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Abstract. Stackelberg Security Games (SSGs) model scenarios where
a defender implements a randomized security policy, while an attacker
observes the policy and selects an optimal attack strategy. Applications
of SSG include critical infrastructure protection and dynamic defense
of computer networks. Current work focuses on centralized algorithms
for computing stochastic, mixed-strategy equilibria and translating those
equilibria into security policies, which correspond to deciding which sub-
set of targets (e.g., infrastructure components or network nodes) are
defended at each time step. In this paper, we develop distributed strate-
gies for multiple, resource-constrained agents to achieve the same equilib-
rium utility as these centralized policies. Under our approach, each agent
moves from defending its current target to defending a new target with
a precomputed rate, provided that the current target is not defended by
any other agent. We analyze this strategy via a passivity-based approach
and formulate sufficient conditions for the probability distribution of the
set of defended targets to converge to a Stackelberg equilibrium. We then
derive bounds on the deviation between the utility of the system prior to
convergence and the optimal Stackelberg equilibrium utility, and show
that this deviation is determined by the convergence rate of the dis-
tributed dynamics. We formulate the problem of selecting a minimum-
mobility security policy to achieve a desired convergence rate, as well
as the problem of maximizing the convergence rate subject to mobility
constraints, and prove that both formulations are convex. Our approach
is illustrated and compared to an existing integer programming-based
centralized technique through a numerical study.
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1 Introduction

Intelligent and persistent adversaries typically observe a targeted system and its
security policies over a period of time, and then mount efficient attacks tailored
to the weaknesses of the observed policies. These attacks have been analyzed
within the framework of Stackelberg Security Games (SSG), where the defender
(leader) selects a policy in order to maximize its utility under the best response
strategy of the adversary (follower) [1,2]. Applications of SSGs include defense
of critical infrastructures [3,4] and intrusion detection in computer networks [5].
In both of these applications, the security policy corresponds to defending a set
of targets, including ports, checkpoints, or computer network nodes.

The security of the system targeted in an SSG can be further improved
through randomized policies, in which the set of nodes or locations that are
guarded varies over time with a probability distribution that is chosen by the
defender [2–4,6]. An attacker with knowledge of the probability distribution, but
not the outcome of the randomized policy at each time step, will have greater
uncertainty of the system state and reduced effectiveness of the attack.

Current work in SSGs focuses on centralized computation of the Stackelberg
equilibria against different types of attackers, including rational, min-max, and
bounded rational [6] attackers, under complete, incomplete, or uncertain infor-
mation. In scenarios including patrolling and intrusion defense, however, security
policies are implemented by distributed agents (e.g., multi-robot patrols, or mal-
ware filters in intrusion detection). These agents have limitations on computation,
communication, and ability to move between targets. Currently, however, com-
putationally efficient distributed strategies for resource-constrained defenders to
achieve the same Stackelberg equilibria as centralized mechanisms are lacking.

In this paper, we developed distributed strategies for multiple defenders that
guarantee convergence to a stochastic Stackelberg equilibrium distribution while
minimizing the cost of movement. We propose a distributed strategy in which
each defender first checks if a neighboring target is undefended, and then transi-
tions to defending that with a certain probability if it is undefended. Since each
defender only needs to know whether the neighboring targets are defended, the
proposed policy can be implemented with only local communication. We analyze
our approach by introducing nonlinear continuous dynamics, where each state
variable is equal to the probability that a corresponding target is guarded by
at least one defender, that approximate our proposed strategy. We show that,
under this mapping, the Stackelberg equilibrium is achieved if and only if the
continuous dynamics converge to a fixed point corresponding to the Stackelberg
equilibrium. We develop sufficient conditions for convergence of these nonlinear
dynamics via a passivity-based approach.

We derive bounds on the utility of an adversary with partial information as
a function of the convergence rate of the dynamics, which we characterize as a
passivity index. We then formulate the problem of maximizing the convergence
rate, subject to mobility constraints, and prove that the formulation is convex,
leading to efficient algorithms for computing the optimal policy. Our approach is
validated and compared with an existing integer programming-based approach
via numerical study.
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The paper is organized as follows. In Sect. 2, we review related works on
Stackelberg security games. In Sect. 3, the defenders and attacker models are
introduced, and a zero-sum game is formulated between multiple defenders and
an attacker. In Sect. 4, we propose a distributed defender strategy and prove
convergence to the desired Stackelberg equilibrium. Section 5 bounds the utility
of the attacker using the convergence rate of the dynamics and presents a convex
optimization approach for maximizing the convergence rate. Section 6 presents
our simulation results. Section 7 concludes the paper.

