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Abstract  During the past few decades, the employment of molecular markers  
to discover polymorphisms in DNA has been playing an increasing role in 
conservation strategies and use of plant genetic resources (PGR). Molecular mark-
ers are indispensable tools for determining the genetic variation and biodiversity 
with high levels of accuracy and reproducibility in short times. Different typolo-
gies of molecular markers exist, specific for the different applications in molecular 
genetic methods. Molecular tools have been successfully applied in the analysis 
of specific genes and gene pathways, as well as to increase understanding of gene 
action, to generate genetic maps and assist in the development of gene transfer 
technologies. Molecular markers have also had a critical role in studies of phylog-
eny and species evolution, and have been applied to increase our understanding of 
the distribution and extent of genetic variation within and between species. The 
main two groups of molecular markers can be classified on the basis of the analy-
sis method used: polymerase chain reaction (PCR) and non-PCR-based. Recently, 
a new class of advanced techniques has emerged, primarily derived from a com-
bination of earlier, more basic techniques. Advanced marker techniques tend to 
amalgamate advantageous features of several basic techniques, in order to increase 
the sensitivity and resolution to detect genetic discontinuity and distinctiveness. 
The past several years have seen revolutionary advances in DNA sequencing tech-
nologies with the advent of next-generation sequencing (NGS) techniques. NGS 
methods now allow millions of bases to be sequenced in one round, at moderate 
prices and in very short times. This paper is an overview of the diverse, predomi-
nantly molecular techniques, used in assessing plant genetic diversity, discussing 
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about the most important and recent advances made in molecular marker tech-
niques, their applications, advantages, and limitations applied to plant sciences in 
order to provide base platform information to the researchers working in the area.

Keywords  Genetic variation  ·  Biodiversity  ·  Molecular markers  ·  Molecular 
techniques

6.1 � Introduction

Unraveling the molecular basis of the essential biological phenomena in plants is 
crucial for effective and sustainable conservation, management, and efficient uti-
lization of plant genetic resources (PGR). An adequate understanding of existing 
genetic diversity and how to best utilize it, is of fundamental interest for basic sci-
ence and applied aspects like the efficient management of PGR. In particular, the 
improvement of crop genetic resources strictly depends on the continuous intro-
duction of wild relatives, traditional varieties, and the use of modern breeding 
techniques, requiring an assessment of diversity at some levels in order to select 
promising varieties.

6.1.1 � The Assessment of Genetic Variation

When studying and measuring diversity, it is imperative to understand what to 
conserve and/or what is being lost. For the conservation and utilization of PGR, 
genetic relationships are more important than the taxonomy per se. The gene pools 
concept, as proposed by Harlan and de Wet (1971), focuses neatly on the relation-
ships between individuals and populations and it is of particular relevance to plant 
breeders to improve crops (Greene and Morris 2001). The concept is based on the 
division of the genetic resources into three gene pools: (i) primary gene pool (gene 
pool 1 or GP 1) to which the crop species, crop wild relatives, and related weedy 
species belong with crosses yielding fertile hybrids; (ii) secondary gene pool  
(GP 2) comprises related taxa which are able to hybridize with the crop species 
but the gene transfer is poor and the progeny are often sterile and not viable; and  
(iii) tertiary gene pool (GP 3) includes distantly related taxa which do not cross 
readily in the wild and require anthropogenic assistance in gene transfer and 
hybridizing through sophisticated techniques, such as embryo culture, grafting, 
chromosome doubling, and the use of bridging species. We can argue that plant 
breeding now requires the addition of a quaternary gene pool (GP 4) where gene 
transfer could take place but only through genetic engineering. Diversity can be 
measured at the morphological, biochemical, and/or molecular level.
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6.1.2 � Morphological Characterization

Morphological characterization is based on assessing the phenotype, which is the 
result of genetic and environment interactions, and can be modified to diverse 
extents by different environmental factors. The capability to respond to envi-
ronmental pressures without the implication of mutations, known as phenotypic 
plasticity, can be divided into two main categories: (i) development flexibility, 
which produces the development of different genotypes in different environmen-
tal conditions and (ii) behavioral flexibility, which comprises all the behavioral 
elements which allow a temporary adaptation to a particular environmental con-
dition. Genetic variation has been found to contribute significantly to phenotypic 
variation and produces two main types of characters: (a) quantitative characters 
which are measurable characters and give rise to continuous variability (defined 
by a Gaussian curve) and (b) qualitative characters which are alternative, dis-
continuous, not defined by a Gaussian curve and producing a type of variability, 
so-called “discontinuous”. The study of morphological variability is the classical 
way of assessing genetic diversity. For many species, especially minor crops, it 
is still the only approach used. Nevertheless, morphological characterization, even 
if does not require expensive analysis tools, requires large tracts of land for the 
experiments, making it even more expensive than molecular detection. Moreover, 
the traits analyzed are often susceptible to phenotypic plasticity; conversely, 
this allows assessment of diversity in the presence of environmental variation. 
However, an analysis of genetic diversity based only on agronomic and morpho-
logical traits might be erroneous considering that distinct morph types can result 
from a few mutations.

6.2 � Cytological Characterization

Cytological markers have been deeply used for the assessment of PGR based on 
the numbers and morphology of plant chromosomes. Cytological markers include 
chromosome karyotypes, bandings, repeats, deletions, translocations, and inver-
sions. Mitotic chromosomes permit to analyze the nuclear genome by microscopic 
means, allowing the observation of its components individually, as well as globally 
(the karyotype). Karyotypes offer a phenotypic view of the genotype and prior to 
the application of chromosome banding, distance analysis was done using various 
numerical and metric values that described the karyotype such as diploid number 
(number of chromosomes or 2n) and fundamental number (number of chromo-
somal arms or Nfa).

Ploidy levels are sometimes used to compare species, mainly in plants 
(Saideswara et  al. 1989). Polyploidization, widely spread in plant genomes, 
can result from genome duplication (autopolyploidization) or by hybridization 
(allopolyploidization). Nevertheless, even if these changes are considered as rare, 
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convergence in ploidy may not be that uncommon and tending sometimes to revert 
to the diploid level complicating the understanding of polyploidization patterns. 
However, a recently developed technique based on genomic in situ hybridization 
(GISH) represents a powerful tool for investigating the evolution of polyploidy 
organisms (D’Hont et al. 2002). Chromosome banding is a powerful and routinely 
used tool to investigate chromosomal homology and comprise differential stain-
ing techniques that reveal a succession of bands along the length of a chromosome 
that vary in width and staining intensity. These bands reflect intrinsic properties of 
the genome (Sumner 1990) allowing access to information involving both struc-
tural (GTG-, RHG-, and CBG-banding) and functional patterns (replication RBG-
banding) of chromosomes (Viegas-P´equignot and Dutrillaux 1978). Moreover, the 
development of in situ hybridization, and in particular fluorescent in situ hybridiza-
tion (FISH) using chromosome painting probes (Ferguson-Smith 1997), has con-
firmed the evidence that homology in banding patterns is significantly related to 
homology in gene content and synteny conservation. The development of powerful 
molecular cytogenetic and genomic strategies such as FISH, flow-cytometry, and 
chromosome painting jointly to gene mapping, allows to overcome the limitations 
of conventional banding analysis (Ferguson-Smith 1997). Based on the hybridiza-
tion between labeled DNA probes and genomic DNA, in situ hybridization tech-
niques permit the unequivocal confirmation of homology among chromosomes. 
Therefore, molecular cytogenetics makes it possible to assess homologies between 
distantly related taxa and this creates new opportunities for determining chromo-
somal relationships at higher taxonomic levels (Yang et al. 2003).

