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Abstract. Access to the cloud has the potential to provide scalable
and cost effective enhancements of physical devices through the use
of advanced computational processes run on apparently limitless cyber
infrastructure. On the other hand, cyber-physical systems and cloud-
controlled devices are subject to numerous design challenges; among
them is that of security. In particular, recent advances in adversary tech-
nology pose Advanced Persistent Threats (APTs) which may stealthily
and completely compromise a cyber system. In this paper, we design a
framework for the security of cloud-based systems that specifies when
a device should trust commands from the cloud which may be com-
promised. This interaction can be considered as a game between three
players: a cloud defender/administrator, an attacker, and a device. We
use traditional signaling games to model the interaction between the
cloud and the device, and we use the recently proposed FlipIt game
to model the struggle between the defender and attacker for control of
the cloud. Because attacks upon the cloud can occur without knowl-
edge of the defender, we assume that strategies in both games are picked
according to prior commitment. This framework requires a new equi-
librium concept, which we call Gestalt Equilibrium, a fixed-point that
expresses the interdependence of the signaling and FlipIt games. We
present the solution to this fixed-point problem under certain parame-
ter cases, and illustrate an example application of cloud control of an
unmanned vehicle. Our results contribute to the growing understanding
of cloud-controlled systems.

1 Introduction

Advances in computation and information analysis have expanded the capabil-
ities of the physical plants and devices in cyber-physical systems (CPS)[4,13].
Fostered by advances in cloud computing, CPS have garnered significant atten-
tion from both industry and academia. Access to the cloud gives administra-
tors the opportunity to build virtual machines that provide to computational
resources with precision, scalability, and accessibility.

Despite the advantages that cloud computing provides, it also has some draw-
backs. They include - but are not limited to - accountability, virtualization, and
security and privacy concerns. In this paper, we focus especially on providing
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accurate signals to a cloud-connected device and deciding whether to accept
those signals in the face of security challenges.

Recently, system designers face security challenges in the form of Advanced
Persistent Threats (APTs) [19]. APTs arise from sophisticated attackers who can
infer a user’s cryptographic key or leverage zero-day vulnerabilities in order to
completely compromise a system without detection by the system administrator
[16]. This type of stealthy and complete compromise has demanded new types
of models [6,20] for prediction and design.

In this paper, we propose a model in which a device decides whether to trust
commands from a cloud which is vulnerable to APTs and may fall under adver-
sarial control. We synthesize a mathematical framework that enables devices
controlled by the cloud to intelligently decide whether to obey commands from
the possibly-compromised cloud or to rely on their own lower-level control.

We model the cyber layer of the cloud-based system using the recently pro-
posed FlipIt game [6,20]. This game is especially suited for studying systems
under APTs. We model the interaction between the cloud and the connected
device using a signaling game, which provides a framework for modeling dynamic
interactions in which one player operates based on a belief about the private infor-
mation of the other. A significant body of research has utilized this framework for
security [7–9,15,21]. The signaling and FlipIt games are coupled, because the
outcome of the FlipIt game determines the likelihood of benign and malicious
attackers in the robotic signaling game. Because the attacker is able to compro-
mise the cloud without detection by the defender, we consider the strategies of the
attacker and defender to be chosen with prior commitment. The circular depen-
dence in our game requires a new equilibrium concept which we call a Gestalt
equilibrium1. We specify the parameter cases under which the Gestalt equilibrium
varies, and solve a case study of the game to give an idea of how the Gestalt equilib-
rium can be found in general. Our proposed framework has versatile applications
to different cloud-connected systems such as urban traffic control, drone delivery,
design of smart homes, etc. We study one particular application in this paper:ef
control of an unmanned vehicle under the threat of a compromised cloud.

Our contributions are summarized as follows:

(i) We model the interaction of the attacker, defender/cloud administrator, and
cloud-connected device by introducing a novel game consisting of two coupled
games: a traditional signaling game and the recently proposed FlipIt game.

(ii) We provide a general framework by which a device connected to a cloud
can decide whether to follow its own limited control ability or to trust the
signal of a possibly-malicious cloud.

(iii) We propose a new equilibrium definition for this combined game: Gestalt
equilibrium, which involves a fixed-point in the mappings between the two
component games.

(iv) Finally, we apply our framework to the problem of unmanned vehicle
control.

1 Gestalt is a noun which means something that is composed of multiple arts and yet
is different from the combination of the parts [2].
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In the sections that follow, we first outline the system model, then describe
the equilibrium concept. Next, we use this concept to find the equilibria of the
game under selected parameter regimes. Finally, we apply our results to the
control of an unmanned vehicle. In each of these sections, we first consider the
signaling game, then consider the FlipIt game, and last discuss the synthesis
of the two games. Finally, we conclude the paper and suggest areas for future
research.

2 System Model

We model a cloud-based system in which a cloud is subject to APTs. In this
model, an attacker, denoted by A, capable of APTs can pay an attack cost to
completely compromise the cloud without knowledge of the cloud defender. The
defender, or cloud administrator, denoted by D, does not observe these attacks,
but has the capability to pay a cost to reclaim control of the cloud. The cloud
transmits a message to a robot or other device, denoted by R. The device may
follow this command, but it is also equipped with an on-board control system
for autonomous operation. It may elect to use its autonomous operation system
rather than obey commands from the cloud.