2 Related Work

Stackelberg Security Games (SSGs) have been gaining increasing attention in the
security community in application including the defense of critical infrastructures
such as airports [3,7], large interconnected computer networks [5,8] and protec-
tion of location privacy [9,10]. In particular, stochastic Stackelberg games have
been used to design randomized security policies instead of deterministic policies
that can be learned by the attacker with certainty.

Computing the Stackelberg equilibria has been studied in the existing liter-
atures [11,12]. Computation of mixed-strategy Stackelberg equilibria against a
worst-case (minimax or zero-sum) attacker was considered in [7]. Randomized
security policies against bounded rational adversaries were proposed in [11].
When the defender has partial or uncertain information on the adversary’s goals
and capabilities, a repeated Stackelberg framework was proposed to model the
learning and adaptation of the defender strategy over time [12]. In [13], a human
adversary with bounded rationality was modeled as the quantal response (QR)
in which the rationality of the adversary is characterized by a positive parame-
ter λ, with perfect rationality and worst-case (minimax) behavior as the two
extremes. Games when the defender is uncertain about the behavioral mod-
els of the attacker has been studied. In [6], a monotonic maximin solution was
proposed that guarantees utility bound for the defender against a class of QR
adversaries. These existing works focus on computing the Stackelberg equilibria,
where optimization framework including mixed-integer programming has been
used for the computation.

Centralized algorithms for choosing which targets to defend over time to
achieve a Stackelberg equilibrium have received significant recent attention [14,
15], leading to deployment in harbor patrols [4] and mass transit security [3,16].
In [14], randomized patrolling of a one-dimensional perimeter by multiple robots
was considered, where all robots are governed by a parameter p determining
to move forward or back. In [15], a game when the attacker not only has the
knowledge of the randomized policy but also the current location of the defender
was analyzed, leading to attacker’s strategy being function of the defense policy
and the previous moves of the defender. In these works, mixed integer linear
programming techniques were proposed to compute the defender strategy, which
provide guaranteed optimality but require a centralized entity with worst-case
exponential complexity in the number of defenders, time steps, and targets.
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In the present paper, we instead consider a set of defenders who choose their
strategies in a distributed manner in order to approximate the equilibrium of a
one-shot SSG.

3 Model and Game Formulation

In this section, we present the defender and adversary models. We then formulate
a Stackelberg game modeling the behavior of the adversary and defenders.

3.1 Defender Model

We assume that there are n targets and m defenders where m ≤ n. The targets
are represented as nodes on a complete graph, and each defender is located at one
node in the graph at each time t. We model the constrained mobility of defenders
and physical distances between nodes by assigning a cost dij of traversing from
target i to target j. The cost of traversing may not be symmetric (dij �= dji).
Each defender is able to communicate with other defender to obtain information
regarding whether any target is currently occupied by another defender. We
define St to be the set of targets that is defended at time t.

3.2 Adversary Model

We consider an adversary whose goal is to successfully penetrate the system by
attacking one or more targets over time. If the adversary attacks target i at time t,
the adversary will collect the reward ri ≥ 0 if no defender is present at the target
at time t. If at least one defender is present at target i at time t, the adversary will
pay the cost ci ≥ 0. Both reward and cost values are known to the defenders and
the adversary.

We consider two types of adversaries with different levels of available infor-
mation. The first type of adversary is able to observe the fraction of time that a
target is occupied by at least one defender for all targets but is unable to observe
the current locations of defenders. The second type of adversary is able to observe
exact location of one or more defenders at a sequence of times t1 < t2 < · · · < tk
and plan the attack strategy at time t > tk based on these observations.

3.3 Game Formulation

We consider a Stackelberg game where the defenders first choose the fraction of
time that each target will be occupied by at least one defender. The adversary
then observes the chosen fraction of time and decides to either attack a specific
target, or not attack any target. The goal of the adversary is to maximize its
expected utility, defined as the expected reward minus the expected cost of
detection. The goal of the defender is to minimize the best-case expected utility
of the adversary, leading to a zero-sum formulation.
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To formally define the game, we denote xi as the fraction of time that target i is
occupied by at least one defender. If the adversary decides to attack target i, then
the expected utility of attacking i, denoted Uadv(i), is given as

Uadv(xi) = (1 − xi)ri − xici = −(ri + ci)xi + ri (1)

Let zi be the adversary’s chosen probability of attacking target i. Writing x
and z as the vectors of defender and adversary probabilities, respectively, the
expected utility of the adversary can be written as