6.3 � Biochemical Characterization

Biochemical characterization includes the assessment of seed storage proteins 
and allozymes/isozymes. These techniques use enzymatic functions and are com-
paratively inexpensive while being powerful methods of measuring allele frequen-
cies for specific genes. However, because there are only a few allozyme systems 
per species (not more than 30), there are correspondingly few markers. Analyses 
of allozymes provide an estimate of gene and genotypic frequencies within and 
between populations. Such data can be used to measure population subdivision, 
genetic diversity, gene flow, genetic structure of species, and comparisons among 
species (Spooner et  al. 2005). The first experiences in analysis of isoenzymatic 
polymorphism in natural populations date up to Zouros and Foltz (1987). Since 
then, isozymes have been heavily employed also in plant studies and particularly 
for population genetics studies (Brown 1979). Therefore, allozymes have been 
used in studying out-crossing rates, population structure, and population diver-
gence, such as in the case of crop wild relatives (Hamrick and Godt 1997; Guarino 
1999; Volis et al. 2001; Gonzalez et al. 2005).

Among the major advantages of these types of markers are co-dominance, 
absence of epistatic and pleiotropic effects, ease of use, and low costs even if at 
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the same time they present some important limitations such as the limited num-
ber of polymorphic enzymatic systems available, the fact that enzymatic loci rep-
resent the expressed part of the genome which is only a small and not random 
portion; they are affected by the phenological phase of the plant, and finally that 
the observed variability may be not representative of the entire genome. Moreover, 
although these markers permit a high processivity, a comparison of samples from 
different species, loci, and laboratories is problematic being affected by extraction 
methodology, plant tissue, and plant stage.

6.4 � Molecular Characterization

Analyses of genetic diversity are usually based on either allozymes or molecular 
markers, which tend to be selectively neutral. It has been argued that the rate of 
diversity loss of these neutral markers will be higher than those that are associated 
with fitness. In order to verify this, Reed and Frankham (2003) conducted a meta-
analysis of fitness components in three populations and in which heterozygosity, 
and/or heritability, and/or population size were measured. Their findings, based 
on 34 datasets, concluded that heterozygosity, population size, and quantitative 
genetic variation, which are all used as indicators of fitness, were all significantly 
positively correlated with population fitness.

Genetic variability within a population can be assessed through:

1.	 The number (and percentage) of polymorphic genes in the population.
2.	 The number of alleles for each polymorphic gene.
3.	 The proportion of heterozygous loci per individual (Primack 1993).

Protein methods, such as allozyme electrophoresis, and molecular methods, such 
as DNA analysis, directly measure genetic variation, giving a clear indication of 
the levels of genetic variation present in a species and/or population (Karp et al. 
1996) without direct interference from environmental factors. However, they have 
the disadvantage of being relatively expensive, time-consuming, and require high 
levels of expertise and materials in analysis.

The concept of genetic markers is not a new one; in the nineteenth century, 
Gregor Mendel employed phenotype-based genetic markers in his experiments. 
Later, phenotype-based genetic markers for Drosophila melanogaster led to 
the founding of the theory of genetic linkage, occurring when particular genetic 
loci or alleles for genes are inherited jointly. The limitations of phenotype-based 
genetic markers led to the development of DNA-based markers, i.e., molecular 
markers. A molecular marker can be defined as a genomic locus, detected through 
probe or specific starters (primer) which, in virtue of its presence, distinguishes 
unequivocally the chromosomic trait which it represents as well as the flanking 
regions at the 3’ or 5’ extremity (Barcaccia et al. 2000).

Molecular markers may or may not correlate with phenotypic expression of a 
genomic trait. They offer numerous advantages over conventional, phenotype-based 
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alternatives as they are stable and detectable in all tissues regardless of growth, dif-
ferentiation, development, or defense status of the cell. Additionally, they are not 
confounded by environmental, pleiotropic, and epistatic effects. Molecular charac-
terization is more expensive, but many markers are now known, thus enabling the 
study of a much larger number of genes that code for plant expression, as well as 
for other noncoding segments of the chromosomes. Analysis is based on extract-
ing DNA, amplifying it (more often than not, through polymerase chain reaction 
procedures) and analyzing the resulting gene frequencies and DNA sequences. A 
molecular marker detects gene sequences at a known location of a chromosome. 
These markers do not refer to the activity of specific genes, but are directly based 
on highlighting differences (polymorphisms) within a nucleic sequence in differ-
ent individuals, as a result of insertion, deletions, translocations, duplications, point 
mutations, etc.

The seemingly bewildering array of possible approaches is among the first 
problem faced by newcomers considering the application of these techniques to 
their own system. A starting point for discerning the different classes of molecu-
lar markers can be to consider the different techniques employed. These are based 
either on restriction-hybridization of nucleic acid or techniques based on polymer-
ase chain reaction (PCR), or both. A further distinction can be obtained through 
the selection of either multi-locus or single-locus markers.

Multi-locus markers allow simultaneous analyses of several genomic loci, 
which are based on the amplification of casual chromosomic traits through oligo-
nucleic primers with arbitrary sequences. These types of markers are also defined 
as dominant since it is possible to observe the presence or the absence of a band 
for any locus, but it is not possible to distinguish between heterozygote (a/–) con-
dition and homozygote for the same allele (a/a) and attribute different allelic vari-
ants at the same locus. By contrast, single-locus markers employ probes or primers 
specific to genomic loci, and are able to hybridize or amplify chromosome traits 
with well-known sequences. They are defined as co-dominant since they allow dis-
crimination between homozygote and heterozygote loci.

Advances in the development of molecular marker techniques, powerful tools 
have been developed so that genetic resources can be accurately assessed and 
characterized (Table 6.1). Most of these techniques, based on the analysis of infor-
mation-rich nucleic molecules, provide a reliable estimation of relatedness, phy-
logeny, and inheritance of genetic characteristics (Caetano-Anolles et al. 1991). 
Through molecular markers and maps, it is possible to obtain an overall vision 
on the genes controlling agronomic, morphological, and biochemical traits in 
plants. Additionally, they become essential for explaining whether existing genetic 
variability, which is assessed by measuring biochemical factors and morphologi-
cal traits, is related to genetic diversity analyzed measuring allelic frequencies 
detected with molecular markers. Through this information it is possible to con-
struct a core collection, which can represent a base for future breeding programs. 
Hence, in the current scenario, molecular markers become the marker of choice 
for the study of crop genetic diversity revolutionizing the plant biotechnology.



