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Abstract. Stealthy attacks are a major threat to cyber security. In prac-
tice, both attackers and defenders have resource constraints that could
limit their capabilities. Hence, to develop robust defense strategies, a
promising approach is to utilize game theory to understand the funda-
mental trade-offs involved. Previous works in this direction, however,
mainly focus on the single-node case without considering strict resource
constraints. In this paper, a game-theoretic model for protecting a sys-
tem of multiple nodes against stealthy attacks is proposed. We consider
the practical setting where the frequencies of both attack and defense are
constrained by limited resources, and an asymmetric feedback structure
where the attacker can fully observe the states of nodes while largely
hiding its actions from the defender. We characterize the best response
strategies for both attacker and defender, and study the Nash Equilibria
of the game. We further study a sequential game where the defender first
announces its strategy and the attacker then responds accordingly, and
design an algorithm that finds a nearly optimal strategy for the defender
to commit to.

Keywords: Stealthy attacks · Resource constraints · Game theory

1 Introduction

The landscape of cyber security is constantly evolving in response to increas-
ingly sophisticated cyber attacks. In recent years, Advanced Persistent Threats
(APT) [1] is becoming a major concern to cyber security. APT attacks have
several distinguishing properties that render traditional defense mechanism less
effective. First, they are often launched by incentive driven entities with specific
targets. Second, they are persistent in achieving the goals, and may involve mul-
tiple stages or continuous operations over a long period of time. Third, they are
highly adaptive and stealthy, and often operate in a “low-and-slow” fashion [7]
to avoid of being detected. In fact, some notorious attacks remained undetected
for months or longer [2,6]. Hence, traditional intrusion detection and prevention
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techniques that target one-shot and known attack types are insufficient in the
face of long-lasting and stealthy attacks.

Moreover, since the last decade, it has been increasingly realized that security
failures in information systems are often caused by the misunderstanding of
incentives of the entities involved in the system instead of the lack of proper
technical mechanisms [5,17]. To this end, game theoretical models have been
extensively applied to cyber security [4,9–11,13,16,19]. Game theory provides
a proper framework to systematically reason about the strategic behavior of
each side, and gives insights to the design of cost-effective defense strategies.
Traditional game models, however, fail to capture the persistent and stealthy
behavior of advanced attacks. Further, they often model the cost of defense (or
attack) as part of the utility functions of the players, while ignoring the strict
resource constraints during the play of the game. For a large system with many
components, ignoring such constraints can lead to either over-provision or under-
provision of resources and revenue loss.

In this paper, we study a two-player non-zero-sum game that explicitly mod-
els stealth attacks with resource constraints. We consider a system with N inde-
pendent nodes (or components), an attacker, and a defender. Over a continuous
time horizon, the attacker (defender) determines when to attack (recapture) a
node, subject to a unit cost per action that varies over nodes. At any time t,
a node is either compromised or protected, depending on whether the player
that makes the last move (i.e., action) towards it before t is the attacker or the
defender. A player obtains a value for each node under its control per unit time,
which again may vary over nodes. The total payoff to a player is then the total
value of the nodes under its control over the entire time horizon minus the total
cost incurred, and we are interested in the long-term time average payoffs.

To model stealthy attacks, we assume that the defender gets no feedback
about the attacker during the game. On the other hand, the defender’s moves
are fully observable to the attacker. This is a reasonable assumption in many
cyber security settings, as the attacker can often observe and learn the defender’s
behavior before taking actions. Moreover, we explicitly model their resource con-
straints by placing an upper bound on the frequency of moves (over all the nodes)
for each player. We consider both Nash Equilibrum and Sequential Equilibrum
for this game model. In the latter case, we assume that the defender is the
leader that first announces its strategy, and the attacker then responds with
its best strategy. The sequential setting is often relevant in cyber security, and
can provide a higher payoff to the defender compared with Nash Equilibrum.
To simplify the analysis, we assume that the set of nodes are independent in
the sense that the proper functioning of one node does not depend on other
nodes, which serves as a first-order approximation of the more general setting of
interdependent nodes to be considered in our future work.

Our model is an extension of the asymmetric version of the FlipIt game con-
sidered in [15]. The FlipIt game [20] is a two-player non-zero-sum game recently
proposed in response to an APT attack towards RSA Data Security [3]. In the
FlipIt game, a single critical resource (a node in our model) is considered. Each
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player obtains control over the resource by “flipping” it subject to a cost. Dur-
ing the play of the game, each player obtains delayed and possibly incomplete
feedback on the other player’s previous moves. A player’s strategy is then when
to move over a time horizon, and the solution of the game heavily depends on
the class of strategies adopted and the feedback structure of the game. In par-
ticular, a full analysis of Nash Equilibria has only been obtained for two special
cases, when both players employ a periodic strategy [20], and when the attacker
is stealthy and the defender is observable as in our model [15]. However, both
works consider a single node and there is no resource constraint. The multi-
node setting together with the resource constraints impose significant challenges
in characterizing both Nash and Sequential Equilibria. A different multi-node
extension of the FlipIt game is considered in [14] where the attacker needs to
compromise either all the nodes (AND model) or a single node (OR model) to
take over a system. However, only preliminary analytic results are provided.

