuring, implementing
and maintaining these variety of policies that are highly granular and multi
dimensional in nature. Note that while there has been some work in securing the
data in a warehouse [3,25], our paper employs the warehouse to maintain the
access control data.

7 Conclusions and Future Work

In this paper, we have presented a novel approach towards unifying different
access control models using data warehousing design concepts and shown how
off-the-shelf data analysis tools like Oracle Analytic Workspace Manager can be
used to specify and evaluate various access control policies. In particular, we have
proposed a common schema for representing DAC, MAC, RBAC and TRBAC
policies. Separation of duty, pre-requisite constraints and cardinality constraints
are also supported by the proposed model. Relations for capturing role and object
hierarchies included in the schema facilitate specification of policies at different
levels of granularity. Experimental results show that the proposed schema when
implemented in a commercial database environment like Oracle running even on
standard desktop PCs is quite scalable for a 50 fold increase in the number of
users and 250 fold increase in the number of objects. Our proposed framework
is extensible to other access control models and can easily support policies with
multiple granularities and dimensions. It also provides other features required
of an access control system like policy combination and policy analysis. In the
future, we plan to develop these extensions.
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Abstract. Keyword search on encrypted data enables one to search
keyword ciphertexts without compromising keyword security. We further
investigate this problem and propose a novel variant, dubbed certificate-
less keyword search on encrypted data (CLKS). CLKS not only supports
keyword search on encrypted data, but also brings promising features due
to the certificateless cryptography. In contrast to the certificated-based
keyword search, CLKS requires no validation on the trustworthy of the
public key before encrypting keywords; in contrast to the identity-based
keyword search, CLKS prevents the key issuer (e.g., key generator cen-
ter) from penetrating any information on keyword ciphertexts by lever-
aging the capability of accessing all data users’ (partial) private keys.
Specifically, we rigorously define the syntax and security definitions for
CLKS, and present the construction that is provably secure in the stan-
dard model under the Decisional Linear assumption. We implemented
the proposed CLKS scheme and evaluated its performance. To the best
of our knowledge, this is the first attempt to integrate certificateless
cryptography with keyword search on encrypted data.

Keywords: Keyword search · Certificateless cryptography

1 Introduction

Cloud computing enables data owners to outsource their data to the cloud at
affordable price and access/share the outsourced data with other users. The out-
sourcing, however, separates the data ownership and its (physical) storage own-
ership and brings the security concern [18,20,33] such as data privacy. Though
it is natural for data owners to encrypt their own data before outsourcing,
the encryption operation makes some useful functions, such as keyword search,
become infeasible. Fortunately, the subject of keyword search on encrypted data
has been extensively studied and a large number of solutions have been pro-
posed. Roughly speaking, keyword search on encrypted data can be divided into
three categories according to the key distribution/generation setting: symmetric
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key based keyword search, certificate-based keyword search1 and identity-based
(or attribute-based) keyword search2. Comparing with symmetric key based key-
word search, the last two kinds of keyword search are more flexible and promising
because they do not require any key sharing between the data owner and the
target user who the data will be shared with.

For certificate-based keyword search, when the data owner wants to share
the data with a target user, he will encrypt the data with the target user’s
public key. Note that before this operation, the data owner needs to validate the
certificate which binds the target user’s identity and the corresponding public
key in order to assure that the public key is really associated with the target
user, which needs to rely on some trust/certificate management system such
as PKI. In addition, the data owner might need to conduct costly certificate
chain verification (until finding a certificate authority he trusts) for certificate
validation. In order to mitigate this downside, identity-based (attribute-based)
keyword search [28,31,34] is introduced where the public key is exactly the
same as the target user’s identity (attributes) and therefore there is no need
to validate the correctness of the public key. Despite its benefits, identity-based
(attribute-based) keyword search suffers from the key escrow problem that the
key generation authority has full access to all data users’ private keys.

Contribution. We propose certificateless keyword search on encrypted data
(CLKS), which preserves the merits of identity-based keyword search (e.g., no
certificate management and validation) without inherent key escrow problem. To
be specific, we follow the basic principle underlying the certificateless cryptog-
raphy: treating the user’s identity as part of the public key and letting the user’
private key consisting of two components, one generated by the key generation
center and the other chosen by the user. Thus, CLKS allows users to put less
trust on the key generation center. We summarize our contribution as follows
and compare three kinds of keyword search solutions in Table 1:

– We first integrate the certificateless cryptography with keyword search on
encrypted data. We formalize the notion for CLKS, and rigorously define
its security properties.

– We present a CLKS scheme that is provably secure in the standard model
under the Decisional Linear assumption. Similar to other certificateless prim-
itives, the proposed certificateless keyword search scheme leverages the iden-
tity as user’s partial public key and eliminates the key escrow problem. We
implemented the proposed scheme and conducted the performance evalua-
tion on real data to show its feasibility.

1 Certificate-based keyword search means keyword search on encrypted data in tradi-
tional public key setting, where users generate the public/private by themselves and
the certificate is used to bind the user identity and the public key.

2 Attribute-based keyword search can be treated as the generalized version of identity-
based keyword search. We put them together because of the same key generation
manner.
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Table 1. Comparison of three kinds of keyword search primitives that are involved
with the public/private keys.

Type of keyword search Who generates user’s private key Required trust Model/Infrastructure
Certificate-based User Certificate binds the user identity and public key

Identity(attribute)-based Third party authority Fully trusted third party authority
Certificateless (our paper) User and third party authority Honest-but-curious third party authority

Organization. Section 2 describes the related work. Section 3 presents crypto-
graphic assumptions and primitives. Section 4 presents the system and threat
model, and Section 5 formalizes the syntax and security definitions. Section 6
presents the main construction Section 7 presents the performance.

2 Related Work

We briefly review the relevant techniques on keyword search on encrypted data,
which are separated into three categories as follows:

Symmetric Key Based Keyword Search. It allows the data owner to
encrypt keywords and the corresponding data, and outsource keyword cipher-
texts and data ciphertexts to the remote server. Only the data owner, or someone
with the symmetric key, can generate the search token in order to ask the cloud
to conduct search on keyword ciphertexts. [27] proposed the first symmetric
key based keyword search scheme. Many variants, e.g., [8,11,12,14,17,22,23]
have been proposed with various features, for example, improved security [14],
dynamic support [22], UC security [23], verifiability [11] and multi-user shar-
ing [21]. The main advantage of the symmetric key based keyword search is its
high efficiency since it does not involve any costly public key operations (e.g.
exponentiation, pairing). In the data sharing scenario, however, the technique
requires the data owner and the target user (or remote server) sharing some
common secret [21].

Certificate-Based Keyword Search. For certificate-based keyword search,
the data owner encrypts keywords and data with the public key of the target
user, so that the target user can use his own private key to generate the search
token and then conduct the search on keyword ciphertexts. Many solutions, e.g.,
[1,4,5,7,9,10,26,29,30], have been proposed after [6] initiated the first study.
While certificate-based keyword search is more flexible compared with symmetric
key based keyword search, it requires the data owner validating the target user’s
public key before encrypting keywords. The trust and certificate management
infrastructure, e.g., PKI, has been introduced to facilitate the validation process.

Identity-Based (attribute-based) Keyword Search. For identity-based
(attribute- based) keyword search, the data owner encrypts the keyword and
data with the target user’s identity (or attributes in attribute-based keyword
search). The target user, after acquiring the private key from the key generation
authority, can generate the search token and then conduct search on keyword
ciphertexts. [31] presented the first identity-based keyword search scheme and
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[28,34] independently introduced the attribute-based keyword search. In this
setting, data owner does not need to validate whether the used public key is
associated with the target user or not, since the public key is exactly the same
as the user’s identity or attributes. While it mitigates the certificate manage-
ment issue, it indeed introduces another issue – key escrow problem, since the
key generation authority can access all users’ private keys.

3 Preliminaries

Let x
R← X denote selecting an element x from the set X uniformly at random.

Let I be the user universe where each user is associated to a unique identity id.
Let (e, p, g,G,GT ) ← BMP(1�) be the function that generates a bilinear map

e : G × G → GT by taking as input a security parameter �, such that p is
an �-bit prime, G and GT are two cyclic groups of prime order p and g is a
random generator of group G. The bilinear map e should satisfy (i) ∀a, b ∈ Zp,
e(ga, gb) = e(g, g)ab; (ii) e(g, g) �= 1 and (iii) e can be computed efficiently.

We assume that the identities are distinct n-bit numbers. Let H1 : {0, 1}n →
G, H2 : {0, 1}∗ → Z

∗
p, where H1 is a function mapping id to an element in G

(defined as in section 6) and H2 is modeled as a collision-resistant hash function.
Decisional Linear (DL) Assumption Let (e, p, g,G,GT ) ← BMP(1�). Given
g, h, f,Q

R← G and gr2 , hr1 , where r1, r2
R← Z

∗
p are unknown, the DL assump-

tion states that any probabilistic polynomial-time algorithm A can determine
whether Q = fr1+r2 or not at most with a negligible advantage with respect to
the security parameter �, where the “advantage” is defined as

AdvDL(�) = |Pr[A(g, h, f, gr2 , hr1 , fr1+r2) = 1] − Pr[A(g, h, f, gr2 , hr1 , Q) = 1]|.

4 System and Threat Model

System Model. We consider the system model as shown in Figure 1, consist-
ing of three entities: the key generation center KGC issuing partial private keys
to data users, the cloud server providing storage and search services, and data
users (i.e., data owner and target users). The data owner encrypts his data (data
files and keywords that index the data files) with the target user’s public key
(note that the target user can be either himself or the user who the data will be
shared with). The data owner outsources to the cloud keyword ciphertexts, data
file ciphertexts and the mappings between the keyword ciphertexts and data file
ciphertexts (given a keyword ciphertext, the mapping can be used to find the
relevant data file ciphertexts). With his own private key, the target user can gen-
erate a search token, which is sent to the cloud, so that the cloud can conduct
keyword search on the keyword ciphertexts and return the corresponding data
file ciphertexts. Since the data files can be encrypted by with hybrid encryption
with various public key encryption, e.g., certificateless encryption [2] and cer-
tificateless proxy re-encryption [32], for simplicity, in the rest of paper we only
consider how to encrypt keywords in the certificateless setting. We also assume
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that there exists a proper authentication protocol allowing KGC to authenticate
the users’ identities when issuing the partial private keys.

Application Example. For illustrating the model visually, we consider the
application of sharing Electronic Health Record (EHRs): The health service
vendor (e.g., software infrastructure) acts as key generation center, and patients
can be the data owners of EHRs, and will share EHRs with professionals for
treatment purpose. When the user (either patients or professionals) registers the
system, he will be assigned with a partial private key with respect to his unique
identity and can generate the private/public key. To share EHRs with a profes-
sional, the patient can use that professional’s public key (requiring no validation
of the public key) to encrypt the indexed keywords (e.g. age, name, DOB etc.)
and store the encrypted keywords and the associated encrypted EHRs in the
storage system. The professional then generates the tokens based on keywords
together with his own private key, and asks the storage system to return the
encrypted EHRs having matched keywords. We can see that the benefit is that
the vendor cannot leverage its knowledge on partial private keys to learn extra
information from the encrypted index, and the patients require no validation on
public key.

CloudKey generationcenter Data owner
Targetuser

keyword ciphertexts

data file ciphertexts

search token

Share publicparameters for systementities and issue partial private keys for users

Fig. 1. The system model where the certificateless keyword search scheme can operate.

Threat Model. Similar to the threat model in the certificateless setting, we
assume that the KGC cannot be fully trusted. That is, the KGC follows the
protocol specification honestly but might attempt to use the information he
obtained to penetrate more information. We assume that the users might be
malicious, meaning that the users might pretend to be some target user and
distribute the fake public key (i.e., the public key is different from that published
by the target user) on behalf of the target user in order to learn information
about the target user’s ciphertexts. We assume that the cloud server is honest-
but-curious, meaning that it will honestly execute the pre-defined protocols, but
attempt to learn as much private information as possible. In addition, we assume
that the KGC and the users cannot collude together.

5 Definitions

Definition 1. A CLKS scheme is associated with the keyword space M and
the identity space I and defined by seven algorithms as follows:
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– Setup(1�): This algorithm, run by the KGC, takes as input a security parame-
ter � and returns the system parameter param and master key mk. The param
is made publicly known and mk is kept private. For simplicity, we implicitly
assume the following algorithms take param as part of inputs.

– Gen-Partial-Private-Key(mk, id): This algorithm, run by the KGC, takes as
input mk and the user id, and generates a partial private key pskid, which is
sent to the user via a secure channel.

– Gen-Private-Key(pskid): This algorithm, run by the user, takes as input pskid,
and returns a complete private key skid, which is kept private.

– Gen-Public-Key(skid, pskid): This algorithm, run by the user, takes as input
the skid and pskid, and returns a public key pkid.

– Enc(pkid, id, kw): This algorithm, run by any user, takes as input the the
target user’s public key pkid, identity id and the keyword kw, and returns a
ciphertext cph.

– Gen-Token(skid, kw): This algorithm, run by the user id, takes as input the
skid and the keyword kw, and returns a search token token.

– Match(token, cph): This algorithm, run by the cloud server (or entities hold-
ing keyword ciphertexts), takes as input the search token token and a cipher-
text cph, and returns 1 if token and cph correspond to the same identity id
and the same keyword. Otherwise, it returns 0.

Correctness. We say that a CLKS scheme is correct if, for all id ∈ I,
mk output by the Setup, skid output by the Gen-Private-Key, and pkid out-
put by the Gen-Public-Key, the following always holds: ∀ kw ∈ M, cph ←
Enc(pkid, id, kw), token ← Gen-Token(skid, kw) : 1 ← Match(token, cph)

Security. Intuitively, the adversary model against CLKS consists of two kinds of
adversaries similar to that of certificateless encryptions [13]: Type 1 adversary
models the outsider, who is allowed to manipulate users’ public key without
accessing the KGC’s master key mk; and Type 2 adversary models the insider,
who can acquire the KGC’s master key mk without manipulating users’ public
keys.

To be specific, we capture the two security requirements against the two
adversaries via the following games. Let A be Type 1 adversary (Game A) or
Type 2 adversary (Game B). The security games are played between A and the
challenger, who maintains two lists:

– TokenList: It stores the tuple [id, kw], meaning that the search token with
respect to the keyword kw for the user id has been queried by A.

– UserInfoList: It stores the tuple [id, pskid, skid, pkid, P1, P2,P3], where the
boolean value P1 = 1 means that A has acquired pskid and P1 = 0 not, the
boolean value P2 = 1 means that A has acquired skid and P2 = 0 not, and
the boolean value P3 = 1 means that A has replaced id’s public key pkid and
P3 = 0 not.
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Game A

Setup: The challenger runs Setup(1�) to initialize the system parameter param
and the master key mk. The challenger sends param to A, and sets two lists
TokenList and UserInfoList empty.

Phase 1: A is allowed to query the following oracles in polynomial many times.
We use the bracket [·] to indicate the input to the oracle from A.

– Gen-Partial-Private-Key[id]: Given the user id from A, if pskid in UserInfoList
is not null, then the challenger returns pskid. Otherwise, the challenger
runs Gen-Partial-Private-Key(mk, id) to get pskid, adds [id, pskid, �, �, 1, 0, 0]
to UserInfoList where � means null, and returns pskid to A.

– Gen-Private-Key[id]: Given the user id from A, the oracle works as follows:
• If skid in UserInfoList is not null, then the challenger retrieves skid.
• Else if pskid in UserInfoList is not null, then the challenger retrieves pskid,

runs skid ←Gen-Private-Key(pskid) and adds skid to the UserInfoList.
• Otherwise, the challenger runspskid ←Gen-Partial-Private-Key(mk, id) and
skid ←Gen-Private-Key(pskid), and adds (id, pskid, skid) to UserInfoList.

The challenger updates P1 = 1 and P2 = 1 in UserInfoList with respect to id
and returns skid to A.

– Gen-Public-Key[id]: Given the user id from A, the oracle works as follows:
• If pkid in UserInfoList is not null, then the challenger retrieves pkid.
• Else if skid in UserInfoList is not null, then retrieve skid, the challenger

runs pkid ←Gen-Public-Key(skid) and adds pkid to the UserInfoList with
respect to id.

• Else if pskid in UserInfoList is not null , then the challenger retrieves pskid,
runs skid ←Gen-Private-Key(pskid) and pkid ←Gen-Public-Key(skid, pskid)
and adds skid, pkid to the UserInfoList with respect to id.

• Otherwise, the challenger runs pskid ← Gen-Partial-Private-Key(mk, id),
skid ←Gen-Private-Key(pskid) and pkid ←Gen-Public-Key(skid, pskid), and
adds (id, pskid, skid, pkid, 0, 0, 0) to UserInfoList.

The challenger returns pkid to A.
– Replace-Public-Key[id, pk] : Given the user id and the replaced public key pk

from A (assume that pkid has been generated before), the challenger updates
pkid in UserInfoList with pk, and sets P3 = 1 with respect to id.

– Gen-Token[id, kw] : Given the user id and the keyword kw from A, the chal-
lenger retrieves skid from UserInfoList, runs Gen-Token(skid, kw) to get token.
The challenger adds [id, kw] to the TokenList and returns token to A.

Challenge Phase: A presents two keywords of the same length, kw0 and kw1,
and the user id∗. Let [id∗, pskid∗ , skid∗ , pkid∗ , P1, P2, P3] be the tuple stored in
UserInfoList, we require that

– P1 = 0 and P2 = 0, meaning that pskid∗ and skid∗ are not acquired by A.
– Both (id∗, kw0) and (id∗, kw1) are not stored in TokenList.



246 Q. Zheng et al.

Note that P3 can be either 0 or 1, meaning that id∗’s public key can be replaced
or not. The challenger picks λ

R← {0, 1}, runs cph∗ ← Enc(pkid∗ , id∗, kwλ), and
returns cph∗ to A.

Phase 2: A continues to query the oracles as in Phase 1, while following these
restrictions:

– A cannot query Gen-Partial-Private-Key[id∗] or Gen-Private-Key[id∗].
– A cannot query Gen-Token[id∗, kw0] or Gen-Token[id∗, kw1].

Guess: A outputs a bit λ∗. We say A wins the game if λ∗ = λ.

Definition 2. A CLKS scheme achieves ciphertext indistinguishability against
Type 1 adversary if for any probabilistic polynomial time algorithm A, it wins
the above security game with a negligible advantage at most with respect to the
security parameter �, where the “advantage” is defined as |Pr[λ = λ∗] − 1

2 |.

Game B

Setup: The challenger runs Setup(1�) to initialize the system parameter param
and the master key mk. The challenger sends param and mk to A, and initializes
the empty lists TokenList and UserInfoList.

Phase 1: A is allowed to query the following oracles in polynomial many times.
We use the bracket [·] to indicate the input to the oracle from A.

– Gen-Partial-Private-Key[id]: Given the user id from A, if pskid in UserInfoList
is not null, then the challenger returns pskid. Otherwise, the challenger
runs Gen-Partial-Private-Key(mk, id) to get pskid, adds [id, pskid, �, �, 1, 0, 0]
to UserInfoList where � means null, and returns pskid to A.

– Gen-Private-Key[id]: Given the user id from A, the oracle works as follows:
• If skid in UserInfoList is not null with respect to id, then retrieve skid.
• Otherwise, run pskid ← Gen-Partial-Private-Key(mk, id) and skid ←Gen-
Private-Key(pskid), and add (id, pskid, skid) to UserInfoList.

The challenger updates P1 = 1 and P2 = 1 in UserInfoList with respect to id
and returns pskid, skid to A.

– Gen-Public-Key[id]: Given the user id from A, the oracle works as follows:
• If pkid in UserInfoList is not null with respect to id, then retrieve pkid.
• Else, the challenger runs pskid ← Gen-Partial-Private-Key(mk, id),
skid ←Gen-Private-Key(pskid) and pkid ← Gen-Public-Key(skid, pskid), and
add (id, pskid, skid, pkid) to UserInfoList.

The challenger updates P1 = 1 in UserInfoList and returns pskid, pkid to A.
– Gen-Token[id, kw] : Given the user id and the keyword kw from A, the chal-

lenger retrieves skid from UserInfoList, runs Gen-Token(skid, kw) to get token.
The challenger adds [id, kw] to the TokenList and returns token to A.

Challenge Phase: A presents two keywords of the same length, kw0 and kw1,
and the user id∗. Let [id∗, pskid∗ , skid∗ , pkid∗ , P1, P2, P3] be the tuple stored in
UserInfoList, we require that
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– P2 = 0, meaning that skid∗ is not acquired by A.
– Both (id∗, kw0) and (id∗, kw1) are not stored in TokenList.

The challenger picks λ
R← {0, 1}, runs cph∗ ← Enc(pkid∗ , id∗, kwλ), and returns

cph∗ to A.

Phase 2: A continues to query the oracles as in Phase 1, while following the
below restrictions:

– A cannot query Gen-Private-Key[id∗].
– A cannot query Gen-Token[id∗, kw0] or Gen-Token[id∗, kw1].

Guess: A outputs a bit λ∗. We say A wins the game if λ∗ = λ.

Definition 3. A CLKS scheme achieves ciphertext indistinguishability against
Type 2 adversary if for any probabilistic polynomial time algorithm A, it wins
the above security game with a negligible advantage at most with respect to the
security parameter �, where the “advantage” is defined as |Pr[λ = λ∗] − 1

2 |.

6 Main construction

High Level Idea. Motivated by the DL assumption, we encrypt the keyword
kw as follows: Let a, b, c be the private key (a, b, c

R← Z
∗
p) and ga, gb, gc be the

public key, and set the keyword ciphertext as

W1 = gcr1 , W2 = ga(r1+r2)gbH2(kw)r1 , W3 = gr2 ,

where H2 : {0, 1}∗ → Z
∗
p is a collision resistant hash function. According to the

DL assumption, the keyword kw is perfectly hidden. Note that gb in the term
gbH2(kw)r1 is to facilitate the security proof.

If one knows the term gac, then he can generate the search token with respect
to any keyword kw′: Select s

R← Z
∗
p (s is to preserve the secrecy of gac) and set

V1 = gacs, V2 = gcs, V3 = gasgbH2(kw
′)s.

If kw = kw′, then the respective keyword ciphertext and search token should
match:

e(W2, V2) = e(W1, V3)e(W3, V1).

This is because

e(W2, V2) = e(g, g)acs(r1+r2)e(g, g)bcsr1H2(kw),

e(W1, V3) = e(g, g)acsr1e(g, g)bcsr1H2(kw
′)

e(W3, V1) = e(g, g)acsr2 ,

On the other hand, we observe that the adversary can only acquire
either KGC’s master key (w.r.t Type 1 adversary) or the user’s secret values
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(w.r.t Type 2 adversary with replaced public key), rather than both. This obser-
vation motivates use to expand the private key setting, such that KGC has the
private key a, b, c and public key ga, gb, gc, and the user has the private key
a′, c′ (a′, c′ R← Z

∗
p) and public key ga′

, gc′
. Therefore, the keyword ciphertext is

constructed:

W1 = g(c+c′)r1 , W2 = g(a+a′)(r1+r2)gbH2(kw)r1 , W3 = gr2 , W4 = H1(id)r2 ,

where H1 is a hash function converting id to an element of G. Noting that we
implicitly let the user id as part of the public key (cf. W4), so that the ciphertext
is associated to the user id. To this end, only knowing either a, c or a′, c′ cannot
infer any information about the ciphertext.

In order to generate search token, the user id, holding a′, c′, needs to acquire
the term gac. We achieve it based on the idea how the secret key was distributed
in attribute-based encryption, where user id is treated as an attribute. That is,
KGC generates the partial private key for the user id as

sk1 = gt1 and sk2 = gacH1(id)t1 where t1
R← Z

∗
p.

Our Construction We now show the CLKS construction as follows.

– Setup(1�): The KGC runs (e, p, g,G,GT ) ← BMP(1�) to generate the bilin-
ear map e : G × G → GT . Let a, b, c

R← Z
∗
p so that it has ga, gb, gc.

Let id be an n-bit number such that id = id1id2 . . . idn. It selects vectors
(u, u1, . . . , un) R← Gn+1 and defines the hash function H1(id) = u

∏n
j=1 u

idj
j .

Let H2 : {0, 1}∗ → Z
∗
p be a collision-resistant hash function and set the

system parameter param = (e,G,GT , p, g, ga, gb, gc, u, u1, . . . , un, H1,H2).
– Gen-Partial-Private-Key(mk, id): Given the user id, KGC proceeds as follows:

• It selects t1
R← Z

∗
p and sets sk1 = gt1 , sk2 = gacH1(id)t1 .

• The partial private key is set to pskid = (sk1, sk2), which is sent to the
user id via a secure channel.

– Gen-Private-Key(pskid): Given pskid, the user selects a′, c′ R← Z
∗
p and sets

skid = (a′, c′, sk1, sk2).
– Gen-Public-Key(skid): Given skid, the user sets its public key as pk =

(pk1, pk2) = (ga′
, gc′

).
– Enc(pkid, id, kw): The user encrypts the keyword kw and returns a ciphertext

cph by selecting r1, r2
R← Z

∗
p and setting cph = (W1,W2,W3,W4) where

W1=g(c+c′)r1 , W2=g(a+a′)(r1+r2)gbH2(kw)r1 , W3=gr2 , W4=H1(id)r2 .

– Gen-Token(skid, kw): The user id generates a search token token by selecting
s

R← Z
∗
p and setting token = (V1, V2, V3, V4) where

V1 = sks
1 = gt1s, V2 = (gac′

ga′cga′c′
)ssks

2 = g(a+a′)(c+c′)sH1(id)t1s,

V3 = g(c+c′)s, V4 = g(a+a′)sgbH2(kw)s.



CLKS: Certificateless Keyword Search on Encrypted Data 249

– Match(token, cph): This algorithm returns 1 if e(W2, V3) = e(W3,V2)
e(W4,V1)

e(W1, V4).
Otherwise, return 0.

Correctness. The correctness can be verified as follows:

Because
e(W3, V2)

e(W4, V1)
=

e(gr2 , g(a+a′)(c+c′)sH1(id)
t1s)

e(H1(id)r2 , gt1s)
= e(g, g)

(a+a′)(c+c′)sr2 ,

and e(W1, V4) = e(g
(c+c′)r1 , g

(a+a′)s
g
bH2(kw)s

) = e(g, g)
(c+c′)r1s(a+a′+bH2(kw))

,

then
e(W3, V2)

e(W4, V1)
e(W1, V4) = e(g, g)

(a+a′)(c+c′)s(r1+r2)
e(g, g)

b2H2(kw)r1s
.

e(W2, V3) = e(g
(a+a′)(r1+r2)

g
bH2(kw)r1 , g

(c+c′)s
) = e(g, g)

(a+a′)(c+c′)(r1+r2)s
e(g, g)

b2H2(kw)r1s

Remark. Given a search token, the attacker can launch the off-line keyword
guessing attack (aka. predicate privacy [25]) because he can utilize the public
information (e.g., public key) to test whether the given search token corresponds
to some keyword. Such attack is inherent for certificate-based keyword search,
identity-based (attribute-based) keyword search and our proposed CLKS. Some
research efforts has been made to prevent such attack. For example, [19,24,31]
considered the approaches where the search token can be transmitted over the
public channel (i.e., search token indistinguishability) but the user needs to share
some secret with the remote server, which cannot completely solve the off-line
keyword guessing attack because the remote server can still launch this attack.

The security of our proposed scheme can be assured by the following theo-
rems, which proofs are shown in the Appendix of the full version [35].

Theorem 1. Suppose A is the Type 1 adversary making at most ξeppk queries
to oracle Gen-Partial-Private-Key and ξprk queries to oracle Gen-Private-Key. Let
AdvH2 be the advantage of A breaking the collision-resistant hash function H2

(i.e., AdvH2 = Pr[(H2(kw1) = H2(kw2)) ∩ (kw1 �= kw2)|kw1, kw2 ∈ {0, 1}∗]) and
AdvDL(�) be the advantage of A breaking the DL assumption. Then the advantage
of Type 1 adversary breaking the ciphertext indistinguishability is

AdvType 1 ≤ AdvH2 + 2(ξprk + ξeppk)(n + 1)AdvDL(�)

Theorem 2. Suppose A is the Type 2 adversary making at most ξprk queries
to oracle Gen-Private-Key and ξtk queries to oracle Gen-Token. Let AdvH2 be the
advantage of A breaking the collision-resistant hash function H2 and AdvDL(�)
be the advantage of A breaking the DL assumption. Then the advantage of Type
2 adversary breaking the ciphertext indistinguishability is

AdvType 2 ≤ AdvH2 + 2ξprkξtk(n + 1)AdvDL(�)
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7 Performance Evaluation

We implemented the CLKS scheme in Java with JPBC Library [15], by instanti-
ating the bilinear map with Type A pairing (� = 512) offering a level of security
equivalent to 1024-bit Discrete Logarithm security. We used the SHA-1 to hash
keywords and identities (both are strings) into the 128-bit data, which are then
transformed to the elements in Z

∗
p and G respectively.

To evaluate the feasibility of the CLKS in practice, we conducted the experi-
ments with the real data, which is composed of 6,000 distinct keywords extracted
from the ACM Digital Library. We ran the experiments on two machines: The
user machine is a Windows 7 running laptop with Intel i5 2.60GHz CPU and
8GB RAM to simulate the user that runs the algorithm Enc; the server machine
is a Linux running desktop with Intel Core i7-2600 3.4GHz CPU and 4GB RAM
to simulate the cloud server that runs the algorithm Match.

We ran six experiments using different number of keywords varying from 1000
to 6000 with step 1000. We repeated each experiment 5 times to determine the
average execution time. Figure 2(a) compares the execution time for encrypting
all keywords (on the user machine) and for finding the matched keyword cipher-
texts with a given search token (on the server machine). From Figure 2(a) we see
that encrypting entire keywords are more costly than finding matched keyword
ciphertexts. Fortunately, encrypting entire keywords will be executed only once,
while finding matched ciphertext needs to be executed once per search request.
Figure 2(b) shows the size of keyword ciphertexts that are serialized to the disk,
showing that the size of keyword ciphertexts is linear to the number of keywords.
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Fig. 2. Performance of CLKS. Note that we set that it needs to run Match algorithm
on half of the entire keyword ciphertexts to find a matched keyword ciphertext.

8 Conclusion

We have proposed a novel variant of keyword search – certificateless keyword
search(CLKS), supporting keyword search on encrypted data while enjoying the
benefits from certificateless cryptography. We presented a concrete construction,
and proved its security under the DL assumption in the standard model.
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Abstract. We propose the first secure cloud storage system with public
audit for dynamic group, which achieves identity privacy-preserving and
privilege control among mobile users. We utilize multi-key ciphertext
policy attribute-based key encapsulation mechanisms (MCP-AB-KEMs)
to achieve privileges of operations on the cloud data and the anonymity
among the mobile users, and we utilize proxy re-signatures to update
tags efficiently. In addition, a third party auditor (TPA) helps to check
data integrity without the knowledge of users’ identities. We also give a
security model and present the security analysis within the model.

Keywords: Secure cloud storage · Dynamic group · Privilege control ·
Identity privacy-preserving

1 Introduction

The Problem. Consider the following scenario: in a sports club, a group of
members share photos, videos and training materials. The members care much
about their privacy, i.e., they do sports but do not want others to know more
than this. However, the issues become very complicated when the group consists
of mobile users. Even a new member joins the group or a member leaves will
cause a refresh of the group key, otherwise, forward/backward security cannot
be retained. Besides, due to the limited storage of smart phones, they may want
to store the data in the cloud. Since the actual data is under the control of the
cloud storage and the users do not have a copy themselves, users should adopt
an integrity verification protocol to guarantee the data integrity, and a third
party auditor (TPA) will also be involved. Actually, this was recently considered
in [24], where Yu et al. came up with a (partial) solution.

We argue that two practical issues were not considered in the previous work:
1) According to the users’ different characters in the group, the users should own
different privileges of operations on the cloud data. 2) The users in the group
only want to share the data but do not want extra connections with other users.
In this paper, we investigate this problem, namely secure cloud storage scheme
for dynamic group with public audit mechanisms that achieve both user identity
privacy and privilege control.
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 254–267, 2015.
DOI: 10.1007/978-3-319-25645-0 17
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Table 1. Comparison with Existing Mechanisms

Functionality [18] [16] [19] [24] Ours

Dynamic Group × � � � �
Public Audit � × � � �

Identity Privacy to TPA � � � � �
Privilege Control × × × × �

Identity Privacy among Users × � × × �

Related Work. To guarantee the cloud data integrity, Deswarte, Quisquater
and Säıdane [7], Filho and Barreto [9], Naor and Rothblum [12], and Schwarz and
Miller [13] were among the first to consider the problem of remotely checking data
integrity. Later research focused designing schemes with formal security models,
e.g., authenticators [12], PDP [1,3,8,26], proof of retrievability (PoR) [10,14,22]
and secure cloud storage [5,6,20,23]. In particular, they not only care about the
integrity of the user data, but also focus on extractability of the data during
the verification phase. The above schemes are all designed for traditional cloud
storage and not suitable for a group of mobile users.

To protect the user identity privacy from public auditors, several works [16–
19] proposed their solutions. However, [16] imposed a heavy burden on generating
tags; [18] was not suitable for dynamic group; [17,19] cannot afford the tolerance
against the collusion attack launched by a revoked user and the cloud server.
Recently, Yu et al. [24] proposed a secure mobile cloud storage protocol for
dynamic group that supports identity privacy-preserving and public audit. They
utilized the dynamic asymmetric group key agreement scheme in [25] to negotiate
the group key, thus [24] offered the user anonymity to a third party auditor
(TPA). However, the users must communicate with others in the group during
the negotiation, thus [24] does not offer the anonymity among users. Moreover,
[24] does not offer the privilege control on the cloud data, and the computation
cost on the user side is heavy. Thus it is still much work to do towards the user
anonymity and the privilege control in the group data sharing.

Our Contributions. In this paper, we propose the first secure cloud storage
scheme for dynamic group with public audit that achieves identity privacy-
preserving and privilege control. First, we discuss the potential threats and
formalize the security model. Second, we propose a concrete scheme that pro-
vides anonymity among users, user anonymity to TPA, privilege control and
tag-updating. Finally, we discuss the tolerance against collusion attacks and
give the security proof. Table 1 shows a comparison between our scheme and
existing mechanisms. To our best knowledge, this paper first combines secure
cloud storage for dynamic group with privilege control.
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2 Preliminary

Notations. Let A(a, b, ...) → z denote the operation of running an algorithm A
with inputs a, b, ... and output z. If d is a string, |d| denotes its length. Let x||y
denote the concatenation of two strings x and y.

Definition 1 (Bilinear Groups). Let G be an algorithm that takes as input
a security parameter λ and outputs a tuple (p,G0,G1, e), where G0 and G1 are
multiplicative cyclic groups of prime order p, and e : G0 ×G0 → G1 is a bilinear
map such that: 1) Bilinearity: for all g, h ∈ G0 and a, b ∈ Z

∗
p, we have e(ga, hb) =

e(g, h)ab. 2) Nondegeneracy: e(g, h) �= 1 whenever g, h �= 1G0 .

Definition 2 (Access Tree T ). Let T be a tree representing an access struc-
ture. If numx is the number of children of a node x and kx is its threshold value,
then 0 < kx ≤ numx. When kx = 1, it is an OR gate and when kx = numx,
it is an AND gate. Each leaf node x of the tree is described by an attribute and
a threshold value kx = 1. We denote the parent of the node x by parent(x). The
function att(x) is defined only if x is a leaf node and denotes the attribute asso-
ciated with the leaf node x. And the children of a node are numbered from 1 to
num. The index(x) returns such a number associated the node x.

3 The Security Model

In this section, we present the system model and the security model.

3.1 The System Model

System Model. A dynamic group of mobile users want to share data and they
care much about the identity privacy. Due to the limited resources, they store
the data in public cloud storage. Since the actual data is under the control of the
cloud, users adopt a data auditing protocol and a TPA is involved. According
to users’ different characters, they own different privileges of operations on the
cloud data and a local server manages the privileges. Specifically, the lowest
privilege is reading data, every user owns this; the higher privilege is reading
and creating data; the topmost privilege is reading, creating and deleting data.
There are 4 entities in our system (Fig. 1):

Fig. 1. The System Model
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– Mobile users do not have enough storage space to store large amount of data.
– Local server is trusted by the users, there is a secure channel between each

user and the local server, and the local server’s functionality includes: man-
aging privilege control, connecting every user and the cloud, and helping
users generate and update tags (users can also generate and update tags by
themselves if they like).

– TPA is a third party auditor that offers the auditing service.
– Public cloud that has tremendous resources, providing storage service.

Threat Model. Users are curious about others’ identities and try to obtain
higher privileges that are not theirs. TPA follows the protocol honestly but is
curious about users’ identities as in [16–19]. The cloud server will follow the
protocol honestly but may be self-interested, such as when the file is totally or
partially missing, it may try to convince the TPA that it possesses the file to
maintain its reputation.

Poblem Setting. In this paper, we not only achieve user anonymity to TPA,
group dynamic and efficient tag-updating as in [24], but also focus on anonymity
among users and privilege control. Besides, the system should offer lightweight
operations on user side and tolerance against users’ collusion attacks.

3.2 System Components

Our system includes 3 main components: A privilege control scheme, a data
auditing protocol and a system manage module.

The Privilege Control Scheme consists of the following 4 algorithms:
MCP-AB-KEM.Setup. Taking a security parameter λ as input, this algorithm
outputs a public key PK and a master key MSK.
MCP-AB-KEM.KeyGen. Taking the MSK and a set of attributes S as input, this
algorithm generates a private key sk that identifies with that set.
MCP-AB-KEM.Enc. Taking the PK and an access tree T as input, this algorithm
outputs a privilege control ciphertext PCT and a set of privilege keys {keyi}l

i=1.
MCP-AB-KEM.Dec. Taking a PCT , which contains an access tree T , and a sk,
which contains a set of attributes as input, if the set of attributes satisfies the
access policy, this algorithm will decrypt the PCT and return the privilege keys
{keyj}n

j=1, where 1 ≤ n ≤ l.

The Data Auditing Protocol consists of the following 4 algorithms:
TagGen. Taking a group pair (Gpk,Gsk) and a data block Fi of the file F as
input, this algorithm generates a tag Tagi for the block.
Audit. Taking a request from the server as input, this algorithm generates a
challenge Chal to query the integrity of the data file.
Prove. Taking the Gpk, data blocks {Fi} , tags {Tagi} and the challenge Chal
as input, this algorithm responds a proof P for the challenged blocks.
Verify. Taking the Gpk and a proof P as input, this algorithm outputs the veri-
fication result of the proof P .
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The System Manage Module consists of the following 4 algorithms:
GKeyGen. Taking the PK, the MSK, all the N users’ attribute sets {Si}i=1,...,N

(an attribute of Token is in each Si) and an access tree T (a necessary leaf
node is Token, such as “Token ∧ ...”) as input, the local server first runs
MCP-AB-KEM.KeyGen(MSK,Si) to generate every user’s private key ski and
sends it to the user ui privately. Then it runs MCP-AB-KEM.Enc(PK, T ) to
generate a PCT and a set of privilege keys {keytype}type∈{“read”,“create”,“delete”} for
reading, creating and deleting data and computes Gsk and Gpk with keycreate.
At last, it broadcasts the PCT to all the users publicly.
Operation. Taking a ski and a PCT as input, a user ui first runs
MCP-AB-KEM.Dec(PCT, ski) to obtain the privilege keys {key′

type}. Then the
user does as follows.

– type = “read”: The privilege of the operation is reading the cloud data. The
user sends the read instruction to the local server. Then the local server
downloads the data and sends it to the user ui.

– type = “create”: The privilege of the operation is creating the cloud data. The
users first computes Gsk and Gpk, then sends the create instruction to the
local server. Then the local server optionally runs TagGen(Gpk,Gsk, {Fi})
to generate Tagi for each data block Fi, and uploads the data ({Fi}, {Tagi})
to the cloud. At last, it sends feedback to the user ui. Alternatively, users
can also generate tags by themselves if they like.

– type = “delete”: The privilege of the operation is deleting the cloud data. The
user sends the delete instruction to the local server. Then the local server
deletes the data and its tags. At last, it sends feedback to the user ui.

Join. The local server runs GKeyGen again except that the number of the users
is N + 1 and Token is updated. And it updates all the tags.
Leave. The local server runs GKeyGen again except that the number of the users
is N − 1 and Token is updated. And it updates all the tags.

3.3 The Security Model

The proposed system includes MCP-AB-KEM and the data auditing protocol.
Similar to the hybrid encryption, the group key is encapsulated in the ciphertext
of MCP-AB-KEM. Thus, we consider the two security models separately.

The security model of the data auditing protocols should ensure that if any
cheating prover that convinces the verification algorithm that it is storing a file
F is actually storing that file. Shacham and waters [14] define that it yields
up the file F to an extractor algorithm that interacts with it using the proof-
of-retrievability protocol. We expend this model by adding the update oracle.
Consider the following game between an adversary A and an environment E :

1. E generates (Gpk,Gsk) by running GKeyGen, and provides Gpk to A.
2. A can now interact with E . It can make queries to a store oracle, providing,

for each query, some file F. E computes TagGen(Gpk,Gsk, F ) → T and
returns (F, T ) to A. When the group changes, it should make queries to an
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update oracle, providing, for each query, some file F and the tags. E updates
the tags and returns the updated tags and the new public key to A.

3. For any F on which it previously made a store query or an update query, A
can undertake executions of the proof-of-retrievability protocol, by specifying
the corresponding tag T . In these protocol executions, E plays the part of
the verifier and A plays the part of the prover. When a protocol execution
completes, A is provided with the output of E . These protocol executions
can be arbitrarily interleaved with each other and with the store and update
queries described above.

4. Finally, A outputs a challenge tag T returned from some store and update
queries, and the description of a prover P ′.

The cheating prover P ′ is ε-admissible if it convincingly answers an ε fraction of
verification challenges, i.e., if Pr[((Verifier � P ′) = 1)] ≥ ε. Here the probability
is over the coins of the verifier and the prover. Let F be the message input to
the store and update query that returned the challenge tag T .

Definition 3. A proof-of-retrievability scheme is ε-sound if there exists an effi-
cient extraction algorithm such that, for every adversary A, whenever A, playing
the security game, outputs an ε-admissible cheating prover P ′ for a file F, the
extraction algorithm recovers F from P ′, except with negligible probability.

The system model of the privilege control is based on CP-ABE proposed by
Bethencourt, Sahai and Waters [4]. Consider the following security game between
an adversary A and a challenger C:

– Setup. C runs MCP-AB-KEM.Setup and gives the public parameters to A.
– Phase 1. A makes private keys corresponding to sets of attributes S1, ..., Sq1 .
– Challenge. A gives a challenge access structure A

∗ and the topmost encap-
sulated key (The key is encapsulated by the whole tree) with the restriction
that none of the sets S1, ..., Sq1 from Phase 1 satisfies the access structure
(the whole tree). C runs MCP-AB-KEM.Enc to obtain (key∗, PCT ∗) and flips
a random coin b ∈ {0, 1}. If b = 0, it returns (key∗, PCT ∗). If b = 1, it picks
a random key R∗ in the encapsulated key space and returns (R∗, PCT ∗).

– Phase 2. Phase 1 is repeated with the restriction that none of the sets of
attributes Sq1+1, ..., Sq satisfy the challenge access structure.

– Guess. A outputs a guess b′ of b.

The advantage of an adversary A in the above game is defined as Pr[b′ =
b] − 1

2 . We note that the model can easily be extended to describe MCP-AB-
KEM: In the Challenge, the topmost encapsulated key is replaced to the target
encapsulated key. And in the Phase 1 and Phase 2, none of the sets of attribute
S1, ..., Sq satisfies the subtree whose root node encapsulates the target key.

Definition 4. A Multi-key Ciphertext Policy Attributed-Based Key Encapsula-
tion Mechanism (MCP-AB-KEM) scheme is CPA-secure if all polynomial time
adversaries have at most a negligible advantage in the above game.
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4 Our Construction

In this section, we present our concrete construction and give an illustration.

4.1 The Concrete Construction

Intuition. To achieve privilege control and user anonymity among users, we
modify CP-ABE in [4] to Multi-key CP-AB-KEM, which is similar to [21]. Nat-
urally, a private key of the public verification scheme in [14] is encapsulated in
the PCT. To achieve tag-updating, we utilize the idea of proxy re-signature [2].
Moreover, a secure channel between every user and the local server can protect
user’s instructions and some entries (identity, time, session ID etc.) can prevent
some known attacks, such as the replay attack [15] etc.

Let G0 be a bilinear group of prime order p, and let g, g′ be two generators
of G0. And let e : G0 ×G0 → G1 denote the bilinear map. A security parameter
λ determines the size of the groups. We also define the Lagrange coefficient
�i,S for i ∈ Zp and a set S, of elements in Zp : �i,S(x) =

∏
j∈S,j �=i

x−j
i−j .

Let H : {0, 1}∗ → G0, H ′ : {0, 1}∗ → Z
∗
p represent two hash functions and

KDF represent the key derivation function [11] with the output length l. Our
construction is as follows.

MCP-AB-KEM.Setup. The setup algorithm will choose a bilinear group G0 of
prime order p with generator g. Next it will choose two random exponents α, β ∈
Zp. The public key is published as: PK = {G0, g, h = gβ , e(g, g)α} and the
master key MSK is (β, gα).

MCP-AB-KEM.KeyGen. Taking a MSK and a set of attributes S as input, this
algorithm generates a private key sk that identifies with S. It first chooses a
random r ∈ Zp, and random rj ∈ Zp for each attribute j ∈ S. Then it computes
the private key as sk = (PK,D = g(a+r)/β ,∀j ∈ S : Dj = gr ·H(j)rj ,D′

j = grj ).

MCP-AB-KEM.Enc. Taking a PK and an access tree T as input, this algorithm
outputs a privilege control ciphertext PCT and a set of privilege keys {keyi}l

i=1.
It first chooses a polynomial qx for each node x in the tree T . These polynomials
are chosen in the following way in a top-down manner, starting from the root
node R. For each node x in the tree, set the degree dx of the polynomial qx to
be one less than the threshold value kx of that node, that is dx = kx − 1.

The access tree T has l privilege nodes N1, N2, ..., Nl. Every such node Ni that
is the root of a subtree that is mapped to a privilege level pi, where i = 1, 2, ..., l.
Starting with the root node R, it chooses a random s ∈ Zp and sets q1(0) = s.
Then it chooses d1 other points of the polynomial q1 randomly to define it
completely. For any other node x, it sets qx(0) = qparent(x)(index(x)) and chooses
dx other points randomly to completely define qx. At last, it chooses l random
privilege keys {keyi}l

i=1. Let Y be the set of the leaf nodes in T . The PCT is
then constructed by giving the tree access structure T and computing

PCT = (T, {C̃i = keyi · e(g, g)αqi(0)}l
i=1, {Ci = hqi(0)}l

i=1,
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Fig. 2. Privilege Tree

∀y ∈ Y : Cy = gqy(0), C ′
y = H(att(y))qy(0)).

MCP-AB-KEM.Dec. Taking a PCT , which contains an access policy T , and a sk,
which contains a set of attributes as input, if the set of attributes satisfies the
access policy, this algorithm will decrypt the PCT and return the privilege keys
{keyj}n

j=1, where 1 ≤ n ≤ l. If the node x is a leaf node then we let i = att(x)
and define as follows: If i ∈ S, then

DecryptNode(PCT, sk, x) =
e(Di, Cx)
e(D′

i, C
′
x)

=
e(gr · H(i)ri , gqx(0))

e(gri ,H(i)qx(0))
= e(g, g)rqx(0).

If i /∈ S, then we define DecryptNode(PCT, sk, x) = ⊥.
We now consider the recursive case when x is a non-leaf node. The algorithm

DecryptNode(PCT, sk, x) then proceeds as follows: For all nodes z that are
children of x, it calls DecryptNode(PCT, sk, z) and stores the output as Fz. Let
Sx be an arbitrary kx-sized set of child nodes z such that Fz �= ⊥. If no such set
exists then the node was not satisfied and the function returns ⊥.

Otherwise, we compute

Fx =
∏

z∈Sx

F
�

i,S′
x
(0)

x =
∏

z∈Sx

(e(g, g)
r·qz(0)

)
�

i,S′
x
(0)

=
∏

z∈Sx

(e(g, g)
r·qparent(z)(index(z))

)
�

i,S′
x
(0)

=
∏

z∈Sx

(e(g, g)
r·qx(i)·�

i,S′
x
(0)

= e(g, g)
r·qx(0)

, where i = index(x), S
′
x = {index(z) : z ∈ Sx},

and return the result. Next, the algorithm begins by simply calling the function
on the privilege node Nodei, i ∈ {1, 2, .., l} of the tree T . If the subtree whose
root node is Nodei is satisfied by S, we set A=DecryptNode(PCT, sk,Nodei) =
e(g, g)rqi(0). The algorithm now decrypts by computing

C̃i/(e(Ci,D)/A) = C̃i/(e(hqi(0), g(α+r)/β)/e(g, g)rqi(0)) = keyi, i ∈ {1, 2, ..., l}.

GKeyGen. Taking a PK, a MSK, all the N users’ attribute sets {Si}i=1,...,N

(an attribute of Token must be included in each Si, the Token of each user
in the group is the same. When a user joins or leaves the group, the Token is
updated.) and an access tree T (a necessary leaf node is Token, as shown in
Fig. 2) as input, the local server first runs MCP-AB-KEM.KeyGen(MSK,Si)
to generate every user’s private key ski and sends it to each user privately.
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Then it runs MCP-AB-KEM.Enc(PK, T ) to generate a PCT and a set of privi-
lege keys {keytype}type∈{“read”,“create”,“delete”}. Then it computes Gsk = H ′(keycreate)
and Gpk = g′Gsk. At last, it broadcasts the PCT .

Remark 1. The local server should update the privilege keys on time by gener-
ating a new PCT and broadcasts it to all the users periodically.

TagGen. Taking a group pair (Gpk,Gsk) and a file F = {m1, ...,mt} as input,
this algorithm splits mj into s sectors mj = {mj1, ...,mjs} and chooses s random
values u1, ..., us ∈ G. Then, for each block mj (j ∈ [1, t]), compute a tag Tagj as

Tagj = (H(Fid||j) ·
s∏

l=1

u
mjl

l )Gsk,

where Fid is the unique identifier of the file F and j denotes the block number
of Fj . It outputs the set of data tags T = {Tagj}j∈[1,t].

Audit. Taking a request from the local server as input, TPA selects some data
blocks to construct a challenge set Q and picks a random vj ∈ Z

∗
p for each Fj

(j ∈ Q), and then sends the challenge Chal = {j, vj}j∈Q to the cloud server.

Prove. Taking a Gpk, data blocks {Fi} , tags {Tagi} and a challenge Chal as
input, the cloud server computes

μl =
∑
j∈Q

vjmjl ∈ Zp for 1 ≤ l ≤ s, and σ =
∏
j∈Q

Tag
vj

j ∈ G0.

The cloud server responds a proof P = {μ1, ..., μs, σ} to TPA.

Verify. Taking the Gpk and a proof P as input, TPA checks whether

e(σ, g′) ?= e(
∏
j∈Q

H(Fid||j)vj ·
s∏

l=1

uμl

l , Gpk).

If so, output 1; otherwise, output 0 (to the local server).

Operation. Taking a ski and a PCT as input, a user ui first runs
MCP-AB-KEM.Dec(PCT, ski) to obtain a set of privilege keys {key′

type}. Then
the user can do as follows.

– type = “read”: The privilege of the operation is reading the cloud data. The
user sends m = keyread||ID||time||sid||dataname to the local server, where
keycreate identifies the operation, ID is the user’s identity, time is the current
time, sid is the session ID and dataname labels the targeted data. Then the
local server downloads the data dataname and sends it to the user.
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– type = “create”: The privilege of the operation is creating the cloud data.
The users first computes Gsk = H ′(keycreate) and Gpk = g′Gsk, then sends
m = keycreate||ID||time||sid||dataname||{Fi} to the local server. The local
server runs TagGen(Gpk,Gsk, {Fi}) to generate Tagi for each block Fi and
uploads ({Fi}, {Tagi}) to the cloud. At last, it sends an “Ack” to the user.
Alternatively, users can also generate tags by themselves and add tags into
m if they like.

– type = “delete”: The privilege of the operation is deleting the cloud data.
The user sends m = keydelete||ID||time||sid||dataname to the local server. The
local server deletes dataname and its tags. Then send an “Ack” to the user.

Remark 2. We assume that a user and local server have authenticated each other
before the above communication.

Join. The local server runs GKeyGen again except that the number of the users
is N + 1 and Token is updated. After generating a new pair (Gpk′, Gsk′), the
local server generates a proxy re-signature key ReGsk = Gsk′/Gsk, downloads
all the tags and computes Tag′

j = TagReGsk
j for each Tagj . Finally, it updates

all the new tags to the cloud and sends Gpk′ to TPA.

Leave. The local server runs GKeyGen again except that the number of the users
is N − 1 and Token is updated. After generating a new pair (Gpk′, Gsk′), the
local server generates a proxy re-signature key ReGsk = Gsk′/Gsk, downloads
all the tags and computes Tag′

j = TagReGsk
j for each Tagj . Finally, it updates

all the new tags to the cloud and sends Gpk′ to TPA.

Correctness. The correctness of our construction is obvious, so we just omit the
correctness due to the limit of the space.

4.2 The Example

We use an example to further illustrate how the proposed system works. The
local server first generates the private key ski and sends it to the user ui pri-
vately. Then it periodically generates and broadcasts PCT , so privilege keys can
be updated on time. A PCT encapsulates a privilege key chain (k3 → k2 → k1):

Fig. 3. Privilege Tree for the Example
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Reading data (k1) is the lowest privilege that every user owns; the higher priv-
ilege (k2) is reading and creating data; the topmost privilege (k3) is reading,
creating and deleting data. And an access tree is shown in Fig. 3. The user can
decrypt the PCT with his private key to obtain his privilege keys.

Table 2. Some Attribute Sets for the Example

User Attribute set Privilege keys Granted operations

User 1 a1, a2 k1 Read
User 2 a1, a2, a3 k1, k2 Read, Create
User 3 a1, a2, a4 k1, k2 Read, Create
User 4 a1, a2, a5 k1 Read
User 5 a1, a2, a3, a5 k1, k2, k3 Read, Create, Delete

Table 2 shows a portion of the attribute sets for the example. User 1 who
has attributes (a1, a2) and User 4 who has attributes (a1, a2, a5) can only
recover k1, hence they only can read the cloud data. User 2 and User 3 have the
attributes that can recover k1 and k2, hence they can read and create the cloud
data. Because of the attributes that can satisfy the whole tree T , User 5 can
recover all the keys (k1, k2, k3) and have the access to read, create and delete
the cloud data. When the user wants to do the granted privilege operation, he
just sends the corresponding instruction to the local server, and the local server
will help the user finish the operation.

4.3 Practicality

In [24], mobile users should negotiate the group keys and generate/update tags.
In our system, a local server helps users generate/update tags, so mobile users
only do the decryption periodically when the privilege keys need to be updated.

5 Security Analysis

User Anonymity to TPA. The public-secret key pair for the data auditing
protocol corresponds to the whole group, not any specific user. Besides, TPA
communicates with the local server instead of the users. Specifically, after the
local server receives the audit result from TPA, it will send the result to the
users. In summary, the system provides user anonymity to TPA.

User Anonymity to Other Users. The users in the group do not communi-
cate with each other to do the group key agreement [24]. When the system needs
to update privilege keys, the local server just generates a new privilege control
ciphertext (PCT ) and broadcasts it to the users. Then the users just decrypt
the PCT with their private keys to obtain their privilege keys. In summary, the
identity of the user will not leakage to other users.
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Tolerance Against Users’ Collusion Attack. In order to access higher priv-
ileges that are not theirs, the corrupted users may collude with each other, and
have enough attributes to satisfy the subtree that encapsulates the privilege key.
However, in MCP-AB-KEM, when two different private keys’ components are
combined, the combined private key cannot go through the polynomial interpo-
lation in the decryption algorithm due to the different random numbers in each
key. Therefore, our system is secure under users’ collusion attack.

Tolerance Against a Revoked User and the Cloud Storage’ Collusion
Attack. In our system, once a user is revoked, all the users’ private and privilege
keys must be updated immediately. Thus, the cloud storage cannot obtain valid
group private key from any revoked user to forge a valid proof. .

Theorem 1. The privilege keys that encapsulated in the privilege control cipher-
text (PCT ) have privacy with respect to the joining or leaving mobile users as
long as the MCP-AB-KEM scheme is CPA-secure.

Proof. The privacy of privilege keys indicates that any probabilistic polynomial
time (PPT) adversary cannot obtain privilege keys. First, we consider the case
of no users’ joining or leaving the group. The proof is obvious. All the privilege
keys are encrypted by PCT , and the MCP-AB-KEM scheme is proved to be
CPA-secure in the random oracle model in [4]. So any PPT adversary cannot
distinguish the random key and the real encapsulated privilege key based on
the PCT . Definitely, any adversary cannot obtain the privilege keys without the
private key that satisfies the access structure. Next, we consider mobile users’
joining or leaving the group. If there is no further protection, the system is not
secure, e.g., a user, who has left the group but holds his own private key, once
accesses a PCT in the new group, the user can easily obtain the current privilege
keys by decrypting the PCT . Our solution is adding a same attribute Token to
each user’s private key and modifying the access tree by adding a necessary leaf
node Token, such as “Token ∧ ...”. The Token of each user in the current group
is the same. When a user joins or leaves the group, the Token should be updated,
then the old private key is invalid.

Theorem 2. All the probabilistic polynomial time adversaries cannot forge a
proof that can be accepted by the TPA in the data auditing protocol within non-
negligible probability.

Proof. In the security game of the data auditing protocol, the only difference
from [14] is that we add an update oracle. The update oracle works when a
user joins or leaves the group. The environment E only generates a new key
pair (Gpk′, Gsk′), updates tags by using a proxy re-signature key ReGsk and
gives new tags and Gpk′ to the adversary A. The capability of A is the same
as [14]. Thus, following the proof of the public scheme in [14], the unforgeability
of an auditing proof can be reduced to the Computational Diffie-Hellman (CDH)
assumption.
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6 Conclusion

In this paper, we proposed the first secure cloud storage system with public
audit for dynamic group, which achieves identity privacy-preserving and privilege
control among mobile users. By designing the MCP-AB-KEM, mobile users own
different privileges of operations on the cloud data and the anonymity among
mobile users. Since the mobile users share a group key pair for the data auditing
protocol, a TPA can check the data integrity without the knowledge of mobile
users’ identities. Utilizing the proxy re-signature, it is easy to update tags.

Acknowledgment. We would like to thank the anonymous reviewers for helpful com-
ments. This work was partially supported by the Foundation of Science and Technol-
ogy on Information Assurance Laboratory (No. KJ-14-002), Strategic Priority Research
Program of the Chinese Academy of Sciences (No. XDA06010703), and One Hundred
Talents Project of the Chinese Academy of Sciences.

References

1. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,
Song, D.X.: Provable data possession at untrusted stores. In: ACM Conference on
Computer and Communications Security, pp. 598–609 (2007)

2. Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms,
and applications. In: Proceedings of the 12th ACM Conference on Computer and
Communications Security, CCS 2005, Alexandria, USA, pp. 310–319 (2005)

3. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: 4th International ICST Conference on Security and
Privacy in Communication Networks, SECURECOMM 2008, Istanbul, Turkey,
September 22–25, 2008, p. 9 (2008)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, 2007, pp. 321–334 (2007)

5. Bowers, K.D., Juels, A., Oprea, A.: HAIL: a high-availability and integrity layer
for cloud storage. In: Proceedings of the 2009 ACM Conference on Computer and
Communications Security, CCS 2009, Chicago, Illinois, USA, pp. 187–198 (2009)

6. Chen, F., Xiang, T., Yang, Y., Chow, S.S.: Secure cloud storage meets with secure
network coding. In: Proceeding of INFOCOM 2014, pp. 673–681. IEEE (2014)

7. Deswarte, Y., Quisquater, J.-J., Säıdane, A.: Remote integrity checking. In:
Jajodia, S., Strous, L. (eds.) IICIS 2003. IFIP, vol. 140, pp. 1–11. Springer,
Heidelberg (2004)
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Abstract. Oblivious RAM (ORAM) is a provable technique to protect
a user’s access pattern to outsourced data. Recently, many ORAM con-
structions have been proposed, but most of them are impractical due
to high communication and user-side storage costs. Motivated by Parti-
tion ORAM (P-ORAM) [15], a state-of-the-art communication-efficient
ORAM construction, this paper proposes GP-ORAM (Generalized Parti-
tion ORAM) as a new framework to assemble multiple ORAM partitions
together while overcoming the limitations of the P-ORAM construction.
GP-ORAM allows smaller and adjustable number of partitions, fully
utilizes the available user-side storage to reduce communication cost,
and can efficiently export the index table to the server. As a result,
GP-ORAM incurs low bandwidth cost (i.e., O(log N) data blocks per
query in practice) and has significantly less user-side storage cost than
P-ORAM. We demonstrate the security and practicality of GP-ORAM
through extensive performance analysis.

1 Introduction

Oblivious RAM (ORAM) [3], which was originally proposed by Goldreich and
Ostrovsky, has been a provable approach to preserving a user’s access pattern
to data outsourced to a remote storage server. The past decades have witnessed
numerous ORAM constructions [2,4–8,11–15,17,18] developed for various pur-
poses. Although many neat asymptotical results have been reported, the prac-
ticality of these constructions is still not satisfactory. Particularly, the designs
either demand for large user-side storage or incur high communication cost.

Partition ORAM (P-ORAM) [15] is one recent effort in developing practical
ORAMs. The P-ORAM construction was designed to achieve a low and thus
practically acceptable communication cost. Specifically, the server-side storage of
P-ORAM is organized as

√
N partitions, assuming N is the number of exported

data blocks, and each partition is an ORAM. The user-side storage includes an
index table recording the location of each block, a shuffling buffer that can store
and shuffle all data blocks of any ORAM partition, and

√
N stash slots. With

such a storage arrangement, it has been shown that the communication cost for
data query and shuffling is as low as log N data blocks per query. Compared to
other state-of-the-art ORAM constructions[9,16,19], P-ORAM achieves higher
communication efficiency.

c© Springer International Publishing Switzerland 2015
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However, P-ORAM design has its limitations. First of all, it requires a large
and fixed local storage to store the index table and facilitate shuffling. For exam-
ple, when N = 232 and block size is 64 KB, 31 GB local storage is needed. Second,
the index table cannot be efficiently exported to the server. According to our
evaluation, if the index structure is exported to the server, in order to query
just a single block, more than 1000 data blocks on average have to be retrieved.
In addition, the user’s accesses to data blocks have to be entirely sequential in
order to compress the index table.

To address the above limitations of P-ORAM, while inheriting its nice fea-
ture of low communication cost, this paper proposes a generalized version of
P-ORAM, called GP-ORAM. There are a few key improvements of GP-ORAM
over P-ORAM. First, the number of partitions is adjustable in GP-ORAM. This
way, even with a smaller local storage than what P-ORAM requires, GP-ORAM
may still achieve a low communication overhead via properly adjusting the num-
ber of partitions. Second, each ORAM partition in GP-ORAM is redesigned (dif-
ferent from that in P-ORAM) to enable efficient query and shuffling. Finally, the
index structure in GP-ORAM is also redesigned to enable efficient exportation
of it and accommodate the above changes.

Rigorous security analysis has been conducted to prove that the proposed
GP-ORAM construction can preserve a user’s access pattern and the construc-
tion fails with only a probability of O(N− log log N ). Extensive cost analysis has
also been conducted to show that GP-ORAM is a more practical construction
than P-ORAM. Particularly, the local storage demanded by the recursive ver-
sion of our proposed GP-ORAM scheme is only 2.5%∼0.14% of that by the
non-recursive version of the P-ORAM scheme (note: as shown in Section 6, the
recursive version of the P-ORAM scheme is impractical due to its extremely
high communication cost, and therefore is not considered), while GP-ORAM
only yields 1 to 3 times higher communication cost than P-ORAM.

In the rest of the paper, Section 2 formalizes the problem. Section 3 describes
the intuitions behind the proposed GP-ORAM design, and Section 4 elaborates
the details of the GP-ORAM construction. Sections 5 and 6 present the secu-
rity and cost analyses of GP-ORAM, respectively. Section 7 briefly reviews the
existing ORAM constructions. Finally, Section 8 concludes the work.

2 Problem Statement

We consider a system composed of a user and a remote storage server. The user
exports a large set of data to the server, and wishes to access these data without
exposing the access pattern to the storage server. Data is assumed to be stored
and accessed in the unit of block, and typically a block is no less than 64 KB [15].
Let N and B denote the total number of blocks exported and the size of a block
(in bits), respectively.

Server and user may have different storage capabilities. The cloud server
could hold terabytes to petabytes of data in its storage cluster. The user may
use thin devices such as tablets and smartphones, and thus may have only giga-
bytes of RAM and local storage available. Moreover, in practice, bandwidth is
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usually more expensive than computation and storage. Thus, we aim to design
an ORAM scheme that can utilize the given user-side storage efficiently so that
the bandwidth cost can be minimized.

In an ORAM system, each data request from the user, which the user wishes
to keep private, can be one of the following types: (1) read a data block Di of
unique ID i from the storage, denoted as a 3-tuple (read, i,Di); (2) write/modify
a data block Di of unique ID i to the storage, denoted as a 3-tuple (write, i,Di).
To accomplish a data request, the user may need to access the remote stor-
age multiple times. Each access to the remote storage, which is observable by
the server, can be one of the following types: (1) retrieve (read) a data block
Di from a location loc at the remote storage, denoted as (read, loc,Di); (2)
upload (write) a data block Di to a location loc at the remote storage, denoted
as (write, loc,Di).

Security Definition. We assume that the server is honest but curious. That is,
it behaves faithfully according to the ORAM design to store data and serve users’
read or write requests, but it may attempt to figure out the user’s data access
pattern. The network connection between the user and the server is assumed to
be secure; in practice, this can be achieved using well-known techniques such as
SSL [1].

We inherit the standard security definition of ORAM in [15] to define the
security of our proposed ORAM. Intuitively, an ORAM system is considered
secure if the server learns nothing about user’s access pattern. More precisely, it
is defined as follows:

Definition 1. Let x = 〈 (op1, i1,D1), (op2, i2,D2), · · · 〉 denote a private
sequence of user’s intended data requests, where each op is either a read or
write operation, and A(x) = 〈 (op′

1, loc1,D
′
1), (op′

2, loc2,D
′
2), · · · 〉 denote the

sequence of user’s accesses to the remote storage (observable by the server) to
accomplish the intended data requests. An ORAM system is said to be secure if
(i) for any two equal-length private sequences x and y of intended data requests,
their corresponding observable access sequences A(x) and A(y) are computa-
tionally indistinguishable; and (ii) the probability that the ORAM system fails to
operate is small, i.e., O(N− log log N ).

3 Intuition

As GP-ORAM is generalized from P-ORAM, we first review the key ideas
and limitations of P-ORAM. As shown in Figure 1, the server-side storage of
P-ORAM is organized as

√
N ORAM partitions, while the user-side storage

includes an index table recording the location (i.e., partition ID, layer num-
ber and layer offset) of each block, a shuffling buffer that can store and shuffle
O(

√
N) data blocks and

√
N stash slots each corresponding to one partition. To

query one data block, it needs to retrieve one data block from each layer of an
ORAM partition on the server, which results in O(log N) data blocks of com-
munication cost, and the query target block is relocated to a randomly selected
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Fig. 1. P-ORAM Storage Organization.

stash slot. Each query is followed by a background eviction, in which some data
blocks are evicted from stash slots into their corresponding ORAM partitions;
the evictions cause the ORAM partitions to be gradually reshuffled, and shuf-
fling causes O(log N) data blocks of communication cost per query, on average.
To summarize, as bandwidth is usually more expensive than storage, P-ORAM
was designed to achieve a low communication overhead at the cost of increased
local storage.