This scenario involves two games: the FlipIt game introduced in [20], and the
well-known signaling game. The FlipIt game takes place between the attacker
and cloud defender, while the signaling game takes place between the possibly-
compromized cloud and the device. For brevity, denote the FlipIt game by GF,
the signaling game by GS, and the combined game - call it CloudControl - by
GCC as shown in Fig. 1. In the next subsections, we formalize this game model.

2.1 Cloud-Device Signaling Game

Let θ denote the type of the cloud. Denote compromized and safe types of clouds
by θA and θD in the set Θ. Denote the probabilities that θ = θA and that θ = θD
by p and 1 − p. Signaling games typically give these probabilities apriori, but in
CloudControl they are determined by the equilibrium of the FlipIt game GF.

Let mH and mL denote messages of high and low risk, respectively, and
let m ∈ M = {mH ,mL} represent a message in general. After R receives the
message, it chooses an action, a ∈ A = {aT , aN}, where aT represents trusting
the cloud and aN represents not trusting the cloud.

For the device R, let uS
R : Θ × M × A → UR, where UR ⊂ R. uS

R is a
utility function such that uS

R (θ,m, a) gives the device’s utility when the type
is θ, the message is m, and the action is a. Let uS

A : M × A → UA ⊂ R and
uS

D : M × A → UD ⊂ R be utility functions for the attacker and defender. Note
that these players only receive utility in GS if their own type controls the cloud
in GF, so that type is not longer a necessary argument for uS

A and uS
D.

Denote the strategy of R by σS
R : A → [0, 1], such that σS

R (a |m) gives the
mixed-strategy probability that R plays action a when the message is m. The
role of the sender may be played by A or D depending on the state of the cloud,
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determined by GF. Let σS
A : M → [0, 1] denote the strategy that A plays when

she controls the cloud, so that σS
A (m) gives the probability that A sends message

m. (The superscript S specifies that this strategy concerns the signaling game.)
Similarly, let σS

D : M → [0, 1] denote the strategy played by D when he controls
the cloud. Then σS

D (m) gives the probability that D sends message m. Let ΓS
R,

ΓS
A, and ΓS

D denote the sets of mixed strategies for each player.
For X ∈ {D,A}, define functions ūS

X : ΓS
R × ΓS

X → UX , such that
ūS

X
(
σS

R, σS
X

)
gives the expected utility to sender X when he or she plays mixed-

strategy σS
X and the receiver plays mixed-strategy σS

R. Equation (1) gives ūS
X .

ūS
X

(
σS

R, σS
X

)
=

∑

a∈A

∑

m∈M

uS
X (m,a) σS

R (a |m) σS
X (m) , X ∈ {A,D} (1)

Next, let μ : Θ → [0, 1] represent the belief of R, such that μ (θ |m) gives the
likelihood with which R believes that a sender who issues message m is of type θ.
Then define ūS

R : ΓS
R → UR such that ūS

R
(
σS

R |m,μ (• |m)
)

gives the expected
utility for R when it has belief μ, the message is m, and it plays strategy σS

R.
ūS

R is given by

ūS
R

(
σS

R |m,μ
)

=
∑

θ∈Θ

∑

a∈A

uS
R (θ,m, a) μR (θ |m) σS

R (a |m) . (2)

The expected utilities to the sender and receiver will determine their incen-
tives to control the cloud in the game GF described in the next subsection.

2.2 FlipIt Game for Cloud Control

The basic version of FlipIt [20]2 is played in continuous time. Assume that the
defender controls the resource - here, the cloud - at t = 0. Moves for both players
obtain control of the cloud if it is under the other player’s control. In this paper,
we limit our analysis to periodic strategies, in which the moves of the attacker
and the moves of the defender are both spaced equally apart, and their phases
are chosen randomly from a uniform distribution. Let fA ∈ R+ and fD ∈ R+

(where R+ represents non-negative real numbers) denote the attack and renewal
frequencies, respectively.

Players benefit from controlling the cloud, and incur costs from moving. Let
wX (t) denote the average proportion of the time that player X ∈ {D,A} has
controlled the cloud up to time t. Denote the number of moves up to t per
unit time of player X by zX (t). Let αD and αA represent the costs of each
defender and attacker move. In the original formulation of FlipIt, the authors
consider a fixed benefit for controlling the cloud. In our formulation, the benefit
depends on the equilibrium outcomes of the signaling game GS. Denote these

2 See [20] for a more comprehensive definition of the players, time, game state, and
moves in FlipIt. Here, we move on to describing aspects of our game important for
analyzing GCC.
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Fig. 1. The CloudControl game. The FlipIt game models the interaction between
an attacker and a cloud administrator for control of the cloud. The outcome of this
game determines the type of the cloud in a signaling game in which the cloud conveys
commands to the robot or device. The device then decides whether to accept these
commands or rely on its own lower-level control. The FlipIt and signaling games are
played concurrently.

equilibrium utilities of D and A by ūS∗
D and ūS∗

A . These give the expected benefit
of controlling the cloud. Finally, let uF

D (t) and uF
A (t) denote the time-averaged

benefit of D and A up to time t in GF. Then

uF
X (t) = ūS∗

X wX (t) − αX zX (t) , X ∈ {D,A} , (3)

and, as time continues to evolve, the average benefits over all time become

lim inf
t→∞ ūS∗

X wX (t) − αX zX (t) , X ∈ {D,A} . (4)