Our game model can be applied in various settings. One example is key
rotation. Consider a system with multiple nodes, e.g., multiple communication
links or multiple servers, that are protected by different keys. From time to
time, the attacker may compromise some of the keys, e.g., by leveraging zero-
day vulnerabilities and system specific knowledge, while remaining undetected
from the defender. A common practice is to periodically generate fresh keys by a
trusted key-management service, without knowing when they are compromised.
On the other hand, the attacker can easily detect the expiration of a key (at
an ignorable cost compared with re-compromising it). Both key rotation and
compromise incurs a cost, and there is a constraint on the frequency of moves
at each side. There are other examples where our extension of the FlipIt game
can be useful, such as password reset and virtual-machine refresh [8,15,20].

We have made following contributions in this paper.

– We propose a two-player game model with multiple independent nodes, an
overt defender, and a stealthy attacker where both players have strict resource
constraints in terms of the frequency of protection/attack actions across all
the nodes.

– We prove that the periodic strategy is a best-response strategy for the
defender against a non-adaptive i.i.d. strategy of the attacker, and vice versa,
for general distributions of attack times.

– For the above pair of strategies, we fully characterize the set of Nash Equi-
libria of our game, and show that there is always one (and maybe more)
equilibrium, for the case when the attack times are deterministic.

– We further consider the sequential game with the defender as the leader
and the attacker as the follower. We design a dynamic programming based
algorithm that identifies a nearly optimal strategy (in the sense of subgame
perfect equilibrium) for the defender to commit to.

The remainder of this paper is organized as follows. We present our game-
theoretic model in Sect. 2, and study best-response strategies of both players in
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Sect. 3. Analysis of Nash Equilibria of the game is provided in Sect. 4, and the
sequential game is studied in Sect. 5. In Sect. 6, we present numerical result, and
we conclude the paper in Sect. 7.

2 Game Model

In this section, we discuss our two-player game model including its information
structure, the action spaces of both attacker and defender, and their payoffs.
Our game model extends the single node model in [15] to multiple nodes and
includes a resource constraint to each player.

2.1 Basic Model

In our game-theoretical model, there are two players and N independent nodes1.
The player who is the lawful user/owner of the N nodes is called the defender,
while the other player is called the attacker. The game starts at time t = 0 and
goes to any time t = T . We assume that time is continuous. A player can make
a move at any time instance subject to a cost per move. At any time t, a node is
under the control of the player that makes the last move towards the node before
t (see Fig. 1). Each attack towards node i incurs a cost of CA

i to the attacker,
and it takes a random period of time wi to succeed. On the other hand, when
the defender makes a move to protect node i, which incurs a cost of CD

i , node
i is recovered immediately even if the attack is still in process. Each node i has
a value ri that represents the benefit that the attacker receives from node i per
unit of time when node i is compromised.

In addition to the move cost, we introduce a strict resource constraint for each
player, which is a practical assumption but has been ignored in most prior works
on security games. In particular, we place an upper bound on the average amount
of resource that is available to each player at any time (to be formally defined
below). As typical security games, we assume that ri, C

A
i , CD

i , the distribution
of wi, and the budget constraints are all common knowledge of the game, that is,
they are known to both players. For instance, they can be learned from history
data and domain knowledge. Without loss of generality, all nodes are assumed to
be protected at time t = 0. Table 1 summarizes the notations used in the paper.

As in [15], we consider an asymmetric feedback model where the attacker’s
moves are stealthy, while the defenders’ moves are observable. More specifically,
at any time, the attacker knows the full history of moves by the defender, as well
as the state of each node, while the defender has no idea about whether a node
is compromised or not. Let αi,k denote the time period the attacker waits from
the latest time when node i is recovered, to the time when the attacker starts
its k-th attack against node i, which can be a random variable in general. The
attacker’s action space is then all the possible selections of {αi,k}. Since the set
of nodes are independent, we can assume αi,k to be independent across i without

1 The terms “components” and “nodes” are interchangeable in this paper.
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Fig. 1. Game model

Table 1. List of notations

Symbol Meaning

T Time horizon
N Number of nodes
ri Value per unit of time of compromising node i

wi Attack time for node i

CA
i Attacker’s move cost for node i

CD
i Defender’s move cost for node i

αi,k Attacker’s waiting time in its k-th move for node i

Xi,k Time between the (k−1)-th and the k-th defense for node i

B Budget to the defender, greater than 0
M Budget to the attacker, greater than 0
mi Frequency of defenses for node i

pi Probability of immediate attack on node i once it recovers
Li Number of defense moves for node i

loss of generality. However, they may be correlated across k in general, as the
attacker can employ a time-correlated strategy. On the contrary, the defender’s
strategy is to determine the time intervals between its (k − 1)-th move and k-th
move for each node i and k, denoted as Xi,k.