Uadv(x, z) = −xT (C + R)z + 1T Rz (2)

where C and R are n×n diagonal matrices with Cii = ci and Rii = ri. Given x,
the adversary obtains the best-response strategy z by solving the linear program

maximize −xT (C + R)z + 1T Rz
y
s.t. 1T z ≤ 1, 0 ≤ zi ≤ 1, i = 1, . . . , n

(3)

We note that the adversary can maximize its utility by selecting zi = 1 for
some i satisfying

i ∈ arg max {(xT (C + R) + 1T R)j : j = 1, . . . , n}
and zj = 0 otherwise. Hence, without loss of generality we assume that the
adversary selects a best-response strategy z∗ with this structure, implying that
the expected utility of the adversary is given by

U∗
adv(x) = max{ max

i=1,...,n
{−(ri + ci)xi + ri}, 0} (4)

which is a piecewise linear function in x.
The Stackelberg equilibrium x∗ of the defender can then be obtained as the

solution to the optimization problem

minimize U∗
adv(x)

x
s.t. 1Tx ≤ m,xi ∈ [0, 1]

(5)

where the constraint 1Tx ≤ m reflects the fact that there are m defenders.
Equation (5) is a piecewise linear optimization problem, and hence is convex.
In the following section, we will discuss how to design the mobility patterns of
defenders to achieve the computed x∗ in a distributed manner.

4 Passivity-Based Distributed Defense Strategy

In this section, we present the proposed distributed patrolling strategy of the
defenders. We define continuous dynamics that approximate the probability that
each target is defended at time t, and show that convergence of the continuous
dynamics to the distribution x∗ is equivalent to convergence of the time-averaged
defender positions to the Stackelberg equilibrium. We formulate sufficient condi-
tions for convergence of the continuous dynamics via a passivity-based approach.
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4.1 Distributed Defender Strategy

Our proposed distributed patrolling strategy is as follows. Each defender decides
whether to move to a different target according to an i.i.d. Poisson process with
rate γ. At time t, the defender at target i selects a target j �= i uniformly at
random and sends a query message to determine if there is already a defender at
target j. If so, then the defender remains at target i. If not, the defender moves
to target j with probability pij .

This defender strategy can be modeled via nonlinear continuous dynamics.
Let xi(t) denote the probability that at least one defender guards target i at
time t. For δ > 0 sufficiently small, we then have

xi(t + δ) = xi(t) + (1 − xi(t))
∑

j �=i

γδpjixj(t) −
∑

j �=i

γδpijxi(t)(1 − xj(t)).

This approximation makes the simplifying assumption that the events i ∈ St

and j /∈ St are independent for i �= j. Dividing by δ and taking the limit as
δ → 0 yields

ẋi(t) = (1 − xi(t))
∑

j �=i

Qjixj(t) − xi(t)
∑

j �=i

Qij(1 − xj(t)), (6)

where Qij = pijγ. The following lemma establishes that under the dynamics
(6), the number total expected number of defended targets is equal to m at each
time step, and the probability that each target is defended is within the interval
[0,1].

Lemma 1. If xi(0) ∈ [0, 1] for all i and 1Tx(0) = m, then xi(t) ∈ [0, 1] and
1Tx(t) = m for all t ≥ 0.

Proof. To show that xi(t) ∈ [0, 1] for all t ≥ 0 when xi(0) ∈ [0, 1], let

t∗ = inf {t : xi(t) /∈ [0, 1] for some i}.

By continuity, xi(t∗) ∈ {0, 1} for some i and xj(t) ∈ [0, 1] for all j �= i. Suppose
without loss of generality that xi(t∗) = 0. Then

ẋi(t∗) =
∑

j �=i

Qjixj(t) ≥ 0,

implying that xi(t) ∈ [0, 1] within a neighborhood of t∗ and contradicting the
definition of t∗. Hence xi(t) ∈ [0, 1] for all i and t ≥ 0.

Now, we have that

1T ẋ(t) =

n∑

i=1

⎡

⎣(1 − xi(t))
∑

j �=i

Qjixj(t) − xi(t)
∑

j �=i

Qij(1 − xj(t))

⎤

⎦

=
n∑

i=1

⎡

⎣
∑

j �=i

(Qjixj(t) − Qijxi(t)) +
∑

j �=i

(Qijxi(t)xj(t) − Qjixi(t)xj(t))

⎤

⎦ = 0,

implying that 1Tx(t) is constant.
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4.2 Passivity-Based Convergence Analysis

We now derive conditions on the matrix Q to ensure that, for any initial distri-
bution x(0), the dynamics (6) satisfy limt→∞ x(t) = x∗. If this condition holds,
then the time-averaged distribution satisfies 1

