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Abstract. Cyber insurance has been recently shown to be a promis-
ing mechanism to mitigate losses from cyber incidents, including data
breaches, business interruption, and network damage. A robust cyber
insurance policy can reduce the number of successful cyber attacks by
incentivizing the adoption of preventative measures and the implemen-
tation of best practices of the users. To achieve these goals, we first
establish a cyber insurance model that takes into account the complex
interactions between users, attackers and the insurer. A games-in-games
framework nests a zero-sum game in a moral-hazard game problem to
provide a holistic view of the cyber insurance and enable a systematic
design of robust insurance policy. In addition, the proposed framework
naturally captures a privacy-preserving mechanism through the infor-
mation asymmetry between the insurer and the user in the model. We
develop analytical results to characterize the optimal insurance policy
and use network virus infection as a case study to demonstrate the risk-
sharing mechanism in computer networks.

Keywords: Cyber insurance · Incomplete information game · Bilevel
optimization problem · Moral hazards · Cyber attacks

1 Introduction

Cyber insurance is a promising solution that can be used to mitigate losses
from a variety of cyber incidents, including data breaches, business interruption,
and network damage. A robust cyber insurance policy could help reduce the
number of successful cyber attacks by incentivizing the adoption of preventative
measures in return for more coverage and the implementation of best practices
by basing premiums on an insureds level of self-protection. Different from the
traditional insurance paradigm, cyber insurance is used to reduce risk that is not
created by nature but by intelligent attacks who deliberately inflict damage on
the network. Another important feature of cyber insurance is the uncertainties
related to the risk of the attack and the assessment of the damage. To address
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these challenges, a robust cyber insurance framework is needed to design policies
to induce desirable user behaviors and mitigate losses from known and unknown
attacks.

In this paper, we propose a game-theoretic model that extends the insurance
framework to cyber security, and captures the interactions between users, insur-
ance company and attackers. The proposed game model is established based on
a recent game-in-games concept [1] in which one game is nested in another game
to provide an enriched game-theoretic model to capture complex interactions. In
our framework, a zero-sum game is used to capture the conflicting goals between
an attacker and a defender where the defender aims to protect the system for the
worst-case attack. In addition, a moral-hazard type of leader-follower game with
incomplete information is used to model the interactions between the insurer and
the user. The user has a complete information of his action while the insurer can-
not directly observe it but indirectly measures the loss as a consequence of his
security strategy. The zero-sum game is nested in the incomplete information
game to constitute a bilevel problem which provides a holistic framework for
designing insurance policy by taking into account the cyber attack models and
the rational behaviors of the users.

The proposed framework naturally captures a privacy-preserving mechanism
through the information asymmetry between the insurer and the user in the
model. The insurance policy designed by the insurer in the framework does
not require constant monitoring of users’ online activities, but instead, only on
the measurement of risks. This mechanism prevents the insurer from acquiring
knowledge of users’ preferences and types so that the privacy of the users is
protected. The major contributions of the paper are three-fold. They are sum-
marized as follows:

(i) We propose a new game-theoretic framework that incorporates attack mod-
els, and user privacy.

(ii) We holistically capture the interactions between users, attackers, and the
insurer to develop incentive mechanisms for users to adopt protection mech-
anisms to mitigate cyber risks.

(iii) The analysis of our framework provides a theoretic guideline for designing
robust insurance policy to maintain a good network condition.

1.1 Related Works

The challenges of cyber security are not only technical issues but also economic
and policy issues [2]. Recently, the use of cyber insurance to enhance the level
of security in cyber-physical systems has been studied [3,4]. While these works
deal with externality effects of cyber security in networks, few of them take into
account in the model the cyber attack from a malicious adversary to distinguish
from classical insurance models. In [5], the authors have considered direct and
indirect losses, respectively due to cyber attacks and indirect infections from
other nodes in the network. However, the cyber attacks are taken as random
inputs rather than a strategic adversary. The moral hazard model in economics
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literature [6,7] deal with hidden actions from an agent, and aims to address
the question: How does a principal design the agent’s wage contract in order to
maximize his effort? This framework is related to insurance markets, and has
been used to model cyber insurance [8] as a solution for mitigate losses from
cyber attacks. In addition, in [9], the authors have studied a security invest-
ment problem in a network with externality effect. Each node determines his
security investment level and competes with a strategic attacker. Their model
does not focus on the insurance policies and hidden-action framework. In this
work, we enrich the moral-hazard type of economic frameworks by incorporating
attack models, and provide a holistic viewpoint towards cyber insurance and a
systematic approach to design insurance policies.