In this paper, we focus on non-adaptive (but possibly randomized) strate-
gies, that is, neither the attacker nor the defender changes its strategy based on
feedback received during the game. Therefore, the values of αi,k and Xi,k can
be determined by the corresponding player before the game starts. Note that
assuming non-adaptive strategies is not a limitation for the defender since it
does not get any feedback during the game anyway. Interestingly, it turns out
not to be a big limitation on the attacker either. As we will show in Sect. 3, peri-
odic defense is a best-response strategy against any non-adaptive i.i.d. attacks
(formally defined in Definition 2) and vice versa. Note that when the defender’s
strategy is periodic, the attacker can predict defender’s moves before the game
starts so there is no need to be adaptive.
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2.2 Defender’s Problem

Consider a fixed period of time T and let Li denote the total number of defense
moves towards node i during T . Li is a random variable in general. The total
amount of time when node i is compromised is then T − ∑Li

k=1 min(αi,k +
wi,Xi,k). Moreover, the cost for defending node i is LiC

D
i . The defender’s pay-

off is then defined as the total loss (non-positive) minus the total defense cost
over all the nodes. Given the attacker’s strategy {αi,k}, the defender faces the
following optimization problem:

max
{Xi,k},Li

E

⎡

⎣
N∑

i=1

−
(
T − ∑Li

k=1 min(αi,k + wi,Xi,k)
)

· ri − LiC
D
i

T

⎤

⎦

s.t.
N∑

i=1

Li

T
≤ B w.p.1 (1)

Li∑

k=1

Xi,k ≤ T w.p.1 ∀i

The first constraint requires that the average number of nodes that can be pro-
tected at any time is upper bounded by a constant B. The second constraint
defines the feasible set of Xi,k. Since T is given, the expectation in the objective
function can be moved into the summation in the numerator.

2.3 Attacker’s Problem

We again let Li denote the total number of defense moves towards node i in T .
The total cost of attacking i is then (

∑Li

k=1 1αi,k<Xi,k
) ·CA

i , where 1αi,k<Xi,k
= 1

if αi,k < Xi,k and 1αi,k<Xi,k
= 0 otherwise. It is important to note that when

αi,k ≥ Xi,k, the attacker actually gives up its k-th attack against node i (this
is possible as the attacker can observe when the defender moves). Given the
defender’s strategy, the attacker’s problem can be formulated as follows, where
M is an upper bound on the average number of nodes that the attacker can
attack at any time instance.

max
αi,k

E

[
N∑

i=1

(T − ∑Li

k=1 min(αi,k + wi,Xi,k)) · ri − (
∑Li

k=1 1αi,k<Xi,k
) · CA

i

T

]

s.t. E

[
N∑

i=1

1
T

∫ T

0

vi(t)dt

]

≤ M (2)

where vi(t) = 1 if the attacker is attacking node i at time t and vi(t) = 0 other-
wise. Note that we make the assumption that the attacker has to keep consuming
resources when the attack is in progress instead of making an instantaneous move
like the defender; hence it has a different form of budget constraint. On the other
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hand, we assume that CA
i captures the total cost for each attack on node i, which

is independent of the attack time. We further have the following equation:

∫ T

0

vi(t)dt =
Li∑

k=1

(min(αi,k + wi,Xi,k) − min(αi,k,Xi,k)) (3)

Putting (3) into (2) and moving the expectation inside, the attacker’s problem
becomes

max
αi,k

N∑

i=1

T · ri − E[
∑Li

k=1 min(αi,k + wi, Xi,k)] · ri − E[
∑Li

k=1 P (αi,k < Xi,k)] · CA
i

T

s.t.
N∑

i=1

E[
∑Li

k=1 min(αi,k + wi, Xi,k) − min(αi,k, Xi,k)]

T
≤ M. (4)

3 Best Responses

In this section, we analyze the best-response strategies for both players. Our
main result is that when the attacker employs a non-adaptive i.i.d. strategy, a
periodic strategy is a best response for the defender, and vice versa. To prove
this result, however, we have provided characterization of best responses in more
general settings. In this and following sections, we have omitted most proofs to
save space. All the missing proofs can be found in our online technical report [21].

3.1 Defender’s Best Response

We first show that for the defender’s problem (1), an optimal deterministic
strategy is also optimal in general. We then provide a sufficient condition for a
deterministic strategy to be optimal against any non-adaptive attacks. Finally,
we show that periodic defense is optimal against non-adaptive i.i.d. attacks.

Lemma 1. Suppose X�
i,k and L�

i are the optimal solutions of (1) among all
deterministic strategies, then they are also optimal among all the strategies
including both deterministic and randomized strategies.

According to the lemma, it suffices to consider defender’s strategies where both
Xi,k and Li,k are deterministic.

Definition 1. For a given Li, we define a set Xi including all deterministic
defense strategies with the following properties:

1.
∑Li

k=1 Xi,k = T ;
2. Fαi,k+wi

(Xi,k) = Fαi,j+wi
(Xi,j) ∀k, j,

where Fαi,k+wi
(·) is the CDF of r.v. αi,k + wi.
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Note that Xi can be an empty set in general due to the randomness of
αi,k + wi. The following lemma shows that when Xi is non-empty for all i, any
strategy that belongs to Xi is the defender’s best deterministic strategy against
a non-adaptive attacker.

Lemma 2. For any given set of {Li} with
∑N

i=1
Li

T ≤ B, if Xi �= ∅ ∀i, then any
set of {Xi,k} that belongs to Xi is the defender’s best deterministic strategy.

Lemma 2 gives a sufficient condition for a deterministic defense strategy to be
optimal. The main idea of the proof is to show that the defender’s payoff for
each node i is concave with respect to Xi,k. The optimality then follows from
the KKT conditions. Intuitively, the defender tries to equalize its expected loss
in each period in a deterministic way, which gives the defender the most stable
system to avoid a big loss in any particular period. We then show that a periodic
defense is sufficient when the attacker employs a non-adaptive i.i.d. strategy
formally defined below.

Definition 2. An attack strategy is called non-adaptive i.i.d. if it is non-
adaptive, and αi,k is independent across i and is i.i.d. across k.