However, P-ORAM has the following limitations. First, P-ORAM requires a
large local storage (O(

√
NB) bits), due to

√
N stash slots and a shuffling buffer

with a capacity of O(
√

N) blocks. This limits P-ORAM’s practical applicability
as it is impossible to implement P-ORAM if the user has less local storage than
required. Second, the index table cannot be efficiently outsourced to the server.
Each entry of the table has three fields: partition ID, layer number, and layer
offset. The layer number and layer offset need to be updated during both query
and shuffling processes. If the index table is outsourced to the server, the query
and shuffling processes need to frequently query and update the index table,
which leads to impractically high communication cost. Third, the user’s data
accesses have to be entirely sequential in order to compress the index table.

Motivated by P-ORAM and also to overcome its limitations, we present GP-
ORAM as a new framework to assemble multiple ORAM partitions together. It
has the following key ideas. First, the number of partitions is not fixed so that
the user can adjust the number of partitions according to the available local
storage. Second, the index table is re-designed so that it can be outsourced to
the server efficiently. Third, to make full use the available local storage, each
ORAM partition is based on a revised S-ORAM [19] construction. As a result,
GP-ORAM inherits the security property and the communication efficiency of
P-ORAM while being able to work with and fully utilize a wide range of available
local storage.

4 The Proposed GP-ORAM Construction

We elaborate the design of GP-ORAM in terms of storage organization, system
initialization, query process, and background eviction process. To simplify the
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presentation, we assume the user stores index entries of all outsourced data
blocks locally. In practice, to save the user’s local storage, the index entries can be
recursively exported to the storage server, following the same ideas used in tree
ORAM [13] and Path-ORAM [16]. Detailed description of the recursive version
of the GP-ORAM construction can be found in Appendix I of our technical
report [20].

4.1 Storage Organization

GP-ORAM stores both real blocks (i.e., user’s N actual data blocks outsourced
to the server) and dummy blocks (i.e., faked data blocks with random padding).
When a block is in plain-text, it can be split into pieces and the size of each
piece is b = log N bits. For each real block, the block ID i is contained in its first
piece, denoted as di,1, while the first piece of each dummy block is set to −1.
The remaining pieces store the content of that block, denoted as di,2, di,3, · · · ,
di,η−1.

Before being exported to the remote storage server, the plain-text block is
encrypted using CTR encryption mode (counter encryption mode) [10] piece by
piece with a secret key k. Specifically, the ciphertext of each block Di contains
η pieces, denoted as ci,0, · · · , ci,η−1, where

ci,0 = Ek(ctr), where ctr is a nounce generated by a pseudo-random function;
ci,1 = Ek(ctr + 1) ⊕ di,1;
· · · ;
ci,η−1 = Ek(ctr + η − 1) ⊕ di,η−1.

(1)

Thus, the encrypted block (denoted as Di) is Di = (ci,0, ci,1, ci,2, · · · , ci,η−1).

Server Storage. The server-side storage is divided into P smaller fully-
functional ORAM partitions, where P is a system parameter. Each partition
can hold 1.1N/P real blocks. As shown in Lemma 1 (Section 5), given that
log N log log N ≤ P ≤ √

N , the number of real blocks in each partition is upper
bounded by 1.1N/P with a probability of 1 − O(N− log log N ).

In GP-ORAM, each ORAM partition is a revised version of the S-ORAM [19]
construction. Specifically, each partition is organized as a pyramidical struc-
ture shown in Figure 2, where the total number of layers is denoted as L2 =
�log(N/P )	. The top layer, i.e., layer 1, is an array containing up to four blocks.
Each of the rest layers is organized as one or multiple segments. These layers
are further divided into single-segment layers (i.e., T1-layers, including layers 2
to L1 = 
log(3 log2 N)� − 1) and multi-segment layers (i.e., T2-layers, including
layers L1 + 1 to L2).

Each T1-layer l has a single segment. The segment stores 2l+1 blocks, at
most half of which are real blocks, and one encrypted index block Il with 2l+1

entries. Each entry of Il corresponds to a block in the segment and consists
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Fig. 2. Organization of the server-side storage.

of three fields: ID of the block, location of the block in the segment, and access
bit indicating whether the block has been accessed since it was placed to the
segment.

For each T2-layer l < L2, it is composed of Wl = �2l/ log2 N	 segments,
while the bottom layer (i.e., layer L2) contains WL2 = �1.1 ∗ 2L2/ log2 N	 seg-
ments. The bottom layer has slightly more segments, because it should be able
to accommodate 1.1N/P real data blocks. A T2-layer segment has the same
format as a T1-layer segment except that it needs to contain exactly 3 log2 N
data blocks. Having 3 log2 N data blocks per segment is to ensure the security
property of the design and it has been proved in [19].

Inside each segment, there is an index block with at most 3 log2 N entries
and each entry contains three fields: ID of the block (needing log N bits),
location of the block in the segment (needing log(3 log2(1.1N/P )) bits), and
access bit (needing 1 bit). Thus, an index block needs at most 3 log2 N [log N +
log(3 log2(1.1N/P ))+1] bits. In practice, with N ≤ 232 which is considered large
enough to accommodate most practical applications, the size of an index block
is less than 32 KB, which can fit into a typical block assumed in P-ORAM [15].

In addition, each ORAM partition p maintains a counter Cp to keep track of
the times that the partition has been queried.

User Storage. The user-side storage consists of the following components. (i)
Stash with P slots: each stash slot corresponds to one of the ORAM partitions;
that is, it buffers the blocks that should be written to the corresponding partition
later. (ii) Shuffling buffer: the shuffling buffer (with the capacity of S blocks)
is used for data shuffling process. (iii) Index table: the index table records the
information of each block. Specifically, it has N entries and each entry (pi, li)
has two fields; the block is in partition pi and the block is latest stored on layer
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li. (iv) Secret storage: it stores all secrets including cryptographic keys for
encryption and authentication, and its size is negligible compared to the other
components.

4.2 System Initialization

To initialize, the user first selects a data encryption key, denoted as k. Then,
each real block is encrypted and randomly assigned to one of the P partitions;
the local index table is initialized to reflect the assignment.

After the above assignment, the user initializes each partition pi as follows.
For each of the real blocks Dj assigned to partition pi, the user selects a secure
hash function, denoted as Hpi,L2(∗), for the bottom layer L2, and assign Dj

to segment Hpi,L2(j). Then, the user adds dummies to ensure each segment
contains exactly 3 log2 N blocks. For each segment, the user randomly permutes
all blocks inside it and builds an encrypted index block for it. Finally, the index
and data blocks are uploaded to the server.

4.3 Data Query

To query a data block Dt, the user first searches the index table to get partition
ID pt and layer number lt for Dt. Then, the user searches the stash slot of pt. If
Dt is not found, the user will launch a query for Dt in partition pt; otherwise, a
dummy query to pt will be launched.

Algorithm 1. Query(Dt, pt)
1: L ← the set of non-empty layers of partition pt

2: Retrieve Cp from partition pt

3: if (Dt is a dummy block) then
4: S ← {segl|∀ l ∈ L, segl is a randomly-selected segment of layer l}
5: Retrieve the index block of each segment in S
6: From each segment in S, retrieve a dummy block that has not been accessed
7: Update, re-encrypt & upload the retrieved index block
8: else
9: Find layer l̂t where Dt is located; segl̂t

← Hpt,l̂t
(t)

//Secure hash function Hpt,l̂t
(t) decides which segment of layer l̂t in partition pt

stores Dt

10: S ← {segl|∀ l ∈ L \ {l̂t}, segl is a randomly-selected segment of layer l}
11: Retrieve the index blocks of segments in S ∪ {segl̂t

}
12: From each segment s ∈ S ∪ {segl̂t

}, retrieve a dummy block that has not been
accessed if s ∈ S, or Dt otherwise

13: Update, re-encrypt & upload the retrieved index block
14: end if

The algorithm for querying Dt in partition pt, i.e., Query(Dt, pt), is revised
from the query algorithm in S-ORAM [19] and formally presented in Algorithm 1.
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In the algorithm, the layer l̂t where Dt is located is found as follows: First, based
on the query counter Cpt

, the most recently shuffled layer l′ can be inferred.
Then, l̂t ← l′ if l′ ≥ lt because Dt must have been shuffled to l′ during the most
recent shuffling process; otherwise, l̂t ← lt.

4.4 Background Eviction

After each data query, a background eviction process as described in Algorithm 2
should be launched to avoid stash overflowing. Similar to P-ORAM, this process
could be sequential or random. For simplicity, we adopt the sequential approach.
Suppose ψ records the last evicted stash slot and λ denotes the eviction rate
(i.e., the number of stash slots that should be evicted after each data query).
The eviction operation essentially pushes one data block from its stash slot to
layer 1 of its corresponding partition. As the capacity of layer 1 is limited, every
four eviction operations performed on a partition could result in layer 1 overflow
and thus should trigger a data shuffling of that partition.

Algorithm 2. Sequential Background Eviction (λ)
1: for k = 1 to λ do
2: ψ ← (ψ + 1) mod P
3: if (stash slot[ψ] does not contain real block) then write a dummy to layer 1 of pψ

4: elseremove a real block from stash slot[ψ] and write it to layer 1 of pψ

5: end if
6: Cpψ ← Cpψ + 1
7: if (Cpψ mod 4 = 0) then
8: Shuffle partition pψ

9: end if
10: end for

Different from P-ORAM, GP-ORAM shuffles data in pieces instead of blocks,
as in S-ORAM [19]. To shuffle a certain x number of blocks in the unit of piece,
only bx bits of local storage is needed, while Bx bits of local storage would
be needed if shuffling these blocks in the unit of block. Hence, GP-ORAM can
utilize the shuffling buffer more efficiently than P-ORAM. To facilitate fine-
grained shuffling, the shuffling buffer is split into the following two components
(as shown in Figure 2): (i) π, which is a buffer to store a permutation of up to
2m2 inputs and thus needs 2m2 log(2m2) bits, where m is a system parameter;
(ii) buf0, which is used to temporarily store up to 2m2 data pieces. Recall that
each data piece has b bits and the capacity of the shuffling buffer is S bits. In
GP-ORAM, we set the shuffling buffer size to

S = 4.4 · N

P
· (log(4.4 · N

P
) + b). (2)

The purpose is to ensure that, for any layer of each partition, each block is
downloaded and uploaded for only once during a shuffling process. The shuffling
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process is the same as in S-ORAM [19], and thus is skipped here due to space
limitation.

5 Security Analysis

To show that GP-ORAM is secure according to Definition 1 in Section 2, we
develop a proof in two parts: (1) GP-ORAM generates a random access pattern
independent of user’s actual access pattern, and (2) GP-ORAM fails with a
probability of O(N− log log N ). For the second part, there are three aspects to be
proved in detail: (i) the stash overflows with a probability of O(N− log log N ), (ii)
any partition overflows with a probability of O(N− log log N ), and (iii) any layer of
any partition overflows during data shuffling with a probability of O(N− log N ).

Lemma 1. Given that P ≥ log N log log N , the total number of real blocks in
the stash at any time during data queries is upper bounded by 2P (1 − 2/P ) with
a probability of 1 − O(N− log log N ).

Lemma 2. Given that log N log log N ≤ P ≤ √
N , the total number of real

blocks for any partition at any time during data queries is upper bounded by
Φ = 1.1N/P with a probability of 1 − O(N− log log N ).

Theorem 1. GP-ORAM is secure under the security definition in Section 2.

Due to space limitation, please refer to Appendices II, III, and IV of our
technical report [20] for the proofs of the above lemmas and theorem.

6 Cost Analysis

In this section, we analyze the costs of non-recursive and recursive GP-ORAM
constructions, and compare them to P-ORAM [15], Path-ORAM [16] and S-
ORAM [19], which are the most communication-efficient state-of-the-art ORAM
constructions.

Cost Analysis for Non-recursive GP-ORAM. The communication cost
includes query and background eviction costs. Each data query retrieves two
blocks (i.e., one index block and one data block) from and uploads only the
index block to each non-empty layer of the server. As there are L2 = �log(N/P )	
layers, query cost on average is: Cquery < 1.5 · log(N

P ) · B.
As for the background eviction cost, after each query, λ blocks are written to

λ consecutive partitions at the server. Thus, P/λ queries result in all P partitions
being accessed once. Therefore, for each partition, layer l (1 < l < L2) is involved
in a shuffling process every 2·2l ·P/λ queries, while layer L2 is shuffled every 2L2 ·
P/λ queries. Recall that shuffling a T1-layer l involves 2·2l blocks, shuffling a T2-
layer l involves 4·2l blocks, and shuffling layer L2 involves 5.3·2L2 blocks. Hence,
the amortized shuffling cost is Cshuffle = (

∑L1
l=2

2·2l·P
2·2l·P/λ

+
∑L2−1

l=L1+1
4·2l·P

2·2l·P/λ
+
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4.4·2L2 ·P
2L2 ·P/λ

)B, Therefore, the communication cost for non-recursive GP-ORAM is

CGP-ORAM(NR) = Cquery + Cshuffle = (1.5 + 2λ) log N
P · B − λ(log log N − 2.8) · B.

For storage cost, as stated in Lemmas 1 and 2, the user needs to maintain the
following amount of storage space: 2P (1 − 2

P )B + S + N · (log N + log log 1.1N
P ),

where P ≥ log N log log N . The size of the stash is 2P (1−2/P )B, the size of the
shuffling buffer is S, and the size of the index table is N · (log N + log log 1.1N

P ),
respectively. Note that, the shuffling buffer storage is temporary, while the stash
and index table spaces are permanently needed. For server storage, each partition
contains at most 5.3N/P blocks. Thus, the server storage is less than 5.3NB.

Cost Analysis for Recursive GP-ORAM. Suppose there are φ levels of
recursion in the recursive construction, and the ith level of recursion is imple-
mented by GP-ORAMi. Thus, GP-ORAM1, which is used to store the user’s
data blocks, requires a stash of size 2P (1 − 2/P )B and a shuffling buffer of size
S in the user’s local storage, while the index table is exported to the server as
GP-ORAM2. The compression rate for GP-ORAM2 can be smaller than 2−13

(i.e., the size of GP-ORAM2 can be less than 1
213 of that of GP-ORAM1) when

N ≤ 244 and B ≥ 64 KB, which covers the practical scenarios considered in [15].
Therefore, parameter φ is no more than 4; that is, no more than 4 levels of recur-
sion are needed in practice.

Since GP-ORAM1 has much larger capacity than other GP-ORAMs,
the extra communication cost introduced by recursion can be computed as
O(

∑φ
i=1 log(α−iN) · B) in practice. For the extra local storage cost, it mainly

comes from the stashes for extra GP-ORAMs (note that the shuffling buffer for
GP-ORAM1 can be reused for other smaller GP-ORAMs), and the total size of
these stashes is much less than that for GP-ORAM1. Specifically, a stash of size
3P (1 − 2/P )B is enough for recursive constructions. At last, the extra cost on
server storage is O(

∑φ
i=1 α−iN · B).

Tradeoff Between Local Storage Capacity and Communication Cost
in GP-ORAM. Suppose a user exports N data blocks each of B bits, and the
local storage capacity is Sl. The user could find an optimal P (i.e., number of
partitions) for GP-ORAM to minimize the communication cost.

According to CGP-ORAM(NR) in the non-recursive GP-ORAM cost analysis,
the larger is P , the smaller is the communication cost. Hence, the optimal P
should be the largest P without incurring a local storage cost higher than Sl.
Formally:

Maximize P,

subject to 2P (1 − 2
P

)B + S +
NB

α
≤ Sl for non-recursive GP-ORAM,

subject to 3P (1 − 2
P

)B + S ≤ Sl for recursive GP-ORAM.

The example plotted in Figure 3(a) shows the relation between P and local
storage consumption in the recursive GP-ORAM. Recall that, the local storage
includes shuffling buffer and stash. As we can see from Figure 3(a), when P
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is small, local storage consumption decreases as P increases; when P becomes
large, local storage consumption increases as P increases. This phenomenon can
be explained as follows.

– When P is small, the size of each partition is large; hence, the shuffling buffer
dominates the local storage. As P increases, shuffling buffer decreases which
causes the local storage to decrease as well.

– When P is large, the number of partitions gets large and so the stashes
dominates the local storage. As P increases, the size of stashes increases
which causes the local storage to increase too.
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Fig. 3. Examples illustrating the relation between P , local storage, and minimal com-
munication cost.

Based on the relation plotted in Figure 3(a), the user can find a range of
P , with which the required local storage does not exceed Sl. Because the com-
munication cost decreases as P increases, the maximum P within the range
becomes the optimal P that minimizes the communication cost. This way, for
any given Sl, the communication cost corresponding to the optimal P can be
found. Figure 3(b) plots an example to illustrate the relation between local stor-
age capacity and minimal communication cost in the recursive GP-ORAM.

GP-ORAM VS. P-ORAM. Table 1 compares GP-ORAM with P-ORAM
in terms of asymptotical performance. From the table, we have the following
observations: (i) When P is set to N c (c < 0.5) and S is set as in Equation (2),
the communication costs for both non-recursive and recursive GP-ORAM can be
re-written as O(log N · B), which is comparable to the cost for non-recursive P-
ORAM and much lower than that for recursive P-ORAM. (ii) The local storage
costs for non-recursive P-ORAM and GP-ORAM are both O(NB), as the costs
are dominated by the index table. The local storage cost for recursive GP-ORAM
is O(PB + S), which is asymptotically smaller than O(

√
NB) as P <

√
N .

Figures 4 and 5 compare the performance of GP-ORAM with P-ORAM under
the practical system settings used in [15] (i.e., block size ranging from 64 KB
to 1 MB; the number of blocks ranging from 224 to 232). From the figures, we
have the following observations: (i) The local storage demanded by recursive
GP-ORAM is only 2.5%∼0.14% of that by non-recursive P-ORAM, while GP-
ORAM only yields about 1 to 3 times higher communication cost than P-ORAM.
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Table 1. Asymptotical Performance Comparison.

Scheme Bandwidth Cost User Storage Server Storage Failure Prob.

P-ORAM (NR) O(log N · B) O(NB) < 4NB O( 1
Nc )

P-ORAM (R) O(log2 N · B) O(
√

NB) < 8NB O( 1
Nc )

GP-ORAM (NR) O( log3(N/P )

log2 S
· B) O(NB) < 5.3NB O(N− log log N )

GP-ORAM (R) O( log3(N/P )

log2 S
· B) O(PB + S) < 5.3NB O(N− log log N )

(ii) Recursive P-ORAM is impractical due to its extremely high communication
cost.
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Comparing GP-ORAM, Path-ORAM and S-ORAM. Table 2 shows the
asymptotical performance comparisons between GP-ORAM, Path-ORAM and
S-ORAM. Compared to S-ORAM and Path-ORAM, GP-ORAM introduces one
adjustable system parameter P , which makes it more tunable.

The performance comparison between GP-ORAM and Path-ORAM under
practical scenarios [15] is shown in Table 3. From the table, it can be seen that
GP-ORAM can fully utilize the local storage to achieve better communication
efficiency, and it incurs lower server-side storage cost.
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Table 2. Asymptotical Performance Comparison.

Scheme Bandwidth Cost User Storage Server Storage Failure Prob.

S-ORAM O( log3 N
log2 S

· B) O(S) < 6NB O(N− log N )

Path-ORAM (NR) O(log N · B) O(NB) 10NB N−ω(1)

Path-ORAM (R) O(log2 N · B) O(log N · B) · ω(1) > 10NB N−ω(1)

GP-ORAM (NR) O( log3(N/P )

log2 S
· B) O(NB) < 5.3NB O(N− log log N )

GP-ORAM (R) O( log3(N/P )

log2 S
· B) O(PB + S) < 5.3NB O(N− log log N )

Table 3. Practical Performance Comparison.

Scheme Bandwidth Cost User Storage Server Storage

Path-ORAM (NR) 10 log N · B N log N + log N · B · ω(1) 10NB

Path-ORAM (R) 10 log2 N · B log N · B · ω(1) 20NB

GP-ORAM (NR) < 4 log N · B N log N + PB + S < 5.3NB

GP-ORAM (R) < 6 log N · B PB + S < 5.3NB

Figure 6 shows the performance comparison between GP-ORAM and S-
ORAM under practical scenarios [15]. From the figure, we can see that S-ORAM
is not fully tunable as local storage increases. Especially when the local storage is
large enough, the communication cost cannot be further reduced. For example,
when N = 232, B = 64KB and the local storage size has exceeded 1.2 GB, the
communication remains the same regardless of the increase in local storage size,
while GP-ORAM can achieve 50%-60% savings in communication cost as the
local storage gets larger.

7 Related Work

According to local storage assumptions, existing ORAM constructions can be
roughly classified into the following categories.

ORAMs with O(1) Local Storage [2–9,11,13]. These ORAMs only have little
state information, such as secret keys and query counters, stored in local stor-
age. Among them, Balanced ORAM (B-ORAM) [8] proposed by Kushilevitz et.
al. incurs the lowest asymptotical communication cost O( log2 N

log log N ). In general,
these constructions are impractical as the hidden constants behind the big-O
notation are quite large due to the heavy data shuffling and background evic-
tion processes. Recently, S-ORAM [19] with constant local storage was proposed
to incur O(log2 N) communication cost but with practically small constants
behind the big-O notation. It leverages the fact that block size is usually large
and introduced segmentation-based design of query and shuffling. However, the
local storage was not fully utilized as in GP-ORAM.

ORAMs with O(logc N) Local Storage [4,12,16,18]. Among these construc-
tions, Path-ORAM [16] re-designed the tree structure ORAM [13] and reduced
the bucket size by adding an additional stash to local storage, which resulted
in only O(log2 N) communication cost. PrivateFS [18] modified and improved
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a Bloom filter based ORAM solution [17] to approach practicality and concur-
rency, and resulted in O(log2 N log log N) communication cost. These ORAMs
still have high communication costs, needing to retrieve more than 1000 data
blocks per query.

ORAMs with O(N c) Local Storage [3,4,15–17]. The first ORAM with square-
root local storage appeared in [3]. Though the actual communication cost is
higher than

√
N data blocks per query, it is still an inspiring solution that opens

the door for subsequent research. Since then, a novel Bloom filter ORAM [17]
was proposed which integrates a more efficient shuffling method to achieve bet-
ter performance. ORAMs with O(N c) (c > 0) local storage were also studied
in [4]. Recently, P-ORAM, with sublinear local storage [15] (square-root local
storage in practice) and efficient implementation [16], has achieved much lower
communication cost of O(log N). However, as discussed in Section 6, the user-
side storage cost could be too high to be acceptable, especially when the number
of outsourced data blocks is large.

8 Conclusion

This paper proposed a new ORAM construction, called Generalized Partition
ORAM (GP-ORAM). GP-ORAM utilizes a new shuffling method, adjusts the
number of partitions according to the available user-side local storage, and out-
sources the index table to the server. Through these techniques, it achieves low
bandwidth cost (O(log N)) and has significantly less user-side storage cost than
P-ORAM. We demonstrate the effectiveness of GP-ORAM via extensive security
and cost analysis.

Acknowledgement. This work was partly supported by NSF under grant CNS-
1422402.
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Abstract. We present a pragmatic evaluation system, where privacy of
each evaluator is guaranteed in a cryptographic way. Each evaluation
report is signed with a domain signature that is related to the anony-
mous signer and to the evaluation subject in the way that (a) a given user
cannot appear under different pseudonym for a given evaluation subject
(no Sybil attack possible), (b) it is infeasible to decide whether the sig-
natures for different subjects have been created by the same evaluator,
(c) each evaluator holds a single private key.

Unlike available anonymous credential systems and domain signatures
proposed so far, our scheme is based on standard operations available on
most cryptographic smart cards and easy to implement in the scenarios
where the set of evaluators is determined. We describe one application
scenario – a university evaluation system with courses feedback from the
students.

Keywords: Anonymity · Authentication · Domain specific pseudonym ·
Digital signature · Unlinkability · White list

1 Introduction

1.1 Anonymity in IT Systems

We are facing a dynamic growth of electronic data processing. More and more fre-
quently processing sensitive data takes place, where confidentiality requirements
cannot be limited to data contents but also to who is creating or processing the
data.

There are many areas where we urgently need anonymity. This concerns e.g.
whistleblowers, witness protection in criminal prosecutions, protection of chil-
dren in court trials, certain health care areas, and many democratic processes.
The general rule is that only those data should be processed/available, which are
necessary for the process. Identity of actors of the process are frequently unnec-
essary. On the other hand, identity has been widely used in the non-electronic
era for the sheer reason that it was hard and costly to gather these identity data
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and reuse them for malicious purposes. In the meantime the price for data intel-
ligence has declined by order of magnitude, while on the other hand the level of
data protection has not increased accordingly.

Current Situation. A typical approach is to use pseudonyms, erase explicit
identification data and make sure that anonymity set is big enough (anonymity
set is the set of identities that match a given data set). None of these techniques
is effective in practice. The users are forced to trust the system administrators,
the only other option is to opt-out from IT systems. As long as the data adminis-
trators are not caught to process sensitive data in an illegal way, the user cannot
do anything. Illegal data trade of this kind might be very intensive.

The current legal concepts for data protection are not effective as well. The
European directive [1] puts responsibility for unauthorized disclosure of per-
sonal data. However, practical implementation is not a success story. The data
can emerge on a server where there are no rules of data protection, and once
published it can be processed without limitations. A proposed regulation on per-
sonal data protection in Europe goes far beyond that, but still it seems that legal
means alone cannot solve the problem.

Available Technologies. There are a few techniques aimed to protect
anonymity of a user of IT systems. A basic solution is what we will call domain
separation. According to this approach each domain is a separate islet with sep-
arate domain identities - pseudonyms, and independent authentication methods.
However, this approach is problematic due to scalability problems, burden for
the user and, frequently, insecure behavior of the users (e.g. reusing the same
pseudonyms, keys, passwords, . . . ).

Federated identity management, and single log-on systems are aimed
to be a solution for scalability problems. However the price is high: they require a
single point of trust receiving data about all users’ activities. The eIDAS concept
[2] is similar: a national authentication center participates in authentication of
their citizens abroad.

Anonymous credential [3–5] systems enable a user to prove his chosen
attributes. The proof is based on cryptographic data provided by the creden-
tials issuer. However, neither the user’s identity nor credentials are revealed. By
design, a verifier must not be able to learn any attributes that not revealed by
the user or to link multiple presentations of the same user. On the other hand,
a user must not be able to prove possession of attributes not confirmed by the
issuer. Lost, expired or stolen credentials have to be revoked. The problem is that
we cannot just blacklist a credential since the main idea is to protect anonymity.
Therefore other techniques such as cryptographic accumulators are used [6,7].

Anonymous credential concept is quite close to real world needs. E.g. for age
verification (obligatory in some countries during purchase of alcohol) it should be
sufficient to prove possession of an ID card issued for adults and matching face
image from the ID card with the face of the document holder. Other attributes
should be hidden.



Anonymous Evaluation System 285

A group signature scheme [8,9] allows to set up a group of users which then
may sign data as group members. There are many versions of group signatures,
however the main point is that the signature reveals nothing except for the
group membership of the signer. Namely, it is infeasible to decide whether two
signatures come from the same person (unless the scheme contains an opening
procedure that enables to deanonimize the author of a signature).

Ring signatures [10] provide a similar functionality as group signatures.
However, they do not require a join procedure and the group, called a ring, can
be created ad hoc by a signer using public keys of other users. In contrary to
group signatures, anonymity within the group is unconditional while the group
is explicitly presented. In particular, the signatures of the same person are not
linkable.

Domain signature schemes [11,12] enable a user to sign messages as a group
member and referring to his pseudonym – a domain specific identity. Each user
holds a single secret key, and using this key may derive exactly one pseudonym
for a given domain and create his signatures under this pseudonym. The domain
pseudonyms must not be linkable across multiple domains: a verifier holding
domain pseudonyms and corresponding signatures from distinct domains must
not be able to check which of them come from the same user.

Restricted identification [13] scheme enables a user to identify himself as
a group member and derive a domain specific pseudonym. The main difference
between restricted identification and domain signatures is that the first one is
a pure identification scheme. It is simultable, i.e. any verifier holding the global
public parameters may produce an properly distributed transcript of a protocol
execution with any user of the system. So, it cannot be used for authenticating
digital data stored in a system.

1.2 Anonymous Evaluation Systems

In this paper we focus on anonymous evaluation systems – a very specific appli-
cation area where a strong anonymity protection is necessary, while on the other
hand reliable and unbiased feedback is the main value.

A representative example for such evaluation systems is the feedback from
the students about university courses. Such an evaluation is becoming a standard
approach in many countries as part of quality control. A pilot of such a system
has been implemented by the ABC4Trust project (https://abc4trust.eu/).

University course evaluation system is an interesting application case with
high level of requirements. First, there is a problem of scale. Typically there are
thousands of students enrolled to many courses. This yields a huge number of
reports (≈ 300K per year in our university – infeasible for paper based report-
ing). Moreover, without anonymity guarantees the students might fear to speak
openly – especially in IT related departments where the students might be well
aware of the threats of naive solutions (a web questionnaire with authentication
via the University IT system). Last not least, some students might be eager to
hack the system.

https://abc4trust.eu/
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2 Requirements for Anonymous Evaluation

Soundness Requirements. In order to get sound evaluation results we have
to guarantee fulfilling the following conditions:

Resilience to Sybil Attacks: A single (physical) person must not be able
to appear under different identities in a given domain. Otherwise, it would be
possible to heavily bias the evaluation results (both in a negative and a positive
way). On the other hand, it makes sense to enable an evaluator to submit more
than one opinion in the course of time as new issues may emerge. However, these
opinions have to be linked to originate from the same person. Thereby, one can
compare correctly the number of positive and negative voices.

Domain Membership: it must be guaranteed that only entitled evaluators
provide their opinions. So for each domain there is an explicit or implicit set of
domain members, and only the members may issue valid opinions. An explicit
set of domain members may be defined via a set of certificates with public keys
to be used for signature verification. An implicit set can be defined by possession
of some cryptographic data – an entitled evaluator may use this data to create
a proof of being a group member.
This property included in particular seclusiveness: nobody, including a coalition
of legitimate group members, may authenticate himself as a member of a domain
under a fake anonymous identity, not related to any legitimate member.

Unforgeability: It should be infeasible to impersonate a legitimate user within
a domain. Impersonation means submitting an opinion that would be accepted
and linked with a legitimate domain member.

Unlinkability: the authentication process should not create data that would
provide additional knowledge regarding “who-is-who”. That is, while the same
opinions of the same domain member can be linked, it should be (computa-
tionally) infeasible to find any relationship between the opinions from different
domains. In particular, it must be infeasible to link opinions of the same domain
member with a real identity of the author.

Implementation and Infrastructure Requirements. As we are focusing
on real world systems, we have to take into account additional limitations:

Key Protection: the keys used for signing evaluation reports should be pro-
tected just as other signing keys. This points to cryptographic smart cards as
the only secure technology available on the market. Solutions such as software
keys in smartphone apps are out of question due to possible key selling.

Constant Number of Keys: there is a constant number of long term private
keys per user, while the number of domains is potentially unlimited. Moreover,
for a given person it is a priori unpredictable for which domains this person
will create opinions. “A constant number of keys” means here really a few keys:
preferably just one.
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The number of ephemeral secrets per authentication should be also limited to
just a few values, which may be stored in a severely limited memory of devices
such as smart cards. The same concerns storage for public keys, certificates, etc.

Cryptographic Algorithms: the operations involving secret keys of a signa-
tory should be limited to cryptographic operations that are implemented on
standard cryptographic devices. This means in practice that there are only a
few signature algorithms at hand.

Limited Infrastructure: the system should not require building a complicated
and large scale infrastructure, even such as X.509 PKI infrastructure.

Existing Anonymity Techniques Versus the Requirements. Let us dis-
cuss the standard anonymity tools and explain why they are not suited for
anonymous evaluation systems:

Domain Separation: this solution might be perfect regarding unlinkability,
however in practice a user (or his device) can hold only a few secrets.

Federated Identity Management: there is a single point of trust and its
misbehavior may lead to identity disclosure. Therefore the evaluators would
have to take into account that their identities will be forwarded to third
parties, e.g. to the evaluated persons.

Anonymous Credentials: many schemes offer unlinkability of the actions of
the same user in a domain, therefore the aimed application area is completely
different. Moreover, so far all anonymous credential systems are pretty heavy
regarding computation and storage.

Restricted Identification: this is a pure identification system. So we have
to trust the administration of evaluation results repository and depend on
their declarations. This concerns in particular linking the reports of the same
evaluator.

Group Signatures: the main problem with standard group signatures is that
we cannot link the reports of the same evaluator. Complicated procedures
for joining the group and specially tailored signature schemes is also an
implementation problem. Group signatures typically define procedures to
reveal identity of a signer (either by the group manager or by the group
members) – and this undermines their utility for evaluation systems.

Ring Signatures: ring signatures do not enable linking opinions of the same
person. As this is a fundamental feature of ring signatures, the ring signatures
are not suited for anonymous evaluation systems.

Domain Signatures: so far the proposed domain signature schemes assume
that each user is by default a member of each domain. Creating a system
of domain signatures was focused on the issue how to avoid e.g. necessity of
issuing a certificate separately for each domain. The main issue however is
low maturity of these schemes. E.g. the solution from [13] requires uncondi-
tional security of smart card devices.
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3 Solution Framework

In this section we describe our proposal for anonymous evaluation. The presented
instantiation uses the DSA signature scheme and a multiplicative group of a
prime order. However, our framework can be instantiated with other groups and
signatures schemes, e.g. ECDSA or Schnorr signatures. According to already
used terminology each evaluation questionnaire concerns some domain and each
evaluator has the right to submit reports within some specific set of domains.

The scenario presented here is closely related to a former paper [14]. However,
the present solution is not based on an ad hoc designed signature scheme; it is a
general framework where most signatures based on discrete logarithm problem
can be used.

In our framework there are the following actors:

Evaluators – users which register their public keys and finally may submit
evaluation questionnaires.

Registration Server – an authority responsible for user registration and
assigning them rights to submit evaluation questionnaires in certain domains.
It initiates creation of the white lists for each domain.

Questionnaire Server – a server receiving questionnaires submitted by eval-
uators, checking their validity based on white lists received from the Regis-
tration Server and archiving them.

Mix Servers – servers forming a chain between the registration and the ques-
tionnaire servers. They transform the list obtained from the registration
server and finally output a white list for a given domain. The chain may
consist of a single server.

Inspection System – a party that may challenge and control the output of
mix servers.

3.1 Idea

In order to join the system, an evaluator has to register his public key at the
registration server. The public key is a standard DSA public key, i.e. gx, where
g is the generator of a prime order group and the exponent x is the private
key. The registration server stores the list of all public keys of the registered
evaluators.

As the evaluation reports must be anonymous, the questionnaire server can-
not just use the registered public keys for verification of submitted question-
naires. Instead, the questionnaire server receives a list that contains public keys
corresponding to generator gr. Namely, for an evaluator holding a private key
x the list has to contain the key (gr)x. The exponent r is shared between the
registration and mix servers, i.e. each server holds a random exponent ri and
their product equals r. The list of public keys for the questionnaire server is
created by raising the original list of public keys for a domain to all powers ri.
The process is sequential: after raising to power ri the list is given to the next
server in the chain where it is raised to power ri+1.
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To protect against malicious mix servers we use an idea similar to [15]. (One
could try to appply a more efficient solution from [16], but the problem would
be to hide the links.) Apart from the standard list that is sent to the next mix
server, the current one computes N virtual lists that are computed using the
exponent ri · bi,j (for 0 < j ≤ N). The number N is a system parameter and
it could be just 1. During an inspection the mix server is challenged by the
inspection system to return, for each virtual list, either ri · bi,j or bi,j . The first
exponent can be used to verify that the virtual list corresponds to the input list
of the mix server. The second exponent can be used to verify that the virtual list
corresponds to the output list. With probability 1 − 2−N the inspection system
would detect an attempt to cheat by a mix server.

3.2 Detailed Description

Registration Server Setup. On input a security parameter λ, the registra-
tion server chooses a safe prime modulus 2λ−1 < p = 2q + 1 < 2λ. Then the
registration server chooses a group generator g ∈ GF(p) of prime order q at
random, a secure hash function H, and a deterministic pseudorandom number
generator DRNG which outputs pseudorandom numbers in Zq. The registration
server chooses at random a secret seed xD, 0 ≤ xD < 2λ, for the DRNG. It also
sets parameter the parameter N ≥ 1. Finally, the registration server sets the
public parameters pp = (λ,N, q,G,H,DRNG) and outputs pp. The secret seed
xD is given securely to the questionnaire server.

Evaluator Setup. On input the public parameters pp, evaluator U chooses a
secret exponent xU ∈ Zq at random, and computes his public key XU := gxU .

Mix Server Setup. Each mix server S, takes as input the public parameters
pp and chooses a secret seed 0 ≤ xS < 2λ at random.

Evaluator Registration. In order to register an evaluator U holding a
secret/public key pair (XU , xU ), the following steps are executed:

1. The user U interacts with the registration server and proves that he has the
right to become an evaluator.

2. U creates a DSA signature of his public key XU , that is, he performs the
following steps: choose k ∈ Zq at random, compute r := (gk mod p) mod q,
and s := (k−1(H(XU ) + xr)) mod q.

3. U sends the signature σ = (r, s) and the public key XU to the registration
server.

4. The registration server verifies the signature. That is, it computes w := s−1

mod q, u1 := H(m) · w mod q, u2 := r · w mod q, and checks whether
r = ((gu1 ·Xu2

U ) mod p) mod q. If, the equality holds, then the registration
server stores (U,XU ) in its database.
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White List Generation. It is initiated by the registration server and involves
the chain of l mix servers.

Registration Server

On input the public parameters pp, a set of n public keys B = (X1, . . . , Xn) of
evaluators and other auxiliary data such as a white list identifier wlID (e.g. the
domain name) the following steps are executed by the registration server:

1. compute a secret key r0 := DRNG(xD, wlID), unique for the white list wlID,
2. compute B0[j] := (B[j])r0 , for 0 < j ≤ n,
3. sort the list B0,
4. compute P0 := gr0 and send L = (B0, wlID, P0) to the first mix server.

Fig. 1. The first part of the Whitelist generation procedure

Mix Servers

The ith mix server obtains the following batch of data:

L = (B0, wlID, P0, . . . , (Pi−1, Bi−1, {Vi−1,1, . . . , Vi−1,N})),

Then using the public parameters pp and its secret seed xS the mix server
executes the following steps:

1. compute a secret key ri := DRNG(xS , wlID) unique for the white list wlID,
2. for 0 < j ≤ N compute bi,j := DRNG(xS , wlID, j),



Anonymous Evaluation System 291

3. for 0 < j ≤ n compute Bi[j] := (Bi−1[j])ri ,
4. for 0 < j ≤ N and 0 < k ≤ n compute Vi,j [k] := (Bi−1[k])ri·bi,j ,
5. sort each of the following lists: Bi, Vi,1, . . . , Vi,N ,
6. compute Pi := P ri

i−1,
7. append (Pi, Bi, {Vi,1, . . . , Vi,N}) to the list L,
8. if i = l, then send L to the questionnaire server, else send L to the mix server

i + 1.

Fig. 2. The second part of the Whitelist generation procedure

White List Finalization. The questionnaire server obtains a list

L = (B0, wlID, P0, . . . , (Pl, Bl, {Vl,1, . . . , Vl,N}))

and takes as input the public parameters pp. The server sets WwlID = Bl, the
white list public key PKwlID = Pl and outputs (WwlID, wlID, PKwlID).

Submitting an Opinion. An evaluator U holding a private key xU may fill
in a questionnaire and submit it to the questionnaire server. First, the question-
naire server publishes the white list identifier wlID and the white list public key
PKwlID. Let m be a filled questionnaire prepared by the evaluator U . Now, he
executes the following steps:

1. compute the pseudonym nym := (PKwlID)xU mod p of U in the domain
wlID,
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2. compute a signature of m related to the generator PKwlID, the private key
xU and the public key nym:

• choose k ∈ Zq at random,
• compute r := ((PKwlID)k mod p) mod q ,
• compute s := k−1(H(m) + xr) mod q ,

3. send the filled questionnaire m, the signature σ = (r, s) of m, the white list
identifier wlID, and the pseudonym nym to the questionnaire server.

Now the questionnaire server checks whether nym is on the white list and
verifies the signature σ using nym as the public key:

1. compute w := s−1 mod q,
2. compute u1 := H(m) · w mod q and u2 := r · w mod q,
3. accept if r = ((PKu1

wlID · nymu2) mod p) mod q.

White List Inspection. At some moment validity of white lists can be
inspected. The point is that a mix server can incorrectly compute some values
on the list Bi. In this way some legitimate entries would disappear from the final
white list and would be replaced by incorrect values. Moreover, in case of the last
mix server the consequences would be more than just denial of service for some
evaluators. Namely, it could insert an entry on the white list for which it could
create corresponding signatures. Fortunately, mix server inspection enables to
detect cheating mix servers in the way described below.

Given the batch

L = (B, wlID, P0, . . . , (Pl, Bl, {Vl,1, . . . , Vl,N}))

the inspection system can test the kth mix server as follows:

1. For each 0 < j ≤ N the inspection system flips a coin in order to determine
a bit tj . Then it challenges the kth mix server for the value bk,j if tj = 0 or
for the value of bk,j · rk if tj = 1.

2. The inspected mix server recomputes the values bk,j and rk and returns the
requested value.
Let ek,j stand for the value returned by the mix server.

3. For 0 < j ≤ N and 0 < t ≤ n the inspection system computes

V ′
k,j [t] := (Vk,j [t])e−1

k,j .

4. For each 0 < j ≤ N the inspection system verifies that V ′
k,j contains the

same elements as Bk if tj = 0 or the same elements as Bk−1 if tj = 1.

The above procedure is interactive, i.e. the mix server must answer the chal-
lenge created by the inspection system. However, using Fiat-Shamir heuristic
we may transform this procedure into a non-interactive one. Note that we only
require that the challenges are not known to the mix server a priori.
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4 Security Overview

We give some non-formalized discussion on the security of our solution. In partic-
ular, we focus on three key properties of an evaluation system, namely unforge-
ability, seclusiveness and domain unlinkability.

Unforgeability. In our scheme unforgeability is based on the unforgeability
of the underlying signature scheme (DSA according to our description). Note
that we exactly follow the DSA signature scheme, except for substituting the
underlying base. To be more specific, let g ∈ G be the generator of the mul-
tiplicative group G on which we run DSA. Furthermore, let us focus on an
evaluator U with the public key XU = gxU . While processing a white list, the
registration server chooses a random r0 ∈ Zq and each mix server chooses a
random ri ∈ Zq, and exponentiates all the public keys present in a batch. Thus,
at the end of the white list generation procedure the public key of the white list
equals PKwlID = (g

∏
0≤i≤l ri) and the pseudonym of the user U takes the form

nym = (XU )
∏

0≤i≤l ri = (g
∏

0≤i≤l ri)xU = (PKwlID)xU . Then, the DSA signature
is made using PKwlID instead of the generator g and nym instead of the user
public key XU .

Note that if we could forge a signature for such a modified base, we could forge
the original signature. Indeed, having a signature (r, s) for PKwlID = g

∏
0≤i≤l ri ,

we could create a signature for the base element g defined as (r, s′) where s′ =
s/(

∏
0≤i≤l ri). Indeed, as r = PKk

wlID, we can treat it as r = gk·∏0≤i≤l ri and
modify s accordingly.

Seclusiveness. Obviously, if the mix servers act according to the protocol
description, then the adversary would have to produce a signature corresponding
to a public key which is on the white list. In this case, the forgery would point to
a real user public key, and the adversary would actually break the unforgeability
property.

Another way to break seclusiveness, would be due to a misbehavior of some
mix servers. In order to ensure that a mix server executes the protocol according
to the specification, we use the inspection system and require the mix servers to
process N additional white lists. The additional white lists are computed using
the exponent ri · bi,j , instead of ri, for 0 < j ≤ N . In case of an inspection, the
inspection system tosses a coin tj and the mix server needs to publish bi,j if tj = 0
or ri · bi,j if tj = 1. In the first case, the inspection system might check whether
the outgoing white list corresponds to the additional white list. In the second
case, the inspection system might check whether the outgoing additional white
list corresponds to the previous white list (the white list sent by the previous
mix server). Hence, in case a mix server would induce any changes to the public
keys being processed, he would need to change each additional white lists and,
in order to not get caught by the inspection system, guess the choice of each
tj in advance. The probability of any undetected misconduct by a mix server
is 1/2N . Of course, the challenges tj must be inpredictable. In order to prevent
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a collusion between the inspection server and the mix servers these numbers
could be determined based, e.g., on a hash of stock exchange data. The whole
data computed by the inspection server must be published in order to enable
recomputation by interested parties.

Domain Unlinkability. By domain unlinkability we mean the inability to
correlate a pseudonym with the user’s real identity. However, a formal definition
of unlinkability is a challenging issue. One direction followed by some authors is
to reduce the task of the adversary to a simplest case: just a single pair of users
and two domains and then ask which pseudonyms in these domains correspond
to the same user. The situation is then described by a left-or-right game and
the scheme satisfies unlinkability property, if the advantage of an adversary is
negligible. Such a game is defined in [11] (it contains a mistake pointed to in [12]
– no domain signature scheme may satisfy this definition).

Another problem with unlinkability proofs is taking into account active
adversaries. Such an adversary may corrupt any user and ask for the owner
of every pseudonym (except for the pseudonyms and users involved in the left-
or-right query). Moreover, the decision about the corruption target can be made
based on the outcome of the previous interaction. [12] attempts to provide a
proof in this dynamic case, however due to hidden assumptions the adversary is
not fully dynamic. Moreover, the reduction tightness depends on the number of
users.

In practice, there are many factors that may deanonimize a user regardless of
the cryptographic scheme used. For instance, if a user submits all questionnaires
at the same time, then the time corellation reveals the link between different
pseudonyms. Therefore we propose to say that a scheme provides unlinkability
if it does not matter which of the following two options is used by the user:

1. the user chooses a pair of keys for creating a signature within a given domain
at random, independently of the choices for the other domains,

2. the pair of keys for this domain are chosen according to the scheme proposed.

Note that the first option corresponds to the most optimistic case: the user
cannot do more to hide his identity in a system. We say that the scheme satisfies
unlinkability property if an adversary cannot distinguish with a non-negligible
advantage which of these two options has been chosen by the user.

In case of the proposed scheme, unlinkability follows from hardness of the
decisional Diffie-Hellman problem. Let XU = gxU , PKwlID = gr and nym =
gxU ·r, where r ∈ Zq is a random element. So if DDH holds, then distinguishing
the distributions

(XU , PKwlID, nym) and (XU , PKwlID, Z),

where Z is chosen uniformly from Zq, is hard. Moreover, if we denote r =
r0 · r1 · . . . · rl mod q, where ri is the secret exponent of a mix server i, it is
easy to see that at least one honest server is necessary to provide unlinkability
of pseudonyms. Given a case for DDH problem it is straightforward to build a
scenario for the unlinkability question for our scheme.
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5 Implementation Issues and Details

The critical point of any cryptographic anonymity system is implementation of
the user’s secret keys. Theoretically, smart cards and similar devices may serve
as secure cryptographic suite, but there is a long way between protocol design
and an affordable implementation. The best way is to reuse already available ID
cards of the users (in our case, the student electronic ID cards), and adjust to
the existing technical limitations.

Most smart cards used in practice today are closed architectures which do
not allow any modifications. On the other hand, developing a new or modified
card is costly, especially if card certification is required. A good option is to use
Java Card (JC) technology that aims to preserve security features while allowing
to install independently developed software on the card. However, we have to be
aware that for Java Cards there are severe limitations and we cannot be sure in
advance that the aimed protocol can be implemented successfully. JC technology
is distributed by Oracle in a form of free standards. If defines, among others, the
Java Card Virtual Machine (JCVM) and the Application Programming Interface
(API). Programmers can use this API in their applets, written usually in the
Java Card language. It is a subset of the standard Java programming language,
e.g. it supports only data types up to short (16 bits). Moreover, one can only
use the Java Card API and no standard Java library is supported.

Fortunately, we have succeeded with a test implementation on the Gemalto
smart cards compatible with student IDs. A part of the source code for the cards
is given on Fig. 3. Below we explain some crucial details.

Our protocol defines two operations to be implemented on a smart card: the
pseudonym generation and creating a signature over a filled questionnaire (or
its hash value).

The second part is fairly standard as signing is the main use case for smart
cards. However, for efficiency reasons we are forced to use the signatures that are
defined by the JC API and supported by the card’s cryptographic coprocessor.
Therefore we have to focus on DSA or ECDSA. In our implementation we first
create the Signature object (line 32) with support for ECDSA. Then (line 55)
we initialize this object with an ephemeral private key. This key holds the same
secret value as the long term key of the user (set in line 54), but takes the public
key of a course as the group generator (set in line 52). Finally (line 56), the data
contained in the array dataToSign is signed.

Deriving the pseudonyms is more tricky, as it requires the exponentiation
operation, which is not a standard cryptographic algorithm supported by the JC
(with the cryptographic coprocessor). Moreover, we cannot use software imple-
mentation due to its inefficiency. Fortunately, we can abuse some algorithms
implemented on the cryptographic coprocessor to do the job (compare [17]).
In case of DSA we can use the Cipher class and the RSA algorithm without
padding. For elliptic curves we can use the KeyAgreement class, implementing
the elliptic curve Diffie-Hellman algorithm, as instantiated in line 31 in Fig. 3.
This object is then initialized with the user’s private key (line 34). Finally, the
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pseudonym for the particular course is computed using the public key of the
course (line 48).

Note that some Java Cards only support a version of the ECDH algorithm
which returns the hash value of the x-coordinate of the resulting point (as per
IEEE P1363). However, in such a case we can just use this value as the user’s
pseudonym. In the implementation in Fig. 3 we require the plain version of the
ECDH algorithm. This is defined by the 0x03 argument for the .getInstance
method in line 31.

Evaluation of the Implementation. We evaluated efficiency of the user side
implementation. To provide some reference data we have chosen smart card
implementations of anonymous credential (AC) systems. This is one of the main
use cases for AC and such implementation was also the deliverable of the Euro-
pean ABC4Trust project (https://abc4trust.eu/). Of course, AC have more fea-
tures than our evaluation protocol. Thus, to provide realistic reference data we
consider the case when users have only two attributes, i.e. the right to evaluate
the course and the master secret key. Note that this is the best case scenario for
AC (more attributes in credentials increase the time of presentation) and the
users will have to create a different credential for each course they participate.
We use the data from [19] regarding efficiency of the major AC systems, namely
U-Prove and Idemix, on less constrained smart cards.

Table 1. Running times comparison

protocol average running time security level (according to [19])

our protocol 549 ms 128 (brainpool 256 bit curve)

U-Prove 487 ms 80 (1024 bit group)

Idemix 997 ms 80 (1024 bit group)

The particular timings are presented in Table 1. In case of our solution this
is the time required to generate the users pseudonym, send 64 bytes to the
smart card and sign them. In case of AC the timings refer to the creation of a
presentation token of 1 of 2 attributes. Note that presentation tokens require a
nonce which may be the signed message.

An important disadvantage for AC based solutions is that the number of
attributes is not just two – a student normally attends many courses at the time
and use one credential for all courses. This increases memory usage while the
memory size is a serious bottleneck for smart cards. Our solution would work
for an unlimited number of courses with the same memory usage.

https://abc4trust.eu/
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1 /*
2 * @author Lucjan Hanzlik
3 * copyright: Wroclaw University of Technology
4 */
5 public class questionnaireJCApplet extends Applet {
6

7 ...
8

9 ECPublicKey pub;
10 ECPrivateKey priv;
11 ECPrivateKey ephPriv;
12 KeyAgreement ka;
13 KeyPair kp;
14 Signature sign;
15 byte[] pseudonym;
16 byte[] base;
17 short lenOfDataToSign;
18 byte[] dataToSign;
19 byte[] signature;
20 byte[] s;
21

22 private questionnaireJCApplet() {
23 register();
24 pub = (ECPublicKey)KeyBuilder.buildKey(
25 KeyBuilder.TYPE_EC_FP_PUBLIC,(short)(FIELDLen*8),false);
26 priv = (ECPrivateKey)KeyBuilder.buildKey(
27 KeyBuilder.TYPE_EC_FP_PRIVATE,(short)(FIELDLen*8),false);
28 ...
29 kp = new KeyPair(pub,priv);
30 kp.genKeyPair();
31 ka = KeyAgreement.getInstance((byte)0x03,false); //ECDH
32 sign = Signature.getInstance((byte)0x11,false); //ECDSA
33 ...
34 ka.init(priv);
35 }
36

37 ...
38

39 // Main function
40 public void process(APDU apdu){
41 byte[] buffer = apdu.getBuffer();
42 byte INS = buffer[ISO7816.OFFSET_INS];
43 short LC = (short)buffer[ISO7816.OFFSET_LC];
44 switch (INS) {
45 ...
46 case (byte)0x03: // sign
47 Util.arrayCopy(buffer,(short)ISO7816.OFFSET_CDATA,base,(short)0,LC);
48 ka.generateSecret(base,(short)0,(short)base.length,pseudonym,(short)0);
49 priv.getS(s,(short)0);
50 ephPriv = (ECPrivateKey)KeyBuilder.buildKey(
51 KeyBuilder.TYPE_EC_FP_PRIVATE,(short)(FIELDLen*8),false);
52 ephPriv.setG(base,(short)0,(short)base.length);
53 ...
54 ephPriv.setS(s,(short)0,(short)s.length);
55 sign.init(ephPriv,Signature.MODE_SIGN);
56 sign.sign(dataToSign,(short)0,lenOfDataToSign,signature,(short)0);
57 ...
58 break;
59 ...
60 }
61 ...
62 }
63 }

Fig. 3. Java Card implementation source code - main parts
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6 Conclusions

We have shown that there is a fairly practical way to create a system fulfilling
privacy-by-design principle in one of the key application areas requiring strong
anonymization – namely, authentication of anonymous evaluation reports. While
anonymous credentials technology can be used for these purposes as well, its
complexity and requirements on user’s hardware make them less suitable for
practical applications, especially when we concern the general purpose smart
cards available today. Moreover, we apply widely used and standard crypto-
graphic methods that are relatively safe regarding patent violation claims and
other threats regarding intelectual property rights.
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Abstract. Gentry, Sahai and Waters constructed the first identity-
based fully homomorphic encryption schemes from identity-based
encryption schemes in CRYPTO 2013. In this work, we focus on improv-
ing their IBFHE schemes, using Micciancio and Peikert’s novel and pow-
erful trapdoor in conjunction with Alperin-Sheriff and Peikert’s simple
and tight noise analysis technique when performing homomorphic eval-
uation.
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1 Introduction

Fully homomorphic encryption (FHE) is a special variant of public-key encryp-
tion (PKE) [15]. In an FHE system, anyone can compute any computable func-
tion over encrypted data without decrypting them first. These schemes with fully
homomorphic property have extensive applications especially in cloud computing
setting. The first realization of FHE is based on ideal lattices [15]. And several
FHE schemes are built upon lattices [4,8,9,17,26,27] or integers [23].

Identity-based encryption (IBE) is also a special variant of PKE [22]. In an
IBE system, the encrypter can produce a ciphertext masking μ to an identity
id only using the master public key of the system and the target identity id.
Therefore, there is no need to issue a user-specific public key for each user in
an IBE system. The first constructions of IBE are based on Bilinear Diffie-
Hellman [5] or Quadratic Residues [14]. Since then, a multitude of IBE schemes
are proposed over pairing [6,25] or lattices [1,2,10,16].

As a matter of course, identity-based fully homomorphic encryption (IBFHE)
captures researchers’ attention as it aggregates the advantages of both FHE and
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IBE. However, there are few results. In CRYPTO 2013, Gentry, Sahai and Waters
[17] built a compiler that can compile all lattices-based IBE schemes [1,2,10,16]
and obtained the first IBFHE schemes. Based on Gentry-Sahai-Waters’ technique,
Clear and McGoldrick [12] designed the first multi-identity IBFHE from GPV-
IBE [16] in the random oracle model in CRYPTO 2015. All IBFHEs above are lev-
eled homomorphic, meaning that they only can compute homomorphically a priori
polynomial-depth circuits, but no more. Recently, Clear and McGoldrick [13] built
the first non-leveled IBFHE assuming that indistinguishable obfuscator exists.

Contribution. We improve the ABB-IBE [1] to a new one with shorter pub-
lic parameters, using Micciancio-Peikert’s new trapdoor for lattices [18] (called
MP12-trapdoor). We note that Micciancio and Peikert [18] had pointed out that
their new trapdoor can be used to optimize all lattices-based cryptography with
trapdoor containing ABB-IBE scheme (outlined in [20]). But, there are no details
for IBE schemes. We observe that how to release the energy of MP12-trapdoor
in the identity-based setting is nontrivial, as we have to choose subtly the noise
used in encryption to show its security. In fact, if we choose noise as that in [1],
we do not know how the simulator simulates the attack context and reduces the
hardness of learning with errors (LWE) to the IBE scheme. In other words, the
idea of security proof follows that in [1] in high level, but the details in technical
level are very different. We note also that it can be extended to hierarchical IBE
as that in [1,17], and to ring setting for less storage space and higher efficiency.

Our main result is an efficient leveled IBFHE compiling the new IBE above.
We use the approximate eigenvector method first proposed by Gentry, Sahai and
Waters [17] to eliminate the user-specific keys (i.e., evaluation key). In addition,
to slow the noise growth under homomorphic evaluation, we perfectly randomize
the noise under homomorphic operations and utilize subgaussianity to measure
the noise level. Both of them are first employed by Alperin-Sheriff and Peikert
[4] to lower the parameters meanwhile maintaining equal security level.

Paper Organization. In Sect. 2, we give some background on lattices and
related tools used in this paper. We describe formally an optimized IBE scheme
in Sect. 3. In Sect. 4, we present the leveled IBFHE compiling the IBE proposed
in last section. Finally, we conclude in Sect. 5.

2 Preliminaries

The following notations will be used throughout. The bold upper-case letters
(e.g. A,B) represent matrices and bold lower-case letters (e.g. a,b) represent
column vectors. We use ai to denote the i-entry of a and ||a||2 =

√∑
a2

i to
denote the Euclidean norm. We write [A||B] to denote the concatenation of two
matrices and (a,b) to denote the concatenation of two column vectors. Let n
denote the security parameter throughout. Let [n] = {1, 2, . . . , n} and negl(n)
denote a negligible function that grows slower than n−c for any constant c > 0
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and any large enough value of n. An event occurs with overwhelming probability
meaning that it occurs with probability at least 1 − negl(n).

2.1 IBE and IBFHE

IBE consists of the following four PPT algorithms: (Setup, Extract, Enc, Dec)
with syntax: The Setup algorithm outputs a master public-key mpk and a master
secret-key msk. The Extract algorithm takes msk and an identity id as input and
produces a private key skid for identity id. The Enc algorithm encrypts a message
to identity id using mpk and id, and the Dec algorithm decrypts ciphertext using
the knowledge of skid corresponding to identity id.

Identity-based fully homomorphic encryption, as a special variant of IBE,
has the fifth algorithm Eval. For some function f, given t ciphertexts: ci ←
Enc(mpk, id, μi) for i = 1, 2, . . . , t, anyone can compute a new ciphertext c ←
Eval(f,mpk, id, c1, c2, . . . , ct) encrypting f(μ1, μ2, . . . , μt). Generally speaking,
the depth of the function f combined by NAND-gates is constrained by L for
some L, because it is considerably expensive to perform homomorphically high-
depth circuit. We called it leveled IBFHE. In this work, we will mainly focus on
the leveled IBFHE schemes, and thus we will omit “leveled” for simplicity.

Security. An IBE system should be semantically secure under chosen-identity-
attack and chosen-plaintext-attack (IND-ID-CPA). A weaker security model of
IBE constricts that the adversary has to make the identity it plans to attack pub-
lic prior to receiving the master public-key (IND-sID-CPA). A stronger security
model of IBE is also considered, in which the ciphertext is indistinguishable from
a random member in the ciphertext space (INDr-ID-CPA), and which implies
both semantic security and recipient anonymity. The security model of IBFHE
is same as that of IBE without reference to the evaluation algorithm, as the
evaluation algorithm is public and does not impact the security.

In this work, we will mainly focus on the INDr-sID-CPA security game for
IBE (or IBFHE) defined as follows. Consider a security game between two parties
with a challenger and a PPT adversary. After receiving the target identity id∗

which the adversary plans to attack, the challenger runs Setup algorithm to gain
(mpk,msk) and sends mpk back to the adversary. Moreover, the challenger has
to return the secret-key skidj

corresponding to idj that is chosen adaptively by
the adversary for polynomial many identities conditioning on idj �= id∗. Then,
once the challenger receives a message μ∗ chosen randomly by the adversary, it
picks a random bit b ∈ {0, 1} and a random ciphertext c from ciphertext space.
If b = 0, it sets the challenge ciphertext to c∗ = Enc(mpk, id∗, μ∗). Otherwise, it
sets the challenge ciphertext to c∗ = c. After that, it returns the c∗ as the IBE
(or IBFHE) challenge to the adversary. Finally, the adversary outputs a guess
b′ and wins if b′ = b. We say that an IBE (or IBFHE) scheme is INDr-sID-CPA
secure if Pr[b′ = b] ≤ 1

2 + negl(λ).



306 F. Wang et al.

2.2 Hashing and Subgaussianity

In this section, we will recall some facts about hash function and subgaussianity.

Hashing. Let A and B be two finite sets, a family H of functions mapping A
to B is 2-universal if for all a, a′ ∈ A, a �= a′, Pr

h
$←H[h(a) = h(a′)] = 1/|B|.

Let D be a distribution over {−1, 0, 1} that outputs 0 with probability 0.5,
-1 with probability 0.25 and 1 with probability 0.25 (We use D to denote this
distribution throughout). A version of leftover hash lemma holds as follows.

Lemma 1 ([3]). Let B = Zq be a finite abelian group and k ≥ 1 be an integer.
For b ∈ Bk, define hb : Dk → B as hb(a) =

∑k
i=1 aibi. Then the family H =

{hb}b∈Bk is 2-universal. It follows that (hb, hb(a)) is 1
2

√
q/2k-uniform.

Subgaussian Random Variable. In this work, it is conducive to manipulate
the noise growth using subgaussian random variable. A real random variable X
is subgaussian with parameter s ≥ 0 if for all t ≥ 0, it holds that Pr[|X| >
t] ≤ 2 exp(−πt2/s2). Gaussian tails then imply subgaussianity if E[X] = 0. Any
B-bounded 0-mean random variable X is subgaussian with parameter B

√
2π.

A detailed introduction of subgaussianity can be found in [24]. The following
lemma is useful to analyze the change of noise under homomorphic evaluation.

Lemma 2 ([7]). Let X1,X2, . . . , Xk be independent, 0-mean, real subgaus-
sian random variables with parameter s and a = (a1, a2, . . . , ak) ∈ R

k. Then∑
i(aiXi) is a subgaussian random variable with parameter s · ||a||2.
Subgaussianity can be generalized to vectors: a random real vector x is sub-

gaussian with parameter s if for all unit vector u, the marginal 〈x,u〉 ∈ R is
subgaussian with parameter s. It follows that the concatenation of independent
subgaussian random variables with equal s is also subgaussian with parameter s.
In addition, it can be extended to subgaussian random matrix in direct manner.

A standard result of subgaussianity [24] follows.

Lemma 3 ([24]). Let X ∈ R
n×m be a subgaussian random matrix with parame-

ter s. There then exists a constant c > 0 such that, with overwhelming probability,
||X||2 ≤ c · s · (

√
m +

√
n) where ||X||2 � max(||Xu||2) for all unit vector u.

2.3 Background on Lattices and Hard Problems

Lattices. For a matrix A ∈ Z
n×m
q we define the following q-ary integer lattice:

Λ⊥(A) = {x ∈ Z
m : Ax = 0 mod q}.

For a vector u ∈ Z
n
q , we define the coset (or “shifted” lattice):

Λ⊥
u (A) = {x ∈ Z

m : Ax = u mod q}.
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LWE. We give a variant of learning with errors problem used extensively in fully
homomorphic cryptography. For two positive integers n and q ≥ 2, an arbitrary
vector s ∈ Z

n
q and a probability distribution χ over Z, let As,χ be the distribution

obtained by choosing a vector a $← Z
n
q and an error term e ← χ, and outputting

(a, [〈a, s〉−2e]q) ∈ Z
n
q ×Zq. The search learning with errors (LWEn,m,q,χ) problem

is, given m = poly(n) independent samples from As,χ, to find s for some random
s ∈ Z

n
q . The decisional learning with errors (DLWEn,m,q,χ) problem is, given

m independent samples, to decide that, with non-negligible advantage, they are
sampled from As,χ for a uniformly random and secret s ∈ Z

n
q , or from the uniform

distribution over Zn
q ×Zq. We often write DLWEn,m,q,α to denote DLWEn,m,q,χ

and As,α to denote As,χ for χ = DZ,αq.
For certain parameters, solving the DLWE problem in the average-case is

known to be as hard as approximation lattices problems, such as decisional
shortest vector problem (GapSVP) and shortest independent vector problem
(SIVP), in the worst-case. In particular, for αq ≥ 2

√
n, solving DLWEn,m,q,α is

as hard as solving above worst-case lattices problems with approximation factors
of Õ(n/α), using a quantum or classical reduction [19,21].

Lattices Trapdoor. Here we recall the MP12-trapdoor generation algorithm,
subgaussian sampling algorithm and Gaussian sampling algorithm [18]. We
ignore all details of implementation which are not strictly necessary in this work.

For an odd integer q and � = �log q�, let G = In ⊗ gT ∈ Z
n×n�
q , where

gT = (1, 2, 22, . . . , 2�−1) and In denotes the n-dimensional identity matrix.

Lemma 4 ([18]). Let n,m0,m1,m, q, � be positive integers such that q =

q(n), � = �log q�,m0 = n�+O(n), m1 = n� and m = m0+m1. For A0
$← Z

n×m0
q ,

invertible H ∈ Z
n×n
q and R ← Dm0×m1 where D is defined in section 2.2, there

exists an efficiently randomized algorithm GenTrap(A0,H) to generate a matrix
A (= [A0||HG − A0R]) ∈ Z

n×m
q with trapdoor R and tag H such that A is

negl(n)-far from uniform. R is called an MP12-trapdoor of A with tag H.

Lemma 5 ([4,18]). Given the gadget matrix G defined above, for any matrix
A ∈ Z

n×m0
q there exists efficiently randomized algorithm to sample a subgaussian

matrix X ∈ Z
m1×m0
q with parameter O(1) such that X = G−1(A).

Lemma 6 ([18]). Given parameters in Lemma 4 and a uniformly random
vector u ∈ Z

n
q , for some s ∈ R and a fixed function ω(

√
log n) grow-

ing asymptotically faster than
√

log n, there exists an efficient algorithm
SampleD(R,A0,H,u, s) that samples a vector t from Dm

Z,s·ω(
√
log n)

such that
A · t = u.

3 Identity Based Encryption

In this section, we first propose an IBE with smaller parameters which is an
improvement of ABB-IBE [1], using MP12-trapdoor. We then show that the
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proposed IBE is INDr-sID-CPA secure under the DLWE assumption. We note
that Micciancio and Peikert [18] already pointed out that their new trapdoor
could be used to optimize lattices-based IBE schemes. But, they did not give
much details. In fact, we must choose and manage noise subtly for security proof.
So, it is necessary to particularly describe it and prepare for the next section.

3.1 The Basic Identity-Based Encryption

Recall that n is the security parameter. In order to describe the IBE scheme
succinctly, we give some public parameters as follows.

• The modulus q is a sufficiently large prime q = poly(n). Let � = �log q�,
m0 = n(� + O(1)), m1 = n� and m = m0 + m1.

• G = In ⊗ gT ∈ Z
n×n�
q for gT = (1, 2, 22, . . . , 2�−1) is the gadget matrix.

• Let D be the distribution over {−1, 0, 1} as defined in Sect. 2.2, such that

(A0,A0R) is negl(n)-far from (U0,U1)
$← Z

n×m0
q ×Z

n×m1
q for A0

$← Z
n×m0
q

and R ← Dm0×m1 . Note that this regularity is yet discussed in [18] and we
also can sample R ← Dm0×m1

Z,ω(
√
log n)

resulting mildly larger parameters.
• We assume that identities are elements in GF(qn), and say H : GF(qn) →

Z
n×n
q is an invertible difference, if H(id1) − H(id2) is invertible for any two

different identities id1, id2 and H is computable in polynomial time in n�
(see an example in [1]).