Other works in the literature such as the robust network framework pre-
sented in [10] deal with strategic attacker model over networks. However, the
network effect is modeled as a simple influence graph, and the stimulus of the
good behavior of the network users is based on a global information known to
every player. In [11], the authors propose a generic framework to model cyber-
insurance problem. Moreover, the authors compare existing models and explain
how these models can fit into their unifying framework. Nevertheless, many
aspects, like the attacker model and the network effect, have not been ana-
lyzed in depth. In [12], the authors propose a mechanism design approach to the
security investment problem, and present a message exchange process through
which users converge to an equilibrium where they make investments in security
at a socially optimal level. This paper has not yet taken into account both the
network effect (topology) and the cyber attacker strategy.

1.2 Organization of the Paper

The paper is organized as follows. In Sect. 2, we describe the general framework of
cyber moral hazard by first introducing the players and the interactions between
them, and second, by defining the influence graph that models the network effect.
In Sect. 3, we analyze the framework for a class of problems with separable
utility functions. In addition, we use a case study to demonstrate the analysis
of an insurance policy for the case of virus infection over a large-scale computer
networks. The paper is concluded in Sect. 4.

2 Game-Theoretic Model for Cyber Insurance

In this section, we introduce the cyber insurance model between a user i and an
insurance company I (Player I). A user i invests or allocates ai ∈ [0, 1] resources
for his own protection to defense against attacks. When ai = 1, the user employs
maximum amount of resources, e.g., investment in firewalls, frequent change of
passwords, and virus scan of attached files for defense. When ai = 0, the user
does not invest resources for protection, which corresponds to behaviors such as
reckless response to phishing emails, minimum investment in cyber protection,
or infrequent patching of operating systems. The protection level ai can also
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be interpreted as the probability that user i invokes a protection scheme. User
i can be attacked with probability qi ∈ [0, 1]. The security level of user i, Zi,
depends on ai and qi. To capture the dependency, we let Zi = pi(ai, qi), where
pi : [0, 1]2 → R+ is a continuous function that quantifies the security level of
user i. An insurance company cannot observe the action of the user, i.e., the
action ai if user i. However, it can observe a measurable risk associated with the
protection level of user i. We let a random variable Xi denote the risk of user i
that can be observed by the insurance company, described by

Xi := Gi(Zi, θi), (1)

where θi is a random variable with probability density function gi that captures
the uncertainties in the measurement or system parameters. The risk Xi can
be measured in dollars. For example, a data breach due to the compromise of
a server can be a consequence of low security level at the user end [13]. The
economic loss of the data breach can be represented as random variable Xi

measured in dollars. The magnitude of the loss depends on the content and the
significance of the data, and the extent of the breach. The variations in these
parameters are captured by the random variable θi. The information structure
of the model is depicted in Fig. 1.

Fig. 1. Illustration of the information structure of the two-person cyber insurance
system model: user i determines protection level ai and an attacker chooses attack
probability qi. The security level Zi is assessed using function pi. The cyber risk Xi

for user i is measured by the insurance company.

Note that the insurer cannot directly observe the actions of the attack and
the user. Instead, he can measure an outcome as a result of the action pair.
This type of framework falls into a class of moral hazard models proposed by
Holmstrom in [6,7]. One important implication of the incomplete information
of the insurer is on privacy. The user’s decision ai can often be related to per-
sonal habits and behaviors, which can be used to infer private information (e.g.,
online activities and personal preferences). This framework naturally captures a
privacy-preserving mechanism in which the insurer is assumed to be uncertain
about the user and his type. Depending on the choice of random variable θi, the
level of uncertainties can vary, and hence θi can be used to determine the level
of privacy of a user.