Theorem 1. A periodical strategy is the best response for the defender if the
attacker employs a non-adaptive i.i.d. strategy.

According to the theorem, the periodic strategy gives the defender the most
stable system when the attacker adopts the non-adaptive i.i.d. strategy. Since
the attacker’s waiting time αi,k does not change with time, a fixed defense inter-
val provides the same expected payoff between every two consecutive moves.
Moreover, since the defender’s problem is a convex optimization problem, the
optimal defending frequency for a given attack strategy can be easily determined
by solving the convex program.

3.2 Attacker’s Best Response

We first analyze the attacker’s best response against any deterministic defense
strategies, then show that the non-adaptive i.i.d. strategy is the best response
against periodic defense.

Lemma 3. When defense strategies are deterministic, the attacker’s best
response (among non-adaptive strategies) must satisfy the following condition

α�
i,k =

{
0 w.p. pi,k

≥ Xi,k w.p. 1 − pi,k

(5)

Proof Sketch: The main idea of the proof is to divide the problem (4) into
∑N

i=1 Li independent sub-problems, one for each node and a single period,
where each subproblem has a similar target function and a budget Mi,k where
∑N

i=1

∑Li

k=1 Mi,k = M . Due to the independence of nodes, it suffices to prove
the lemma for any of these sub-problems.
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Lemma 3 implies that for each node i, the attacker’s best strategy is to either
attack node i immediately after it realizes the node’s recovery, or gives up the
attack until the defender’s next move. There is no incentive for the attacker
to wait a small amount of time to attack a node before the defender’s next
move. The constraint M actually determines the probability that the attacker
will attack immediately. If M is large enough, the attacker will never wait
after defender’s each move. We then find the attacker’s best responses when
the defender employs the periodic strategy.

Theorem 2. When the defender employs periodical strategy, the non-adaptive
i.i.d. strategy is the attacker’s best response among all non-adaptive strategies.

3.3 Simplified Optimization Problems

According to Theorems 1 and 2, periodic defense and non-adaptive i.i.d. attack
can form a pair of best-response strategies with respect to each other. Consider
such pair of strategies. Let mi � Li

T = 1
Xi,k

, and let pi denote the probability
that αi,k = 0,∀k. The optimization problems to the defender and the attacker
can then be simplified as follows.
Defender’s problem:

max
mi

N∑

i=1

[(

E[min (wi,
1

mi
)]piri − CD

i

)

· mi − piri

]

s.t.

N∑

i=1

mi ≤ B (6)

Attacker’s problem:

max
pi

N∑

i=0

pi ·
(

ri(1 − E[min(wi,
1

mi
)] · mi) − CA

i mi

)

s.t.

N∑

i=0

E[min(wi,
1

mi
)] · mi · pi ≤ M (7)

We observe that the defender’s problem is a continuous convex optimization
problem (see the discussion in Sect. 3.1), and the attacker’s problem is a frac-
tional knapsack problem. Therefore, the best response strategy of each side can
be easily determined. Also, the time period T disappears in both problems.

4 Nash Equilibria

In this section, we study the set of Nash Equilibria of the simplified game as
discussed in Sect. 3.3 where the defender employs a periodic strategy, and the
attacker employs a non-adaptive i.i.d. strategy. We further assume that the
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attack time wi is deterministic for all i. We show that this game always has a
Nash equilibrium and may have multiple equilibria of different values.

We first observe that for deterministic wi, when mi ≥ 1
wi

, the defender’s
payoff becomes −miC

D
i , which is maximized when mi = 1

wi
. Therefore, it suffices

to consider mi ≤ 1
wi

. Thus, the optimization problems to the defender and the
attacker can be further simplified as follows.

For a given p, the defender aims at maximizing its payoff:

max
mi

N∑

i=1

[mi(riwipi − CD
i ) − piri]

s.t.
N∑

i=1

mi ≤ B (8)

0 ≤ mi ≤ 1
wi

,∀i

On the other hand, for a given m, the attacker aims at maximizing its payoff:

max
pi

N∑

i=1

pi[ri − mi(riwi + CA
i )]

s.t.
N∑

i=1

miwipi ≤ M (9)

0 ≤ pi ≤ 1,∀i

For a pair of strategies (m, p), the payoff to the defender is Ud(m, p) =
∑N

i=1[mi(piriwi − CD
i ) − piri], while the payoff to the attacker is Ua(m, p) =

∑N
i=1 pi[ri − mi(riwi + CA

i )]. A pair of strategies (m∗, p∗) is called a (pure
strategy) Nash Equilibrium (NE) if for any pair of strategies (m, p), we have
Ud(m∗, p∗) ≥ Ud(m, p∗) and Ua(m∗, p∗) ≥ Ua(m∗, p). In the following, we assume
that CA

i > 0 and CD
i > 0. The cases where CA

i = 0 or CD
i = 0 or both exhibit

slightly different structures, but can be analyzed using the same approach. With-
out loss of generality, we assume ri > 0 and CD

i

riwi
≤ 1 for all i. Note that if ri = 0,

then node i can be safely excluded from the game, while if CD
i

riwi
> 1, the coef-

ficient of mi in Ud (defined below) is always negative and there is no need to
protect node i.