• The LWE error rate α for IBE should be large enough such that αq ≥ 2
√

n.

Now we describe the proposed scheme IBE.

• IBE.Setup(1n): Choose A0
$← Z

n×m0
q , u $← Z

n
q and R ← Dm0×m1 . Let

A = [A0||A1] = [A0||−A0R] ∈ Z
n×m
q as Lemma 4 and set master public key

as mpk = [u||A] and master secret key as msk = R. Note that A·
[

R
Im1

]
= 0.

• IBE.Extract(R, id): Compute H(id) for id ∈ Z
n
q and let Aid = [A0||A1 +

H(id) · G] (Remark that R is an MP12-trapdoor of Aid with tag H(id)).
Run SampleD(R,A0,H(id),u, ‖R‖2) to generate a short vector t ∈ Z

m such
that Aid · t = u. Set user-specific public key pkid = P = [u||Aid] and secret
key skid = s = (1,−t) with small entries. Note that P · s = 0.

• IBE.Enc(mpk, id, μ ∈ {0, 1}): To encrypt a bit μ ∈ {0, 1}, choose two vectors

y $← Z
n
q and e = (−e,−e0, e1) ∈ Z

m+1, where e ← DZ,αq, e0 ← Dm0
Z,αq and

e1 ← Dm1
Z,s for s2 = (||e0||22+m0α

2q2)·ω(
√

log n)2. Output a ciphertext vecor

c = μv + PTy + 2e ∈ Z
m+1
q ,

where v = (1, 0, ..., 0)T is the first (m + 1)-length standard unit vector.
• IBE.Dec(c, skid): Output μ′ = 〈c, s〉 mod q mod 2.

Remark. The noise e1 sampled from a slight wider (than e0) discrete Gaussian
distribution Dm1

Z,s for s2 = (||e0||22 +m0α
2q2) ·ω(

√
log n)2 plays a vital role in the

security proof.
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Table 1. Parameters comparison with ABB-IBE [1]

IBE m0 m1 q α

ABB-IBE [1] 6n log q 6n log q m2.5
0 · ω(

√
log n) (m2

0 · ω(
√

log n))−1

This work n(log q + O(1)) n log q m2
0 · ω(

√
log n)3 (m1.5

0 · ω(
√

log n)3)−1

a

a Note that m = m0 = m1 in [1] while we use them to denote different integers. Given
parameters above, the lengths of mpk, msk, skid and ciphertext can be compared too,
e.g., the bit-length of mpk of the proposed IBE is around 4

15
of that of ABB-IBE.

3.2 Parameters

Lemma 7. Let q = m2
0 ·ω(

√
log n)3, α = (m1.5

0 ·ω(
√

log n)3)−1 and other param-
eters set in Sect. 3.1. The decryption algorithm in basic IBE scheme above then
works with overwhelming probability.

Proof. It is very easy to see that, by decryption,

〈c, s〉 = μ · 〈v, s〉 + 2〈e, s〉 = μ + 2〈e, s〉 = μ − 2e + 2〈e0, t0〉 − 2〈e1, t1〉,
where short vector t = (t0, t1) ∈ Z

m0 × Z
m1 . We now bound |〈e1, t1〉|.

By Lemma 3, we have ||e1||2 ≤ c · O(
√

m0αq · ω(
√

log n)) · √
m1 ≤ m0αq ·

ω(
√

log n) with overwhelming probability. So, by Lemma 12 in [1], we get

|〈e1, t1〉| ≤ ||e1||2 ·(O(
√

m0)·ω(
√

log m0)·ω(
√

log m1)+
1

2

√
m1) ≤ m1.5

0 αq ·ω(
√

log n)3.

By our parameter setting, we then have |〈e1, t1〉| ≤ m2
0 · ω(

√
log n)3 with

overwhelming probability. Similarly, |〈e0, t0〉| ≤ m2
0 ·ω(log n) with overwhelming

probability. It is easy to see that |e| ≤ αq
√

n and thus |〈c, s〉| ≤ m2
0 ·ω(

√
log n)3.

The correctness of decryption follows. �

We compare the parameters of the proposed IBE above with ABB-IBE [1]
in Table 1, from which we can see that all parameters are optimized.

3.3 Security

We prove that the basic scheme IBE constructed above is INDr-sID-CPA secure.
In other words, a valid cipertext is indistinguishable from a random membership
in ciphertext space under a selective chosen-identity and chosen-plaintext attack.
The proof follows from the security proof of ABB-IBE in [1] in the high level
and the security proof of CCA-secure PKE in [18] in the technical level.

Theorem 1. The basic scheme IBE constructed in Sect. 3.1 is INDr-sID-CPA
secure assuming that the DLWEn,m0+1,q,α assumption holds.

Proof. We now reduce the DLWE to INDr-sID-CPA security of the IBE scheme.
After seeing the DLWE challenge {(ai, bi)}i∈[m0+1] to decide them from Ay,α

or random and the challenge identity id∗ which a PPT adversary wants to attack,
the challenger will interact with the adversary as follows.
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In the setup phase, the challenger first constructs A0 = (a1,a2, . . . ,am0)
and u = a0. It then picks R ← Dm0×m1 and computes A1 = −A0R−H(id∗)G.
It finally lets the master secret key msk = R being MP12-trapdoor for [A0||A1]
with tag −H(id∗) and the master public key mpk = {A0,A1,u}, and sends
mpk to the adversary. Note that by hypothesis on m0 and D and Lemma 1, the
master public-key mpk is negl(n)-far from uniform in statistical distance.

In the identity-secret-key query phase, for idj queried by adversary, the
challenger constructs Aidj

= [A0|| −A0R+(H(idj)−H(id∗)) ·G]. If idj �= id∗,
the challenger can use MP12-trapdoor R (in the help of G) to sample a short
vector t from Λ⊥

u (Aidj
) = Λ⊥

u ([A0||−A0R+(H(idj)−H(id∗)) ·G]) by Lemma 6
and sends t back to the adversary. But, if idj = id∗, the challenger can not
sample a short vector from Λ⊥

u (Aidj
), as the trapdoor-functionality disappears.

This means that the challenger can answer all identity-secret-key queries other
than id∗. So, the challenger can perfectly simulate the identity-secret-key query.

In the challenge phase, after seeing a message bit μ∗ chosen by the adversary,
the challenger prepares a challenge ciphertext to the target identity id∗ as follows:

1. Let b0, b1, . . . , bm0 be entries of the DLWE challenge. Mask the message bit
via setting c∗

0 = b0 + μ∗ ∈ Zq.

2. Set b∗ = (b1, . . . , bm0)
T and c∗

1 =
[

b∗

−RTb∗ + 2ê

]
∈ Z

m
q , where R is the

master secret key and ê ← Dm1
Z,αq

√
m0·ω(

√
log n)

.
3. Send challenge ciphertext c∗ = (c∗

0, c
∗
1) to the adversary.

We argue that if the DLWE challenge comes from Ay,α, then c∗ looks like
a valid ciphertext (i.e., indistinguishable from fresh ciphertext) of μ∗ under the
identity id∗. Recall that b0 = aT

0 y−2e for some e sampled from DZ,αq, and thus
c∗
0 in step 1 fits c∗

0 = aT
0 y − 2e + μ∗, just as the first part of a valid challenge

ciphertext. Also recall that Aid∗ = [A0|| −A0R] and b∗ = AT
0 y − 2e0 for some

e0 sampled from Dm0
Z,αq. For c∗

1 defined in step 2 above, it then holds that

c∗
1 =

[
AT

0 y − 2e0
−RT (AT

0 y − 2e0) + 2ê

]
= AT

id∗y +
[ −2e0

2(RTe0 + ê)

]
.

Therefore, it is sufficient to show that for settled e0, every rT
i ·e0 + êi is negl(n)-

far from DZ,s, where s2 = (||e0||22 + m0α
2q2) · ω(

√
log n)2, over the randomness

of ri and of êi. As every ri is indepentent discrete subgaussian, the claim follows
by the security proof of CCA-PKE in [18], but adapted from discrete Gaussian
variable to discrete subgaussian variable.

If the DLWE challenge comes from uniform, we have that both b0 and b∗

are uniform. So, −RTb∗ is uniform and independent over Z
m1
q by a version

of leftover hash lemma (lemma 1), where the hash function is defined via the
matrix [−AT

0 || − b∗] and guarantees that both −A0R and −RTb∗ are uniform
and independent. Therefore, −RTb∗ + 2ê is also uniform. This means that the
challenge ciphertext c∗ constructed by the challenger is uniform over Z

m+1
q .

Finally, once receiving a guess b′ from the adversary, the challenger can solve
DLWE challenge only by outputting the guess b′. This finishes the proof. �
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4 Identity-Based Fully Homomorphic Encryption

We now present a leveled IBFHE scheme from the proposed IBE scheme in last
section. The new IBFHE scheme is more efficient than GSW-IBFHE [17].

4.1 The Identity-Based FHE Scheme

Recall that n is the security parameter. Our scheme needs some public parame-
ters as follows.

• Let L be the maximum multiplication depth of circuit the scheme can eval-
uate homomorphically and q is a sufficiently large prime q = q(n,L). Let
� = �log q�, m0 = n(� + O(1)), m1 = n� and m = m0 + m1.

• G,D,H are defined as in last section.
• M = Im+1 ⊗ gT ∈ Z

(m+1)×(m+1)�
q for gT = (1, 2, 22, . . . , 2�−1) is another

gadget matrix. By Lemma 5, for any matrix A ∈ Z
(m+1)×(m+1)�
q , we can

sample a subgaussian matrix X ∈ Z
(m+1)�×(m+1)� with parameter O(1) such

that X = M−1(A).

Now we describe the proposed scheme IBFHE.

• IBFHE.Setup(1n, 1L): This algorithm is identical to IBE.Setup. Recall that
A = [A0||A1] = [A0|| − A0R] ∈ Z

n×m
q ,mpk = [u||A] and msk = R.

• IBFHE.Extract(R, id): This algorithm is identical to IBE.Extract. Recall that
pkid = P = [u||Aid] and skid = s = (1,−t).

• IBFHE.Enc(mpk, id, μ ∈ {0, 1}): To encrypt a bit μ ∈ {0, 1}, choose two

matrices Y $← Z
n×(m+1)�
q and E = [−e||−E0||E1]T ∈ Z

(m+1)×(m+1)�, where
e ← D(m+1)�

Z,αq , E0 = [e0,1||e0,2|| · · · ||e0,(m+1)�]T ← D(m+1)�×m0
Z,αq and E1 =

[e1,1||e1,2|| · · · ||e1,(m+1)�]T where e1,i ← Dm1
Z,si

for s2i = (||e0,i||22 +m0(αq)2) ·
ω(

√
log n)2. Output the ciphertext matrix

C = μM + PTY + 2E ∈ Z
(m+1)×(m+1)�
q .

• IBFHE.Dec(C, skid): Let c be the first column of C. Output μ′ = 〈c, s〉 mod
q mod 2.

• IBFHE.NAND(C1,C2): Given two ciphertext matrices C1,C2 under identical
identity for two plaintexts μ1, μ2, output

CNAND = M − C1 � C2 � M Δ= M − C1 · M−1(C2 · M−1(M)).

Note that this algorithm is randomized, as M−1 is randomized.
• IBFHE.Eval(f,C1,C2, . . . ,Ct): Apply a NAND-circuit f : {0, 1}t → {0, 1}

to t ciphertexts C1,C2, . . . ,Ct, and output a ciphertext Cf .
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4.2 Analysis

We discuss the correctness, security and homomorphic property in this section.

Correctness. Correctness of IBFHE follows because:

CT · s = μMT s + YTPs + 2ET s = μMT s + 2ET s.

So, let c be the first column of C, we obtain 〈c, s〉 = μ+2 · 〈(−e1,−e0,1, e1,1), s〉.
The decryption will be correct if setting the same parameters as last section.

Security. The security follows from the security of the IBE in previous section
using a standard hybrid analysis, because a ciphertext C of message 0 of IBFHE
is just the concatenation of (m + 1)� ciphertexts of message 0 of IBE and C is
indistinguishable from C + M that is a ciphertext of message 1.

Homomorphic Property

Lemma 8. Let two fresh ciphertexts be C1,C2 such that CT
i · s = μiMT s +

2ET
(i)s, i = 1, 2. We then have with overwhelming probability that

CT
NAND · s = (1−μ1μ2)MT s−2μ1XT

2 E
T
(2)s+2XT

1 E
T
(1)s

Δ= (1−μ1μ2)MT s+2e∗,

where Xi is some subgaussian matrix and the entries of e∗ are mutually inde-
pendent and subgaussian with parameter O(m2.5

0 · √
�) · ω(

√
log n)3).

In particular, we can decrypt correctly after one-time homomorphic NAND
computation if q/4 ≥ O(m3

0 · √
�) · ω(

√
log n)3.

Proof. For any two fresh cipertexts C1,C2, we have

CT
NAND · s = (M − C1 � C2 � M)T · s

= MT s − (C1 · X1)T · s
= MT s − XT

1 (μ1MT s + 2ET
(1)s)

= MT s − μ1XT
1 M

T s + 2XT
1 E

T
(1)s

= MT s − μ1(C2 · M−1(M))T s + 2XT
1 E

T
(1)s

= MT s − μ1 · (M−1(M))T (CT
2 s) + 2XT

1 E
T
(1)s

= MT s − μ1 · XT
2 (μ2MT s + 2ET

(2)s) + 2XT
1 E

T
(1)s

= (1 − μ1μ2)MT s − 2μ1XT
2 E

T
(2)s + 2XT

1 E
T
(1)s

where X1,X2 are two subgaussian random matrix with parameters O(1). By
Lemma 7, it holds that ||ET

(i)s||∞ ≤ m2
0 ·ω(

√
log n)3, i = 1, 2. Thus, by Lemma 2,

it holds that XT
i E

T
(i)s is subgaussian with parameter

O(1) · ||ET
(i)s||2 ≤ O(1) ·

√
(m + 1)� ·m2

0 ·ω(
√

log n)3 < O(m2.5
0 ·

√
�) ·ω(

√
log n)3.
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Therefore, the decryption correctness follows by Lemma 3. The mutually inde-
pendence of the entries of e∗ comes from the independence of Xi. This finishes
the proof. �

Using above lemma successively, we can gain the main theorem represents
that the IBFHE scheme is an L-leveled IBFHE scheme. The proof follows the
observation that after one-time homomorphic NAND computation, the level of
noise roughly grows from O(m2

0) · ω(
√

log n)3 to O(m3
0 · √

�) · ω(
√

log n)3.

Theorem 2. Given a depth-L NAND-circuit f, if its input are fresh ciphertext
and q/4 ≥ O(m0 · √

�)L · O(m2
0) · ω(

√
log n)3, it then holds that the decryption

algorithm of IBFHE works correctly with overwhelming probability.

Remark. We note that one can use techniques in [4] to further reduce the param-
eters as the noise growth is asymmetric under homomorphic computation. How-
ever, the proposed IBFHE can not be bootstrapped, as bootstrapping needs
user-specific parameters (i.e., encrypted identity-secret-key) to bootstrap which
destroys both anonymity and indistinguishability.

5 Conclusion and Open Problem

In this work, we improved the ABB-IBE [1] to a new one taking advantages of
MP12-trapdoor and gained an efficient IBFHE scheme from it utilizing Alperin-
Sheriff and Peikert’s novel noise-manage technique. The proposed IBFHE scheme
with shorter parameters is more efficient without lowering the security. However,
it is still a leveled homomorphic scheme as GSW-IBFHE. Therefore it remains
open to build a non-leveled IBFHE without using indistinguishable obfuscator.

Acknowledgments. We are very grateful to the anonymous reviewers for their helpful
comments and suggestions.
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Abstract. Recent years have witnessed significant increase in number
of side-channel attacks on the cryptographic algorithms and hence the
attempts to defend them. Note that Differential Power Analysis (DPA)
is the most powerful attack which belongs to the class of side chan-
nel attacks. In order to defend against DPA attacks, there is a growing
demand for the construction of Boolean functions and S-boxes. In this
regard, we develop three effective algorithms that are based on evolu-
tionary computing techniques. As a result, three 8-bit highly nonlinear
balanced Boolean functions have been evolved in this work that have
higher DPA resistance than others published previously.

Keywords: Cryptographic boolean functions · Security and privacy ·
Side-channel attacks · Evolutionary computing

1 Introduction

Cryptographic algorithms have two divisions: symmetric key algorithms and
asymmetric (public) key algorithms. Symmetric key algorithms are further cate-
gorized into two areas: stream ciphers and block ciphers. In these types of ciphers,
the nonlinear elements often play the key role [1]. Usually, Boolean functions and
S-boxes (or vectorial Boolean functions) are used as nonlinear elements, most
notably in stream ciphers and block ciphers, respectively [2]. In literature, a
prior attempt that concerns the resistance of S-boxes to side channel attacks
(i.e. good transparency order) has been vaguely explored [3]. Furthermore, the
study of evolving balanced Boolean functions with high nonlinearity level and
good transparency order is investigated by Picek et al. [4] alone.

Finding Boolean functions with all optimal cryptographic properties is an
NP-hard problem, since for n inputs there can exist 22

n

possible Boolean func-
tions. For example, if n=8 (“this input size is appropriate for current need of
security”) this gives 2256 possible Boolean functions. Note that for n greater
than or equals to 5, determining Boolean functions with all desirable properties
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 316–330, 2015.
DOI: 10.1007/978-3-319-25645-0 21
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is impractical through an exhaustive computer search. Therefore, over the years
there has been numerous works on constructing Boolean functions and S-boxes.
Random search [5], algebraic constructions [6] and optimization heuristics [7]
are few approaches to construct these nonlinear elements. Main benefits of opti-
mization heuristics are in a relatively easy addition of cryptographic properties
to the evaluation functions and in results comparable with algebraic construc-
tions. Hence, this paper presents the effective use of few optimization heuristics
of evolutionary family for construction of DPA-resistant Boolean functions.

2 Related Work and Our Contributions

This paper contributes towards evolution (via optimization heuristics) of better
Boolean functions that have higher resistance to unintentional output channels
often called as side channels, typically, made available to attackers in small
embedded devices e.g. smart cards1. In our work, we use three computational
intelligence techniques: Cartesian Genetic Programming (CGP), Genetic Algo-
rithm (GA) and Binary Particle Swarm Optimization (BPSO) where the best
performance was shown by CGP. Moreover, we have evolved three Boolean func-
tions with better transparency order values than previously reported by Picek
et al. [4]. To the best of our knowledge, only this work and the work proposed
by Picek et al. consider the transparency order property that concerns the resis-
tance of Boolean function to DPA attacks. Accordingly, this paper gives a fair
comparison between Boolean functions computed by Picek et al. and determined
in this research. Additionally, we compare some of the recently reported Boolean
functions that have been determined by McLaughlin and Clark [9], and Cid et
al. [6] via simulated annealing and algebraic method, respectively.

3 Preliminaries: Boolean Functions

The area of Boolean functions is extensive and therefore we do not promise to
present here an exhaustive theory of Boolean functions. Rather, in this section
we present a comprehensive study of Boolean functions that is required by the
reader to completely understand the research reported in this paper.

Let Fn
2 be the n-dimensional vector space over the finite field that contains all

the binary vectors of length n. An n-variable Boolean function f may be viewed
as a mapping from Fn

2 to F2. Note that the Hamming weight denoted by wt(f)
is a useful measure of f that represents the number of 1′s in its binary vector
(or truth table) [10], where truth tables are one of the unique representation of
Boolean functions. The function f with n-input variables denoted by x has a
truth table with 2n elements, where each element x ∈{0, 1}.

1 The small computing devices releases some physical leakage that relates to the opera-
tions and/or even data being processed, there are several side channels possible when
considering unleashed physical information, such as power consumption or electro-
magnetic emanation [4]. For more details on power analysis attacks we refer inter-
ested readers to [8].
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For the cryptographic use, the strict property of Boolean functions is bal-
ancedness. A balanced Boolean function f with n inputs has equal number of
0′s and 1′s in its truth table i.e. wt(f) = 2n−1 [10]. Two other useful representa-
tions of a Boolean function are its Algebraic Normal Form and Walsh Hadamard
Transformation. Walsh Hadamard Transformation is also known as Walsh trans-
form that can be denoted as –Wf . Here, we discuss only the Walsh transform
due to its significant efficiency in directly computing certain characteristics and
properties of a Boolean function that we require in this research.

The Walsh transform of a Boolean function f measures the relation between
f(x) and x.y, where x and y are two vectors in Fn

2 [10].
The Walsh transformation of f can be easily computed via its Fourier trans-

formation as [5]:
Wf (y) = 2nδ(y) − 2Ff (y), (1)

where δ(y)=1 or δ(y)=0 in case of y=0 and y �= 0, respectively. The Fourier
transform of f can be computed as [5]:

Ff (y) =
∑
x∈Fn

2

f(x) × (−1)x.y, (2)

where x.y is the dot product of vectors x and y. In the next paragraph,
we discuss two important properties (nonlinearity and transparency) of Boolean
functions that we have considered to optimize in this research.

The nonlinearity of a Boolean function NLf can be defined as its minimum
Hamming distance to any affine function and it can be computed as [11]:

NLf = 2n−1 − max(|Wf (y)|), (3)

where max(—Wf (y)—) is a largest absolute output value contained in the
Walsh spectrum of the investigated Boolean function f corresponding to the
n-input vector y.

Transparency order is a new cryptographic property of vectorial Boolean
functions that has been introduced by Prouff [12]. Transparency order of Boolean
functions with n-inputs and m-outputs can be formally defined as [12]:

Tf = maxα∈Fm
2

(|m − 2wt(α)| − 1
2n(2n − 1)∑

y∈Fn∗
2

|
∑

β∈Fm
2 ,wt(β)=1

(−1)αβWDyf (0,β)|), (4)

where WDyf corresponds to Walsh transform of the derivative of Boolean
function f with respect to a vector y ∈ Fn∗

2 that can be computed as:

WDyf (0,β) =
∑
x∈Fn

2

(−1)β(f(x)⊕f(x⊕y)). (5)

Prouff [12] examined that the transparency level of S-boxes should be as
low as possible in order to make them high resistance against DPA attacks.
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Since we are interested in evolving DPA-resistant Boolean functions with one
output variable, i.e. m equals one in Eq. (4) and therefore the worst possible
value of transparency of a Boolean function equals one. On the other end the best
transparency value can equal zero [12], but it is possible with linear or affine func-
tions that are not appropriate for cryptographic applications. A Boolean function
is appropriate for use in cryptography when it is balanced, highly nonlinear and
also satisfies other important properties that are required by the cryptographic
applications. For details about the structure of linear and/or affine functions and
for several important cryptographic properties of Boolean functions, we refer the
interested reader to [13].

Since our aim of the research is to determine balanced Boolean functions with
high nonlinearity (for instance, an even value in 112–118 for 8-bit Boolean func-
tion) and low transparency than that achieved by Picek et al. [4]. In this regard,
we emphasize that the results reported by Picek et al. [4] are benchmarks for our
study. Therefore, we focus on evolving balanced Boolean functions that have at
least that level of nonlinearity (which is shown in Table 2), but with improved
(low) transparency level values. This paper utilizes the following optimization
heuristics for achieving the goal.

4 Optimization Heuristics

In the following subsections, we describe in brief a generic overview of evolution-
ary computation methods GA, BPSO and CGP that are used in this paper for
evolving DPA-resistant Boolean functions.

4.1 Genetic Algorithms

Genetic Algorithms (GAs) have emerged based on the concept of imitating the
evolution of a species. In GA, an initial population of individuals (or chromo-
somes) is generated using an intelligent method or typically random. Each of
these individuals is encoded as a binary string that represents a possible candi-
date solution to the problem at hand. At each generation, the survival strength of
each candidate solution is measured by the fitness function. Afterwards, the evo-
lutionary process is constrained by three genetic operators: selection, crossover
(or recombination) and mutation. An appropriate selection procedure chooses
two or more individuals from the parent population. A crossover operator recom-
bines these individuals and generates one or more offspring. A probabilistic
crossover rate is usually used to generate offspring. Mutation operators produce
one child from one parent by flipping a bit/bits of the parent. A probabilistic
mutation rate is usually used that determines whether a particular change is to
occur within an individual or not. For detailed information about genetic algo-
rithms and their applications in optimization problems, we refer the interested
reader to [14,15].
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4.2 Particle Swarm Optimization

Particle swarm optimization is a nature-inspired heuristic originated from the
simulation studies of birds flocking. It has two divisions: real-PSO and binary-
PSO (or BPSO). In these types of methods, a swarm is initialized as population
of particles. Afterwards, all particles move in a search space to find an opti-
mal solution. A position vector Xi = (xi1, xi2, ..., xin) and a velocity vector
Vi = (vi1, vi2, ..., vin) are associated with each particle for guiding their move-
ments. The best previous position of the ith particle and the global best posi-
tion of the swarm is represented by Lbesti(t) = (lbesti1, lbesti2, ..., lbestin) and
Gbest(t) = (gbest1(t), gbest2(t), ..., gbestn(t)), respectively. Here, a “cost” func-
tion is used to assess Lbesti(t) and Gbest(t). Now we focus on the BPSO meth-
ods, since the problem being considered is of discrete type. In BPSO methods,
xij ∈ (0,1) represents the jth positional coordinate of the ith particle and vij ∈
(0,1) represents the velocity of jth positional coordinates of the ith particle con-
strained by Vmax, where i = 1, 2, ...,m and j = 1, 2, ..., n. Here, m is the number
of particles and n means a potential solution in the n-dimensional space. In this
research, we utilize a Novel BPSO method that can be described as follows.

Novel BPSO. In 2007, Khanesar et al. [16] have proposed a Novel BPSO
method. In this method, the interpretation of velocity is different than the con-
ventional BPSO [17]. In Novel BPSO, two velocity vectors v0

ij and v1
ij are asso-

ciated with each of the particles that are updated using Eq. (6) and Eq. (7),
respectively. However, the final selection of one between these two is decided by
using corresponding existing value of particle’s positional coordinates (see Eq.
(8). Furthermore, Eq. (9) is used to update the particle’s positions, where ¯xij(t)
is the complement of xij(t).

v0
ij(t + 1) = w × v0

ij(t) + d0ij,1(t) + d0ij,2(t) (6)

v1
ij(t + 1) = w × v1

ij(t) + d1ij,1(t) + d1ij,2(t) (7)

v
′
ij(t + 1) =

{
v1
ij(t + 1), if xij(t) = 0

v0
ij(t + 1), if xij(t) = 1

(8)

xij(t + 1) =

{
¯xij(t), if Sig(v

′
ij(t + 1)) > U(0, 1)

xij(t), otherwise
(9)

Here, w is the inertia weight that was introduced by Shi and Eberhart [18] to
control the exploration and exploitation abilities of the swarm, and c1 and c2
are the acceleration constants. Sig(vij(t+1) is a sigmoid function which is used
to transform velocity in the interval (0,1). The terms d0ij(t) and d1ij(t) used in
the Eq. (6) and Eq. (7) can be calculated using the following rules [16]:

If lbestij(t) = 0 Then d0ij,1(t) = c1r1 and d1ij,1(t) = −c1r1
If lbestij(t) = 1 Then d1ij,1(t) = c1r1 and d0ij,1(t) = −c1r1
If gbestj(t) = 0 Then d0ij,2(t) = c2r2 and d1ij,2(t) = −c2r2
If gbestj(t) = 1 Then d1ij,2(t) = c2r2 and d0ij,2(t) = −c2r2
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where, r1 and r2 are two random variables in the range of (0,1). The main con-
cept behind the above rules is as follows: let jth bit of ith local best particle is
‘1’ (see rule number second). Then for guiding the particle to its best position,
velocity v0

ij for that particle decreases (since d0ij,1(t) = −c1r1), while velocity v1
ij

increases (since d1ij,1(t) = c1r1). For more details about Novel BPSO interested
readers can refer to [16].

4.3 Cartesian Genetic Programming

Cartesian genetic programming is a general form of genetic programming where
a program is modeled as two dimensional grid of nr rows and nc columns that
forms a directed acyclic graph [19]. Nodes of the graph are used as programmable
elements and therefore referred as computational nodes, where at a time maxi-
mum nr ×nc nodes can actively participate in the computation [19]. An example
program is helpful here (see Fig. 1). The number of program inputs ni and the
number of program outputs no are defined by the user to perform a particular
task. For example, in the Fig. 1, ni=2 and no=2. Each node input can be con-
nected to one of the program inputs or output of a node located in the previous
l columns [19], where l is referred to as levels-back parameter.

Each node is programmed to compute one of “np-input function” listed in
the function table Γ [19]. The function table Γ is decided by the user according
to the problem domain. In the example, Γ={+, ∗, -}, where code of functions
are {0, 1, 2}, respectively. Formally, each node is encoded by np+1 genes. In
example, upper top left most node encodes as (0 1 0), where the first two (since
np=2) genes are indexes of input connections and the last gene is the code of
node function. In this way, encoding of the program is represented by the chro-
mosome: (0 1 0; 1 1 1; 2 3 2; 0 3 1; 3 4 0; 5 5 2; 6 7). Here, the last two genes
represent the code of output indexes. Even though the results of such encod-
ing have fix sized chromosomes; advantage is variable sized phenotype, that is
achievable by disabling few computational nodes.

In CGP, an initial population is generated either randomly or by an intelli-
gent procedure. The initial population may be seeded by an existing solution for
improvement [19]. CGP usually uses small population sizes and has no crossover
operator [20]. Every new population consists of the best individual of the pre-
vious generation and its λ offspring and as a search mechanism a variant of a
simple (1 + λ) evolutionary algorithm is used [21]. In most of CGP implemen-
tations, a point mutation operator is used to generate offspring [21]. Mutation
modifies h randomly selected genes to another randomly generated (but valid)
values. Details on CGP and their applications is extensively treated by Miller
and Thomson [19] and Miller [21].

5 Proposed Methods with Experimental Details

Heuristics based on GA and BPSO for evolving DPA-resistant Boolean func-
tions are shown in Algorithm 1 and Algorithm 2, respectively. In the subsequent
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Fig. 1. An example program of CGP

sections, we discuss the important aspects of each algorithm precisely along with
a discussion on heuristic based on the CGP.

5.1 Heuristic Based on GA

First of all, every individual of the population is initialized randomly, where each
individual is represented as a binary vector of size 2n (i.e. size of the truth table).
Since the first objective of the research is to find n-bit (more specifically, 8-bit)
balanced Boolean functions with nonlinearity at least as the level that has been
achieved by Picek et al. [4]. In this context, Cost of a Boolean function in its
truth table representation can be simple to define as Cost = Bf + Nlf .

Description (Algorithm 3). In the above mentioned formula, the term Bf

gets a value ‘zero’, if the corresponding truth table is balanced, otherwise Bf

gets a Penalty (-ve) value equal to the ‘amount of bits need to be inverted for
balancing the truth table multiplied by a fixed value X’. In the experiment, we
fixed the value of X (=5) which is chosen as per the literature [4].

As shown in Algorithm 1, for generating a new population from the old pop-
ulation, we used a simple one-point crossover operator, where at each call this
operator generates an offspring from two best individuals among three. Here,
each time a simple tournament selection procedure is called that returns three
individuals of the parent population by the uniform random selection procedure.
In the experiment, we fixed N=112, since Picek et al. have achieved the highest
nonlinearity of 112 in case of 8-bit Boolean function via genetic algorithm. Now,
we focus on the second objective, where the key driving force is to achieve better
(lower than existing) transparency level for those individuals that are balanced
and have the nonlinearity level of at least N (see step 15). For this purpose,
we include the transparency order term Tf in the Cost function as: Cost+(1-
Tf ) (‘1-Tf ’, since we are interested in minimizing Tf i.e. maximizing ‘1-Tf ’) and
then apply a specific mutation operator (see Mutation-I). However, individuals
that are unbalanced and/or have nonlinearity less than N , we apply an another
mutation operator (see Mutation-II).
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Mutation-I (Balanced Mutation). This operator preserves the balancedness
property of the function by changing two bits of the corresponding individual (if
balanced). During the experiment, we applied this mutation to those individuals
that are balanced and have the nonlinearity level of at least 112. This mutation
operator speeds up the search for better transparency level Boolean functions.

Mutation-II. For balanced or unbalanced Boolean function with nonlinear-
ity less than N , we design an effective mutation operator that maintains the
population diversity form one generation to the next. We divide the operator
into three sub mutation operators: Mutation-1: for each individual, one-third
times (of the size of the population) a single bit is inverted. Mutation-2: another
one-third times, the order of a small subset of bits is inverted. Mutation-3: the
remaining one-third times a small subset of bits is shuffled. The small subset is
chosen between two random points of an individual. In experiment, we limited
the size of subset to 10% of the size of the individual and the probability of
mutation for each individual was fixed to 0.3.

5.2 Heuristic Based on the Novel BPSO and Hybrid Novel BPSO

First of all, we initialize the velocity and position (binary vectors of size 2n) of all
particles randomly, where particle position vectors are truth tables of Boolean
functions. Unlike GA, in BPSO we include the transparency order in the Cost
function along with nonlinearity and balancedness, and the reason is as follows:
in case of GA, we update the Cost function by introducing transparency order
property in between crossover and mutation operator, while these operators have
not been defined in case of standard BPSO algorithms. However, like GA, each
BPSO variant calls Algorithm 3 in order to check the balancedness level of inves-
tigating truth table (see Section 5.1, Paragraph-2). For details about terminology
such as local and global best particle position and for thier use, see section 4.1.

As shown in Table 1, the maximum nonlinearity level that we have achieved
through standard Novel BPSO algorithms is 110 which is not better than 112
that has been achieved using GA approach. Thus our next step is to develop
a heuristic based on the Novel BPSO that can perform at least comparably to
GA. In this regard, hybrids of PSO methods can be developed by incorporating
evolutionary operators such as mutation [22] and selection [23]. Furthermore,
Ratnaweera et al. stated that the lack of population diversity in PSO algorithms
is understood to be a factor in their convergence on local optima. Therefore,
the addition of a mutation operator to PSO should enhance its global search
capacity and thus improve its performance [24]. Hence, this paper investigates
the influence of addition of a mutation operator in BPSO methods.

We tested various combinations of mutation operators that were discussed in
the Algorithm 1 and then decided the inclusion of Mutation-III (see Algorithm
2, step-19). Novel BPSO algorithms along with proposed mutation operator
(Mutation-III) can be termed as Hybrid Novel BPSO.
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Common Parameters (Algorithm 1 and Algorithm 2). Population size=
400, size of Boolean function=8, size of truth table=256. With these settings, we
have obtained the best results in 50 individual runs of each algorithm separately.

5.3 Heuristic Based on CGP

In 1999, Miller [25] recognized CGP as a suitable option for generating Boolean
functions. Moreover, the recent results reported by Picek et al. [26] motivate us
to evolve DPA resistance Boolean functions by using CGP strategy.

Solution Representation and Implementation. The size of individual (particle) in
case of GA (BPSO) is simple to define and is equal to the size of the truth table
of the investigating Boolean function. In fact, the individuals themselves are the
truth tables of Boolean functions. Consequently, GA and BPSO approaches can
directly evolve the truth table and therefore the complexity of implementation of
the truth table is not involved. However, in case of CGP, individuals (i.e. chro-
mosomes or genotypes) are implemented as directed graph of Boolean primitives
and therefore its size cannot be directly related to the size of the truth table. In
the context of evolving DPA-resistant Boolean functions, we decided to include
AND, NAND, OR, XOR, XNOR as Boolean primitives that form a digital circuit
(or directed graph). When the circuit is evolved effectively by CGP, we determine
its truth table to examine whether the function has desired characteristics (for
instance, balancedness, nonlinearity and transparency).

Parameters Choice and Experimental Setup. For evolving 8-bit Boolean func-
tions, we conducted experiments with the following choice of parameters: ni=8,
no=1 and nr=1 along with different sized nc that results in different sized chro-
mosomes abbreviated as csize, here csize=nc, since nr=1. Note that setting the
number of rows to be one and levels-back parameter equal to the number of
columns is regarded as the best and most general choice. In this research, we
use this choice since no specialist knowledge about the problem is known. Here,
the levels-back parameter controls the connectivity of the graph, i.e. it deter-
mines which columns a node can get its input from. Finally, the chromosome is
mapped to the directed graph that is executed as a program. Experimental setup
for evolving cryptographic Boolean functions is prepared as per the guidelines
reported in [26] and can be summarized as follows.

1. Each node has two inputs and one function, where, the function is taken
from Γ={AND, NAND, OR, XOR, XNOR} as {0, 1, 2, 3, 4}, respectively.

2. Population size is equal to five and number of offspring are limited to four
(i.e. λ=4). However, the offspring are favored over parents when they have
a fitness less than the fitness of the parent.

3. One-point mutation operator is used with a fixed probability, where, number
of genes that are altered by mutation operator is defined as a fixed percentage
of the total number of genes. The genes chosen for mutation might be a node
input connection or a function. Note, the single output gene, which is placed
at the last position of the chromosome is not mutated.
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Determining the best combination of chromosome sizes (i.e. number of gates in
this case) and the mutation rate is an important step in hitting the parameter
sweet spot for CGP. Indeed, it has been shown that generally very large sized chro-
mosomes and small mutation rates perform very well [27]. In order to investigate
the influence of chromosome sizes (csize) and mutation rates (pm) on the ability of
CGP to find good solutions, we performed some experiments with several combi-
nations of csize and pm. The best results were obtained with csize=900 and pm=5
(see Table 1), where the different choices of csize and pm were taken according to
the benchmark guidelines reported in literature [26]. In case of CGP, the stopping
condition for number of evaluations was set to 3,00,000.

Algorithm 1. Pseudocode for Genetic Algorithm
1: Output: a best Boolean function.
2: Initialization: a population of m-individuals is generated randomly, where indi-

viduals are truth tables of n-variable Boolean functions.
3: repeat
4: for each individual i=1, 2, ..., m do
5: Bf=call Algorithm 3;
6: Cost=Bf+NLf , here, evaluate NLf using Eq. (1).
7: end for
8: Load the best individual of current population in next generation population.
9: for generating new individuals i=1, 2, ..., m do

10: Select three individuals of old population using tournament selection.
11: Generate the offspring by applying one point crossover between two best indi-

viduals among three that are selected in the previous step.
12: end for
13: for each individual i=1, 2, ..., m do
14: Apply Mutation-II to individuals that have Cost¡N .
15: Evaluate transparency order value of those individuals that are balanced and

have Cost ≥ N . Then update Cost=Cost+1-Tf and then apply Mutation-I.
16: end for
17: Load the next generation population in the evolution process.
18: until “termination condition of 70 generations are satisfied”

6 Results and Discussion

In this section, we present the best results obtained in this work and also com-
pare them with some of the recent results where the main goal was to determine
Boolean functions for cryptographic use (for example, [4], [6] and [9]). For accu-
rate comparison, we have taken the best results reported by Picek et al.[4] (see
Table 2, #{1 to 4}), and McLaughlin and Clark [9] (see Table 2, #5). Also,
we compare the results reported by Cid et al.[6] (see Table 2, #6). Note that
the Boolean function used in modern state-of-the-art Rakaposhi stream cipher
is termed as Rakaposhi Boolean function [6].
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Algorithm 2. Pseudocode for Novel BPSO and Hybrid Novel BPSO
1: Output: a best Boolean function
2: Initialization of m particles swarm: the binary vectors Xi and Vi are initialized

randomly, where the position vectors X1, X2, ..., Xm represent the truth tables of
n-variable Boolean functions.

3: Initialize m local best particle positions and their cost as: Lbesti ← 0 and
CostLbesti ← 0

4: Initialize the global best particle position and its cost as: Gbest ← 0 and
CostGbest ← 0

5: repeat
6: for each particle i = 1, 2, ..., m do
7: Bf=call Algorithm 3;
8: Cost=Bf+NLf+(1-Tf ), where NLf and Tf are evaluated using Eq. (1).
9: end for

Update local best particle positions and their associated cost as follows:
10: for each particle i = 1, 2, ..., m do
11: if the cost of ith particle is better than the cost of Lbesti (best fitness value

in the history corresponding to the ith particle) then
12: CostLbesti ← Costi
13: end if
14: end for
15: Update the global best particle position Gbest ← best(Xi) i.e. Xi that has the

best fitness value in the swarm.
16: for each particle i = 1, 2, ..., m do
17: Update particle velocity using Eq. (8)

Update particle position using Eq. (9)
18: end for

Perform following step in case of Hybrid Novel BPSO.
19: Mutation-III: Half of the time a single bit of the position vector is flipped and

another half of the time a small subset of bits is shuffled. In both cases the
probability of mutation is fixed to 0.2.

20: until “termination condition of 100 iterations are satisfied”

Algorithm 3. Pseudocode for determining balancedness value of a truth table
1: Input: Truth table
2: Output: This subroutine return balancedness value Bf of investigating truth table

3: if the truth table is balanced i.e. wt(truth-table)=2n−1 then
4: Bf=0
5: else
6: Compute the difference of balancedness as follows
7: Difference=—2n−1-wt(truth-table)—
8: Penalty=Difference × X
9: Bf=-Penalty

10: end if
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The best results that we have obtained in this research are shown in Table 1.
Based on the existing best results, the nonlinearity levels of 112 and 116 are
most interesting ones. These nonlinearity levels along with transparency levels
are marked in bold and underlined (see Table 1). The best result corresponding
to nonlinearity level 112 has been achieved by Hybrid Novel BPSO where we
can clearly see that this Boolean function has better transparency level than
the GP and Rakaposhi Boolean function. On the other hand, the best result
corresponding to nonlinearity level 116 has been achieved by CGP. In this case,
we emphasize that this Boolean function has better transparency level than the
GP and Simulated Annealing.

The previous studies show it is possible to use evolutionary computing meth-
ods to generate high-quality Boolean functions that even beat those generated
by algebraic constructions. However, till now, there was a single work (e.g., [26])
that investigate the use of CGP for producing Boolean functions appropriate for
cryptography. Thus, we have investigated CGP and compared its performance
with few popular evolutionary computing methods (i.e., GA and BPSO) to find
out that which option is better suited for evolving DPA-resistant Boolean func-
tions. As evident from the results, CGP method performs much better than GA
and BPSO when the objective is obtaining as high as possible nonlinearity. Our
results indicate that CGP should be further explored with different fitness objec-
tives in order to check the boundaries of its performance.

It is noticeable from the results that the improvements in transparency level
are quite small. However, as shown by Mazumdar et al. that 0.1 decrease in
transparency value over the AES (an example of 8 × 8 S-boxes), is significant.
Hence, we cannot expect a big difference with Boolean functions (maximum
1
8=0.0125 can be expected), since analogy with S-boxes is valid. Furthermore,
side-channel attacks of stream ciphers are more difficult and thus even small
improvements are relevant.

Table 1. Improved DPA-resistant balanced Boolean functions reported in this paper.

# Developed Heuristics Nonlinearity Level Transparency Level

1. CGP (C size=900, P m=5) 116 0.958
2. Hybrid Novel BPSO 112 0.917
3. CGP (C size=300, P m=3) 116 0.966
4. Genetic Algorithm 112 0.930
5. Novel BPSO 110 0.913

7 Conclusion

This paper demonstrates several new heuristics for evolving DPA-resistant cryp-
tographic Boolean functions. In this research, we had two objectives, first was
to evolve balanced Boolean functions with nonlinearity level at least as reported
in literature with improved transparency order. Second was to investigate the
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Table 2. DPA-resistant balanced Boolean functions reported by other authors.

# Developed Heuristics Nonlinearity Level Transparency Level

1. GP with simple mutation 116 0.962
2. GP with variable mutation 112 0.919
3. GA (variable & balanced mutation) 112 0.931
4. Random search 110 0.934
5. Simulated Annealing 116 0.969
6. Rakaposhi 112 0.946

application of CGP and BPSO, whose efficiency has not been explored previously
for determining DPA-resistant Boolean functions. We found that GA generates
better results than Novel BPSO, while Novel BPSO method along with efficient
mutation operator generates better results than GA. It is noteworthy that CGP
produces the results that are clearly better than other approaches proposed in
literature and other heuristics presented in this paper. Hence, we infer that CGP
is a valid option for this kind of problem. Moreover, from the cryptographic per-
spective, the new Boolean functions evolved in this research present practical
choice for future implementations because they are offering improvement in the
properties while not bringing additional memory or speed drawbacks.
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APPENDICES

Any researchers who would like the full set of truth tables of determined Boolean
functions that are shown in Table 1 are welcome to contact the authors directly
(phd11120101@iiti.ac.in). Here, we present the truth tables (in hexadecimal for-
mat) of two best evolved Boolean functions along with their nonlinearity and
transparency level.
NLf=116, Tf=0.958 NLf=112, Tf=0.917
AFFA AFFA 39C6 C639 FA50 00A6 2F0D 7998 FFC3 C33C 13CF 8997
C635 A635 50EA CO7A C6C6 F0F0 00C3 DF02 8997 3CFF
3939 0450 FDA5 3939 3939 0000 E3C1 7998 33CC C3FF
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Abstract. Khudra is a block cipher proposed in the SPACE’2014 con-
ference, whose main design goal is to achieve suitability for the increas-
ingly popular Field Programmable Gate Array (FPGA) implementation.
It is an 18-round lightweight cipher based on recursive Feistel structure,
with a 64-bit block size and 80-bit key size. In this paper, we compute
the minimum number of active F -functions in differential characteristics
in the related-key setting, and give a more accurate measurement of the
resistance of Khudra against related-key differential cryptanalysis. We
construct a related-key boomerang quartet with probability 2−48 for the
14-round Khudra, which is better than the highest probability related-
key boomerang quartet of the 14-round Khudra of probability at most
2−72 claimed by the designers. Then we propose a related-key rectangle
attack on the 16-round Khudra without whitening key by constructing a
related-key rectangle distinguisher for 12-round Khudra with a probabil-
ity of 2−23.82. The attack has time complexity of 278.68 memory accesses
and data complexity of 257.82 chosen plaintexts, and requires only four
related keys. This is the best known attack on the round-reduced Khudra.

Keywords: Khudra block cipher · Rectangle attack · Related-key
attack

1 Introduction

Differential cryptanalysis was first proposed by Biham and Shamir in [5] and
is one of the most powerful attacks on block ciphers. Differential cryptanaly-
sis analyzes differential propagation patterns of a cipher to discover its non-
random behaviors, and uses these behaviors to build a distinguisher or recover
the key. Under the model of related-key attack [1], which considers the infor-
mation extracted from the two encryptions under two related keys, related-key
differential attack [11] allows the attacker to operate differences not only in the
plaintexts, but also in keys, though the key values are initially unknown.

For differential attacks, finding out differential characteristics with high prob-
abilities is of great importance, and there are several ways to try a good searching
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 331–344, 2015.
DOI: 10.1007/978-3-319-25645-0 22
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for such differential characteristics. After the Mixed-Integer Linear Programming
(MILP) technique was used to analyze ciphers [6], Mouha et al. [15] and Wu et
al. [21] proposed MILP based techniques to find automatically a lower bound of
the number of differentially active S-boxes of word-oriented symmetric ciphers.
Later, Sun et al. [17,19] and Qiao et al. [16] improved Mouha et al.’s method
to make it capable of searching for the actual differential characteristics. In this
paper, we will apply the methods in [16,17,19] and some other techniques to
find related-key differential characteristics of the new cipher Khudra.

The rectangle-boomerang style attacks [2,10,20] are clever extensions of differ-
ential cryptanalysis. In a rectangle-boomerang style attack, the cipher is treated
as a cascade of two sub-ciphers, where differential with high probability is used in
each of these sub-ciphers. The aim of the attack is to benefit from the slow mix-
ing in reduced round versions of the cipher attacked. The rectangle attack [2] is
transited from the boomerang attack [20], and the amplified boomerang attack
[10] considers all possible intermediate differences and significantly increases the
probability of a right quartet, easing the requirements to a chosen plaintext attack
instead of adaptive chosen plaintext and ciphertext attack.

To improve the results of the rectangle attack, Biham et al. [3] proposed a new
algorithm and a generic way for launching key recovery attacks and calculating
the time and data complexity with boomerang or rectangle distinguishers. In
this paper, we will combine the rectangle attack with related-key differentials
we found to give an analysis on the 16-round Khudra block cipher.

The Khudra block cipher [13] was proposed by Kolay et al. in the
SPACE’2014 conference. It is a lightweight cipher suitable for Field Pro-
grammable Gate Array (FPGA) implementation. Khudra is an 18-round block
cipher based on the recursive generalized Feistel structure, and has a 64-bit
block size and 80-bit key size. In this paper, we will firstly compute the mini-
mum number of active F -functions in the related-key differential characteristics
of Khudra, and give a more accurate measurement of the resistance of Khudra
against differential cryptanalysis. We will construct a related-key boomerang
quartet of probability of 2−48 for the 14-round Khudra, while the designers of
Khudra claimed that the highest probability related-key boomerang quartets of
14-round Khudra have the probability at most 2−72. Then we will propose a
related-key rectangle attack on the 16-round Khudra without whitening key by
constructing a related-key rectangle distinguisher for 12-round Khudra with a
probability of 2−23.82. The attack has time complexity of 278.68 memory accesses,
259.77 encryptions, and 257.72 decryptions, and data complexity of 257.82 chosen
plaintexts. It requires only four related keys. This is the best known attack on
the round-reduced Khudra.

Organization of the Paper. We give a brief introduction of Khudra in Section
2, and present our analysis result on Khudra against related-key differencial
attack in Section 3. In Section 4, we firstly describe the construction of the
related-key rectangle distinguishers, and then introduce our related-key rectangle
attack on round-reduced Khudra. Finally we conclude the paper in Section 5.
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2 Description of Khudra

In this section, we briefly recall the design of the block cipher Khudra and we
refer the readers to [13] for more details.

Khudra is a lightweight block cipher suitable for resource-constrained devices.
The designers of Khudra have shown that the strategies for designing lightweight
block cipher on Application Specific Integrated Circuits (ASICs) are not suit-
able for Field Programmable Gate Arrays (FPGAs). They have identified new
methods and design criteria for designing lightweight block ciphers on FPGAs.
Khudra is an actual practice of these guidelines.

Khudra is an 18-round block cipher based on the recursive Feistel structure,
which has a 64-bit block size and 80-bit key size. To encrypt a 64-bit plaintext
block using a 80-bit key, Khudra employs a generalized type-2 transformation
(GFS) [7] of a classical Feistel structure, with four branches in one round. The
output of the F -function then XORs with the next branch and the round key,
then passes through the Feistel permutation. The structure of the encryption
algorithm is demonstrated in the left part of Fig. 1, which is called the Outer
Structure of the cipher.

The Inner Structure. The inner structure of 4-branch type-2 generalized Feis-
tel structure of Khudra is also used for the construction for the F -function, see
the right part of Fig. 1. The structure of the F -function is called the Inner Struc-
ture of the cipher. It is implemented with a two-level recursive structure. In the
inner structure, half of the state is updated by 4×4 S-boxes to achieve nonlinear
operations.

Let the input block of the i-th round be (P0(i−1), P1(i−1), P2(i−1), P3(i−
1)) ∈ {0, 1}16 × {0, 1}16 × {0, 1}16 × {0, 1}16, and RKi denote the round key.
The data processing procedure can be described as follows:

P0(i) = P1(i − 1) ⊕ F (P0(i − 1)) ⊕ RK2(i−1),

P1(i) = P2(i − 1),
P2(i) = P3(i − 1) ⊕ F (P2(i − 1)) ⊕ RK2(i−1)+1,

P3(i) = P0(i − 1)

(1)

for i = 1, · · · , 18.

The S-box. Khudra uses the S-box in the PRESENT block cipher as its sub-
stitution box. The S-box is shown in Table 1. The difference distribution table
of the S-box is given in Appendix A. Note that throughout this paper we write
bit-strings in their hexadecimal format, e.g., the binary string 1100 is written as
a hexadecimal symbol C.
The Key Schedule. The key schedule algorithm of the cipher generates 36
round keys RKi (0 ≤ i < 36) and 4 whitening keys WKi (0 ≤ i < 4), all of 16
bits. Represent the 80-bit master key as (K0,K1,K2,K3,K4), each Ki is of 16
bits. The whitening keys WKi and the round keys RKi are generated as follows:
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Fig. 1. The Structure of Khudra [13]

Table 1. The S-box of Khudra

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

WK0 = K0,WK1 = K1,WK2 = K3,WK3 = K4,

RCi = {0||i(6)||00||i(6)||0},

RKi = Kimod5 ⊕ RCi

(2)

for i = 0, · · · , 35, where i(6) is the 6 bit representation of the round counter i.

3 Security Analysis of Khudra against Related-key
Differential Attack

In this section, we apply the MILP based methods presented in [14,16,17,19] to
Khudra in the related-key model.

We develop a Python program to generate the MILP instances for Khudra
in the “lp” format [9]. In order to find the characteristic with the maximal prob-
ability, we implement the technique proposed by Sun et al. [19] in our Python
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framework for automatic cryptanalysis. We have computed the minimum num-
ber of active F -functions in differential characteristics for related-key model,
which gives a more accurate measurement of the resistance of Khudra against
related-key differential cryptanalysis.

Table 2. Minimum number of active F -functions in related-key model

No. of Rounds 1 2 3 4 5 6 7 8 9

Min. # Act. Related-key ([13]) 0 0 0 1 2 3 3 3 4
F -functions Related-key (this paper) 0 0 0 0 1 1 2 3 -

In Table 2 we list our results and that of the designers. Clearly, we can
see that we found related-key differential characteristics with fewer active F -
functions compared with that of the designers. Particularly, we give in Table 3 a
related-key differential characteristic for the 4-round Khudra without whitening
key, which is a characteristic with no active F -function.

Table 3. A related-key differential characteristic for 4-round Khudra

r ΔI ΔRK2(r−1) ΔRK2(r−1)+1 NAS Prob.

1 0000000000000004 0000 0004 0 1
2 0000000000000000 0000 0000 0 1
3 0000000000000000 0000 0000 0 1
4 0000000000000000 0004 0000 0 1
5 0004000000000000

Table 2 shows that Khudra is not as secure as the designers claimed in [13].
We can construct a boomerang quartet of probablity of 2−48 for the 14-round
Khudra as a cascade of two 7-round sub-ciphers, while the designers [13] claimed
that the highest probability boomerang quartet of 14-round Khudra have a prob-
ability at most 2−72.

4 Related-Key Rectangle Attacks on Khudra

In this section, we firstly give a brief introduction to the construction of the
related-key rectangle distinguisher for block ciphers. Then we introduce an anal-
ysis on the 16-round Khudra without whitening key. The related-key differential
characteristics presented here are derived from an application of the MILP based
method of Sun et al. [18].
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4.1 Related-Key Rectangle Distinguisher

The related-key rectangle attack [4,8,12] is a combination of the related-key and
rectangle attack. Let E denote the encryption function of a block cipher. The
related-key differential is a quadruple of a plaintext difference ΔP , a cipher-
text difference ΔC, a key difference ΔK, and the corresponding probability
Pr[EK(P ) ⊕ EK⊕ΔK(P ⊕ ΔP ) = ΔC].

The rectangle attack treats E as a cascade of four sub-ciphers as E = Ef ◦
E1 ◦ E0 ◦ Eb, where E is composed of a core E′ = E1 ◦ E0 covered by additional
rounds Eb and Ef . Assume that for E0 we have a differential α → β under a key
difference ΔK0 with probability p, and for E1 there exists a differential γ → δ
under key difference ΔK1 with probability q, where (α, β) and (γ, δ) stand for
the input-output differences for E0 and E1 respectively. The rectangle attack
can be mounted for all possible differences β at the end of E0 and γ at the
beginning of E1. Thus we define p̂α and q̂δ as the probabilities related to α and
δ respectively as follows:

p̂α =
√∑

β

Pr2[α → β], q̂δ =
√∑

γ

Pr2[γ → δ]. (3)

The related-key rectangle attack involves four different unknown but related
keys – Ka,Kb = Ka ⊕ ΔK0,Kc = Ka ⊕ ΔK1,Kd = Ka ⊕ ΔK0 ⊕ ΔK1, where
the key differences ΔK0 and ΔK1 are the respective key differences for sub-
ciphers E0 and E1. The basic related-key rectangle distinguisher is constructed
as follows:

Step 1. Choose N0 plaintext pairs (P a, P b) satisfying P a ⊕ P b = α at random
and ask for the encryption of P a under Ka and of P b under Kb, i.e., Ca =
EKa(P a) and Cb = EKb(P b).

Step 2. Choose N1 palintext pairs (P c, P d) satisfying P c ⊕ P d = α at random
and ask for the encryption of P c under Kc and of P d under Kd, i.e., Cc =
EKc(P c) and Cd = EKd(P d).

Step 3. Search for quartets of cipertexts (Ca, Cb, Cc, Cd) satisfying Ca ⊕ Cc =
Cb ⊕ Cd = δ.

The probability of the rectangle distinguisher is given by Pr = 2−np̂2αq̂2δ where
n is the block size. The related-key differentials should satisfy the condition
p̂2α · q̂2δ > 2−n to make the distinguisher make sense. As we expect the number of
right quartets is taken to be 4 to get at least one right quartet in the data set with
probability 0.982, we set the number of plaintext pairs needed as 2n/2+1/p̂αq̂δ.
As in general differential attacks, after the distinguisher has been detected, one
or more rounds are attached before and after the distinguisher for key recovery.

4.2 The First Differential (E0) and Second Differential (E1)

Our methods apply the methods in [3] in related-key model with improvement on
reducing time complexity by exploiting the properties of a right quartet depend-
ing on the GFS feature. We treat the 16-round Khudra encryption function E
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as a cascade of four sub-ciphers as E = Ef ◦ E1 ◦ E0 ◦ Eb, where E is composed
of a core E′ = E1 ◦E0 covered by additional rounds Eb and Ef . E0 is composed
of rounds 3 − 8, E1 commences with round 9 and stops at the end of round
14. Rounds 1 − 2 and rounds 15 − 16 serve as the rounds before and after the
distinguisher respectively (Eb and Ef ).

Table 4. The number of characteristics for E0 of different probability

Prob. Num. Prob. Num. Prob. Num. Prob. Num.

2−12 1 2−22 4 2−24 54 2−26 130

2−14 2 2−23 21 2−25 88 2−27 65

All the related-key differential characteristics used in sub-cipher E0 have the
same input difference α = 0000000000005C00 and they all work with the master
key difference ΔK0 = 5C00000000005C000000. We found many such character-
istics with varying differences at the end of 8th round by the MILP method [18].
The numbers of characteristics with different probabilities are shown in Table 4.
Therefore the overall probability for E0 is

p̂α =
√

1 · (2−12)2 + 2 · (2−14)2 + 4 · (2−22)2 + · · · + 65 · (2−27)2 ≈ 2−11.91

according to Equation (3). Table 5 shows one of the characteristics used for E0.
The probability of the differential characteristic is 2−12.

Table 5. The related-key differential characteristic for sub-cipher E0 of Khudra

r ΔI ΔRK2(r−1) ΔRK2(r−1)+1 NAS Prob.

3 0000000000005C00 0000 5C00 0 1
4 0000000000000000 0000 0000 0 1
5 0000000000000000 5C00 0000 0 1
6 5C00000000000000 5C00 0000 6 2−12

7 0000000000005C00 0000 5C00 0 1
8 0000000000000000 0000 5C00 0 1
9 000000005C000000

All the related-key differential characteristics used in sub-cipher E1 have the
same output difference δ = 000000005C000000 and they work with the master
key difference ΔK1 = 5C0000005C0000000000. Due to the symmetry of GFS
that Khudra applied, we can also find the same number of characteristics of
different probability in E1 as in E0. As it can be seen in Table 4, the overall
probability for E1 is also q̂δ ≈ 2−11.91. Thus, the probability of the related-key
rectangle distinguisher is given by Pr = 2−64p̂2αq̂2δ ≈ 2−111.64.
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4.3 The Construction of Differential in Eb and Differential in Ef

Since Khudra applies the generalized Feistel structure, we can deduce the rela-
tion among the differences. Given the α difference, Fig. 2 shows the differential
propagation pattern of Eb.

Fig. 2. The differential propagation pattern of Eb

As is seen in Fig. 2, X1 and X2 are the output differences of the F -function
when the input difference is 5C00, and X3 is the output difference of the F -
function with respect to X1 as the input difference. It turns out that there are
214.52 kind of reasonable X1. When the input pair of the F -function is fixed with a
difference of 5C00(X1), the corresponding output pair of the F -function will have
a fixed output difference. The sub-keys used in Eb that can affect α difference is
K0 (16-bit), and the corresponding related-key difference is ΔK0

0 = 5C00. The
way it influence the difference before round 3 is also shown in Fig. 2 with the
circle. Thus we find out the pattern of plaintext differences that can possibly
lead to α difference in Eb.

Given the δ difference, we can deduce the relation between the differences
after δ. Fig. 3 shows the differential propagation pattern of Ef , where Y1 is the
output difference of the F -function when the input difference is 5C00, and Y2 is
the output difference of the F -function with respect to Y1 as the input difference.
It turns out that there are 214.52 kind of reasonable Y1. When the input pair of
the F -function is fixed with a difference of 5C00 (Y1), the corresponding output
pair of the F -function will have a fixed output difference. Thus we find out the
pattern of ciphertext differences that δ can possibly lead to in Ef .

As is seen in Fig. 3, the subkeys used for decryption in Ef that affect δ
difference is K0 (16-bit), and the corresponding related-key difference is ΔK1

0 =
5C00. The way it influence the difference after round 14 is also shown in Fig. 3
with the circle.
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Fig. 3. The differential propagation pattern of Ef

4.4 The Attack

The basic idea of the attack is to try all subkeys which affect the differences
before and after the distinguisher (i.e., in Eb and Ef ). The selection criterion of
right subkeys is whether it can lead to an α difference at the beginning of E0,
and the δ difference at the end of E1 can lead to the ciphertext difference.

To attack the 16-round Khudra, we request 224.82 structures of 232 plaintexts
each.

The attack works as follows:

1. Data Generation:
a) Generate Y = 224.82 structures Sa

1 , · · · , Sa
Y , each of 232 plaintexts. In

each structure, fix the left most 32 bits of the plaintexts and enumerate
the right most 32 bits. Ask for the encryption of the structures under
Ka.

b) For any i (i = 1, · · · , Y ), describe any plaintext in structure Sa
i with

Pa = (P a
0 , P a

1 , ∗, ∗) (P a
0 and P a

1 represent 16 fix bits respectively, and
∗ represents 16 arbitrary bits). According to Fig. 2, the plaintexts in
structure Si

b are generated as follows:

P b
0 = P a

0 ⊕ 5C00,

P b
1 = P a

1 ⊕ F (P a
0 ) ⊕ F (P b

0 ).

Ask for the encryption of the resulting plaintext Pb = (P b
0 , P b

1 , ∗, ∗) under
Kb = Ka ⊕ ΔK0 for obtaining Sb

1, · · · , Sb
Y .

c) Ask for the encryption of plaintexts generated in Step1(a) under Kc =
Ka ⊕ ΔK1 (to obtain Sc

1, · · · , Sc
Y ).

d) Ask for the encryption of plaintexts generated in Step1(b) under Kd =
Ka ⊕ ΔK0 ⊕ ΔK1 (to obtain Sd

1 , · · · , Sd
Y ).
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– This step requires data complexity of 257.82 chosen plaintexts. We
keep all the 216 input values of the F -function and the correspond-
ing output values in a table and each structure in Sb

1, · · · , Sb
Y can

be generated by 2 memory accesses. So the time complexity of this
step is 258.82 encryptions, and 2Y = 225.82 memory accesses. In each
structure we get 264 plaintext pairs, which lead to 232 kinds of differ-
ences after Eb, where 232 of them satisfy α difference before E0. Thus,
the total number of pairs with α difference before the core function
is 256.82 that produce 2113.64 quartets of which 2113.64 · 2−111.64 = 4
are expected to be right.

2. Initializing Counters:
Initialize an array of 216 counters. Each counter corresponds to a different
guess of Ka

0[15:0].
– Time complexity of this step is 216 memory accesses.

3. Data Analysis:
a) According to Fig. 3, insert the N = 258.82 ciphertexts of Sa, Sb, Sc and

Sd into four hash tables T a, T b, T c and T d respectively indexed by the
left most 16 bits and the right most 16 bits. If a collision occurs in the
same bins of (T a, T c), denote the ciphertexts as Ca = (Ca

0 , Ca
1 , Ca

2 , Ca
3 )

and Cc = (Cc
0, C

c
1, C

c
2, C

c
3). For each Ca in each bin of T a, build a hash

table indexed by 216 values of Cc
1, and insert the corresponding value

of Cc
2 by the equation Cc

2 ⊕ Ca
2 = F (Ca

1 ) ⊕ F (Cc
1). Check whether the

corresponding 2m+32+16 = 2m+48 = 272.82 values of candidate Cc in T c.
If this is the case, check whether Δ = Ca

1 ⊕Cc
1 ⊕5C00 is one of the 214.52

possible output differences may be caused by an input difference 5C00
to the F -function. Do the same for Tb and Td.
– This step has time complexity of 258.82 memory accesses from insert-

ing all the ciphertexts in hash tables. In the hash tables there exist
232 bins and in each bin we expect to have 224.82 ciphertexts. There-
fore, we need 272.82 memory accesses to build the hash table for
Ca, and 272.82 memory accesses to check if the candidate Cc is in
T c. There are 265.64 pairs of Ca and Cc to be checked in the next
situation. Out of the 216 possible differences for a pair, only 214.52

differences can be caused by the δ difference from the distinguisher
and thus about 264.16 pairs remain in T a (T b) and T c (T d). We keep
all the 214.52 differences that can be caused by δ in a hash table, and
thus the check requires one memory access for each colliding pair.
The time complexity of this step is 274.82 + 265.16 memory accesses.

b) For each surviving pairs (Ca, Cc) ((Cb, Cd)) from the previous step,
denote Ci’s structure by SCi

and attach to Ca (Cb) the index of SCc

(SCd

). After all the remaining pairs are processed, keep a hash table HSa
i

for each structure Sa
i (i = 1, 2, · · · , Y ) and insert the ciphertexts in Sa

i

into HSa
i

according to the indexes of the structures that the ciphertext
is related to. Similarly, keep the hash tables HSb

i
for Sb

i (i = 1, 2, · · · , Y ).
– This step requires one memory access for each remaining pair of the

previous step and thus needs 265.16 memory accesses.
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c) For a right quartet (P a, P b, P c, P d) and the corresponding ciphertexts
(Ca, Cb, Cc, Cd), it must be combined by some P a ∈ Sa

i , P b ∈ Sb
i and

P c ∈ Sc
j , P

d ∈ Sd
j where Sc

j is related to Ca and Sd
j is related to Cb and

i, j ∈ 1, 2, · · · , Y (not necessarily distinct). In each pair of structures
(Sa

i , Sb
i ) (i = 1, · · · , Y ), we search for two ciphertexts Ca and Cb from

Si
a and Si

b respectively which are attach to some other pair of structures
(Sc

j , S
d
j ). When we found such a pair, check whether the differences of

(P a, P b) and (P c, P d) can cause α. Denote the corresponding plaintexts
as P a = (P a

0 , P a
1 , P a

2 , P a
3 ) and P b = (P b

0 , P b
1 , P b

2 , P b
3 ). First we check

whether the equation P a
3 ⊕ P b

3 = F (P a
2 ) ⊕ F (P b

2 ) to be true. With this
move, we can reduce the candidate quartets by 2−16. Then check the
same for the plaintexts to which Ca and Cb are related. For the quartets
remained after this move, check whether the difference of P a

2 and P b
2 is

one of the 214.52 possible output differences may be caused by an input
difference 5C00 to the F -function, and the same for P c

2 and P d
2 .

– There are 264.16 attachments (colliding pairs) distributed over 224.82

structures, The first filter here can reduce the candidate quartets
to 221.86 in each structure. Out of the 216 possible differences for a
pair of plaintexts, only 214.52 differences can cause the α difference
into the distinguisher. Therefore, out of the 246.68 possible quartets
only 243.72 quartets remain. Since this filtering requires one memory
access for each candidate quartet, thus the algorithm requires 278.68+
262.68 + 246.68 + 245.20 memory accesses.