T

∫ T

0
x(t) dt → x∗, and hence the

Stackelberg equilibrium is achieved.
By inspection of (6), convergence to x∗ occurs only if

(1 − x∗
i )

∑

j �=i

Qjix
∗
j = x∗

i

∑

j �=i

Qij(1 − x∗
j )

for all i. Defining D∗ to be a diagonal matrix with D∗
ii = x∗

i , this necessary
condition can be written in matrix form as

(D∗(Q − QT ) + QT )x∗ = D∗Q1. (7)

In order to develop sufficient conditions for convergence to x∗, we introduce
a decomposition of the dynamics (6) into a negative feedback interconnection
between two passive dynamical systems. Recall that a dynamical system Σ is out-
put feedback passive if there exists a positive semidefinite function V such that

V̇ (t) ≤ ρy(t)T y(t) + u(t)T y(t) (8)

for all input u and output y for all time t. If ρ = 0, then the system is called
passive, and the system is called strictly passive if ρ < 0. The parameter ρ is
defined as the output feedback passivity index of the system [17].

Define x̂(t) = x(t) − x∗, and let two input-output dynamical systems be
given by

(Σ1)

{
˙̂xi(t) = −(Rin(i) + Rout(i))x̂i(t) + u

(1)
i (t)

y
(1)
i (t) = x̂i(t)

(9)

(Σ2) : y(2)(t) = −(D∗(Q − QT ) + QT )u(2)(t) (10)

where Rin(i) =
∑

j∈N(i) Qjixj(t) and Rout(i) =
∑

j∈N(i) Qij(1 − xi(t)). By
inspection, the trajectory of x̂j(t) in the negative feedback interconnection
between (Σ1) and (Σ2), shown in Fig. 1, is equivalent to the trajectory of x̂j(t)
under the dynamics (6).

The decomposition of Fig. 1 can be interpreted as follows. The top block
represents the change in the probability that each target i is defended, based
on the current probability that target i is defended. The input signal from the
bottom block can be interpreted as the rate at which defenders from other targets
move to target i.

A standard result states that the negative feedback interconnection between
two strictly passive systems is globally asymptotically stable [17], which in this
case implies that x(t) converges asymptotically to x∗. Hence, it suffices to derive
conditions under which systems (Σ1) and (Σ2) are strictly passive. We now present
sufficient conditions for strict passivity of (Σ1) and (Σ2), starting with (Σ1).
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-

Fig. 1. Decomposition of the patrol dynamics as negative feedback interconnection
between passive systems.

Proposition 1. The system (Σ1) is passive from input u(1)(t) to output y(1)(t).
If maxj {min {Qji, Qij}} > 0 for all i, then (Σ1) is strictly passive.

Proof. Consider the storage function V (x̂) = 1
2 x̂

T x̂. We have

V̇ (x̂) = −
∑

i

(Rin(i) + Rout(i))x̂2
i + (u(1))T x̂.

Since the output y(1) is given by y(1)(t) = x̂, it suffices to show that Rin(i) +
Rout(i) > 0 for all feasible x. We have

Rin(i) + Rout(i) =
∑

i

[Qjixj + Qij(1 − xj)]. (11)

Since xj ∈ [0, 1], each term of (11) is bounded below by min {Qji, Qij} ≥ 0.
Hence the system (Σ1) satisfies V̇ (x̂) ≤ (u(1))Ty, implying passivity. Further-
more, if the condition maxj {min {Qji, Qij}} =: k > 0 holds for all i, then

V̇ (x̂) < −kx̂T x̂ + (u(1))Ty,

implying strict passivity.

The condition maxj {min {Qji, Qij}} > 0 implies that, for target i, there
exists at least one target j such that defenders will transition to target i from
target j, and vice versa, with positive probability.

For the system (Σ2), define matrix K = (D∗(Q − QT ) + QT ), so that y(2) =
−Ku(2). If −uT Ku ≥ 0 for all u, then passivity of the bottom block would be
guaranteed. On the other hand, since the diagonal entries of K are all 0, the
matrix K is neither positive- nor negative-definite. The following proposition
gives a weaker sufficient condition.

Proposition 2. Define P = I − 1
n11

T . If PKP ≤ 0 for all u, then the system
(Σ2) satisfies uTy ≥ 0 for all u satisfying 1Tu = 0.