1316  Using Molecular Techniques to Dissect Plant Genetic Diversity

Table 6.1   Molecular markers classification

Non-PCR-based techniques
Restriction-hybridization techniques

RFLP Restriction Fragment Length Polymorphism

VNTR Variable Number Tandem Repeats

REF Restriction Endonuclease Fingerprinting

PCR derived
Multiple Arbitrary Amplicon Profiling (MAAP)

RAPD Randomly Amplified Polymorphic DNA

DAF DNA Amplification Fingerprint

AP-PCR Arbitrarily primed PCR

AFLP Amplified Fragment Length Polymorphism

SAMPL Selective Amplification of Polymorphic Loci

ISSR Inter-Simple Sequence Repeats

SPAR Single Primer Amplification Reaction

DAMD Directed Amplification of Minisatellites DNA

Targeted PCR

Sequence Tagged Sites (STS)

ARMS Amplification Refractory Mutation System

ASAP Arbitrary Signatures from Amplification

ASH Allele-Specific Hybridization

ASLP Amplified Sequence Length Polymorphism

ISTR Inverse Sequence-Tagged Repeats

SSCP Single Strand Conformation Polymorphism

SPLAT Single Polymorphic Amplification Test

TGGE Thermal Gradient Gel Electrophoresis

DGGE Denaturing Gradient Gel Electrophoresis

Markers based on microsatellite sequences

SSR Simple Sequence Repeats

RAHM Randomly Amplified Hybridizing Microsatellites

RAMPs Randomly Amplified Microsatellite Polymorphisms

STMS Sequence Tagged Microsatellite Site

SSLP Single Sequence Length Polymorphism

MP-PCR Microsatellite-Primed PCR

RAMS Randomly Amplified Microsatellites

CAPS Cleaved Amplification Polymorphic Sequence

SCAR Sequence Characterized Amplification Regions

SNP Single Nucleotide Polymorphism

EST-SSR Expressed Sequence Tags-SSR

Markers based on DNA sequencing

DART Diversity Arrays Technology

ASO Allele Specific Oligonucleotide

CAS Coupled Amplification and Sequencing

(continued)
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6.5 � The Choice of the “Perfect” Molecular Marker

Due to the rapid developments in the field of molecular genetics and thanks to the 
novel findings in next-generation sequencing (NGS), a large amount of different 
techniques have emerged to analyze genetic variation in the recent years.

Unfortunately, there is no single molecular approach for many of the problems 
facing gene bank managers, and many techniques complement each other, hence 
the choice of marker typology that “suits me” becomes very difficult. However, 
some techniques are clearly more appropriate than others for some specific appli-
cations like crop diversity and taxonomy studies. In this perspective, the under-
standing of all features that characterize a molecular marker class is crucial.

Genetic markers can differ with respect to important features such as

•	 level of polymorphism detected;
•	 locus specificity,
•	 genomic abundance,
•	 reproducibility,
•	 technical requirements and highly qualified personnel,
•	 costs, and
•	 time constraints.

No marker is superior to all others for a wide range of applications and the most 
appropriate genetic marker strictly depends on the application (Table  6.2). An 
ideal molecular marker should possess the following features:

	 1.	 Be highly polymorphic: necessary condition to assess genetic variability;
	 2.	 Co-dominant: able to discriminate between homozygous and heterozygous 

states in diploid organisms;

GBA Genetic Bit Analysis

OLA Oligonucleotide Ligation Assay

RNA-Based Molecular Markers (RBMs)

iSNAP Inter Small RNA Polymorphism

RAP-PCR RNA Arbitrarily Primed PCR

cDNA-SSCP cDNA-Single Strand Conformation Polymorphism

cDNA-AFLP cDNA-Amplified Fragment Length Polymorphism

cDNA-RFLP cDNA-Restriction Fragment Length Polymorphism

Transposable elements-based molecular markers

REMAP Retrotrasposon-Microsatellite Amplified Polymorphism

RBIP Retrotrasposon-Based Insertion Polymorphism

IRAO Inter-Retrotrasposon Amplified Polymorphism

IRAP Inter-Retrotransposon Amplified Polymorphism

S-SAP Sequence-Specific Amplification Polymorphisms

Table 6.1   (continued)
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	 3.	 Frequent occurrence in genome;
	 4.	 Provide adequate resolution of genetic differences;
	 5.	 Detect multiple, independent, and reliable loci;
	 6.	 Selective neutral behaviors: the DNA sequences of any organism are neutral 

to environmental conditions or management practices, this permits to confer 
the variation only to a genetic origin;

	 7.	 Easy access and fast assay: it must be simple, quick, and inexpensive;
	 8.	 High reproducibility: to guarantee robust results among different laboratory 

and equips;
	 9.	 Requiring small amounts of tissue and DNA samples;
	10.	 Link to distinct phenotypes;
	11.	 Require no prior information about the genome of an organism.

However, it is practically impossible to define a molecular marker which would 
meet all the above criteria. Hence, the choice of the right marker is based on the 
capability to associate the different features to the specific application to be under-
taken (Weising et  al. 1995) (Fig.  6.1). At first, molecular markers can be classi-
fied as hybridization-based markers and PCR-based markers. In the former, DNA 
profiles are visualized by hybridizing the restriction enzyme-digested DNA, to a 
labeled probe, which is a DNA fragment of known origin or sequence. A PCR-
based marker involves in vitro amplification of DNA sequences or loci, using 
specifically or arbitrarily chosen oligonucleotide fragments (primers) and a ther-
mostable DNA polymerase enzyme (Taq polymerase). The amplified fragments are 
separated electrophoretically and banding patterns are detected by different meth-
ods such as staining, autoradiography, or directly sequenced. The primer sequences 
are chosen to allow base-specific binding to the template in reverse orientation. 
PCR is extremely sensitive, fast, and reliable. Its application for diverse purposes 
has opened up a multitude of new possibilities in the field of molecular biology 
and genetics.

Recently, a new class of advanced techniques has emerged, primarily derived 
from a combination of the earlier, more basic techniques. These advanced marker 
techniques combine advantageous aspects of several basic techniques. In par-
ticular, the newer methods incorporate modifications in the basic techniques, 
thereby increasing the sensitivity and resolution in detecting genetic discontinu-
ity and distinctiveness. The advanced marker techniques also utilize newer classes 
of DNA elements such as retrotransposons, mitochondrial, and chloroplast-
based microsatellites, allowing increased genome coverage. Techniques such as 
Random Amplified Polymorphic DNA (RAPD) and Amplified Fragment Length 
Polymorphism (AFLP) are also being applied to cDNA-based templates (i.e., 
sequences of complementary DNA obtained by mRNA retrotranscription) to study 
patterns of gene expression and uncover the genetic basis of biological responses. 
With the advent of NGS technologies it is presently possible to analyze high num-
bers of samples over smaller periods of time.
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6.6 � Non-PCR-Based Techniques

6.6.1 � Restriction-Hybridization Techniques

Molecular markers based on restriction-hybridization techniques were employed 
relatively early in the field of plant studies and combined the use of restriction 
endonucleases and the hybridization method (Southern 1975). Restriction endo-
nucleases are bacterial enzymes able to cut DNA, identifying specific palindrome 
sequences and producing polynucleotidic fragments with variable dimensions. Any 
changes within sequences (i.e., point mutations), mutations between two sites (i.e., 
deletions and translocations), or mutations within the enzyme site, can generate 
variations in the length of restriction fragment obtained after enzymatic digestion.