We next express these expected utilities over all time as a function of periodic
strategies that D and A employ. Let ūF

X : R+ × R+ → R, X ∈ {D,A} be
expected utility functions such that ūF

D (fD, fA) and ūF
A (fD, fA) give the average

utility to D and A, respectively, when they play with frequencies fD and fA. If
fD ≥ fA > 0, it can be shown that

ūF
D (fD, fA) = ūS∗

D

(
1 − fA

2fD

)
− αDfD, (5)

ūF
A (fD, fA) = ūS∗

A
fA
2fD

− αAfA, (6)
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while if 0 ≤ fD < fA, then

ūF
D (fD, fA) = ūS∗

D
fD
2fA

− αDfD, (7)

ūF
A (fD, fA) = ūS∗

A

(
1 − fD

2fA

)
− αAfA, (8)

and if fA = 0, we have

ūF
A (fD, fA) = 0, ūF

D (fD, fA) = ūS∗
D − αDfD. (9)

Equations (5)–(9) with Eq. (1) for ūS
X , X ∈ {D,A} and Eq. (2) for ūS

R will
be main ingredients in our equilibrium concept in the next section.

3 Solution Concept

In this section, we develop a new equilibrium concept for our CloudControl game
GCC. We study the equilibria of the FlipIt and signaling games individually,
and then show how they can be related through a fixed-point equation in order
to obtain an overall equilibrium for GCC.

3.1 Signaling Game Equilibrium

Signaling games are a class of dynamic Bayesian games. Applying the concept
of perfect Bayesian equilibrium (as it e.g., [10]) to GS, we have Definition 1.

Definition 1. Let the functions ūS
X

(
σS

R, σS
X

)
, X ∈ {D,A} and ūS

R
(
σS

R
)

be for-
mulated according to Eqs. (1) and (2), respectively. Then a perfect Bayesian
equilibrium of the signaling game GS is a strategy profile

(
σS∗

D , σS∗
A , σS∗

R
)

and
posterior beliefs μ (• |m) such that

∀X ∈ {D,A} , σS∗
X (•) ∈ arg max

σS
X

ūS
X

(
σS∗

R , σS
X

)
, (10)

∀m ∈ M, σS∗
R (• |m) ∈ arg max

σS
R

ūS
R

(
σS

R |m,μ (• |m)
)
, (11)

μ (θ |m) =
1 {θ = θA} σS∗

A (m) p + 1 {θ = θD} σS∗
D (m) (1 − p)

σS∗
A (m) p + σS∗

D (m) (1 − p)
, (12)

if σS∗
A (m) p + σS∗

D (m) (1 − p) �= 0, and

μ (θ |m) = any distribution on Θ, (13)

if σS∗
A (m) p + σS∗

D (m) (1 − p) = 0.
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Next, let ūS∗
D , ūS∗

A , and ūS∗
R be the utilities for the defender, attacker,

and device, respectively, when they play according to a strategy profile(
σS∗

D , σS∗
A , σS∗

R
)

and belief μ (• |m) that satisfy the conditions for a perfect
Bayesian equilibrium. Define a set-valued mapping TS : [0, 1] → 2UD×UA such
that TS (p;GS) gives the set of equilibrium utilities of the defender and attacker
when the prior probabilities are p and 1 − p and the signaling game utilities are
parameterized by GS

3. We have
{(

ūS∗
D , ūS∗

A
)}

= TS (p;GS) . (14)

We will employ TS as part of the definition of an overall equilibrium for GCC

after examining the equilibrium of the FlipIt game.

3.2 FlipIt Game Equilibrium

The appropriate equilibrium concept for the FlipIt game, when A and D are
restricted to periodic strategies, is Nash equilibrium [14]. Definition 2 applies the
concept of Nash Equilibrim to GF.

Definition 2. A Nash equilibrium of the game GF is a strategy profile (f∗
D, f∗

A)
such that

f∗
D ∈ arg max

fD
ūF

D (fD, f∗
A) , (15)

f∗
A ∈ arg max

fA
ūF

D (f∗
D, fA) , (16)

where ūF
D and ūF

A are computed by Eqs. (5) and (6) if fD ≥ fA and Eqs. (7) and (8)
if fD ≤ fA.

To find an overall equilibrium of GCC, we are interested in the proportion
of time that A and D control the cloud. As before, denote these proportions by
p and 1 − p, respectively. These proportions (as in [6]) can be found from the
equilibrium frequencies by

p =

⎧
⎪⎨

⎪⎩

0, if fA = 0
fA
2fD

, if fD ≥ fA > 0
1 − fD

2fA
, if fA > fD ≥ 0

(17)

Let GF parameterize the FlipIt game. Now, we can define a mapping TF :
UD×UA → [0, 1] such that the expression TF

(
ūS∗

D , ūS∗
A ;GF

)
gives the proportion

of time that the attacker controls the cloud in equilibrium from the values of
controlling the cloud for the defender and the attacker. This mapping gives

p = TF
(
ūS∗

D , ūS∗
A ;GF

)
. (18)

3 Since R does not take part in GS, it is not necessary to include ūS∗
R as an output of

the mapping.
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In addition to interpreting p as the proportion of time that the attacker
controls the cloud, we can view it as the likelihood that, at any random time,
the cloud will be controlled by the attacker. Of course, this is precisely the value
p of interest in GS. Clearly, GF and GS are coupled by Eqs. (14) and (18).
These two equations specify the overall equilibrium for the CloudControl game
GCC through a fixed-point equation, which we describe next.