4. Subkey Bits Guess: For each remaining quartet ((P a, P b), (P c, P d)),
((Ca, Cb), (Cc, Cd)) perform:
(a) For each guess of the 16 bits of Ka

0 , we have

Kb
0 = Ka

0 ⊕ ΔK0
0 ,

Kc
0 = Ka

0 ⊕ ΔK1
0 ,

Kd
0 = Ka

0 ⊕ ΔK0
0 ⊕ ΔK1

0 .

(4)

(b) Increment the counter that correspond to Ka
0 if

EbKa
0
(P a) ⊕ Eb

Kb
0
(P b) = EbKc

0
(P c) ⊕ Eb

Kd
0
(P d) = α (5)

and
E−1

fKa
0
(Ca) ⊕ E−1

fKc
0
(Cc) = E−1

f
Kb

0

(Cb) ⊕ E−1
f
Kd

0

(Cd) = δ. (6)

– There are 214.52 possible input differences that lead to α difference after
Eb and totally 216 guesses of subkey bits of Ka, therefore, 21.48 subkeys
on average take one of these differences to α. As each pair suggests
21.48 subkeys, a quartet agrees on (21.48)2/216 = 2−13.04 subkeys for
Eb. Similarly, a quartet agrees on 2−13.04 subkeys for Ef . In total, we
get a candidate list of 2−42.08 subkeys from each quartet. Thus, for the
243.72 remaining quartets, there are total 216 possible subkeys and 21.64

hits. Averagely, the number of hits for a wrong subkey is 2−14.36, while
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the number of expected hits for the right one is 4. Thus, the attack can
almost always succeed in recovering subkey bits. This step requires about
257.72 encryptions and 257,72 decryptions and 259.72 memory accesses.

5. Output the subkey with maximal counter.
– This step requires 216 memory accesses.

Thus, the overall attack has data complexity of 257.82 chosen plaintexts, time
complexity of 278.68 memory accesses, 259.77 encryptions, and 257.72 decryptions.
The expected number of right quartets is taken to be 4.

5 Conclusion

In this paper, we have launched an related-key rectangle attack on 16-round
Khudra, with time complexity of 278.68 memory accesses, 259.77 encryptions and
257.72 decryptions, and data complexity of 257.82 chosen plaintexts. The attack
is a generic related-key rectangle attack with a differential distinguisher deduced
from an MILP based search. This is the best known cryptanalysis presented on
round-reduced Khudra.
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A The Difference Distribution Table (DDT) of the S-box
of Khudra

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0

2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0

3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0

4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0

5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0

6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4

7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4

8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4

9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0

A 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0

B 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0

C 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0

D 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0

E 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0

F 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4
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Abstract. Statistical saturation attack is one of the powerful attacks
against block ciphers, however, the requirement of identifying the weak
permutation somehow restrict its wide applications. Integral attack can
be considered as the deterministic version of the statistical saturation
attack, which works by tracing the properties of the integral sets after
certain rounds of encryption. It aims to build an integral characteristic
path for a large number of rounds. By searching within the message
space, it expects to find a characteristic path in a deterministic way
assuming the random behavior of the cipher. In this paper, we provide
the first study on how to take advantage of the integral attack and apply
it to cryptanalysis by using statistical approach, and our new approach
does not rely on identifying weak permutations. One of our contributions
is to firstly apply the internal collision of a set as the evaluated statistics
and show how this property can be efficiently propagated in the General
Feistel Structure (GFS) with bijective map S-Box. Secondly, we provide a
simple statistical framework to evaluate the data complexity. Finally, we
evaluate several GFS and find out for some of the designs, our approach
provide a better result compared with other statistical attack such as
differential and linear attack.
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1 Introduction

Among the cryptanalysis techniques against block ciphers, besides the classical
differential and linear attack, integral attack is one of the most popular method.
First it was proposed as the “Square attack” in [6] to attack block cipher Square.
Since then, several attacks following the similar technique were applied to analyze
different ciphers, and thus different names were given such as saturation attack
[9] and multiset attack [3]. Later in [7], Knudsen and Wagen unified all these
similar attacks to integral attack. In this paper, we employ statistical approach
to revisit the integral attack and we show that our statistical tools aided attack
outperforms some existing statistical attacks. Morever, we also present some new
properties of the integral attacks to which we should pay our attention.

The idea of the integral attack is to construct an efficient distinguisher based
on the integral characteristic path. Generally speaking, for byte-based or nibble-
based block ciphers, the attacker first collects a set of plaintexts which contains
all possible values for some bytes or nibbles, while assigns constant values for the
rest of the parts. Thus in the integral attack, we usually observe the propagation
of three properties:

– “C”(constant): elements in the set equal a constant value c ∈ {0, 1}n.
– “P”(permutation): elements in the set are all distinct.
– “B”(xor-balanced): the xor sum of the elements is zero.

The constant parts which are usually assigned to the property “C” will be prop-
agated freely through rounds, while the key point is to study the propagation of
the all possible value property “P”. Usually, after several rounds, the properties
are degraded to property “B” which means that the sum of the set is zero. And
finally the property “B” will be propagated to something untraceable anymore.

In recent years, all the previous researches on integral attacks try to build
a distinguisher which will end at some round containing one or several observ-
able property “B” such as [14]. Meanwhile, it is known that the probability of
this distinguisher is one given the random behavior of the cipher, which is quite
different from statistic based attack such as differential and linear attack. Since
the distinguisher has property of probability one, it is not difficult to find the
best integral path by simple computing. The attacker can start by setting one
byte or nibble of the internal state to have property “P” while others are set
to be “C”. In most cases, setting only one “P” will give the best result. Then
trace the propagation of “P” in the forward direction until no properties can
be observed. We can further increase the number of rounds by going backwards
since we have not used any message space. Assuming everything is randomly dis-
tributed, then we go backwards to trace the property until message space is used
over. This integral characteristic can be found with computational complexity
approximately that is equal to the data complexity and once found, it holds with
probability one and can be used to launch the key recovery attack. As a result,
most of the researches try to improve the integral attack by putting their focus
on the key recovery part instead of how to build a better distinguisher.
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Another similar approach is statistical saturation attack [5]. Unlike integral
attack, [5] is statistical in essence. However, it relies on weak permutations to
some degree. The attack on block cipher PRESENT is by far the most successful
example, but it seems difficult to apply to other ciphers.

Contributions. Our motivation is to find an attack which is statistical in
essence based on the deterministic integral attack. The open problem here is
to find out the deterministic propagation rules of the integral attack. If the
property “B” goes through S-Box, then we totally lose the property information
immediately. Thus the natural question is that whether we can find a way to
extend the property propagation in the probabilistic way.

Our contribution can be summarized as follows:

– This paper gives the first attempt by investigating the application of the
internal collision of the integral set. The motivation comes from the fact
that when we xor two permutations, the distribution of the number of colli-
sions in the set can be distinguished from random distribution given enough
plaintexts. More interestingly, our result can be derived for more than two
permutations.

– We show that the number of collisions within the integral set will not be
changed after applying S-Box transformation assuming it is a bijective map.
This problem was first studied in converting PRP to PRF. And in the
recent result [13], the accurate evaluation of the collision probability is pro-
vided. In this paper, we show that for byte or nibble-based block ciphers,
the permutation will not break the structure of the integral set, and thus
the collision property will remain. We can apply the evaluation of n xored
permutation to byte or nibble based block cipher. It becomes difficult to
distinguish the distributions when n becomes large.

– We also provide a statistic framework based on [1] to distinguish the two
collision distributions, and we apply our methods to attack generalized Feis-
tel structure (GFS). We show that for some of the designs, our method can
achieve the same or even better result than other statistical attacks such as
differential or linear attacks.

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 introduces the concepts of collisions of the permutations and describe
the expect value of the collision number. Then a simple statistic framework
is provided to distinguish between two collision distributions in Section 3. In
Section 4, we evaluate the security margin of several generalized Feistel structure
against our attack. Finally, we conclude our results in Section 5.

2 Integral Internal Collisions

The distinguisher of our probabilistic integral attack relies on the fact that we
can actually distinguish a pseudorandom function(PRF) from r xored pseudo-
random permutation(PRP) when r is not too large. The related problem was



348 J. Chen et al.

first investigated on how to convert PRP to PRF. The transformation suf-
fers from security loss where it can be distinguished from PRF using birthday
attack. The natural question comes in mind is that what is the security level
when PRF is built by xoring several PRP. Several security bounds have been
given since then. [8] demonstrated that xoring k PRP can build a PRF with
security in O(2

k+1
k n). [2] gave a tight bound for the case of two PRP, which is

at least O(2
n
2 ) and at most O(2n). Also in [12], the security level is proven to be

exactly O(2n) for the two PRP case. Later in [13], accurate evaluation was con-
sidered for building PRF from k PRP, especially, they provided the evaluation
when not all the 2n input and output are given. Since if all the 2n input and
output are known to the adversary, the xor sum is always zero and thus can be
distinguished from a PRF. Thus to address the problem excluding this trivial
case, [13] considered the situation where not all permutations are available to the
adversary. In other words, there are few points that the adversary cannot know.
However, when doing the probability evaluation, the result is equivalent to the
adversary having full access to the permutations. This quantitative approach is
crucial in our analysis, which differs from the traditional integral attack where
when a balanced integral property “B” goes through an S-Box, we will not be
able to observe the balanced property anymore. Here we summarize the result
of [13] into the following theorem.

Theorem 1 ([13]). Assume generator A = f1 ⊕f2 ⊕· · ·⊕fk where fi, i ∈ [1, k]
is a permutation chosen uniformly from Dn, where Dn denotes the set of all
permutations from {0, 1}n to {0, 1}n. Also assume generator H = h ∈R Fn,
where Fn denotes the set of all applications from {0, 1}n to {0, 1}n. We want
to distinguish A from H with non-negligible advantage given m ≈ 2n input and
output.
For generator A, the expected value and variance for the number of collisions
are as follows:

Ecol(A) =
m(m − 1)

2 · 2n
[1 +

(−1)k

(2n − 1)k−1
] (1)

σcol(A) = O(
m√
2n

) (2)

For generator H, the expected value and variance for the number of collisions
are as follows:

Ecol(H) =
m(m − 1)

2 · 2n
(3)

σcol(H) = O(
m√
2n

) (4)

��

2.1 Experimental Analysis of Xor Collisions

From Theorem 1, we know that there is a difference between a pseudorandom
function, which should be the ideal case and the xor of pseudorandom permu-
tations regarding the number of collisions within the set. We first provide an
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Fig. 1. Experimental result on internal collisions for XORed PRPs

experimental verification of the internal collisions to show correctness and accu-
rateness of the theorem . The experiment is done by counting the probabilities
for different collision numbers averaged over 109 trials, in other words, 109 ran-
dom permutations are generated and then the collisions for different settings are
counted. The result of f1 ⊕ f2 to f1 ⊕ · · · f5 are summarized in Figure 1.

From Figure 1, we can see that as we xor more permutations, the distribution
of the internal collisions tends to get stable. It it clear that f1 ⊕ f2 shows a
significant difference from other settings, and we can hardly tell the difference
from the figure when number of xored permutations gets larger than 4. Also we
can observe that the distribution of the number of internal collisions tends to
have bell curve shape.

2.2 Apply to Real World Block Ciphers

As shown in the subsection above, we have confirmed that there is an observable
difference between the distribution of the internal collisions of the xored PRP and
the ideal case of PRF. To attack the real world block cipher, we still have to refine
this technology. Since we focus on analyzing the generalized Feistel structure in
our cryptanalysis in this paper, we address the feasibility by demonstrating the
Type-II GFS as follows.

Assume that the non-linear function F is implemented as S-Box, which is
the most common way of designing a block cipher, one round of Type-II GFS
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includes an S-Box layer (non-linear layer) and a permutation layer. In the S-
Box layer, two block unit data is transformed by S-Box, and then xored with
two other block units. Then permutation layer proceeds permutations among
the block units. Obviously, permutation layer does not have effect on internal
collisions of each block unit. Suppose the unit block size is n-bit, and fr =
⊕r

i=1fi, fi ∈R Bn denotes the xor of r random permutations. Ecol(S) denotes
the number of internal collisions within set S. Given four unit block inputs
having the property of (P, P, P,C), namely, we have three sets to be permutation
and one set to be constant. Following the traditional integral attack, after two
rounds, the properties of the internal states will be (B, ?, P,B) as shown in
Figure 2. In other words, when a set with property B goes through an S-Box,
the property is lost from then on. However, when we trace the number of internal
collisions within the set, this property will not be lost through rounds. Since
S-Box is a bijective map, the internal collision of a set before and after the
S-Box transformation will not change. Also when we xor a constant set to a
permutation, it is equivalent to map a permutation to a new one, thus the
internal collision remains same which is zero. As a result, the number of internal
collisions can be evaluated by the number of xored random permutations as
shown in Figure 2. For example, after two rounds of Type-II GFS, the number
of internal collisions will be (Ecol(f2), Ecol(f3), Ecol(f1), Ecol(f2)).

Fig. 2. Type-II GFS

3 Successful Probability of Statistical Integral Attack

In this section, we apply the framework in [1] to fit our specific requirements
here. Suppose we would like to recover the last rounds subkey ki, i ∈ [0, 2m − 1]
of m-bit length, with which the attacker can compute backwards to get the
derived internal state given the ciphertexts. For each of the key candidate, we
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associate a counter with it to denote the number of internal collisions within the
plaintext and ciphertext sets. Denote k0 be the right key and ki, i ∈ [1, 2m−1] be
the wrong keys. Let’s denote Xi be the total counter of the number of collisions
computed from each subkey candidate ki. It is obvious that the total counter
Xi can be derived by Xi = Xi

0 + Xi
1 + · · · Xi

N−1/N , where N is the number
of integral plaintext and ciphertext sets, and Xi

j denotes the counter of internal
collision for one integral set. Assume that Xi

0, ...,X
i
N−1 are independent random

variable which follows the same distribution with mean μw and variance σ2
w for

the wrong key candidates where w ∈ [1, 2m − 1], and μ0 and σ2
0 for the right

key candidate. Consider that N is very large in the practical setting, by central
limit theorem,

Xi ∼ N (μw,
σ2

w

N
), X0 ∼ N (μ0,

σ2
0

N
)

Then let’s further define the bias for the two categories as follows:

Y i = |Xi − μw|, i 	= 0, Y 0 = X0 − μw

Here we assume μ0 > μw, and we only reverse the sign of Y 0 in the other
case. Let’s sort the biases of the wrong key candidates and denote them as
W1, ...,W2m−1, where W1 is the smallest bias. According to the previous section,
the bias for the correct key candidate can be considered to be the largest one.
Thus naturally, to attack successfully, we would like Y 0 > W2m−1. This con-
dition can be loosen a little bit by putting the counter of the right key within
the top r candidates. Then the attack provides a complexity reduction by a
factor of 2m−lgr over brute force search. Since Xi − μw follows normal distri-
bution N (0,

σ2
w

N ), the absolute value Y i follows the folded normal distribution

FN (0,
σ2

w

N ). Let’s suppose the advantage of the attack is a-bit, in other words, in
the sorted sequence W1, ...,W2m−1, the correct key locates at the rth position,
and we only need to search the candidates from W2m−1 back to r. As a result,
the advantage over the brute force search is a = lg 2m

2m−r , thus r = 2m − 2m−a.
Then we would like the bias of the correct key to be greater than W2m−2m−a ,
namely,

Y 0 > 0, Y 0 > W2m−2m−a

As we know that W2m−2m−a follows a normal distribution N (μq, σ
2
q ) accord-

ing to the order statistics, mean and variance can be derived as follows:

μq = F−1
w (1 − 2−a) = 0 +

σw√
N

Φ−1(1 − 2−a−1) =
σw√
N

Φ−1(1 − 2−a−1)

σq =
1

fw(μq)
2− m+a

2 =
σw/

√
N

2φ(Φ−1(1 − 2−a−1)
2− m+a

2
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Here Fw is the cumulative distribution function of Y w, which is folded normal.
Also Y 0 follows the normal distribution N (μ0 − μw,

σ2
0

N ). Then the successful
probability of the attack can be denoted as:

Psuccess =
∫ ∞

0

∫ x

−∞
fq(y)dyf0(x)dx

where fq and f0 denote the density functions for W2m−2m−a and Y 0 respec-
tively. Since the probability for W2m−2m−a < 0 is negligible, we could ignore the
probability Y 0 > 0, as a result, we can simplify the calculation as follows:

Ps = P (Y 0 > W2m−2m−a) =
∫ μ0−μw−μq√

σ2
0

N
+σ2

q

∞
φ(x)dx

Since it was shown that σq is negligible regarding the final result, we could
usually ignore it so the successful probability for the attack could be approxi-
mated by:

Ps = Φ(
μ0 − μw − σw√

N
Φ−1(1 − 2−a−1)

σ0/
√

N
)

As a result, the number of required integral sets for the attack can be
expressed as follows:

N = (
σ0Φ

−1(Ps) + σwΦ−1(1 − 2−a−1)
μ0 − μw

)2

Then given the statistical framework, we can answer the question of how
many random permutations can be accumulated before we can distinguish it
from a pseudorandom function. In other words, we want to reveal the relation-
ship between the data complexity and the number of xored permutations. Here
we choose the permutation size to be 4-bit, since this setting is recently widely
used in many lightweight block ciphers such as TWINE [17] and LBlock [18],
and also the GFS cipher can deploy the unit block setting to be 4-bit as well.
Considering the structure of GFS and most recent popular block ciphers, we
choose the following block sizes: 32-bit, 48-bit and 64-bit versions. A successful
attack requires the data complexity to be lower than the full code block. Another
criteria is the advantage setting which we consider the following three versions:
8, 16 and 32. Based on the above settings, we can observe the allowed number
of accumulated permutations for different block sizes. We notice that the data
complexity will not vary much regarding the different advantage parameters.
Thus in the following analysis, we will choose a = 16 for the ease of demonstra-
tion. Second, to launch a legal attack under the previous statistical framework,
the allowed accumulated permutations are 3, 5, 7 for 32-bit, 48-bit and 64-bit
versions of block cipher. Note that we have already included the data complex-
ity with in one integral set, namely, 24 in the 4-bit version. The key recovery
attack can be performed by the traditional last round attack. In Section 4, we
will construct and evaluate the characteristic path of various GFS without the
key recovery phase.
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4 Security Evaluation on Generalized Feistel Structure

In this section, we provide our evaluation on Generalized Feistel Structure (GFS)
with bijective S-Box design using statistical integral approach. Our evaluation
mainly focus on the number of rounds to distinguish and the corresponding data
complexity. Time complexity depends on analyzing the concrete structure of the
cipher, and since it is rather straightforward based on the distinguisher, we omit
the discussion here.

GFS extends the traditional Feistel ciphers in dividing a message into k > 2
sub blocks instead of two. Type-II GFS [19] is one of the most popular form
which received much of the attention. Each round, the Type-II GFS applies
Feistel transformation (x, y) → (x, F (x) ⊕ y) for every two blocks and performs
a left cyclic shift of the sub blocks. Some of the recent proposed block ciphers are
based on the Type-II GFS such as CLEFIA [15]. Although Type-II GFS with
large k is believed to be suitable for small-scale implementations, it suffers from
low diffusion. [16] investigates the permutation strategy in detail and pointed
out that the left cyclic shift is not the optimal permutation which can achieve
the best diffusion. They first define the maximum diffusion rounds DRmax
for a specific permutation π, and then they exhaustive search for the optimum
shuffles that can maximize the DRmax value. As a result, they found a shuffle
family with good diffusion regarding the impossible differential attack, differ-
ential/linear attack and integral attack. The result showed that the security
margin against these attacks have been significantly improved compared with
Type-II GFS and Nyberg type [11]. Figure 3 shows one generalized structure
when k = 16 which was applied in block cipher TWINE.

Fig. 3. Generalized Feistel Structure of TWINE (k=16)

To demonstrate, we analyze the case for k = 8 (32-bit) and k = 16 (64-
bit) versions with 4-bit S-box. We try to find the path for k = 8 where the
accumulated permutation is less or equal than 4, and for k = 16 where the
accumulated permutations is less or equal than 8. In other words, 4 and 8 are
the largest number of permutations we will allow in the output of the path.
We set only one input to P and all the rest input blocks to ’C’. In our model,
we treat the initial ’P’ as value ’1’, and whenever we face the case of P ⊕ P ,
we just do plus one counting, and finally we try to find which input will result
in an output that is within the bound of legal data complexity. The search is
straightforward and can be completed in less a second considering all the cases.
The evaluation of the case when k = 8 and k = 16 regarding different shuffling
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is given in Tables 1 and 2. Shuffling except Type II and Nyberg were illustrated
in [16].

Table 1. Security evaluation - data complexity for k = 8

k = 8 block shuffle rounds data (in log)

TypeII {7,0,1,2,3,4,5,6} 10 11.8697

Nyberg {2,0,4,1,6,3,7,5} 11 19.6835

No.1 {3,0,1,4,7,2,5,6} 8 19.6835

No.2 {3,0,7,4,5,6,1,2} 8 19.6835

Table 2. Security evaluation - data complexity for k = 16

k = 16 block shuffle rounds data (in log)

TypeII {15,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14} 18 11.87

Nyberg {2,0,4,1,6,3,8,5,10,7,12,9,14,11,15,13} 19 58.75

No.1 {1,2,9,4,15,6,5,8,13,10,7,14,11,12,3,0} 11 27.49

No.2 {1,2,11,4,9,6,7,8,15,12,5,10,3,0,13,14} 11 35.31

No.3 {1,2,11,4,9,6,15,8,5,12,7,10,3,0,13,14} 11 43.13

No.4 {5,2,9,4,1,6,11,8,15,12,3,10,7,0,13,14} 11 43.13

No.5 {5,2,9,4,11,6,15,8,3,12,1,10,7,0,13,14} 11 43.13

No.6 {5,2,11,4,1,6,15,8,3,12,13,10,7,0,9,14} 11 43.13

No.7 {1,2,11,4,3,6,7,8,15,12,5,14,9,0,13,10} 11 43.13

No.8 {1,2,11,4,9,6,7,8,15,12,13,14,3,0,5,10} 11 43.13

No.9 {1,2,11,4,9,6,15,8,5,12,7,14,3,0,13,10} 12 58.75

No.10 {7,2,13,4,11,8,3,6,15,0,9,10,1,14,5,12} 11 35.31

No.11 {7,2,13,4,11,8,9,6,15,0,3,10,5,14,1,12} 11 27.49

No.12 {1,2,11,4,15,8,3,6,7,0,9,12,5,14,13,10} 11 35.31

No.13 {5,2,11,6,13,8,15,0,3,4,9,12,1,14,7,10} 11 35.31

Notice that in paper [16], security evaluation on statistical attacks such as
differential and linear attacks are given in the form of active S-boxes. Let’s
assume we apply the S-Box which is used in PRESENT [4], which is also a 4-bit
S-box, thus the best differential probability of the S-box is 2−2. Then we can
easily derive the bound of rounds for the differential or linear attack, which is
11 rounds for Type-II and No.2 for k = 8, 17 rounds for Type-II, k = 16, and
16 rounds for No.1, k = 16. Before the comparison, we need to point out that
evaluation using active S-boxes is rather loose. From designer’s point of view, it
may provide enough security margin, however, on the other hand, the efficiency
of the design may suffer due to this kind of evaluation. In the case of Present’s
S-Box, among 15 input difference, 12 input differences will have only one output
difference with the maximum probability 2−2. So the probability for the single
path may be several rounds smaller than the approximated one. The exact value
should be derived by using branch and bound algorithm, which was first applied
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to derive the linear and differential path for DES in [10]. Notice that if we take
the clustering effect of the differential or linear paths into consideration, the
maximum probability of the single path may grow, but for block size greater
than 32-bit and large number of rounds, it is difficult to compute the complete
cluster, which is remained as a future work. On the other hand, what we have
derived here is the much more accurate data complexity. The direct comparison
may not be fair, but still we notice that for k = 8, our methods have almost the
same effect regarding Type-II permutation. For k = 64, surprisingly, we discover
that our result is even better in case of Type-II compared with the loosely
evaluated version. For most of the optimized shuffling, our proposed methods
can not achieve a better result than the integral attack.

Notice from Table 1 and 2 that the data complexity is rather low. It seems
that there is a space to go for more rounds. But the case is that other sub blocks
will have a rather high number of permutations, and the xor of the two will
immediately go out of the legal range. However, we can apply the similar tech-
niques as multilinear or multidifferential attack to consider all the accumulated
permutations in all the sub blocks instead of one. This will further reduce the
data complexity that is required to distinguish between the distributions, and
thus the number of rounds may be further improved.

5 Conclusion

In this paper, we investigate and extend a new cryptanalysis method called sta-
tistical integral attack. This attack traces the bias of the internal collision of
the integral set, and try to construct a distinguisher for many rounds. It is a
statistical attack in essence which is similar to differential and linear attack,
while we take advantage of the internal collision as the evaluated statistics. This
result provides us a new way to evaluate block ciphers with S-box design such
as general Feistel structure in a statistical approach other than the traditional
differential and linear cryptanalysis. Depending on the cipher’s concrete struc-
ture, this approach could give a better distinguisher than differential or linear
attack as shown in the paper. Also, searching the probabilistic integral path
is a rather simple job compared with the differential or linear path. Thus this
method provides us with a quick and straightforward approach to evaluate the
security margin of the underlined ciphers. Since the output of the distinguisher
is restricted to only one sub block, it should be cheap for the key recovery phase.
On the other hand, we can also take advantage of other accumulated permuta-
tions of the output to reduce the data complexity. In that way, the cost for the
key recovery phase may increase, and how to balance the two to get the best
data and time complexity is left as a future work.
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Abstract. We propose an encryption scheme with the following
properties:
1. it has an “all-optical” implementation, thus preserving ultra-high

communication speed of recently deployed optical networks;
2. sender and receiver only share a short key; that is, a key of length

constant with respect to the message length.

1 Introduction

Encryption is a fundamental building block in securing communication and sev-
eral real-life applications. The one-time pad encryption scheme [13] is provably
secure but requires sender and received to share a key at least as long as the
encrypted data to be encrypted [11]. Thus, currently used encryption techniques
are based on block ciphers which only require sender and receiver to share a
short key, and yet are believed to be secure as they have resisted significant
attack efforts from researchers. Such techniques are readily overlaid over essen-
tially any type of communication networks.

Motivated by the ultra-high performance in data transfer over certain types
of existing optical networks, researchers have recently studied the problem of
specializing encryption within such networks (see, e.g., [5,9,10,15] and follow-
up research). Because overlaying the mentioned encryption techniques over such
optical networks would reduce the performance to that of the encryption tech-
nique used, researchers are looking into designing “all-optical” encryption tech-
niques; that is, encryption techniques that can be directly implemented in such
optical networks. With this approach, the goal is to transfer encrypted data with
ultra-high performance, currently scalable to 100Gb/s, and typically up to one
order of magnitude faster than conventional, non-optical, techniques. Known
results in this direction include a scheme from [3], which presents an all-optical
random shift of the plaintext, and an all-optical xor gate, capable of realizing
the one-time pad encryption scheme, as surveyed in [15]. Both schemes are or
can be rigorously analyzed in a cryptographic model and provably satisfy perfect
secrecy of the encrypted data, assuming sender and receiver share more random-
ness than the data to be encrypted. A natural open problem has then become
constructing an all-optical encryption scheme where the key shared by sender
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 359–367, 2015.
DOI: 10.1007/978-3-319-25645-0 24
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and receiver is fixed (i.e., not dependent on the data rate); that is, the optical
analogue of non-optical encryption schemes based on block ciphers.

In this paper we propose a candidate solution for this problem using an optical
code division multiple access (OCDMA) overlay over a wavelength division multi-
plexed (WDM) optical network. Our proposed encryption scheme satisfies a rigor-
ously formulated notion of decryption correctness, has an ‘all-optical” implemen-
tation on such networks (a previous attempt of ours [2] seemed to require novel
optical component implementations), and only requires short keys to be shared
between sender and receiver. Under certain (seemingly reasonable) assumptions
about this optical network, we also provide some intuition as to why our scheme
might satisfy some form of provable security guarantees (although consistently
with the state of the art of short-key non-optical encryption, we do not know if our
scheme actually satisfies any form of provable security.) Specifically, we assume
that the so-called intercode phase shifts, intrinsic in optical fibers within such net-
works, exhibit a sufficiently random behavior, which can be frequently updated,
an assumption that seems to be reasonably true if the update rates are relatively
low. Our scheme requires the sender to use a large amount of (unshared) random-
ness, proportional to a small constant times the data rate.

2 Encryption: Formal Notions and Definitions

We define an optical encryption scheme as a triple (Schedule,OpEncrypt,
OpDecrypt) with the following syntax and properties. On input a (plaintext) data
block from the data stream M(t), a key k, and a random block from the random
stream R(t), the optical scheduling function Schedule returns n pseudo-data bits,
each corresponding to a pseudo-data stream Dj(t), for j = 1 . . . , n. On input n
pseudo-data bits δ1, . . . , δn, a key k, and a random block from the random stream
R(t), theoptical encrypting functionOpEncrypt returnsa ciphertextblock fromthe
ciphertext signalσ(t).On input a ciphertextblock fromtheoptical ciphertext signal
σ(t), an index j ∈ {1, . . . , n}, and key k, the optical decrypting functionOpDecrypt
returns a data block ρ from the data stream M ′(t), or a special decoding failure
symbol ⊥. We say that the optical scheme (Schedule,OpEncrypt,OpDecrypt) sat-
isfies decryption correctness if with probability 1 the streamM ′(t) decrypted by the
receiver is equal to the plaintext stream M(t).

We say that the scheme (Schedule,OpEncrypt,OpDecrypt) satisfies blockwise
decryption correctness if for any j = 1, . . . , n, it holds that with probability 1
the data bit ρ from stream M ′(t) decrypted by the receiver using the e-bit key
k, is equal to the j-th bit in the (t, n, �)-data block m from data stream M(t),
where, following [3,7,9], ρ is obtained, mathematically speaking, as follows:

1. (δ1, . . . , δn) = Schedule(n,w, r, t, �, k,m)
2. ((χi1, . . . , χin)n

i=1) = OpEncrypt(n,w, r, e, �, t, k, {δi}n
i=1)

3. for i = 1, . . . , w, fi = c/λi

4. σ =
∑n

j=1

∑w
i=1 cos(fi · t + χij + φj)

5. ρ = OpDecrypt(n,w, e, �, t, j, k, σ).
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Here, λi is the i-th wavelength used, fi is the i-th wavelength’s frequency, c is the
speed of light, χi1, . . . , χin ∈ [0, π]w are the n codewords used, φ1, . . . , φn ∈ [0, 2π]
are the intercode phase shifts associated to these codewords that are due to laser
frequency and temperature fluctuations resulting from the aggregation process
of the n data streams into a single optical fiber, and we assume that n ≤ w.
The above steps can be described in more detail as follows: step 1 consists of the
optical scheduling function associating a data block from a plaintext stream and
a key block from a key stream to n pseudo-data blocks being part of “pseudo-
data streams”; steps 2-4 consist of the aggregation of the n pseudo-data streams
into a single encrypted signal σ(t); and step 5 consists of the receiver’s decrypting
the j-th data stream from σ(t). The reader interested in details on the optical
transforms underlying such steps is referred, for instance, to [5–7,9,15].

Fig. 1. Model for streaming, encrypted, optical communication.

3 A Candidate for All-Optical Encryption with Short
Keys

Our scheme is obtained as an improved variant of some schemes studied in the
optical network literature (see, e.g., [2,5]), for which no security evidence or
all-optical implementation was provided, and using a number of all-optical tech-
niques: a ‘random phase shifting’ technique, an ‘unshared randomness usage’
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technique, a non-trivial ‘scheduling’ of unshared random bits and 0’s as pseudo-
data bits, and periodic random updates of the intercode phase shifts. In particu-
lar, scheduling of unshared random bits and 0’s as pseudo-data bits in our scheme
(and absent in all previous ones) is critical to obtain some security evidence for
our scheme, which we now describe.
Communication Over Optical Networks. Similarly as in many previous
proposals (see, e.g., [2,3]), this scheme achieves reliable optical communication
by choosing orthogonal codewords to allow encoding and reliable decoding of
multiple data streams of elements in {0, 1}. One popular choice for an orthogonal
encoding matrix is the Hadamard matrix, defined for all positive integers u ≥ 1,
with the following recursion:

H2 =
(

1 1
1 −1

)
H2u =

(
Hu Hu

Hu −Hu

)
, for u ≥ 1.

Rows of this matrix have been used in the mentioned previous works as code-
words in the following way: if the j-th row is used as a codeword to transmit one
data bit, wavelength i is being sent with phase (1 − hij)π/2, where hij denotes
the entry in the j-th row and i-th column of the symmetric matrix Hw, where
w = 2n. Then this scheme uses the j-th row (resp., (n + j)-th row) of H2n as
a codeword to transmit/receive the next bit from the j-th pseudo-data stream
if this bit is = 0 (resp., is = 1). As using the same approach would not suffice
to achieve our secrecy goals, we modify it slightly so to preserve orthogonality,
as follows: we use the symmetric matrix Hw, where w = n (instead of w = 2n),
and we use as codewords a different selection of the rows of Hn: the j-th row
(resp., (j +n/2modn)-th row) of Hn as a codeword to transmit/receive the next
bit from the j-th pseudo-data stream if this bit is = 0 (resp., is = 1).

A formal Description of Our Scheme. To define our optical encryp-
tion scheme, we formally specify three optical functions Schedule,OpEncode,
OpDecode. In the process, we mention an example all-optical realization of each
of these functions. (See, for instance, [5–7,9], for more details on this aspect).

Function Schedule. This function takes as input parameter values for the number
of pseudo-data streams n, the number of wavelengths w, and the time interval
length �, such that n = 4q, for some integer q ≥ 1, w = n, and � = 2, the
current time t, the e-bit shared key k, the next unused n/4-length plaintext data
block m = m0| · · · |mn/4−1, and the next unused 3n/2-length random stream
block r = r0| · · · |r3n/2−1. Given these inputs, this function schedules m into the
lower-indexed n/4 pseudo-data streams if t is odd or in the pseudo-data streams
indexed as n/4, . . . , n/2−1 if t is even and fills each of the remaining pseudo-data
streams either with 0’s (this helps towards the desired decryption correctness) or
with a random bit from the random stream block r (this helps towards achieving
some evidence of secrecy). Furthermore, it randomly shifts the intercode phase
shifts by 0 or π modulo 2π. More precisely, when t is odd, the function sets:

1. δj(t) = mj , for j = 0, . . . , n/4 − 1;
2. δj(t) = rj−n/4, for j = n/4, . . . , n/2 − 1;
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3. δj(t) = 0, for j = n/2, . . . , n/2 + n/4 − 1;
4. δj(t) = rj−n/2, for j = n/2 + n/4, . . . , n − 1;
5. φj(t) = φj(t − 2) +2π rn/2+j · π, for j = 0, . . . , n − 1,

where +2π denotes sum modulo 2π. Here note that when t is even, steps 1 to
4 are executed with the only difference that all indices j of quantities δj(t) are
shifted by n/4 (modulo n), and step 5 is executed by setting φj(t) = φj(t − 1),
for j = 0, . . . , n − 1. More specifically, when t is even, the function sets:

1. δj(t) = rj , for j = 0, . . . , n/4 − 1;
2. δj(t) = mj−n/4, for j = n/4, . . . , n/2 − 1;
3. δj(t) = rj−n/4, for j = n/2, . . . , n/2 + n/4 − 1;
4. δj(t) = 0, for j = n/2 + n/4, . . . , n − 1;
5. φj(t) = φj(t − 1), for j = 0, . . . , n − 1.

We note that while this function has an all-optical realization, the non-optical
equivalent realization, using an inverse multiplexer, is just as fast (and, in fact,
more practical).
Function OpEncrypt. This function, implementable using an array of (optical)
phase modulators, takes as input values for parameters n,w, e and the time
interval length �, such that n ≥ 1, w = n = e and � = 2, the current time
t, an the e-bit shared key k = k1| · · · |ke, and pseudo-data bits δ1(t), . . . , δn(t).
Given these inputs, this function returns, for i = 1, . . . , w and j = 1, . . . , n, the
value χij(t) = k′

i +2π δ′
ij(t). Here, the symbol +2π denotes sum modulo 2π, the

quantity k′
i is computed as = π · ki ∈ {0, π} for i = 1, . . . , n, and the quantity

δ′
ij(t) is computed as (1−hiq)π/2, where hiq is the entry of the Hadamard matrix

Hn in the q-th row and i-th column, q being set as follows: q = j if δj(t) = 0 or
q = j + n/2modn if δj(t) = 1.
Function OpDecrypt. This function takes as input values for parameters n,w, e
such that n ≥ 1, e = w = n, the current time t, assumed to be odd (the other
case being similar), an index j′ ∈ {1, . . . , n}, an e-bit shared key k and the signal
σ =

∑n
j=1

∑w
i=1 cos(fi·t+χij(t)+φj(t)). Given these inputs, this function returns

bit ρ, computed as follows. First, this function computes (σ1(t), . . . , σw(t)),
where, for i = 1, . . . , w, it holds that σi =

∑n
j=1 cos(χij(t) + φj(t)). Then, the

contribution from the key block is removed by computing, for i = 1, . . . , w, the
quantities σi(t) · cos(k′

i) =
∑n

j=1 cos(δ′
ij(t) + φj(t)). Finally, the next bit sent on

the j′-th pseudo-data stream, for j′ = 1, . . . , n/4 − 1, will be =0 (resp., =1) if
the quantity

∑w
i=1 hij′ · (σi(t) · cos(k′

i)), is different from 0 (resp, equal to 0).
In practice, where it is more appropriate to assume non-continuous measure-
ments, the latter test can be replaced by a natural approximate version which
merely tests if this quantity is significantly different or significantly close to 0,
for appropriate distance parameters. Measurement questions are very well stud-
ied in the optical network literature and dealt with using conventional digital
thresholding techniques. The steps in this function can be implemented using an
optical demultiplexer, an optical homodyne, an optical modulator, and an array
of optical phase shifters.
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Properties of the Scheme. The “all-optical” implementability of our scheme
was already discussed in the above description. The scalability to ultra-high
speed can be argued similarly as for the scheme in [3]. The blockwise decryption
correctness of our scheme follows by observing the following: (1) the decoding
correctness of an optical communication scheme that uses the Hadamard matrix
Hn as an encoding/decoding matrix; (2) the orthogonality of matrix K · Hn

is preserved, when K is a diagonal matrix; (3) orthogonal encoding/decoding
implies that a value computed by function OpDecrypt is 1 or 0 if δij′(t) is
0 or nonzero, respectively, regardless of the value of the intercode phase shifts
φj(t). More formally, we now show that the scheme satisfies blockwise decryption
correctness. We detail the proof in the case t is odd, and then mention the minor
changes needed to extend this proof to the case when t is even. First of all, we
note that on input n,w, e, t, k,m, our function Schedule sets δj(t) equal to the
j-th bit of the n/4-bit data block m, for j = 0, . . . , n/4 − 1.

Then, we note that on input n,w, e, t, k, δ1(t), . . . , δn(t), our function
OpEncrypt returns the tuple ((χi1(t), . . . , χin(t))i=1,...,n) such that χij(t) =
k′

i +2π δ′
ij(t), where the two quantities k′

i, δ
′
ij are computed as follows. First,

k′
i = π · ki ∈ {0, π}, where ki ∈ {0, 1} for i = 0, . . . , n − 1. Second,

δ′
ij = (1−hi,j+(n/2)·δj(t))π/2, where hi,j+(n/2)·δj(t) is the entry of the Hadamard

matrix Hn in the (j + (n/2) · δj(t))-th row and i-th column. Thus, we can write
χij = (π · ki) + (1 − hi,j+(n/2)·δj(t))π/2.

At this point, values fi and σ are computed as in the decryption correctness
experiment in Section 2, and the bit ρ is computed by our function OpDecrypt
as follows. On input n,w, e, t, j′, k, σ, the value σi =

∑n
j=1 cos(χij(t) + φj(t)) is

computed for i = 1, . . . , w. Note that for i = 0, . . . , n/4 − 1, the value σi(t) can
be written as

σi(t) =
n∑

j=1

cos((π · ki) + (1 − hi,j+(n/2)·δj(t))π/2 + φj(t))

= cos(π · ki) ·
n∑

j=1

cos(1 − hi,j+(n/2)·δj(t))π/2 + φj(t))

Then, note that our function OpDecrypt computes σi · cos(k′
i), which can be

written as
n∑

j=1

cos((1 − hi,j+(n/2)·δj(t))π/2 + φj(t)) = hi,j+(n/2)·δj(t) ·
n∑

j=1

cos(φj(t))

as for these values of i, it holds that cos2(k′
i) = 1. Finally, OpDecrypt computes∑w

i=1 hi,j′ · (σi(t) · cos(k′
i)), which is then equal to

w∑
i=1

hi,j′ · hi,j+(n/2)·δj(t) · (σi(t) · cos(k′
i)) = (

n∑
j=1

cos(φj(t))) · (
w∑

i=1

hi,j′ · hi,j+(n/2)·δj(t)).
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By orthogonality of matrix Hn, the latter expression is then = n·∑n
j=1 cos(φj) >

0 when δj(t) = 0 and thus j′ = j (and the function returns ρ = δj = 0), or equal
to 0 when δj(t) = 1 and thus j′ = j +n/2 (and the function returns ρ = δj = 1).

The proof is extended to the case when t is even by substituting the data
block interval j = 0, . . . , n/4−1 with j = n/2, . . . , n/2+n/4−1, and by replacing
all additions j + n/2 with j + n/2modn. We obtain the following

Theorem 1. The described triple (Schedule,OpEncrypt,OpDecrypt) is an
optical encryption scheme with the following two properties:

1. sender and receiver only need to share random keys of length constant with
respect to the message length; and

2. it satisfies blockwise decryption correctness.

4 Security Considerations

We now provide some considerations in favor of some plausible security of our
proposed short-key scheme. Denote as ρ1, . . . , ρn (resp., ρn+1, . . . , ρ2n) the per-
wavelength decompositions of the ciphertext block at time t (resp., time t + 1),
and consider the distribution of ρ1, . . . , ρ2n over the following random processes:
the random choice of the e-bit key k, the arbitrary distribution D used to gener-
ate (t, n/4, �)-data block m1 (resp., m2) as plaintext, and the randomness used
by algorithm OpEncrypt on input k and m1 (resp., k and m2).

Consider first the case of odd time t. After performing optical beat detection,
the adversary obtains a vector (ρ1, . . . , ρw), where, for i = 1, . . . , w, each ρi is
defined as

∑n
j=1 cos(χi,j + φj) and can be rewritten as:

ρi =
n∑

j=1

cos(χij + φj) =
n∑

j=1

cos(k′
i + δ′

ij + φj),

the latter equality being obtained by expanding χij . When i = 0, . . . , n−1, using
k′

i = π · ki with ki ∈ {0, 1}, and the derivation of δ′
ij from the Hadamard matrix

Hn, we further have

ρi = (cos(k′
i)) ·

n∑
j=1

cos(δ′
ij + φj) = (cos(k′

i)) ·
n∑

j=1

hiq · cos(φj),

where hiq is the entry of the Hadamard matrix Hn in the q-th row and i-th
column, q being set as follows: q = j if δj = 0 or q = j + n/2modn if δj = 1.

We note that in this expression the vector hiq is the only vector dependent on
the actual data bits and has components equal to −1,+1 according to the value
of the data bit. Moreover, this vector is essentially componentwise multiplied
with the cosine of the intercode phase shifts vector, also with components having
signs in {−1,+1}, at each i = 1, . . . , w.

A first important observation here is that the inter-code phase shifts are
assumed to be random, and thus the signs of the cosine function of the inter-code
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phase shifts is random too. Then the above equality implies a group operation
(in {−1,+1}n) between the vector of signs of the inter-code phase shifts and the
vector of the cosines of the Hadamard matrix elements due to actual data bits,
thus resulting in a perfect randomization of the data bits, in correspondence of
the values j = 0, . . . , n/4−1. In other words, there is a ‘one-time pad’ encryption
effect between the data bits and the random signs associated with the cosines of
the intercode phase shifts used to encrypt such data bits at time t. Because the
random bits used to achieve this effect are the sender’s unshared random bits,
this would seem to hide the plaintext bits up to time t.

A second important observation here is that the signs of the cosines of the
inter-code phase shifts that are not used to encrypt actual data bits at a given
time t but are used for this purpose at the time t+1 still remain random at time
t+1 after being used at time t to encrypt random bits. This follows precisely from
the randomness of such bits on the pseudo-data streams, which implies a similar
group operation between the vector of signs of the cosines of the inter-code phase
shifts and the vector of random pseudo-data bits. In other words, there is a ‘one-
time pad’ encryption effect between the random bits from the random streams
and the random signs associated with the cosines of the intercode phase shifts
that are unused at time t to encrypt actual data. Thus, the latter random signs
can be used to encrypt the next data bits at time t + 1.

Furthermore, we note that at time t + 1 the plaintext data is only in the
values δj , for j = n/4, . . . , n/2 − 1, and that the corresponding sender’s random
values rn/2+j , although used at time t, are independent from ρ1(t), . . . , ρn(t), as
a consequence of fact (2) above. This, together with the previous discussions,
might seem to suggest that some form of secrecy might hold on both times t and
t + 1, and then for all t.
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Abstract. PGP is built upon a Distributed Web of Trust in which a
user’s trustworthiness is established by others who can vouch through a
digital signature for that user’s identity. Preventing its wholesale adop-
tion are a number of inherent weaknesses to include (but not limited
to) the following: 1) Trust Relationships are built on a subjective honor
system, 2) Only first degree relationships can be fully trusted, 3) Levels
of trust are difficult to quantify with actual values, and 4) Issues with
the Web of Trust itself (Certification and Endorsement). Although the
security that PGP provides is proven to be reliable, it has largely failed
to garner large scale adoption. In this paper, we propose several novel
contributions to address the aforementioned issues with PGP and asso-
ciated Web of Trust. To address the subjectivity of the Web of Trust, we
provide a new certificate format based on Bitcoin which allows a user to
verify a PGP certificate using Bitcoin identity-verification transactions
- forming first degree trust relationships that are tied to actual values
(i.e., number of Bitcoins transferred during transaction). Secondly, we
present the design of a novel Distributed PGP key server that leverages
the Bitcoin transaction blockchain to store and retrieve our certificates.

1 Introduction

In a recent article, Yahoo announced its intentions to add an extension that
will provide its customers with the ability to digitally sign and encrypt mes-
sages using Pretty Good Privacy (PGP). Yahoo plans to use a fork of Google’s
End to End OpenPGP plugin that is currently in development. Yahoo follows
the likes of Google, Facebook and Microsoft, who also recently announced they
would encrypt internal traffic in response to the Snowden spying revelations [1].
Traditional methods of securely sharing between two or more parties rely on the
use of Public-Key Encryption within a Public Key Infrastructure (PKI). In a
traditional PKI scheme, a certificate authority or certification authority (CA)
is an entity that issues digital certificates. The digital certificate certifies the
ownership of a public key by the named subject of the certificate. This allows
others (relying parties) to rely upon signatures or assertions made by the private
key that corresponds to the public key that is certified. In this model of trust
relationships, a CA is a Trusted Third Party (TTP) that is trusted by both the
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 368–375, 2015.
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subject (owner) of the certificate and the party relying upon the certificate. CAs
are characteristic of many PKI schemes [2]. Currently, the most viable alterna-
tive for Public Key Crytography based on a CA is PGP. PGP is built upon a
Distributed Web of Trust in which a user’s trustworthiness is established by oth-
ers who can vouch for that user’s identity. Preventing its wholesale adoption are
a number of inherent weaknesses to include (but not limited to) the following: 1)
Trust Relationships are built on a subjective honor system, 2) Only first degree
relationships can be fully trusted, 3) Levels of trust are difficult to quantify
with actual values, and 4) Issues with the Web of Trust itself: Certification.
It is currently difficult to get certified if the key is new. In general people com-
plain that it is hard to find endorsers to enhance the trustworthiness of a new
key - which will limit its use. Endorsement. Competence and willingness of
endorsers. There is currently no incentive to endorse a key of someone you know
- much less someone you indirectly know through a friend or relative.

Bitcoin is a form of digital currency, created and held electronically [3].
According to “Crypto Coin News”, the number of active Bitcoin users world-
wide will reach 4.7 million by the end of 2019, marking a significant gain over
the 1.3 million last year, according to a report from Juniper Research [4]. As a
result of its popularity, we introduce a new Bitcoin-Based PGP certificate for-
mat, certificate validation methodology, and certificate endorsement model that
overcomes the issues we have highlighted above. Issues 1 and 2 with the Web of
Trust can be easily solved using our new Bitcoin-Based PGP certificate format
and verification system. Issue 4 can be resolved by use of endorsement fee. The
amount of the fee can be determined by the user and will vary based on the
current value of a Bitcoin - which has been relatively stable of late [5]. In Issue
2, the bitcoin payment ensures that the endorser follows the “authentication”
procedure otherwise they risk losing bitcoins - which demonstrates both their
competence and willingness to serve as a viable certificate endorser.

There are some interesting properties of our trust establishment protocol
that could result in safer use of PGP. Property 1) People have the option of
using previous transactions before using a certificate OR directly establishing a
trust relationship themselves with a certificate owner (i.e., direct trust). Property
2) As mentioned above, because of the risk of losing bitcoins via the identity-
verification process, people will be less likely to leverage our certificates without a
direct trust establishment. Property 3) The block chain and associated identity-
verification transactions provide transparency into the trustworthiness of others.
In addition to these benefits, we also provide the design of a novel PGP Key
Server based on the blockchain’s ability to store pieces of data since the 0.9.0
release. The 0.9.0 release of Bitcoin Core added a new standard transaction type
granting access to a previously disallowed script function, OP-RETURN [6].
This function accepts a user-defined sequence of up to 80 bytes. Once realized,
this new key server will be completely de-centralized and serve as an appropriate
repository for Bitcoin-Based PGP Certificates. Our work specifically provides the
following contributions:
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– Bitcoin-Based PGP Certificate: Contains Bitcoin address for identity
verification and certificate revocation.

– Identity-Verification and Revocation Transactions: Serves as alter-
native means of verifying a certificate owner’s Public Key contained in a
Bitcoin-Based PGP Certificate. Also provides a mechanism for certificate
revocation.

– PGP Trust Levels: Allows users to specify the amount of Bitcoins they are
willing to “risk” in order to verify a particular Bitcoin-Based PGP certificate.

– Bitcoin-Based PGP Key Server Design: Demonstrates method of
using the Bitcoin Transaction Blockchain for PGP Key Storage and Retrieval

The rest of this paper is organized as follows: Section 2 discusses the work
related to this area of research, Section 3 provides an overview of our Bitcoin-
Based PGP certificate, Section 4 presents an overview of PGP threats addressed
by our contributions, Section 5 discusses the design of our application and new
key server, and Section 6 concludes the paper and identifies areas for future
work.

2 Related Work

According to [7], BitPay has launched a project that leverages bitcoin technology
to facilitate a decentralized authentication system. Called BitAuth, the system
uses cryptographic signatures in place of server-side password storage. BitAuth
is a way to do secure, password-less authentication using the same elliptic-curve
cryptography as Bitcoin. Instead of using a shared secret, the client signs each
request using a private key and the server checks to make sure the signature is
valid and matches the public key. A nonce is used to prevent replay attacks and
provide sequence enforcement [8]. Similar to our novel Bitcoin-Based PGP cer-
tificate, BitAuth provides “portable” identity in that the same identity can be
used with multiple services. BitAuth is a promising new method of authentica-
tion, but currently relies heavily on the System Identification Number (SIN). The
SIN is a new concept that is similar to a Bitcoin address, however, is not widely
adopted. Whereas, our scheme relies on popular Bitcoin primitives - address,
transactions, and the block chain - that are widely being used. Additionally,
since the focus of BitAuth is on authentication, it cannot be used to protect
the confidentiality of information shared between two parties - as is the primary
benefit of our Bitcoin-Based PGP Certificate.

Off-the-Record (OTR) Messaging is a protocol designed for private social
communications. According to [9,10], the notion of an off-the-record conversa-
tion captures the semantics one intuitively wants from private communication -
only the two parties involved are privy to the contents of the conversation; after
the conversation is over, no one (not even the parties involved) can produce a
transcript; and although the participants are assured of each other’s identities,
neither they nor anyone else can prove this information to a third party. Current
versions of the OTR protocol, support mutual authentication of users using a
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shared secret through the socialist minimalist protocol. This feature makes it
possible for users to verify the identity of the remote party and avoid a man-
in-the-middle attack without the inconvenience of manually comparing public
key fingerprints through an outside channel. OTR’s primary weakness lies in
the fact that it is primarily applicable in the domain of instant messaging -
whereas our Bitcoin-Based PGP certificate can be used in virtually any domain
in which secure information sharing is desired. According to the authors of the
OTR protocol, “The high latency of email communication makes using our“off-
the-record” protocol impractical in the setting of email.”

In [11], a secure replacement for CAs is proposed. Rather than employing a
traditionally hard-coded list of immutable CAs, Convergence allows one to con-
figure a dynamic set of Notaries which use network perspective to validate user
communications. It provides the following guarantees: Trust Agility, Robust-
ness, Backwards Compatibility, Extensibility and Anonymity. This all occurs
within a distributed environment in which anyone can serve as a trust notary.
Convergence originated from the ideas originally developed by the Perspectives
Project at Carnegie Mellon University [12]. Convergence has great promise in the
domain of web browser security and other areas where SSL is prominent. How-
ever, it suffers from the fact that the number of notaries currently in existence
for performing CA functions is limited (due to it being a fairly new effort). As a
result, this could lead to potential Denial of Service (DoS) attacks in the event
the notaries become overwhelmed with requests. The Bitcoin infrastructure -
upon which our certificate primarily relies - has successfully processed nearly 40
million transactions (to date) [13]. This makes it robust against volume-based
security attacks such as DoS and DDoS - when applicable.

3 Bitcoin-Based PGP Certificates

Our Bitcoin-Based PGP certificate contains all the relevant elements found in
a traditional PGP Certificate but also includes a Bitcoin Address for Identity-
Verification and one used for Certificate Revocation. A Bitcoin address is an
identifier of 27-34 alphanumeric characters, beginning with the number 1 or 3,
that represents a possible destination for a Bitcoin payment. A Bitcoin transac-
tion is a signed section of data that is broadcast to the network and collected
into blocks. It typically references previous transaction(s) and dedicates a certain
number of bitcoins from it to one or more new public key(s) (Bitcoin address)
[14]. Because transactions must be verified by miners, Bitcoin users are some-
times forced to wait until they have finished mining. The bitcoin protocol is set
so that each block takes roughly 10 minutes to mine. In the case of a purchase,
some merchants may make users wait until this block has been confirmed, which
will delay the receipt of the digital goods that have been paid for - whereas in
other cases (e.g., low value transactions), a merchant will give access to the goods
prior to the transaction being verified by the miners [15]. In our case, the delay
does not pose a major problem since it will only take place when a trust rela-
tionship is being established for the first time - not upon certificate generation.
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The value of using Bitcoin in the context of a PGP certificate centers around the
fact that because it is built upon a peer-to-peer network, it is able to perform
its functions (e.g., money transfers, double-spending prevention) without the aid
of a CA - similar to the traditional web of trust. This is advantageous in any
context where end-to-end data confidentiality is needed or desired (e.g., email,
text message, cloud sharing, or social network communications). Users are more
likely to trust an infrastructure that is independent of any CAs, but can still
offer the same cryptographic guarantees (i.e., confidentiality and integrity) as an
environment that is under their full control or purview.

4 PGP Threats and Security Goals

In this section, we expound on the threats we identified in the introduction
and describe our security goals. We make the primary assumptions that PGP
users are leveraging all of the features of PGP to include the Web of Trust,
Levels of Trust, and Validity. Although there are a number of well documented
issues with PGP, we primarily focus on threats relating to certificate validation,
endorsement, and trust relationship establishment. With our new endorsement
process offered via Bitcoin, the threat of assigning invalid levels of trust or valid-
ity would be mitigated by the following constructs of our scheme: 1) Certificate
Signing MUST precede the incentive fee. A fixed fee of 0.001 BTC is sent to
the Bitcoin address provided by the certificate endorser (fee is paid from the
certificate owner’s bitcoin address - as available - and can change based on the
owner’s discretion). This fee serves as a small incentive to willing and compe-
tent endorsers, 2) Endorsement process is not automated. Our prototype forces
users to go through a step by step process in order to sign a certificate stored
on our server, and 3) Levels of Trust are established by the certificate endorser,
not certificate owner. In our scheme, when performing an identity-verification
transaction, any amount of Bitcoins can be sent for verification purposes. These
Bitcoins are ‘at risk’ until the certificate owner returns them. As a result, this
serves as a very clear indication of trust between certificate endorser and owner.

A few additional threats to consider with leveraging Bitcoin as an alternative
method of certificate verification are those related to rogue certificate owners,
wealthy endorsers, and untrustworthy endorsers. In the first case, a certificate
owner can generate a PGP key and use it for collecting payments and never
return incoming identity-verification transactions to endorsers. To further com-
plicate this scenario, a wealthy endorser risks very little by endorsing such users.
To address these threats, we still rely on the PGP trust model that allows for
out-of-band methods of certificate verification and a web of trust. The inference
is that users will not initiate an identity-verification transaction with someone
they do not already know and trust from prior interactions. Additionally, in the
case of the wealthy endorser, only one verification transaction is considered valid
for a particular certificate. Thus, their credibility (over time) will come into ques-
tion as they continue to endorse untrustworthy certificates. Lastly, we consider
the scenario where endorsers are suspected of being malicious by endorsing ‘just
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for the sake of endorsing’. Since our endorsement scheme does not invalidate -
but augments - the endorsement process provided by PGP, over time a mali-
cious endorser would be classified as someone who cannot be trusted - especially
if they are endorsing both questionable and legitimate certificates. A legitimate
case to consider is someone who is a professional certificate endorser. Someone
whose professional responsibility is to endorse new certificates has their job (and
reputation) to consider if they are found to be endorsing certificates that are not
legitimate - over time.

5 Prototype Design

The primary motivations for creating a new certificate server are to 1) Accom-
modate our new Bitcoin-Based PGP certificates, 2) Enable Identity-Verification
and Revocation transactions, and 3) Enable Certificate Signing Endorsements.
To facilitate these “features”, our certificate server will provide the following
functions: Generate, Revoke, Verify, and Sign. Each Bitcoin-Based PGP cer-
tificate will contain a set of required parameters prior to generation and items
that will be automatically generated by the prototype application. One thing to
note is that we do not modify the original PGP certificate format - but leverage
the PGP comment field to store Bitcoin addresses. In PGP, users can revoke
their certificate if they feel like the certificate has been compromised. PGP also
allows a user to designate a certificate revoker. With PGP certificates, the user
usually posts the revoked certificate on a certificate server. To enable an easier
revocation process for our Bitcoin-Based PGP certificate, we perform a transac-
tion between the 2 addresses within the certificate. With information from the
blockchain, one can find out how much value belonged to each address at any
point in Bitcoin history [17].

Key revocation is arguably the most important component of any certificate-
based identification system. Our implementation deliberately forces the user to
make a valid Bitcoin transaction to a legitimate Bitcoin address in his pos-
session. Alternatively, the revocation status could be stored in OP-RETURN
fields if our decentralized approach is adopted. Our current method, however,
has an important technical advantage: It makes verification of a certificate sta-
tus extremely efficient since revocation transactions will be stored in the Bit-
coin Unspent Transaction Outputs (UXTO) database and propagated among
all nodes automatically. The UXTO are redeemable transactions and the infor-
mation on certificate status will be kept in main memory for efficient verification.
An identity-verification transaction is the primary mechanism by which a user
can verify another user’s Public Key in a Bitcoin-Based PGP certificate.

Blockchain PGP Key Server Historically, the use of bitcoins blockchain
to store data unrelated to bitcoin payments has been a controversial subject.
Many developers consider such use abusive and want to discourage it. Others
view it as a demonstration of the powerful capabilities of blockchain technology
and want to encourage such experimentation. Those who object to the inclusion
of non-payment data argue that it causes “blockchain bloat”, burdening those
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running full bitcoin nodes with carrying the cost of disk storage for data that
the blockchain was not intended to carry. Moreover, such transactions create
UTXO that cannot be spent, using the destination bitcoin address as a free-
form 20-byte field. Because the address is used for data, it does not correspond
to a private key and the resulting UTXO can never be spent [18]. As a result,
these transactions continue to increase the size of the blockchain over time.
In version 0.9 of the Bitcoin Core client, a compromise was reached with the
introduction of the OP-RETURN operator. OP-RETURN allows developers
to add 40 bytes (now 80 bytes) of nonpayment data to a transaction output.
However, unlike the use of ”fake” UTXO, the OP-RETURN operator creates a
(provably) unspendable output, which does not need to be stored in the UTXO
set. OP-RETURN outputs are recorded on the blockchain, so they consume disk
space and contribute to the increase in the blockchains size, but they are not
stored in the UTXO set and therefore do not bloat the UTXO memory pool and
burden full nodes with the cost of more expensive RAM [18].

STORAGE: Depending on the size of PGP key generated, the size could range
from 1018 bytes (1024-Bit key) to 3100 bytes (4096-Bit key). PGP supports
up to an 8192-Bit key which corresponds to an even larger on-disk or memory
capacity for storage purposes. Keeping this in mind, along with the fact that
the blockchain only accepts ‘data’ transactions of up to 80 bytes in size, our
storage leverages an innovative certificate fragmentation mechanism to enable
both logical storage and efficient retrieval. A message within our PGP Key Server
will consist of a 5 Byte Header which will include the PGP Key ID (4 bytes),
Fragment ID (4 bits), Total Fragments (4 bits), and the Message Data (75 bytes).
RETRIEVAL: The Retrieval of a PGP Key from the blockchain is similar to
the defragmentation process of an IP datagram. At a high level, the user will
request a certificate by either Bitcoin Address or KeyID. Once the transactions
associated with the query string is returned, the number of total fragments
are computed. If all transactions were retrieved successfully, application will
reassemble the Key and return it to user.

6 Conclusions and Future Work

In this paper we presented a number of enhancements to PGP and associated
Web of Trust - which has suffered from a litany of issues since its inception.
Specific issues of certification, endorsement, and ambiguous levels of trust have
prevented its wide scale adoption. Future work will consist of examining alterna-
tive methods of employing Bitcoin for identity-verification using actual Bitcoin
Distributed Contracts or alternative methods that do not require modification
of the original PGP certificate format. Keybase.io allows you to get a public key,
safely, starting just with someone’s social media username(s), but also provides
other mechanisms of verifying a particular key (e.g., pgp fingerprint and bitcoin
addresses) [19]. A potential area for future work would be to enable verifiers
to leverage one or more of the online identifications provided by Keybase.io to
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strengthen the trust of certificate stored on our server (via their API). Addi-
tionally, the integration of Bitcoin-Based PGP Certificates into infrastructures
where secure sharing is offered (via text messaging, chat applications, and Secure
Cloud Storage servers) would demonstrate their usefulness in actual environ-
ments. Lastly, a stronger form of certificate revocation should be explored that
builds on the procedure we present. Full version of paper can be found at http://
arxiv.org/.
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Abstract. Both scalability and flexibility become crucial for privacy
preserving protocols in the age of Big Data. Private Set Intersection
(PSI) is one of important privacy preserving protocols. Usually, PSI is
executed by 2-parties, a client and a server, where both a client and a
server compute jointly the intersection of their private sets and at the end
only the client learns the intersection and the server learns nothing. From
the scalable point of view, however, the number of parties are not limited
to two. In this paper, we propose a scalable and flexible multiparty PSI
(MPSI) for the first time: the data size of each party is independent
to each other and the computational complexity is independent to the
number of parties. We also propose d-and-over MPSI for the first time.

1 Introduction

Both scalability and flexibility become crucial for privacy preserving protocols
in the age of Big Data. Private Set Intersection (PSI) is one of important privacy
preserving protocols. PSI is executed by 2 parties, a client and a server, where
both compute jointly the intersection of their private sets and, at the end, only
the client learns the intersection and the server learns nothing. From the scalable
point of view, however, the number of parties are not limited to two. This is why
a multiparty PSI (MPSI) [8,14] becomes important. However, both are far from
scalability: the computational complexity depends on the number of parties, and
the data size of each party is equal to each other in [14] and [8] computes only
the approximate number of intersection.

In this paper, we propose a scalable and flexible MPSI: the data size of
each party is independent to each other and the computational complexity is
independent to the number of parties. Furthermore we also propose a new notion
of d-and-over multiparty PSI (d-and-over MPSI) for d ≤ n. A d-and-over MPSI
means to compute securely

⋂≥d
Sj =

⋃
n≥�≥d(Sj1 ∩· · ·∩Sj�

), where Si is a set of
Pi. Let us think the following scenario: There are n shops Pi in a shopping mall
whose customers’ list is Si. Shops think to promote number of customers each
other and plan to have a promotion campaign. In the promotion campaign, a
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shop Pi wants to know customers who joins an intersection of 3-and-over shops
including Pi without learning any information about customers that are not in
the intersection. Such a scalable MPSI has, however, not proposed yet as far as
authors know.

This paper is organized as follows. Section 2 summarises security assump-
tion and building blocks used in our proposal. Section 3 explains the previous
results. Then, after investigating set operations required in the case of n parties
in Section 4, we propose concrete schemes of MPSI and d-and-over MPSI in
Section 5. Comparison with the previous MPSI [14] is shown in Section 6.

2 Preliminary

This section summarises security assumption and building blocks used in our
proposal.

2.1 Security Assumption

We describe two standard adversary models [10]: semi-honest adversaries and
malicious adversaries. In semi-honest adversaries model, all players act according
to their prescribed actions in the protocol. If a protocol is secure in a semi-honest
model, then no player gains information about other player’s private input sets,
other than what can be deduced from the result of the protocol. On the other
hand, in malicious adversaries model, an adversary player can behave arbitrarily.
In particular, we cannot hope to prevent a malicious player from refusing to
participate in the protocol, substituting an input with an arbitrary value, and
aborting the protocol prematurely.

The security assumptions used in our protocol are defined as follows.

Definition 1 (DDH Assumption). Let Fp be a finite field, g ∈ Fp with prime
order q and size of q is �. The DDH(Decisional Diffie-Hellman) problem is hard
in G if, for any efficient algorithm A, there exists ε > 0 and the following
probability is satisfied: |Pr[x, y ← {0, 1}� : A(g, gx, gy, gxy) = 1] − Pr[x, y, z ←
{0, 1}� : A(g, gx, gy, gz) = 1]| < ε.

2.2 Bloom Filter

A Bloom filter [2], denoted by BF, is a space-efficient probabilistic data structure,
that is used to test whether an element x is included in a set S. False positive
matches are possible, but false negatives are not, thus a Bloom filter has a 100%
recall rate. Elements can be added to the set, but not removed. A Bloom filter is
an array of m bits that can represent a set S with at most w elements. A Bloom
filter uses a set of k independent uniform hash functions H = {H0, ...,Hk−1},
where Hi : {0, 1}∗ −→ {0, 1, · · · ,m − 1}(0 ≤ ∀i ≤ k − 1). Here after, we denote
a Bloom filter parametrised (m, k) by BFm,k(S) that encodes a set S. Let us
explain how BF is constructed, which is given by const.BF (see Algorithm 1):
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output BFm,k(S) for input of a set S. Initially, all bits in the array are set to
0. To insert an element x ∈ S into the filter, the element is hashed using k
hash functions to get k index numbers. Bits at these indexes are set to 1, i.e.
set BFm,k[Hi(x)] = 1 for 0 ≤ i ≤ k − 1. To check if an item y is in S, we
execute check.BF (see Algorithm 2): y is hashed by k hash functions, and all
locations where y is hashed are checked. If any bit at the locations is 0, y is not
in S, otherwise y is probably in S. However, a false positive is possible, i.e. it is
possible that y is not in the set S, but all BF[Hi(y)] are set to 1. The false positive

probability p is [3]: p =
{

1 − (
1 − 1

m

)kw
}k

≈ {
1 − e−kw/m

}k
. For a given m

and w, the value of k that minimizes the false positive probability is: k = m
w ln 2.

When e−kw/m = 1/2, the false positive probability p = (1/2)k ≈ (0.6185)m/w.
The number z of 0 bits in a Bloom filter for a set S is strongly concentrated
around its expectation m(1 − 1/m)k|S| [3]. Therefore, given z, m and k, the size
of S is given approximately to |S| = ln(z/m)

k ln(1−1/m) .