Proof. Suppose that 1Tu = 0. Then Pu = u, since P projects any vector onto
the subspace orthogonal to 1, and hence uT Ku = uT PKPu. The inequality
PKP ≤ 0 then implies that uTy = uT Ku ≤ 0.
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Combining the conditions for passivity of (Σ1) and (Σ2) with the fact that
1T x̂(t) = 0 (Lemma 1) yields the following sufficient condition for convergence
to the desired distribution x∗.

Theorem 1. If the conditions

Kx∗ = D∗Q1 (12)
max

j
{min {Qji, Qij}} > 0 ∀i (13)

PT K + KT

2
P ≤ 0 (14)

hold, then the vector of probabilities x(t) converges to x∗ as t → ∞. There exists
at least one realization of Q with Qij ≥ 0 for all i �= j and Qii = 0 that satisfies
(12)–(14).

Proof. Condition (12) implies that the equilibrium of the dynamics (6) corre-
sponds to the Stackelberg equilibrium x∗. Conditions (13) and (14) establish
strict passivity of (Σ1) (Proposition 1) and passivity of (Σ2) (Proposition 2),
respectively, when the trajectory satisfies 1T x̂(t) = 0 and xi(t) ∈ [0, 1] for all
i and t, which is guaranteed by Lemma 1. Hence the overall system is globally
asymptotically stable with equilibrium x∗. It remains to show that there is a
feasible matrix Q that satisfies the conditions (12)–(14).

The proof constructs a matrix Q such that K+KT

2 = ζ( 1
n11

T − I) for some
ζ ≥ 0. By construction, 1

2P (K + KT )P = −ζP 3 ≤ 0, since P ≥ 0.
For this choice of K+KT

2 , the identities K+KT

2 = ζ( 1
n11

T − I) and Kx∗ =
D∗Q1 are equivalent to

x∗
i Qij + (1 − x∗

j )Qij + x∗
jQji + (1 − x∗

i )Qji = ζ ∀i �= j (15)
∑

j

x∗
i (1 − x∗

j )Qij =
∑

j

x∗
j (1 − x∗

i )Qji ∀i (16)

Define
τij =

1
1 − x∗

j

+
1
x∗

i

+
1

1 − x∗
i

+
1
x∗

j

,

and let Qij = ζ
τijx∗

i (1−x∗
j )

. Substitution of Qij and Qji into (15) yields

x∗
i ζ

τijx∗
i (1 − x∗

j )
+

(1 − x∗
j )ζ

τijx∗
i (1 − x∗

j )
+

x∗
jζ

τijx∗
j (1 − x∗

i )
+

(1 − x∗
i )ζ

τijx∗
j (1 − x∗

i )
= ζ,

implying that (15) holds. Furthermore,

x∗
i (1 − x∗

j )Qij =
γ

τij
x∗

j (1 − x∗
i )Qji,

and hence (16) holds as well.
Observe that under this choice of Q, Qij ≥ 0 for all i, j, and condition (13)

is satisfied as well.
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While there may be multiple matrices Q satisfying conditions (12)–(14),
and hence guaranteeing convergence to x∗, the corresponding dynamics of each
defender may lead to a high cost associated with moving between distant targets.
The problem of selecting the values of Q that minimize the total movement can
be formulated as

minimize
∑n

i=1

∑n
j=1 dijQijx

∗
i (1 − x∗

j )
Q,K
s.t. K = D∗(Q − QT ) + QT

P (K + KT )P ≤ 0
Kx∗ = D∗Q1
Qij ≥ 0 ∀i �= j, Qii = 0 ∀i
maxj {min {Qji, Qij}} > 0 ∀i

(17)

The objective function
∑n

i=1

∑n
j=1 dijQijx

∗
i (1 − x∗

j ) can be interpreted as the
total movement cost to maintain the Stackelberg equilibrium x∗ once the equi-
librium is reached. Equation (17) can be reformulated as a standard-form semi-
definite program and solved in polynomial time. Furthermore, the procedure
described in Theorem 1 can be used to construct a feasible solution to (17) in
O(n2) time when the number of targets is large.

5 Mitigating Side Information of Adversary

In this section, we analyze the performance of our approach against an adver-
sary with knowledge of the defender positions at a previous time period. We first
bound the deviation between the utility of an adversary with partial information
and the Stackelberg equilibrium utility. Our bound is a function of the conver-
gence rate of the dynamics (6). We then formulate the problem of maximizing
the convergence rate subject to mobility constraints, as well as the problem of
selecting the least-costly patrolling strategy to achieve a desired convergence
rate.