3.3 Gestalt Equilibrium of GCC

When the CloudControl game GCC is in equilibrium the mapping from the
parameters of GS to that game’s equilibrium and the mapping from the para-
meters of GF to that game’s equilibrium are simultaneously satisfied as shown in
Fig. 2. Definition 3 formalizes this equilibrium, which we call Gestalt equilibrium.

T F ūS∗
D , ūS∗

A ;GF

)

T S (p;GS)

p

ūS∗
D

ūS∗
A

Fig. 2. GS and GF interact because the utilities in the FlipIt game are derived from
the output of the signaling game, and the output of the FlipIt game is used to define
prior probabilities in the signaling game. We call the fixed-point of the composition of
these two relationships a Gestalt equilibrium.

Definition 3 (Gestalt Equilibrium). The cloud control ratio p† ∈ [0, 1] and
equilibrium signaling game utilities ūS†

D and ūS†
A constitute a Gestalt equilibrium

of the game GCC composed of coupled games GS and GF if the two components
of Eq. (19) are simultaneously satisfied.

(
ūS†

D , ūS†
A

)
∈ TS

(
p†;GS

)
, p† = TF

(
ūS†

D , ūS†
A ;GF

)
(19)

In short, the signaling game utilities
(
ūS†

D , ūS†
A

)
must satisfy the fixed-point

equation (
ūS†

D , ūS†
A

)
∈ TS

(
TF

(
ūS†

D , ūS†
A ;GF

)
;GS

)
(20)

In this equilibrium, A receives ūF
A according to Eq. (6), Eq. (8), or Eq. (9), D

receives ūF
D according to Eq. (5), Eq. (7), or Eq. (9), and R receives ūS

R according
to Eq. (2).
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Solving for the equilibrium of GCC requires a fixed-point equation essentially
because the games GF and GS are played according to prior committment.
Prior commitment specifies that players in GS do not know the outcome of GF.
This structure prohibits us from using a sequential concept such as sub-game
perfection and suggests instead a fixed-point equation.

4 Analysis

In this section, we analyze the game proposed in Sect. 2 based on our solution
concept in Sect. 3. First, we analyze the signaling game and calculate the cor-
responding equilibria. Then, we solve the FlipIt game for different values of
expected payoffs resulting from signaling game. Finally, we describe the solution
of the combined game.

4.1 Signaling Game Analysis

The premise of GCC allows us to make some basic assumptions about the utility
parameters that simplifies the search for equilibria. We expect these assumptions
to be true across many different contexts.

(A1) uR(θD,mL, aT ) > uR(θD,mL, aN ): It is beneficial for the receiver to trust
a low risk message from the defender.

(A2) uR(θA,mH , aT ) < uR(θA,mH , aN ): It is harmful for the receiver to trust
a high risk message from the attacker.

(A3) ∀m,m′ ∈ M, uA(m,aT ) > uA(m′, aN ) and ∀m,m′ ∈ M ,uD(m,aT ) >
uD(m′, aN ): Both types of sender prefer that either of their messages is
trusted rather than that either of their messages is rejected.

(A4) uA(mH , aT ) > uA(mL, aT ): The attacker prefers an outcome in which the
receiver trusts his high risk message to an outcome in which the receiver
trusts his low risk message.

Pooling equilibria of the signaling game differ depending on the prior prob-
abilities p and 1 − p. Specifically, the messages on which A and D pool and the
equilibrium action of R depend on quantities in Eqs. (21) and (22) which we call
trust benefits.

TBH (p) =
p [uR (θA,mH , aT ) − uR (θA,mH , aN )]

+ (1 − p) [uR (θD,mH , aT ) − uR (θD,mH , aN )] (21)

TBL (p) =
p [uR (θA,mL, aT ) − uR (θA,mL, aN )]

+ (1 − p) [uR (θD,mL, aT ) − uR (θD,mL, aN )] (22)

TBH (p) and TBL (p) give the benefit of trusting (compared to not trust-
ing) high and low messages, respectively, when the prior probability is p. These
quantities specify whether R will trust a message that it receives in a pooling
equilibrium. If TBH (p) (respectively, TBL (p)) is positive, then, in equilibrium,
R will trust all messages when the senders pool on mH (respectively, mL).



298 J. Pawlick et al.

A : mH D : mH R : aT

A : mL D : mL R : aT

A : mH D : mH R : aT

A : mL D : mL R : aN

A : mH D : mH R : aN

A : mL D : mL R : aN

A : mH D : mH R : aN

A : mL D : mL R : aT

TBH (p)

TBL (p)

uD (mL, aT )
≤ uD (mH , aT )

uD (mL, aT )
≥ uD (mH , aT )

uR (θA, mL, aT ) ≤ uR (θA, mL, aN)
uR (θD, mH , aT ) ≤ uR (θD, mH , aN)

Fig. 3. The four quadrants represent parameter regions of GS. The regions vary based
on the types of pooling equilibria that they support. For instance, quadrant IV supports
a pooling equilibrium in which A and D both send mH and R plays aN , as well as
a pooling equilibrium in which A and D both send mL and R plays aT . The shaded
regions denote special equilibria that occur under further parameter restrictions.