Algorithm 1. const.BF(S)
Require: A set S
Ensure: A Bloom filter BFm,k(S)
1: for i = 0 to m − 1 do
2: BFm,k[i] ← 0
3: end for
4: for all x ∈ S do
5: for i = 0 to k − 1 do
6: j = Hi(x)
7: if BFm,k[j] = 0 then
8: BFm,k[j] ← 1
9: end if

10: end for
11: end for

Algorithm 2. check.BF(BF, Sq)
Require: A Bloom filter BFm,k(S), a set Sq

Ensure: A set S∩(= S ∩ Sq)
1: generates the empty set S∩ = {}
2: for all x ∈ Sq do
3: for i = 0 to k − 1 do
4: j = Hi(x)
5: end for
6: if all BFm,k[j] = 1 then
7: add x to the set S∩
8: end if
9: end for

2.3 Additive Homomorphic Encryption

An additive homomorphic encryption is important tool to deal with encrypted
data. One of typical additive homomorphic encryption is Paillier encryption[16].
In our scheme, an additive homomorphic encryption is used for matching, and,
thus exponential ElGamal encryption [4] is enough and more efficient than Pail-
lier encryption. In fact, results of decryption in ex-ElGamal can distinguish
whether two message m1 and m2 are equal although it can not decrypt a mes-
sage itself. Furthermore, ex-ElGamal can be extended to decrypt a ciphertext
distributedly, where n parties Pi(1 ≤ i ≤ n) jointly decrypt, which consists of
three functions:

Key Generation:
Let Fp be a finite field, g ∈ Fp with prime order q. Each party chooses xi ∈ Zq
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randomly and computes yi = gxi (mod p), then y =
∏n

i=1 yi (mod p) is a public
key and each xi is a share for a party to decrypt a ciphertext.

Encryption: Enc[m] → (u, v)
For a message m ∈ Zq with a public key y, choose r ∈ Zq randomly, compute
both u = gr (mod p) and v = gmyr (mod p), then output (u, v) as a ciphertext
of m.

Decryption: dis.Dec[(u, v)] → gm

Each party computes zi = uxi (mod p) and z =
∏n

i=1 zi (mod p) jointly and
decrypt the ciphertext as gm = v/z (mod p).

Both ex-ElGamal encryption and the above distributed version have the
following features: (1)an additive homomorphism for messages m1,m2 ∈ Zp :
Enc(m1)Enc(m2) = Enc(m1 + m2). (2) a scalar homomorphism for message m
and k ∈ Zq: Enc(m)k = Enc(km).

3 Previous Works

This section overviews prior works on PSI between a server and a client and
MPSI among n parties. In PSI, let server and client data sets be S = {s1, ..., sv}
and C = {c1, ..., cw}, where |S| = v and |C| = w. In MPSI, we assume that the
number of each party’s set is equal to each other for simplicity.

PSI Protocol Based on Polynomial Evaluation: Main idea is to represent
elements in C as roots of a polynomial, and send its encrypted polynomial to
a server; evaluate it on elements in S, which introduced by Freedman [9] for
the first time. This is secure against semi-honest adversaries under a public key
encryption. The computational complexity is O(vw) exponentiations, and com-
municational complexity is O(v + w). The computational complexity is reduced
to O(v log log w) exponentiations by using balanced allocations technique [1].
Kissner and Song extended protocols to MPSI [14]. The computational com-
plexity is O(nw2) exponentiations and communicational complexity is O(nw)
and it is secure against semi-honest and malicious adversaries (in the random
oracle model) using generic zero-knowledge proofs.

PSI Protocol Based on DDH: Main idea is to apply DDH assumption
[6]: after presenting each data by hash value {h(si)} and {h(ci)}, the client
sends a set of {h(ci)ri} encrypted by a random number ri; the server sends back
{h(ci)rri} and {h(si)r} for a random number r, finally the client evaluate S∩C by
decrypting to {h(ci)r}. This is secure against semi-honest adversaries under DDH
assumption. The total computational complexity is O(v + w) exponentiations
and the total communicational complexity is O(v+w). The security is enhanced
to against malicious adversaries in the random oracle model in [5] by using
blind signature. Any extension to MPSI based on DDH, however, has not been
proposed.

PSI Protocol Based on Bloom Filter: PSI based on Bloom filter is pro-
posed in [15] for the first time by just executing AND of Bloom filters of server
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and client. This protocol, however, is not secure because Bloom filter itself leaks
information about other party’s set. In [13], the security is enhanced by combin-
ing Bloom filters with the Goldwasser Micali encryption [11]. In a semi-honest
version, the computational complexity is both O(kw) hash operations and O(m)
public key operations and the communicational complexity is O(m), where (m, k)
is a parameter of Bloom filter. Another protocol combined Bloom filter, Obliv-
ious transfer extension [12,17], and garbled Bloom filter constructed newly is
proposed [7]. The main difference between Bloom filter and garbled Bloom filter
is that a Bloom filter is 1-bit array while a garbled Bloom filter is a λ-bit array.
To add an element x ∈ S to a garbled Bloom filter, x is split into k shares with
λ bits using the XOR-based secret sharing (x = x1

⊕
...

⊕
xk) and mapped xi

into an index of Hi(x). To query an element y, all bit strings at Hi(y) is XOR
them together. If the result is y, then y is in S, otherwise y is not in S. The
client uses Bloom filter BF(C) and the server uses garbled Bloom filter GBF(S).
Then, if an element x is in C ∩S, then for every position i it hashes to, BF(C)[i]
must be 1 and GBF(S)[i] must be xi. Thus, the client evaluates C ∩ S. The
computational complexity is O(kw) hash operations and O(m) public key oper-
ations and communicational complexity is O(m), where the number of public
key operations can be changed to O(λ) by using Oblivious transfer extension.
This is secure against semi-honest adversaries under secure Oblivious transfer
protocol. Another research computes the approximate number of multiparty set
union in [8]. However, MPSI based on Bloom filter has been proposed.

4 Multiparty Set Intersection

We investigate what set operations are required in the case of n parties. Let us
investigate the following scenarios: There are n medical institutions Pi whose
patient list is Si. Patients often use several medical institutions. Each medical
institution Pi wants to find common patients without learning any information
about patients that are not in Si. That is, P1 wants to know patients who uses
2-and-over medical institutions including Pi without learning any information
about patients that are not in Pi, which is denoted by ∩≥2Sj [1].

Let us formalize intersections of n parties. As we have seen the above
scenario, intersections of all parities and d-and-over parties for ∀d(≤ n) are
necessary, which are called MPSI and d-and-over MPSI, respectively. Here, d-
and-over MPSI is denoted by

⋂≥d
Sj =

⋃
n≥�≥d(Sj1 ∩ · · · ∩ Sj�

). For exam-
ple, given 4 party-set S1 = {g, h, i, j, f, n, o, k}, S2 = {a, h, n,m, b, i, o, �},
S3 = {f, n, o, k, e,m, l, d}, and S4 = {b, i, o, l, c, j, k, d}. Then MPSI is {o}; and
3-and-over MPSI is given by

⋂3
Si = {i, k, �, n, o}. Then, intersection of 3-and-

over MPSI given to each Pi is ∩≥3Sj [1] = {i, k, n, o}, ∩≥3Sj [2] = {i, �, n, o},
∩≥3Sj [3] = {k, �, n, o}, and ∩≥3Sj [4] = {i, k, �, o}.

Let us discuss how to achieve MPSI and d-and-over MPSI. If we apply PSI to
achieve MPSI, the computation and communication complexity seems to depend
to the number of parties, which exactly happens to [14]. On the other hand, if we
apply MPSI to achieve a d-and-over MPSI, we would need to execute MPSI in
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nCd times, which is rather wastefulness. This is why it is necessary to construct
MPSI and d-and over MPSI directly. On the other hand, privacy issues on MPSI
and d-and-over MPSI are informally give as follows.
MPSI Privacy: An MPSI scheme is party-private if any party Pi learns no

information about elements of other parties’ set except elements in ∩Sj .
d-and-over MPSI Privacy: A d-and-over MPSI scheme is party-private if

any party Pi learns no information about elements of other parties’ set except
elements in ∩≥dSj [i].

5 Scalable Multiparty PSI

Our schemes of MPSI and d-and-over MPSI will be presented after describing
protocol intuition briefly.

5.1 Protocol Intuition

The following notations are used in our two protocols.

– Pi: i-th party, where the number of parties is n
– D: dealer who does not know anything about inputs or outputs
– Si = {si,1, si,2, · · · , si,wi

}: a set of Pi, where |Si| = ωi

– ∩Sj or ∩≥dSj : intersection of all or d-and-over parties out of n
– ∩≥dS[i]: intersection of d-and-over parties possessed by Pi, ∩≥dS ⊂ Si

– Enc/dis.Dec: distributed ex-ElGamal encryption/decryption by all Pi

– m: size of Bloom filter
– H = {H0, ...,Hk−1}: set of hashes used in Bloom filter, where k is #H.
– � = [�, · · · , �] (1 ≤ � ≤ n): an m-dimension array, where all strings in the

array are set to �
– BFm,k(Si) = [BFi[0], · · · ,BFi[m − 1]]: Bloom filter on a set Si

– IBFm,k(∪Si) = [
∑n

i=1 BFi[0], · · · ,
∑n

i=1 BFi[m − 1]]: integrated Bloom filter
of n sets {Si}, where

∑n
i=1 BFi[j] presents the sum of all parties’ array.

– IBFm,k(∪Si) \ � = [
∑�

i=1 BFi[0] − �, · · · ,
∑n

i=1 BFi[m − 1] − �](1 ≤ � ≤ n):
�-subtraction from IBFm,k(∪Si).

Our scheme is flexible for the data size of party, and, thus, the data size of
each party is independent to each other. We introduce a dealer D to reduce the
computational complexity of parties. D can be outsourced since it does not know
anything about Si or |Si|. A distributed ex-ElGamal encryption among n-party
is used to achieve all computation without knowing Si themselves and at the end
decryption is jointly done. In both protocols, each Pi constructs BFm,k(Si) for a
set Si and encrypts each array by Enc. All encrypted Bloom filters are securely
added by a dealer D without decrypting. These procedures are executed in both
MPSI and d-and-over MPSI. In MPSI, D encrypts a randomized n-subtraction of
IBFm,k(∪Si), r(IBFm,k(∪Si) \ n). If x ∈ ∩Si, the corresponding array locations
in an encrypted array where x is mapped by k hashes is an encryption of 0; an
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encryption of randomized value otherwise. In d-and-over MPSI, D computes a
randomized encryption of �-subtraction of r(IBFm,k(∪Si) \ �) for d ≤ � ≤ n. If
x ∈ ∩�S for d ≤ ∃� ≤ n, the corresponding array locations in IBFm,k(∪Si) \ j for
� ≤ ∃j ≤ n where x is mapped by k hashes is an encryption of 0; an encryption of
randomized value otherwise. An difference from MPSI is that the corresponding
array locations in IBFm,k(∪Si)\� is not a necessary encryption of 0 even if x ∈ ∩�S.

5.2 MPSI and d-and-over MPSI

First, we present MPSI, MPSI consists of 4 phases: initialization, Pi’s Bloom
filter construction, D’s Encryption of n-subtraction of IBFm,k(∪Si), and, finally,
Pi’s MPSI computation. As system parameters, a finite field Fp and a base-
point g ∈ Fp with order q for a distributed ex-ElGamal encryption (Enc,
dis.Dec), given to Pi and D, but both const.BF(S) and check.BF(BF, Sq)
are given to only Pi. When we encrypt or randomize a vector such as a
Bloom filter BFm,k = [a0, · · · , am−1], each location is encrypted or random-
ized independently: Enc(BFm,k) = [Enc(a0), · · · ,Enc(am−1)] or rBFm,k =
[r0a0, · · · , rm−1am−1] by r = [r0, · · · , rm−1] ∈ Z

m
q , respectively.

Initialization: Pi executes the following:

1. Generate a secret key xi ∈ Zq and compute a public key yi = gxi ∈ Zq and
broadcast yi to other parties.

2. Compute an n-party public key y =
∏

i yi whose secret key is x =
∑

xi.

BFm,k(Si) construction: Pi executes the following:

1. Do const.BFm,k(Si) −→ BFm,k(Si) = [BFi[0], · · · ,BFi[m−1]] (Algorithm 1).
2. Encrypt each array of BFm,k(Si) by using Ency with a public key y:

Ency(BFm,k(Si)) = [Ency(BFi[0]), · · · ,Ency(BFi[m − 1])].
3. Send Ency(BFm,k(Si)) to D.

Encryption of n-subtraction of IBFm,k(∪Si): D executes the following:

1. Encrypt IBFm,k(∪Si) by Ency without knowing IBFm,k(∪Si) as follows:
Ency(IBFm,k(∪Si)) =

∏n
i=1 Ency(BFm,k(Si)).

2. Encrypt IBFm,k(∪Si) \ n randomized by r = [r0, · · · , rm−1] ∈ Z
m
q :

Ency(r(IBFm,k(∪Si) \ n)) = (Ency(IBFm,k(∪Si)) · Ency(−n))r,
where Ency(−n) = [Ency(−n), · · · ,Ency(−n)].

3. Broadcast Ency(r(IBFm,k(∪Si) \ n)) to Pi.

MPSI computation: Pi executes the following:

1. All Pi jointly decrypt Ency(r(IBFm,k(∪Si) \ n)).
2. Execute check.BFm,k(r(IBFm,k(∪Si) \ n), Si) −→ ∩Si and output ∩Si.

Correctness of MPSI follows from the fact that if an element x is included in
∩Si, the corresponding array locations in Ency(r(IBFm,k(∪Si) \ n)) where x is
mapped by k hashes is an encryption of 0, which are decrypted to 1;an encryption
of randomized value otherwise.
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Next, we present d-and-over MPSI. Procedures of d-and-over MPSI is the
same as that of MPSI until D computes Ency(IBFm,k(∪Si)). So, we describe
after D computes Ency(IBFm,k(∪Si)).
Encryption of �-subtraction of IBFm,k(∪Si): D executes the following:

1. Encrypt IBFm,k(∪Si)\� randomized by r = [r0, · · · , rm−1] ∈ Z
m
q (d ≤ � ≤ n):

Ency(r(IBFm,k(∪Si) \ �)) = (Ency(IBFm,k(∪Si)) · Ency(−�))r.
2. Broadcast {Ency(r(IBFm,k(∪Si) \ �))}� (d ≤ � ≤ n) to Pi.

d-and-over MPSI computation: Pi executes the following:

1. All Pi jointly decrypt {Ency(r(IBFm,k(∪Si) \ �))}�.
2. Let CBF� be an m-array for d ≤ � ≤ n, where an array is set to 1 if and only

if the corresponding array of rIBFm,k(∪Si) \ � is 1, and others are set to 0.
3. Set CBF = CBF� ∨ · · · ∨ CBFn.
4. Execute check.BFm,k(CBF, Si) −→ ∩≥dS[i] and output ∩≥dS[i].

Correctness of d-and-over MPSI follows from the fact that if an element x ∈ ∩�S
for d ≤ ∃� ≤ n, the corresponding array locations in IBFm,k(∪Si)\j for � ≤ ∃j ≤
n where x is mapped by k hashes is an encryption of 0, which are decrypted to
1; an encryption of randomized value otherwise.

The security of both protocols is given as follows, whose proof will be pre-
sented in the final paper.

Theorem 1. If the Decisional Diffie-Hellman assumption holds, then both
MPSI and d-and-over are secure against semi-honest adversary.

6 Comparison

Table 1 compares the computational and communicational complexity of our pro-
tocol with [14]. Each protocol is secure against semi-honest adversaries without
the trusted third party under each security assumption of employed public key
encryption: [14] uses Paillier encryption (Decisional Composite Residue (DCR))
and our protocols use ex-ElGamal encryption (DDH). Bloom filter parameters
(m, k) used in our protocol are set as follows: k = 80 and m = 80ω/ ln 2, where
ω is the maximum |Si| = ωi. Then, the false positives probability is given by
p = 2−80. Pi’s dominant computational complexity is Bloom filter construction
and MPSI or d-and-over MPSI computation, which is O(ωi) and doesn’t depend
on the number of parties unlike [14]. D’s dominant computational complexity
is n-subtraction of IBFm,k(∪Si), which is O(nω) in both MPSI and d-and over
MPSI. Our scheme is flexible for the data size of party, and, thus, the data size
of each party is independent to each other. An approach to compute approxi-
mate number of MPSI is proposed in [8] by using features of Bloom Filter. Our
protocol can be converted to compute easily approximate number of | ∩ Sj | or
| ∩≥d S[i]|.
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Table 1. Comparison of MPSI

Protocol [14] Our protocol

Computational complexity O(nω2) Pi : O(ωi), D : O(nω)

Communicational complexity O(nω) O(nω)

Number of input data |S1| = ... = |Sn| any

Privacy S1, ..., Sn S1, ..., Sn, |S1|, ..., |Sn|

7 Conclusion

In this paper, we have proposed a scalable and flexible multiparty PSI (MPSI).
We have also proposed a new notion of d-and-over MPSI and presented a con-
crete protocol. Our schemes are flexible: data size of each party is independent
to each other. We also introduce a dealer D to reduce the computational com-
plexity of parties, who acts as opposed to the trusted third party and does not
know anything about inputs or outputs (including its size), and, it thus can
be outsourced. Thanks to D, Pi’s, computational complexity is O(ωi), which
doesn’t depend on the number of parties unlike [14].
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Abstract. Electronic contract signing allows two potentially dis-trustful
parties to digitally sign an electronic document “simultaneously” across a
network. Existing solutions for electronic contract signing either require
the involvement of a trusted third party (TTP), or are complex and
expensive in communication and computation. In this paper we propose
an electronic contract signing protocol between two parties with the fol-
lowing advantages over existing solutions: 1) it is practical and scalable
due to its simplicity and high efficiency; 2) it does not require any trusted
third party as the mediator; and 3) it guarantees fairness between the two
signing parties. We achieve these properties by employing a trustworthy
timestamping service in our protocol, where the timestamping service
can be either centralized or decentralized. We also provide a detailed
analysis on security and performance of our scheme.

1 Introduction

Contract signing is a frequent activity in business as well as in our daily lives,
e.g. purchasing real estates and insurance, employment, and financial trading.
Almost all important commercial and financial activities require legally signed
contracts to guarantee that the involved parties commit to mutually agreed terms
and conditions and fulfill their obligations. Most important contracts today,
however, are signed physically, e.g., using pen and paper. As a result, signing
a contract could be very time consuming and costly, and it may take several
days or weeks to complete. As the information technology and digital signature
laws are becoming more and more pervasive, it is high time to consider digitally
signing electronic contracts across the Internet.

Fairness is a critical requirement for electronic contract signing, which ensures
that the two involved parties either obtain each other’s signature “simultane-
ously” or nothing useful. The fairness property implies that a dishonest party
who tries to cheat cannot get any advantage over the other party. Achieving fair-
ness is straightforward for physically signing contracts; however, due to lack of
simultaneity in computer networks, achieving true fairness in electronic contract
signing over Internet has been a challenging problem. Many electronic contract
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 386–394, 2015.
DOI: 10.1007/978-3-319-25645-0 27
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signing or fair exchange protocols have been proposed in the literature, but none
of them have gained widespread adoption. Among these protocols, some require
an online or offline trusted third party (TTP) to mediate the exchange, while
others are TTP-free but impractical due to high computation and communica-
tion overhead.

In this paper, we propose a practical electronic contract signing protocol built
on a trustworthy timestamping service, without using any TTP. Our protocol
enjoys the following advantages over existing ones. First, it is very practical and
scalable due to its simplicity and high efficiency in computation and communi-
cation. Unlike TTP-free protocols which need multiple rounds of communication
between the two signing parties [1], our protocol only requires three messages to
be exchanged. The protocol at the same time does not require complex compu-
tations except a few digital signatures, which makes it very efficient in computa-
tion. Secondly, our protocol does not require any TTP, thus removing the single
point of failure and the bottleneck for scalability. Third, the protocol guarantees
fairness between the two signing parties. The two parties negotiate and agree on
a deadline before which the contract must be signed by both of them. Failing to
fulfill this requirement leads to invalidity of the contract, and this protects the
interest of the first party against malicious behaviors of the second party.

2 Related Work

Electronic commerce has greatly motivated research in electronic contract sign-
ing. According to the extent to which a TTP is involved in the contract signing
process, existing protocols can be divided into three groups: 1) TTP-free proto-
cols; 2) protocols with an online TTP; and 3) protocols with an offline TTP.

TTP-Free Protocols. TTP-free protocols have the advantage of no need for a
specialized TTP, and its design goal is to fulfill the computational fairness [1].
The idea is for two signing parties to exchange their signatures on a contract “bit-
by-bit”. Whenever any of the two parties terminates prematurely, both of them
can still complete the exchange offline by exhaustively searching the remaining
bits of the signatures. Although this approach enjoys the great advantage of being
TTP-free, it is impractical for most real-world applications. The main reason is
due to the high computation and communication cost of such protocols.

Online-TTP Protocols. Since a TTP facilitates the execution of the signing
process, contract-signing protocols with an online TTP can be much simpler and
efficient [2]. Under the online-TTP setting, a TTP acts as a mediator between
the two signing parties. The main issue with the online-TTP protocols is that the
TTP is likely to become a performance and security bottleneck of the system,
especially when there are a huge number of participants in the system.

Offline-TTP Protocols. Contract-signing protocols with an offline TTP [3–5]
are more appealing and practical because the TTP is not involved during the
execution of an exchange unless some problems occur. Fair exchange protocols
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for digital signatures employed two different cryptographic techniques: verifiable
encrypted signatures [5] and verifiable escrows [3].

3 The Proposed Protocol

3.1 System Model

Our proposed contract signing protocol involves three types of generic entities
or roles: a PKI, a timestamping server and signing parties. The design goal is
to enable any two parties to sign an electronic contract in a fair manner. We
assume that each party has a public key/private key pair in a signature scheme.
The PKI is responsible for public key certificate management for all parties. To
ensure security and resilience of the PKI, a resilient PKI system in [6] can be
used.

The trustworthy timestamping service is crucial to ensure fairness in our
contract signing protocol. It is used to produce irrefutable timestamped proofs
that digital signatures on a common contract document are submitted by the
two parties before a mutually agreed deadline. These proofs are maintained by
the timestamping server, and no party can forge or tamper the proofs without
being detected.

3.2 Threat Model

We assume that both the PKI and the timestamping service are trustworthy.
Specifically, the timestamping server does not need to be trusted as a TTP.

The adversary can be a peer with whom a party wants to sign a contract,
other uninvolved parties or simply an outsider. The adversary is assumed to have
only limited computation capability, and he cannot break the digital signature
algorithm used in the proposed protocol. The ultimate goal of the adversary is
to trick an honest party into signing a contract he would otherwise not want to
sign. The adversary can launch both passive and active attacks against the con-
tract signing protocol, including message eavesdropping, modification, forgery,
replaying and so on.

3.3 Protocol Description

After two parties, referred to here as A and B, have finished negotiating terms
and conditions, they agree on a final contract document C. Let CertX denote
the public key certificate of party X and SignX(M) the signature generated by
signing message M with the private key of party X, where X can be either A or
B. Let VerX(M) denote verification of a signature on M using X’s public key,
which outputs true if the verification is successful and false otherwise.

As showed in Fig. 1, the proposed protocol is composed of three phases:
signing by the first party, verification and signing by the other party, and times-
tamping the signed contract. They are described in detail as follows.
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Signing by the First Party. To sign a contract, A and B negotiate with
each other and decide on a future time Td as the deadline before which the
two parties must sign on C; otherwise the contract becomes void. How to set
this parameter depends on specific applications. It may be in seconds, minutes,
hours, or even days. Party A, who signs the contract first, needs to make sure that
this parameter is not too long to render herself in a disadvantageous situation.
For example, if A wants to trade forex with the other party, then Td should be
as short as a few seconds since forex prices fluctuate at seconds.

Party A then creates a message containing a hash of the contract C, the
deadline Td, A’s identity and B’s identity, and signs this message with her private
key. That is, A generates the signature SigA = SignA(H(C)|Td|A|B), where
| denotes concatenation, and H() is a secure one-way hash function. Then A
sends the following to B:

H(C), Td, SigA, CertA (1)

Verification and Signing by the Second Party. Upon receiving the message
from A, the second party, B, first checks that the CertA is valid, the deadline Td

has not expired and there is sufficient time left to finish the contract; otherwise
he aborts the protocol. To continue the contract signing protocol, B checks
that H(C) is the hash computed over the contract document C he negotiated
with A, and verifies that SigA is A’s valid signature on (H(C)|Td|A|B) . If the
verifications fail, B aborts; otherwise, B signs the message (H(C), Td, A,B, SigA)
to obtain a signature SigB = SignB(H(C)|Td|A|B|SigA), and sends the following
message to the timestamping server:

H(C), Td, A,B, SigA, SigB , CertA, CertB . (2)

We refer to the above message (H(C), Td, A,B, SigA, SigB , CertA, CertB) as
the signed contract and denote it as CT in the following.

Timestamping the Signed Contract. After receiving CT from B, the times-
tamping server TS first checks that CertA and CertB are valid, that Td has not
expired and that the two signatures SigA and SigB were generated on the same
hash value H(C) by parties A and B, respectively. Only if all verifications are
successful will TS proceed to generate a trustworthy timestamp on the signed
contract CT = (H(C), Td, SigA, SigB , CertA, CertB). The timestamping server
then sends the following message to both parties A and B as a proof that the
contract has been signed successfully:

CT, ts(CT), (3)

where ts(CT) denotes the timestamp on CT. What constitutes the timestamp
will be described in the following subsection.
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Signer A Signer B

Timestamping
Server

(3) CT, ts(CT)

(3) CT, ts(CT)

PKI

(1) H(C), Td, SigA,CertA

(2) H(C), Td, SigA, SigB

CertA, CertB

Fig. 1. The Contract Signing Protocol.

3.4 Timestamping Service

The trustworthy timestamping service referred to above in our protocol descrip-
tion can be implemented with a centralized server as in [7] or a decentralized
system based on the blockchain mechanism in Bitcoin [8]. Both implementations
adopt a similar approach to trustworthy timestamping as described below.

This timestamping service is built on the Merkle tree structure, a binary
tree as showed in 2(a). A node at (i, j) on the Merkle tree has two children:
(i + 1, 2j − 1) and (i + 1, 2j). The root node is labeled as (0, 1), meaning it
is the first node at layer 0. The value H(i, j) for a leaf node (i, j) is simply
the hash of the corresponding contract content, i.e. H(CT(i)). The value of
an interior node is calculated from its two children by the formula H(i, j) =
H(H(i+1, 2j−1)|H(i+1, 2j)). The hash function can be any cryptographically
secure hash algorithm, e.g. SHA256. The value calculated at the root is called
the Merkle root.

The timestamping service divides time into fixed time intervals and at the
end of each interval compresses submitted contracts into a Merkle root. This
Merkle root, along with the current time, is taken as an input into a hash chain
which is computed and maintained by a server in the centralized system or by
a group of nodes in the decentralized system. The output of the hash chain and
some auxiliary data corresponding to the specific contract are returned to the
parties as the trustworthy timestamp on their contract.

The process of timestamping a Merkle root and hence all the contracts
embedded in the root proceeds as illustrated in Fig. 2(b). In each fixed time
interval, a Merkle root is calculated as above for all contracts submitted during
this interval. The Merkle root, the current time and the previous hash value of
the hash chain are fed into the hash function to calculate a new value, and the
hash chain is extended by 1. Suppose the current time is Ti, the previous hash
value of the hash chain is hi−1, and the current Merkle root is rooti, then the
new hash value is computed as hi = H(hi−1|Ti|rooti).
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(b) Timestamping the Contracts

Fig. 2. The Timestamping Service

The timestamp for a contract, say CT(3), at time interval Ti, is given by

ts(CT(3)) = (H(0, 1),H(1, 2),H(2, 1),H(3, 4), Ti, hi−1, hi).

For a centralized solution, the timestamping server needs to publish all tuples
(hi, Ti, rooti). The latest hash values obtained in this way by a centralized server
need to be published on an unalterable public media in a fixed interval (e.g.,
New York Times every week [7]). Therefore, even the centralized server cannot
change the hash chain or the Merkle tree after publishing the last value on the
hash chain. Thus the centralized server needs not be a TTP.

A decentralized timestamping service can be realized based on the notion of
blockchain in Bitcoin [8], where hash values represent proof-of-work done collec-
tively by a group of entities (e.g., users of the timestamping service). At each
time interval Ti, the group of entities finds a random value as the input to the
hash chain computation formula such that the output of the hash computation
is less than a pre-determined public threshold. That is, the hash chain compu-
tation formula becomes hi = H(hi−1|Ti|rooti|ri), and one has to find an ri such
that hi is less than the public threshold, which is called proof-of-work.

Finally, all hash values and the proof-of-work ri’s are published on the
blockchain so that everyone can check them. Due to the one-wayness of the hash
function H(), finding a valid ri such that hi is less than a threshold could be
very difficult. The amount of computation to find ri can be adjusted by varying
the value of the threshold.

Since finding a valid ri is so difficult and the hash chain is continuously
increasing, it is computationally infeasible to change a timestamped contract
which is embedded in the hash chain, especially when the chain becomes longer
[8]. Hence this decentralized system achieves trustworthy timestamping without
relying on any centralized entity or trusted third party.

3.5 Timestamp and Contract Verifications

When both parties receive a timestamp on their signed contract from the times-
tamping server, they proceed to verify the timestamp for correctness. Without
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loss of generality, assume that the centralized timestamping service in [7] is used.
We describe the verification process by taking the aforementioned timestamp
ts(CT(3)) = (H(0, 1),H(1, 2),H(2, 1),H(3, 4), Ti, hi−1, hi) as an example. To
verify this timestamp, both parties first check that the Merkle root is indeed
computed from CT(3) by evaluating the hash tree from bottom to the root.
That is, each party computes and checks if the following equations hold:

H(3, 3) = H(CT(3));

H(2, 2) = H(H(3, 3)|H(3, 4));

H(1, 1) = H(H(2, 1)|H(2, 2));

root = H(H(1, 1)|H(1, 2));

root
?
= H(0, 1).

Then each party verifies if the hash chain value is correctly calculated by testing
the following equation: hi

?= H(hi−1|Ti|root).
Next, both parties retrieve subsequent published tuples (hi+1, Ti+1, rooti+1),

(hi+2, Ti+2, rooti+2)..., (hm, Tm, rootm) from the timestamping server, where hm

is the latest hash value published on the unalterable public media (i.e. newspa-
per). Then they verify all of the hash values are correctly computed as follows:
hi+k

?= H(hi+k−1|Ti+k|rooti+k), where k = 1, 2, ...,m− i. If all verifications are
successful, then they can be ensured that the timestamped proof is trustworthy.

Whenever a dispute occurs about a contract, either party can
present the original contract document C∗, the signed contract CT =
(H(C), Td, A,B, SigA, SigB , CertA, CertB) and its timestamp to a judge for dis-
pute resolution. To verify that parties A and B had indeed committed to the
contract before time Ti, the judge first tests if the following equations are true:

H(C∗)
?
= H(C);

SigA
?
= SignA(H(C)|Td|A|B);

SigB
?
= SignB(H(C)|Td|A|B|SigA).

Then the judge verifies the timestamp following the same procedure as discussed
earlier in this subsection. The contract is declared valid only if the signed contract
and the timestamp both pass verification.

4 Discussion and Analysis

The First Party is Dishonest. In any contract signing scenario, the party
who signs first is always in an unfavorable situation since he is the first to make
a commitment. The second party always has two options to choose depending
on which one is in his favor. The best choice for the first party A is to set Td

as early as possible so that party B is left with little time to exploit the situa-
tion. Nevertheless, A may try to cheat B by modifying content of the contract,
delaying to send her signature, or changing the deadline Td. But none of these
methods can bring A any advantage over B.
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The Second Party is Dishonest. As the last one to commit to the contract,
the second party B can always choose whether or not to commit the contract,
and hence possesses obvious advantages over the first committer A. Specifically,
a dishonest B can launch attacks by modifying the deadline Td, delaying con-
tract signing, or modifying the contract content. But these attacks will be easily
detected by the timestamping server.

Contract Privacy. Privacy of content of a signed contract is well protected
from disclosure by hashing the contract instead of submitting the original con-
tract document. As a result, even the timestamping server does not know the
content, but only a hash over the contract. Only when a dispute occurs between
the signing parties will the contract document need to be disclosed for dispute
resolution.

Performance. The proposed scheme is very concise with only three message
transmissions. The computation cost for the first party is only one signature
generation, while the second party needs to verify the first party’s signature and
then generate his own signature. For each contract timestamping request, the
timestamping server needs to verify two signatures, which is insignificant for a
resourceful server. The computation cost of the timestamping server is on the
order of O(n) where n is the number of requests for timestamping services, so
the proposed protocol scales to the number of requests.

5 Conclusion

In this paper, we have proposed a practical fair electronic contract signing pro-
tocol which does not require any online or offline TTP. The proposed protocol
relies on a trustworthy timestamping service which can be implemented without
any trusted third party. The protocol contains only three messages and is very
efficient in computation and communication. We have also provided a detailed
analysis on its security and performance. Due to its simplicity and efficiency, the
proposed protocol is highly practical for many e-commerce applications.
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Abstract. After the concept of the active wiretapper was proposed,
integrity protection became more important than ever before. There-
fore, message authentication code, a method that protects the message
from being modified in an undetectable way, attracts more attention. In
this paper, we propose a new message authentication code based on APN
functions and stream ciphers. This new construction has provable secu-
rity, which proves that the probability of successful substitution forgery
attacks against our new message authentication code is upper bounded
by a negligible value. We implement our algorithm, and compare its time
consumption with the time consumption of EIA1, the message authen-
tication code used in the 4G LTE system. The results show that our
algorithm is much faster than EIA1. Moreover, our new construction is
resistant to cycling and linear forgery attacks, which can be applied to
EIA1.

Keywords: MAC · APN · AXU · Efficient · Security

1 Introduction

When the active wiretapper was proposed [14], integrity protection attracted
more attention. Simmons [11] proposed the first authentication model using
Message Authentication Code (MAC). In his paper, Simmons demonstrated two
different attacking models against MAC: the impersonation forgery attack and
the substitution forgery attack. Impersonation forgery means that the opponent
can forge without intercepting any message-tag pairs, and substitution forgery
means that the opponent can forge by observing some message-tag pairs. The
success rate of these two attacks are denoted by PI and PS respectively.

Many MACs are constructed on top of hash functions. There are two branches
of constructing MACs by hash functions. The first one is based on the universal
hash functions, such as Stinson’s work [12]. Another branch uses cryptographic
hash functions to construct MAC, such as HMAC [7].

This paper focuses on the constructions based on universal hash functions.
Krawczyk demonstrated that any Almost XOR Universal (AXU) hash function
is equivalent to a secure message authentication code [6]. The definition of AXU
hash function is given below.
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 395–402, 2015.
DOI: 10.1007/978-3-319-25645-0 28
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Definition 1. Let H = {h|h : A → B}. If
max

a,a′∈A,b∈B
Prh[h(a) + h(a′) = b] = ε,

the hash function family H is called ε-AXU hash function family.

The MACs constructed using AXU hash function families are called AXU-MAC,
such as GCM [9], EIA1 (UIA2) [1]. GCM is standardized by NIST as an authen-
ticated encryption (AE) scheme, and EIA1 is the integrity protection algorithm
deployed in the 4G LTE system. These two MACs are similar, because both of
them are based on the evaluation of polynomials. We call such kind of MACs
polynomial based MACs in this paper. The security proof of polynomial based
MACs is based on AXU property of the underlying hash function families. The
difference between these two is that EIA1 uses a method called secure truncation
[2] to get a fixed-length output, while GCM just simply truncates the output to
a fixed size.

The definition of AXU hash function family is quite similar to the definition
of APN function, which is defined as follows.

Definition 2. Let f(x) : F2n �→ F2n . For any a, b ∈ F2n , we denote

δ(a, b) = #{x ∈ F2n , f(x) + f(x + a) = b}.

If
max

a�=0,b∈F2n
δ(a, b) = 2,

the function f(x) is called almost perfect nonlinear (APN) function.

Thus, it is straightforward that APN functions can be used to construct AXU
MACs. Chanson et al. [4] proposed MACs based on functions with optimal non-
linearity for the first time. Ding et al. [5] and Carlet et al. [3] continued the work
of Chanson et al., and proposed more constructions. Jian et al. [8] showed that
the relationship between perfect nonlinearity functions and universal hash func-
tions, and constructed an authentication code based on universal hash function.

1.1 Our Contributions

Although our construction is based on APN functions, it is different from the
previous work. All the previous constructions can only map from m-bit input
to n-bit output. Compared with CBC-MAC, HMAC, and XOR-MAC, such con-
structions are very inflexible. The length of the message is fixed, which means
to protect an L-bit message, we need �L/m� × n-bit tags. Our construction can
take any length of input, and output n bits. As the previous work, we can prove
the security of our construction by proving our MAC is an AXU MAC, and the
probability of a substitution forgery attack is upper bounded by a negligible
value.

We implement our algorithm, and compare it with EIA1, which is also an
AXU MAC. The experiment results demonstrate that our algorithm is much
faster than EIA1. Moreover, our construction is resistant to the cycling attack
[10] and the linear forgery attack [13], which can be applied to EIA1.
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1.2 Organization

This paper is organized as follows. Section 2 demonstrates a new construction of
MAC, and gives a theorem that proves the security of the construction. Section 3
discusses the efficiency and implementation issues. The experiment results are
presented in this section as well. The last section, Section 4, concludes the whole
paper.

1.3 Notations

For the purpose of this paper, we list all the notations used in the rest sections.

Table 1. Notations

Notation Explanation

GF (2n) or F2n The Galois Field with 2n elements.

F
n
2 The n dimensional vector space over F2.

M = {M0, · · · ,Mm−1}, The vector over a Galois Field GF (2m).
Mi ∈ GF (2n) for 0 ≤ i < m

a||b The concatenation of a and b.

2 New Construction Based on APN Functions and
Security Analysis

In this section, we present a new construction of MAC based on APN functions.
To prove the security of the new MAC, we make two assumptions. The first one
is that the underlying cipher C maps an integrity key to a key stream uniformly.
Formally, let the integrity key size be k and the length of the key stream gener-
ated by C using key K be len. When len ≤ k, there are 2k−len different values
of K, which can generate this key stream. When len > k, this key stream is
generated by one possible K with probability 2k−len. The second assumption is
that any two n-bit tuples generated by C are independent.

2.1 Construction

We use n, k and l to denote the length of the output, the key and the number
of blocks in the message respectively. Note that the size of one block is the same
as the length of the output.

We construct a MAC from F
∗
2 × F

k
2 to F

n
2 using an APN function f(x) :

F
n
2 → F

n
2 and an underlying cipher C. We remark that the underlying cipher

C is a stream cipher or a block cipher (keyed hash function) in counter mode.
For a stream cipher or a block cipher in counter mode, there are two stages,
the initializing phase and running phase, which are denoted as Init and Gen in
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the following pseudo code respectively. Init(K,N ,C) means initialize the cipher
with integrity key and the nonce, and Gen(C, i) means get the i-th n-bit block
from the key stream generated by C. Our construction takes four inputs. The
first one is the message, followed by the length of this message in bit. The third
input is the integrity key, and the last argument is the nonce.

Algorithm 1. MAC
Input: Message (M), Length of M (L), Key (K), Nonce (N)
len ← L/n;
res ← L mod n;
ret = 0;
Init(K,N,C);
for i ← 0 . . . len − 1 do

H1 ← Gen(C, i);
ret ← ret + Mi · H1;

end
i ← len;
if res �= 0 then

H1 ← Gen(C, i);
ret ← ret + (Mlen||0) · H1;
i ← i + 1;

end
H1 ← Gen(C, i);
ret ← ret + L · H1;
(OTP ||H0) ←Gen(C, i);
ret ← f(ret + H0) + OTP ;
return ret ;

Algorithm 1 demonstrates the computation of the tag. The message is par-
titioned into blocks, and each block Mi has n bits. If the length of M is not a
multiple of n, the last block is padded with zeros to make it a complete block,
whose length is n. OTP , H0 and H1 ∈ F

n
2 are three random numbers, which are

generated by the underlying cipher C.

Theorem 1. If f(x) : Fn
2 → F

n
2 is an APN function, then the success probability

of the substitution forgery attack against Algorithm 1 is upper bounded by

PS ≤ 1
2n−1

− 1
22n

.

Due to the page restriction, the proof of this theorem will be shown in the full
version of this paper.

2.2 Security Analysis

Remark 1. Although the complexity of forgery attacks is O(2n−1), we still con-
sider this security level is enough, because this bound is for any length of mes-
sages. In other words, the bound will not change when the length of the messages
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increases. To decrease this bound, we can compute in a larger field and apply
secure truncation [2] to the tag, the same as EIA1.

Since the new construction is an AXU MAC, it is resistant against most
attacks. However, some AXU MACs are prone to cycling attack [10] and linear
forgery attack [13]. We only consider these two attacks in the rest part of this
section.

Cycling Attack. Cycling attack is a kind of attack that can be applied to
all polynomial based MACs. The polynomial based MACs have a polynomial
evaluation block, which is addressed as follows.

T =
∑
i

MiP
i+1,

where Mi is a message block and P is a random number. It treats message as a
polynomial over finite field and evaluates this polynomial at P . If the order of P
is smaller than the length of the message in block, there exists at least one pair
of P i = P j , i �= j. Then the adversary can switch Mi and Mj without changing
the MAC. EIA1 is vulnerable to this attack.

In our algorithm, the sub-key in each round plays a similar role of P i in
polynomial based MAC. However, since our sub-key is generated by a stream
cipher each time, the same sub-key appears twice with negligible probability.
Moreover, even the same sub-key appears, it is hard to tell the exact position of
this sub-key. Thus, the adversary can hardly conduct cycling attack against out
algorithm.

Linear Forgery Attack. This attack was proposed by Wu and Gong on
Wisec13’. Because of the linear structure, known two pairs of message and tag
pair generated by EIA1, the adversary can forge up to 232 message and tag pairs.
The new construction in this paper is resistant to this attack, because the sub-
key is generated by a stream cipher, and the degree of APN function is higher.
The structure is no longer linear.

3 Implementation and Efficiency

In this section, we present some consideration regarding the implementation. At
the end of this section, we compare our algorithm with EIA1, a MAC deployed
in the 4G LTE system.

3.1 Selection of Fields and APN Function

We want our algorithm to work with both the legacy systems and the modern
systems. For this reason, our design has four versions, 32-bit, 64-bit, 128-bit and
256-bit.
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Selection of Finite Fields. The multiplication over finite filed is a necessary
block of our algorithm. Assume the defining polynomial of the finite field GF (2n)
over GF (2) is

f(x) = xn + g(x).

To make the multiplication more efficient, we want both the degree and the
number of terms of g(x) to be as small as possible. Usually, for a USIM card
used in cellphones, there is an 8-bit chip inside, which means it can compute
8-bit XOR simultaneously. The 8-bit platform is currently the smallest platform
considered by us. Therefore, we restrict the degree of g(x) to be smaller than
eight. By exhaustive search, we find the defining polynomial for each version of
our design. The defining polynomials are listed in Table 2. Note that for the field
GF (2256), we cannot find a polynomial satisfies our criteria. Thus, we loosen our
condition, and find a polynomial that the degree of g(x) is ten. It is not efficient
on the 8-bit platform, because the XOR is computed in two clock cycles. But it
is still efficient on the 16-bit and higher platforms.

Table 2. Defining Polynomials

Version Field Defining Polynomial

32-bit GF (232) x32 + x7 + x6 + x2 + 1

64-bit GF (264) x64 + x4 + x3 + x + 1

128-bit GF (2128) x128 + x7 + x2 + x + 1

256-bit GF (2256) x256 + x10 + x9 + x8 + x7 + x4 + x2 + x + 1

Selection of APN Function. Another critical block is the underlying APN
function. There are several constructions of APN functions. Among all those
constructions, we are looking for the one that has the following properties.

– Work in the field GF (2n), where n is even;
– Be efficient to compute.

We choose x3 as our underlying APN function, because the computation is
relatively efficient. If the field element is represented under a normal basis, the
square is simply shifting one bit. To compute x3, we may first compute x2, and
then compute x2 · x.

3.2 Experiment Result of Efficiency

Since our MAC is based on APN function, we call it AMAC. We implement
AMAC and compared it with EIA1. Figure 1 shows the comparison of EIA1 and
our algorithm.

In this test, we choose ZUC as our underlying cipher. The experiment is
conducted on a Mac Book Pro laptop, which has a 2.6 GHz Intel Core i5 CPU
and 8 GB 1600 MHz DDR3 memory. From the figure we can clearly see that our
algorithm is overwhelmingly faster than EIA1.
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Fig. 1. Efficiency comparison among EIA1 and AMAC

4 Conclusion

We propose a new MAC construction using APN functions. Compared with pre-
vious work based on APN functions, ours can take messages with any length
as the input, and output a fixed-length tag as MAC. Such design is more flex-
ible and practical. Like the previous work, we also have security proof for our
construction. We compare the security and efficiency of our algorithm with a
well known stream ciphers based MAC, EIA1, which is deployed in the 4G LTE
system. Our algorithm resists the cycling attack and linear forgery attack, which
can be applied to EIA1, and our experiment results show that the speed of our
new MAC is faster than EIA1.
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Abstract. Package dependency has been considered in many vulner-
ability assessment systems. However, existing approaches are either
coarse-grained and do not accurately reveal the influence and severity
of vulnerabilities, or do not provide comprehensive (both incoming and
outgoing) analysis of attack surface through package dependency. We
propose a systematic approach of measuring attack surface exposed by
individual vulnerabilities through component level dependency analysis.
The metric could potentially extended to calculate attack surfaces at
component, package, and system levels. It could also be used to calcu-
late both incoming and outgoing attack surfaces, which enables system
administrators to accurately evaluate how much risk that a vulnerabil-
ity, a component or a package to the complete system, and the risk that
is injected to a component or package by packages it depends on in a
given system. To our best knowledge, our approach is the first to quanti-
tatively assess attack surfaces of vulnerabilities, components, packages,
and systems through component level dependency.

1 Introduction

Attack surface usually refers to exploitable resource exposed to attackers [18,19].
The attack surface brought by a vulnerability could be dramatically enlarged
when more packages installed depending on the vulnerable application because
more resource can be accessed by the attacker to exploit the vulnerability.
Therefore the attack surface metric could serve as an effective indicator for
vulnerability assessment, which is considered as a critical task for security prior-
itization. Currently, the well known and de facto standard vulnerability scoring
system – common vulnerability scoring system (CVSS) [21] – quantifies the risk
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for each known vulnerability. Specifically, CVSS measures exploitability met-
rics (access vector, access complexity, and authentication) and impact metrics
(confidentiality, integrity, and availability loss) of a vulnerability, which are then
used to calculate a base score ranging from 0 to 10 indicating the severity of the
vulnerability.

Moreover, CVSS does not take into consideration of package dependency,
which, based on our analysis in this paper, dramatically affects the exploitability
of a vulnerability, especially when it appears in a prevalent package used by
many other packages. Therefore current CVSS does not reveal the fact that
vulnerabilities on highly depended packages usually bring larger attack surfaces
compared to those detected on a client application, even when they have the
same CVSS scores. Because packages depended by a number of applications are
usually more exposable than “ground” software (with no dependent), attackers
have more incentive to intrude a system through each of these dependents (or
their dependents). Therefore, the attack surface brought by package dependency
should not be ignored, and accurately measuring the attack surface is non-trivial
when evaluating vulnerability severity.

Researchers have proposed to measure risk with the consideration of package
dependency. Neuhaus et al. [23] study package dependency on Red Hat systems,
and infer beauty packages (with low risk) and beast packages (high risk) based
on the inter-package dependencies and historical vulnerability information for
each package. Their output can be used by developers to choose dependable
packages with low risks or historical vulnerabilities. But they only consider the
number of historical vulnerabilities as the risk factor for each package, rather
than measuring the attack surface brought by known vulnerabilities on a given
system. Raemaekers et al. [31] study the risk of a package brought by third party
libraries. They evaluate potential risks from third party applications by consid-
ering if the referenced packages are well scrutinized, the number of referenced
packages, and the number of classes with referenced libraries. However, they only
measure incoming risk (risk brought by third party libraries) at package level, and
do not consider any finer-grained (component level) or coarser-grained (system
level) incoming attack surface. Moreover, this work does not evaluate outgoing
attack surfaces, which are brought by individual vulnerabilities, components,
and packages to a system, and are important inputs when prioritizing security
related plans such as patching and hardening by system administrators, and
choosing dependent packages for developers.

With our approach, vulnerability and component level metrics can assist sys-
tem administrators in prioritizing patching or hardening plans towards the entire
system, while the overall package and system level metrics can help developers to
choose secure and reliable development images, platforms, and specific systems.
Our solution also helps other stakeholders to observe the evolution of package
dependency based attack surface for a given system.
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2 Overview

2.1 A Real Motivating Example

To motivate our attack surface analysis with package dependency, we systemati-
cally analyze the risk trend of a set of VMware products through VMware Secu-
rity Advisories (VMSA)1. Each VMSA indicates an official notification regard-
ing a set of known security vulnerabilities that affects VMware products, each
of which represents a Common Vulnerabilities and Exposures (CVE) record
included in the U.S. National Vulnerability Database (NVD2). Each VMSA
entry includes the origin of the vulnerabilities, vulnerability IDs, affected appli-
cations, and proposed solutions to the issue. Based on our analysis of VMSA
entries from July 2007 to December 2012, we find out that almost two thirds
(56/90) of the VMSAs include vulnerabilities originated from third party appli-
cations that affect VMware products, as Table 1 shows. For instance, ESX –
the last generation hypervisor – may be exploited by vulnerabilities described
in 27 VMSAs detected on the Linux management console, which provides man-
agement functions for ESX like executing scripts or installing third party agents
for hardware monitoring, backup, and system management [1]. For another
instance, Java Runtime Environment (JRE) is required by a number of VMware
products including ESX, Server, vMA, vCenter, and vCenter Update Manager,
therefore a known vulnerability on JRE could possibly make each of these prod-
ucts exploitable. Other major attack surface carriers include OpenSSL (9 out of
90), Kerberos 5 (8 out of 90), Apache Tomcat (6 out of 90), and libxml (6 out of
90). Note that one VMSA usually mentions multiple risks included in different
applications (See Table 1 for details).

Table 1. Risks from Third Party Packages to VMware Products

Third-party Package Name # of VMSAs Affected VMware Products

Console Operating System 27 ESX

JRE 11 ESX, Server, vMA, vCenter,
vCenter Update Manager

OpenSSL 9 ESX, ESXi, vCenter

kerberos5 8 ESX, ESXi

Apache Tomcat 6 ESX, vCenter

libxml 6 ESX

Our analysis with VMSA motivates a security metric with the considera-
tion of package dependency, which can help system administrator and software
developer to identify vulnerabilities on highly depended programs (e.g., JRE and
Linux console) with larger attack surfaces, compared to others such as client side
vulnerabilities (see Figure 1). Consequently, the system administrator may want
1 http://www.vmware.com/security/advisories/
2 http://nvd.nist.gov/

http://www.vmware.com/security/advisories/
http://nvd.nist.gov/
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Fig. 1. Comparison of attack paths to a vulnerable client side application Q and a
highly depended library P.

to patch a JRE vulnerability affecting a number of products earlier than others
even they may have the same CVSS score. A system level metric can also help
stakeholders in choosing system images with smaller attack surface and monitor
how the dependency based attack surfaces evolve over time.

2.2 Why Component Level Dependency Analysis?

From the perspective of software engineering, a system can be decomposed into
various of packages. One package can usually be further divided into one or more
components, each of which is made up from classes with related functions. From
above motivating example with VMSA, we have seen attack surfaces from third
party packages should not be ignored for risk analysis, and we need to look into
package dependencies to know how the attack surface is injected by external
packages to a system. When measuring such dependency based attack surfaces,
we analyze at component level for the following reasons.
More accurate dependency information than package level: Component level
dependency is finer-grained than package level, therefore it could locate attack
surfaces with higher accuracy. As Figure 2 shows, given two packages with the
same dependency map at package level, their attack surfaces could vary signif-
icantly if known vulnerabilities on the two packages are on components with
different dependency maps. Also, components on the same package should be
differentiated as their effects on the attack surface can be significantly different.
Less complex dependency information than class level: We keep our dependency
analysis at component level rather than go further into class or object level
because it is usually difficult to distinguish the sources or causes of vulnerabili-
ties at that level. Each component is a unit to realize a set of related functions.
Classes within the same component are usually more integrated and interacted
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Fig. 2. One package level dependency with two different component level dependencies.

compared to those in different components. Therefore for each vulnerability, its
exploitability highly depends on its accessibility at the component level. Previ-
ous studies also show that a vulnerability becomes significantly more exploitable
when attackers know that its component is accessible [25,26]. Besides, it is usu-
ally difficult to construct a map between vulnerabilities and the classes on which
they detected. Furthermore, proprietary software vendors usually do not disclose
their product information at class level. However security bugs and alerts are
usually maintained by database like Bugzilla at component level3, which makes
the vulnerability-component map retrievable [24]. Moreover, the complexity of
a class level dependency map is exponentially higher compared to a component
level dependency graph. We believe it is infeasible to achieve efficient analysis
with class level graph when dealing with a complex system including a large
number of software packages.

3 Dependency-Based Attack Surface Analysis

This section explains the details of our dependency-based attack surface analysis.
Before that we explain the definitions for various attack surface metrics.

3 A vulnerability is usually identified as a security bug in Bugzilla.
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3.1 Package Dependency at Component Level

In general, a package dependency refers to a code reuse by a component from
the library packages that it relies upon. Such code reuse could be at either
binary or source code level. For example, third party code could be called as
a compiled jar file or be imported as head files in source code. As shown in
Figure 2, each directed line represents one dependency relationship, where the
destination node represents the package or component that reuses some codes
from the source node package or component.

In our analysis, we do not differentiate dependency strength at component
level. Even though other metrics such as the number of references between the
two components can be obtained and used as the weight, the correlation between
these metrics and the strength of dependency is difficult to be determined and
judged without a comprehensive analysis over the source code of a target pack-
age. Therefore, we assign an equal weight 1 to each dependency between two
components in our analysis. But we still keep a weight variable in our algo-
rithms just for future customization of the dependency weight based on different
preferences.

3.2 Component-Based Attack Surface Analysis

Vulnerability Attack Surface. We define VAS as a system wide package
dependency based attack surface originated from a given vulnerability. VAS can
be used to compare the exploitabilities of different vulnerabilities within the same
system. The comparison results can be used to prioritize patching or hardening
tasks at vulnerability level.

As Algorithm 1 shows, for each vulnerability, we first identify its compo-
nent. Usually, the vulnerability-component map is provided by software vendors
through security advisories, e.g., Oracle Security Advisories4. Starting from the
component of the target vulnerability, we do a breadth first search until depth
d, where d is the level of dependency. For example, if package pa depends on pb
which depends on pc, then when evaluating pa, pa and pb are considered but not
pc if d is one. However, all of them are considered when d is larger than one. The
depth could be customized based on user preferences. Each component (directly
or indirectly) depending on the vulnerable component is considered as part of
the attack surface brought by the vulnerability. The impact factor on each com-
ponent is the attack surface of the target vulnerability exposed through that
component. We assign the CVSS score of the vulnerability as the impact factor
of the component where it resides (the ‘vulnerable component’)5. For compo-
nents on multiple depending chains from the vulnerable component, we only
consider its closest dependency and ignore the rest. For example, component ca
depends on cb which depends on cc, and ca also depends on cc directly. Under

4 http://www.oracle.com/technetwork/topics/security/
5 The calculation of impact factors of dependent components will be illustrated in the

following paragraph.

http://www.oracle.com/technetwork/topics/security/
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this circumstance, we ignore the dependency ca =⇒ cb =⇒ cc but only consider
ca =⇒ cc.

We define a damping factor6 (ranging from 0 to 1) to represent the resid-
ual risk after each level of dependency, which is used to estimate attack surface
from/to nested depended packages. The impact factor on a given component
equals to the multiplication of the dependency impact value from the component
it depends on (the dependency impact value is returned by function depImpact
(c1, c2) when c1 depends on c2. We assign “1” to all impact values in our exper-
iments because we treat all dependencies equally as mentioned in Section 3.1),
the damping factor and the impact factor of the component it depends on. Their
impact factor values will be eventually added up to one number, indicating the
attack surface of the given vulnerability to the whole system.

In a nutshell, we process a weighted (component-based) dependency graph
through breadth first search, we calculate an impact factor for each component
(within the dependency graph from the vulnerable component) from the given
vulnerability. We then add up all of these impact factors into one number, indi-
cating the attack surface exposed by the target vulnerability.

4 Future Work

We propose an attack surface at vulnerability level. The metric could also be
aggregated into higher levels. Component level attack surface will let state hold-
ers to know how much risk is brought by each individual component and plan
hardening accordingly. Package level attack surface can be used to determine
which package to depend upon among similar packages. System level attack sur-
face can be used to indicate the health level of individual systems/images. This
will help potential users to decide which image to use. Experiments can also
be conducted under different environments [5,16,28–30,41,42,46,53,54,56,57]
along with other approaches [14,15,32,34–40,44,45,48,51,52]. Moreover, pre-
sentation tools like attack graph [10,12,17,47,49,50,55] can be used to visualize
risks from software dependencies.

5 Related Work

Risks from package dependency have been well researched [2,4,7,13,23,25,31,
43,58]. Neuhaus et al. [23] evaluate risk per Red Hat package based on histor-
ical security vulnerabilities and package dependencies. But they do not eval-
uate attack surface exposed by individual vulnerabilities. Besides, they only
measure outgoing risk but not incoming risk for each package. Raemaekers et
al. [31] explore the risk from third party applications. Instead of measuring

6 We assign 0.1 as the damping factor for our experiments
7 We assign “1” to all DIV as mentioned in Section 3.1
8 The damping factor represents the residual risk after each level of dependency. User

can assign a value between 0 and 1 based on their own estimation.



412 S. Zhang et al.

Algorithm 1. Dependency-based Attack Surface Measurement for Individual
Vulnerabilities: VAS(v0, d)

Input: Parameters: v0 – the Target vulnerability; d – Depth of assessment.
System configurations:
A map between the vulnerability v0 and its component component (v0).
A system wide component dependency map (dependents of component c are depen-
dOn(c)).

Output: The package dependency based attack surface VAS brought by vulnerability
v0.
c0 ← component(v0) {Retrieve the vulnerable component}
Queue Q ← (c0, 0) {Q is a queue of pairs (vulnerableComponent, depth)}
Table v0.t ← empty table
{v0.t is a table tracking processed components. The key is the affected component
and the value is its impact factor from vulnerability v0.}
v0.t.put(c0, v0.cvss) {The impact factor of c0 equals to the CVSS score of v0}
while Q is not empty do

(cn, n) ← dequeue(Q)
if n ≥ d then

continue {if current component has already reached the pre-defined deepest
level, then no need to retrieve its dependents}

end if
for each ck in dependOn(c) do

if v0.t.containsKey (ck) then
continue
{If the component has been previously processed, then we skip it}

end if
Q.enqueue(ck, n + 1) {Update Q in order to process dependents of ck if within
our predefined depth}
IFc = v0.t.get(c) {retrieve the impact factor of the current component c}
DIV = depImpact(c, ck)
{ depImpact(c, ck) returns dependency impact value7between c and ck.}
IF = DIV × DF × IFc {DF means Damping Factor8. This is the calculation
of impact factor (IF) of component ck}
V AS+ = IF {Cumulatively update attack surface}
v0.t.put(ck, IF ) {Update processed element table}

end for
end while
return VAS {Sum up all impact factors of v0 into VAS}

attack surface from individual known vulnerabilities, they focus on if a refer-
enced package is well scrutinized and the prevalence of usage per package. A set
of work [2,13,43,58] study the importance of component level dependency when
assessing software quality but no concrete security metric has been proposed.
Chowdhury et al. [4] evaluate risk from source code (class) level of dependency
(e.g. complexity, coupling, and cohesion). However, their work is about inferring
unknown vulnerabilities rather than evaluate attack surface for known vulnera-
bilities.
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A number of work study risks from Java applications [6,8,9,20,22,26,27].
Nasiri et al. [22] evaluate the attack surface from J2EE and .Net platform by
quantitatively comparing their CVSS scores directly, but no package dependency
is considered during the evaluation. Drake et al. [6] evaluate JRE memory cor-
ruption attack surface from engineering point of view, but they do not provide
quantitative measurement of the attack surface. Gong et al. [9] retrospect the
evolution of security mechanism on Java in the past ten years at high level. Both
Pérez et al. [27] and Goichon et al. [8] propose vulnerability detection approaches
after scanning Java source code. Marouf [20] classifies vulnerabilities specific to
Java and proposes possible countermeasures against these threats. Similarly, Par-
rend et al.[26] classify Java vulnerability at component level rather than source
code level.

Work regarding attack surface evaluation have been conducted by
researchers [3,11,18,19,24,24,33]. Neuhaus et al. [24] rank vulnerable compo-
nents in Firefox based on historical detected vulnerabilities. Similar to us, they
evaluate risk at component level. However, they consider these components as
independent units rather than inter-depended nodes.

The definition of attack surface is also adapted in industry. Similar to [18],
which evaluates attack surface over Linux systems, Microsoft attack surface9

focuses on Windows by enlisting a number of threats based on the configura-
tion of a given system. However, none of these takes package dependency into
consideration while measuring system attack surface.

6 Conclusions

We define attack surface exposed through package dependency at vulnerability
level. Besides outgoing attack surfaces, we propose algorithms calculating incom-
ing attack surfaces injected through package dependency into individual compo-
nents and packages. Our approach provides systematic methodology to prioritize
security tasks for system administrators, and provides inputs for choosing system
images for application developers with multiple dependency options.
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Abstract. Complex interactions between two organizations, involving
sensible information and resources, requires to honor each organization’s
security policy. This implies to make compatible and combine different
sets of policy rules that were designed for different organizations, and,
therefore, different subjects, actions, and objects, classified and organized
in different manners. However, finding out what is the security policy that
emerges from the combination of all the organization-level policies and
the higher-level interoperability policy is not an easy task. In this paper
we provide a methodology based on Finite State Transducers to analyse
this situation modelling policy-rules, mapping entities, combine them,
and automatically generate an interoperability set of security policies.

1 Introduction

Policies are often used as a means of implementing flexible and adaptive systems
for the management of Internet services, distributed systems, and security sys-
tems. Among the different domains where policy-based control has been applied
one of the most successful is access control and security. Security policies are
usually implemented as sets of rules expressing permissions, prohibitions, and
obligations.

When two organizations cooperate and set their systems to exchange data
and their users to access each other’s information, the interoperability between
the systems of both entities must be studied and, in particular, the security of
such interoperability is a particularly important issue. Therefore the security
policies of both organizations must be analysed and, potentially, modified to
fit the cooperation objectives. We understand interoperability policies as a set
of contracts negotiated between two, or more, organizations applied to control
their interoperation. Therefore, as we see it, secure interoperability translates
into interoperability of security policies and in this paper we will focus more on
this issue. The natural questions to make are: (i) what is permitted if we apply
the security rules of two organizations at the same time? (ii) are the obligated
actions consistent between them and with the prohibitions of both organizations?
and, (iii) is the emerging policy in line with their cooperation objectives?
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In order to start analysing policies interoperability, we need a common policy
modelling abstraction and a means to draw a correspondence map between two
organization’s entities and procedures. This means not only to simply translate
the entity names, but also to translate their interaction manners, which can be
also different amongst different organizations.

Once we have modeled policy-rules using a common abstraction, we can
detect contradictions between rules (conflicts) and perform further analyses such
as writing the new emerging rules back, in order to visualize and study their
conformance with the objectives of the organizations’ cooperation.

In this paper we propose a common model based on Finite State Transducers
(FST), a type of extended Finite State Machine, in a revised and augmented
version of the work presented in [1]. To model policy-rules with this particular
type of input/output Finite State Machine, we consider the events and actions
of the policy-based system as the input and output alphabet and the input and
output languages defined by the FST as the patterns of events and actions that
an organization’s policy permits, prohibits and obligates, respectively. Some of
the theoretical existent work on FSTs and some novel algorithms are used in this
work to unite, compose, intersect, and complement policy-rules, and to study the
interoperability between security policy-rules sets.

The paper is organised as follows. In Section 2 we present related work on
interoperability and secure interoperability, and in Section 3, we present the
FST-based model and its theoretical basics. Section 4 presents the description
of security rules using FSTs and in Section 5 its application to interoperability
analysis. Finally, in Section 6 we conclude and sketch some future work.

2 Related Work

The work in [3] propose solutions to specify interoperability security policies
without conflicts with the local security policy. They propose an extension of
OrBAC (Organisation Based Access Control) model to a called O2O (Organi-
sation to Organisation) model. The development of O2O was motivated by the
need to model the management of interoperability security rules between systems
and more specifically between secured organizations [4]. This approach based on
the O2O model has been compared with previous proposals based on the RBAC
(Role Based Access Control) model and ABAC (Attribute Based Access Con-
trol) and its advantages have been shown. In [2], the authors proposed methods
for automatically derivation of secure interoperability rules. In particular, the
authors propose methods to anticipate the security interoperability policy and
thus to reduce the policy negotiation steps. The authors defined interoperation
contracts to control the aforementioned derivation process of interoperability
security policies. There are other works such as [6] and [8], but even if these
research works provide interesting solutions to secure interoperability issues,
they are limited with respect to the automatic creation of secure interoperabil-
ity policies. Indeed, one of the main contributions of our paper is to propose
a new approach for the automatic creation of secure interoperability policies
specification.
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Fig. 1. Correspondence between Rule 1 constituents and FST elements.

3 Policy Modelling Using τ -Finite State Transducers

As said above, there are many abstractions to model policy rules, however, they
suffer from scalability issues. Finite State Transducers have shown several advan-
tages when dealing with large numbers of logic conditions, long strings of symbols
and applying pre-processing techniques and heuristics to reduce the complexity
of the most expensive inference-related operations.

In this work we consider a policy manager as a transducer that consumes a
string of the system events, including context events and actions with pending
authorization, and produces a similar string of events that contains the permitted
actions, adds the obligated actions, and does not includes actions that were
included in the original string but are prohibited by the enforced policy. To depict
how the policies are modeled with an example, the Rule 1 below is represented by
the transducer depicted in Figure 1, which consumes an event informing that a
specific doctor has seen a specific patient and, produces an event that replicates
the input (because it is implicitly permitted) plus the action of writing in that
particular patient’s record. We follow the general convention for FSMs in which
State 0 is the initial state and those states represented by a double circle are
final. This FST have an additional particularity, the labels on the edges are
functions. In particular, for this work, they are Boolean functions defining sets
of events instead of a single symbol as in classic transducers. For this reason,
there should be a way to specify when an incoming event, lets say “Dr. Gregory
House has examined Mr. Walter White”, has to be produced, without changes,
in the output. With this purpose, an identity flag has been added to the pairs of
input/output labels. In the figure, the identity flag is represented with the “<”
and “>” symbols.

Rule 1: Every time a health professional examines an individual, he

or she has to write an entry in the individual’s medical record.

The idea of FST labels defining classes of symbols (events in our case) instead
only one symbol existed before and was augmented in [1] to use fuzzy member-
ship functions as lables. In this work we use an extension of those concepts,
which include predicates as labels and weights that we call τ -FST. It differs
from the previous work presented in [1] in the usage of weights on the edges,
the generalization of the functions for the labels and registries to facilitate their
implementation. Because the focus of this work some of those characteristics
are not highlighted in the text below. Additionally, the concept of semiring is
used for the definitions. Nevertheless, its description is out of the scope of this
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paper and it is not needed to understand the proposal presented in the following
sections. A detailed descriptions of semirings and transducers can be found in
[9]. Firstly, we define τ -Finite State Recognizers (τ -FSR), which are needed to
define some of the transducers operations.

Definition 1. A τ -FSR M over a semiring (K,⊕,⊗, 0, 1) is a tuple
(Q,E,F ,Π, S, F, λ, ρ) where: Q is a finite set of states, E is a set of events, F
is a set of functions over E, Π is a finite set of transitions Q×F ∪{ε}×K×Q,
S ⊆ Q is a set of start states, F ⊆ Q is a set of final states, λ is an initial weight
and ρ a final weight function on the initial and final states respectively.