26 Y. Hayel and Q. Zhu

Player I measures the risk and pays the amount si(Xi) for the losses, where
si : R+ → R+ is the payment function that reduces the risk of the user i if
he is insured by Player I. Hence the effective loss to the user is denoted by
ξi = Xi − si(Xi), and hence user i aims to minimize a cost function Ui that
depends on ξi, ai and qi given by Ui(ξi, ai, qi), where Ui : R+ × [0, 1]2 → R+ is a
continuous function monotonically increasing in ξ and qi, and decreasing in ai.
The function captures the fact that a higher investment in the protection and
careful usage of the network on the user side will lead to a lower cost, while a
higher intensity of attack will lead to a higher cost. Therefore, given payment
policy si, the interactions between an attacker and a defender can be captured by
a zero-sum game in which the user minimizes Ui while the attacker maximizes it:

(UG-1) min
ai∈[0,1]

max
qi∈[0,1]

E[Ui(ξi, ai, qi)]. (2)

Here, the expectation is taken with respect to the statistics of θi. The minimax
problem can also be interpreted as a worst-case solution for a user who deploys
best security strategies by anticipating the worst-case attack scenarios. From the
attacker side, he aims to maximize the damage under the best-effort protection
of the user, i.e.,

(UG-2) max
qi∈[0,1]

min
ai∈[0,1]

E[Ui(ξi, ai, qi)]. (3)

The two problems described by (UG-1) and (UG-2) constitute a zero-sum
game on at the user level. For a given insurance policy si, user i chooses protec-
tion level a∗

i ∈ Ai(si) with the worst-case attack q∗
i ∈ Qi(si). Here, Ai and Qi

are set-valued functions that yield a set of saddle-point equilibria in response to
si, i.e., a∗

i and q∗
i satisfy the following

E[Ui(ξi, a
∗
i , qi)] ≤ E[Ui(ξi, a

∗
i , q

∗
i )] ≤ E[Ui(ξi, ai, q

∗
i )], (4)

for all ai, qi ∈ [0, 1]. In addition, in the case that Ai(si), and Qi(si) are singleton
sets, the zero-sum game admits a unique saddlepoint equilibrium strategy pair
(a∗

i , q
∗
i ) for every si. We will use a shorthand notation val to denote the value of

the zero-sum game, i.e.,

E[Ui(ξi, a
∗
i , q

∗
i )] = val[E[Ui(ξi, ai, qi)], (5)

and arg val to denote the strategy pairs that achieve the game value, i.e.,

(a∗
i , q

∗
i ) ∈ arg val[E[Ui(ξi, ai, qi)]. (6)

The outcome of the zero-sum game will influence the decision of the insur-
ance company in choosing payment rules. The goal of the insurance company
is twofold. One is to minimize the payment to the user, and the other is to
reduce the risk of the user. These two objectives well aligned if the payment
policy si is an increasing function in Xi, and we choose cost function V (si(Xi)),
where V : R+ → R+ is a continuous and increasing function. Therefore, with
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these assumptions, Player I aims to find an optimal policy among a class of
admissible policies Si to solve the following problem:

(IP) min
si∈Si

E[V (si(Xi))]

s.t. Saddle-Point (6).

This problem is a bilevel problem in which the insurance company can be viewed
as the leader who announces his insurance policy, while the user behaves as a
follower who reacts to the insurer. This relationship is depicted in Fig. 2. One
important feature of the game here is that the insurer cannot directly observe
the action ai of the follower, but its state Xi. This class of problem differs
from the classical complete information Stackelberg games and the signaling
games where the leader (or the sender) has the complete information whereas
the follower (or the receiver) has incomplete information. In this case the leader
(the insurance company) has incomplete information while the follower (the user)
has complete information. The game structure illustrated in Fig. 2 has a games-
in-games structure. A zero-sum game between a user and a defender is nested
in a bilevel game problem between a user and the insurer.

It is also important to note that user i pays Player I a subscription fee
T ∈ R++ to be insured. The incentive for user i to buy insurance is when the
average cost at equilibrium under the insurance is lower the cost incurred without
insurance. Therefore, user i participates in the insurance program when

E[Ui(ξi, a
∗
i , q

∗
i )] ≥ T. (7)

Fig. 2. The bilevel structure of the two-person cyber insurance game. The problem
has a games-in-games structure. The user and the attacker interact through a zero-
sum game while the insurer and the user interact in a bilevel game in which the user
has complete information but the leader does not.