We illustrate the different possible combinations of TBH (p) and TBL (p) in
the quadrants of Fig. 3. The labeled messages and actions for the sender and
receiver, respectively, in each quadrant denote these pooling equilibria. These
pooling equilibria apply throughout each entire quadrant. Note that we have not
listed the requirements on belief μ here. These are addressed in the Appendix A.2,
and become especially important for various equilibrium refinement procedures.

The shaded regions of Fig. 3 denote additional special equilibria which only
occur under the additional parameter constraints listed within the regions. (The
geometrical shapes of the shaded regions are not meaningful, but their overlap
and location relative to the four quadrants are accurate.) The dotted and uni-
formly shaded zones contain equilibria similar to those already denoted in the
equilibria for each quadrant, except that they do not require restrictions on μ.
The zone with horizontal bars denotes the game’s only separating equilibrium.
It is a rather unproductive one for D and A, since their messages are not trusted.
(See the derivation in Appendix A.1.) The equilibria depicted in Fig. 3 will become
the basis of analyzing the mapping TS (p;GS), which will be crucial for forming
our fixed-point equation that defines the Gestalt equilibrium. Before studying this
mapping, however, we first analyze the equilibria of the FlipIt game on its own.

4.2 FlipIt Analysis

In this subsection, we calculate the Nash equilibrium in the FlipIt game. Equa-
tions (5)–(9) represent both players’ utilities in FlipIt game. The solution of
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this game is similar to what has presented in [6,20], except that the reward of
controlling the resource may vary. To calculate Nash equilibrium, we normalize
both players’ benefit with respect to the reward of controlling the resource. For
different cases, the frequencies of move at Nash equilibrium are:

• αD
ūS∗

D
<

αA
ūS∗

A
and ūS∗

A , ūS∗
D > 0:

f∗
D =

ūS∗
A

2αA
, f∗

A =
αD
2α2

A
× (ūS∗

A )2

ūS∗
D

, (23)

• αD
ūS∗

D
>

αA
ūS∗

A
and ūS∗

A , ūS∗
D > 0:

f∗
D =

αA
2α2

D
× (ūS∗

D )2

ūS∗
A

, f∗
A =

ūS∗
D

2αD
, (24)

• αD
ūS∗

D
=

αA
ūS∗

A
and ūS∗

A , ūS∗
D > 0:

f∗
D =

ūS∗
A

2αA
, f∗

A =
ūS∗

D
2αD

, (25)

• ūS∗
A ≤ 0:

f∗
D = f∗

A = 0, (26)

• ūS∗
A > 0 and ūS∗

D ≤ 0:

f∗
D = 0 f∗

A = 0+. (27)

In the case that ūS∗
A ≤ 0, the attacker has no incentive to attack the cloud.

In this case, the defender need not move since we assume that she controls the
cloud initially. In the case that ūS∗

A > 0 and ūS∗
D ≤ 0, only the attacker has

an incentive to control the cloud. We use f∗
A = 0+ to signify that the attacker

moves only once. Since the defender never moves, the attacker’s single move is
enough to retain control of the cloud at all times.

Next, we put together the analysis of GS and GF in order to study the
Gestalt equilibria of the entire game.

4.3 GCC Analysis

To identify the Gestalt Equilibrium of GCC, it is necessary to examine the map-
ping TS (p;GS) for all p ∈ [0, 1]. As noted in Sect. 4.1, this mapping depends
on TBH (p) and TBL (p). From assumptions A1-A4, it is possible to verify
that (TBL (0) , TBH (0)) must fall in Quadrant I or Quadrant IV and that
(TBL (1) , TBH (1)) must lie in Quadrant III or Quadrant IV. There are numer-
ous ways in which the set (TBL (p) , TBH (p)) , p ∈ [0, 1] can transverse different
parameter regions. Rather than enumerating all of them, we consider one here.
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TBH (p)

TBL (p)

5 10

5

5

10

10

uR (θD, mH , aT ) = 3
uR (θD, mL, aT ) = 5

uR (θA, mH , aT ) = −8
uR (θA, mL, aT ) = 1

uD (mH , aT ) = 4
uD (mL, aT ) = 3
uA (mH , aT ) = 6
uA (mL, aT ) = 2

uR (θD, mH , aN ) = 1
uR (θD, mL, aN) = 0
uR (θA, mH , aN) = 1
uR (θA, mL, aN) = 0
uD (mH , aN) = −2
uD (mL, aN) = −1
uA (mH , aN) = −5
uA (mL, aN) = −1

A : mH D : mH R : aT

A : mL D : mL R : aT

Fig. 4. For the parameter values overlayed on the figure, as p ranges from 0 to 1,
TBH (p) and TBL (p) move from Quadrant I to Quadrant IV. The equilibria supported
in each of these quadrants, as well as the equilibria supported on the interface between
them, are presented in Table 1.

Consider parameters such that TBL (0) , TBH (0) > 0 and TBL (1) > 0 but
TBH (1) < 04. This leads to an L that will traverse from Quadrant I to Quad-
rant IV. Let us also assume that uD (mL, aT ) < uD (mH , aT ), so that Equi-
librium 5 is not feasible. In Fig. 4, we give specific values of parameters that
satisfy these conditions, and we plot (TBL (p) , TBH (p)) for p ∈ [0, 1]. Then,
in Table 1, we give the equilibria in each region that the line segment traverses.
The equilibrium numbers refer to the derivations in the AppendixA.2.