Let μi(p) � piriwi − CD
i denote the coefficient of mi in Ud, and ρi(m) �

ri−mi(riwi+CA
i )

miwi
. Note that for a given p, the defender tends to protect more a

component with higher μi(p), while for a given m, the attacker will attack a
component more frequently with higher ρi(m). When m and p are clear from
the context, we simply let μi and ρi denote μi(p) and ρi(m), respectively.

To find the set of NEs of our game, a key observation is that if there is
a full allocation of defense budget B to m such that ρi(m) is a constant for
all i, any full allocation of the attack budget M gives the attacker the same
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payoff. Among these allocations, if there is further an assignment of p such
that μi(p) is a constant for all i, then the defender also has no incentive to
deviate from m; hence (m, p) forms an NE. The main challenge, however, is
that such an assignment of p does not always exist for the whole set of nodes.
Moreover, there are NEs that do not fully utilize the defense or attack budget
as we show below. To characterize the set of NEs, we first prove the following
properties satisfied by any NE of the game. For a given strategy (m, p), we
define μ∗(p) � maxi μi(p), ρ∗(m) � mini ρi(m), F (p) � {i : μi(p) = μ∗(p)}, and
D(m, p) � {i ∈ F : ρi(m) = ρ∗(m)}. We omit m and p when they are clear from
the context.

Lemma 4. If (m, p) is an NE, we have:

1. ∀i �∈ F,mi = 0, pi = 1, ρi = ∞;
2. ∀i ∈ F\D,mi ∈ [0, ri

wiri+CA
i

], pi = 1;

3. ∀i ∈ D,mi ∈ [0, ri

wiri+CA
i

], pi ∈ [ CD
i

riwi
, 1].

Lemma 5. If (m, p) forms an NE, then for i ∈ D, j ∈ F\D and k �∈ F , we have
riwi − CD

i ≥ rjwj − CD
j > rkwk − CD

k .

According to the above lemma, to find all the equilibria of the game, it suffices
to sort all the nodes by a non-increasing order of riwi − CD

i , and consider each
Fh consisting of the first h nodes such that rhwh − CD

h > rh+1wh+1 − CD
h+1,

and each subset Dk ⊆ Fh consisting of the first k ≤ h nodes in the list. In the
following, we assume such an ordering of nodes. Consider a given pair of F and
D ⊆ F . By Lemma 4 and the definitions of F and D, the following conditions
are satisfied by any NE with F (p) = F and D(m, p) = D.

mi = 0, pi = 1,∀i �∈ F ; (10)

mi ∈ [0,
ri

wiri + CA
i

], pi = 1,∀i ∈ F\D; (11)

mi ∈ [0,
ri

wiri + CA
i

], pi ∈ [
CD

i

riwi
, 1],∀i ∈ D; (12)

∑

i∈F

mi ≤ B,
∑

i∈F

miwipi ≤ M ; (13)

μi = μ∗,∀i ∈ F ; μi < μ∗,∀i �∈ F ; (14)
ρi = ρ∗,∀i ∈ D; ρi > ρ∗,∀i �∈ D. (15)

The following theorem provides a full characterization of the set of NEs of
the game.

Theorem 3. Any pair of strategies (m, p) with F (p) = F and D(m, p) = D is
an NE iff it is a solution to one of the following sets of constraints in addition
to (10) to (15).
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1.
∑

i∈F mi = B; ρ∗ = 0;
2.

∑
i∈F mi = B; ρ∗ > 0;

∑
i∈F miwipi = M ;

3.
∑

i∈F mi = B; ρ∗ > 0; pi = 1,∀i ∈ F ;
4.

∑
i∈F mi < B; μ∗ = 0; F = FN ; ρ∗ = 0;

5.
∑

i∈F mi < B; μ∗ = 0; F = FN ; ρ∗ > 0;
∑

i∈F miwipi = M ;
6.

∑
i∈F mi < B; μ∗ = 0; F = FN ; ρ∗ > 0; pi = 1,∀i ∈ F .

In the following, NEs that fall into each of the six cases considered above are
named as Type 1–Type 6 NEs, respectively. The next theorem shows that our
game has at least one equilibrium and may have more than one NE.

Theorem 4. The attacker-defender game always has a pure strategy Nash Equi-
librium, and may have more than one NE of different payoffs to the defender.

Proof. The proof of the first part is given in [21]. To show the second part,
consider the following example with two nodes where r1 = r2 = 1, w1 = 2, w2 =
1, CD

1 = 1/5, CD
2 = 4/5, CA

1 = 1, CA
2 = 7/2, B = 1/3, and M = 1/5. It is easy to

check that m = (1/6, 1/6) and p = (3/20, 9/10) is a Type 2 NE, and m = (1/3, 0)
and p = (p1, 1) with p1 ∈ [1/5, 3/10] are all Type 1 NEs, and all these NEs have
different payoffs to the defender. 
�

5 Sequential Game

In this section, we study a sequential version of the simplified game considered
in the last section. In the simultaneous game we considered in the previous
section, neither the defender nor the attacker can learn the opponent’s strategy
in advance. While this is a reasonable assumption for the defender, an advanced
attacker can often observe and learn defender’s strategy before launching attacks.
It therefore makes sense to consider the setting where the defender first commits
to a strategy and makes it public, the attacker then responds accordingly. Such a
sequential game can actually provide defender higher payoff comparing to a Nash
Equilibrium since it gives the defender the opportunity of deterring the attacker
from moving. We again focus on non-adaptive strategies, and further assume
that at t = 0, the leader (defender) has determined its strategy, and the follower
(attacker) has learned the defender’s strategy and determined its own strategy in
response. In addition, the players do not change their strategies thereafter. Our
objective is to identify the best sequential strategy for the defender to commit
to, in the sense of subgame perfect equilibrium [18] defined as follows. We again
focus on the case where wi is deterministic for all i.