Restriction Fragment Length Polymorphisms (RFLPs) was the first technology 
developed which enabled the detection of polymorphisms at the sequence level. 
The approach comprises the digestion of genomic DNA with restriction enzymes, 
separations of the resultant DNA fragments by gel electrophoresis, blotting of 
the fragments to a filter followed by the hybridization with a chemically-labeled 
DNA probe to a Southern blot resulting in differential DNA fragment profile. The 
sequences of the probes may be known (e.g., from a cloned gene) or unknown 
(e.g., genomic or cDNA random cloned fragments) (Fig.  6.2). The combination 
of specific systems probes/enzymes produces highly reproducible patterns for a 
given individual and the variation in the restriction profiles between two differ-
ent individuals occurs when mutations in the DNA sequences change the restric-
tion sites which cannot be recognized by the restriction enzymes. RFLP technique 
was widely exploited to construct genetic maps and has been successfully applied 

Fig. 6.1   A rational scheme for choosing the most appropriate molecular genetics analysis strategy. 
H high, L low, M medium, Y yes, N no
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to genetic diversity assessment, particularly in cultivated plants (Castagna et  al. 
1994; Deu et  al. 1994) as well as in populations and wild relatives (Besse et  al. 
1994; Laurent et al. 1994; Bark and Havey 1995).

The RFLP markers are relatively highly polymorphic, co-dominantly inherited, 
highly replicable, and allow the simultaneous screening of numerous samples. DNA 
blots can be analyzed repeatedly by stripping and reprobing (usually from eight 
to ten times) with different RFLP probes. Nevertheless, this technique is not very 
widely used as it is time-consuming, involves expensive and radioactive/toxic rea-
gents, and requires large quantities of high quality genomic DNA (e.g. 10 µg per 
digestion). Moreover, the prerequisite of prior sequence information for probe 
construction contributes to the complexity of the methodology. However, the main 
problem faced is simply that insufficient level of polymorphism is detectable at the 
below species level. Nevertheless, RFLPs have been widely used to investigate rela-
tionships of closely related taxa (Miller and Tanksley 1990; Lanner et al. 1996), for 
studies on hybridization and introgression (in particular studies concerning the gene 
flow between crops and weeds) (Brubaker and Wendel 1994; Clausen and Spooner 
1998), for diversity studies (Dubreuil et al. 1996), and as fingerprinting tools (Fang 
et  al. 1997). They have also been successfully employed in gene mapping stud-
ies due to their high genomic abundance and random distribution throughout the 
genome (Neale and Williams 1991). Moreover, RFLP markers were used for the 
first time in the construction of genetic maps by Botstein et al. (1980). Nevertheless, 

Fig. 6.2   Different steps of restriction fragment length polymorphism technique
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a class of molecular markers able to overcome this inconvenience exists. These 
markers are developed on a particular class of highly variable regions interspersed 
along the genome and constituted by repeats of short simple sequences. These are 
known as “microsatellites” and are formed by basic repeat units from 2 to 8 base 
pairs in length (microsatellites or SSR) up to longer repeats of 16–100 base pairs 
called “minisatellites”. Being highly hypervariable, RFLP analysis using probes for 
mini-microsatellites produces multi-locus patterns able to discriminate at the level 
of populations and individuals. The variation produced derives from changes in the 
copy number of the basic repeat and the marker class based on this kind of variation 
is specifically called Variable Numbers of Tandem Repeats (VNTRs). Being highly 
polymorphic VNTRs have been widely applied for studying within and between 
population variation, for estimating genetic distances, and for ecological applica-
tions (Lynch 1990; Alberte et al. 1994; Antonious and Nybom 1994).

However, like the RFLP approach VNTRs show the same limitations that led 
to the development of a new set of less technically complex methods known as 
PCR-based techniques. Nevertheless, when combined with PCR amplification of a 
specific locus both RFLPs and VNTRs probes have much to offer.

6.7 � Markers Based on Amplification Techniques  
(PCR-Derived)

With the advent of PCR analysis, an increasing number of techniques became 
available to screen the genetic diversity. In fact, the use of this kind of marker has 
been exponential, following the development by Mullis et al. (1986) of PCR assay 
consisting in the amplification of several discrete DNA products, deriving from 
regions of DNA which are flanked by regions of high homology with the primers. 
These regions must be close enough to one another to permit the elongation phase 
producing several discrete DNA products.

The use of random primers overcame the limitation of prior sequence knowl-
edge for PCR analysis, and being applicable to all organisms facilitated the devel-
opment of genetic markers for a variety of purposes. PCR-based techniques can 
further be subdivided into two subcategories: (1) arbitrarily primed PCR-based 
techniques or sequence nonspecific techniques and (2) sequence targeted PCR-
based techniques. Based on the first category, two different types of molecular 
markers have been developed: RAPD and AFLP.

6.7.1 � PCR Arbitrary Priming Techniques

In the first category a number of closely related techniques have been devel-
oped and jointly referred to as Multiple Arbitrary Amplicon Profiling (MAAP) 
(Caetano-Anolles 1994). Even if, among these, RAPD is the most commonly 
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used, other techniques can be included such as Arbitrary Primed PCR (AP-PCR) 
(Welsh and McClelland 1990) and DNA Amplification Fingerprinting (DAF) 
(Caetano-Anolles et al. 1991) differing from RAPDs for primer length, stringency 
of the conditions, and the method of separation and detection.

6.7.2 � Random Amplified Polymorphic DNA (RAPD)

RAPDs have been deeply applied thanks to the fact that these kinds of markers do 
not require DNA probes or any types of sequence information for the design of the 
specific markers.

RAPDs were the first PCR-based molecular markers to be employed in genetic 
variation analyses (Welsh and McClelland 1990; Williams et  al. 1991). RAPD 
markers consist of random amplification of genomic DNA using short primers 
(decamers) and separation of the obtained fragments. The use of short primers is 
necessary to increase the probability that, although the sequences are random, they 
are able to find homologous sequences suitable for annealing (Fig. 6.3). Thence, 
DNA polymorphisms are generated by rearrangements or deletions occurring at 
or between oligonucleotide primer binding sites along the genome. RAPD–PCR 
fingerprint has been successfully applied in dissecting genetic diversity among 
different species. RAPD markers show several advantages: (i) no prior sequence 
information is needed for designing the primers that can be used for different 

Fig. 6.3   Schematic representation of a Random Amplified Polymorphic DNA (RAPD) reaction. In 
order to obtain an amplification product, the primers must anneal in the right orientation, pointing 
toward each other and at a reasonable distance. The arrows represent the single primers and the 
direction indicates the direction in which DNA synthesis will occur. The numbers represent primer 
annealing sites on the target DNA
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templates; (ii) RAPDs are simple, quick, and cost-effective especially if compared 
to RFLP (Williams et  al. 1991; Bardakci 2001); (iii) the quantity of DNA to be 
used is very small being amplified by PCR. At the same time, RAPDs present 
some not insignificant disadvantages that include: (i) the very low repeatability 
and reliability of RAPD polymorphic profiles (Vos et al. 1995); (ii) RAPDs, being 
dominant, cannot be used to distinguish homozygote from heterozygote genotypes 
in F2 populations; (iii) nonspecific and therefore non-reproducible binding of 
primers occurring, insomuch as even a small difference in annealing temperature 
is sufficient to produce different patterns.

Some variants of RAPD markers have been independently developed named 
AP-PCR and DAF. They differ from RAPDs essentially in primer length, the strin-
gency conditions, and the method of separation/detection of the fragments. With 
AP–PCR (Welsh and McClelland 1990), a single primer 10–15 nucleotides long 
is employed with an initial amplification of two PCR cycles at low stringency. 
Thereafter, the remaining cycles are carried out at higher stringency by increasing 
the annealing temperatures.