If p is such that the signaling game is played in Quadrant I, then both
senders prefer pooling on mH . By the first mover advantage, they will select
Equilibrium 8. On the border between Quadrants I and IV, A and D both prefer
an equilibrium in which R plays aT . If they pool on mL, this is guaranteed. If
they pool on mH , however, R receives equal utility for playing aT and aN ; thus,
the senders cannot guarantee that the receiver will play aT . Here, we assume
that the senders maximize their worst-case utility, and thus pool on mL. This is
Equilibrium 3. Finally, in Quadrant IV, both senders prefer to be trusted, and
so select Equilibrium 3. From the table, we can see that the utilities will have a
jump at the border between Quadrants I and IV. The solid line in Fig. 5 plots
the ratio ūS∗

A /ūS∗
D of the utilities as a function of p.

4 These parameters must satisfy uR (θD, mH , aT ) > uR (θD, mH , aN ) and
uR (θA, mL, aT ) > uR (θA, mL, aN ). Here, we give them specific values in order
to plot the data.
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Table 1. Signaling game equilibria by region for a game that traverses between Quad-
rant I and Quadrant IV. Some of the equilibria are feasible only for constrained beliefs
μ, specified in Appendix A.2. We argue that the equilibria in each region marked by
(*) will be selected.

Region Equilibria

Quadrant I
Equilibrium 3: Pool on mL; µ constrained;R plays aT

*Equilibrium 8: Pool on mH ; µ unconstrained;R plays aT

TBH (p) = 0 Axis

*Equilibrium 3: Pool on mL; µ constrained;R plays aT

Equilibrium 8: Pool on mH ; µ unconstrained;R plays aT

Equilibrium 6: Pool on mH ; µ constrained;R plays aN

Quadrant IV
*Equilibrium 3: Pool on mL; µ constrained;R plays aT

Equilibrium 6: Pool on mH ; µ constrained;R plays aN

Fig. 5. TF and TS are combined on a single set of axis. In TS (the solid line), the
independent variable is on the horizontal axis. In TF (the dashed line), the independent
variable is on the vertical axis. The intersection of the two curves represents the Gestalt
equilibrium.

Next, consider the mapping p = TF
(
ūS∗

D , ūS∗
A

)
. As we have noted, p depends

only on the ratio ūS∗
A /ūS∗

D
5. Indeed, it is continuous in that ratio when the

outcome at the endpoints is appropriately defined. This mapping is represented
by the dashed line in Fig. 5, with the independent variable on the vertical axis.

We seek a fixed-point, in which p = TF
(
ūS∗

D , ūS∗
A

)
and

(
ūS∗

D , ūS∗
A

)
= TS (p).

This shown by the intersection of the solid and dashed curves plotted in Fig. 5.

5 When ūS∗
A = ūS∗

D = 0, we define that ratio to be equal to zero, since this will yield
fA = 0 and p = 0, as in Eqs. (9) and (17). When ūS∗

D = 0 and ūS∗
A > 0, it is

convenient to consider the ratio to be positively infinite since this is consistent with
p → 1.
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At these points, the mappings between the signaling and the FlipIt games are
mutually satisfied, and we have a Gestalt equilibrium.6

5 Cloud Control Application

In this section, we describe one possible application of our model: a cyber-
physical system composed of autonomous vehicles with some on-board con-
trol but also with the ability to trust commands from the cloud. Access to the
cloud can offer automated vehicles several benefits [12]. First, it allows access to
massive computational resources - i.e., infrastructure as a service (IaaS ). (See
[5].) Second, it allows access to large datasets. These datasets can offer super-
additive benefits to the sensing capabilities of the vehicle itself, as in the case of
the detailed road and terrain maps that automated cars such as those created
by Google and Delphi combine with data collected by lidar, radar and vision-
based cameras [1,11]. Third, interfacing with the cloud allows access to data
collected or processed by humans through crowd-sourcing applications; consider,
for instance, location-based services [17,18] that feature recommendations from
other users. Finally, the cloud can allow vehicles to collectively learn through
experience [12].

Attackers may attempt to influence cloud control of the vehicle through sev-
eral means. In one type of attack, adversaries may be able to steal or infer cryp-
tographic keys that allow them authorization into the network. These attacks
are of the complete compromise and stealth types that are studied in the FlipIt
framework [6,20] and thus are appropriate for a CloudControl game. FlipIt
also provides the ability to model zero-day exploits, vulnerabilities for which a
patch is not currently available. Each of these types of attacks on the cloud pose
threats to unmanned vehicle security and involve the complete compromise and
steathiness that motivate the FlipIt framework.

5.1 Dynamic Model for Cloud Controlled Unmanned Vehicles

In this subsection, we use a dynamic model of an autonomous car to illustrate one
specific context in which a cloud-connected device could be making a decision
of whether to trust the commands that it would receive or to follow its own
on-board control.