Secondly, we define τ -Finite State Transducers (τ -FST) as follows:

Definition 2. A τ -FST M over a semiring (K,⊕,⊗, 0, 1) is a tuple
(Q,E,F ,Π, S, F, λ, ρ) where:

Q is a finite set of states, E is a set of symbols, F is a set of membership
functions over E. Π is a finite set of transitions Q×(F ∪{ε})×(F ∪{ε})×K×
Q×{−1, 0, 1}.1 S ⊆ Q is a set of start states, F ⊆ Q is a set of final states, λ is
an initial weight and ρ a final weight function. For all transitions (p, d, r, w, q, 1)
it must be the case that d = r �= ε.

An extension can be defined to let the transducer deal with strings of events
in each transition. Regarding the identity flag introduced in the definition, it
has also its implications in the definition of the Identity operation for a given
language of events L is id(L) = {(w,w) | w ∈ L}.

4 Writing Rules as τ -FSTs

The FST-based policy model is useful as an analytic tool but not as a policy
specification language, for this purpose we use OrBAC [7], a well known pol-
icy access framework that includes a high level specification language. OrBAC
counts with extensive research and at least three different back-end implemen-
tations which makes it a good candidate in order to perform performance and
functional comparisons. The details of the integration between MotOrBAC and
our FST-based model are out of the scope of this paper. In the following sections
we show how policy rules written in OrBAC can be modelled as τ -FSTs. For
reasons that will be clearer later in the paper, the modeling strategy is slightly
different than the one depicted above. Basically, the action to be authorized
or obligated, is disassembled in the Role, Activity, View, and Context compo-
nents used in OrBAC, which, in this language, correspond with the mos abstract
expression of the widely known Subject, Action, and Object. A subject is an par-
ticular instance of a role, an action an instance of an activity, and an object an
instance of a view. Our τ -FST model for an obligation specified in OrBAC is
based on the general obligation automaton described in OrBAC’s description [5].
1 The final component of a transition is a sort of “identity flag” used to indicate when

an incoming event must be replicated in the output. The negative identity value
is to express the obligatory difference between input and output, this is needed to
compute the complement of an FST.
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4.1 Permissions

In a first approach, a permission is modelled with a τ -FST that consumes all
possible input strings but produces a version of the input string containing only
the permitted event patterns. More specifically the subject, the action and the
corresponding object are modelled as three different symbols that, without loss of
generality, we assume that occur in that order and contiguously in time. Thus, in
the context of a system in which everything is prohibited by default, the OrBAC
rule permission(p1,r,a,v,TRUE) is modelled as the following τ -FST:

TP+ =
(
id (RP )∗

ε
(
E∗RPE∗)∗)∗

where RP is the τ -FSR that consumes exactly the event string rav, id(X) is the
identity τ -FST, ε(X) is a transducer that consumes language X and produces ε
always, ∗ is the Kleene closure, and E∗ is the language of all possible strings of
events.

4.2 Prohibitions

Following the modelling idea presented above for permissions, a prohibition is
represented by an τ -FST that consumes all possible input strings but produces
a version of the input string stripped of the forbidden patterns of events. In the
context of a system that permits everything by default, the τ -FST that models
the rule prohibition(p1,r,a,v,TRUE) is the following:

TP− =
(
ε (RP )∗

id
(
E∗RPE∗)∗)∗

Because of its simplicity, in this case, and in the case of permission rules
above, we present the transducer in a version that accepts a string of any length
and many occurrences of the permitted pattern of events. However, later in the
paper we will depict stripped down versions that accept only one occurrence of
the permitted, prohibited or obligated patterns to keep them legible.

5 Interoperability Analysis

As said in Section 1, two organizations willing to interoperate need to negotiate
a set of contracts to control their interoperation. In this context secure inter-
operability translates into interoperability of security policies and the questions
we make are: (i) what is permitted to do if we apply the security rules of two
organizations at the same time? (ii) are the obligated actions consistent between
them and with the prohibitions of both organizations? and, (iii) is the emerging
policy in line with their cooperation objectives?

The first obstacle to answer these questions is that the subjects, objects and
actions used to define security policies at different organizations may have differ-
ent names, classifications, and meanings. Therefore, in order to start analysing
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policy interoperability, we need a common policy modelling abstraction and a
means to draw a correspondence map between two organization’s entities and
procedures. This means not only to simply translate the entity names, but also to
translate their interaction manners which can be also different amongst different
organizations.

In the section below, we show how to use the composition of transducers to
transform the τ -FST representation of rules in order to map their entities and
to allow analysing them on a common basis.

5.1 τ -FST Composition for Policy Mapping

An τ -FST composition works in the same manner than any other binary rela-
tions:

R1 ◦ R2 = {(x, z) | (x, y) ∈ R1, (y, z) ∈ R2}
This can be seen as a chain of events processing in which the events in the output
of the first transducer are used as the input of the second one, with the difference
that all the process is modelled by a single FST.

The idea of composition, then, can be used to map the meaning of a pol-
icy from one organization to another. To exemplify this, lets consider two hos-
pitals with two similar rules. Hospital H’ has Rule 2 and hospital H” has
Rule 3, managing a medical record includes actions such as reading, writing,
and signing one of its entries. However, for H’ signing and writing a medi-
cal record are things completely different and for H” to sign a medical record
is a particular case of writing it. Those rules are modelled as the τ -FSTs
TRule2 and TRule3 depicted in figures 2(a) and 2(b) respectively. To describe
the composition idea on more simple graphs, we use a simplified representa-
tion of those rules in which only one occurrence of the sequence of accepted
events, and no other events before or after it, is accepted by the τ -FST.

Rule 2: Physicians can manage any medical record.

Rule 3: Health Professionals can manage any medical record.

Now, when hospitals H’ an H” collaborate, rules from both hospitals have
to be considered. For example, a task performed by a physician from H’ in H”
premises has to be permitted by the rules of both hospitals. However, we need
to answer whether a physician from hospital H’ is permitted to, for example,
write an entry on a medical record at hospital H”. To answer this question, we
have to compare the rules of both hospitals at a common plane were all the rules
speak about the same roles, activities, and views, at least under some given
circumstances. Thus, we build a mapping, i.e., a relation, between the names
used in Rule 2 and in Rule 3 (e.g., relate physicians to health professionals) for
the action of reading a medical record; under any other situation that mapping
must not be valid. Such a mapping has the shape of the τ -FST Tmap depicted
in Figure 2(c).

The τ -FST TR2 map = TRule 2 ◦ Tmap (see Figure 2(d)) models Rule 2 with
its output actions written in terms of the entities of H” policy. The τ -FST
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. Interoperability Study. (a) FST TRule2 modelling Rule 2. The label phy rep-
resents the set of physicians, man represents the class of actions management and rec
the class of objects medical records. (b) FST TRule3 modelling Rule 3. The label hp
represents the set of subjects health professionals, man represents the class of actions
management and rec the class of objects medical records. (c) FST Tmap which defines
a map between the entities of two simple permissions. (d) The τ -FST TR2 map =
TRule 2 ◦ Tmap. This computation is based on the presumption that read → man,
man → ¬rec, man → ¬phy, and rec → ¬phy. (e) The τ -FST Tmap R3 = Tmap◦TRule 3.
This computation is based on the presumption that read → man, man → ¬rec,
man → ¬phy, man → ¬hp, rec → ¬hp, rec → ¬phy, hp → ¬phy. (f) The τ -FST
T
P+
int

= TR2 map ∩ Tmap R3. Tint is the transducer representing what a subject of H’

can do on H” objects when the policies of both organization are applied at the same
time.



An Abstraction for the Interoperability Analysis of Security Policies 425

Tmap R3 = Tmap ◦ TRule 3 (see Figure 2(e)) models Rule 3 with its input events
written in terms of the entities of H’ policy. This FST-based mapping does not
only creates straight forward name translations between entities but also man-
ages to define a translation that can differ depending on the context or combina-
tions of subjects, objects and actions. We can also think of a translation of the
name of a subject depending on the action it is performing or the translation of
an action name when it is performed on a particular object and a different one
when performed on another.

5.2 Interoperability Conflicts Analysis

Once the rules of both organizations are written in a common language of roles,
activities, and views, it is possible to start answering the questions on interop-
erability raised before. To answer the question on what is permitted to do if we
apply the security rules of two organizations at the same time, is analogous to
find out which are the actions permitted by both sets of rules, which is the same
as to compute the intersection of the relations defined by both sets of rules, by
computing the intersection of the τ -FSTs that model them.

τ -FST Intersection. The intersection of two FSTs is an FST that defines
the relation resulting from the intersection of the relations of the two original
transducers. FSTs are not always closed under intersection, however, they are
closed in the case of ε-free letter transducers which we use to model policy-rules
in this work. A τ -FST M = (Q,E,F ,Π, S, F ) is called an ε-free letter τ -FST
iff Π ∈ Q × F × F × Q × {−1, 0, 1}.

In this case, the intersection of two τ -FSTs is the intersection of their under-
lying τ -FSRs, that is, the FSR resulting of considering input and output labels
on an adge as a single label. The intersection L(M1) ∩ L(M2) is the language
accepted by

M = (Q1 × Q2, E,F ,Π, S1 × S2, F1 × F2, λ
′, ρ′)

where

Π = {((p1, q1), τ1 ∧ τ2, (p, q)) | (p1, τ1, p) ∈ Π1, (q1, τ2, q) ∈ Π2}
For example, the intersection of transducer TR2 map (see Figure 2(d)) with trans-
ducer Tmap R3 (see Figure 2(e)) is TP+

int
(see Figure 2(f)). For more details on

how the weights, λ′, and ρ′ are computed see [9]. Tint is the transducer repre-
senting what a subject of H’ can do on H” objects when the policies of both
organization are applied at the same time. In this simple case it is easy to see
that a physician of H’ can read the medical records of H” as if he or she would be
a health professional. Of course, in the case of any other policy with a realistic
number of rules and modelled properly (not in this simplified manner) it would
be hard to “read” which actions are permitted, prohibited or obligated under
the interoperability scenario. To cope with this problem, we have developed a
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method to write policies back from their FST representation, however we had
to leave it out of this article because space limitations.

The same idea can be used with obligations to answer the second question
made before: are the obligated actions consistent between them and with the
prohibitions of both organizations? We leave the details of this task out of this
paper due to space limitations.

To summarize, the procedure to find out what are the actions that a subject
of an organization O’ can do on the objects of another organization O”, follows
the steps below:

1. to model the policies of organization O’ as the transducer TO′ ,
2. to model the policies of organization O” as the transducer TO′′ ,
3. to model the entity map between O’ and O” as the transducer Tmap,
4. to compute TO′ map = TO′ ◦ Tmap,
5. to compute Tmap O′′ = Tmap ◦ TO′′ , and,
6. to compute Tint = TO′ map ∩ Tmap O′′

Tint is the transducer which models the set of interoperability policy-rules
between O’ and O”. Please, note that the order in which we present the organi-
zations is relevant.

6 Conclusions

In this paper we present a methodology to model security policies with an FST-
based abstraction called τ -FST. With their help, we are able to compute what
is the security policy that emerges from the combination of all the organization-
level policies and the higher-level interoperability policy when two organizations
cooperate. We provide a methodology and a set of operations to create rich
mappings between entities of different organizations, combine them, and auto-
matically generate an interoperability set of security policies.

To illustrate some of the rules presented in this paper, we use OrBAC as a
policy specification language, however, the proposed abstraction is completely
independent of that language and can be used to model policies specified in
many policy languages.

Future work includes fully integrating the algorithms in a working policy
manager, to refine the conflict resolution process using the weights and, possibly,
adding learning mechanisms to compute those weights automatically.
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Abstract. As SoCs have become more complex, on-chip interconnect
has transformed into the point of integration for a variety of system
level functions, including security. Integrators have begun to rely on dis-
tributed access control hardware to protect resources that are shared
between IP cores executing both trusted and untrusted software. Exist-
ing solutions cover enforcement of on-chip access control policies but
they don’t secure the programming interface nor the hardware against
possible attacks. As the embedded content increases in theft value, the
on-chip access enforcement will need to consider both software and hard-
ware directed attacks. We introduce a secure on-chip access device that
enables secure and programmable allocation of resources in an SoC by
offering cryptographically signed programming, fault detection and key
integrity. Synthesis results are shown in both ASIC and FPGA imple-
mentations.

Keywords: SoC security · On-chip firewall · Secure access · Authenti-
cation · Fault detection · NoC

1 Introduction

The emergence of on-chip-fabric solutions is a natural consequence of Moore’s
law. Increasing integration naturally produces greater complexity and hierarchy,
and SoCs have been at the center of this evolution. The evolution of a set of
tools that manage the complexity at the point of integration for these complex
IP blocks has been centered around the on-chip fabric and are now generally
referred to as a NoC or Network-on-Chip. An example of a NoC and its applica-
tion in a modern SoC is illustrated in Figure 1. Multi-interface integration with
different bus sizes and protocols, in addition to the challenge of floor planning on
a complex SoC have favored the packetization of data over an on-chip network.
On the other hand, bus-based interconnects are very attractive when the system
has difficult timing constraints. This type of SoC architecture is less flexible but
doesn’t carry any extra latency due to packet conversion.

Today, the IP cores express their connectivity requirements in the form of
flows which represent the access requirements of a core or a thread. These flows
c© Springer International Publishing Switzerland 2015
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are used to size and synthesize the network, communicate quality-of-service
(QoS) requirements and in a limited way to express the data sharing or non-
sharing requirements between a core (or thread) and a resource.

Fig. 1. Firewalling in an SoC based on NoC interconnect

These very basic sharing rules are used to configure firewalls that limit an
initiator access to a network, a resource, or an address range.

With the introduction of flows that carry special “trusted” status, these fire-
walls are also being used to create a very rudimentary security barrier between
trusted and untrusted flows. This is the beginning of the next significant ser-
vices that could be offered by NoCs, a heterogeneous multi-core data security
integration service.

2 Identifying Attack Surfaces on NoCs

Most commons attacks on NoCs are related to QoS considerations and have been
well described in previous works [4] [9], but some of them are targeted at data
theft. NoC attacks can be classified in three main classes:

– Hijacking: writing to restricted addresses in order to change the system’s
configuration.

– Extraction of secret information: reading from secure addresses in order to
retrieve sensitive data.

– Denial of Service: reducing the system’s throughput by replaying or forging
request over the NoC.
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These attacks are well understood and can be addressed with QoS and fire-
walling solutions [9]. However the firewall is only as secure as the hardware and
software that implement, enforce and maintain the region control. Regarding
SoC firewalling, we can identify three domains where an attack can take place,
illustrated in red on Figure 1, the request path, the firewall reprogramming path
and the firewall itself.

3 Integration of Security Resources into an SoC

Before integrating security resources, the hardware architecture and the purpose
for securing it must be analyzed to define which approach to take. [10], A secure
processor connected to an untrusted off-chip memory requires that memory con-
tent data has not been tampered with or accessed by an unauthorized entity.
The approach consists of data integrity verification and encryption. This work
focuses on interconnect communication where multiple IP cores, both secure and
unsecure, share the same resources.

Typically, information security has started to be studied in the context of
communication systems [7]. In such a scenario, there are two entities willing
to communicate over a public communication channel that is prone to attacks.
Ideally, this channel should have three characteristics: data confidentiality (pro-
tecting sensitive information from eavesdropping), data integrity (ensuring that
information has not been modified) and peer authentication (verifying that both
parties are legitimate). By applying these concepts to a network-on-chip, one
can see data confidentiality as protecting memory areas that contain private
information with the use of a NoC firewall. In this domain, data integrity makes
sure that the access rules are not modified during programming or at rest, while
peer authentication allows the firewall to receive programming sequences from
an authentic source.

3.1 Securing the Request Path

In an ideal world, a NoC could support a full point-to-point authenticated
encryption between an initiator and a target. In addition to bringing perfect
secrecy through a ciphered communication, this solution could also offer data
integrity and authenticity with the addition of an authentication tag. Unfortu-
nately, this solution is problematic to implement in an efficient manner within
a NoC or an Xbar network. In fact, IP integrators cannot afford the impact on
latency and overhead that this solution imposes. Lightweight hardware point-to-
point encryption and address scrambling solutions do exist [6] but still add too
much latency to be generalized to any application on an SoC. Regarding authen-
ticated encryption, the standard defined by NIST, AES-CCB [5], also brings too
much overhead for NoC integration.
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3.2 Securing the Firewall

Firewalling is the easiest solution for implementing on-chip access control. The
simplest version of a firewall is a hard-coded look-up table that matches initia-
tor IDs and target addresses with access rights. However, access rights require
both security and flexibility, which can only be achieved with a large degree of
programmability of the access control rules. Commercial access control IPs exist
on the market [1,2] and complex SoCs use firewalling to create on-chip access
control [11]. They offer access control over a given address space with repro-
grammability. Unfortunately, they do not secure the programming sequence nor
authenticate the entity responsible for reprogramming the firewall rules. More-
over, they do not maintain the integrity of the access rules during operation.

Digital signing can secure the firewall programming by ensuring the authen-
ticity of the programming entity, the region and its integrity. This strategy will
protect a reprogramming agent from hijacking. By seeding the signature with a
cryptographic nonce, replay attacks can also be prevented.

Integrity checking regions per access can ensure the regions have not been
tampered with, and can detect a modification fast enough to block the access.

A previous work presented in [9] describes an architecture using multiple
security levels on a NoC assuming that secure blocks are capable of defining
dynamically new set of rules to different scenarios. Unfortunately it relies on
hardware features customized within the NoC, making it less flexible.

4 Access Control Firewalling to On-Chip Resources

4.1 Overview

Access policies are usually implemented over an address space, so multiple tar-
gets can be covered using contiguous global addresses. Figure 2 represents an
initiator’s view of a partitioned address space of two targets: ROM and RAM.
Each initiator has a different set of permissions for the address mapping accord-
ing to its privilege. Once loaded in registers, an access rule is enforced using
combinatorial logic checking of each transaction. The primary goal of the fire-
wall is to allow only transactions from initiators that have correct access rights
to a given target.

Fig. 2. Simple firewall partitioning of an address space covering two targets
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4.2 Endpoint versus NoC Firewalling

Firewalling at the NoC level presents one major advantage in that the lookup
latency is hidden by the packet conversion timing. Indeed, the validity of the
access can be checked while the packet is being converted to the target’s protocol,
thus the access can be granted where the request exits the NoC. An endpoint
firewall is a more timing-critical block as it lies at the end of the request datapath
(see Figure 3), however the techniques for securing the access rules are equally
relevant and can be applied at the endpoint as well as at the ingress of the
network.

Moreover, placing the firewall at the ingress or egress of the NoC demands
synchronization between the master protocol and the slave protocol, which is
usually achieved by registering inputs and outputs [3]. Since mobile applications
and IoT devices use NoC for integration, it seems evident that inclusion of the
firewall in the fabric itself is optionnal.

4.3 Cryptographically Secure Access Control

Cryptographically Secure Access Control (CSAC) is a security layer over the
existing hardware management of virtualization of secure/non-secure environ-
ments.

Fig. 3. Endpoint firewall that controls accesses from an initiator to a target interface

CSAC implements two security features. First, it cryptographically authen-
ticates the reprogramming agent and ensures the integrity of its reprogramming
sequences. Second, CSAC ensures the integrity of the access policies over the SoC
by checking and hashing rules per access. CSAC engine is based on a Keyed-
Hash Message Authentication Code (HMAC) [8], whose key is shared between
the reprogramming agent and CSAC core. This key can be programmed for each
session and its programming is part of the hardware root-of-trust of the SoC.
CSAC supports both hardware and software key delivery, performed at secure
boot of the SoC.

CSAC Firewall Custom Regions. A region can be as complex as a system
needs it to be. It contains multiple fields, from encoded or decoded initiator
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access rights, the address space covered by the region from base address to top
address range or decoded sub-regions, and specific user bits that can carry data
as integrity checks value and other tags. With this flexibility and the scalability
of each field’s width, the end-user can tailor a CSAC firewall to a specific system
use.

CSAC regions can scale up to 128 bits. Figure 4 illustrates an example imple-
mentation of a region register with the following fields:

– Disable: disable or enable flag. Encoded on two bits.
– NSR, NSW: decoded access rights per initiators for non-secure read and non-

secure write permissions. This field can scale up to 16 bits depending on the
number of initiators connected to the CSAC.

– SR, SW: grouped access right for all initiators regarding secure read and
secure write for that region. Encoded on two bits.

– BA, TA: base address and top address of the given region. These addresses
are given in 4kB pages. This field can scale up to 36 bits according to the
address space covered by CSAC.

– Parity: parity bits for the different fields. These bits are continuously checked.
– CRC: CRC12 digest of all regions. This value is checked periodically for

detection directed faults.

Each of the fields are scalable as RTL parameters up to the value represented
in Figure 4. This enables the user to change or scale region complexity according
to the SoC needs.

Fig. 4. Content of a complex CSAC’s region

When a request arrives to CSAC, a wrapper decodes the incoming protocol
to present CSAC with all the fields required for a region lookup. Depending
on the interconnect technology, if an illegal access is detected, the transaction
can be blocked at the synchronization node for bus-based interconnect, or at
the target socket in the case of a packet switch network. Independently to the
illegal and blocked access, an IRQ can be raised to the processor. Some level
of reconfigurability regarding IRQ policy is given to the user by programming
dedicated registers.

CSAC Signing Engine. CSAC signing engine is based on a Keyed-Hash Mes-
sage Authentication Code (HMAC) using a cryptographic hash function h. Let
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KS be the session key, PRi the ithincoming programming sequence and SVi the
state variable defined hereafter. The HMAC tag of PRi is given by

HMAC(PRi) = h((KS ⊕ opad)||h((KS ⊕ ipad)||PRi||SVi))

Figure 5 represents the composition of an incoming CSAC reprogramming
sequence. It is composed of eight consecutive APB transactions written to the
address of a region. The APB address provides the region number to CSAC,
which is used in the signature computation.

Fig. 5. Order of APB sequences of CSAC region programming

Protection Against Replay Attacks. To ensure that CSAC is resistant
against replay attacks, the region’s (access rule) signatures is seeded with a
cryptographic nonce. We call this nonce the state variable of the ithincoming
programming sequence (SVi) as it is a tracker of the session’s history. At each
new valid programming sequence PRi, CSAC updates the state variable SVi

with part of the discarded HMAC output. We denote f the function tak-
ing part of the discarded bits of the truncated HMAC output, as we have
SVi = f(KS , PRi, SVi−1). It is evident that this tag becomes a function of all
the preceding operations that CSAC has performed during a session and cannot
be computed without this knowledge.

SVi = f(KS , PRi, f(KS , PRi−1, SVi−2) = f(KS , PRi, f(...f(KS , PR0, 0)...))

Since the IP does not contain non-volatile memory, the state variable is reset
at boot, and initialized with the session key KS programming. It is important
to mention that the register destination address is included in PRi and thus in
the hash computation to avoid any unintended modification on the address bus.

Key Management Policy. CSAC security relies on the use of a key for authen-
tication at system level. This key is a secret shared with the authenticated master
that reprograms CSAC during operation. As this IP is intended for integration
in large SoCs, using non-volatile memory for storing a personalized key should
be avoided because it adds extra cost to the chip. Two options are possible for
delivering the session key.
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– The session key KS can be loaded through software. The solution used here
is the use of a master key KM hardcoded in the design, the netlist key, and
a session key KS programmed at secure boot within the root of trust with
signed code, before non-secure OS and applications are loaded. As, in this
solution, there is no personalization of the netlist key among devices, the
security relies on a secure boot scheme that will ensure that only the trusted
code can load the session key. First the key integrity value is computed for
future key integrity checks, then the netlist key is checked for integrity, and
then the session key is authenticated and programmed to the key registers
using the following signature.

HMAC(KS) = h((KM ⊕ opad)||h((KM ⊕ ipad)||KS))

Note that there is no start variable involved in the signature, so that this
step is vulnerable to replay attacks and relying on the secure boot of the
systen to perform this operation.

– The session key KS can be loaded through a hardware key management
system, where the security relies on this secure block. The HW KMS will
also deliver the session key to the programmer. In this case there is no master
key KM .

Fig. 6. Key integrity checks using HMAC intermediates

Before each signing operation, the key integrity is checked using the embed-
ded hash function using the first intermediate hash computation as represented
in Fig. 6. This operation allows us to perform key integrity checks continuously
with very little overhead. We truncate this intermediate value to 16 bits and
we store in dedicated register during session key programming. Note that this
scheme is also used to verify the netlist key KM before every session key KS

programming.

4.4 CSAC Synthesis Results

CSAC was synthesized in five different versions using a digital library with
technology node of 45nm. The synthesis results were obtained with Cadence
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Encounter RTL Compiler v13.10. They show the impact of including security
features to the CSAC core. Each version was split in two firewall settings: one
composed of four regions that provide access rights to six initiators and address
a space of 4GB (Table 1); another enabling the use of 14 initiators and covering
a target address space of 64GB, with a total of 8 protection regions (Table 2).
Results aim at comparing the cost of the enforcement logic and authentication
engine. We also created an emulation platform by implementing our solution
on a Xilinx ZINQ-700 [12] development board embedding an ARM Cortex A9
MCU core and an FPGA. We created traffic scenarios on the programmable logic
using a simple packet-based NoC connecting two initiators, the ARM core, and
a DMA to a DDR memory. On the NoC node, we instantiated CSAC IP core to
securely partition the 1GB memory. We programmed CSAC region registers in
a C++ SW that we compiled on ARM instruction set. FPGA synthesis results
are embedded in Table 1 and Table 2.

Table 1. Synthesis results of five CSAC designs (4 regions, 6 initiators, 4GB of address
space) on a 45nm technology node and on Zynq-7000 board.

Technology ASIC FPGA

Design Cells GE Critical
path (ps)

Power
(mW)

LUTs
Slices

Register
Slices

Muxes

Basic firewall (a) 746 4461 5020 0.32 417 353 38

Firewall and parity (b) 827 4760 5443 0.33 441 437 47

Firewall, parity and CRC (c) 1729 5967 5467 0.46 1103 772 47

Firewall and HMAC (d) 5933 23156 10000 2.7 2429 1973 61

Firewall and all features (e) 6452 24677 10000 2.82 3095 2350 77

The base design (a) represents a complete implementation of a firewall with
no authentication engine or integrity logic (i.e., parity bits or CRC integrity
checking). Design (b) enforces the programming correctness by sending parity
bits embedded in the sequence, that will be constantly checked whenever a fire-
wall access request is processed. Design (c) uses, apart from parity bits, a CRC
engine that periodically checks the integrity of the protection regions. Design (d)
does not implement any enforcement logic in the bits of the protection regions,
but authenticates each programming sequence using the HMAC authentication
mode in conjunction with the SHA-256 cryptographic hash. The last design, (e),
implements all features in the same core.

Tables 1 and 2 show physical synthesis results aiming at a frequency of
100MHz. The gate equivalent (GE) metric was calculated dividing the total cell
area of each design by the area of the smallest 2-input NAND gate of the tar-
get digital library. In addition to the inherent loss in performance, the security
features impact area occupation and power consumption. Power consumption
was estimated by the synthesis tool and represents the total power dissipation
(dynamic and leakage). The power consumption was calculated by the synthesis
tool taking into account an activity profile of the CSAC core and represent an
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Table 2. Synthesis results of five CSAC designs (8 regions, 14 initiators, 64GB of
address space) on a 45nm technology node.

Technology ASIC FPGA

Design Cells GE Critical
path (ps)

Power
(mW)

LUTs
Slices

Register
Slices

Muxes

Basic firewall (a) 2203 9031 7249 0.62 751 823 147

Firewall and parity (b) 2471 10082 8035 0.63 810 851 86

Firewall, parity and CRC (c) 3026 10836 7734 0.73 1689 1244 181

Firewall and HMAC (d) 6900 27555 10000 2.79 2735 2435 201

Firewall and all features (e) 7929 30343 10000 3.17 3688 2825 169

average value when the HMAC engine is working. Although the most power con-
suming module is the HMAC engine, it will be idle most of the time, decreasing
significantly the power profile of CSAC.

The CSAC core was designed for only one clock domain. This means that
the programming interface needs to work at the same speed as the firewall logic,
which can be restrictive in some cases.

By using two clock domains - one for configuration and another for firewalling
- CSAC can speed up the firewall logic and avoid NoC clock frequency loss due to
security. For example, it can be seen from Tables 1 and 2 that the HMAC SHA-
256 engine decreases the performance in designs (d) and (e) by approximately
27%. Since the authentication engine is only used when a new protection region
is reprogrammed in CSAC, it does not impact the firewall enforcement logic
in a two-clock domain scheme. This technique proves to be helpful when the
authentication engine has a significant cost to performance, area and power
consumption. In contrast, parity bits and CRC integrity checking relate to both
domains because they are enforced when a programming sequence is sent to the
core and also when a firewall access request arrives to CSAC. As a result, these
two countermeasures do impact the overall performance.

5 Future Work

CSAC signing engine uses the NIST recommended hash function SHA-256.
Lightweight hash functions should be the object of further research.

Finally, another path for further research is in the application of CSAC princi-
ples to memory control systems as memory management units (MMUs). In the
case of table look-aside buffers (TLBs), they could contain access right infor-
mation, thread ID information and embed some additional security features.
Ensuring a similar level of authenticity and integrity checking of page tables and
TLB entries would require additional work.

6 Conclusions

We introduced a novel way of firewalling resources securely in an SoC by cryp-
tographically signing reprogrammed firewall access rules and checking them for
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modifications or errors during operation. CSAC can be used to efficiently and
securely segment address spaces between secure and non-secure initiators. The
programmer controlling those partitions can be located on-chip or off-chip and
its sequences are authenticated with a very strong collision resistance. In the
same way, CSAC is resistant to fault injection/glitching techniques so that a
given access policy can be securely maintained. Finally, we point out that CSAC
can be also used in broader applications and its principles can be applied (to a
certain extent) to memory management units (MMUs).

References

1. ARM. TZC-400 trustzone address space controller technical reference manual
2. Arteris. Flex NoC interconnect IP
3. Cotret, P., Crenne, J., Gogniat, G., Diguet, J.-P.: Bus-based mpsoc security

through communication protection: A latency-efficient alternative. In: 2012 IEEE
20th Annual International Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM), pp. 200–207, April 2012

4. Diguet, J.-P., Evain, S., Vaslin, R., Gogniat, G., Juin, E.: NOC-centric security
of reconfigurable SoC. In: First International Symposium on Networks-on-Chip
(NOCS 2007), pp. 223–232, France, May 2007

5. Dworkin, M.J.: Sp 800–38c. recommendation for block cipher modes of operation:
The ccm mode for authentication and confidentiality. Technical report, Gaithers-
burg, MD, United States (2004)
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Abstract. In this paper, we propose a distributed PCA-based method
for detecting anomalies in the network traffic, which, by means of multi-
party computation techniques, is also able to face the different privacy
constraints that arise in a multi-domain network scenario, while preserv-
ing the same performance of the centralised implementation (with only
a limited overhead).

1 Introduction

The detection of attacks and anomalies in the network traffic has attracted many
research efforts in the last years, and some very promising methods, such as those
based on the use of Principal Component Analysis (PCA), have been proposed.

Nonetheless, most of these methods are based on a centralised approach that
is becoming less and less suitable to the new emerging network paradigms that
more and more often require a distributed approach, and, moreover, almost none
of them is able to cope with the privacy constraints, typical of such distributed
environments.

In this paper we propose a method able to deal with such a scenario. Indeed,
our proposal is based on a set of different techniques (namely secret sharing and
secure multiparty computation) that allow the probes and the central engine to
exchange the traffic data, needed to perform a PCA-based anomaly detection
technique, without disclosing any sensitive information on the traffic.

The rest of the paper is organised as follows: Section 2 provides a brief
overview of the related works, then in Section 3 we detail the proposed anomaly
detection method, whose performance (in terms of detection accuracy, compu-
tational complexity, and provided privacy protection) are discussed in Section 4.
Finally, Section 5 concludes the paper with some final remarks.

2 Related Work

Over the years several solutions have been proposed to detect attacks and anoma-
lies in the networks, as testified by the several surveys on the topic [1][2]. In this
context, PCA has emerged as a very promising technique for detecting a wide

c© Springer International Publishing Switzerland 2015
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variety of attacks [3] [4] and, some recent papers [5] [6] [7] [8] have extended the
method, so as to improve the detection performance of the system.

PCA-based anomaly detection techniques appear to be suitable for working
on the top of a distributed environment [9] [10]. Instead, as far as the preservation
of the privacy is concerned, the only notable work is [11], where the authors first
introduce a method that allows a privacy-preserving computation of the principal
components (PCs).

3 Privacy Aware Distributed Anomaly Detection

In this section we provide a detailed description of the different operations per-
formed by the probes and the central engine to detect of network anomalies.
For this purpose, let us refer to a network scenario, where we have N probes
distributed in N distinct ASs, each owned by a different ISP, and a single cen-
tral engine, responsible for the anomaly detection, which can be considered as
independent of the different ISPs. Thus, the basic idea is to allow the central
engine to perform PCA-based anomaly detection on the whole network traffic,
without disclosing any private data of the traffic to the engine itself, while at
the same time guaranteeing the same performance that would be obtained by a
hypothetic centralised system (able to observe the whole network traffic).

3.1 Distributed PCs Computation

At first, the different probes have to collect the traffic traversing their own AS.
Given the huge number of traffic flows normally belonging to an AS and the need
for providing an efficient and scalable method, each probe Pi (each on his own)
aggregates the traffic flows by using a sketch1. Thus, for a given time-bin n, Pi

first computes a sketch Ti,n, where each bucket contains the quantity of traffic
associated to the destination IP addresses that collide into that bucket (note that
for the experimental evaluation we have considered d = 7 and w = 512). Thus,
once the probe has evaluated the sketch for all the considered K time-bins, it
computes the traffic matrix Yi, whose generic row j is given by the concatenation
of the rows of Ti,j , that is Yi(j, ·) = (Ti,j(1, ·), Ti,j(2, ·), . . . , Ti,j(d, ·)) hence, the
matrix Yi has dimension K × m, with m = d · w. Note that the matrix Yi must
have a number of rows that is at least twice the number of columns (the reason
will be clear once read the whole procedure), which is, in general, a reasonable
requirement given the possibility of tuning, during this “training phase” the
number of considered time-bins.

At this point, the traffic matrix of the whole network scenario can be seen
as the concatenation of the single “local” traffic matrices Y = (Y1, Y2, . . . , YN ),
with dimension K × (N ·m) (considering that all the probes have a data matrix
of the same dimension). Hence, the first step that has to be realised to determine
the PCs is the computation of the covariance matrix S

1 Sketches are a family of data structures that use the same underlying hashing scheme
for summarizing data.
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S = 1
K
Yt · Y = 1

K

⎛
⎜⎜⎜⎝

Y t
1

Y t
2

...
Y t
N

⎞
⎟⎟⎟⎠ · (Y1, Y2, . . . , YN ) =

⎛
⎜⎜⎜⎝

Y t
1 · Y1 Y t

1 · Y2 . . . Y t
1 · YN

Y t
2 · Y1 Y t

2 · Y2 . . . Y t
2 · YN

...
...

. . .
...

Y t
N · Y1 Y t

N · Y2 . . . Y t
N · YN

⎞
⎟⎟⎟⎠ (1)

To this aim, given the need of maintaining the data matrices Yi private, we
apply a Secure MultiParty Computation (SMPC)2 procedure [13] that allows
the probes Pi to compute all the required blocks (also those that would require
the knowledge of the other traffic matrices, i.e., all the blocks Y t

i ·Yj with i �= j),
without “really” knowing anything about the traffic matrices Yj .

(a) Distributed PC Computation (b) Distributed Data Projection

Fig. 1. Distributed Algorithm

Let us analyse into details how this step is accomplished, also referring to
Figure 1(a), where we sketch the procedure for probe Pi (the other probes work
analogously). The first step (step 1 in the figure) consists in generating K/2
arrays zq, orthogonal to Yi, i.e., ztq ·Yi = 0, where 0 is an array of m zeros. Such
arrays are then organised as the columns of a matrix Zi and the probe computes
Qi = I −Zi ·Zt

i , where I is the identity matrix. Hence, the matrix Qi is sent to
all the probes Pj (step 2 in the figure).

Thus, each probe Pj computes the matrix Wj,i = Qi ·Yj (step 3 in the figure)
and sends it back to the probe Pi (step 4 in the figure). At this point, all the
probes can easily compute all the blocks of the covariance matrix (step 5 in the
figure), by exploiting the fact that:

Y t
i · Wi,j = Y t

i · (Qi · Yj) = Y t
i · (I − Zi · Zt

i ) · Yj (2)

that, given the property of orthogonality of the arrays zq, leads to

Y t
i · (I − Zi · Zt

i ) · Yj = Y t
i · Yj (3)

2 SMPC [12] is a method that allows parties to jointly compute a function over their
inputs, while simultaneously keeping these inputs private.
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All these blocks are then sent to the central engine (step 6), that is thus able to
“reconstruct” S and correctly compute its eigenvalues u and eigenvectors v (step
7). Given this, the next step consists in determining the r dominant PCs that will
be used to define the “normal” subspace. Note that to perform such a step, in
principle, it is necessary to project the data matrix Y into the space defined by
the PCs, by considering that the project along vk can be computed as:

pk = Y · vk (4)

so as to evaluate the quantity of energy captured by each PC. But, in our case
the central engine does not have any knowledge on the actual value of Y , so we
have to use a SMPC technique again. To this purpose, we can rewrite (4) as:

pk = (Y1, Y2, . . . , YN ) ·

⎛
⎜⎜⎝

vk,1
vk,2

...
vk,N

⎞
⎟⎟⎠ (5)

(with the number of columns of each Yi equal to the length of the corresponding
vk,i), where vk,i represents the ith portion of kth eigenvector (the order of the
eigenvectors is determined by the decreasing value of the associated eigenvalues),
the one that “would multiply” Yi, and is sent to the corresponding probe Pi (step
8 in the figure). As it is obvious the generic probe Pi computes the quantity
pk,i = Yi · vk,i (step 9 in the figure) and sends it back to the central engine (step
10 in the figure) that can compute the “global” pk and estimates the associated
energy. Iterating the last three steps until r is reached (r is usually evaluated with
the scree plot method), the central engine is able to computes all the required
PCs, which are then used to form the columns of the matrix G (step 11 in the
figure), which, hence, has dimension (N · m) × r.

The final step (step 12) of this phase consists in the central engine sending
the matrix C to be used for the data projection: C = G · Gt. To this aim the
matrix is split into N blocks C = (C1, C2, . . . , CN ), where the generic block Ci,
which is sent to probe Pi, has a number of columns that is equal to the length
of the observation yi (i.e, m). Note that m is assumed constant, given that it is
simply determined by the dimension of the sketch.

3.2 Data Projection

This second phase, corresponding to the detection phase, mainly consists in
projecting the observations in the “normal” subspace, described by the dominant
PCs, and then evaluating the “residual” energy (i.e., the energy that is captured
by the “anomalous” subspace) by computing the Square Prediction Error (SPE)
of the projected data. As for the previous phase, we have to take into account
the privacy constraints, which mainly mean that we have to keep the observed
data of a given probe private (i.e., neither the central engine nor the other probes
should be able to obtain them).
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To better analyse such a phase, let us refer to Figure 1(b), where we have
summarised the whole procedure. In principle given the observation data y,
projecting them into the “normal” subspace can be achieved as:

ŷ = C · yt (6)

But, given that the central engine, which is the only entity that knows C, does
not have any knowledge on the actual value of Y , we have to use a SMPC
technique. To this purpose, we can rewrite (6) as:

ŷ = (C1, C2, . . . , CN ) ·

⎛
⎜⎜⎜⎝

yt
1

yt
2

...
yt
N

⎞
⎟⎟⎟⎠ = C1 · yt

1 + C2 · yt
2 + . . . + CN · yt

n (7)

where the matrices Ci are the blocks of C sent to the probes Pi at the end of
the distributed PC computation phase.

Note that, from a first analysis, it can seem that the probe Pi can simply
compute ĥi = Ci · yti and send it to the central engine that can then obtain
ŷ =

∑N
1=1 ĥi. Indeed, the central engine is not able to compute y, given the

knowledge of ŷ, since the matrix C is not invertible, given that

Rank(C) = Rank(G · Gt) ≤ min(Rank(G), Rank(Gt)) ≤ r < n · m (8)

Nonetheless, by combining this information with some of the equations used to
compute the arrays uk, it could be able to obtain y, somehow.

Thus, to compute such projections we apply a modified version of the additive
Secret Sharing (SS)3 scheme (step 1 to 6 in the figure). At first, a given probe
Pi, generates a random number Ni and computes ĥi + Ni, and sends it to the
first adjacent probe, Pi+1, which sums ĥi+1 to the received quantity and then
sends it to its first adjacent probe. This procedure has to be iterated until the
resulting quantity is updated by all the probes and received back by the one
that originated it. Thus Pi obtains

∑N
i=1 ĥi + Ni and can easily obtain ŷ by

subtracting Ni (step 7 in the figure):

ŷ =
N∑
i=1

ĥi + Ni − Ni (9)

By repeating such process for each probe (note that the procedure can be
easily optimised, so as to avoid having too many data exchanges, i.e., the com-
plexity can be reduced from O(n2) to O(n)), each generic Pi obtains ŷ. If we
consider ŷ = (ŷ1, ŷ2, . . . , ŷN ), each probe can compute an array Di, of length
N · m, whose elements are defined as:

Di(j) =
{
ŷj − yj if j ∈ [(i − 1) · m; (i · m) − 1]

0 otherwise
(10)

3 SS refers to a set of techniques that allow a party, called dealer, to distribute a secret
amongst a group of N participants, each of whom is allocated a share of the secret.
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Such an array is then sent to the central engine (step 8 in the figure), that
can compute the “global” SPE, as

SPE = ||
N∑
i=1

Di||2 (11)

and, by comparing it with a threshold, it decides if an alarm has to be generated
or not (step 9 in the figure). In case, the alarm is sent back to all the probes (step
10 in the figure) that will perform the anomaly identification phase (step 11 in
the figure) so as to identify the IP flows responsible for the detected anomaly (we
do not provide any detail about this phase here, given that it can be performed
in any of the ways known in the literature, e.g., reversible sketch [14]).

4 System Evaluation

In this section we present an evaluation of the proposed system, taking into
account three different aspects: the level of privacy guaranteed by the applied
algorithm, the introduced overhead, and the offered performance.

4.1 Privacy Aspects

Let us start the analysis, by considering the distributed PCs computation phase,
and highlighting how the privacy is guaranteed in the different steps that involve
some data exchange:

– during step 2, the knowledge of Qi does not allow the probes to discover the
matrix Yi

– the privacy in (2) is guaranteed by the fact that the matrix Qi = I −Zi ·Zt
i

is not invertible
– when computing the dominant PCs (step 8-10), the probes send the result

of the operation Yi · vi,k to the coordinator. But, this phase is only iterated
until r is reached and, considering that r is usually much smaller than the
original dimensionality of the data, the coordinator does not have enough
data to compute the actual value of Yi.

Moreover, taking into consideration the data projection phase, we have the
following considerations:

– the data exchange in steps 1-6 only involves the transmission of random
data, thus do not reveal any information about the data themselves

– the data sent by the probes to the central engine do not reveal anything on
the actual data, just being a sort of “projection error”.

So, the privacy protection provided by our solution is complete. For sake
of completeness, it is worth noticing that the method used for the distributed
computation of S has some limitations tied to the quantity K/2 of arrays zr
and to the number of data non linearly independent among the probes [13].
Nevertheless, by a deep study of such limitations, we can reasonably conclude
that they do not lead to any privacy loss in our application scenario.
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4.2 Computational Overhead

As it is obvious, the privacy awareness of our solution has a cost in terms of
both additional data exchanges among the probes and the central engine and
additional operations to be performed.

By analysing the algorithm we can easily notice that the distributed PC
computation phase is quite more complicated than if performed in a centralised
way. Nevertheless, this is not really significant, given that this phase, roughly
corresponding to a training phase, has to be performed only once, before the
real “operation” of the system. Instead, considering the detection phase, we can
see that the introduced overhead is very limited, being just related to the SS
scheme, which is in fact negligible both in terms of computational complexity
and data exchange needed.

4.3 Detection Performance

The aim of the detection performance evaluation phase is, on one side, to verify
the effectiveness of the proposed method and, on the other side, to estimate if,
as expected from the theoretical complexity analysis, the introduced overhead is
still acceptable for real-time operation. For such purposes, the proposed system
has been tested over a well-known public traffic data set, composed of traffic
traces collected in the Abilene/Internet2 Network [15]. As far as the effectiveness
of the method in detecting the anomalies is concerned, as expected from the
theoretical analysis, the system offers the same performance of a hypothetic
centralised system. Indeed, the system is able to compute the same PCs that
would be computed by a centralised implementation, while fulfilling the required
privacy constraints.

Regarding the introduced overhead, the experimental tests have confirmed
the complexity analysis, concluding that, considering both the time due to the
data exchange and to the additional computation steps, it is such that the
method is still suitable to real-time operation. Indeed, the system, implemented
over standard general purpose PCs (equipped with an Intel i5 4200 2.6 GHz and
4GB of RAM), is able to process the traffic of a generic time-bin of the provided
data set, corresponding to five minutes of traffic of the Abilene/Internet2 back-
bone network, in about seven seconds. Such a result strongly demonstrates the
suitability of the method to real-time operation.

5 Conclusion

In this paper we have proposed a privacy preserving distributed anomaly detec-
tion scheme based on the use of PCA. The proposed solution, by means of
SMPC methods and SS techniques, is suitable for multi-domain network scenar-
ios, where the monitoring probes belonging to a given ISP are not intended to
exchange private traffic data neither with the probes of other ISPs nor with the
central engine.
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Abstract. The rapid technology upgrades of mobile devices and the
popularity of wireless networks significantly drive the emergence and
development of Location-based Services (LBSs), thus greatly expanding
the business of online services and enriching the user experience. How-
ever, the personal location data shared with the service providers also
leave hidden risks on location privacy. Location anonymization tech-
niques transform the exact location of a user into a cloaking area by
including the locations of multiple users in the exposed area such that
the exposed location is indistinguishable from that of the other users.
However in such schemes, location information once perturbed cannot
be recovered from the cloaking region and as a result, users of the loca-
tion cannot obtain fine granular information even when they have access
to it. In this paper, we propose Dynamic Reversible Cloaking (DRC) a
new de-anonymziable location cloaking mechanism that allows to restore
the actual location from the perturbed information through the use of an
anonymization key. Extensive experiments using realistic road network
traces show that the proposed scheme is efficient, effective and scalable.

1 Introduction

With the popularity of mobile positioning devices and the wide emergence of
location-based services (LBSs), we are witnessing a rapid development of mobile
location-based applications. Through location-aware techniques (e.g. GPS, wire-
less access point), users can acquire personalized services based on their current
location. Examples of such services include weather forecast, traffic condition
updates, location-based travel services and emergency care. The richness and
diversity of location-based services has dramatically improved the quality of life
for people. However, these services and benefits also come with a hidden cost:
the intrusion of location privacy. For example, knowing the haunts of users dur-
ing the day time and at nights, an attacker can infer a user’s social activities,
religious beliefs and political views. Moreover, with the advent of big data and
big data analytics, the risk of disclosing location information is further exacer-
bated as an adversary can correlate the exposed location with information from
various data sources to infer more accurate and fine-grained information about
individuals.

Various techniques have been proposed to achieve location privacy protection
in mobile location-based system. Location anonymization refers to the process
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 449–458, 2015.
DOI: 10.1007/978-3-319-25645-0 33
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of transforming the exact location of a user to a cloaking area by including the
location of multiple other users. A user is considered to be location k-anonymous
if and only if her location information is indistinguishable from that of at least
k−1 other users. However in such schemes, location information once perturbed
cannot be recovered from the cloaking region and as a result, users of the location
cannot obtain fine granular information even when they have access to it. In
several access controlled scenarios, such as when some users of the location have
more privileges than the others, it may be desirable to obtain fine granular
location information from the exposed perturbed location when the data user
has access to the finer granular location information.

During the last several years, many location anonymization techniques [1,
6,8,10,13,20] have been proposed. Most of them were developed as unidirec-
tional cloaking techniques without considering the ability to de-anonymize the
perturbed data. In this paper, we propose Dynamic Reversible Cloaking (DRC)
a new de-anonymziable location cloaking mechanism that allows to restore the
actual location from the perturbed information through the use of an anonymiza-
tion key. Our proposed mechanism uses an anonymization secret key to uniquely
generate a cloaking region which allows the original location data to be restored
from the cloaked data using the secret key, However, without the secret key, the
original data cannot be inferred even when the adversary has complete knowl-
edge of the cloaking mechanism.

We organize the rest of the paper as follows: In Section 2, we present
the required background. In Section 3, we introduce the proposed Dynamic
Reversible Cloaking. In Section 4, we analyze the experiment results. We discuss
related work in Section 5 and we conclude in Section 6.

2 Overview of Concepts and Framework

In this section, we discuss the road network model used for the cloaking process
and introduce the conventional location cloaking mechanisms to protect location
privacy over road networks. We then define the de-anonymizable location privacy
problem and introduce the evaluation metrics used in this paper.

A road network can be modeled as a graph G = (VG, EG), consisting of a set
of junctions, VG, and a set of road segments, EG. Figure 1 shows an example with
14 junctions and 16 segments respectively. In our work, junctions are defined as
the crossover or end points of roads while segments are defined as the direct
roads between adjacent junctions. We assume that all mobile users move along
the segments. The raw location information of the mobile users is sent with their
customizable privacy requirements to a trusted third-party location anonymizer,
which transforms the raw location into a cloaking region preserving the required
privacy properties, which may then be shared with other untrusted location-
based service providers.

The location information of a user is said to be k-anonymous if the loca-
tion information is indistinguishable from the location information of at least
k-1 other users. Obviously, the larger the value k, the better is the privacy pro-
tection that can be achieved. However, large cloaking regions typically provide
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Fig. 1. Road network model with de-anonymizable privacy controlled framework

lower utility as it increases the complexity of the operations involved in obtain-
ing an accurate answer to the location-based query [13]. Therefore, to bound
the size of the cloaking region, the customizable requirements contain not only
the privacy requirement, denoted by δk, but also the maximum spatial resolu-
tion level, denoted by σs [13,19], which defines the maximum acceptable size of
the cloaking region. The customizable privacy requirements with both the two
parameters are organized as the user-defined privacy profile: (δk, σs).

In the past, several models have been proposed for location anonymization.
Random sampling is a basic location cloaking technique that picks segments
from the whole graph one by one in a random manner while road-network-
based expansion selects adjacent segments of the cloaking region to make the
structure of cloaking region tighter [19]. However, to the best of our knowledge, in
most existing location privacy-preserving mechanisms, the original exact location
information once perturbed in the cloaking scheme cannot be restored to infer
finer location information when users have the required access privileges. The
focus of our work in this paper is developing a new de-anonymizable cloaking
technique that can support privacy control in access controlled scenarios. In such
cases, the location privacy of users is protected while allowing only the parties
with the required permission to access finer information.

In the proposed de-anonymizable location privacy model, only the data users
who possess the permission to access finer information get the secret key to de-
anonymize the data. Such data users can de-anonymize the perturbed location
using the secret key. A detailed example is shown in Figure 1. The segment s11
contains the actual user. Using the secret key, {s6, s8, s9, s10, s14} are added to
reach the privacy level δk. To de-anonymize the cloaking region, the same secret
key is used to exactly identify and remove the segments {s6, s8, s9, s10, s14} from
the cloaking region, thus reducing the perturbed location to the actual segment
of the user.

To evaluate the performance of de-anonymizable cloaking scheme, multiple
metrics are required. Four metrics are used in this paper.

Anonymization Time: The time required to cloak the location information
of the user. A shorter anonymization time indicates higher effectiveness.
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De-anonymization Time: The time required to de-anonymize the cloaking
area to get the exact location information of the user. Like anonymization time,
a shorter de-anonymization time indicates higher effectiveness.

Relative Spatial Resolution (RSR): This metric reflects the relationship
between the maximum spatial area defined by σs and the cloaking area. Specif-
ically, the maximum spatial area is a rectangular area centering on the user. Its
lateral and vertical lengths are provided by σs = {MLl,MLv}. For the cloaking
space, its area is also abstracted as a rectangle. The lateral and vertical distances
between each pair of segments within the cloaking space are calculated and the
largest two values, expressed as {CLl, CLv}, are considered as the lateral and
vertical lengths of the cloaking rectangle. Therefore, considering a set of LBS
requests with N elements, the RSR is defined as:

RSR =
1
N

∑
N

√
MLl × MLv

CLl × CLv

Since the RSR is the square root of the ratio between maximum spatial area and
cloaking area, a higher value of RSR indicates a smaller cloaking space required
to satisfy the δk, meaning higher effectiveness.

Success Rate: This metric represents the rate of successful cloaking of the
requests. For a set Q of LBS requests, the cloaking area of each query q is
represented by Cq = f(q). A parameter S is 1 if the process is successful and 0
if the process is failed. The success rate can be defined as:

Success Rate =
|{Cq | Cq = f(q), q ∈ Q, S = 1}|

|Q|

3 De-anonymizable Location Cloaking

In this section, we present the proposed dynamic reversible cloaking algorithm
that forms cloaked location regions containing tightly structured segments meet-
ing the required k anonymity level. In this scheme, the anonymization and de-
anonymization processes can be considered as two inverse transition strings con-
trolled by the secret key. Specifically, during the two processes, the exchange
of segments can be seen as forward and backward transitions between two set
of segments, namely the set of segments within the cloaking region and the set
of adjacent segments of the cloaking region. Therefore, the two processes are
sequences of continuous n − 1 forward and backward transitions respectively,
which are the inverse of each other. Since there are multiple transition choices,
a secret key is used as the transition controller. With the key, both the forward
and backward transition strings are determinate and reversible. Without the key,
the two transition strings become random and irreversible.

We describe the process with an example presented in Figure 2. For each
transition, the number of cloaked segments |C| and adjacent segments |A| are
found. For example, suppose in Figure 1, we have C = {s8, s9, s11} and A =
{s6, s10, s14} so that |C| ≤ |A|. For each addition or removal step, we assign
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Fig. 2. Dynamic reversible cloaking

IDs to all the potential forward and backward transitions between the two sets
to distinguish them. These IDs, called transition IDs (TIDs), are organized in
a transition table. In Figure 2, s8, s9, s11 within C and s6, s10, s14 within A are
mapped to the three rows and three columns respectively in the order of segment
length so that the shortest segments are mapped to the 1st row and 1st column.
The TID in table cell (i, j) associated with ith row and jth column is computed
by ((i − 1) + (j − 1)) mod |A| to make sure no same value is generated in the
same row or column. The anonymization key is used to generate a sequence of
pseudo-random numbers. The ith pseudo-random number uniquely determines
a value for both the ith forward transition and {n − i}th backward transition.
This value, called picked TID, can be calculated by pi = Ri mod |A| and it is
used to select the transition with the TID value same as the picked TID.

However, in the case |C| > |A|, since the number of potential backward
transitions is larger than the number of available TIDs, the same TID may be
assigned to multiple backward transitions, called a collision. Once a collision
occurs, the key may fail to distinguish the transitions with same TID and select
the backward transition unmatched with the forward transition. In general, col-
lisions during cloaking expansion can be dealt with two approaches. By carefully
managing the assignment of TIDs before the anonymization, collisions can be
eliminated so that the de-anonymization process can automatically run in a
collision-free manner [12]. In this paper, we adopt a different scheme based on
using metadata information for collision-resolution. In this approach, the colli-
sions are not eliminated during cloaking expansion but recorded as part of the
metadata, which is then used in the de-anonymization process to resolve the col-
lisions. Suppose in Figure 1, we get C = {s8, s9, s11, s14} and A = {s6, s10, s13}.
After establishing the table, same TIDs are seen in each column, as shown in
Figure 2. To handle such scenarios, in the cloaking process, additional segments,
called null segments are added to the set A to make |C| = |A|. The null segments
are not real segments that can be found in the graph and they are conceptual
segments used to deal with the collisions during transition. In this example,
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one null segment is set, denoted by sn. By adding this null segment, we get
|C| = |A| = 4, and therefore the transitions become free of collisions. However,
if the null segment is picked as the next added segment during the anonymiza-
tion process, that pseudo-random number should be skipped. The information of
this skipped pseudo-random numbers is recorded as metadata, which is a binary
stream matched with the pseudo-random stream. Each bit is 0 for non-skipped
pseudo-random numbers and 1 for skipped ones. After anonymization, the meta-
data is encrypted by the secret key and shared with the key to the user of the
location data. The user uses the metadata to identify and remove the skipped
pseudo-random numbers to do a collision-free de-anonymization.

In the next section, we present our experimental results to evaluate the per-
formance and effectiveness of the proposed scheme.

4 Experimental Evaluation

In this section, we first briefly describe the experimental setup and then present
our experimental results to evaluate the dynamic reversible cloaking algorithm.

4.1 Experimental Setup

In our experiments, we use the GTMobiSim mobile trace generator [9] to generate
a realistic road network trace on the map of northwest part of Atlanta with 6979
junctions and 9187 segments. 10000 cars are randomly generated along the roads,
which then move to random destinations through shortest paths on the road
network. We implement three different location anonymization schemes namely
random sampling (RS), road-network expansion (RNE) represented by the XStar
technique in [19] and our proposed dynamic reversible cloaking (DRC).

4.2 Experimental Results

To evaluate the three schemes, we measure the anonymization and de-
anonymization time, relative spatial resolution and success rate. Our results
show that the proposed dynamic reversible cloaking algorithm is effective and
scalable.

We evaluate the effectiveness of the algorithms by varying the k-anonymity
level from 10 to 100. Figure 3(a) presents the results of the anonymization
time. Higher anonymity level results in longer anonymization time because it
requires more segments to be put into the cloaking region. Since the DRC
scheme is reversible and generates a stream of pseudo-random values to drive the
anonymization process, its anonymization time is higher than the other schemes.
However, it continues to have only linearly increasing anonymization time even
for higher anonymity levels, thus showing that the scheme is effective and scal-
able. Figure 3(b) shows values of de-anonymization time for the DRC approach.
Here we consider only the DRC scheme as only the DRC scheme can perform
de-anonymization. The basic variation trend of the de-anonymization time is
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(a) Anonymization time (b) De-anonymization time

(c) Relative spatial resolution (d) Success rate

Fig. 3. Performance with varying anonymity level

similar as the anonymization time. However, the de-anonymization time for all
anonymity levels is shorter than the corresponding anonymization time as the
anonymization process dynamically adds the null transition to avoid the col-
lisions during de-anonymization. Also, since metadata helps record the colli-
sions, the de-anonymization process directly resolves the collision and it results
in a shorter de-anonymization time. In Figure 3(c), the relationship between
anonymity level and relative spatial resolution (RSR) is given. Instead of pick-
ing segments from the adjacent segment set, RS randomly selects segments from
the whole area defined by the maximum spatial resolution, which gives larger
cloaking region, compared with RNE and DRC. Also, we see that the relative
spatial resolution of DRC is very close to RNE, especially for higher anonymity
levels. Both of the two algorithms pick segments from the adjacent segments
of cloaking region, so the structure of the cloaking region is tighter. In Figure
3(d), success rate for the three schemes with varying anonymity level is mea-
sured. Among the three schemes, RS always gets the highest success rate. This
is an inherent feature of RS because it succeeds in all cases unless the number
of users within the whole area defined by maximum spatial resolution cannot
satisfy the required anonymity level. Therefore, the success rate of RS can be
seen as the upper bound of all the anonymimization schemes. Compared with
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RNE, the success rate of DRC is closer to the performance of RS. Though the
success rate for all the three schemes slightly decreases for increased anonymity
level, the overall success rate of the proposed scheme is significantly high. It can
be seen that even for the highest anonymity level, the success rate of RNE is
higher than 80% and that of DRC is higher than 92%.

5 Related Work

As location privacy is gaining more attention, several research efforts on location
privacy were made in recent years. Various models of privacy protection systems
have been proposed to support privacy-preserving and efficient data commu-
nication between mobile clients and servers, including client/server models [4],
trusted third party models [5,13,19] and distributed models [7,8]. While the
client/server model is simpler to implement, due to the lack of global knowl-
edge in client side, the protection cost is in general higher with lower protection
quality. For the distributed model, a decentralized cooperative p2p network is
deployed among clients, which requires high overhead to support the infrastruc-
ture of communication and movement of clients. In contrast, a trusted third party
anonymizer model, such as the one used in our work yields good performance in
both query processing quality and computation cost. Various privacy protection
algorithms proposed for data privacy have been adopted for protecting loca-
tion privacy of mobile users. The types of privacy protection algorithms include
anonymization [1,5,8,10,13,20], data suppression [18], trajectory inference pre-
vention [2,3,14–16] and encryption [11]. While most of the existing schemes are
aimed at preventing the adversary from distinguishing the location of a given
user from that of other users, their perturbation techniques are mostly unidirec-
tional and lack the ability to de-anonymize the perturbed information even when
a user accessing the information has suitable credentials for obtaining finer infor-
mation. ReverseCloak algorithms proposed in [12] provide support for multi-level
privacy control with the ability to reduce the granularity of the perturbed loca-
tion based on access credentials. However, in contrast to this proposed work, the
approach in ReverseCloak is to perform the location cloaking in a collision-free
manner by avoiding the possible segment expansions that may lead to collisions.
The cloaking algorithm proposed in this paper takes an alternate approach of
allowing collisions to happen during the cloaking expansion process and resolves
them with the help of metadata information during the de-anonymization pro-
cess. While avoiding collisions during cloaking expansion avoids the overhead of
metadata management, the approach of collision resolution using metadata can
be more efficient in terms of lower anonymization and de-anonymization time
overhead.

6 Conclusion

In this paper, we present a de-anonymizable location cloaking scheme for pro-
tecting location privacy in mobile computing system. Unlike existing location
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cloaking techniques which are developed as unidirectional location perturbation
algorithms, the dynamic reversible cloaking algorithm proposed in this paper
can restore the original location information from the perturbed cloaking region
when suitable access credentials are provided. Our experiments based on GTMo-
bisim show that the proposed cloaking scheme is efficient and scalable. In our
future work, we plan to apply the reversible cloaking algorithm developed in
this work to protect continuous location-based queries which require continuous
exposure of location information leading to possible correlation attacks.
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Abstract. Mobile social networks (MSNs) consist of many mobile users
(individuals) with social characteristics, that provide a variety of data
delivery services involving the social relationship among mobile individ-
uals. Because mobile users move around based on their common interests
and contact with each other more frequently if they have more social fea-
tures in common in MSNs. In this paper, we first propose the first-priority
relation graph, say FPRG, of MSNs. However, some users in MSNs may
be malicious. Malicious users can break the data delivery through ter-
minating the data delivery or tampering with the data. Therefore, mali-
cious users will be detected in the process of looking for the data delivery
routing to obtain efficient and reliable data delivery routing along the
first-priority relation graph. Secondly, we propose one hamiltonian cycle
decomposition of FPRG-based adaptive detection algorithm based on in
MSNs under the PMC detection model (the system-level detection model).

Keywords: Mobile social networks · First-priority relation graph ·
PMC detection model · Hamiltonian cycle decomposition · Malicious
users

1 Introduction

A user may be malicious, who can break the data delivery through terminating
the data delivery or tampering with the data in mobile social networks (MSNs),
which is introduced by combining concepts from two disciplines [5], i.e., social
networks [12,16] and mobile communication networks [1]. The MSNs can be
viewed as a kind of Delay/Disruption Tolerant Networks (DTNs) [3]. In this
paper, we want to detect all malicious users in MSNs under the PMC detection
model [13] (system-level detection model). Under the PMC detection model, we
design one hamiltonian cycle decomposition of the FPRG-based adaptive detec-
tion algorithm to detect all malicious users in MSNs. When malicious users are
detected, we can choose the reliable data delivery routing without the partici-
pation of malicious users under the fundamental framework of the routing.

As far as I know, there is no study about detecting malicious users in MSNs.
Detecting malicious users in MSNs is a difficult job due that the number of users
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 459–466, 2015.
DOI: 10.1007/978-3-319-25645-0 34
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in MSNs is enormous. To overcome the difficulty, we consider the internal social
feature of mobile users in MSNs. Considering features have many advantages.
First, it avoids the state information collection. Second, the framework of data
delivery could be established by considering features and the framework is a
regular graph. We use the mathematical model to realize the goal in this paper.

We detect malicious users along the framework of data delivery. Many studies
have given schemes to find a preferential data carrier [2,4,11,19]. But they don’t
consider the internal social features of each user in MSNs. Wu et al. [15,17,18]
point out the surprising property of being “searchable”: Mobile users contact
each other more frequently when they have more social features in common.
According to the property, each group consists of some users with the same
key features in MSNs. In this paper, we define three groups depending on the
distribution of malicious users. If all users in a first-priority group are honest,
then the group is called as an honest group. Otherwise, the group is called as a
dishonest group.

We detect all malicious users under the PMC detection mode. Because the
framework of data delivery is a hypercube [14], we can detect malicious users
under the system-level detection model. The PMC detection model is one of
famous system-level detection models. To realize the goal, we randomly choose
a user from a group as the representative of the group.

The novelties and contributions of this paper are presented as follows:
• We define a first-priority relation graph, say FPRG, of MSNs. The FPRG

of MSNs is also a basic topology structure for detecting malicious users.
• We propose one hamiltonian cycle decomposition-based adaptive detection

for malicious representatives, say HCD-ADMU-PMC, based on the FPRG in
MSNs under the PMC detection model.

• We continuously detect malicious users in any group by the representative
of the group or any one honest neighbor user under the PMC detection model.

Organization. The remainder of this paper is organized as follows. Section 2
shows the FPRG and the detection model. Section 3 proposes the cycle decom-
position of the FPRG. Section 4 proposes malicious users detection algorithm
under the PMC detection model. We conclude our work in Section 5.

2 The First-Priority Relation Graph and the Detection
Model

2.1 The First-Priority Relation Graph of MSNs

We use G = (V (G), E(G)) to represent a graph where V (G) is the node-set and
E(G) is the edge-set. Let uv ∈ E(G) be an edge between two nodes u and v. For
notations and terminology not defined here please refer to [20].

Definition 1. [14] The n-dimensional hypercube Qn is a graph having 2n

nodes labeled from 0 to 2n − 1. Two nodes are joined by an edge if their
addresses, as binary integers, differ in exactly one bit position. That is to say,
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V (Qn) = {v1 · · · vi · · · vn | vi ∈ {0, 1}, 1 ≤ i ≤ n} and E(Qn) = {(v1 · · · vi−1vi
vi+1 · · · vn, v1 · · · vi−1vivi+1 · · · vn) | vi ∈ {0, 1}, 1 ≤ i ≤ n, vi + vi = 1}.

In MSNs, users move around and interact at each contact point based on
their common social features [15,17,18]. However, usually only a small subset
of features is important for routing purposes. The key features in the MSNs are
obtained through data mining method of feature extraction. When the social
feature is considered, we can choose the routing along the FPRG through groups.

We [8] propose the priority relation graph of MSNs, which is also the basic
framework of data delivery routing in MSNs. In this paper, we assume that two
groups (nodes) have a first-priority relationship when they differ in one feature.
We then define the first-priority relation graph, say FPRG, of MSNs based on
the feature, in which any two mobile groups have a first-priority relationship.
Each node in the FPRG is called as a first-priority group. More specifically, the
FPRG is a general hypercube. Therefore, we also can see that Wu et al. [15,17,18]
propose the multi-path routing based on the first-priority relationship.

Fig. 1. Illustration of the first-priority relation graph of a MSN.

Fig. 1 gives the illustration of FPRG of an MSN. In Fig. 1, each symbol
represents a person with two characteristics, and people in the department 1
(2) with grade 1 most preferentially contacts with the people in the department
1 (2) with grade 2 or 3. Moreover, people with grade 1 (or grade 2, or grade
3) in the department 1 most preferentially contacts with the people with grade
1 (or grade 2, or grade 3) in the department 2. Nine solid lines represent nine
first-priority relationships among the MSNs.