5.1 Deviation from Stackelberg Equilibrium

An adversary who observes the defender positions at time t′ can estimate the
probability xi(t) that target i is defended at time t > t′ via the dynamics (6).
The adversary then computes the optimal strategy z(t)∗, where zi(t)∗ is the
probability of attacking target i at time t, by solving the optimization problem
max {−x(t)T (C + R)z + 1T Rz : 1T z = 1, z ≥ 0}.

The deviation of the resulting utility from the Stackelberg equilibrium is
given by

E(t) =
∑

j

[zj(t)∗(cjxj(t) + (1 − xj(t))rj) − z∗
j (x∗

jcj + (1 − x∗
j )rj)].

The following theorem provides an upper bound on E(t) as a function of the
convergence rate.
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Theorem 2. The expression E(t) satisfies

E(t) ≤ 2max
j

{|cj ||xj(t) − x∗
j | + |rj ||xj(t) − x∗

j |} + max
j

|cj − rj |
∑

j

|xj(t) − x∗
j |.

(18)

Proof. Letting αj(xj(t)) = cjxj(t) + rj(1 − xj(t)),

E(t) =
∑

j

[αj(xj(t))(zj(t)∗ − z∗
j + z∗

j ) − z∗
j αj(x∗

j )]

=
∑

j

[αj(xj(t))(zj(t)∗ − z∗
j ) + z∗

j (αj(xj(t)) − αj(x∗
j ))]. (19)

Considering the two terms of the inner summation in (19) separately, we first
have that

∑
j αj(xj(t))(zj(t)∗ − z∗

j ) is equal to αj(xj(t)) − αi(xi(t)), where j is
the target attacked by the adversary in the best-response to distribution x(t)
and i is the target attacked by the adversary in the best-response to x∗. We then
have

αj(xj(t)) − αi(xi(t)) = cjxj(t) + rj(1 − xj(t)) − cixi(t) − ri(1 − xi(t))
= cj x̂j(t) − rj x̂j(t) − cix̂i(t) + rix̂i(t)

+ cjx
∗
j + rj(1 − x∗

j ) − cix
∗
i − ri(1 − x∗

i )
≤ cj x̂j(t) − rj x̂j(t) − cix̂i(t) + rix̂i(t) (20)
≤ |cj ||xj − x∗

j | + |rj ||xj − x∗
j | (21)

+ |ci||xi − x∗
i | + |ri||xi − x∗

i |
where (20) follows from the fact that i is a best-response to x∗ and (21) follows
from the triangle inequality. Taking an upper bound over i and j yields the first
term of (18).

Now, consider the second term of E(t). We have

αj(xj(t))−αj(x∗
j ) = cjxj(t)+(1−xj(t))rj−cjx

∗
j−rj(1−x∗

j ) = (cj−rj)(xj(t)−x∗
j ).

Hence
∑

j

z∗
j (αj(xj(t)) − α(x∗

j )) =
∑

j

z∗
j (cj − rj)(xj(t) − x∗

j )

≤ max
i

|ci − ri|
∑

j

|xj(t) − x∗
j |,

the second term of (18).

Theorem 1 implies that the deviation between the optimal adversary utility
at time t and the Stackelberg equilibrium is determined by the convergence
rate. The convergence rate can be bounded via a Lyapunov-type argument. As
a preliminary, we have the following standard result.
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Proposition 3. [17] Let V (x) be a continuously differentiable function such
that

c1||x||a ≤ V (x) ≤ c2||x||a (22)
V̇ (x) ≤ −c3||x||a (23)

over a domain D ⊂ R
n. Suppose ẋ = f(x) satisfies f(0) = 0. Then

||x(t)|| ≤
(

c2
c1

)1/a

exp
(

− c3
c2a

)
||x(0)||.

A bound on the convergence rate can then be derived via the passivity analy-
sis of Sect. 4.

Proposition 4. Define Kp = PT (K+KT

2 )P , where P = (I − 1
n11

T ), and sup-
pose that Kp ≤ 0. Denote the eigenvalues of Kp as 0 ≥ −λ1 ≥ · · · ≥ −λn−1 and
associated eigenvector of λi as qi. Then, the deviation ||x(t) − x∗||2 satisfies

||x(t) − x∗||2 ≤ exp (−λ1). (24)

Proof. Let V (x̂) = 1
2 x̂

T x̂. In the notation of Proposition 3, we have a = 2 and
c1 = c2 = 1

2 . We will bound V̇ (x̂) as a function of ||x̂||2. Any x̂ such that 1T x̂ = 0
satisfies x̂ = P x̂. Then, from the passivity analysis in Proposition 1, we have