Definition 3. A pair of strategies (m�, p�) is a subgame perfect equilibrium of
the simplified game (8) and (9) if m� is the optimal solution of

max
mi

N∑

i=1

[mi(riwip
�
i − CD

i ) − p�
i ri]

s.t.

N∑

i=1

mi ≤ B (16)

0 ≤ mi ≤ 1
wi

,∀i
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where p�
i is the optimal solution of

max
pi

N∑

i=1

pi[ri − mi(riwi + CA
i )]

s.t.

N∑

i=1

miwipi ≤ M (17)

0 ≤ pi ≤ 1,∀i

Note that in a subgame perfect equilibrium, p�
i is still the optimal solution

of (9) as in a Nash Equilibrium. However, defender’s best strategy m�
i is not

necessarily optimal with respect to (8). Due to the multi-node setting and the
resource constraints, it is very challenging to identify an exact subgame per-
fect equilibrium strategy for the defender. To this end, we propose a dynamic
programming based algorithm that finds a nearly optimal defense strategy.

Remark 1. Since for any given defense strategy {mi}, the attacker’s problem
(17) is a fractional knapsack problem, the optimal pi,∀i has the following form:
Sort the set of nodes by ρi(mi) = ri−mi(riwi+CA

i )
miwi

non-increasingly, then there is
an index k such that pi = 1 for the first k nodes, and pi ≤ 1 for the k+1-th node,
and pi = 0 for the rest nodes. However, if ρi = ρj for some i �= j, the optimal
attack strategy is not unique. When this happens, we assume that the attacker
always breaks ties in favor of the defender, a common practice in Stackelberg
security games [12].

Before we present our algorithm to the problem, we first establish the fol-
lowing structural properties on the subgame perfect equilibria of the game.

Lemma 6. In any subgame perfect equilibrium (m, p), the set of nodes can
be partitioned into the following four disjoint sets according to the attack and
defense strategies applied:

1. F = {i|mi > 0, pi = 1}
2. D = {i|mi > 0, 0 < pi < 1};
3. E = {i|mi > 0, pi = 0};
4. G = {i|mi = 0, pi = 1}.
Moreover, they satisfy the following properties:

1. F ∪ D ∪ E ∪ G = {i|i = 1, ..., n} and |D| ≤ 1
2. ρi ≥ ρk ≥ ρj for ∀i ∈ F, k ∈ D, j ∈ E

Since the set D has at most one element, we use md to represent mi, i ∈ D
for simplicity, and let ρd = ρ(md). If D is empty, we pick any node i in F with
minimum ρi and treat it as a node in D.

Lemma 7. For any given nonnegative ρd, the optimal solution for (16)–(17)
satisfy the following properties:
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1. riwi − CD
i > 0 ∀i ∈ F ∪ E ∪ D

2. mi ≤ mi ∀i ∈ F
3. mj = mj ∀j ∈ E
4. mi ≤ 1

wi
∀i

5. B − ∑
i∈E mi − md > 0.

where mi = mi(ρd) and mi(·) is the reverse function of ρi(·)
Remark 2. If ρd < 0, the defender can give less budget to the corresponding
node to bring ρd down to 0. In any case, the payoffs from nodes in set D and E
are 0 since the attacker will give up attacking the nodes in set D and E. Thus,
the defender has more budget to defend the nodes in set F and G which brings
him more payoffs. Therefore we only need to consider nonnegative ρd.

Lemma 8. For any nonnegative ρd, there exists an optimal solution for (16)–
(17) such that ∀i ∈ F , there are at most two mi < mi and all the other mi = mi

From the above lemmas, we can establish the following results about the
structure of the optimal solution for (16)–(17).

Proposition 1. For any nonnegative ρd, there exists an optimal solution
{mi}n

i=1 such that

1. ∀i ∈ F , there are at most two mi < mi and all the other mi = mi;
2. md = md;
3. ∀i ∈ E, mi = mi;
4. ∀i ∈ G, mi = 0.

According to Proposition 1, for any nonnegative ρd, once the set allocation
is determined, the value of mi can be immediately determined for all the nodes
except the two fractional nodes in set F . Further, for the two fractional nodes,
their mi can be found using linear programming as discussed below. From these
observations, we can convert (16), (17) to (18) for any given nonnegative ρd, d,
f1 and f2.

max
p,mf1 ,mf2 ,E,F,G

∑

i∈F\{f1,f2}
[mi(riwi − CD

i ) − ri] +
2∑

j=1

[mfj
(rfj

wfj
− CD

fj
) − rfj

]

−
∑

i∈G

ri −
∑

i∈E

miC
D
i + md(prdwd − CD

d ) − prd

s.t.
∑

i∈F\{f1,f2}
mi + mf1 + mf2 +

∑

i∈E

mi + md ≤ B

∑

i∈F\{f1,f2}
wimi + wf1mf1 + wf2mf2 + pwdmd ≤ M

0 ≤ mf1 ≤ m1, 0 ≤ mf2 ≤ m2, 0 ≤ p ≤ 1 (18)

Note that, the set allocation is part of the decision variables in (18).
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We then propose the following algorithm to the defender’s problem (see Algo-
rithm1). The algorithm iterates over nonnegative ρd (with a step size ρstep) (lines
3–10). For each ρd, it iterates over all possible node d in set D, and all possible
nodes f1, f2 with fractional assignment in set F (lines 5–8). Given ρd, d, f1, f2,
the best set allocation (together with mi for all i and p) are determined using
dynamic programming as explained below (lines 6–7), where we first assume that
B, M , mi and wi have been rounded to integers for all i. The loss of performance
due to rounding will be discussed later.