RAPDs have been used for many purposes, ranging from studies at the indi-
vidual level (e.g., genetic identity) to studies involving closely related species. 
RAPDs have also been applied in gene mapping studies to fill gaps not covered by 
other markers (Williams et al. 1990; Hadrys et al. 1992).

Moreover, thanks to the speed and efficiency of RAPD analysis, high-density 
genetic mapping in many plant species such as faba bean (Torres et al. 1993), alfalfa 
(Kiss et al. 1993), and apple (Hemmat et al. 1994) were developed in a relatively 
short times. The RAPD analysis of non-isogenic lines (NILs) has been success-
fully employed in identifying markers linked to disease resistance genes in common 
bean (Phaseolus vulgaris) (Adam-Blondon et al. 1994), tomato (Lycopersicon sp.) 
(Martin et al. 1991), and lettuce (Lactuca sp.) (Paran et al. 1991).

6.7.3 � Amplified Fragment Length Polymorphism (AFLP)

Considered an intermediate between RFLPs and RAPDs methodologies, AFLP 
technique, developed by the Dutch company, Keygene (Zabeau and Vos 1992) 
combines the power of RFLP with the flexibility of PCR-based technology. AFLP 
analysis is based on the combination of the main analysis techniques: DNA diges-
tion using restriction endonuclease enzymes and PCR technology. The AFLP pro-
tocol consists of DNA digestion using two different restriction enzymes (typically 
EcoRI and MseI) (Fig. 6.4), ligation of adapters to the extremity of the restriction 
fragments, DNA preamplification of ligated product using primers complemen-
tary to the adapter and restriction site sequences, DNA amplification of a subset of 
restriction fragments using selective AFLP primers, and separation and detection 
of the produced patterns, scoring fragments as either presence or absence among 
samples. The primer pairs used for AFLP usually produce 50–100 bands per assay. 
The number of amplicons per AFLP assay is a function of the number of selective 
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nucleotides in the AFLP primer combination, the selective nucleotide motif, GC 
content, and physical genome size and complexity. In particular, AFLP polymor-
phisms can be produced in different ways: (i) insertions, duplications, or deletions 
inside amplification fragments; (ii) mutations of sequences flanking the restriction 
sites and complementary to the extension sites of the selective primers enabling 
possible primer annealing; (iii) mutations in the restriction site able to create or 
delete it. All these mutations can bring to an appearance/disappearance of a par-
ticular fragment or to the modifications (increase or decrease) of an amplified-
restricted fragment.

AFLP generates fingerprints of any DNA regardless of its source, and with-
out any prior knowledge of DNA sequence. Most AFLP fragments correspond 
to unique positions on the genome and hence can be exploited as landmarks in 
genetic and physical mapping. The technique can be used to distinguish closely 
related individuals at the subspecies level (Althoff et al. 2007) and can also map 
genes.

This technique, being PCR based requires no probe or previous sequence infor-
mation as needed by RFLP. It is sufficiently reliable because of high stringent PCR 
in contrast to RAPD’s problem of low reproducibility. However, the major advan-
tage of AFLPs is the large number of polymorphisms scored. In fact, AFLP seems 

Fig. 6.4   Different steps of Amplified Fragment Length Polymorphism (AFLP). Genomic DNA 
is digested with two restriction enzymes and adaptors are ligated to these ends. The first PCR 
(preamplification) is performed with a single-bp extension, followed by a more selective primer 
with up to a 3-bp extension. N nucleotide 
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to be much more efficient than the microsatellite loci in discriminating the source 
of an individual among putative populations. Similar to RAPD, AFLP analysis 
allows screening of many loci within the genome in a relatively short time and in 
an inexpensive way. The weak points of this technique are that this methodology 
is difficult to analyze due to the large number of unrelated fragments produced and 
that they are dominant markers.

Nevertheless, their high genomic abundance and generally random distribu-
tion throughout the genome make AFLPs a widely valued technology which has 
been successfully employed for DNA fingerprinting in barley (Becker et al. 1995; 
Simons et al. 1997), rice (Waugh et al. 1997), in einkorn wheat (Heun et al. 1997), 
for gene mapping studies (Mackill et  al. 1996; Vos et  al. 1995; Qi et  al. 1998), 
and for QTL analysis (Powell et al. 1996; Nandi et al. 1997). AFLP markers have 
been successfully also used for analyzing genetic diversity in some other plant 
species such as peanut (Herselman 2003), soybean (Ude et al. 2003), and maize 
(Lübberstedt et al. 2000) (Fig. 6.5).

6.8 � Sequence-Specific PCR-Based Markers

The alternative approach to arbitrary PCR amplification consists in the amplifi-
cation of target regions of the genome using specific primers. In particular, with 
the advent of high-throughput sequencing technologies, abundant information on 
DNA sequences of many plant species is now available (Goff et al. 2002; Yu et al. 
2002; Arabidopsis Genome Initiative 2000).

6.8.1 � Expressed Sequence Tags (EST)–SSR

Expressed Sequence Tags (ESTs) are single-read sequences produced from par-
tial sequencing of a bulk mRNA pool that has been reverse transcribed into cDNA 
(Putney et al. 1983). High-throughput sequencing produces information on thou-
sands of ESTs and the new sequences are promptly accessible in the different 

Fig.  6.5   Comparison among different amplification profiles obtained after PCR reactions and 
staining on ethidium bromide agarose gel: a RFLP profile; b RAPD profile, and c AFLP profile
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databases, increasing the growing information on gene expression. EST libraries 
provide a snapshot of the genes expressed in the tissue at the time of, and under 
the conditions in which, they were sampled (Bouck and Vision 2007). Despite 
the several advantages that these kinds of markers show, however, EST–SSRs are 
not without weak points. At first, the possibility to have null alleles, which com-
promise the amplification due to primer site variation, resulting in the lacking 
of visible amplicons. The second that being cDNA lacking of introns, unrecog-
nized intron splice sites could disrupt primer annealing sites making impossible 
the amplification. Lastly, being EST–SSRs placed within genes and thus more 
conserved across species, they may be less polymorphic than anonymous SSRs. 
However, on the contrary, many advantages derive from the fact that ESTs are an 
inexpensive source for identifying gene-linked markers with higher levels of pol-
ymorphism, which can also be applied to closely related species in many cases 
(Cordeiro et al. 2001; Vasemagi 2005; Karaiskou 2008).

6.8.2 � Microsatellite-Based Marker Technique

Microsatellites or Simple Sequence Repeats (SSR) are sequences constituted by 
sets of repeated motifs found within eukaryotic genomes (Dietrich et  al. 1992; 
Bell and Ecker 1994; Morgante and Olivieri 1993). These sequences comprise 
basic short motifs (generally between 2 and 6 base pairs long) tandemly repeated 
several times. Thence, the polymorphisms associated with a specific locus are due 
to the variation in length of the microsatellite sequence depending on the number 
of repetitions of the basic motif. The flanking regions of the repeated sequences 
are mostly conservative and the repetition motifs are highly variable between dif-
ferent species and even different individuals of the same species. In fact, micros-
atellite assays permit to identify extensive interindividual length polymorphisms 
during PCR analysis of unique loci using discriminatory primers sets.