We consider a car moving in two-dimensional space with a fixed speed v0 but
with steering that can be controlled. (See Fig. 6, which illustrates the “bicycle
model” of steering control from [3].) For simplicity, assume that we are interested
in the car’s deviation from a straight line. (This line might, e.g., run along the

6 Note that this example featured a discontinuity in signaling game utilities on the
border between equilibrium regions. Interestingly, even when the pooling equilibria
differ between regions, it is possible that the equilibrium on the border admits a
mixed strategy that provides continuity between the different equilibria in the two
regions, and thus makes TS continuous. This could allow GCC to have multiple
Gestalt equilibria.
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z (t)

θ (t)δ (t)

Fig. 6. A bicycle model is a type of representation of vehicle steering control. Here,
δ (t) is used to denote the angle between the orientation of the front wheel and the
heading θ (t). The deviation of the vehicle from a straight line is given by z (t)

center of the proper driving lane.) Let z (t) denote the car’s vertical distance
from the horizontal line, and let θ (t) denote the heading of the car at time t.
The state of the car can be represented by a two-dimensional vector w (t) �
[
z (t) θ (t)

]T . Let δ (t) denote the angle between the orientation of the front
wheel - which implements steering - and the orientation of the length of the car.
We can consider δ (t) to be the input to the system. Finally, let y (t) represent
a vector of outputs available to the car’s control system. The self-driving cars
of both Google and Delphi employ radar, lidar, and vision-based cameras for
localization. Assume that these allow accurate measurement of both states, such
that y1 (t) = z (t) and y2 (t) = θ (t). If the car stays near w (t) =

[
0 0

]T , then
we can approximate the system with a linear model. Let a and b denote the
distances from the rear wheel to the center of gravity and the rear wheel to the
front wheel of the car, respectively. Then the linearized system is given in [3] by
the equations:

d

dt

[
z (t)
θ (t)

]
=

[
0 v0
0 0

] [
z (t)
θ (t)

]
+

[
av0
b
v0
b

]
δ (t) , (28)

[
y1 (t)
y2 (t)

]
=

[
1 0
0 1

] [
z (t)
θ (t)

]
(29)

5.2 Control of Unmanned Vehicle

Assume that the unmanned car has some capacity for automatic control with-
out the help of the cloud, but that the cloud typically provides more advanced
navigation.

Specifically, consider a control system onboard the unmanned vehicle
designed to return it to the equilibrium w (t) =

[
0 0

]T . Because the car has
access to both of the states, it can implement a state-feedback control. Consider
a linear, time-invariant control of the form

δcar (t) = − [
k1 k2

]
[

z (t)
θ (t)

]
. (30)
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This proportional control results in the closed-loop system

d

dt

[
z (t)
θ (t)

]
=

([
0 v0
0 0

]
−

[
av0
b
v0
b

]
[
k1 k2

]
) [

z (t)
θ (t)

]
(31)

The unmanned car R may also elect to obtain data or computational
resources from the cloud. Typically, this additional access would improve the
control of the car. The cloud administrator (defender D), however, may issue
faulty commands or there may be a breakdown in communication of the desired
signals. In addition, the cloud may be compromised by A in a way that is stealthy.
Because of these factors, R sometimes benefits from rejecting the cloud’s com-
mand and relying on its own navigational abilities. Denote the command issued
by the cloud at time t by δcloud (t) ∈ δA (t) , δD (t), depending on who controls
the cloud. With this command, the system is given by

d

dt

[
z (t)
θ (t)

]
=

[
0 v0
0 0

] [
z (t)
θ (t)

]
+

[
av0
b
v0
b

]
δcloud (t) . (32)

5.3 Filter for High Risk Cloud Commands

In cloud control of an unmanned vehicle, the self-navigation state feedback input
given by δcar (t) in Eq. (30) represents the control that is expected by the vehicle
given its state. If the signal from the cloud differs significantly from the signal
given by the self-navigation system, then the vehicle may classify the message
as “high-risk.” Specifically, define a difference threshold τ , and let

m =

{
mH , if |δcloud (t) − δcar (t)| > τ

mL, if |δcloud (t) − δcar (t)| ≤ τ
(33)

Equation (33) translates the actual command from the cloud (controlled by D
or A) into a message in the cloud signaling game.

Equations (31) and (32) give the dynamics of the unmanned car electing to
trust and not trust the cloud. Based on these equations, Fig. 7 illustrates the
combined self-navigating and cloud controlled system for vehicle control.

6 Conclusion and Future Work

In this paper, we have proposed a general framework for the interaction between
an attacker, cloud administrator/defender, and cloud-connected device. We have
described the struggle for control of the cloud using the FlipIt game and the
interaction between the cloud and the connected device using a traditional sig-
naling game. Because these two games are played by prior commitment, they
are coupled. We have defined a new equilibrium concept - i.e., Gestalt equilib-
rium, which defines a solution to the combined game using a fixed-point equa-
tion. After illustrating various parameter regions under which the game may be
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A

B
∑

−k

δA

δD

δcar

d
dt

w (t) w (t)

σS
R

p
FlipIt

Fig. 7. Block-diagram model for unmanned vehicle navigation control. At any time,
the vehicle uses strategy σS

R to decide whether to follow its own control or the control
signal from the cloud, which may be δA or δD, depending on the probabilities p, 1 − p
with which A and D control the cloud. Its own control signal, δcar, is obtained via
feedback control.

played, we solved the game in a sample parameter region. Finally, we showed
how the framework may be applied to unmanned vehicle control.