V̇ (x̂) ≤ x̂T Kx̂ = x̂T PT K + KT

2
P x̂ = x̂T Kpx̂

which can be upper bounded as

x̂T Kpx̂
(a)
=

n−1∑

i=1

−λi(qT
i x̂)2 ≤ −λ1

n−1∑

i=1

x̂TqiqT
i x̂

(b)
= −λ1

n−1∑

i=1

x̂T (I − 1
n
11T )x̂ = −λ1x̂T P x̂

(c)
= −λ1x̂T PT P x̂ = −λ1||x̂||2

where (a) is from eigen decomposition, (b) is from the orthogonality of eigen-
vectors for symmetric matrices, and (c) is from the idempotent property of the
projection matrix. Substituting −λ1 as c3 from Proposition 3, we obtain the
desired bound.

The proof of Proposition 4 implies that V̇ (x̂) ≤ −λ1x̂T x̂, implying that λ1

is a passivity index [17] for the system (Σ1). Proposition 4 shows that maximiz-
ing over the convergence rate is equivalent to maximizing |λ1|, which will be
considered in the following section.
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5.2 Optimizing the Convergence Rate

The problem of maximizing the convergence rate subject to the mobility con-
straint can be formulated as

maximize s
Q,K, s
s.t. K = D∗(Q − QT ) + QT

Kx∗ = D∗Q1
Qij ≥ 0 ∀i �= j, Qii = 0 ∀i∑n

i=1

∑n
j=1 dijQij ≤ d

maxj {min {Qji, Qij}} > 0 ∀i

P
(

K+KT

2

)
P + sP ≤ 0, s ≥ 0

(25)

The first four constraints are from (17). The last constraint ensures the negative
semi-definiteness of the matrix P (K +KT )P and maximization of |λ1|, as shown
in the following proposition.

Proposition 5. Denote the eigenvalues of P (K + KT )P as 0, λ1, . . . , λn−1

ordered such that λ1 ≥ λ2 ≥ · · · ≥ λn−1, and let qi denote the eigenvector
associated with eigenvalue λi. If P (K + KT )P + sP ≤ 0, then λ1 ≤ −s.

Proof. Let KP = P (K + KT )P . Then the matrix KP + sP can be rewritten as

KP + sP = PKP P + sPIP = P (KP + sI)P (26)

by the idempotent property of P . If P (KP +sI)P ≤ 0, then xT P (KP +sI)Px ≤ 0
for all x. Letting x̂ = Px, we have

x̂T (KP + sI)x̂ ≤ 0

for all x̂ that satisfies 1T x̂ = 0. In particular, choose x̂ = q1, which satisfies the
condition 1T q1 from the orthogonality of eigenvectors of a symmetric matrix.
Then qT

1 (KP + I)q1 = λ1 + s ≤ 0, and hence λ1 ≤ −s.
By Proposition 5, the constraints P (K + KT )P + sP and s ≥ 0 ensure the

negative semidefiniteness of P (K + KT )P and maximizing s will result in s∗ =
|λ1|. The formulated optimization problem is a semidefinite program and can be
solved efficiently in polynomial time as in the case of (17).

An alternative optimization is minimizing the patrol cost for a given conver-
gence rate λ. This optimization problem can be formulated as

minimize
∑n

i=1

∑n
j=1 dijQijx

∗
i (1 − x∗

j )
Q,K
s.t. K = D∗(Q − QT ) + QT

P
(

K+KT

2

)
P + λP ≤ 0

Kx∗ = D∗Q1
Qij ≥ 0 ∀i �= j, Qii = 0 ∀i

(27)
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which is also convex. This optimization problem is always feasible by the same
argument given in Theorem 1, since given a λ > 0, one can set ζ = λ in the
proof of Theorem1 and construct a matrix Q that satisfies the constraint of
(27). This optimization problem returns the least costly patrolling policy given
a security constraint of achieving a desired convergence rate to the Stackelberg
equilibrium.

6 Numerical Study

In this section, we conduct a numerical study via Matlab on a patrolling applica-
tion. The formulated optimization problems were solved using cvx. We consider
a network with 30 targets deployed uniformly at random in a square of size 10.
The mobility cost dij was set as the Euclidean distance between target i and j.
The number of defenders was set to 5. The diagonal reward and cost matrices
R and C were randomly generated where the reward and cost values ri and ci

were chosen uniformly in the interval (0, 10).
We first obtained a Stackelberg equilibrium x∗ by solving the convex opti-

mization problem (5), and solved for Q for a set of convergence rates λ by solving
the optimization problem (27) where the movement cost is minimized for a given
convergence rate. The adversary’s utility at the Stackelberg equilibrium was 3.56.