Variations in the number of tandemly repeated units are mainly due to poly-
merase strand slippage occurring during DNA replication where the repeats allow 
matching, via excision or addition, of repeats (Schlotterer and Tautz 1992). Being 
the polymerase slippage more probable with respect to point mutations, microsat-
ellite loci tend to be hypervariable.

Microsatellites are among the most used genetic markers for different advantages: 
(i) they show co-dominant inheritance, (ii) are highly widespread into the genome, 
(iii) are highly sensible to detect an enormous extent of allelic diversity, (iv) are 
easy to use and highly reproducible, and (v) different microsatellites can be multi-
plexed in PCR and automation is possible. However, the development of microsat-
ellites requires preventive and extensive knowledge of DNA sequences. Moreover, 
sometimes they tend to underestimate genetic structure measurements, hence 
they have been developed primarily for agricultural species, rather than wild spe-
cies. Nevertheless, they are not free from disadvantages because: (i) they are time-
consuming and expensive to develop; (ii) the heterozygotes may be misclassified as 
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homozygotes when null alleles occur because of mutations in the primer annealing 
sites; (ii) stutter bands may complicate accurate scoring of polymorphisms, and even 
if microsatellite markers are able to identify neutral biodiversity, nevertheless do not 
provide information about functional trait biodiversity.

The main molecular markers based on assessment of variability gener-
ated by microsatellites sequences are: Sequence Tagged Microsatellite Site 
(STMSs), Simple Sequence Length Polymorphism (SSLPs), Single-Nucleotide 
Polymorphisms (SNPs), Sequence Characterized Amplified Region (SCARs), and 
Cleaved Amplified Polymorphic Sequences (CAPS). Moreover, some new markers 
have recently emerged and are being used in the evaluation of PGR; these include 
high-density SNP arrays, whole-genome sequencing, and DNA barcoding.

In the main, microsatellite markers detect a high level of polymorphism and 
being very informative are currently used for population genetics studies due to 
the capability to be suitable both for the individual level and for closely related 
species. Microsatellite markers have proven useful for assessment of genetic varia-
tion in germplasm collections (Mohammadi and Prasanna 2003). The trend analy-
sis of SSR repeats in genes of known function has permitted to use these markers’ 
typology for association studies with phenotypic variation and biological function 
(Ayers et al. 1997). Several studies have demonstrated the usefulness of SSRs for 
estimating genetic relationship and for the detection of functional diversity in rela-
tion to adaptive variation (Eujayl et al. 2001; Russell et al. 2004). Microsatellites 
have been successfully applied also in gene mapping studies (Hearne et al. 1992; 
Morgante and Olivieri 1993; Jarne and Lagoda 1996).

6.8.3 � Single Nucleotide Polymorphisms (SNPs)

The complications found to fully automate microsatellite genotyping and the 
advent of NGS has renewed the interest of the scientific community in a new 
type of marker named SNPs. SNPs are the most abundant molecular markers in 
the genome and consist of single nucleotide variations in genome sequence. SNPs 
polymorphisms derive from single nucleotide substitutions (transitions/trans-
versions) or single nucleotide insertions/deletions. They are widely dispersed 
throughout the genomes with a variable distribution among species and are usu-
ally more prevalent in the noncoding regions of the genome where their effects 
are neutral. Nevertheless, when an SNP occurs within the coding regions, it can 
generate either synonymous mutations that do not alter the amino acid sequence 
but also non-synonymous mutations resulting in an amino acid sequence chang-
ing (Sunyaev et al. 1999). Synonymous changes can modify mRNA splicing gen-
erating phenotypic differences (Richard and Beckman 1995). Moreover, a group 
of associated SNP loci located on a certain region of the chromosome can form 
one SNP haplotype. SNPs, distributed in both coding and noncoding regions of 
genomes, represent key players in the process of population genetic variations and 
species evolution (Syvänen 2001).
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The majority of SNP genotyping analyses are based on: allele-specific hybridi-
zation, oligonucleotide ligation, primer extension, or invasive cleavage (Sobrino 
et al. 2005). These kinds of markers can be easily detected using traditional PCR 
and sequencing, High Resolution Melting (HRM) technology, microchip arrays, 
and fluorescence technology. These genotyping methods are particularly attractive 
for their high data throughput and for their suitability for automation.

SNPs can be considered as the third-generation molecular markers coming after 
RFLPs and SSRs (Peter 2001). To date, SNP markers are not yet routinely applied 
in gene banks activity, in particular because of the high costs involved, even if they 
have been successfully applied to investigate genetic variation among different 
species (Brooks et  al. 2010; Amaral et  al. 2008). On the contrary, SNP analysis 
has revealed to be particularly useful for cultivar discrimination in crops where 
it is difficult to find polymorphisms. SNPs may also be used for a wide range of 
purposes, including population structure, genetic differentiation, and construction 
of ultra high-density genetic maps to saturate linkage maps in order to locate rel-
evant traits in the genome. For instance, a high-density linkage map developed in 
Arabidopsis thaliana was completed only after SNP markers development (Cho 
et  al. 1999). Moreover, linkage disequilibrium (LD) among different SNPs can 
be utilized for association analysis. Furthermore, SNPs can produce information 
concerning population diversity and evolution (origins, differentiation, and migra-
tions) via SNP haplotypes among different populations. Compared with previous 
markers, SNPs show the following advantages because they are:

–	 abundant and widely distributed throughout the entire genome;
–	 characterized by a high genetic stability, excellent repeatability, and high accuracy;
–	 they lend to automation and fast high-throughput genotyping;
–	 being co-dominant are able to distinguish heterozygote from homozygote alleles.

6.8.4 � SNP Markers and Whole-Genome Sequencing

One disadvantage of SNP markers consist in the low level information obtained 
respect to the highly polymorphic microsatellite markers. Nevertheless, this 
inconvenience can be compensated employing a higher numbers of markers 
(SNP chips) and whole-genome sequencing (Werner et  al. 2002, 2004). Thanks 
to the improvement of sequencing technology with the advent of high-throughput 
sequencing, whole-genome/gene sequencing has permitted the detection and char-
acterization of genetic diversity among individuals. Nowadays, it can be consid-
ered the most straightforward method producing more complete information on 
the genetic variation among different populations going to detect all the variations 
within the genome. However, even if a problem with whole-genome sequencing 
consists in the development of a high-throughput data analysis platform, the in-
depth analysis of NGS data, extensively produced by genetics and genomics stud-
ies, has strongly increased the accurate calling of SNPs and genotypes thanks also 
to the development of recent statistical methods able to improve and quantify the 
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considerable uncertainty associated with genotype calling. Before the advent of 
NGS, SSR markers were developed using the time-consuming and laborious con-
struction of genomic libraries, starting from recombinant DNA with the conse-
quent isolation and sequencing of clones containing the SSRs. Zalapa et al. (2012) 
have demonstrated the power of NGS for developing SSRs in plants in a review 
focusing on their work on cranberry and several other studies where SSRs were 
developed using Sanger, 454, and Illumina platforms.

6.9 � Markers Based on Other DNA Typology

Ribosomal RNA (rRNA) represents another kind of nuclear genome and, due to 
the fact that some regions of rRNA are well preserved in eukaryotes, has been 
extensively employed to study genetic diversity. rRNA genes are placed on the 
specific chromosomal loci Nor, and organized in tandem repeats which can be 
repeated up to thousands of times. A particular feature of rRNA, which could 
explain its wide application, consists in the contemporary presence of regions 
that are highly conserved throughout eukaryotic evolution providing very useful 
genetic tools and other regions called “Internal Transcriber Spacers” (ITS) that 
are highly variable and hence can be used to detect polymorphisms at intraspecific 
level.