Several directions remain open for future work. First, the physical compo-
nent of the cyber-physical system can be further examined. Tools from optimal
control such as the linear-quadratic regulator could offer a rigorous framework
for defining the costs associated with the physical dynamic system, which in turn
would define the payoffs of the signaling game. Second, future work could search
for conditions under which a Gestalt equilibrium of the CloudControl game is
guaranteed to exist. Finally, devices that use this framework should be equipped
to learn online. Towards that end, a learning algorithm could be developed that
is guaranteed to converge to the Gestalt equilibrium. Together with the frame-
work developed in the present paper, these directions would help to advance our
ability to secure cloud-connected and cyber-physical systems.

A Derivation of Signaling Game Equilibria

In this appendix, we solve for the equilibria of GS.

A.1 Separating Equilibria

First, we search for separating equilibria of GS. In separating equilibria, R knows
with certainty the type of the cloud.
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D plays mL and A plays mH. If D plays mL (as a pure strategy) and A plays
mH , then the receiver rejects any mH according to assumption A2. The best
action for A is to deviate to mL. Thus, this is not an equilibrium.

D plays mH and A plays mL. If D plays mH and A plays mL, the
R’s best response depends on the utility parameters. If uS

R (θA,mL, aT ) ≤
uS

R (θA,mL, aN ) and uS
R (θD,mH , aT ) ≤ uS

R (θD,mH , aN ), then R plays aN in
response to both messages. There is no incentive to deviate. Denote this sepa-
rating equilibrium as Equilibrium #2.

If uS
R (θA,mL, aT ) ≤ uS

R (θA,mL, aN ) and uS
R (θD,mH , aT ) >

uS
R (θD,mH , aN ), then aN is within the set of best responses to mL, whereas

aT is the unique best response to mH . Assuming that he prefers to certainty
receive a higher utility, A deviates to mH .

If uS
R (θA,mL, aT ) > uS

R (θA,mL, aN ) and uS
R (θD,mH , aT ) ≤

uS
R (θD,mH , aN ), then aN is within the set of best responses to mH , whereas aT

is the unique best response to mL. Thus, D deviates to mL.
If uS

R (θA,mL, aT ) > uS
R (θA,mL, aN ) and uS

R (θD,mH , aT ) >
uS

R (θD,mH , aN ), then R plays aT in response to both messages. We have
assumed, however, that A prefers to be trusted on mH compared to being trusted
on mL (A4), so A deviates and this is not an equilibrium.

A.2 Pooling Equilibria

Next, we search for pooling equilibria of GS. In pooling equilibria, R relies only
on the prior probabilities p and 1 − p in order to form his belief about the type
of the cloud. The existence of pooling equilibria depend essentially on the trust
benefits TBH (p) and TBL (p) .

Pooling on mL. If TBL (p) < 0, then R’s best response is aN . This will only
be an equilibrium if his best response to mH would also be aN . This is the case
only when the belief satisfies

μ (θA |mH) uR (θA,mH , aT ) + (1 − μ (θA |mH)) uR (θD,mH , aT )
≤ μ (θA |mH) uR (θA,mH , aN ) + (1 − μ (θA |mH)) uR (θD,mH , aN ) (34)

Moreover, this can only be an equilibrium when neither A nor D have an incen-
tive to deviate: i.e., when

uS
A (mH , aN ) ≤ uS

A (mL, aN ) and uS
D (mH , aN ) ≤ uS

D (mL, aN ) (35)

If these conditions are satisfied, then denote this equilibrium by Equilibrium #1.
If TBL (p) ≥ 0, then R’s best response us aT . Whether this represents

an equilibrium depends on if A or D have incentives to deviate from mL. If
uS

D (mH , aT ) ≤ uS
D (mL, aT ) and uS

A (mH , aT ) ≤ uS
A (mL, aT ), then neither has

an incentive to deviate. This is Equilibrium #5. If one of these inequalities does
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not hold, then the player who prefers mH to mL will deviate if R would play aT

in response to the deviation. The equilibrium condition is narrowed to when the
belief makes R not trust mH ; when Eq. (34) is satisfied. Call this Equilibrium
#3.

Pooling on mH. The pattern of equilibria for pooling on mH follows a similar
structure to the pattern of equilibria for pooling on mL.

If TBH (p) < 0, then R’s best response is aN . This will only be an equilibrium
if his best response to mL would also be aN . This is the case only when the belief
satisfies

μ (θA |mL) uR (θA,mL, aT ) + (1 − μ (θA |mL)) uR (θD,mL, aT )
≤ μ (θA |mL)uR (θA,mL, aN ) + (1 − μ (θA |mL)) uR (θD,mL, aN ) (36)

To guarantee that A and D do not deviate, we require

uS
A (mH , aN ) ≥ uS

A (mL, aN ) anduS
D (mH , aN ) ≥ uS

D (mL, aN ) (37)

If these conditions are satisfied, then we have Equilibrium #6.
If TBH ≥ 0, then R’s best response is aT . If uS

D (mH , aT ) ≥ uS
D (mL, aT )

and uS
A (mH , aT ) ≥ uS

A (mL, aT ), then neither A nor D have an incentive to
deviate. Call this Equilibrium #8. If one of these inequalities does not hold,
then the belief must satisfy Eq. (36) for an equilibrium to be sustained. Denote
this equilibrium by Equilibrium #7.
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