The proposed FPRG of MSNs is a fundamental framework of the multi-
path social feature routing, which guarantees efficient data delivery. We use
features of the destination to partition users into groups. This approach is called
the destination-based partitioning. At each dimension (i.e., feature), we separate
users based on whether they have the same features as the one at the destination
or not. If they have same features as the one at the destination, then we label
0 at this one bit; otherwise, we label 1 at this one bit. Clearly, the destination-
based partitioning group contains users with same key features. This means a
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general hypercube is “compressed” into a hypercube even though each feature
may have many different values.

2.2 PMC Detection Model Assumptions

The status of any user is permanent at any a given time. Our object is to accu-
rately detect all malicious users in MSNs. To realize the goal, we firstly want to
detect all representatives based on the FPRG. Each representative is assumed to
test and to be tested by other neighbors, representatives need to be detected as
honest or malicious. This problem is known as the system-level malicious detec-
tion problem. To the best of our knowledge, little attention has been putted on
malicious users detection in MSNs involving system-level detection model. The
Preparata, Metze, and Chien (PMC) detection model [13] is a classical system-
level model. We propose some assumptions to correspond the PMC detection
model [13].

We assume that an honest user always gives the honest answer and a mali-
cious user must give at least one malicious answer after receiving a test-sequence.
The test-sequence consists of a lot of problems. All test-sequences have the same
size. Under the PMC detection model [13], any two users with a first-priority
relationship are capable of performing tests on each other. The PMC detection
model assumes an honest user should always give correct test-result, whereas
the test result given by a malicious user is unreliable. The ordered pair (u, v)
represents the test performed by user u on user v. In this situation, u is called
the tester and v is called the tested user. The outcome of a test (u, v) is 1 (resp.
0) if u evaluates v as malicious (resp. honest).

3 Hamiltonian Cycle Decomposition of Hypercubes

The n-hypercube, for n > 1, is a hamiltonian graph [6], i.e., it has an ele-
mentary cycle containing all its nodes. Such a cycle is called as a hamiltonian
cycle. For integer n ≥ 4, let f(n) = �log2(n + 1)�, then f(n) ≥ 3. For any
given Xn−f(n) ∈ {0, 1}n−f(n), let V (Q[Xn−f(n)]) = {Xn−f(n)Yf(n) | Yf(n) ∈
{0, 1}f(n)}. Then V (Q[Xn−f(n)]) is a subset of nodes of Qn. Clearly, the induced
subgraph Qn[Xn−f(n)] is isomorphic to Qf(n). Therefore, Qn can be decomposed
into a set {Qn[Xn−f(n)] | Xn−f(n) ∈ {0, 1}n−f(n)} of subgraphs, each of which
is isomorphic to Qf(n).

A contracted graph Qn(f(n)) is also constructed as follows: V [Qn(f(n))] =
{0, 1}n−f(n). Two distinct nodes, say Xn−f(n) and X

′
n−f(n), of Qn(f(n)) are

adjacent iff Qn has two adjacent nodes with the form Xn−f(n)Yf(n) and
X

′
n−f(n)Yf(n) where Yf(n) belongs to {0, 1}f(n).

Property 1. Qn(f(n)) is isomorphic to Qn−f(n).

It is well known that Qn (n ≥ 3) contains a hamiltonian cycle, which can
easily be constructed recursively. Let HCf(n) be a hamiltonian cycle of Qf(n).
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For any given Xn−f(n) ∈ {0, 1}n−f(n), we design a mapping ΘXn−f(n) from
V (Qf(n)) to V (Q[Xn−f(n)]) as follows: ΘXn−f(n) : Yf(n) �→ Xn−f(n)Yf(n)

for Yf(n) ∈ V (Qf(n)). Then HCf(n) is mapped onto a hamiltonian cycle of sub-
graph Qn[Xn−f(n)], which is called a cycle induced by HCf(n) with respecting to
Xn−f(n), denoted by HCf(n)(Xn−f(n)). Thus, Qn contains a set of 2n−f(n) dis-
joint cycles of length 2f(n). Based on this, we introduce the following definitions.

Definition 2. Given integer n ≥ 4. Let f(n) = �log2(n + 1)�. Let HCf(n) be
a hamiltonian cycle of Qf(n). The collection {HCf(n)(Xn−f(n)) | Xn−f(n) ∈
{0, 1}n−f(n)} of cycles of Qn, denoted by HCD(HCf(n)) , is called a cycle
decomposition of Qn induced by HCf(n). Two cycles in HCD(HCf(n)) are adja-
cent iff there is an edge between a node on one cycle and a node on the other
cycle.

4 An Adaptive Detection for Malicious Users Under the
PMC Detection Model

Wu et al. [15,17,18] propose the multi-path feature routing based on the FPRG
in DTNs. However, a user may be malicious. Malicious users can break the
data delivery through terminating the data delivery or tampering with the
data. Therefore malicious users must be detected through a detection algorithm
before giving reliable routing. In this section, our object is to provide a cycle
decomposition-based adaptive detection algorithm under the PMC detection
model. To realize the goal, we firstly detect all groups by their representatives. If
a representative is honest, the representative could continuously detect all users
in her/his groups under the PMC detection model. Because the representative
and other users in the group are connected with each other. If a representative
is malicious, then the group is dishonest group.

In order to describe a detection algorithm for malicious representatives under
the PMC detection model, we need the following definitions.

Definition 3. Let t be a syndrome on the first-priority relation graph Qn of
MSNs under the PMC detection model.

(1) A test with outcome 0 (resp. 1) will be called a 0-arrow (resp. 1-arrow).
(2) A cycle on the first-priority relation graph Qn is t-zero iff it does not

contain any 1-arrow in the obtained syndrome. This cycle is called as a t-zero
cycle. Otherwise the cycle is t-nonzero. This cycle is called as a t-nonzero cycle.

(3) A cycle is t-guarded if it is t-nonzero but is adjacent to a t-zero cycle.
This cycle is called as a t-guarded cycle. Otherwise, the cycle is t-unguarded.
This cycle is called as a t-unguarded cycle.

We start with a general overview of the detection algorithm. Fix n ≥ 7 and let
f(n) = �log2(n+1)�. Therefore, 2f(n) > n. We consider the cycle decomposition
HCD(HCf(n)) of the first-priority relation graph Qn of MSNs, where HCf(n)

is the hamiltonian cycle of Qf(n).
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Step one: we conduct all tests in all copies of HCf(n) in the clockwise
direction.

Property 2. In a t-zero cycle of the first-priority relation graph Qn of MSNs,
either all representatives are malicious or all representatives are honest.

Proof: Suppose to the contrary, there exist two consecutive representatives
whose status are different. Without loss of generality, we assume that the rep-
resentative u is honest and the representative v is malicious where u and v are
clockwise consecutive representatives. According to the PMC detection model,
t(u, v) = 1, which contradicts to the t-zero cycle.

However, since 2f(n) > n for n ≥ 7, the first possibility is excluded. This
enables the diagnosis of all representatives in t-zero cycles.

Property 3. Every t-nonzero cycle contains at least one malicious representa-
tive, hence there are at most n t-nonzero cycles.

Property 4. There is at most one t-unguarded cycle in the first-priority relation
graph Qn of MSNs.

Proof: Suppose to the contrary, there are at least two t-unguarded cycles.
Without loss of generality, assume the cycle HCf(n)(Xn−f(n)) and the cycle
HCf(n)(Yn−f(n)) are t-unguarded. According to Definition 3, there are at least
2(n − f(n)) − 2 t-guarded cycles. According to Property 3 and the fact of 2(n −
f(n))−2 > n−2 for n ≥ 7, there are at least n−1+2 malicious representatives
in MSNs, a contradiction.

Step two: we want to detect all representatives on all t-guarded cycles on
the first-priority relation graph Qn of MSNs. For each such cycle, we apply
representatives of the adjacent t-zero cycle as testers.

How many representatives in this unique t-unguarded cycle can have all mali-
cious foreign neighbors? We propose the following property to address this prob-
lem.

Property 5. In the t-unguarded cycle (if it exists), there is at most one repre-
sentative, all of whose foreign neighbors are malicious.

Proof: Assume there are at least two representatives, all of whose foreign
neighbors are malicious. Since sets of foreign neighbors must be disjoint, the
existence of at least 2(n−f(n)) malicious representatives. Because 2(n−f(n)) >
n for n ≥ 7, it yields a contradiction. Hence, the property holds.

Step three: it is to detect all representatives of the unique t-unguarded cycle
on FPRG of MSNs, except possibly u, using already detected honest neighbors
as testers.

Step four: it is to detect the representative u, if it exists and has not been
detected previously. There are two cases. Either n malicious representatives have
been already discovered previously, in which the representative u must be honest,
or at most n − 1 malicious representatives have been detected, in which the
representative u has an already detected honest neighbor on FPRG of MSNs.
This neighbor can be used to detect the representative u. Thus, a high-level
description of the algorithm can be formulated as follows:
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Algorithm 1. A Hamiltonian Cycle Decomposition-based Adaptive Detection
for Malicious Representatives under the PMC Detection Model (HCD-ADMR-
PMC)
Input: An integer n ≥ 7. A hamiltonian cycle decomposition HCD(HCf(n))

in the first-priority relation graph Qn of MSNs. A syndrome t on the first-
priority relation graph Qn of MSNs.

Output: A set M of representatives that are detected as malicious.
1: We randomly choose a user from any group as the representative;
2: These representatives are vertices of FPRG in MSNs;
3: Perform all tests in all copies of HCf(n) in the clockwise direction. Identify

all t-zero cycles. Detect all representatives on these t-zero cycles as honest.
4: Detect all representatives in all t-guarded cycles using representatives of

adjacent t-zero cycles as testers.
5: Detect all representatives of the unique t-unguarded cycle (if it exists),

except, possibly, the unique representative with all malicious foreign neigh-
bors. Let already detected honest neighbors be testers.

6: Detect the last representative, if not detected before.
7: return M ;

5 Conclusion

In this paper, we propose one adaptive detection algorithm under the PMC
detection model [9,10]. Malicious users detection is to propose reliable routing.
The reliable data delivery routing may be proposed in the future.

We may propose another adaptive detection algorithm for malicious users
under the comparison detection model [7] in the future. The number of dishonest
groups is not large than the number of key features, but the proposed detected
algorithm is precise. The pessimism detected algorithms may be proposed to
detect more dishonest groups in the future.
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Abstract. Numerous Android applications use the Internet to share and
exchange data. Such data can range from posting simple status updates
to private sensitive information such as the users’ location or business
contacts. Popular Android applications from Google Play have been iden-
tified leaking private data to remote third party servers. Existing works
focuses on protecting sensitive information from leaving the smartphone,
or detecting which applications leak information based on API calls or
the permission requests in their Manifest file. In this work, we propose
to leverage the combination of static analysis and dynamic analysis to
understand ultimately the network domain to which the Android appli-
cations are interacting. Network graphs are constructed and demonstrate
implicitly the relation of application developers and the network domains
used in the applications.

1 Introduction

Android has a rich and diverse ecosystem of applications. Recent studies have
demonstrated that there are over 1.5 million applications available in Google
Play [12] as of May 2015. Although some of those applications need to be pur-
chased, most of them are freely available. Application developers leverage in-app
purchase or ad engine to obtain revenue. As smartphones are becoming popular
and powerful, each device contains a significant cache of sensitive information.
Users are interested in maintaining the confidentiality of this information. How-
ever, Taintdroid [3] has demonstrated that some popular applications access user
sensitive data and send them to remote third party servers.

The seminal work [18] has shown that INTERNET is the most popular per-
mission request made by malware samples as well as benign applications. It is
desirable to understand how those applications and malware samples use the per-
mission, and what set of network domains are accessed using the permission. The
first question has been well studied in the literature. For instance, researchers
have proposed to study the permission system used by Android to determine if
any privilege escalation could happen [1,4,5,16], or to perform dynamic analysis
of the applications at runtime to detect/prevent sensitive data leakage [3,8,9,19].
However, the answer to the second question still remains unclear. In this work,
we focus on analyzing the network domains used by Android applications, and
c© Springer International Publishing Switzerland 2015
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Fig. 1. The System Architecture

studying the implication of the results, e.g., potential relationships among the
application developers and the network domains.

This work makes the following contributions:

– We successfully combine static analysis and dynamic analysis together to
capture accurate and precise network domains used in Android applications.

– Application SMALI files, as well as native libraries are analyzed for any
network domain request integration by inspecting the text and extracting
the potential URLs referenced by the applications.

– Network graphs are constructed based on the network domains used by
Android applications, and implicit relationship among application develop-
ers and domains are given.

The rest of this paper is structured as follows. The design and implementation
of the proposed network domain analysis framework are presented in Section 2. In
Section 3, we provide the evaluation results against popular Android applications
obtained from Google Play. Finally we present related works in Section 4 and
conclude in Section 5.

2 Design and Implementation

Our analysis platform integrates both static analysis and dynamic analysis to
provide accurate summary of network domains used by Android application.
Figure 1 shows our system architecture. First, we decode the Android application
binary into SMALI code and resource files, from which our URL retriever identi-
fies potential network domains. The domain validator will check if the identified
network domain is valid or not. If so, it will be added into the network domain
access set. Simultaneously, the application binary will be run on an instrumenta-
tion platform with automated tools to install, run, execute some commands, and
uninstall it. We use tcpdump to look through all the network traffic generated by
the application during runtime and add those network domains into the access
set as well.
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2.1 Static URL Extraction

Extracting and validating the URLs from an Android application is a multi-stage
process. Each application binary is an APK file, a compressed Dalvik EXecutable
(DEX) file that runs on the Dalvik Virtual Machine (Dalvik VM). Before the
URLs can be extracted, we use the apktool[14] to decompress the APK files to
SMALI[6]. The APK file also contains other resources such as icons, images,
sound files and Native Libraries which are also examined for strings containing
URLs.

URL Retriever. URLs are extracted from both the application’s SMALI
decompiled files and the Native Libraries. First, we use Linux string utility to
extract potential URLs from the Native library, and then apply regular expres-
sion search on both the SMALI files and those URL-like strings. An intuitive
criteria to determine whether a string is a URL, is to check if it begins with
http or https. Although such pattern identifies the HTTP requests accurately,
in practice provides little information about the domain to which the applica-
tion was communicating. The string can be in the format of “http://%s” or
“http:// ” as the developer dynamically assembles or concatenates the string
before issuing the HTTP request. Therefore, we modify the URL identification
criteria to include strings which are formatted similar to a URL. Unfortunately
a large number of strings identified are not valid URLs. Thus, domain validation
is applied to identify and remove non-URL strings as to be discussed below.

Domain Validation. We parse the Top Level Domain (TLD) and Second Level
Domain (SLD) information out of the potential URLs. First, we determine if
the potential domain’s TLD is within a set of valid TLDs. URLs which are
IP addresses are automatically accepted as valid. Second, we perform a DNS
query on the potential domain to determine if it is valid. If the response to the
DNS query returns with a valid IP address, the domain is considered to be valid.
However, if the potential domain does not return with an IP address, the domain
cannot yet be rejected as being invalid, as some domain names could be reserved
but not used yet. Thus, a second check on potential domains is performed to see
if the domain has been registered. If this check also fails, the domain is rejected.

2.2 Dynamic Analysis of Network Access

Since some URLs are dynamically constructed, we also integrate an Android GUI
testing framework into our analysis platform. We leverage TEMA project [10]
(built on top of Android monkey [7] event generator) to craft a script including
high level commands, e.g., Drag, TouchScroll, SelectFromMenu, Type, etc. We
run the Android application on Nexus 5 devices, which is connected to our PC
where the command script is running on. The scripts are designed to perform
main tasks of each application, but it cannot cover all code paths. Therefore,
some dynamically built URLs could still be missed from our analysis. Specially
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for browser applications, the command scripts contain the access request of the
URLs extracted from static analysis of the browser’s SMALI code, so our script
will not incur any extra URL when testing browser applications.

3 Evaluation

3.1 Collecting Applications

We downloaded android applications directly from Google Play. First, we select
top 10 applications from both APP and GAME categories on Google Play, and
retrieved their publisher information. Then, we search for the applications devel-
oped by those publishers, and in this way, we get more than 1000 applications.
We rank them based on reviews and popularity, and finally download 183 appli-
cations for our network domain analysis.

3.2 Statistics

Static analysis was performed on 183 Android applications, which resulted in
3080 unique domains being discovered. After running each application for 5
minutes in the dynamic analysis platform, additional 52 network domains are
identified to be accessed by them. Therefore, we identify 3132 network domains
used by those applications.

The application Opera browser corresponds to around 400 domains (which
is approximately 13% of all of the domains collected). Android.com is the most
commonly referenced domain by 135 applications. This is not surprising as all
of these applications are targeted to the Android platform and make use of
existing libraries or components. The other commonly referenced domains do
not contain any surprise as well, e.g., ad services, Google, Facebook and Akamai
Content Distribution Network (CDN).

3.3 Application Networks

We construct a network graph with individual nodes indicating each application
and edges indicating shared domains between two connected applications. It was
clear from the graph that applications developed by Rovio tend to have strong
connections (sharing network domain access), but the remaining applications
from other publishers not. We notice that due to some applications using much
more network domains, edges indicating commonly used domains among those
applications and other applications incur much more interference.

Instead of relying on the total number of shared network domains, we resort
to the Jaccard index correlating the number of common domains to the set of
all domains the applications using.

J(A,B) =
A ∩ B

A ∪ B
, 0 ≤ J(A,B) ≤ 1 (1)
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Fig. 2. Application Network Graph with Edges based on Jaccard Index

The primary issue with the Jaccard index is that if a pair of applications
only contain 1 domain, then the resulting Jaccard index will be 1. Clearly this
can’t be seen as a strong correlation without other supportive information. To
be conservative, we apply a pre-Jaccard index filter, which compares the number
of common domains and if the number is less than or equal to 2, the edge is not
considered significant. In this way, we can avoid generating a graph consisting of
a large number of edges resulting from only 1 or 2 shared network domains. We
apply another filter that only shows edges with a Jaccard index larger than 0.5,
which means they have more in common than not. The final graph constructed
from a pre-filtered Jaccard index is shown in Figure 2.

The Jaccard index based graph clearly highlighted several developer net-
works. The networks for Rovio, Backflip Studios, King, and IGG. It is interesting
to note that all of the games from a single developer do not always fall within
the same cluster. For example, 4 of Electronic Art ’s games form two small pair
size clusters and the remainder of the developer’s games do not cluster. The first
cluster of the pair between Bejeweled Blitz and Plants vs Zombies 2. The second
cluster formed by Tetris 2011 and Scrabble Free did not provide any informa-
tion due to the number of ad libraries included in the game combined with the
number of references to EA owned domains.

The graph demonstrates that some developers/publishers tend to use the
same or similar set of network domains in their applications. Therefore, such
behaviour could be leveraged to determine if an application is likely developed
by a specific developer. However, it does not rule out the possibility that one
application was indeed developed by that developer even if it does not fall into the
developer cluster in the graph. Table 1 shows that several notable examples in the
graph where applications released by the same developer are not part of a cluster
or in the same cluster. Google is an example of a developer whose applications
are not strongly clustered based on the domains that the applications use.
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Table 1. Developer Clusters

Developer In-Developer Cluster In-Different Cluster Unclustered

King 8 (100%) 0 0

Rovio 11 (91%) 0 1 (9%)

Tap4fun 4 (100%) 0 0

Google 0 0 7 (100%)

Facebook 4 (80%) 0 1 (20%)

Amazon 0 0 5 (100%)

Disney 4 (80%) 0 1 (20%)

Backflip 6 (66%) 1 (11%) 3 (33%)

Fig. 3. Domain Network Graph with Edges based on Jaccard Index

3.4 Domain Name Networks

We also construct another graph where nodes are used to indicate network
domains and edges are used to connect domains which is accessed by the same
application. Again, we use pre-filter Jaccard index same as above and the result-
ing graph is shown in Figure 3. Domains such as ad services (Google, Flurry,
Doubleclick.net, etc), Google, Facebook, and Akamai CDN are all clustered in
one portion of the graph.

4 Related Work

Static analysis has been previously performed on Android applications. Stow-
away [4] mapped application API calls to permissions to determine whether
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they are over-privileged. PlayDrone [13] studied Android applications in terms
of library usage, repackaged applications, service authentication and etc. Craig
et. al [11] studied a collection of popular applications and malware samples to
check if Google Play’s new auto-update policy could be leveraged to for privilege
escalation. A seminal work [18] collected more than 1200 malware samples, and
systematically studied different characteristics. In contrast, our work focuses on
static analysis to extract URLs and study the network domains used by Android
applications.

Researchers have also been applying dynamic analysis to study the run-
time behaviour of Android applications. TaintDroid [2] leverages whole system
dynamic taint tracking technique to study whether Android applications leak
users’ private data. VetDroid [16,17] proposed a dynamic analysis platform that
studies how permissions are used to access sensitive system resources. [9] applies
taint analysis approach to protect users’ sensitive data. Our work is fundamen-
tally different in that it is not directly concerned with how the sensitive data is
handled within the application or leaked to external sources. Instead, it more
focuses on where the sensitive data could be sent. If a malicious application is
attempting to harvest sensitive data, it needs to transmit this information to an
external recipient. By inspecting the URLs and ultimately the domain names,
our work can allow a user to understand where their information could be sent.

Feature extraction and analysis of Android applications with network graphs
have previously been proposed. ViewDroid [15] extracted control flows graphs
from applications and used the Jaccard index to compare applications to deter-
mine if applications are cloned or repackaged. Our work only replies on the URLs
and domains contained within an application to determine if two applications are
potentially related to each other. Our work differs in that different features are
selected and used for the comparison. Moreover, the dual use of the applications
and domains as nodes can potentially allow multiple websites to be identified
that may be used by the same advertising network.

5 Conclusion

Applications have become increasingly popular on the Android smartphone plat-
form and these applications often provide functionality not available from the
manufacturer. Various types static and dynamic analysis techniques have been
applied on these applications to determine the potential security and privacy
risks associated with these applications. In this work, we successfully built
an analysis frame that combines both static analysis and dynamic analysis to
extract URLs from application SMALI files and native libraries, and then under-
stand network domains accessed by Android applications. The network graphs
built based on the analysis results demonstrate the implication among applica-
tion developers and the network domains used by the applications.
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Abstract. Mobile devices have long been targets of malware attacks,
exploiting the inherent trust that users place in them. They possess
unique features, such as continuous internet connectivity, the ability
to make premium phone calls and send premium SMS messages, stor-
ing sensitive information, and programmatically turning on the cam-
era or microphone. Compromising these features opens up new attack
possibilities and enlarges revenue streams for attackers. Despite various
existing solutions for detecting mobile malware through binary analy-
sis techniques, mobile malware infections have steadily been on the rise.
This paper presents a novel system for detecting the malicious behavior
based on smartphone sensor measurements. The system identifies vari-
ous unique trigger events that should only occur via user action, such
as sending SMS messages or turning on the camera or microphone, and
determines whether the user initiated them. It can detect various cate-
gories of malware, including spamming botnets, premium service fraud,
and spyware. The initial version of the prototype is implemented by
modifying the default Android SMS messaging app to show that mal-
ware sending malicious messages can be detected based on smartphone
sensor measurements.

1 Introduction

Mobile devices have become an integral part of our daily lives; we rely on them
to send and receive email, communicate with family and friends, perform finan-
cial transactions, and much more. Due to the inherent trust users place in these
devices, as well as the various amounts of sensitive features and personal informa-
tion stored on them, it is no surprise that mobile devices have become targets of
complex malware attacks. New attacks and revenue streams for malicious actors,
unseen in the desktop space, are enabled by the unique features of smartphones.
Continuous internet connectivity, the ability to make premium phone calls and
send SMS messages, and programmatically turning on the camera and micro-
phone are often leveraged in malware infections, and used to expense fraudulent
charges to customer accounts. Usually customers find out about such infections
only when they receive and inspect their bill at the end of the month.

Over the last couple of years, numerous new malware implementations have
been identified. These malicious applications are usually designed to perform
c© Springer International Publishing Switzerland 2015
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mobile fraud (i.e. fraudulent premium service subscription [2]), assembly of mali-
cious botnets [3], spyware [27] and ransomware [20].

Due to the increasing amount of mobile security threats, various solutions
have been proposed in order to protect user devices. Though many security
companies provide mobile variants of their anti-virus software, they typically
use common signature-based techniques which malware authors can easily cir-
cumvent by using encryption and packing techniques [14]. App stores themselves
are attempting to protect users by scanning applications for malicious content
before posting them, but recent work has shown the feasibility of subverting the
app store review process, thereby compromising the integrity of the app store
itself [22]. In fact, Google’s own App Verification Service, introduced in Android
4.2, was shown to detect only 15% of 1,200 malware samples previously released
to the public [16]. In many cases, users are able to sideload applications or use
alternative app markets, bypassing these protections all together.

Alternatively, host based behavioral detection engines, that can detect these
sophisticated type of threats, are simply infeasible to deploy on current mobile
devices due to their heavy resource requirements, restrictive sets of APIs, and
limited energy constraints [9]. By using standard machine learning techniques,
malicious mobile applications can be successfully detected [24], however they
require a significant amount of available labeled data (i.e. recent known malicious
applications) to have an acceptable false positive and false negative rates.

Instead of detecting malicious binaries, this paper takes an alternative app-
roach, derived from the idea disclosed in [17], proposing a system to detect
the malicious behavior itself. Previous work has detected malicious behavior by
inspecting all API calls of a mobile system [10]. Alternatively, we identify a
small subset of unique trigger events that should only occur via a user action
such as sending SMS messages, making a phone call, turning on the camera or
microphone, etc. By analyzing data from the various sensors of a mobile device
at the time of one of these sensitive actions, our system detects whether it was
user initiated or not. For example, sending an SMS message is almost always
initiated by a user pressing the send button within their messaging application.
Turning on the microphone is always initiated by the user making a phone call
or starting a voice recording application. If the system identifies that a sensitive
action occurred in the background without user consent, we alert the user and
identify the application performing the suspicious action.

Related work has also leveraged sensors on smartphones for similar appli-
cations [19,25,26]. These proposals implement an access granting functionality
based on sensor measurements. As such, users acquire OS permissions to perform
an action by performing a gesture or, alternatively, this permission acquisition
occurs implicitly by the sensing of the user’s movement when placing a phone
call. The system introduced in this manuscript also leverages sensor data but
for a different application, instead of implicitly or explicitly granting permis-
sion to the user to access certain OS calls, it provides online malware detection
leveraging all the available sensors on a smartphone.
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In order to assess the feasibility of the proposed system, we developed an
initial prototype specifically for the use case of malicious SMS messages. The goal
is to detect various types of different malware such as SMS spamming botnets
and premium SMS fraud applications. By means of modifying the native Android
4.4 messaging application, smartphone sensor measurements are collected and
analyzed. It is shown that malicious outgoing SMS messages can be detected
with high accuracy by means of a very short sensor data capture. The promising
results indicate the viability of the overall proposed system, both in terms of
implementation as well as performance.

The remainder of this paper is organized as follows. Section 2 describes
the operation and design of the malicious behavior detection system, providing
details on the trigger events under analysis and the sensor data being lever-
aged. Section 3 presents the implementation details and performance results of
the prototype built for the use case of malware sending text messages. Finally,
Section 4 concludes the paper.

2 Sensor-Based Detection of Malicious Activity

The evolving threat of smartphone malware requires pro-active techniques to
protect users. Current strategies against mobile malware are reactive. Malicious
apps are pulled from the markets once they have infected many users and, in
some instances, charged for fraudulent services. This not sustainable or scalable
giving the constant flux of new malware samples seen in the wild, with reports
of 700000 new malware instances in the first quarter of 2014 alone [8].

Researchers have shown ways to bypass the security review process of app
markets [22], which makes it feasible for fraudsters to publish new malicious
applications frequently. Although there are known techniques for malware detec-
tion, signature-based detection by antivirus fails to detect the majority of new
malware instances [6]. Despite eventual detection and forensic analysis to update
the anti-virus signatures, this delay results in thousands of infected devices and
legitimate customers with erroneous charges in their monthly bills. Other novel
sophisticated approaches for malware and spyware detection involve great deals
of traffic analysis and deep packet inspection (DPI) at either the network or the
device itself [11]. On one hand, this potentially conflicts with privacy preserving
laws and customers often do not feel comfortable having their traffic monitored.
On the other hand, endpoint-based DPI suffers of strict computational require-
ments and battery drain on mobile devices. However, network-based algorithms
can successfully detect malware infections without requiring DPI [12].

This paper introduces a technique for detection of malware and spyware infec-
tions on mobile devices. The proposed method is local, running on the mobile
device, but with very low computation load, negligible battery drain and no traf-
fic inspection. The main novelty of the malware detection algorithm is that it
does not aim to detect malicious applications, but the actions - i.e. a very small
subset of API calls - that occur as a result of a malware infection. This is done
by capturing a very small sample of data from the mobile device sensors at the
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Fig. 1. Sensor-based detection of anomalous activity

time of these actions, and applying a decision tree-based detection. As a result,
this system is able to determine whether certain activities, such as an outgoing
text message to subscribe to a premium service, are a result of the interaction of
the user with the User Interface (UI) or a suspicious event that occurred in the
background. The implementation of this system is similar to the implicit per-
mission granting system described in [25], which also proposed to collect sensor
measurements at specific actions (i.e. placing a phone call and NFC tapping).
Instead of preventing malicious access to sensitive resources, our system takes
an alternative approach by notifying the user when malicious behavior has been
detected, aiming to minimize the impact of false positives.

Sensor-based detection of malicious activity is a challenging task. Arguably,
one could determine, for example, whether a text message was typed and sent
by the user, if the system could collect data while the SMS is being written. The
sensor readings when typing follow a simple pattern and can easily be detected
by an algorithm [21]. However, this is not possible in our scenario because it
would require to constantly monitor sensor measurements to determine when a
message is being typed, which would result in severe battery drain. Our challenge
is to determine whether an action was user triggered or not with sensor data
captured right after the API call occurred (e.g. an SMS was sent).

2.1 System Description

The proposed detection system consists of the following steps: sensor data col-
lection upon trigger event, sensor data processing, extraction of features, classi-
fication and detection. The overall system architecture is described in Figure 1.
Note that there is also an extra off-line stage, not depicted in the figure, which
collects training data and defines the detection algorithm.
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A number of trigger events are defined. These are actions, i.e. API calls, that
can be executed both interacting with the UI or programmatically and, if exe-
cuted without the user’s consent, could be leveraged with a malicious intent. In
fact, many of them are common important elements in the operation of known
instances of malware. These suspicious actions trigger the system to capture
a short sample of sensor readings. The captured data is processed in order to
extract features. Based on these features, the system determines with high accu-
racy whether the user did perform the action that triggered the suspicious event
or it was executed without the user’s intent/knowledge.

As an example, Figure 1 depicts the case of an SMS sent to a premium
number. The API call sendTextMessage from the SmsManager class - in the case
of an Android device - triggers a sample from the sensors to be taken. Features
are extracted from this sample and, applying a previously trained and defined
classification algorithm, it is determines whether the user sent that message
through the UI.

2.2 Trigger Events and Malware Detection

The great majority of known malware instances aim to generate a revenue or
perform some sort of Internet fraud. The common modus operandi of such type
of malware is often initiated with either an SMS to a premium number or an
outgoing traffic flow to a suspicious domain. Other malware families provide
fraudsters with a network of infected devices to, for example, send spam mes-
sages [4]. In this case, the infection results in both outgoing flows to a central
Command and Control (C&C) host and a large amount of outgoing SMS mes-
sages to unknown destinations. Malware infections also often try to spread by
sending text messages to known contacts with a link to trick the recipient to
install the same malicious app.

Other families of malware are leveraged to create botnets of computing
devices in order to perform network scanning, launch attacks or even mine Bit-
coin [7]. In this case, these botnets of smartphones also rely on outgoing flows
to C&C hosts. Other types of malware leverage infected mobile devices for click
fraud activities [1]. Moreover, researchers have argued the potential threat of
malicious spyware applications activating the microphone or the camera with-
out the user knowledge and consent [27].

Given the characteristics of the main types of mobile malware seen in the
wild, the trigger events that can be monitored in the proposed malware detection
engine are: outgoing SMS, outgoing suspicious IP flows and activation of the
camera or microphone.

Recent studies report that an average of 6 billion SMSs are sent per day in
the US [5]. Given the number of active cellphone lines in the US, this results
in an average of about 19 SMS per day per person. Therefore, all outgoing
SMSs could be considered trigger events without, in average, resulting in high
battery drain due to the activation of the sensors. One could also configure the
system to only analyze outgoing SMSs to unknown numbers (not present in the
contact list) in order to minimize the number of times a sensor data sample is
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taken. However, this configuration would fail to detect certain types of malware
that spread and contact numbers in the contact list. Users with malware-free
devices would rarely, if not ever, have the system querying the sensors due to a
suspicious outgoing SMS. Although, for example, a spamming malware infection
would potentially result in many sensor activations and, thus, increased battery
drain, a security alert would prompt on the phone only after the first message.

Following the same intuition, not all outgoing data flows should be analyzed,
as these occur very frequently and their analysis would result in severe battery
drain. Consequently, data traffic trigger events can be defined as outgoing IP
flows to either blacklisted domains or non-whitelisted domains. Outgoing IP
flows can also be specifically monitored for third party applications.

2.3 Device Sensor Sample Capture

The sensors typically available in modern smartphones are:

– Kinetics: Gyroscope (X,Y,Z) and accelerometer (X,Y,Z).
– Position: Orientation (X,Y,Z).
– Environment: Light sensor, barometer, proximity sensor.
– Connectivity: Connection status {none, 2G, 3G, LTE, WiFi}, Bluetooth sta-

tus {on, off}, GPS {on, off}.
– (Optional) Location: GPS coordinates, cell id of serving cell (cellular), SSID

of serving access point (WiFi).

The proposed malware detection system can leverage all of these sensors, but
it could also be implemented with a subset of these sensors. The design of the
system is flexible and modular, such that other potential new sensors in future
smartphones can be added. Moreover, this method can be used in other personal
connected devices. For example, wearable connected devices, Internet of Things
(IoT) embedded devices, network-connected cars, etc.

Both for kinetics and position sensors, data from the 3 axes (X,Y,Z) is col-
lected. Location sensors, such as the Assisted Global Positioning System (A-
GPS), can be used optionally, mainly given its high battery drain. Alternatively,
one could log, with marginal increase in battery drain, the cell id of the base
station to which the phone is connected to or, in the case of WiFi, the Service
Set Identifier (SSID) of the serving access point (AP). This id could then be
mapped to an online repository of known locations of cell towers and WiFi APs
or used by itself as a feature for the detection algorithm.

Sensor data is captured for a very short duration, up to just a few seconds,
in order to further minimize impact on battery life. Moreover, other than the
activation of the camera and the microphone (for an application other than a
phone/video call), all the trigger events are linked with an outgoing communi-
cation. Note that, when the phone is in a connected state actively transmitting
or receiving data, the battery usage is the highest and it is mainly due to the
actual radio communication component of the phone [15]. The battery consump-
tion due to the activation of the sensors for a few seconds is negligible compared
to the battery drain of the active Radio Frequency (RF) front end itself.
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Each trigger event results in the capture of a sample of sensor data, from
which features are extracted. The detection step of the system processes the
extracted features and determines whether the trigger event was initiated by
the user. This step is executed as a decision-tree-based classification algorithm,
which is defined in an off-line training stage.

2.4 System Operation and Deployment

The specific algorithm for activity classification and malware detection, for exam-
ple the conditions and branches of a decision tree-based detection, is dynamic
and can be either individual per user or global for all users. A cloud-based host in
charge of defining the initial algorithm and periodically training it, though the
classification is implemented and evaluated locally on the device. This cloud-
based host is constantly fed new data from the mobile devices, such as false
positives. For example, assuming that a system prompt/alert was shown upon
an anomaly being detected, false positives could be manually discarded by the
users, labeled and automatically reported to the central host. Further tuning of
the detection algorithm with labeled data of false positives would strengthen the
system.

Based on this architecture, the central system would periodically push an
updated detection algorithm to the mobile terminals. The algorithm could also
be updated in the event of, for example, the user purchasing a new smartphone
equipped with a new type of sensor.

Due to its implementation, the proposed system has certain limitations. The
main one is the fact that a smart piece of malicious software could send SMSs or
open an outgoing IP flow to a blacklisted domain only when the user is about to
send a legitimate SMS. Although this is possible, the only way for the malware
to know when the user is about to send, for example, a legitimate SMS would
be to constantly monitor the sensors. This way, the malware could be tuned to
detect when the user is taping a message and then send its malicious payload.
However, this would require the malware to constantly monitor the sensors,
resulting in very rapid battery drain that would alert the user of something
anomalous in the device.

3 Prototype

In order to determine the potential viability and performance of a sensor-based
malware detection system, we implement a prototype on an Android Motorola
Moto X smartphone. This initial implementation is aimed specifically to detect
when a text message is being sent programmatically without the user’s con-
sent/knowledge, which could be useful in, for example, detecting the presence of
premium SMS fraud applications and spamming botnets [2,4].
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3.1 Implementation

The initial prototype collects sensor information when SMS messages are sent.
Instead of modifying the API framework itself, we simulated this exact function-
ality by modifying the official Android 4.4 messaging application, obtained from
the official AOSP source code repository. This allows us to create labeled sensor
data generated on user initiated SMS messages, as well as randomly simulated
malicious messages in the background.

We add a new class to the messaging application, called the SensorSampler
which enables the various sensors on the phone for a 10 second time period and
logs sensor measurements to a file. The 10 second samples are taken to asses
the performance of the detection algorithm for various window durations, as
short as 1 second and as long as 10 seconds, as in a final implementation one
would intuitively encounter a tradeoff between a short (i.e. 1 second) sample
with minimum battery drain but with lower detection accuracy and a longer
(i.e. 10 second) sample with higher accuracy but higher battery drain.

By grepping through the messaging application’s code base, we located the
point at which the sendTextMessage() API call is made. Here we add code to
spawn an IntentService and log the sensor readings in the background. We
have an additional long lived background service that randomly records sensor
measurements to a separate file, in order to represent messages not initiated by
the user. We label these samples as malicious messages. Time stamps for each
message sent are recorded as well, for correlation during the results stage.

The data samples were collected from real users for a period of 2 weeks,
during which they communicated normally via SMS with friends and relatives.
Samples of real SMSs are thus taken at all situations, conditions, positions and
orientations of the phone. In parallel, malicious samples are samples of sensor
data taken at random times throughout the day. As a result, malicious samples
include any type of context, such as while the phone is in a pocket, in a bag while
walking, and more challenging scenarios such as playing a game or browsing the
Internet.

The recorded sensor measurements are used for analysis, to determine if user-
initiated SMS messages can be identified using machine learning techniques.
Although, as discussed in Section 2, the sensor samples can only be captured
right after the API call occurred, the results obtained by the prototype do indi-
cate that it is feasible to detect malware infections with good accuracy and false
positive rates with the processing of such after the fact captures.

3.2 Detection Algorithm Training and Performance

Measurements of each coordinate X, Y and Z coming from kinetics and position
sensors, as well as light sensor measurements, are treated as unevenly spaced time
series. A total of 109 time and frequency domain features including 92 kinetics,
13 position and 4 light sensor features are extracted from each window of 1
to 10 seconds from the beginning of the time series 1. A detailed overview of
1 In order to compute FFT, the unevenly spaced time series are first interpolated.
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Table 1. Features extracted from kinetics, position and light sensors

Sensor Time-domain Frequency-domain #features

Gyroscope Mean, standard deviation,
mean absolute deviation for
X, Y and Z, the overall
magnitude, and correlations
between axes.

Principal frequency,
spectral energy, first 5
components of FFT and
magnitude, X-Y-Z freq-
domain entropy and
correlations between axes.

46

Acceleration 46

Orientation 13

Light Mean, standard deviation, mean
absolute deviation and range.

4

the feature extraction methods for accelerometer measurements is presented in
[18,23]. In our work, features are also extracted from time series corresponding
to orientation, gyroscope and light measurements. Table 1 summarizes all the
extracted features.

To detect which SMSs were initiated by malware, we used logistic regression,
support vector machines, functional, alternating, random trees and random for-
est classifiers based on the features from each of the ten time windows individu-
ally. The overall performance of the random forest classifiers was superior to the
rest. To improve the false positive rate even more the random forest classifiers
trained on the features for each of the ten windows are fused.

To detect which SMSs were initiated by malware, we used logistic regression,
support vector machines, functional, alternating, random trees and random for-
est classifiers based on the features extracted for each of the ten time windows
individually. The overall performance of the random forest classifiers was supe-
rior to the rest of the classifiers and thus this was the chosen classifier for the
prototype implementation. To improve the false positive rate, several random
forest classifiers trained on the features for each of the ten windows are fused. A
classification rule is then presented as a linear combination of ten classifiers with
weight coefficients found from minimization of the total prediction error on the
training dataset, where false positive errors have a higher weight WFP than false
negative weight WFN . The random forest uses a random subset of features to
generate multiple decision trees from a sampled training set with replacement.
The prediction is then determined by the majority rule of the generated decision
trees. The Waikato Environment for Knowledge Analysis (WEKA) data mining
tool [13], which implements these decision trees, shows that 82 features have a
positive information gain with respect to the indicator whether a message was
sent by a user or a malware. Out of the top 20 features there were:



484 R.P. Jover et al.

Table 2. Classification results for different sample durations and combining all samples

Sample length 1 2 3 4 5 6 7 8 9 10 combined

False Positive 0.126 0.146 0.097 0.126 0.097 0.126 0.146 0.107 0.136 0.117 0.077

False Negative 0.10 0.112 0.129 0.086 0.069 0.095 0.078 0.129 0.121 0.103 0.103

Accuracy (%) 88.58 87.21 88.58 89.49 91.78 89.04 89.04 88.12 87.21 89.04 90.86

– Frequency domain features: 1st, 4th and 5th components of FFT, the mag-
nitude of the first five components and the spectral energy of Y axis of
acceleration.

– Time domain features: pairwise correlations between axes of gyroscope, mean
and standard deviation for all axes of orientation and acceleration.

– Light features: mean, standard deviation and range.

Let the random forest classifiers for time windows 1, . . . , 10 be classifiers
1, . . . , 10, respectively (i.e. classifier k is the classifier for the time window of k
seconds), and let xki ∈ {0, 1} be the prediction of classifier k for testing record
i ∈ {1, . . . , n}, where xki = 0 if classifier k predicts record i as user initiated SMS,
and xki = 1 if it predicts the record as malware initiated SMS. Let yi ∈ {0, 1} be
an actual label of data record i (yi = 0 and yi = 1 if record i is user and malware
initiated SMS, respectively). To improve the false positive, the data labels are
regressed with respect to the predictions of the ten classifiers:

ŷi =
10∑

f=1

wf x1i, (1)

where ŷi is the prediction of data label yi and
∑10

f=1 wf = 1. The regression
coefficients wf are found by the least squares method

min
wf ,α

n∑
i=1

(
WFP I{ŷi>α} + WFNI{ŷi<=α}

) (
I{ŷi>α} − yi

)2

s.t.
10∑

f=1

wf = 1,

(2)

where I{·} is the indicator function equal to 1 if the condition in curly brackets
is true and zero otherwise.

The goal of the proposed system is to detect malware activity on smartphones
while minimizing the number of false positive alerts the user receives. Thus, we
assign WFP = 0.7 and WFN = 0.3.

The data set consists of 309 SMSs initiated by a user (using the device over
several days) and 348 randomly simulated malicious messages, as described in
Section 3.1. Two thirds of the data were used to train the algorithms and one
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third to test them. Table 2 shows predictions of the ten classifiers and of their
optimal linear combination on the testing dataset. The “accuracy” column in
Table 2 shows the proportions of the total correct classifications. The model
based on the 5 second samples has the highest accuracy, while the combined
model has the lowest false positive. Regardless, the frequency of false positive
alerts will usually be very low, especially if sensor measurements are done only
in the event of an outgoing SMS to a number not in the user’s phone contact
list. Recent research shows that a contact list-based model can reduce malware
detection false positives [12].

Note that all the performance results in Table 2 are for the detection of a
single malicious SMS. The great majority of malware instances will send multiple
SMS messages, which will result in an overall higher malicious activity detection
accuracy.

The algorithm performance results show that it is possible to achieve good
detection accuracy, which meets the battery life preservation requirements high-
lighted in Section 2. The results of the initial experiments presented in this paper
indicate that indeed smartphone malware activity could potentially be detected
by analyzing sensor data measurements.

4 Conclusions

This paper introduces a smartphone malware detection system, which aims to
detect the malicious activity, as opposed to the malware infection itself. This sys-
tem leverages smartphone sensor measurements to determine whether a specific
trigger event occurred due to the user’s input or programmatically by a malicious
application. These trigger events are API calls and other actions that should not
occur without the user being aware of it, and are commonly malware-triggered
actions.

An initial prototype, implemented by modifying the native Android 4.4 mes-
saging app, is designed to detect malicious text messages generated by a malware
infection. Processing sensor measurements from the gyroscope, accelerator, ori-
entation and light sensors, a classification algorithm is able to detect a malicious
outgoing message with high accuracy. The promising results validate the poten-
tial feasibility of an overall malicious activity detection engine on smartphones
based on sensor measurements, which will be part of our future work. We plan
to extend the prototype to additional trigger events and sensors.
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Abstract. Over the past few years cloud computing has skyrocketed in
popularity with the IT industry. Connected to this growing popularity
is an increasing level of concern over the security of the cloud computing
infrastructure. Despite this concern, cloud providers do not disclose any
information about their security precautions. With no information on
the security precautions, a provider’s clients cannot be certain that their
applications are safe from attack. Furthermore, clients are not granted
access to the network level of the system to implement any of their own
security features.

In this paper we approach cloud security transparency constraints
from a game theoretic perspective. Specifically, we model the security
transparency problem as a dynamic non-cooperative game theoretic
problem, whereby the provider and client are modelled as the play-
ers in the game. A theoretical analysis through which the provider or
client can compute his/her best strategy to reach the Nash equilibrium is
presented.

Keywords: Cloud computing · Cloud security · Transparency · Game
theory

1 Introduction

Cloud computing solutions are rapidly increasing in popularity within the IT
industry. However, security still remains a major concern for cloud adopters
and potential clients [1]. Despite the great level of concern for security, most
cloud providers offer little to no assurance of precautionary measures to their
clients. The reason may be the opposing interests of the provider and the client
with respect to security transparency. For the provider, increasing security trans-
parency essentially means making their security implementations more visible
to the client [2]. Transparency poses problems for the provider. For instance, if
a client has malicious intent, they would have detailed knowledge of the system.
Providers often service multiple clients on a single server; providers will not dis-
close any information to one client that could compromise the others. This poses
the question of how clients can trust their provider’s security setup with such
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 488–500, 2015.
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little information on it. If a client has customers, and is responsible for their
sensitive information, the client cannot reassure their customers of the security
precautions taken by the provider without any information.

In this paper, we employ game theory to investigate analytically and help
formulate and analyse approaches to security transparency in cloud comput-
ing. In particular, we present a theoretical model through which the client and
provider can compute their best strategy to reach the Nash equilibrium to enter
into a contract. To our knowledge this is the first work in the literature that
applies game theory to decision making to solve the security transparency issue
of contracts.

The rest of the paper is sectioned as follows. A coverage of related work is
given in Section 2. Section 3 reflects on the motivation behind this paper based
on a theoretical gaming approach to security transparency in cloud computing,
and it presents the analytical results. Finally, the paper’s conclusion is provided
in Section 4.

2 State of the Art

Despite no directly related work to security transparency in cloud computing,
there have been multiple attempts to improve it. We list two examples of these
attempts. The first allows the clients to conduct limited cloud monitoring and
penetration testing on the VM they are deployed on. The second example takes
the approach of suggesting security disclosure principles for the initial contract
between a provider and a potential client. By disclosing limited security infor-
mation, hopefully a potential client would be satisfied with the precautions a
provider has taken.

2.1 Amazon Web Services

Amazon Web Services (AWS) has recognized the problem in security trans-
parency between client and provider and have made strides towards limited
network monitoring for their clients. If a client submits a formal request, AWS
will allow limited penetration testing. To do this AWS requires the client sub-
mit a start and end date of their testing, only use approved testing tools,and
not impede the performance of the resources, since they are sharing them with
other clients [3]. Another option that AWS offers for monitoring is called ”Cloud
Watch”. Cloud Watch is an Amazon developed tool that allows clients to mon-
itor their VMs’ resource usage and other customizable metrics. Cloud Watch is
a subscription based tool which charges by the hour or per metric [4].

2.2 Sun Microsystems

In 2009, Sun Microsystems published a paper on ”Cloud Computing with Trans-
parent Security” [5]. In the paper, Sun proposes implementing a certain set of
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transparency standards that a provider must meet in their initial sign up con-
tract. Sun recommends that the provider disclose common security policies and
practices but withhold details of their architecture. In the paper, they also rec-
ognize some key benefits of increasing security transparency:

– improved trust from the client, potentially resulting in faster adaptation
– helps provider to better understand and manage customer expectations

related to security
– educe the amount of time and resources spent, by the provider, reassuring

clients of potential risks (eg: AWS frequently needs to respond to client
requests for penetration testing)

Although this idea gives a good basis for the initial contract, we believe that
it would not increase transparency enough to give client’s peace of mind. The
only way for a client to fully trust a provider’s security setup is to allow them
to implement or control a portion of it.

3 Analyzing Transparency Constraints Using Game
Theory

Game theory as a mathematical notion provides a set of tools to analyse and
model interactive decision making situations between agents with conflicting
interests. It is also defined as the study of how the ultimate result of a competitive
circumstance is decided on by the action of the players involved in the game,
based on the purposes and preferences of these players, and on the strategy that
is used by each player [6]. In this section we take advantage of Game Theory to
obtain the best security transparency decision in Cloud Computing.

In subsection 3.1, the importance of security in cloud computing for both
provider and client is discussed using game theory. The interaction between the
provider and the client regarding transparency in cloud security is presented in
subsection 3.2. The concept of Nash equilibrium is presented in subsection 3.3
for transparency in cloud security and we address how game theory can help
decision makers with that. This section closes with subsection 3.4 by studying
the effect of mixing a game strategy if it is used to sign the contract between
provider and client if the provider is willing to ensure transparency to the client.

3.1 Dominance “from Prisoner’s Dilemma Game [7]”

In game theory, a game (G) contains three components (P,S,U), where P is the
set of players, S is the set of strategies, and U is the set of payoff functions. In the
game in this section all players are assumed to be rational, which means their
choice will be according to the outcome they prefer most since they know their
opponent’s choice. There are two strategies for every player, X and Y; strategy X
is said to dominate strategy Y if the outcome resulting from X is better than the
outcome resulting from Y. Therefore, since all players are rational they will never
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choose to play a dominated strategy. Discovering which strategies dominate will
lead the rational player to choose only one of their strategies.

This example illustrates the dominant strategy, and it has been presented
here to show how security is very important for both the cloud provider and
client to enter into a contract:
Player 1 (P1) : is a cloud provider
Player 2 (P2) : is a client
Provider offer → (High, Low) Security
Client will → (Buy,Don′t buy)

They are considering entering into a contract from a cloud service for a period
of time. The cloud service provider has two security level options to provide to
the client: High or Low. A low security option is not a viable option for the
provider since the chance of breaching security is high and that will cost too
much if it happens. High security is the only desirable option for the client, thus
the contract will not be signed if the provider chooses to provide a cloud service
with low security. The client has to choose ’Buy or Don’t buy’ according to the
level of security that is provided by the cloud service provider. However, the
level of security put into the contract cannot be verified by the client.

Table 1. Dominance strategy: High - Low security game between a cloud provider P1
and a client P2

�����P1

P2
Buy Don’t Buy

High A,a A,b

Low B,c C,a

The payoff matrix of the game’s dominance strategy is shown in Table 1 for two
different types of strategies, where the following variables are defined:

– A and a represent the most preferred outcome for P1 and P2, respectively;
– B and b represent the second most preferred outcome for P1 and P2, respec-

tively;
– C and c represent the least preferred outcome for P1 and P2, respectively.

In the matrix, the possible payoffs for P1 and P2 are presented as variables to
show it in a general form. Player 1 chooses a row, either High or Low, and Player
2 chooses one of the columns Buy, Don’t buy.

In this example “High” is a strategy that dominates the “Low” strategy
for the cloud provider. Regardless of whether the client chooses to buy or not,
the provider always prefers to provide high security protection. Therefore, since
the client believes that the cloud provider is rational and always prefers a High
security level, they will choose buy and enter into a contract with the cloud
provider. Therefore, “Buy” is a strategy that dominates the “Don’t buy” strategy
for the client.
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In the remainder of this section we will formulate the game and present the
expected utility for both the cloud provider and client if they would like to
sign a contract. If (P1) chooses “High” the payoff will be (A) and if the client
chooses “Buy” which dominates “Don’t buy”, then the payoff for both provider
and client is (A,a), resulted from playing (High,Buy) strategies, which always
dominates “Low, Don’t buy” strategies.

In this example “High” strictly dominates “Low” for (P1) and “Buy” strictly
dominates “Don’t buy” for (P2). Here we can see what the expected utility is
for both the cloud provider and client if they would like to sign a contract, and
what is best for them.The first two equations are the expected utilities for client
if buys the service or not:

EUbuy = 0.5 × a + 0.5 × c (1)

EUDon′t buy = 0.5 × b + 0.5 × a (2)

The folowing equations are the expected utilities for provider if provides High
or Low security

EUhigh = 0.5 × A + 0.5 × A

EUhigh = A
(3)

EUlow = 0.5 × B + 0.5 × C (4)

Let σ donate the probability that a player plays a particular pure strategy,
then we finds the expected utility if it provides High or Low security to the
provider, and Buy or Don’t buy for the client. The client’s expected utility of
playing “Buy” can be written as pure strategy as a function of the provider’s
mixed strategy:

EUbuy = σhigh × a + σlow × c (5)

The client’s expected utility of playing “Don’t buy” as a pure strategy is:

EUDon′t buy = σhigh × b + σlow × a (6)

Now we are looking for a mixed strategy from the provider that leaves the
client indifferent situation between his/her pure strategies. In other words, we
want to find σhigh and σlow such that:

EUbuy = EUDon′t buy (7)

This implies the following:

σhigh × a + σlow × c = σhigh × b + σlow × a (8)

And since
σhigh + σlow = 1 (9)



A Game Theoretic Framework for Cloud Security Transparency 493

then
σlow = 1 − σhigh (10)

We get

σhigh × a + (1 − σhigh) × c = σhigh × b + (1 − σhigh) × a

σhigh × a + (c − c × σhigh) = σhigh × b + (a − a × σhigh)
2 × a × σhigh − c × σhigh − b × σhigh = a − c

(11)

σhigh =
a − c

(2a − c − b)
(12)

By substituting σhigh into σhigh + σlow = 1 we get

σlow = 1 −
(

a − c

(2a − c − b)

)
(13)

So if the provider chooses high security with probability a−c
(2a−c−b) and low

with probability 1 −
(

a−c
(2a−c−b)

)
then the client will earn the same payoff for

selecting either to buy or not as a pure strategy.

Now it is possible to calculate a mixed strategy for the client that leaves the
provider indifferent between his two pure strategies:

EUhigh = σbuy × A + (1 − σbuy) × A (14)

EUlow = σbuy × B + (1 − σbuy) × C (15)

EUhigh = EUlow (16)

This implies

σbuy × A + (1 − σbuy) × A = σbuy × B + (1 − σbuy) × C (17)

Which gives:

σbuy =
A − C

B − C
(18)

σDon′t buy = 1 −
(

A − C

B − C

)
(19)

So if the client chooses to buy with probability A−C
B−C and not to buy with

probability 1 −
(

A−C
B−C

)
then the provider is in-between providing high security

and low security as a pure strategy.
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3.2 Transparency in Cloud Security

In this example we apply the same previous game strategy to find out if the con-
tract will be signed or not and whether the client requests security transparency
from the provider. All players are assumed to be rational, which means their
choice will be according to the outcome they prefer most since they know their
opponent’s choice.

The cloud service provider has two security transparency level options to
provide to the client More or Less. The Less security transparency option is the
preferable option for the provider since the main concern of the provider is to
protect the cloud from any chance of breaching security. More security trans-
parency is the only desirable option for the client who would like to protect his
data from any security issues, thus the contract will not be signed if the provider
chooses to provide cloud services with less security transparency. The client has
to choose Buy or Don’t buy according to the level of security transparency that
is provided by the cloud service provider.

Table 2. Utility matrix of P1 and P2 dependent on the transparency level

�����P1

P2
Buy Don’t Buy

More C,c C,b

Less B,c A,a

Table 2 illustrats the outcome of the provider and client, if they sign or not
the contract, depends on the transparency level. In this example “Less” is a
strategy that dominates the “More” strategy for the cloud provider. Regardless
of whether the client chooses to buy or not, the cloud provider always prefers to
provide less transparency in the security for the client for protection reasons. And
since the client believes that the cloud provider is rational and will always prefer
less security transparency, then the client will prefer not to sign a contract with
that provider. Therefore, the rationality of both players leads to the conclusion
that the provider will provide less security transparency and as a result the
contract will not be signed.

In this section we will formulate the game and present the expected utility
for both the cloud provider and client if they would like to sign a contract.
The expected utility for the cloud provider is expressed as:

EUMore = 0.5 × C + 0.5 × C

EUMore = C
(20)

EULess = 0.5 × B + 0.5 × A (21)

And the expected utility for the client is given by:

EUBuy = 0.5 × c + 0.5 × c

EUBuy = c
(22)
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EUDon′t buy = 0.5 × b + 0.5 × a (23)

By solving these equations, it is possible to figure out what the best for provider
is to ensure high or low security transparency, and whether the best option for
the client is to sign the contract(i.e. buy) or not.

Now let us use sigma (σ) to represent the probability that a player plays a
particularly pure strategy.

Let us find the expected utility of providing more or less security transparency
for the provider, and whether to sign the contract or not for the client.

EUBuy = σMore × c + σLess × c (24)

EUDon′t buy = σMore × b + σLess × a (25)

We want to find σMore and σLess such that:

EUBuy = EUDon′t buy (26)

This corresponds to:

σMore × c + σLess × c = σMore × b + σLess × a (27)

And since
σMore + σLess = 1 (28)

Then
σMore = 1 − σLess (29)

Which implies:

(1 − σLess) × c + σLess × c = (1 − σLess) × b + σLess × a (30)

This gives:

σLess =
b − c

a − b
(31)

So if the provider chooses less transparency with probability b−c
a−b and more trans-

parency with probability 1 −
(

b−c
a−b

)
, then the client will earn the same payoff

for selecting either to sign or not to sign the contract.

3.3 Transparency in Cloud Security using Nash Equilibrium

From the previous examples, knowledge of the dominating strategies by players
will give them advice on how the game could be played. However, this is not
always the case with all games that they have dominating strategies, thus it will
be difficult for players to play the game if there is not enough advice on all out-
comes. Therefore, the players need a more general strategy, which is the main
concept of Nash equilibrium. Nash equilibrium recommends an action profile for
each player so that no single player has an incentive to deviate from its current
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optimal strategy and cannot obtain a higher payoff, assuming that each player
follows the recommendation since both of them are rational [8]. From the pre-
vious example, we will examine the utility outcome for both provider and client
if the provider is willing to provide more security transparency to the customer.
Also, the client can change the game by giving him the right to cancel the cloud
service contract if the security transparency is less than expected.

Table 3. Utility matrix of provider and client which leads to Nash equilibrium

�����P1

P2
Buy Don’t Buy

More A,a C,b

Less B,c B,b

Table 3 is the utility matrix of provider and client that shows the resulting
game; it is clear that the most preferred outcome for both provider and client
is for more security transparency to be provided and the contract to be signed
by the client. Also, since the client has the opt out option in the contract, his or
her second preferred outcome will be not to sign or even cancel the contract if
the provider changes the transparency level.

In this game there is no dominating strategy for either the provider or client.
Instead, there are two Nash equilibria: one of them is the strategy combination
(less, don’t buy). The second one is the strategy combination (more, buy); this
strategy is in equilibrium since the player P2 prefers to sign the contract when
the transparency is more and player P1 prefers to provide more transparency if
the client will sign the contract. Both Nash equilibria are logical options for the
provider and client on how to play the game. Since Nash equilibrium strategies
are chosen by the players, they will rationally stay with their strategies and will
not change.

Now, this game can be formulated and the expected utility presented for both
the cloud provider and client if they would like to sign a contract. The expected
utility for the cloud provider can be expressed as:

EUMore = 0.5 × A + 0.5 × C (32)

EULess = 0.5 × B + 0.5 × B = B (33)

And the expected utility for the client is given by:

EUBuy = 0.5 × a + 0.5 × c (34)

EUDon′t buy = 0.5 × b + 0.5 × b = b (35)

By solving these equations, it is possible to figure out which options are the best
for the provider and the client. For the provider, the choice will be between high
or low security transparency,while for the client it will be about whether to Buy
or Do not buy. Let us find the expected utility of providing more or less security
transparency by the provider, and signing the contract or not by the client.
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EUBuy = σMore × a + σLess × c (36)

EUDon′t buy = σMore × b + σLess × b (37)

We want to find σMore and σLess such that:

EUBuy = EUDon′t buy (38)

This corresponds to

σMore × a + σLess × c = σMore × b + σLess × b (39)

And since
σMore + σLess = 1 (40)

We have

σMore = 1 − σLess (41)

Which gives:

(1 − σLess) × a + σLess × c = (1 − σLess) × b + σLess × b (42)

By solving this equation we get

σLess =
a − b

a − c
(43)

So if the provider chooses less transparency with probability a−b
a−c and more trans-

parency with probability 1 −
(

a−b
a−c

)
,then the client earns the same payoff for

selecting either to sign or not to sign the contract.

3.4 Transparency in Cloud Security Using a Mixed Strategy

Not every game in strategic form always has a Nash equilibrium that makes
each player definitely choose it. Therefore, the player may decide to choose one
of these pure strategies randomly with certain probability. A mixed strategy
is the idea that when the player randomizes his strategy selection, any finite
strategic form of the game has equilibrium if a mixed strategy is allowed.

In this example, a mixed strategy is applied to transparency in cloud security,
assuming that the cloud provider is willing to provide transparency in security
to the client and the client will sign the contract. The main concern for the
provider is that if the client performs malicious activities, they may attack the
provider cloud or other client’s services. Therefore, the provider would like to be
sure that the client follows the regulations and does not intend to violate them.

In this scenario the provider has two strategies, either to monitor (Moni) the
client activities which will cost the provider, or to rely on the contract regula-
tions (don’t Moni) and assume that the client will not violate them. For client
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strategies, if he or she intends to carry out malicious activity (Malic) and gets
caught by the provider, which will cost him or her too much by either paying
money and/or being put in jail. The alternative for the client is to perform nor-
mal activities ( denoted Nor ).

Table 4. Utility Matrix for Mixed strategy

�����P1

P2
Nor Mal

don’t Mo A,b C,a

Mo C,b B,c

Table 4 shows the resulting game. The main difference in this game com-
pared to the previous games is that this game does not have equilibrium in pure
strategies. Since the most preferred outcome for provider comes from choice that
is different from client choice (similarly for the client). Therefore they will not
remain on one choice.

For example, if the provider chooses not to monitor the activities of the client,
assuming that the client will be using the transparency features normally, now
if the client chooses to behave normally the outcome will be in the provider’s
favour which is (A,b). However, if the client turns out to be an attacker and his or
her activities become malicious, the provider will lose too much and the outcome
will be on the side of the client (C,a). If the provider chooses to monitor and
the client performs malicious activities, that will result in them getting caught
by the provider and the outcome will be worse for the client (B,c).

By visiting all cases, the provider would strongly prefer for the client to
behave normally and not perform or intend any malicious activities, but this is
not always the case. Therefore, the provider will monitor the client’s activities
if it is felt that the types of activities are risky. If the provider always chooses
not to monitor the client’s activities, then this will turn out to be a dominating
strategy and the client will perform malicious activities which results in a unique
equilibrium. From Table 4, this game has no equilibrium in pure strategies, since
if the provider is not willing to change their choice and if it is not monitoring,
the most preferred outcome for the client without doubt would be to perform
malicious activities.

Since this game is a kind of a mixed strategy, the players should maximize
their worst outcome against all possible choices of the other players. For example,
a mixed strategy for the provider in this game is to monitor the client activities
with a certain probability. This monitoring probability could be used to find out
what will lead to equilibrium. If the probability of monitoring the client activities
is very low, then the client will get outcome (b) for behaving normally, while
a better outcome (a) will be gained if he or she changes their behaviour to be
malicious. On the other hand, if the probability of inspection is much higher,
then the expected outcome for the client if he or she behaves in a malicious
way is the worst outcome (c), thus the client will behave normally to improve
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his or her outcome and become (b). If the provider knows when the client will
be indifferent, this means they know when the client will possibly randomize
between his or her strategies for behaving normally or maliciously, since both of
these strategies give the same outcome.

In this last part, we will find the probability that makes the client indifferent.

EUNor = σdon′t Mo × b + σMo × b (44)

EUMal = σdon′t Mo × a + σMo × c (45)

We want to find σdon′t Mo and σMo such that:

EUNor = EUMal (46)

This corresponds to:

σdon′t Mo × b + σMo × b = σdon′t Mo × a + σMo × c (47)

And since
σdon′t Mo + σMo = 1 (48)

Then
σdon′t Mo = 1 − σMo (49)

Which implies:

(1 − σMo) × b + σMo × b = (1 − σMo) × a + σMo × c (50)

This gives:

σMo =
b − c

c − a
(51)

So if the provider chooses to monitor the client activities with probability b−c
c−a

and does not monitor with probability 1−
(

b−c
c−a

)
, then the client earns the same

payoff for selecting either to behave normally or to perform malicious activities
in the cloud or for other clients.

From all the previous case studies, techniques from game theory have been
applied to help formulate and analyse the conflict between the cloud provider
and client to reach an agreement, and for more transparency in security to be
obtained by the client.

4 Conclusion

Security is one of the primary concerns with cloud computing. The provider that
successfully assures clients that their applications are safe will be the provider
that gains more clients. in this paper, techniques from game theory have been
applied to help formulate and analyse solutions to security transparency that
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the provider could offer to the client, who would require more transparency
in security to sign the contract. Moreover, through equilibrium analysis of the
transparency security game, the provider can gain a deeper understanding of
client strategies. As has been discussed in this article, the application of game
theory with incomplete and imperfect information is an emerging field in security
transparency in cloud computing, with no papers published so far.

From our research, it is clear that providers want to gain clients’ trust. If
clients trust their provider, they will recommend their provider. Building strong
relationships between the clients and the provider is vital to cloud computing,
and we believe this relationship can be achieved by giving clients a bigger sand-
box to play in.
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Abstract. Over-the-air (OTA) firmware update is available in some sys-
tems such as mobile networks. Security plays a vital role to ensure that
the firmware update process is successful despite possible threats against
it. Therefore mobile devices may be useful to support the OTA firmware
update process for other devices such as those used for automotive appli-
cations. Using a mobile device as a tool can offer added security features
as well as giving flexibility to the process. Automotive security is of
high importance as it is critically related to the safety and reliability
of the vehicle. We propose a secure OTA firmware update (FOTA) pro-
tocol to offer flexibility to the firmware update process, while meeting
the required security requirements. The protocol was formally analysed
using Scyther and CasperFDR and no known attack was found.

Keywords: Firmware update · Over-the-air · Electronic Control Unit ·
Formal analysis · CasperFDR · Scyther

1 Introduction

A security module such as an attack resistant microcontroller has a very small
trusted code base. Hence it is possible to design, test and verify its operation so
that a firmware update is not required. However, for more complex electronic
assemblies and embedded systems, firmware update is a common and necessary
requirement.

Firmware update is therefore an important feature in the life cycle of many
embedded systems. Depending on the infrastructure in place, the firmware
update can take place via over-the-air (OTA) or over-the-wire (OTW). How-
ever, in the automotive industry, security plays a very important role to ensure
the safety and reliability of the car. The Electronic Control Unit (ECU) is the
microcontroller used as a building block to control the operation of a car. In
modern cars, there can be up to 70 ECUs to control different operations [5]. If
any of the ECUs are attacked, the safety of the car and passengers may be at
risk.
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 503–510, 2015.
DOI: 10.1007/978-3-319-25645-0 38
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1.1 Problem Statement

Firmware updates of automotive subsystems are security critical, but there is yet
to be a secure solution that can be accessible to all the involved entities. A secure
solution with flexibility in the process is important to ensure its acceptance,
especially by the users.