Other highly informative approaches exist, based on organelle microsatellite 
sequences detection. Due to their uniparental mode of transmission, chloroplast 
(cpDNA) and mitochondrial genomes (mtDNA) allow to detect different patterns 
of genetic differentiation with respect to nuclear alleles (Provan et al. 1999a, b). 
Consequently, in addition to nuclear markers, other marker typologies based on 
chloroplast and mitochondrial microsatellites have also been developed. The 
cpDNA, which is maternally inherited in most plants, can be considered an addi-
tional tool for within-species genetic variation analysis (Ali et al. 1991; McCauley 
1994) and has proved to be a powerful tool for phylogenetic studies. Thanks to its 
good level of conservation within the genome, CpDNA has been employed widely 
for studying plant populations through the use of PCR–RFLP and PCR sequenc-
ing approaches (McCauley 1994), in the detection of hybridization/introgression 
(Bucci et  al. 1998), in the analysis of genetic diversity (Clark et  al. 2000), and 
in obtaining the phylogeography of plant populations (Parducci et al. 2001; Shaw 
et  al. 2005). On the contrary, mitochondrial DNA in plants, being quantitatively 
scarce, is unsuitable for studying phylogenesis and genetic diversity.

6.9.1 � RNA-Based Molecular Markers (RBMs)

Biological responses and the developmental programming in organisms are 
crucial phenomena, thence the analysis of mechanisms which control their genetic 
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expression are essential. This has led to the development of markers derived from 
transcribed/expressed regions of genomes. The greatest advantage of RBMs is 
that, being derived from the expressed regions of the genome, the generated frag-
ments can easily be associated with phenotypic traits becoming a key tool for 
genetic mapping studies of Quantitative Traits Loci (QTLs). On the contrary, 
these markers should be used with caution in such studies aiming to detect genetic 
variation in natural populations because they may be under selection. RNA-based 
markers, designed on coding regions of the genome characterized by a good level 
of conservation, are also expected to be transferable between related species and 
genera. Among PCR-based marker techniques, inter small RNA polymorphism 
(iSNAP) is the most recent and is based on endogenous noncoding small RNAs 
consisting of 20–24 nucleotides that are ubiquitous in eukaryotic genomes where 
they play important regulatory roles, representing an excellent source for molec-
ular marker development. This technique is highly reproducible and feasible for 
automation and it has been successfully applied for genome mapping and for 
genotyping. Nevertheless, a negative point is that being based on the expressed 
portion of the genome, it could be also affected by phenological plant stage and 
environmental conditions. Other techniques such as cDNA–SSCP, cDNA–AFLP, 
cDNA–RFLP, and RAP–PCR are used for differential RNA studies, using selec-
tive amplification of cDNA. These techniques are efficient for the identification of 
common and rare transcripts and for studying genome-wide gene expression (Xiao 
et al. 2009) and can also be used to identify differences in the expression of dif-
ferent genes under various stress conditions (Song et al. 2012). Moreover, another 
RBM technique exists consisting in EST–SSR markers where thanks to the recent 
increase in the availability of EST data, have been developed in a number of plant 
species groups (La Rota and Sorrells 2004). Technically, EST–SSR is identical to 
common genomic (gSSR) microsatellites in terms of amplification and detection 
but differs in primer development and the locations of the primers being generated 
from the transcribed portion of the genome.

6.9.2 � Transposable Elements-Based Molecular Markers

Transposable elements (TE) are mobile DNA sequences which can change their 
positions in the genome. Based on their excision mechanism, TEs can be divided 
into Class I (retrotransposons), commonly called ‘copy-and-paste’ elements, and 
Class II (DNA transposons), or ‘cut-and-paste’ elements (Finnegan 1989). In par-
ticular, LTR retrotransposons are elements surrounded by long terminal repeats 
(LTRs) that do not code for any protein and contain the promoters and terminators 
for transcription. These regions provide the basis for primer binding sites in many 
techniques. Retrotransposons represent an excellent basis for the development 
of markers due to their dispersion (Katsiotis et  al. 1996; Suoniemi et  al. 1996), 
ubiquity (Flavell et al. 1992; Voytas et al. 1992), and prevalence in plant genomes; 
for this reason most TE-based markers utilize Class I retrotransposons.
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Even if transposon insertions can be deleterious for host genomes, transpo-
sons are actually considered crucial for adaptative evolution favoring the rear-
rangement of the genomes and the acquiring of novel traits (Miller et  al. 1997; 
Agrawal et  al. 1998; May and Dellaporta 1998; Girard and Freeling 1999; Gray 
2000). Despite their great contribution to the genome structure, size, and varia-
tion, only recently retrotransposons have received attention for the assess-
ment of genetic diversity (Gynheung et  al. 2005) where retrotransposons can 
be used alone or in combination with other markers, such as AFLPs and SSRs. 
Retrotransposon-based molecular analysis relies on amplification using a primer 
corresponding to the retrotransposon and a primer matching a section of the neigh-
boring genome. To this type of class of molecular markers belong: Sequence-
Specific Amplified Polymorphism (S-SAP), Inter-Retrotransposon Amplified 
Polymorphism (IRAP), Retrotransposon-Microsatellite Amplified Polymorphism 
(REMAP), Retrotransposon-Based Amplified Polymorphism (RBIP), and finally, 
Transposable Display (TD).

6.10 � Optimization of Molecular Marker-Based Analysis: 
Multiplex PCR

Through multiplex PCR system it is possible to contemporarily detect multiple 
target sequences using simultaneous amplification reactions (James et al. 2003). 
Multiplex PCR presents many advantages being more sensitive, fast, and easy 
to perform. The multiplex-ready PCR technology provides several enabling 
advances in marker genotyping reducing assay costs, increasing information 
throughput and permitting automation. It requires limited sample concentration, 
makes it possible to obtain more information per unit of time and using stand-
ardized protocols, economizes on reagents, enzyme, buffers and labor, stream-
lines data analysis, and has a high tolerance to variation in the concentration and 
quality of DNA samples. Moreover, multiple-tube amplification permits to avoid 
allelic dropout consisting in an erroneous classification of one locus as homozy-
gous due to the chance amplification of only one of the two heterozygous alleles, 
and false alleles due to reaction contaminations, PCR slippage artifacts, or other 
causes (Taberlet et al. 1996, 1999; Broquet and Petit 2004). However, multiplex 
PCR reactions require several devices such as uniformity in product abundance, 
especially for simultaneous SSRs and SNPs genotyping, and differential sizes of 
the amplification fragments obtained in order to connect a specific allele to the 
marker that characterizes it. In particular, multiplex amplifications using fluores-
cence detection show high power of discrimination in a single test and permit to 
jointly analyze up to 10 different genomic loci. This technique has been success-
fully applied in high-throughput SNP genotyping, gene deletion, mutation, and 
linkage analysis.