Consider any ρd, node d is in set D, and nodes f1, f2 with frictional assign-
ment in set F . Let SEQ(i, b,m, d, f1, f2, ind) denote the maximum payoff of
the defender considering only node 1 to node i (excluding nodes d, f1 and
f2), for given budgets b and m for the two constraints in (18), respectively.
The ind is a boolean variable that indicates whether the second constraint
of (18) is tight for node 1 to i. If ind is True, it means all the budget m is
used up for node 1 to i. ind is False meaning that there is still budget m
available for the attacker. Here, 0 ≤ b ≤ B and 0 ≤ m ≤ M . The value
of SEQ(i, b,m, d, f1, f2, ind) is determined recursively as follows. If b < 0 or
m < 0, the value is set to −∞. If node i is one of d, f1 and f2, we simply set
SEQ(i, b,m, d, f1, f2, ind) = SEQ(i − 1, b,m, d, f1, f2, ind). Otherwise, we have
the following recurrence equation, where the three cases refer to the maximum
payoff when putting nodes i in set F , E, and G, respectively.

SEQ(i, b, m, d, f1, f2, ind)

= max
{

SEQ(i − 1, b − mi, m − wimi, d, f1, f2, ind) + mi(riwi − CD
i ) − ri,

SEQ(i − 1, b − mi, m, d, f1, f2, ind) − miC
D
i , SEQ(i − 1, b, m, d, f1, f2, ind) − ri

}
(19)

Meanwhile, if ind is False, node i can be allocated to set E only if ri−mi(riwi+
CA

i ) ≤ 0. Otherwise, there is still available budget for the attacker to attack other
nodes with reward greater than 0 which violates the structure of the greedy
solution for (17). Also, if ind is False, it means m is not used up. Thus we
should return −∞ if ind is False, i > 0 and m = 0.

Moreover, we let SEQ(0, b,m, d, f1, f2, ind) denote the maximum defense
payoff when only nodes in d, f1, and f2 are considered. If ind is True, the
following linear program in (20) determines the optimal values of p, mf1 and
mf2 for given budgets b and m:

max
mfi

,mf2

2∑

j=1

[mfj
(rfj

wfj
− CD

fj
) − rfj

] + md(prdwd − CD
d ) − prd

s.t.mf1 + mf2 + md ≤ b

mf1wf1 + mf2wf2 ≤ m (20)
mf1 ≤ mf1 , mf2 ≤ mf2

p =
m − mf1wf1 − mf2wf2

wdmd
≤ 1
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If ind is False, we must have p = 1. The optimal values of mf1 and mf2 are
determined by (21):

max
mfi

,mf2

2∑

j=1

[mfj
(rfj

wfj
− CD

fj
) − rfj

] + md(rdwd − CD
d ) − rd

s.t.mf1 + mf2 + md ≤ b (21)
mf1wf1 + mf2wf2 ≤ m − wdmd

mf1 ≤ mf1 , mf2 ≤ mf2

Algorithm 1. Sequential Strategy for Defender
1: Initialize ρstep

2: ρmax ← min{ρ :
∑n

i=1 wimi(ρ) ≤ M}
3: for ρd ← 0 to ρmax with step size ρstep do
4: mi ← mi(ρd) for all i
5: for d, f1, f2 ← 1 to n do
6: vald,f1,f2 ← SEQ(n,B,M, d, f1, f2, T rue)
7: val′d,f1,f2

← SEQ(n,B,M, d, f1, f2, False)
8: end for
9: Cdp(ρd) ← maxd,f1,f2{vald,f1,f2 , val′d,f1,f2

}
10: end for
11: C�

alg ← maxρd
{Cdp(ρd)}

Since the dynamic program searches for all the possible solutions that satisfy
Proposition 1, Cdp(ρd) gives us the optimal solution of (16)–(17) for any given
nonnegative ρd. Algorithm 1 then computes the optimal solution by searching
all the nonnegative ρd. Note that d, f1 and f2 can be equal to include the case
that there is only one or zero node in set F . The minimum possible value of
ρ is 0 (explained in Remark 2). The maximum possible value of ρ is min{ρ :∑n

i=1 wimi(ρ) ≤ M}. For larger ρ, the sum of all wimi will be less than M . In
this case, all the nodes will be in set F and pi = 1 ∀i, which makes (16)–(17) a
simple knapsack problem that can be easily solved.

Additionally, since the dynamic program searches over all feasible integer val-
ues, we use a simple rounding technique to guarantee it is implementable. Before
the execution of SEQ(n,B,M, d, f1, f2, ind), we set mi ← ⌊

mi

δ

⌋
, wi ← ⌊

wi

δ

⌋
for

all i and B ← ⌊
B
δ

⌋
, M ← ⌊

M
δ

⌋
where δ is an adjustable parameter. Intuitively,

by making δ and ρstep small enough, Algorithm 1 can find a strategy that is
arbitrarily close to the subgame perfect equilibrium strategy of the defender.
Formally, we can establish the following result.