Convergence of x(t) to the Stackelberg equilibrium x∗ under the continuous
dynamics (6) is shown in Fig. 2(a). The initial positions were chosen at random
among 30 targets. We observe that x(t) converges to x∗ exponentially with differ-
ing convergence rates as shown in Proposition 4. Figure 2(b) shows the maximum
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Fig. 2. (a) Figure illustrating the convergence of x(t) to x∗. Metric for deviation from
the Stackelberg equilibrium was ||x(t)−x∗|| with Q matrices obtained with varying λ by
solving optimization problem (27). (b) Maximum adversary’s utility with information
of the initial locations of defenders. The maximum utility of the adversary decays
exponentially, with the maximum utility being the reward value of the target that is
not covered by a defender initially.
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utility of the adversary over time when the adversary observes the positions of
defenders at time t = 0. The maximum utility of the adversary at time t = 0
is shown to be 9.5 which is the maximum reward value of targets that are not
guarded by defender at time t = 0. Maximum adversary’s utility converges to
the defender’s utility at Stackelberg equilibrium. The maximum utility of the
adversary also decays exponentially with higher convergence rate of (6) offering
faster decay of the adversary’s utility as observed in Theorem 2.

Our proposed approach is compared with the integer programming-based
technique, denoted Raptor, for centralized computation of patrol routes devel-
oped in [16] as shown in Fig. 3. Each data point represents an average over 15
independent and random trials with different cost and reward matrices, as well
as target locations. The number of defenders was set to 3. For our approach,
the minimum patrolling cost was obtained from the optimization problem (27),
while the movement cost of Raptor is the minimum cost to transition between
two sets of patroller locations sampled randomly with distribution x∗. Our app-
roach is able to achieve comparable mobility cost to Raptor with a convergence
rate of λ = 10−3. We observe that under our approach, as the number of targets
increases, the minimum movement cost increases, with the rate of increase pro-
portional to the convergence rate while Raptor’s minimum patrolling cost stays
relatively constant as the number of targets increase.
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Fig. 3. Minimum patrolling cost with different convergence rate λ and Raptor [16].
The number of defenders was set to 3. It is shown that our approach is able to achieve
comparable mobility cost to Raptor with a convergence rate of λ = 10−3. Under our
approach, the minimum movement cost grows in a linear manner as the number of
targets grows, and the slope of the line is proportional to the convergence rate λ.
Raptor’s minimum patrolling cost remains relatively constant as the number of targets
grows.
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7 Conclusions and Future Work

Stackelberg security games are a modeling framework for scenarios in which a
defender chooses a randomized security policy, and an adversary observes the
distribution of the randomized policy and selects an attack accordingly. In this
paper, we developed a strategy for a team of defenders to implement a stochas-
tic Stackelberg equilibrium security policy. Under our proposed strategy, each
defender selects a target according to a precomputed probability distribution at
each time step and moves to that target if the target is currently unoccupied.
We formulated sufficient conditions, via a passivity-based approach, for a cho-
sen probability distribution to guarantee convergence to the desired Stackelberg
equilibrium.

We analyzed the behavior of an intelligent adversary who observes the pre-
vious positions of the set of defenders and selects an attack strategy based on
these positions and the knowledge of the defender strategies. We proved that the
additional impact of the attack provided by knowledge of the defender positions
can be bounded as a function of the convergence rate of the defenders to the
Stackelberg equilibrum. Under the passivity framework, this convergence rate
is interpreted as a passivity index. We formulated the problem of selecting the
minimum-cost (in terms of defender movement) strategy to achieve a desired con-
vergence rate, as well as the problem of selecting the fastest-converging defender
strategy under mobility constraint, as semidefinite programs, enabling efficient
computation of the optimal patrols for each defender. Numerical results verified
that both the deviation from the Stackelberg equilibrium and the adversary’s
utility decayed exponentially over time. The numerical study also suggested that
the minimum patrolling cost increased linearly in the number of targets for a
fixed number of defenders.

The approach presented in this paper assumes a set of identical defenders that
are capable of moving between any two targets within a desired time. A direction
of future research is to generalize the approach to heterogeneous defenders who
require multiple time steps to move between distant targets, reflecting a deploy-
ment over a wide geographical area. We will also extend the proposed approach
to arbitrary topologies with mobility constraint of defenders and numerically
evaluate the approach with real-world data including the transit network used
in [16]. In addition, we will investigate incorporating Bayesian framework where
both the defender and the adversary have prior distribution of each other’s utility
and initial locations and develop approximation algorithms to solve the Bayesian
Stackelberg game.
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