28 Y. Hayel and Q. Zhu

It can bee seen that the insurance policy plays an important role in the partic-
ipation decision of the user. If the amount of payment from the insurer is low,
then the user tends not to be insured. On the other hand, if the payment is high,
then the risk for the insurer will be high and the user may behave recklessly in
the cyber space, as have been shown in Peltzman’s effect [14].

3 Analysis of the Cyber Insurance Model

The formal framework introduced in Sect. 2 provides the basis for analysis and
design of cyber insurance to reduce risks for the Internet users. One challenge in
the analysis of the model comes from the information asymmetry between the
user and the insurer, and the information structure illustrated in Fig. 1. Since the
cost functions in (UG-1), (UG-2), and (IP) are expressed explicitly as a function
of Xi, the optimization problems can be simplified by taking expectations with
respect to the sufficient statistics of Xi. Let fi be the probability density function
of Xi. Clearly, fi is a transformation from the density function gi (associated with
the random variable θi) under the mapping Gi. In addition, fi also depends on the
action pair (ai, qi) through the variable Zi. Therefore, we can write fi(xi; ai, qi)
to capture the parametrization of the density function. To this end, the insurer’s
bilevel problem (IP) can be rewritten as follows:

(IP’) min
si∈Si

∫
xi∈R+

V (si(xi))fi(xi, a
∗
i , q

∗
i )dxi

s.t. (a∗
i , q

∗
i ) = arg val

[∫
xi∈R+

Ui(xi − si(xi), ai, qi)fi(xi, ai, qi)dxi

]
.

Under the regularity conditions (i.e., continuity, differentiability and measur-
ability), the saddle-point solution (a∗

i , q
∗
i ) can be characterized by the first-order

conditions:
∫

xi∈R+

[
∂Ui

∂ai
(xi − si(xi), ai, qi)fi(xi; ai, qi)

+Ui(xi − si(xi), ai, qi)
∂fi

∂ai
fi(xi; ai, qi)

]
dxi = 0, (8)

and
∫

xi∈R+

[
∂Ui

∂qi
(xi − si(xi), ai, qi)fi(xi; ai, qi)

+Ui(xi − si(xi), ai, qi)
∂fi

∂qi
fi(xi; ai, qi)

]
dxi = 0, (9)

In addition, with the assumption that fi and Ui are both strictly convex in
ai and strictly concave in qi, the zero-sum game for a given si admits a unique
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saddle-point equilibrium [15]. Using Lagrangian methods from vector-space opti-
mization [16], we can form a Lagrangian function with multipliers λi, μiR+ as
follows:

L(si, μi, ai, qi;λi, μi) =
∫

xi∈R+

V (si(xi))fi(xi, ai, qi)dxi +

λi

∫
xi∈R+

[
∂Ui

∂ai
(xi − si(xi), ai, qi)fi(xi; ai, qi)

+Ui(xi − si(xi), ai, qi)
∂fi

∂ai
fi(xi; ai, qi)

]
dxi +

μi

∫
xi∈R+

[
∂Ui

∂qi
(xi − si(xi), ai, qi)fi(xi; ai, qi)

+Ui(xi − si(xi), ai, qi)
∂fi

∂qi
fi(xi; ai, qi)

]
dxi.

The insurer’s bilevel problem can thus be rewritten as a one-level optimization
problem with Lagrange function L:

(IP’) max
λi,μi

min
si∈Si,ai∈[0,1],qi∈[0,1]

L(si, μi, ai, qi;λi, μi).

Generally speaking, this Lagrangian is not simple to study but, as we see in the
next section, several assumptions of the utility functions will help us to obtain
the characterization of the optimal payment policies for the insurer.

3.1 Separable Utilities

One main assumption about player utility function is that it is separable into
his variables, i.e.:

∀i ∈ {1, . . . , N}, Ui(ξi, ai, qi) = Hi(ξi) + ci(ai, qi).