Theorem 5. Let Calg denote the payoffs of the strategy found by Algorithm1,
and C� the optimal payoffs. Then for any ε > 0, Algorithm1 can ensure that
|Calg|
|C�| ≤ 1 + ε with a total time complexity of O(n8BM

ε3 ), where B and M are
values before rounding.
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Note that both Calg and C� are non-positive. The details can be found in
our online technical report [21].

6 Numerical Result

In this section, we present numerical results for our game models. For the illus-
trations, we assume that all the attack times wi are deterministic as in Sects. 4
and 5. We study the payoffs of both attacker and defender and their strategies
in both Nash Equilibrium and subgame perfect equilibrium in a two-node set-
ting, and study the impact of various parameters including resource constraints
B, M , and the unit value ri. We further study the payoffs and strategies for
both players in subgame perfect equilibrium in a five-node setting, and study
the impact of various parameters.

We first study the impact of the resource constraints M , B, and the unit
value r1 on the payoffs for the two node setting in Fig. 2. In the figure, we have
plotted both Type 1 and Type 5 NE2 and subgame perfect equilibrium. Type 5
NE only occurs when M is small as shown in Fig. 2(a), while Type 1 NE appears
when B is small as shown in Fig. 2(b), which is expected since B is fully utilized
in a Type 1 NE while M is fully utilized in a Type 5 NE. When the defense
budget B becomes large, the summation of mi does not necessarily equal to B
and thus Type 1 NE disappears. Similarly, the Type 5 NE disappears for large
attack budget M . In Fig. 2(c) and (d), we vary the unit value of node 1, r1. At
the beginning, the defender protects node 2 only since w2 > w1. As r1 becomes
larger and larger, the defender starts to change its strategy by protecting node 1
instead of node 2 in NE Type 1. On the other hand, since node 1 is fully protected
by the defender and the defender gives up defending node 2, the attacker begins
to attack node 2 with probability 1, and uses the rest budget to attack node 1
with probability less than 1, due to the high defending frequency and limited
resources M . We further observe that in both the simultaneous game and the
sequential game, the value of m1 increases along with the increase of r1, while
the value of m2 decreases at the same time. This implies that the defender
tends to protect the nodes with higher values more frequently. In addition, the
subgame perfect equilibrium always bring the defender higher payoffs compared
with Nash Equilibrium, which is expected.

Moreover, it interesting to observe that under the Type 5 NE, the attacker’s
payoff decreases for a larger M as shown in Fig. 2(a). This is because the
defender’s budget B is not fully utilized in Type 5 NE, and the defender can
use more budget to protect both nodes when M increases. The increase of
the attacker’s payoff by having a larger M is canceled by the increase of the
defender’s move frequency m1 and m2. We also note that the Type 5 NE is less
preferable for the defender in Fig. 2(c) when r1 is small and favors defender as
r1 increases, which tells us that the defender may prefer different types of NEs
under different scenarios and so does the attacker.
2 There are also Type 2 NE, which are omitted for the sake of clarify.
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We then study the effects of varying M and r1 on both players’ payoffs
and strategies in the sequential game for the five-node setting. In Fig. 3(a), the
parameters of all the nodes are the same except ri. We vary the attacker’s budget
M from 0 to 1. When M = 0, the defender can set mi for all i to arbitrary small
(but positive) values, so that the attacker is unable to attack any node, leading
to a zero payoff for both players. As M becomes larger, the attacker’s payoff
increases, while the defender’s payoff decreases, and the defender tends to defend
the nodes with higher values more frequently, as shown in Fig. 3(a)(lower). After
a certain point, the defender gives up some nodes and protects higher value
nodes more often. This is because with a very large M , the attacker is able to
attack all the nodes with high probability, so that defending all the nodes with
small mi is less effective than defending high value nodes with large mi. This
result implies that the attacker’s resource constraint has a significant impact
on the defender’s behavior and when M is large, protecting high value nodes
more frequently and giving up several low value nodes is more beneficial for the
defender compared to defending all the nodes with low frequency.

In Fig. 3(b), we vary r1 while setting other parameters to be the same for all
the nodes. Since all the nodes other than node 1 are identical, they have the same
mi as shown in Fig. 3(b)(lower). We observe that the defender protects node 1
less frequently when r1 is smaller than the unit value of other nodes. When
r1 becomes larger, the defender defends node 1 more frequently, which tells us
the defender should protect the nodes with higher values more frequently in the
subgame perfect equilibrium when all the other parameters are the same.

7 Conclusion

In this paper, we propose a two-player non-zero-sum game for protecting a sys-
tem of multiple components against a stealthy attacker where the defender’s
behavior is fully observable, and both players have strict resource constraints.
We prove that periodic defense and non-adaptive i.i.d. attack are a pair of best-
response strategies with respect to each other. For this pair of strategies, we
characterize the set of Nash Equilibria of the game, and show that there is
always one (and maybe more) equilibrium, for the case when the attack times
are deterministic. We further study the sequential game where the defender first
publicly announces its strategy, and design an algorithm that can identify a
strategy that is arbitrarily close to the subgame perfect equilibrium strategy for
the defender.
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