1496  Using Molecular Techniques to Dissect Plant Genetic Diversity

6.11 � DNA Barcoding Markers

With the advent of practical computer technologies applied to genetic studies, such 
new identification technologies have been developed to facilitate the analysis in 
the presence of an increasing number of samples. Among these, barcoding sys-
tem is an automatic scanning identification tool that has been applied by biological 
taxonomists to species classification, referring to a DNA barcode. In particular, a 
DNA barcode is a short DNA sequence deriving from a standardized region of the 
genome used for identifying species. DNA barcoding permits using a large-scale 
screening of one or more reference genes, to assign an unknown individual to an 
exact specie, and enhance discovery of new species (Hebert et al. 2003; Stoecklem 
2003). In this perspective, public libraries of DNA barcodes linked to named spec-
imens are available (Tautz et al. 2002; Hebert et al. 2004). Compared with time-
consuming and inefficient traditional morphological classification (Huang et  al. 
2007), DNA barcoding presents several advantages being very fast and having a 
high accuracy of 97.9 % (Hajibabaei et al. 2006). On the contrary, in DNA barcod-
ing technique, the genome fragments are difficult to obtain and being relatively 
conserved have no enough variations.

6.12 � Diversity Arrays Technology (DArT)

DArT is a genotyping technology developed to overcome some of the limitations 
of other molecular marker technologies such as RFLP, AFLP, and SSR (Akbari 
et al. 2006). DArT represents a fast and cost-effective alternative method to time-
consuming hybridization-based techniques, characterizing simultaneously several 
thousand loci in a single assay. DArT has been successfully applied to genotyping 
polyploid species with large genomes, such as wheat. This technology generates 
whole-genome fingerprints by scoring the presence/absence of DNA fragments in 
genomic representations and acts by reducing the complexity of a DNA sample 
to obtain a “representation” of that sample. DArT technology consists of several 
steps: (i) library creation, (ii) microarray of libraries onto glass slides, (iii) hybrid-
ization of fluoro-labeled DNA onto slides, (iv) scanning of slides for hybridisa-
tion signal, and (v) data analysis (Fig.  6.6). Among the methods used for DNA 
complexity reduction, the main method consists of a combination of restric-
tion enzyme digestion and adapter ligation, followed by amplification even if an 
infinite range of alternative methods can be used. DArT markers for new specie 
are produced by screening a library deriving from a genomic representation pre-
pared starting from a pool of DNA samples that embrace the diversity of the spe-
cie. Thanks to the use of the microarray platform, the discovery process results 
as more efficient being all markers scored simultaneously, and for each reduction 
method an independent collection of DArT markers can be assembled on a sepa-
rate DArT array. The number of markers to use for the analysis of a given species 
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is only dependent on the level of genetic variation within the species (or gene 
pool) and the number of complexity reduction methods screened. DArT technol-
ogy was originally developed in rice due to its small genome (430 Mbp) (Jaccoud 
et  al. 2001) and subsequently applied to several other crops. To date, DArT has 
been successfully applied for genetic mapping and genetic diversity analysis, also 
to species characterized by large genomes such as wheat and barley, (Mochida 
et al. 2004; Wenzl et al. 2004) up to the 16,000 Mbp of the hexaploid genome of 
bread wheat (Akbari et al. 2006).

6.13 � Next-Generation Sequencing Technologies

In the past decade, the emergence of NGS technologies has deeply changed all 
the genetics disciplines that depend on DNA sequence data. NGS technologies 
have revolutionized and increased the capabilities of traditional Sanger sequencing 

Fig. 6.6   Schematic drawing of DArT pipeline. Gx, Gy, and Gn represent DNA from three differ-
ent individuals in the reduction step to obtain single genomic DNA
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method (Sanger et  al. 1977), allowing millions of bases to be sequenced in one 
round at a fraction of the cost. NGS techniques can be distinguished into three 
main types: sequencing by synthesis, sequencing by ligation, and single-molecule 
sequencing.

6.13.1 � Sequencing by Synthesis

Like Sanger sequencing, NGS techniques use the emission of chemilumines-
cence created by nucleotide incorporation during synthesis of the complementary 
DNA strand by DNA polymerase, to determine base composition. In sequencing 
by synthesis, DNA is fragmented to obtain the appropriate size, ligated to adap-
tor sequences, and then amplified to enhance the fluorescent or chemical signal. 
Templates are then separated and immobilized in preparation for flow-cell cycles. 
Among the techniques available for sequencing by synthesis the most used are 
Illumina (http://www.illumina.com), Roche 454 pyrosequencing (http://www.
my454.com), and Ion torrent (http://www.iontorrent.com), which differ by read 
length and in how templates are amplified and immobilized.

6.13.2 � Sequencing by Ligation

This method is based on the use of oligonucleotide probes which differ in lengths 
and labeled with fluorescent tags depending on the nucleotide types to be deter-
mined (Landegren et al. 1988). The DNA template is fragmented and primed with 
a short, known anchor sequence favoring the probe hybridization and consequently 
DNA ligase is added. The fluorescent emission is analyzed to determine which probe 
was incorporated. This process is repeated with different sets of probes to query 
the DNA template and assess the sequence of nucleotides. Among the methods 
based on this technique the most used are SOLiD (http://www.appliedbiosystems. 
com) and Polonator G.007 system (http://www.azcobiotech.com/instruments/ 
polonator.php).

6.13.3 � Single-Molecule Sequencing

Single-molecule sequencing (SMS) technique, also called “third-generation 
sequencing,” is based on the detection of a chemiluminescent signal produced by 
nucleotide incorporation occurring during DNA sequencing from a single nucleic 
acid molecule. This method offers several advantages with respect to other NGS 
methods because it can make use of degraded or low concentrations of starting 
material and escape from PCR errors due to template amplification.

http://www.illumina.com
http://www.my454.com
http://www.my454.com
http://www.iontorrent.com
http://www.appliedbiosystems.com
http://www.appliedbiosystems.com
http://www.azcobiotech.com/instruments/polonator.php
http://www.azcobiotech.com/instruments/polonator.php
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Presently, the main techniques based on this method are Helicos Genetic 
Analysis System (http://www.helicosbio.com) and PacBio RS SMS platform 
(http://www.pacifi cbiosciences.com).

6.14 � Conclusion and Prospects

The idea of using gene markers for a variety of purposes in applied genetics, con-
servation strategies, and genetic diversity assessment is not new. However, until 
the advent of molecular markers, many of the proposals were technically unfea-
sible. Molecular analysis of plants has found many applications in plant improve-
ment, in the management of plant production, and in conservation of plant 
resources. Molecular tools have become key contributors to the management of 
wild plant populations helping to conserve biodiversity.

Recent dramatic advances in DNA sequencing are now providing cost-effective 
options for the discovery of very large numbers of markers for any plant species. 
These developments significantly change the approach to marker discovery and 
analysis in plants and greatly expand the potential range of application. Advances 
in biotechnology have resulted in a large variety of molecular marker systems and 
enhanced opportunities for automation of the majority of the techniques, resulting 
in a wealth of information. Moreover, due to the developments in the detection 
techniques, molecular markers are particularly useful in diagnostic applications, 
such as the screening of samples for the presence or incorporation of favorable 
traits, the detection of pathogens and diseases in plants, and the screening of plant 
material for the presence of transgenic elements and jointly with the concept of 
marker-assisted selection provide new solutions for selecting and maintaining 
desirable genotypes.

Hence, molecular markers make the prospect excellent for a rapid development 
of new methodologies for plant genetic diversity dissection that take advantage of 
the modern techniques.
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