In fact, the protection investment ai induces a direct cost ci(ai, qi) on user i.
This cost function is strictly increasing in ai. Moreover, each player is typically
risk-averse, and Hi is assumed to be increasing and concave. We give general
results considering this particular case of separable utilities.

Following the first-order conditions (8) for user i, we obtain

∫
xi∈R+

[
Hi(xi − si(xi))

∂fi

∂ai
(xi; ai, qi) +

∂ci

∂ai
(ai, qi)fi(xi; ai, qi)

]
dxi = 0.

As we have ∂ci
∂ai

(ai, qi) > 0, the last equality is equivalent to:

Hi(xi − si(xi))
− ∂ci

∂ai
(ai, qi)

∂fi

∂ai
(xi; ai, qi) = fi(xi; ai, qi)
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Similarly, following (9), we obtain

∫
xi∈R+

[
Hi(xi − si(xi))

∂fi

∂qi
(xi; ai, qi) +

∂ci

∂qi
(ai, qi)fi(xi; ai, qi)

]
dxi = 0,

and arrive at

Hi(xi − si(xi))
−∂ci

∂qi
(ai, qi)

∂fi

∂qi
(xi; ai, qi) = fi(xi; ai, qi).

Therefore, we arrive at the following proposition:

Proposition 1. The saddle-point strategy pair (ai, qi) satisfies the following
relationship for every xi ∈ R+:

∂fi(xi;ai,qi)
∂ai

∂fi(xi;ai,qi)
∂qi

=
∂ci(ai,qi)

∂ai

∂ci(ai,qi)
∂qi

(10)

It can be seen that the saddle-point strategy pair depends on the state xi. For
different risk, the user will invest accordingly to protect his computer system.

3.2 Case Study: Cyber Insurance Under Infection Dynamics

We consider a possible virus or worm that propagates into a network. Each
computer can be infected by this worm and we assume that if a node is infected,
it induces a time window in which the node is vulnerable to serious cyber-attacks.
The propagation dynamics follow a Susceptible-Infected-Susceptible (SIS) type
infection dynamics [17] such that the time duration a node is infected follows an
exponential distribution with parameter γ that depends on a and q. Note that
we remove index i for the convenience of notations. Indeed, when a computer is
infected, it is vulnerable to serious cyber-attacks. These can cause an outbreak
of the machine and of the network globally. We thus assume that the parameter
γ is increasing in a (resp. decreasing in q) meaning that more protection (resp.
more attacks) reduces (resp. increases) the remaining time the node/computer
is infected. Then, the action of the node decreases his risk whereas the action of
the attacker increases the risk. We make also the following assumptions:

– The cost function is convex, i.e., the user is absolute risk-averse: ∀ξ,
H(ξ) = erξ;

– The cost function c(a, q) = a − q is bi-linear;
– X follows an exponential distribution with parameter γ(a, q), i.e., X ∼

exp(γ(a, q)). This random variable may represent the time duration a node is
infected under an SIS epidemic process.

– The insurance policy is assumed to be linear in X, i.e., sX, where s ∈ [0, 1].
Hence the residual risk to the user is ξ = (1 − s)X.
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Without loss of generality, we denote γ as a single constant when the notation
does not lead to confusion. We thus have the following density function for the
outcome:

∀x ∈ IR+, f(x|a, q) = γ(a, q)e−γ(a,q)x.

Then, we obtain

∀x ∈ IR+, fa(x|a, q) = γae−γx (1 − γx) ,

where by abuse of notation we denote γ := γ(a, q) and γa := ∂γ
∂a (a, q). The

average amount of damage is IE(X) = 1
γ(a,q) := q

a . The expected utility of the
node is given by:

IEU(X, a, q) =
∫ ∞

0

[H(x − sx) + c(a, q)] f(x|a, q)dx,

= c(a, q) +
∫ ∞

0

H(x(1 − s))f(x|a, q)dx,

= c(a, q) +
a

q

∫ ∞

0

erx(1−s)−x a
q dx,

= a − q +
a

q

∫ ∞

0

ex[r(1−s)− a
q ]dx,

We assume that a > qr(1 − s) then:

IEU(X, a, q) = a − q +
a

a − qr(1 − s)
.