1.2 Contribution

The contributions of this paper are as follows:

1. We propose a secure OTA automotive firmware update protocol with the use
of a mobile device. The mobile application to conduct the firmware update
ensures the authentication of the parties involved and the confidentiality of
the firmware.

2. We provide analysis of the OTA firmware update protocol using Scyther [2]
and CasperFDR [7].

2 Related Work

The E-safety Vehicle Intrusion Protected Applications (EVITA) [4] proposed
an architecture using Hardware Security Modules (HSM). Different HSM levels
are used for different security functions required by the different ECU mod-
ules [8]. There are three types of HSMs namely full HSM, medium HSM and
light HSM. Full HSM is used in the Central Communication Unit (CCU) mod-
ule, which is the ECU module responsible for Vehicle-to-X (V2X), i.e. Vehicle-
to-Infrastructure (V2I) or Vehicle-to-Vehicle (V2V) communications. Medium
HSMs are used for advanced ECUs (gateways, head unit, engine control) in the
in-vehicle networks. Light HSMs are used for sensors and actuators communica-
tions. Firmware Update Over-the-Air (FOTA) in the EVITA project [6] uses the
diagnostic tool at workshop. This process requires the car to be at the workshop
to initiate the update process. Flach et. al proposed CARMA for personalised
tuning [3]. The CARMA is a mobile application on the Android operating sys-
tem that can be used to change a few parameters of the engine (on a single ECU)
to improve the car performance, but security was not the main consideration.

3 The Secure FOTA Protocol

We decided to choose the architecture with the mobile device as an interface of
the FOTA process.

3.1 Goals

In this section, we consider the requirements for each entity involved in the
FOTA protocol.
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1. The OEM is required to (a) distribute the updated firmware with confiden-
tiality. (b) store updated information related to the car, for example, versions
of firmware, parts ID and associated cryptographic keys. (c) ensure secure
communication between the OEM and car via the mobile device (including
authentication).

2. The mobile device is required to (a) pass the encrypted firmware from the
OEM server to the car. (b) authenticate parties involved (OEM and car) in
the update process. (c) pass information from the car to the OEM server and
vice versa. (d) store the old encrypted firmware from the car as a backup.

3. The ECU is required to (a) authenticate the OEM through the mobile device.
(b) pass an encrypted version of old working firmware to the mobile device
prior to the installation of the update. (c) receive the encrypted version of
firmware from the OEM server (through the mobile device), decrypt it and
install it. (d) inform to the OEM server if any ECU has been replaced via
the mobile device.

3.2 Protocol Notations and Assumptions

In this section, we discuss the protocol notations and assumptions.

Table 1. Protocol notation

oem original equipment manufacturer

ccu central communication unit

ecu electronic control unit

md mobile device

idx ID of entity x, x=OEM, mobile device, CCU or ECU

pkx public key of entity x, x=OEM, mobile device, CCU or ECU

skx private key of entity x, x=OEM, mobile device, CCU or ECU

KNb session MAC key between MD-CCU-ECU

KNa session MAC key between OEM-MD

{M}k message M is encrypted with key k

signsk{m} message m is signed with private key sk

MACK{m} MAC of message m using key K

ts time stamp

pskecu pre-shared symmetric key of ECU (shared between OEM and ECU)

pskfek pre-shared firmware encryption key (shared between OEM and ECU)

pskunlock pre-shared symmetric key to unlock the ECU into reprogramming mode

(shared between OEM and ECU)

Frmold old working firmware

Frmnew new firmware (to be updated)

Assumptions. A number of assumptions are made as follows: (a) Crypto-
graphic keys between the OEM and cars (Central Communication Unit (CCU)
and ECUs) are preloaded during the manufacturing stage. CCU is the central
unit that stores all the keys for all ECUs in the same network. All external
communications to the car must go through the CCU. (b) HSM-based ECUs
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are used, i.e as proposed in the EVITA project. (c) A mobile application will be
used to conduct all the mobile device’s functions for the OTA firmware update
protocol. (d) The mobile application is used for an individual car, i.e one car per
mobile device. (e) All ECUs are known to the OEM, i.e the cryptographic keys
are pre-loaded before the ECUs are distributed in the market for parts replace-
ments. (f) Every car has a barcode that can be scanned to obtain the car’s
details. (g) The ECUs and CCUs are tamper resistant. (h) The communication
channel between the entities is vulnerable to attacks.

3.3 Protocol Description

The mobile device is seen as a tool to receive notification of available update and
the firmware update itself. When an update is available, the car manufacturer
notifies the car owner through the mobile application. The car owner will down-
load the updated firmware into his mobile device. At a later convenient time, he
would be able to download and install the firmware into his car ECU from his
mobile device.

Registration. First, we consider the registration process for all the involved
parties. In this proposal, we consider the car manufacturer is the trusted party
maintaining the registration and the application server for its firmware updates.
During the installation and registration, the mobile device will obtain the cryp-
tographic keys for further communications. The required keys are OEM server
public key, CCU public key and ECU public key (to verify the signatures of
OEM, CCU and ECU respectively). The OEM server and the car will obtain
the mobile device’s public key. Whenever an ECU is replaced, the mobile device
will be updated with the new parameters (will be discussed in 3.3). (a) Mobile
device: Firstly, the mobile device needs to install the application, which will be
available from the application store. Once the application is installed into the
mobile device, the public key of the OEM is obtained. (b) OEM: The unique
identification of the car (eg. could be the vehicle identification number, VIN)
will be obtained. From the car identification number, the car parameters such as
the make, model and year of manufactured are obtained. These parameters are
important to be able to receive the correct update from the OEM server. This
can be done conveniently by scanning the barcode of the car using the mobile
device’s camera (this is outside the scope of this paper). In this phase, the public
key of the CCU and all ECUs’ identifications are obtained. The parameters are
stored in the mobile device to be later transported to the OEM in order to get
the relevant updates.

Notification. This phase is required to ensure the ECU gets the correct update.
There are two options to get the update. The mobile user can manually check
whether any update is available or be automatically notified by the OEM.

Download to Mobile Device. When a new firmware update is available,
the update is downloaded into the mobile device in an encrypted version using
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Table 2. Protocol description: OEM-MD Download phase

(1) MD → OEM : idmd||{KNa}pkoem ||ts1||signskmd{idmd||{KNa}pkoem ||ts1}
OEM → MD : idoem||ack||ts2||signskoem{idoem||ack||ts2}

(2) MD → OEM : idmd||RequestDL||idecu||ts3||MACKNa{idmd||RequestDL||idecu||ts3}
(3) OEM → MD : idoem||{pskunlock}pskecu ||ts4||MACKNa{idoem||{pskunlock}pskecu ||ts4}

MD → OEM : idmd||ack||ts5||MACKNa{idmd||ack||ts5}
(4) OEM → MD : idoem||{Frmnew}pskfek ||ts6||MACKNa{idoem||{Frmnew}pskfek ||ts6}

MD → OEM : idmd||ack||ts7||MACKNa{idmd||ack||ts7}

a firmware encryption key (pskfek). The (encrypted) key to unlock the ECU
pskunlock is also transferred to the mobile device. Refer to Table 2. (1) The
OEM and mobile device will establish a secret session key, KNa. This session
key KNa is generated by the mobile device and securely shared with the OEM.
It will be used for MAC computations during the whole OEM-MD download
phase. The mobile device will sign the message of idmd, encrypted KNa and
timestamp. KNa is encrypted with the OEM public key. The OEM will verify
the signature, decrypt the KNa, store it and send an acknowledgment. (2) The
mobile device sends a request for the firmware download, RequestDL. It is con-
catenated with the identification of the respective ECU (idecu), time stamp and
the MAC. (3) The OEM verifies the MAC and sends the key to unlock the
ECU into reprogramming mode (pskunlock). The key is encrypted with a pre-
shared key between the OEM and ECU (pskecu). The mobile device verifies
the MAC, stores the encrypted {pskunlock}pskecu

and sends an acknowledgment.
(4) The OEM then sends the firmware (Frmnew) encrypted with the pre-shared
firmware encryption key (pskfek). The mobile device verifies the MAC, stores
the encrypted firmware and sends an acknowledgment.

Download and Install. Refer to Table 3 for this phase. Once the new firmware
is downloaded in the mobile device, the user can choose to conduct the update at

Table 3. Protocol description: MD-ECU Download and install phase

(1) MD→CCU : idmd||{KNb}pkccu ||ts8||signskmd{idmd||{KNb}pkccu ||ts8}
CCU→ECU : idccu||{KNb}pkecu ||ts9||signskccu{idccu||{KNb}pkecu ||ts9}
ECU→CCU : idecu||ack||ts10||signskecu{idecu||ack||ts10}
CCU→MD : idccu||ack||ts11||signskccu{idccu||ack||ts11}

(2) MD→ECU : idmd||{pskunlock}pskecu ||ts12||MACKNb{idmd||{pskunlock}pskecu ||ts12}
ECU→MD : idecu||ack||ts13||MACKNb{idecu||ack||ts13}

(3) ECU→MD : idecu||{Frmold}pskfek ||ts14||MACKNb{idecu||{Frmold}pskfek ||ts14}
MD→ECU : idmd||ack||ts15||MACKNb{idmd||ack||ts15}

(4) MD→ECU : idmd||{Frmnew}pskfek ||ts16||MACKNb{idmd||{Frmnew}pskfek ||ts16}
ECU→MD : idecu||ack||ts17||MACKNb{idecu||ack||ts17}
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a later convenient time. This is an advantage if the car has no long range wireless
communications of its own. (1) The mobile device and car will establish a session
key KNb. This session key KNb is generated by the mobile device and securely
shared with the car (CCU and ECU). It will be used for MAC computation
during the whole MD-ECU download and install phase. The mobile device will
sign the message of idmd, encrypted KNb and timestamp. The KNb is encrypted
with the CCU’s public key, concatenated with time stamp and the mobile device
signature. The CCU will verify the signature, decrypt the KNb and store it. It will
then encrypt KNb with the ECU’s public key, concatenated with time stamp and
the CCU’s signature and send to ECU. ECU will verify the signature, decrypt
the KNb, store it and send an acknowledgment. (2) The mobile device transfers
the encrypted unlock ECU key, ({pskunlock}pskecu

) to the ECU. It is the key to
unlock the ECU to enable reprogramming mode. The ECU has its own unlock
key, which is only known to itself and the OEM. The ECU will verify the MAC
and decrypt {pskunlock}pskecu

. If it is the correct key, the ECU will change into
reprogramming mode. Else, the process will stop here. (3) The ECU transfers
the old firmware (Frmold) to the mobile device. This firmware is encrypted using
the pre-shared pskfek, concatenated with time stamp and MAC. The currently
working firmware in the ECU (Frmold) is transferred to the mobile device in
encrypted version to ensure its confidentiality. This will be used as a backup for
rollback if the installation of the new firmware fails. The mobile device will send
an acknowledgment to the ECU once all the blocks of the encrypted Frmold

is received. By transferring the old firmware to the mobile device as a backup,
it avoids doubling the memory size in all ECUs. (4) The ECU receives the
encrypted firmware update {Frmnew}pskfek

from the mobile device. After the
MAC is verified, it will decrypt the firmware and install the updated firmware
to the flash of ECU block by block. The firmware is encrypted with a pre-shared
firmware encryption key. Only the ECU is able to decrypt the firmware. For
every block of installed firmware, the chain of hashes are computed and verified.
Any error will terminate the update process and the process will restart again.
After three trials, the ECU will rollback to its previous version. If the rollback
fails, an error message will be indicated on the mobile application. A replacement
of an ECU maybe suggested if there is any issue with memory failure.

ECU Replacement. If any of the ECUs are replaced, the key update protocol
needs to be established to ensure further firmware updates on the ECUs are
possible. (1) The mobile device (through the CCU) will request the new ECU
information (RequestID). The ECU will give its ID to the mobile device (through
the CCU). (2) The mobile device will request the OEM to verify the authenticity
of the ECU (RequestVerifyID). It is concatenated with the idecu, time stamp
and its signature. (3) The OEM will verify the ECU’s ID and will ask CCU to
conduct further verification. It will send a random number (rnd), pskecu and
pkecu, encrypted with CCU’s public key to the mobile device. The mobile device
will pass this message to the CCU. (4) The CCU will decrypt the message to
obtain the rnd, pskecu and pkecu. It will then pass rnd and its pkccu to the



Let’s Get Mobile: Secure FOTA for Automotive System 509

Table 4. Update/ ECU replacement phase (between OEM-MD-car)

(1) MD→ECU : idmd||RequestID||ts1
ECU→MD : idecu||ts2

(2) MD→OEM : idmd||RequestV erifyID||idecu||ts3||
signskmd{idmd||RequestV erifyID||idecu||ts3}

(3) OEM→MD :idoem||{rnd, pskecu, pkecu}pkccu ||ts4||
signskoem{idoem||{rnd, pskecu, pkecu}pkccu ||ts4}

MD→CCU : idmd||{rnd, pskecu, pkecu}pkccu ||ts5||
signskmd{idmd||{rnd, pskecu, pkecu}pkccu ||ts5}

(4) CCU→ECU : idccu||rnd||pkccu||ts6
ECU→CCU : idecu||{{rnd}pskecu}pkccu||ts7

(5) CCU→MD : idccu||ack||ts8||signskccu{idccu||ack||ts8}

ECU. If the ECU is authentic, it will be able to produce the correct {rnd}pskecu

and pass the value (encrypted with the received pkccu) to the CCU. The CCU
will decrypt and verify the value sent by the ECU with the precomputed value.
(5) The CCU will acknowledge the authenticity, and send an acknowledgment
to the mobile device.

3.4 Formal Analysis

The proposed protocol is formally analysed using Scyther and CasperFDR tools
to verify its correctness. Scyther performs an automatic analysis of security pro-
tocols in a Dolev-Yao style model, for an unbounded number of instances [2].
CasperFDR tool uses Communication Sequential Process (CSP) files to be anal-
ysed using Failure Divergence Refinement (FDR) [7].

Formal Analysis Using Scyther. The scripts can be found in
Scyther input scripts. The default verification setup was used (i.e five as the
maximum number of runs, typed matching and to find the best attack with ten
maximum patterns per claim). The results for all the claims made are verified
as “Ok” in the “Status” and “No attacks within bounds” in the “Comments”.
This means that no attack was found within the bounded statespace, but there
can possibly be an attack outside the bounded statespace [1].

Formal Analysis Using CasperFDR. Due to space constraints the scripts
and associated details are presented in CasperFDR input scripts. All the speci-
fications made are verified and no attack was found for all the assertions.

https://www.dropbox.com/sh/r15ip58g7oga45q/AABeNio9jC1A2xOUBqOnwo9Sa?dl=0
https://www.dropbox.com/sh/dpfpstp8rzgmz5j/AADwLemp59gfiDDDLsIaYfFza?dl=0
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4 Conclusion

In the automotive industry, a secure firmware update process is crucial for safety
reasons. This paper proposes a secure OTA firmware update protocol with the
use of a mobile application for the automotive systems. The proposed mobile
application will ensure the authentication of all parties involved in the update
process and confidentiality of the firmware. However, even if the mobile appli-
cation is compromised, it cannot reveal the unencrypted firmware and associ-
ated secret/ private keys. The benefits of the proposed solution are that the
phone/ application are used as a pipe (without retaining any secrets) and the
phone cannot perform any undesired operations on the encrypted firmware. The
FOTA protocol was analysed using Scyther and CasperFDR and no attack was
found. Our further work includes implementation of the proposed protocol, the
development of the mobile application and exploration of lifecycle management
scenarios. Examples of lifecycle cases to be explored are phone change, loss or
theft, the use of the mobile application by mechanics to service multiple cars
and the change of car ownership.
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Abstract. In this paper, we present VICI, a system for auditing and authentica-
tion in contact center scenarios. The technique we present exploits the wide-
spread use of smartphones and other camera-enabled devices to allow a user 
(caller) to upload their picture, which can be verified automatically or by an 
agent before processing a transaction. The method can be configured for differ-
ent levels of security, ensures that the image(s) are fresh, and relies on the com-
putational complexity of image processing. We present our technique, the vari-
ous configurable options available to the system/agent, and describe a prototype 
implementation of our system. 

Keywords: Authentication · Biometrics · Security · Contact center · CRM 

1 Introduction 

An important component of customer service is to allow customers to contact the 
business to solve their problems. For example, in banking, customer transactions can 
be as simple as verifying an account balance, or more complex, like performing a 
wire transfer. A central component of these interactions is verifying the customer’s 
credentials. Typically, the verification process is performed either in an automated 
way or by a customer service agent. In most situations, the business verifies what the 
customer knows (e.g., a password, PIN, or personal questions), what the customer has 
(e.g., numbers on a card, account statement) or uses 2-factor authentication (e.g., via 
sending a one-time-password to a cellphone the customer has). To improve the quality 
of the authentication, businesses use layered security, especially driven by risk mod-
els, where multiple techniques are used to increase the strength of the authentication. 

While the above mentioned methods are reasonable for many situations, they still 
do not establish that the interaction is happening with the customer as opposed to 
somebody who knows information about the customer. There are several situations in 
which legal requirements and company policy require a higher level of authentication. 
As a simple example, consider retirement accounts (e.g., 401k accounts in the United 
States). These accounts are considered individual accounts, and even spouses are not 
allowed to make transactions on these accounts without explicit permission from the 
account holder. This is, in spite of the fact that, the spouse may have all the personal 
information and might even have access to the user’s devices. Another area where 
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enhanced authentication may be required involves access to insurance and medical 
information and medical follow-ups, where only the patient or a pre-designated indi-
vidual can participate in relevant discussions.  

1.1  Using Biometrics 

A well-studied and effective technique for authentication that verifies the user more 
explicitly is biometrics [1,2,3]. In many situations, biometrics provides an additional 
layer in the layered security architecture. Several aspects can be used for authentica-
tion using biometrics, e.g., (multiple) fingerprint(s), iris, face, and voiceprint. 
Amongst these, iris and fingerprint typically require either specialized equipment or 
security embedded in end-devices for effective use. Voice biometrics are currently 
used in contact centers, and provide reasonable performance [4] when the speech 
phrases used for authentication are reasonably long.  

Facial/Visual Identification. Given the widespread presence of cameras in connected 
consumer devices, facial identification is a very promising and orthogonal technique, 
and something we explore in this paper. A typical flow for the facial identification 
process is shown in Figure 1. Assume, for now, that the contact center (business) has 
a profile picture of the customer (user) in their database. During the online authentica-
tion phase, a fresh image of the user is obtained and compared against the image in 
the database. There are three main parts to the system: (i) having a database of cus-
tomer profile pictures (ii) obtaining the caller image during or at the start of the trans-
action, and (iii) comparing the two images (the database image against what is ob-
tained from the customer in the online phase). We examine these three parts below. 

 
Fig. 1. A typical facial identification process 

Seeding the database can be done in many ways: either at the time of customer ac-
quisition (e.g., account opening), from other trusted databases, or during a customer 
interaction itself as shown in Figure 1.  

The verification system compares the acquired image against the database image to 
determine a match. Image comparison is a well-studied problem and not the emphasis 
of our paper. The comparison could be automated or done by a human. Automated 
facial recognition is a heavily studied and ongoing research area [5]. Automated facial 
recognition is complex and its accuracy is dependent on many factors not in the  
contact center’s control (e.g., lighting, background, orientation) [6]. However, it is 
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believed that humans have an uncanny ability for face identification. There are some 
interesting studies [7] that show that humans reach a decision about image matching 
in two seconds or less and in some situations automated techniques may perform bet-
ter than humans, especially for matching unknown faces. Many contact center scena-
rios we have discussed allow human intervention, and in our work we propose the use 
of a system that melds automated and human recognition to get the best of both 
worlds. To distinguish this aspect from automated facial recognition, we label our 
process visual identification. In effect, our system can use known facial verification 
techniques [5] and (optionally) blend its results with a trained human agent’s percep-
tion to reach a decision on success. For transactions that require customer-agent inte-
raction, visual identification only uses a few seconds of the agent’s time.  

The remaining part of the process and the main focus in this paper is how to obtain 
a fresh image of the caller. By fresh, we mean that the image presented is not a stored 
image that can be easily faked by the sender to represent the customer. Our goal is to 
build a system, VICI, for visual identification that allows a facial image to be sent 
from an un-trusted remote device without specialized hardware at the user end, while 
ensuring with high probability that the image received can be trusted and is fresh.  

In Section 2, we describe the idea behind VICI, our technique to obtain a fresh image 
from a remote end-user. We describe the VICI system, options and issues in Section 3, 
present our prototype implementation in Section 4 and conclude in Section 5. 

2 VICI: Visual Caller Identification 

The core idea in VICI is to request an image from the user. To ensure that the image 
is fresh, the user is presented with a gesture challenge, e.g., “tilt your head and hold a 
finger to your forehead while taking the picture.” The image of the user performing 
the gesture is then presented to the verification system (automated+agent) to compare 
against the database image to ensure they match. Effectively, the gesture request pro-
vides a nonce [8] for the security of the transaction. The main idea of VICI is shown 
in Figure 2.  

Conceptually, the VICI technique is verifying the participation of the person whose 
image is obtained and, along the lines of the CAPTCHA technique [9], ensuring that 
the gesture is easy for a human to perform but difficult for an automated system to 
generate. However, unlike CAPTCHA, the verification while easy for a human may 
be difficult (using current techniques) for automated algorithms.  

In the following discussion we describe the VICI system that builds on this core 
technique to provide a set of configurable options that allows the contact center to 
tune the security of the transaction. For example, the basic VICI system could use a 
single image to audit and authorize the user (as opposed to only the user credentials) 
for higher value transactions. The other aspects we describe below can be used to tune 
the security for more risky transactions.  
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Fig. 2. The VICI authentication flow. 

3 VICI: Building a System 

To take the basic VICI concept from Section 2 and make it usable and tunable in a 
contact center system requires several components. These include, among others, a 
method to evaluate transaction risk (which will be provided by business process sys-
tems but also influenced by the VICI system), techniques to prevent an adversary 
from pre-creating the gestures or creating them on-the-fly, and allowing the user to 
choose a device to perform the transaction. The system can choose from these availa-
ble options to adjust the security based on perceived risk.  

Gesture Types and Entropy. The security of the technique increases with the entro-
py of the nonce. This includes the database of available gestures, and the difficulty of 
the gestures to be generated by automated means. Some examples are shown in Fig-
ure 3. Some gestures involving the teeth, tongue, hair and sometimes the lips and eyes 
of the user (e.g., put out your tongue or wink) are known to be hard to visually model 
in computer graphics [10]. The gestures could use combinations to make them more 
unique (e.g., hold up two fingers of your left hand while looking down). The gesture 
database can be updated and refined over time. The database is expected to be large 
but finite. However, a key to getting a large set of gestures is via combinations and 
using multiple images or a sequence of images as we will see below.  

 

 
Fig. 3. Example gestures for use with the VICI system 



 VICI: Visual Caller Identification for Contact Center Applications 515 

Multiple Images or a Short Video. Given a database with m gestures, a method to 
significantly increase the total possible combinations is to request a sequence of im-
ages with one of the m gestures. A combination of k images will provide a possible set 
of mk possible gesture combinations. The value of m and k can be adjusted to derive 
the desired security.  

The concept of multiple images can instead be implemented using a short video 
that may be recorded at the client device and uploaded to the authentication system.  
When using a video, there are several additional tools available to the system. For 
example, an interesting gesture that reflects in the captured video in a unique way is 
changing the perspective: either asking the user or the camera to be moved. The range 
of motion that could be requested is also larger with videos. Another technique is to 
include voice in addition to image(s) and ask the user to speak a phrase. Even without 
the voice, the lip movement matched to the requested phrase provides freshness in-
formation. With voice, the verification system could layer voice biometrics to further 
enhance the security. With video, the automated component of our verification system 
could find the face and evaluate if certain requested movements are taking place.  

As a simple example, a k digit random number from the alphabet {0…5} could be 
generated, and the user could be asked to hold up successively between 0 and 5 fin-
gers in addition to performing a certain gesture involving the face. The value of k can 
be adjusted for increasing the number of available unique gesture combinations.  

Presenting the Gesture to the User. How the gesture is presented to the user can 
further aid in improving the solution’s security. Since the challenge is expected to be 
interpreted and enacted by a human, the challenge can be presented as a CAPTCHA 
[9] to make it more difficult for a machine to interpret it. Another method in the reper-
toire is to present the desired challenge as an image or short video to the user. Repeat-
ing a (simple enough) action seen in an image or video is relatively simple for a hu-
man to do, but quite complicated to be interpreted and re-created by a machine.  

The Timeliness Constraint. For each gesture i in the database, we can maintain in-
formation about the typical time ti taken by a user to perform the gesture. After the 
gesture i has been presented to the customer, both the server and the client can count 
down for f(ti) time, where the function f(.) provides an allowance in ti for the user to 
record their gesture (and could be user-specific). If the upload is not obtained within 
f(ti)+ ∆t time at the server, where ∆t accounts for the round trip communication laten-
cy, the image is considered unreliable, and the process is adjusted to obtain additional 
images. The process is depicted in Figure 4. The system can also adapt to the frequen-
cy and pattern of unreliable images.  

Real-time Transaction. Our solution thus far assumes an ongoing online transaction 
between the client device and the server with occasional uploads from the client to the 
server. It is also possible, for additional security, to have a real-time session estab-
lished between the client device and the server (e.g., via WebRTC [11]). In this case, 
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the real-time media is sent from the client to the server with timely recording of the 
media done at the server. Doing so makes it less susceptible to client manipulation. 

 

 
Fig. 4. Enabling the timeliness constraint 

Adaptation. Based on the ongoing session, the risk level of the transaction can be 
continually evaluated and fed into any other input that evaluates risk. The parameters 
from VICI that contribute to the risk of the transaction include deviations from the 
timeliness constraint, and any deviations in the verification process (e.g., absence of 
face in image or confirmed significant difference between the acquired and database 
images). This can contribute to higher levels of challenges (type of gesture, increased 
number of images, escalation to video or audio+video and activating the real-time 
transaction module).  

Contact Center Agent Considerations. While the customer could be given reasona-
ble time to provide their image, the matching process is relatively quick. A human 
requires just a couple of seconds to compare two images [7]. The human element of 
the verification system could be done by a contact center agent and can be done while 
the customer waits in queue or is talking to an agent. The image/video acquisition can 
be done prior to customer-agent interaction (e.g., when a customer is in a wait queue).  

4 Prototype Implementation 

We built a prototype of the VICI system, and describe two implementations here. The 
first used html5 and the second used WebRTC [11] for acquiring the media.  

4.1 Images/Video Using html5 

In this implementation, we had a customer call into a contact center using a smart-
phone. The system then generated and sent an authentication URL via SMS to the 
smartphone. When the user clicked on the URL, an html5 session was established 
between the smartphone and the web server. The server chose a challenge at random 
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from a database, embedded it as a CAPTCHA, and presented it to the user. A local 
timer was started at the client. The customer could click to upload their image. Java-
script and Ajax provide the method for implementing the timeliness constraint.  

For image/video acquisition on the smartphone we used standard html5 media cap-
ture tags. When the call was routed to the agent (using available contact center routing 
software), the agent was provided a pop-up to verify the presented image with the 
database image. 

4.2 Image Sequence Using WebRTC 

For experimenting with image sequences, remote video and real-time transactions, we 
used the WebRTC framework. This restricted us to Android smartphones or desktops 
with browsers that supported WebRTC.  

In this case, the user started their interaction on the web and initiated an authentica-
tion session. This invoked the WebRTC channel, and with user permission, the local 
video was acquired using getUserMedia() and shown to the user. They were presented 
with a challenge (coded using a CAPTCHA). The signaling was done using websock-
ets. It was now possible to provide a sequence of requests for images with different 
gestures, and get a snapshot of the image in the user’s browser canvas. The acquired 
image was uploaded to the server. The contact center agent could, before being con-
nected to the customer, access the uploaded images and determine a match.  

The WebRTC implementation can allow for media to be recorded at the contact 
center server or at the client device.  

4.3 Comparing and Evaluating the Two Prototypes 

Depending on the type of device, either the html5 or the WebRTC method can be 
activated.  With WebRTC, the media is available natively inside the browser context 
and allows pushing of instructions and media, countdown of timers, and acquisition of 
images/video to happen in parallel, with the user fully aware of each of these activi-
ties. The html5 media capture tag, however, is supported in most smartphone brows-
ers as opposed to the limited support of WebRTC in certain desktop browsers and 
Android smartphones today. 

In a limited user study, we checked our system with a small user group for a con-
tact center-like interaction. The ad-hoc SMS method for starting the authentication 
was viewed very favorably. The gestures had to be reasonable and were thought use-
ful for high value transactions. The time for face verification (by agent) matched pre-
vious studies: a couple of seconds to match with great accuracy. A more detailed user 
study (of both end users and agents) is being planned to help better understand the 
viability of VICI.   
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5 Conclusion and Future Work 

In this paper, we have studied the problem of user authentication and use of biome-
trics for user validation. Amongst the common biometrics available, a user’s voice 
and face are most accessible, and the face allows a mixture of human and machine 
involvement for verification.  

We have presented VICI, a visual identification system for use by businesses in 
contact centers to authenticate callers and audit transactions. By challenging a user 
with a gesture or sequence of gestures, the image/video is verified to be fresh. The 
verification system combines automated and human verification to compare the pre-
sented image/video against a profile picture. 

The VICI system incorporates additional techniques like image sequences, use of 
short videos, potential layered use of voice biometrics, timeliness constraints and use 
of real-time transactions to further manage risk. These techniques can structure the 
transaction in a layered security model to achieve the required level of security.   

There are several interesting avenues for further exploration; for example, auto-
mated methods for generating a gesture database, and automated verification includ-
ing gesture and partially occluded face verification.  Extended user studies on use of 
this technique would be an interesting avenue for exploration.  
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Abstract. As network data rates continue to increase, implementing
real-time network security applications requires a scalable computing
platform. Multicore and manycore parallel processing systems provide
a way to scale network security applications. The focus of this study
are network covert timing channels (CTCs) that provide secret com-
munication between hosts by modulating the inter-packet delays of an
overt application. In this paper, we present an implementation of a
parallel CTC detection tool in a Massively Parallel Processing Array
(MPPA) architecture. We examine the effectiveness of our tool for detect-
ing model-based CTCs using parallel implementation of four common
detection techniques, namely, the Kullback-Liebler Divergence (KLD),
Kolmogorov-Smirnov (K-S), regularity and first order entropy tests. We
evaluate the performance of the algorithms using classification rates and
study the scalability by varying the number of cores. Results show that
while parallelization provides benefit, the scalability is limited by the
memory available in each core and the ability to stream in large number
of flows to different cores.
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1 Introduction

Covert timing channels (CTCs) belong to a class of communication methods
that exploit the timing and/or ordering of authorized overt communication as
a carrier for secret messages. Examples of overt carriers for timing channels
include the seek time of a hard disk head, time between phone calls, or inter-
packet delays (IPDs) of an IP packet stream. There are two broad classes of
network traffic based timing channels, IPD timing channels and combinatorial

This research was supported by NSF grant CNS-1018886.

c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 519–530, 2015.
DOI: 10.1007/978-3-319-25645-0 40



520 R.K. Gegan et al.

timing channels. The latter employs packet ordering in one or more network
flows to embed the secret message. In this study we consider IPD based timing
channels, where the sender modulates a covert message into the IPDs of a single
IP packet stream. The receiver observes the packet arrival times and using a
shared code-book, decodes the covert message.

CTCs have a variety of malicious uses, including the theft of sensitive data
and anonymous communication between botnets [16]. Therefore, it is impor-
tant to quickly detect CTCs in network traffic. Detecting CTCs requires packet
inspection and processing. The processing is required not only on individual
packets but also on sequences of packets and across flows. Performing these func-
tions at very high network line rates (10 Gbps now and soon scaling up to 40 to
100 Gbps) is critical to safeguarding enterprise networks. Solutions based on the
use of Field Programmable Gate Arrays (FPGAs) and/or multi-core CPUs have
limitations with regards to performance, flexibility, power, and programmability.
In this study, we propose to investigate the effectiveness of Massively Parallel
Processing Array (MPPA) architectures to scale packet processing and analy-
sis tasks to meet the CTC detection challenges presented by next generation
high-speed networks. We provide background on existing covert timing channel
detection and disruption techniques, then evaluate the performance of four basic
detection tests − the Kullback-Liebler Divergence, Kolmogorov-Smirnov, time-
domain regularity and first order entropy tests) − using the Tilera TilePro64
MPPA architecture [17].

We obtained the detection results for two common types of CTCs model-
based covert timing channels (MBCTCs) and time-replay covert timing channels
(TRCTCs)1. The results match previous results [5] and verify their results. In
addition, our tests show that our tool can handle traffic at rates up to 2 Gbps.
Results show that while parallelization provides benefit, the scalability is limited
by the memory available in each core and the ability to stream in large number of
flows to different cores. The initial implementation of this detection tool should
serve as a framework for future real-time detection of different covert timing
channels as well as other network security applications.

The remainder of the paper is organized as follows. In Section 2 we discuss
the CTC detection methods that we have considered in our study. In Section 3
we discuss details of the MPPA architecture and the design challenges and solu-
tions to implement the CTC detection methods. In Section 4 we discuss the
experimental results. Finally, in Section 5 we give the conclusions and the future
work.

2 Covert Timing Channels and Detection

In this paper, we consider a subset of network covert timing channels (CTCs) in
which the sender modulates a covert message into the inter-packet delays (IPDs) of
a packet stream. The receiver observes the inter-packet delays, and using a shared
1 Due to space limitations, we only present the results for MBCTCs. TRCTC results

can be found in [18].



Performance Analysis of Real-Time Covert Timing Channel Detection 521

code-book, decodes the data. There are two main varieties of covert timing chan-
nels active CTCs and passive CTCs. To transmit a message, active CTCs must
create extra traffic, while passive CTCs do not. There are advantages and disad-
vantages to either approach. Typically, passive CTCs are more difficult to detect,
while active CTCs are faster. Both types require the sender to use a hijacked
machine. In addition, passive CTCs have a smaller capacity, because they must
rely on the packet rate of the real application traffic [10].

A few common active types of network traffic based CTC include IP CTCs
(IPCTC), Time Replay CTCs (TRCTC), and Model Based CTCs (MBCTC).
Although our experiments included multiple types of CTCs, this paper only
includes the MBCTC results. MBCTCs attempt to copy the properties of legiti-
mate traffic by fitting the covert channel to a statistical model which most closely
matches the actual traffic. The channel uses a filter to send outgoing traffic to
an analyzer which determines the distribution model to use, such as Poisson,
Gamma, or Weibull distribution. Then, the channel uses the selected model’s
inverse distribution function to encode the message. On the receiver’s side, the
message can be decoded using the model’s cumulative distribution function. As
a result, MBCTCs have a distribution very close to legitimate traffic, making
shape-based detection difficult. In addition, MBCTCs can further complicate
detection by periodically changing the parameters of the model or using a new
model [5].

2.1 Detection Tests

Although techniques such as fuzzy time [7] and the network pump [8] can reduce
the capacity of a CTC, they are not applicable to all covert channel systems. In
particular, these techniques may significantly modify the inter-packet delays,
which may be undesirable, particularly for applications such as VoIP which
require QoS guarantees on jitter and end-to-end packet delays. Rather than rely-
ing on an underlying disruption mechanism, the network administrator might
prefer to first detect a CTC, and then block it, either through selectively adding
random noise or blocking the flow entirely. We considered four tests, the regular-
ity test, the entropy test, the Kolmogorov-Smirnov (K-S) test, and the Kullback-
Liebler Divergence (KLD) test, to detect CTCs. We test for regularity using the
method developed in [2]. The entropy test measures the amount of randomness
in the flow’s distribution. The entropy should be larger in MBCTCs than legit-
imate traffic, so we can assume a CTC exists if the entropy is above a certain
threshold [5].

The entropy value, or the E Score, is given by [5]

E Score = −
n∑

i=1

P (xi) log P (xi) (1)

where P (xi) refers to the probability of the inter-packet delay sample taking
the value xi. We determine the first-order E Score by distributing the observed
inter-packet delays into equal sized bins, which are then used in the equation. A
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more complex test based on the entropy test, the corrected conditional entropy
(CCE) test, has been shown to reliably detect a variety of CTCs [5]. However,
the complexity of the CCE test, requiring the construction of a Q-ary tree, makes
it unfeasible for our current setup. In [5], the test took 16 milliseconds on an
Intel Pentium D 3.4Ghz processor [5]. Given the relatively low performance (866
Mhz) of the individual TilePro64 cores and the need to perform the detection
tests at high rates, we decided against including the CCE test [17].

The Kolmogov-Smirnov test referred to at the KS test, reports the maximum
distance between two probability distributions. The KS test score (KS Score) is
given by [5]

KS Score = Max|S1(x) − S2(x)| (2)

where S1 and S2 refer to two distinct distributions. One advantage of using the
KS test is that the distribution type does not matter, meaning it works equally
well regardless of the traffic type used to create the distribution. The Kullback-
Liebler Divergence test referred to as the KLD test, measures how much one
distribution diverges from another. The KLD test score (KLD Score) is given
by [5]:

KLD Score = DKL(P ||Q) (3)

=
n∑

i=0

P (i) log
P (i)
Q(i)

(4)

where P (i) is the legitimate distribution, while Q(i) is the distribution for the
inter-packet delays we test. A large KLD Score indicates a big difference between
two distributions, meaning a covert timing channel might exist. Finally, we use
the regularity test, which measures the change in IPD variance. The Regularity
test score referred to as the R Score, is given by [5]:

R Score = STDEV (
|εi − εj |

εi
, i < j,∀i, j) (5)

For some CTCs, the distribution patterns do not change much over time, giving
a lower R Score than legitimate traffic. However, most CTCs routinely update
their encoding scheme, making the R Score more similar to legitimate traffic [5].

3 Implementation

In order to scale real-time network security application for higher and higher
link data rates, we must rely on parallel processing devices with multiple cores.
There are three common varieties of multi-core parallel processing devices Field-
programmable gate array (FPGA) based, Graphical Processing Units (GPU)
based, and Massively Parallel Processing Array (MPPA) based. While GPUs con-
tain a relatively large number of processing units, they are not typically imple-
mented in systems other than PCs. Compared to MPPA architectures, GPUs
require much more power and OS support in order to operate. GPUs also require
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each core to run the same set of code, while MPPA architectures can each run inde-
pendent code. FPGA based architectures have numerous disadvantages compared
to MPPA architectures. FGPAs usually require designers to write code in a low-
level, gate oriented language (VHDL). Furthermore, FGPAs require the designer
to pay attention to many details not inherent to algorithm development, such as
timing constraints and clock propagation. In contrast, MPPA architectures have
some of FGPAs positive traits, like being able to run multiple logical blocks simul-
taneously, and pipeline operations across processors. Importantly, MPPA archi-
tectures provide excellent I/O performance, since the processors on the periphery
of the chip communicate directly with the I/O devices. For these reasons, we have
selected an MPPA architecture to implement our security application.

For our experiments, our objective was to measure the relative real-time
effectiveness of different covert timing channel detection tests, as well as study
how adding cores could improve the detection performance. We used a Tilera
TilePro64 NIC to monitor incoming traffic in real-time and run our detection
tests. The Tilera TilePro64 has 64 identical cores called tiles each containing
their own processor and cache, consisting of an L1 (16KB instruction and 8KB
data) and 64KB L2 cache. The total RAM available on the card is 8 GB, and
each tile’s processing speed is 866 Mhz. For high-speed I/O, the card includes
two 10 GBps Ethernet XAUI interfaces. Although we used a 10 Gbps interface,
the packet replay program tcpreplay [15] could not replay traffic at very high
speeds while accurately maintaining the relative packet timings. Consequently,
the data rates used in our experimental study were lower than 10 Gbps.

3.1 Implementation of the Detection System

To perform our detection experiments, we used two machines, a sender machine
which replays traffic samples, and a receiver machine hosting the TilePro64,
which runs our detection tool. Using tcpreplay, the sender machine replays the
CTC injected traffic samples to the receiver at various rates. Meanwhile, our
detection tool runs on the NIC, monitoring the incoming traffic for CTCs for a
set period of time. The tool uses a built-in Tilera hash function to distribute the
incoming flows evenly across the individual cores. For each incoming packet in
an individual flow, the cores will calculate the IPD using the previous packet’s
arrival time. The IPDs are stored and used to update a set of five bins repre-
senting the traffic’s timing distribution. Once a core has gathered enough IPDs,
it performs the covert timing channel detection tests. We vary the IPD thresh-
old in our experiments, but it is typically set to 1000 IPDs, because only those
flows containing at least 1000 IPDs have been injected with CTCs. When the
test period ends, the detection tool reports the final results the true and false
positive rates, as well as the detection time data.

3.2 Design Challenges and Solutions

Implementing the CTC detection methods on the TilePro64 posed many design
challenges owing to various architectural constraints as well as issues related to
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traffic traces used in the experimental analysis. In the following subsections we
highlight a subset of key challenges and our solutions.

Memory Constraints and Optimization. A major challenge was ensuring
that the detection tool could handle large amounts of traffic at high data rates
without dropping packets. Additionally, since each core in the TilePro64 has
limited memory, it was important to make sure that the implementation of
the detection method did not require too much memory. Our detection tool
attempts to discover CTCs in the incoming traffic flows by calculating the IPD
distributions for each flow and comparing the detection test results to a threshold
value based on the training data. Considering that at a 10 Gbps rate, each
packet must be processed in under 67.2 nanoseconds, this task requires swift
calculations on each new packet, even at lower data rates. Since a single core
cannot handle all the flows, we parallelize the work. Most schemes took too
much time processing each flow, resulting in a large number of packet drops.
Since communication between cores was too time consuming, the most effective
method was to distribute the flows evenly across the cores. The TilePro64’s
built-in hash functions distribute packets based on flow, and as a result each
core receives a roughly equal subset of the total flows.

For each incoming flow, a core must store some information to complete a
detection test. In particular, each core holds a hash table storing the five bin distri-
bution values, the previously received packet’s timestamp (for calculating IPDs),
and the total packet count for each flow. We used a basic hash function [9] to deter-
mine a packet’s flow. Since the information is typically not needed for longer than
2ms after calculating the distribution, we can replace the hash entry on a conflict,
preventing the core from running out of memory.

Overall, we wanted each core to perform the minimum amount of work.
Therefore, we needed to find a way of reducing the number of flows tested without
missing any potential CTCs. Looking at internet traffic profiles, we find that 80
percent of flows contain no more than 20 packets [12]. We assumed that large
flows are most likely to contain a CTC, and significantly reduced the number
of flows each core processes by separating the large Elephant flows from the
small Mice flows [13]. Our code uses the Sample-and-Hold technique [13], which
calculates a random value for each new packet, so every incoming packet has a
small chance − 3% in our case that its flow will be stored. Therefore, the large
flows are stored with a larger probability than the small flows, reducing the total
data stored and thereby addressing the core memory constraint.

Evaluating Performance Using Small Anonymized Packets. We
obtained multiple anonymized traffic traces from the CAIDA repository [18].
The traces correspond to captures taken from an OC-192 link in San Jose, con-
sisting primarily of HTTP traffic. One capture was used to create our training
statistics, such as the legitimate traffic distribution for HTTP traffic, as well
as the E score, KS Score and KLD Score results for each individual flow. The
training data also determined the bin sizes used to create the inter-packet delay
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distributions. In another CAIDA traffic capture, we injected MBCTCs into 10%
of the flows containing more than 1000 packets. To accomplish this, we first cre-
ated capture files for each eligible flow, then use a script to change their IPDs,
thereby creating sets of legitimate and CTC flows. The flows are then merged
back together to form a capture file we use for the experiments, selecting a small
percentage of the merged file’s flows to contain covert timing channels.

One challenge faced was deciding how to handle our sample’s small packet
sizes. Since the CAIDA repository traffic is anonymized, the packets contain only
the headers. Processing traffic consisting solely of 64 byte packets is the most
difficult case to handle in real-time [11]. For 64 byte packets at 10 Gbps, the
Tilera TilePro64 Ingress Packet Processor (IPP) at times has no more than 50
cycles to process the incoming packet. Furthermore, a recent paper by Lee et al.
[11] shows that most hardware timestamps cannot accurately represent the inter-
packet delays for 64 byte packets when replaying traffic at 1 Gbps. Since larger
packet sizes are associated with larger data rates [14], our experiments use an esti-
mate for the data rate of non-anonymized traffic. We estimate the data rate by
multiplying the rate which tcpreplay reports by the average HTTP packet size
(512 bytes [4]), then dividing by 64.

4 Results and Discussions

Our experiments were performed using tcpreplay to replay a CTC injected traffic
trace to a receiver machine hosting the Tilera TilePro64. The trace consisted
primarily of HTTP traffic. A legitimate traffic trace was used to determine the
legitimate IPD distribution, while the another was injected with CTCs for use
in the experiments. Table 1 provides a description of the flows contained in the
CTC injected trace file used in our experiments.

Table 1. Sample traffic statistics. Large Flows are those containing at least 1000
packets.

Sample Total Packets Total Flows Large Flows Legitimate CTCs

MBCTC 33581932 631089 3377 3056 321

4.1 Rate of Classification Curves

The effectiveness of a classifier can be judged by the area under the ROC curve
which plots the True Positive as a function of the False Positive. The larger area
under the ROC curve, the more effective is the test. In our experiments, the true
positive rate is the percentage of CTCs correctly identified, and the false positive
rate is the percentage of eligible flows misclassified as CTCs. The classification
rate tests were performed by running the detection tool without a threshold,
allowing all eligible flows to be captured by the Tilera NIC. Once the detection
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period ends, we compare the scores against a set of score thresholds and print
the detection rates. This method keeps the replayed traffic’s data rate consistent
across runs while forming the ROC curves. The classification results for the
different tests are shown in Figure 1. We also examine how the classification
rate varies based on the number of IPDs tested. These results are shown in
Figure 1(f).

MBCTCs fit the channel’s IPDs to a statistical model, making the distribution
similar to legitimate traffic and more resistant to shape-based detection tests[5].
Although legitimate traffic’s average R score will be larger, the test’s large stan-
dard deviation makes it a poor metric. In addition, the refitting algorithm makes
the regularity similar for samples containing more than 100 packets [5]. The legiti-
mate traffic scores were calculated using 2500 sample flows captured on the Tilera
network card at 25.96 Mbps (estimated 207.68 Mbps), while the covert traffic
scores were calculated using 150 CTC flows.

Table 2. Detection test scores for legitimate flows versus covert flows in the MBCTC
capture file.

Test Score Legitimate Mean Legitimate SD CTC Mean CTC SD

E Score 0.51 0.15 2.10 0.52
KLD Score 0.28 0.11 1.66 0.59
KS Score 0.17 0.04 0.59 0.18
R Score 1941 1654 131 1191

Comparing the scores in Table 2, we see that MBCTC traffic will typically
have larger E Scores, KLD Scores, and KS Scores, and smaller R Scores compared
to legitimate traffic flows. We can detect CTCs by looking for large disparities
between the observed score and the score for legitimate traffic. For example, large
E Scores indicate the existence of a covert channel. Comparing the rates, we see
that the entropy test (Figure 2a) most reliably detects MBCTCs, followed by the
KLD test, the KS test, and the regularity test. The KLD test measures the rela-
tive entropy between two distributions, which could explain its relative success.
Previous results by Gianvecchio et al. [5] have shown the effectiveness of entropy-
based measurements for detecting MBCTCs. The same paper also shows the KS
and regularity tests to be poor classifiers [5]. Since MBCTCs mimic legitimate
traffic distributions, the two distributions will be very similar. Therefore, the KS
test’s method of identifying large distances between distributions is ineffective
for detecting MBCTCs. The regularity test requires around 40% false positive
rate among large flows before performing better than guessing, most likely due
to the large standard deviation in R Scores.

Figure 1(e) shows the entropy test’s rate of classification curve when measur-
ing the detection rates at the fastest traffic rate we could achieve using tcpreplay
(232.18 Mbps, estimated at 1.86 Gbps). The relative effectiveness of the detec-
tion tests remains the same, but the rates are universally lower testing at a
high rate. This can be attributed to the decreased accuracy caused by replaying
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(a) Entropy Test (b) Kullback-Liebler Divergence Test

(c) Kolmogorov-Smirnov Test (d) Regularity Test

(e) Entropy test for high data rate
(1.86 Gbps)

(f) MBCTC detection rates vs. the number
of IPDs used to calculated the E score.

Fig. 1. (a) - (e) MBCTC ROC curves for different detection tests. (f) The impact of
varying the number of IPDs tested.

the traffic sample at the highest possible speed. At lower rates, tcpreplay can
accurately reproduce the capture file’s relative packet timings, but replaying the
traffic at higher rates alters the timing [15]. Since the inter-packet delays change,
the detection test scores also change, reducing the test accuracy.

In Figure 1(f), we show how varying the number of required IPDs affects the
detection rates of the entropy test at a set threshold (E Score >= 2.07). Increas-
ing the number of IPDs tested generally improves the test accuracy, although
the true positive rates may decrease along with the reduced false positives. The
trade-off between sample size and detection time must be considered carefully
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depending on the CTC type and the test used. The more time detecting a CTC,
the more data the channel can transmit. All tests but the regularity test fin-
ish in around 0.10 milliseconds. Regularity takes slightly longer than the other
tests, because we perform the test using all the collected IPDs, not the five bins.
The total detection time primarily depends on the incoming traffic’s date rate −
higher rates reduce the average time. Previous results [5] demonstrate that the
ideal sample size depends primarily on the test and channel complexity.

4.2 Benefit of Parallelization

Real-time detection of covert timing channels requires us to handle a large num-
ber of flows simultaneously. Although a single worker core can handle all the
flows in our sample when replayed at 27.18 Mbps (estimated 217.45 Mbps),
higher rates of traffic require multiple cores to prevent packet drops due to
memory constraints. To parallelize our detection program, we distribute the
incoming flows between cores using the TilePro64’s built-in hash function. The
hash function determines which bucket an incoming packet should be directed
towards, hashing on the source and destination ports and IP addresses, as well
as the Ethernet Mac address. Each bucket is mapped to a worker tile queue,
containing the packets waiting for processing. If a bucket sends a packet to a
full queue, the packet will be dropped. Ideally, we want each tile to handle an
equal portion of the flows in order to minimize the packet drops. At an estimated
1.86 Gbps (64-byte packets sent at 232.18 Mbps, the maximum rate we could
replay the capture file using tcpreplay on our hardware), a single tile working
alone will only receive 20% of the packets. Using seven tiles reduces the packet
drop rate to less than 1% as shown in Figure 2(a). Figure 2(b) shows that sim-
ilar results are obtained when testing a sample with larger packet sizes at this
rate, providing additional justification for our rate estimates. When the flows are
distributed evenly, increasing the tiles used decreases the packet drops, which in
turn increases the detection rate.

4.3 Summary of Results

Our results demonstrate that using more worker cores reduces the time packets
spend in a queue, reducing packet drops. The decreased packet drops increase
the accuracy of the tests. Our sample size experiments demonstrate a trade-
off between detection test accuracy and detection test time. Using more IPDs
increases the accuracy, but also increases the time required to identify a flow.
While the only effective MBCTC classifier we tested was the first-order entropy
test, the detection rates for the other tests match those found in previous exper-
iments [5]. Our results show that these tests can be performed quickly (less than
1 ms) and previous papers have shown their effectiveness for detecting other
CTC varieties not included in this first implementation [3][5][1].
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(a) Percentage of MBCTC sample packets
received at an average rate of 232.18 Mbps
(an estimated 1.86 Gbps)

(b) Percentage of BigFlows.pcap packets
received at an average rate of 1943.71 Gbps

Fig. 2. Increasing the number of cores handling flows reduces the number of packets
dropped, improving detection test performance.

5 Conclusion and Future Work

Through our experiments, we have demonstrated an initial implementation of a
real-time parallel covert timing channel detection program. Although only the
entropy test proved effective, our classification tests produced detection rates
similar to a previous CTC detection paper[5] verifying their results. In addition,
our program shows some benefits provided by using a massively-parallel proces-
sor for detecting anomalous network flows. Future experiments should explore
alternative parallelization methods. Although all the techniques we tested can
be performed on a single-core, more complex tests require too much time for our
tool at high rates. Parallelizing the algorithms could make tasks such as con-
structing the Q-ary tree for the CCE test more feasible. Since different CTCs
require different detection methods, one notable way to improve on our design
would be to duplicate incoming flows and send them to separate groups of cores
detecting different types of covert channels. Our experiments have shown that
less than 10 cores are necessary to handle incoming flows at rates around 2 Gbps
without packet loss. This gives us an opportunity to utilize the remaining cores
to perform other detection tests. Ideally, each group of cores could also perform
multiple detection tests simultaneously. One alternative would be performing
CTC detection using a GPU instead. Our detection tool should serve as a frame-
work for future covert timing channel research.
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Abstract. Electrocardiogram (ECG) sensor is one of the most com-
monly available and medically important sensors in a Body Sensor Net-
work (BSN). Compromise of the ECG sensor can have severe conse-
quences for the user as it monitors the user’s cardiac process. In this
paper, we propose an approach called SIgnal Feature-correlation-based
Testing (SIFT) which is used to detect temporal alteration of ECG sen-
sors in a BSN. The novelty of SIFT lies in the fact that it does not require
redundant ECG sensors nor the subject’s historical ECG data to detect
the temporal alteration. SIFT works by leveraging multiple physiological
signals based on the same underlying physiological process (e.g., cardiac
process) – arterial blood pressure and respiration. Analysis of our case
study demonstrates promising results with ∼98% accuracy in detecting
even subtle alterations in the temporal properties of an ECG signal.

1 Introduction

Emerging Body Sensor Networks (BSNs) have demonstrated great potential in
a broad range of applications in healthcare and wellbeing. The fact that BSNs
collect sensitive data and provide valuable information to caregivers and users
makes them attractive targets for tech-criminals to exploit. One such threat is
sensor compromise, which we define as the unauthorized modification of sensor
output (i.e., measurement) to relay incorrect patient health data to the base
station. The modification of sensor output can be done in several ways including
installation of malware on sensors that modify the readings [2], and inducing
arbitrary signals into sensor circuitry leading to erroneous readings [8].

Electrocardiogram (ECG) is one of the most widely deployed sensors on
individuals. Any compromise of ECG sensor or surreptitious alteration of the
sensor output can pose extreme consequences to a person’s health from missed
diagnosis and delayed treatment. In general, compromising an ECG sensor in a
BSN allows the adversary to alter its signal in two possible ways: (i) temporal
alteration, which modifies the timing information of ECG complex (e.g., inter-
beat-interval); and (ii) morphological alteration, which modifies the shape of the
ECG. In [1], we proposed a method to detect the morphological alterations of
ECG signal in BSNs. In this paper, we present a complementary work on detect-
ing temporal alterations of ECG sensor output due to adversarial compromise.
c© Springer International Publishing Switzerland 2015
M. Qiu et al. (Eds.): NSS 2015, LNCS 9408, pp. 531–539, 2015.
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Temporal alterations can be used to modify a regular ECG signal to imply atrial
fibrillation (irregular heart rhythm) or atrial tachycardia (abnormally high heart
rhythm) or vice-versa.

Recent years have seen some work in the domain of anomaly detection in
BSNs. These approaches have tried to adapt sensor-redundancy-based methods
for detecting faulty sensors in BSNs [3,5,7,12]. Such BSNs naturally require
considerable sensor-redundancies, where multiple sensors of the same type (e.g.,
accelerometers) measure the same limb movement. However, they might not be
applicable when we consider ECG sensors, since for usability reasons typically
there is only one ECG sensor in a BSN. Alternatively, history-based anomaly
detection approaches have also been proposed in [13]. However, the human body
is too dynamic for the past to effectively determine the current patient state at
all times.

In this regard, we present a novel methodology for detecting temporal
alteration of ECG sensor output in a BSN called SIgnal Feature-correlation-
based Testing (SIFT). It works by generating a subject-specific model by cor-
relating their ECG sensor output with synchronously measured arterial blood
pressure (ABP) and respiration (RESP) signals. As ABP measures the same
physiological phenomena as ECG — the cardiac process, consequently, the inter-
beat intervals in ECG and inter-systolic peak intervals in ABP are highly corre-
lated. Further, both ABP and RESP signals affect the ECG inter-beat intervals
through the autonomic nervous system [4,11], which is reflected in the observa-
tion of several frequency-domain features in inter-beat-interval sequence, ABP
and RESP signals. Therefore, any alteration of the temporal properties of ECG
signal by an adversary, if not reflected as a commensurate change in the ABP and
RESP signals, is considered as evidence of compromise. The analysis of SIFT
demonstrates promising results with ∼98% accuracy in detecting even subtle
ECG signal alterations for both healthy subjects as well as subjects with cardiac
conditions.

2 Problem Statement and System Model

Formally speaking, let x be the signal the adversary is trying to alter, then the
goal is to find a means of detecting if this signal x has been temporally altered
to x′, solely-based on a set of reference signals Y = {y1, y2, ...yn} such that, each
yi, where 1 ≤ i ≤ n, shares certain common features with x, either in the time
or frequency-domain or both. In our case x is the ECG signal, while Y is a set
with n = 2 elements: ABP signal and RESP signal.

In terms of the system model we assume the BSN is comprised of a num-
ber of wearable medical sensors capturing physiological signals from patients,
especially the ECG, ABP and RESP sensors. These sensors continuously collect
health and contextual data at regular intervals and forward it over a single-
hop network to a highly capable base station for further processing. Our ECG
compromise detection system is deployed at the base station.
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In terms of the threat model we assume the primary goal of adversaries
is compromising the ECG sensor and temporally altering its output using side-
channel attacks such as [8]. Once the ECG sensor is compromised, it may gener-
ate erroneous output at any time. We assume that ABP and RESP sensors are
secure and will not be attacked.

3 SIFT: An Approach for ECG Temporal Alteration
Detection

In this section, we introduce our approach to the detection of temporal alter-
ation of ECG sensor output called Signal Feature-correlation based Testing
(SIFT). Figure 1 shows the basic operation of SIFT. It consists of three steps:
(1) feature generation, (2) training, and (3) detection.

Fig. 1. Signal Feature-correlation based Testing for the Detection of Temporal Alter-
ation of ECG Sensor Output

Feature Generation. We view compromise of ECG sensors, with the inten-
tion of providing incorrect data about the subject, to manifest itself as tempo-
ral changes in the output ECG signal. Temporal changes are associated with
the interval between two consecutive R-peaks being misreported. Therefore, we
first transform the ECG signal into a series of inter-beat-intervals by detecting
the R-peaks and calculating the time difference between two consecutive R-
peaks. The RR-tachogram thus produced forms our candidate signal. We then
extract feature points from this candidate signal with two other reference signals
derived from ABP and RESP signals. These feature points will then be used to
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train a subject-specific model and used to detect ECG alterations. In all, we
extracted a set of 13 features from candidate and reference signals, which can
be classified into two categories: (1) Time-Domain Features, which include (i)
correlation coefficient of the RR- and SS-intervals obtained from ECG and ABP
snippets; (ii) average RR-interval duration; and (iii) average SS-interval dura-
tion. (2) Frequency-Domain Features, which include (i) difference in frequency
at which Mayer wave is observed in the power spectrums of RR-tachogram and
SBP signal; (ii) difference in frequency at which the RSA wave is observed in the
power spectrums of RR-tachogram and RESP signal; (iii) highest, lowest and
average power in LF band of magnitude squared coherence (MSC1) between
RR-intervals and SBP signal; (iv) highest, lowest and average power in HF band
of MSC between RR-intervals and RESP signal; and (v) total number of peaks
in the LF and HF bands of MSC between RR-intervals and SBP signal and
RR-intervals and RESP signal, respectively.

Training. In order to account for the individual variation in the physiologi-
cal processes, we build a subject-specific model for each subject on whom we
tested our system. To train the models, we first extract the aforementioned
13-dimensional features from Δ minutes (the time for which data needs to be
collected to train the model) of synchronously measured ECG, ABP and RESP
signals from the same subject and label these as negative class points (which
indicates the three signals are from the same patient). The feature extraction
is done using sliding window of size w < Δ, which is moved over the three
synchronously measured signals. Each w-sized window of data thus produces
one feature point for the system. We then extract the aforementioned features
using snippets from ECG signals with ABP and RESP signals from different
patients and label these as positive class points (which indicates the ECG sig-
nal is from the different patient but ABP and RESP signals are from the same
patient). Once the negative and positive points are collected, we feed them into
a machine learning classifier to generate a subject-specific model.

Detection. After model training stage is completed, we can use the trained
model for a subject to decide if any newly received snippet of ECG signal has
been temporally altered or not. Again, we use feature generation method for
w-sized long synchronously measured ECG and ABP and RESP snippets to
generate a feature point, and then feed this feature point to our subject-specific
model. Then the model will output a label for this feature point as negative or
positive. If the point is deemed positive, we raise an alarm. Note that we have to
set w to a value greater than or equal to 5 minutes because it is the recommended
duration needed to produce clear Mayer and RSA waves [9]. This means SIFT
needs at least 5-minutes of subject data to be able to determine signal alteration.

1 Magnitude squared coherence (MSC) is the measure of spectral coherence and mea-
sures the causality between the two signals. The MSC of two signals signal x(t) and

signal y(t) is defined as follows: Cxy(f) =
|Pxy(f)|2

Pxx(f)∗Pyy(f)
, where, Pxx(f) and Pyy(f)

denotes the power spectral densities of signal x(t) and signal y(t) respectively, and
Pxy(f) denotes the cross power spectral density of these two signals.
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Developing alternative mechanisms for reducing the time needed to generate
alerts (i.e., Δ) is part of our future work for this project.

4 Validation

Our goal with the validation was to demonstrate two things: (1) the ability
of our approach to detect changes in the temporal properties of ECG signals
induced by an adversary, and (2) the inability of an attacker to deceive SIFT
using synthetic ECG signals derived from historical ECG data from a subject.

Dataset. We collected 28 subjects’ data from the MIT PhysioBank Fantasia and
MGH databases [6]. The Fantasia database is made up of healthy subjects, while
the MGH database mainly contains data from subjects with specific cardiac con-
ditions (i.e., ailment). We categorize these subjects into three types: (1) Normal
subject type indicates subjects who did not suffer from any cardiac conditions
and had normal sinus rhythm ECG, which consists of 6 males and 7 females
with an average age of 44.46 (std 25.52). (2) Abnormal subject type indicates
subjects with consistent tachycardia or bradycardia, which consists of 4 males
and 2 females with an average age of 61.4 (std 19.25). (3) Mixed subject type
indicates subjects whose ECG signal showed both normal as well as tachycardia
or bradycardia rhythms, which consists 5 males and 4 females with an average
age of 44.78 (std. 20.39).

Detection Results. In our experiments, we select Naive Bayes as our classifier
to train the model. We set Δ = 60 minutes and w = 5 minutes to produce the
feature points. Furthermore, we compared the results of SIFT with an approach
that analyzed historical RR-intervals to detect ECG alteration at any given time.
This case is represented by the label RR-only in the results.

Figures 2, 3 and 4 show the box-plots for balanced accuracy (BAC), false
positive (FP) and false negative (FN) rates of our detection system. In terms of
detection accuracy, we can see that RR-only is reasonably accurate (average BAC
of ∼87.41%). However, it has a considerably higher spread (compared to our
approach). The RR-only approach performs best for subjects in the Abnormal
set mainly because subjects in this set displayed unhealthy ECG (the variations
of the RR-interval in this group is considerable high) and therefore it was easy to
detect changes to these. In the case of Normal subject type the variations of box
plot were much larger because the variations of the RR-interval is comparably
smaller. Finally, in the case of the subjects in Mixed set the performance was
worst both in terms of median BAC as well as the spread because subjects in
this set exhibited ECG that was both normal as well as abnormal rhythms.

However, we can see that using SIFT the detection performance and spread is
considerably better than using RR-only approach in terms of median BAC, FP,
FN. For Normal subject type, our approach provides 98.46% BAC on average
with average FP at 2.44% and FN at 0.65%. Not surprisingly the performance
degrades a bit when we consider subjects with cardiac conditions. For the Mixed
subject type, the average BAC of SIFT is 96.39%. However, the average FP
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Fig. 2. Balanced Accuracy Rate for Our Approach and RR-only features
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Fig. 3. False Positive Rate for Our Approach and RR-only

increases to 6.06% with the average FN at 1.15%. We suspect the reason for this
increase is twofold: (1) on detailed examination of the data, some of the subject’s
ECG, ABP and RESP signals had considerable measurement errors, and (2) to
a lesser degree, physiological signals of subjects in the Mixed set display both
normal and abnormal rhythms and this decreases the classifier performance. In
the future, we plan to work on improving the proposed system to reduce the
second category of errors. For the Abnormal subject type, where the subjects
display consistently tachycardia or bradycardia, we found the average BAC to
be 98.81% with FP and FN at a much better 1.26% and 1.11%, respectively.
These results demonstrate that our approach can accurately detect temporal
alterations in ECG signal without sensor redundancy and considers the current
state of the subject in its operation. Additionally, our approach can distinguish
even subtle ECG signal temporal alterations for both healthy and unhealthy
subjects. By subtle changes we mean when an adversary replaces an ECG snippet
with another very similar one. For example, an actual ECG snippet with normal
sinus rhythm being replaced with an ECG snippet from another person with
normal sinus rhythm.

Attacks Using Synthetic ECG. We add another layer of analysis to the capa-
bility of our approach in detecting ECG compromise by evaluating if it can be
fooled by using synthetic ECG signals obtained from generative models param-
eterized with a subject’s own ECG data. In this regard, we used ECGSYN [10]
a well-known synthetic ECG generator, which has been shown to generate clini-
cally relevant synthetic ECG signals given a set of input parameters. We trained
the ECGSYN model with actual subject’s ECG data collected over a number of
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Fig. 4. False Negative Rate for Our Approach and RR-only

intervals from 5 minutes to 20 minutes from the dataset used to train the subject-
specific model. This simulates the case where the attacker knows a portion of the
ECG signals used to train the subject-specific model and uses it to alter the cur-
rent ECG signal. Based on our experiments we find that if we use 10 minutes ECG
data to train the ECGSYN model, we were able to detect the alteration of ECG
(replacement of actual ECG with synthetic ECG from ECGSYN) in 91.07% of the
cases, giving us FN at 8.93%. Not surprisingly, the FN goes up to 9.82% and the
accuracy drops down to 90.18% as the amount of data available for training the
ECGSYN model is doubled to 20 minutes. Despite the extreme assumption of the
attacker having access to a portion of the same data as our approach has trained
its model, the approach works with over 90% accuracy. This result shows that our
approach is robust even to an adversary who have access to a subject’s ECG data.

5 Related Work

Most of the work in this domain has been on detecting faulty sensors in wire-
less sensor networks. However, most of the fault detection schemes are based on
two main assumptions: (1) the network has a large number of sensors with identi-
cal functionality deployed, and (2) for a given stimulus, the sensors in the same
neighborhood should have the similar sensed values. Given these assumptions,
the approaches cluster the nodes into different “subnets” according to their loca-
tion and compare the similarity of the sensor readings with others nearby based
on a pre-defined threshold. In recent years, researcher have tried to adapt these
redundancy-based methods to the domain of BSNs [3,5,7,12]. Almost all the work
done for BSNs requires considerable sensor redundancies, i.e., motion monitoring
BSNs. Useful as these solutions are for detecting faults with motion sensors, they
might not be applicable when we consider physiological sensors in a BSN, as typi-
cally there is only one sensor of a particular type. Finally, in [1], a method to detect
only the morphological alterations of ECG signals was proposed. As stated before
this work is complementary to our work and needs to be used in conjunction with
our work here to provide a full ECG compromise detection system.
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6 Conclusions

In this paper we presented SIFT, a novel methodology to detect temporal alter-
ation of an ECG sensor output using its correlation with arterial blood pressure
and respiration signals. Analysis of our approach demonstrated promising results
with ∼98% accuracy in detecting even subtle ECG modifications. In the future,
we plan to extend this work in the following directions: (1) reducing the mini-
mum time for which data needs to be collected for effective training of the SIFT,
(2) implement SIFT on an actual BSN system to evaluate its performance, (3)
investigate ways to overcome our assumption that reference signals are not com-
promised, by using reference signals that are collected from more trustworthy
sources such as the base station.
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