We can observe that the optimal protection level of the node depends in a non-
linear fashion of the cyber-attack level. For a given action of the attacker q and
a contract s, the best action a∗(s, q) for the node protection level is:

a∗(s, q) = arg min
a

IEU(X, a, q) = q(1 − s)r +
√

q(1 − s)r.

Given the best protection, we can obtain the saddle point solution:

a∗ = q∗ =
r(1 − s)

(1 − r(1 − s))2
.

If a player does not subscribe to cyber insurance, i.e., s = 0, then his best
action becomes

a∗(0) = qr +
√

qr.

Hence, its expected cost is:

IEU0 =
a∗(0)

a∗(0) − qr
+ a∗(0) = qr + 2

√
qr + 1 = (1 +

√
qr)2.
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If the player decides to be insured, then s > 0, i.e., part of his damage is covered
and he has to pay a flat rate T for the participation. Then, his best action
becomes a∗(s) that depends on his coverage level s, and his expected cost is:

IEUs =
a∗(s)

a∗(s) − qr(1 − s)
+ a∗(s) + T = qr(1 − s) + 2

√
qr(1 − s) + 1 + T,

= (1 +
√

qr(1 − s))2 + T.

Proposition 2. If the cyber insurance is too expensive, i.e. T ≥ Tmax := qr +
2
√

qr, then the player will not subscribe to the cyber insurance independent of
the coverage level s.

Sketch of Proof. This proposition comes from the equivalence of IEU1 ≥ IEU0

with T ≥ qr + 2
√

qr. In this case, independent of the coverage level s, we have
IEUs ≥ IEU0, which implies that the node will not choose to pay the cyber
insurance for any coverage level s.

Proposition 3. For the subscription fee T < qr+2
√

qr, there exists a minimum
coverage s0(T ) such that, for any coverage level s ∈ [s0(T ), 1], the player will
subscribe to the cyber-insurance. This minimum coverage is equal to:

s0(T ) = 1 −
(√

(1 +
√

qr)2 − T − 1√
qr

)2

.

Sketch of Proof. The function IEUs is strictly decreasing in s and lims→0 IEUs >
IEU0. If T < qr + 2

√
qr, then IEU1 < IEU0. Hence, for a given T < qr +

2
√

qr, there exists a unique s0(T ) such that IEUs0(T ) = IEU0. Moreover, for any
s ∈ [s0(T ), 1], we have IEUs < IEU0, then the player will subscribe to cyber
insurance. By comparing the expressions of the expected utility functions, we
obtain the following solution:

s0(T ) = 1 −
(√

(1 +
√

qr)2 − T − 1√
qr

)2

.

We observe in Fig. 3 that for a same price T , for the node to subscribe to
insurance, the level of cyber attack has to be sufficiently high. If we consider
a competition framework in which the cyber insurer cannot change its price T ,
then for a fixed price, a higher cyber attack level leads to less minimum coverage
accepted by the node. This shows that cyber attack plays an important role in
insurance policy as it increases the willingness of the users to be insured.

The loss probability is defined as the probability that the damage covered by
the insurance exceeds the price paid by the subscriber. We then define this loss of
profit by L(T ) := IP (s0(T )X(s0(T )) > T ), and obtain the following expression
of the loss as:
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L(T ) = exp

(
−q(1 − s0(T ))r +

√
q(1 − s0(T ))r

qs0(T )
T

)
.

As we can see in Fig. 4, the loss is not monotone in the price, and a small
price does not guarantee a profit (no loss) for the insurance company. One goal of
the extended version of this work is to study the property of this loss depending
on T .
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Fig. 3. Minimum coverage s0 depending on the price T and cyber-attack level q with
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4 Conclusion

In this paper, we describe a game-theoretic framework for studying cyber
insurance. We have taken into account complex interactions between users,
insurer and attackers. The framework incorporates attack models, and natu-
rally provides privacy-preserving mechanisms through the information asym-
metry between the players. This work provides a first step towards a holistic
understanding of cyber insurance and the design of optimal insurance policies.
We would extend this framework to capture network effects, and address the
algorithmic and design issues in cyber insurance.
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